JP2024026152A - Light absorption anisotropic layer, laminate, optical film, image display device and backlight module - Google Patents

Light absorption anisotropic layer, laminate, optical film, image display device and backlight module Download PDF

Info

Publication number
JP2024026152A
JP2024026152A JP2023198385A JP2023198385A JP2024026152A JP 2024026152 A JP2024026152 A JP 2024026152A JP 2023198385 A JP2023198385 A JP 2023198385A JP 2023198385 A JP2023198385 A JP 2023198385A JP 2024026152 A JP2024026152 A JP 2024026152A
Authority
JP
Japan
Prior art keywords
group
light
anisotropic layer
carbon atoms
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023198385A
Other languages
Japanese (ja)
Inventor
史岳 三戸部
Fumitake Mitobe
直弥 西村
Naoya Nishimura
隆志 加藤
Takashi Kato
直也 柴田
Naoya Shibata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of JP2024026152A publication Critical patent/JP2024026152A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F19/00Advertising or display means not otherwise provided for
    • G09F19/12Advertising or display means not otherwise provided for using special optical effects
    • G09F19/14Advertising or display means not otherwise provided for using special optical effects displaying different signs depending upon the view-point of the observer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0056Means for improving the coupling-out of light from the light guide for producing polarisation effects, e.g. by a surface with polarizing properties or by an additional polarizing elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0075Arrangements of multiple light guides
    • G02B6/0076Stacked arrangements of multiple light guides of the same or different cross-sectional area
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Marketing (AREA)
  • Accounting & Taxation (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Business, Economics & Management (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Planar Illumination Modules (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light absorption anisotropic layer, a laminate, an optical film, an image display device and a backlight module that contain a dichroic substance, and in which transmittance being seen from a front face is high and transmittance in an oblique direction can be lowered.
SOLUTION: A light absorption anisotropic layer that contains a liquid crystalline compound and at least one kind of dichroic substance, and in which the dichroic substance is arranged in perpendicular to a film surface and a degree of orientation in a wavelength 550nm of the light absorption anisotropic layer is larger than or equal to 0.95, is provided.
SELECTED DRAWING: None
COPYRIGHT: (C)2024,JPO&INPIT

Description

本発明は、光吸収異方性層、積層体、光学フィルム、画像表示装置、および、バックライトモジュールに関する。 The present invention relates to a light-absorbing anisotropic layer, a laminate, an optical film, an image display device, and a backlight module.

液晶表示装置の覗き込み防止や視角制御のため、厚さ方向に吸収軸を持つ異方性光吸収層を使用する技術が知られている。例えば、特許文献1および2では二色性物質を含み、吸収軸とフィルム面の法線とのなす角が0~45°であるフィルムを用いた視角制御システムに関する偏光素子が提案されている。 A known technique is to use an anisotropic light absorption layer having an absorption axis in the thickness direction in order to prevent viewing of liquid crystal display devices and to control viewing angles. For example, Patent Documents 1 and 2 propose a polarizing element for a viewing angle control system using a film containing a dichroic substance and having an angle of 0 to 45 degrees between the absorption axis and the normal to the film surface.

特開2009-145776号公報Japanese Patent Application Publication No. 2009-145776 国際公開第2018/079854号公報International Publication No. 2018/079854

近年、省エネや有機EL(エレクトロルミネッセンス)の寿命などの問題があり、膜面に対して正面方向の透過率が高いフィルムの要求が高くなってきている。 In recent years, there have been issues such as energy saving and the lifespan of organic EL (electroluminescence), and there has been an increasing demand for films that have high transmittance in the front direction relative to the film surface.

本発明は、二色性物質を含み、正面方向から見た場合の透過率が高く、且つ、斜め方向から見た場合の透過率が低い、光吸収異方性層を提供することを課題とする。
また、本発明は、積層体、光学フィルム、画像表示装置、および、バックライトモジュールを提供することも課題とする。
An object of the present invention is to provide a light-absorbing anisotropic layer containing a dichroic substance and having high transmittance when viewed from the front and low transmittance when viewed from an oblique direction. do.
Another object of the present invention is to provide a laminate, an optical film, an image display device, and a backlight module.

本発明者らは、二色性物質が膜面に対し垂直に配向している光吸収異方性層の波長550nmにおける配向度を0.95以上にすることで、正面の透過率が高く、且つ、斜め方向の透過率を低くできることを見出し、本発明に至った。 The present inventors have determined that the degree of orientation at a wavelength of 550 nm of the light absorption anisotropic layer in which the dichroic substance is oriented perpendicularly to the film surface is 0.95 or more, so that the front transmittance is high. In addition, it was discovered that the transmittance in the oblique direction can be lowered, leading to the present invention.

すなわち、以下の構成により上記課題を解決できることを見出した。 That is, it has been found that the above problem can be solved by the following configuration.

(1) 液晶性化合物と、少なくとも1種類の二色性物質とを含み、
二色性物質が膜面に対し垂直に配向している光吸収異方性層であって、
光吸収異方性層の波長550nmにおける配向度が0.95以上である、光吸収異方性層。
(2) 光吸収異方性層の波長420nmにおける配向度が0.93以上である、(1)に記載の光吸収異方性層。
(3) 液晶性化合物および少なくとも1種の二色性物質を含む領域Aと、領域Aよりも極角30°から見た斜め透過率が高い領域Bとを有する光吸収異方性層であって、
二色性物質が膜面に対し垂直に配向しており、
領域Aの波長550nmにおける配向度が0.95以上である、光吸収異方性層。
(4) 領域Aの極角30°から見た斜め透過率が10%以下であり、領域Bの極角30°から見た斜め透過率が80%以上である、(3)に記載の光吸収異方性層。
(5) (1)~(4)のいずれかに記載の光吸収異方性層と、二色性物質が膜面に対し水平に配向している偏光子層とが積層されている積層体。
(6) (1)~(4)のいずれかに記載の光吸収異方性層と、液晶性化合物および二色性物質が膜面に対し水平に配向している偏光子層とが積層されている積層体。
(7) (1)~(4)のいずれかに記載の光吸収異方性層、または、(5)もしくは(6)に記載の積層体を有する光学フィルム。
(8) (1)~(4)のいずれかに記載の光吸収異方性層、(5)もしくは(6)に記載の積層体、または、(7)に記載の光学フィルムを有する、画像表示装置。
(9) 表示部分に曲面部を有する、(8)に記載の画像表示装置。
(10) (3)または(4)に記載の光吸収異方性層を有する、視野角を切り替えることが可能な画像表示装置。
(11) (1)または(2)に記載の光吸収異方性層を有する、視野角を切り替えることが可能な画像表示装置。
(12) 視認側から、第一導光板、光フィルター素子、および、第二導光板を有し、
光フィルター素子が、(1)または(2)に記載の光吸収異方性層である、
視野角を切り替えることが可能なバックライトモジュール。
(1) Contains a liquid crystal compound and at least one dichroic substance,
A light absorption anisotropic layer in which a dichroic substance is oriented perpendicularly to the film surface,
A light absorption anisotropic layer having an orientation degree of 0.95 or more at a wavelength of 550 nm.
(2) The light absorption anisotropic layer according to (1), wherein the degree of orientation of the light absorption anisotropic layer at a wavelength of 420 nm is 0.93 or more.
(3) A light-absorbing anisotropic layer having a region A containing a liquid crystal compound and at least one dichroic substance, and a region B having a higher oblique transmittance than region A when viewed from a polar angle of 30°. hand,
The dichroic substance is oriented perpendicular to the membrane surface,
A light absorption anisotropic layer in which the degree of orientation in region A at a wavelength of 550 nm is 0.95 or more.
(4) The light according to (3), wherein the oblique transmittance of region A when viewed from a polar angle of 30° is 10% or less, and the diagonal transmittance of region B when viewed from a polar angle of 30° is 80% or more. Absorption anisotropic layer.
(5) A laminate in which the light-absorbing anisotropic layer according to any one of (1) to (4) and a polarizer layer in which a dichroic substance is oriented horizontally to the film surface are laminated. .
(6) The light absorption anisotropic layer according to any one of (1) to (4) and a polarizer layer in which a liquid crystal compound and a dichroic substance are oriented horizontally to the film surface are laminated. Laminated body.
(7) An optical film having the light-absorbing anisotropic layer according to any one of (1) to (4) or the laminate according to (5) or (6).
(8) An image comprising the light-absorbing anisotropic layer according to any one of (1) to (4), the laminate according to (5) or (6), or the optical film according to (7) Display device.
(9) The image display device according to (8), wherein the display portion has a curved surface portion.
(10) An image display device having a light absorption anisotropic layer according to (3) or (4) and capable of switching viewing angles.
(11) An image display device having a light-absorbing anisotropic layer according to (1) or (2) and capable of switching viewing angles.
(12) From the viewing side, it includes a first light guide plate, an optical filter element, and a second light guide plate,
The optical filter element is the light absorption anisotropic layer according to (1) or (2),
Backlight module that allows you to switch viewing angles.

本発明によれば、二色性物質を含み、正面方向から見た場合の透過率が高く、且つ、斜め方向から見た場合の透過率が低い、光吸収異方性層を提供できる。
また、本発明によれば、積層体、光学フィルム、画像表示装置、および、バックライトモジュールを提供できる。
According to the present invention, it is possible to provide a light-absorbing anisotropic layer that contains a dichroic substance and has high transmittance when viewed from the front and low transmittance when viewed from an oblique direction.
Further, according to the present invention, a laminate, an optical film, an image display device, and a backlight module can be provided.

図1は、本発明の一実施例のバックライトモジュールの概略図である。FIG. 1 is a schematic diagram of a backlight module according to an embodiment of the present invention.

以下、本発明について詳細に説明する。
以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
また、本明細書において、平行および直交とは厳密な意味での平行および直交を意味するのではなく、平行または直交から±5°の範囲を意味する。
また、本明細書において、光吸収異方性層の法線方向に対する傾き角度(極角)と傾き方向(方位角)を変化させて透過率を測定した際に最も透過率の高い方向を透過率中心軸とし、透過率中心軸と光吸収異方性層の膜面(光吸収異方性層の主面)との角度がほぼ垂直であるとき、二色性物質が垂直に配向していると定義する。透過率中心軸と膜面との角度が垂直である配向とは、70~90°の範囲内となる配向を意味し、80~90°の範囲内となる配向が好ましく、85~90°の範囲内となる配向がより好ましい。
The present invention will be explained in detail below.
Although the description of the constituent elements described below may be made based on typical embodiments of the present invention, the present invention is not limited to such embodiments.
Note that in this specification, a numerical range expressed using "~" means a range that includes the numerical values written before and after "~" as the lower limit and upper limit.
Moreover, in this specification, parallel and orthogonal do not mean parallel and orthogonal in the strict sense, but mean a range of ±5° from parallel or orthogonal.
In addition, in this specification, when transmittance is measured by changing the tilt angle (polar angle) and tilt direction (azimuthal angle) with respect to the normal direction of the light-absorbing anisotropic layer, the direction with the highest transmittance is transmitted. When the angle between the transmittance central axis and the film surface of the light-absorbing anisotropic layer (principal surface of the light-absorbing anisotropic layer) is almost perpendicular, the dichroic substance is oriented vertically. It is defined that there is. An orientation in which the angle between the central axis of transmittance and the film surface is perpendicular means an orientation in the range of 70 to 90°, preferably an orientation in the range of 80 to 90°, and an orientation in the range of 85 to 90°. Orientations within this range are more preferred.

また、本明細書において、液晶性組成物、液晶性化合物とは、硬化などにより、もはや液晶性を示さなくなったものも概念として含まれる。 Further, in this specification, the term "liquid crystal composition" or "liquid crystal compound" includes a concept that no longer exhibits liquid crystallinity due to curing or the like.

また、本明細書において、各成分は、各成分に該当する物質を1種単独でも用いても、2種以上を併用してもよい。ここで、各成分について2種以上の物質を併用する場合、その成分についての含有量とは、特段の断りが無い限り、併用した物質の合計の含有量を指す。
また、本明細書において、「(メタ)アクリレート」は、「アクリレート」または「メタクリレート」を表す表記であり、「(メタ)アクリル」は、「アクリル」または「メタクリル」を表す表記であり、「(メタ)アクリロイル」は、「アクリロイル」または「メタクリロイル」を表す表記である。
Moreover, in this specification, each component may use one type of substance corresponding to each component, or may use two or more types in combination. Here, when two or more types of substances are used together for each component, the content of the component refers to the total content of the substances used in combination, unless otherwise specified.
Further, in this specification, "(meth)acrylate" is a notation representing "acrylate" or "methacrylate", "(meth)acrylic" is a notation representing "acrylic" or "methacrylic", and "(meth)acrylate" is a notation representing "acrylic" or "methacrylic";(Meth)acryloyl" is a notation representing "acryloyl" or "methacryloyl."

<光吸収異方性層の第1実施態様>
本発明の光吸収異方性層の第1実施態様は、液晶性化合物と、少なくとも1種類の二色性物質とを含み、二色性物質が膜面(光吸収異方性層の主面)に対し垂直に配向している光吸収異方性層であって、光吸収異方性層の波長550nmにおける配向度が0.95以上を満たす。
なお、上記光吸収異方性層の波長550nmにおける配向度は、光吸収異方性層を正面方向から見た場合の透過率がより高く、且つ、斜め方向から見た場合の透過率をより低くできる点(以下、単に「本発明の効果がより優れる点」ともいう。)で、0.96以上が好ましい。上限は特に制限されないが、1.00が挙げられる。
<First embodiment of light absorption anisotropic layer>
The first embodiment of the light-absorbing anisotropic layer of the present invention includes a liquid crystal compound and at least one dichroic substance, and the dichroic substance is present on the film surface (the main surface of the light-absorbing anisotropic layer). ), the degree of orientation of the light absorption anisotropic layer at a wavelength of 550 nm satisfies 0.95 or more.
The degree of orientation of the light absorption anisotropic layer at a wavelength of 550 nm is such that the transmittance when the light absorption anisotropic layer is viewed from the front is higher, and the transmittance when viewed from an oblique direction is higher. A value of 0.96 or more is preferable in that it can be lowered (hereinafter also simply referred to as "a point where the effects of the present invention are more excellent"). The upper limit is not particularly limited, but may be 1.00.

上記波長550nmにおける配向度は以下の方法によって算出される。
AxoScan OPMF-1(オプトサイエンス社製)を用いて、波長550nmにおける光吸収異方性層の透過率を測定する。測定の際には、光吸収異方性層の法線方向に対する角度である極角を0~60°まで5°毎に変更しつつ、各極角における全方位角度での波長550nmにおける透過率を測定する。次に、表面反射の影響を除去した後、最も透過率の高い方位角および極角での透過率をTm(0)、最も透過率の高い方位角方向において、最も透過率の高い極角からさらに極角を40°傾けた角度での透過率をTm(40)とする。得られたTm(0)およびTm(40)から下記式により吸光度を算出し、A(0)およびA(40)を算出する。
A=-log(Tm)
ここで、Tmは透過率、Aは吸光度を表す。
算出したA(0)およびA(40)より、下記式で定義された配向度Sを算出する。
S=(4.6×A(40)-A(0))/(4.6×A(40)+2×A(0))
The degree of orientation at the wavelength of 550 nm is calculated by the following method.
The transmittance of the light absorption anisotropic layer at a wavelength of 550 nm is measured using AxoScan OPMF-1 (manufactured by Optoscience). During measurement, the polar angle, which is the angle with respect to the normal direction of the light-absorbing anisotropic layer, was changed in 5° increments from 0 to 60°, and the transmittance at a wavelength of 550 nm at all azimuth angles at each polar angle was measured. Measure. Next, after removing the influence of surface reflection, the transmittance at the azimuthal and polar angles with the highest transmittance is Tm(0), and in the azimuthal direction with the highest transmittance, from the polar angle with the highest transmittance, Furthermore, the transmittance at an angle where the polar angle is tilted by 40 degrees is Tm (40). The absorbance is calculated from the obtained Tm(0) and Tm(40) using the following formula, and A(0) and A(40) are calculated.
A=-log(Tm)
Here, Tm represents transmittance and A represents absorbance.
The degree of orientation S defined by the following formula is calculated from the calculated A(0) and A(40).
S=(4.6×A(40)-A(0))/(4.6×A(40)+2×A(0))

本発明の光吸収異方性層の第1実施態様は、正面の透過率が高く、斜め方向の透過率を低くすることができる。これは以下の理由によると推定される。
斜め方向の透過率を低くするためには、光吸収異方性層の厚みを増やすことで実現できるが同時に正面の透過率が下がってしまう。波長550nmにおける光吸収異方性層の配向度を0.95以上にすることで、二色性物質の吸収軸が垂直方向からずれたものの存在頻度が下がると考えられる。それにより光吸収異方性層を正面方向から見た時の二色性物質による吸収を抑制できた結果、正面方向の透過率を高くできたと推定される。
The first embodiment of the light-absorbing anisotropic layer of the present invention has high transmittance in the front direction and low transmittance in the oblique direction. This is presumed to be due to the following reasons.
Lowering the transmittance in the oblique direction can be achieved by increasing the thickness of the light-absorbing anisotropic layer, but at the same time the transmittance in the front direction decreases. It is thought that by setting the degree of orientation of the light absorption anisotropic layer at a wavelength of 550 nm to 0.95 or more, the frequency of existence of dichroic substances whose absorption axes are deviated from the perpendicular direction is reduced. It is presumed that this suppressed absorption by the dichroic substance when the light-absorbing anisotropic layer was viewed from the front, thereby increasing the transmittance in the front direction.

また、正面方向の色味をニュートラルにできる点で、光吸収異方性層の波長420nmにおける配向度が0.93以上を満たすことが好ましい。なかでも、正面方向の色味をよりニュートラルにできる点で、波長420nmにおける配向度は0.94以上が好ましい。上限は特に制限されないが、1.00が好ましい。
二色性物質を含む光吸収異方性層の色味制御については、通常、光吸収異方性層に含まれる二色性物質の添加量を調整することで行う。しかし、正面方向と斜め方向との色味を共にニュートラルの状態にすることは、二色性物質の添加量調整だけではできないことが分かった。正面方向と斜め方向との色味をニュートラルの状態にできない原因が、波長420nmの配向度が低いことであることが分かり、波長420nmにおける配向度を高配向度にすることで、正面方向と斜め方向との色味をニュートラルにできる。
Further, it is preferable that the degree of orientation of the light-absorbing anisotropic layer at a wavelength of 420 nm satisfies 0.93 or more, since the color tone in the front direction can be made neutral. Among these, the degree of orientation at a wavelength of 420 nm is preferably 0.94 or more, since the color in the front direction can be made more neutral. The upper limit is not particularly limited, but is preferably 1.00.
The color of the light-absorbing anisotropic layer containing a dichroic substance is usually controlled by adjusting the amount of the dichroic substance contained in the light-absorbing anisotropic layer. However, it has been found that it is not possible to achieve a neutral color tone in both the front and oblique directions simply by adjusting the amount of the dichroic substance added. It was found that the reason why the color tone in the front direction and diagonal direction cannot be made neutral is that the degree of orientation at the wavelength of 420 nm is low. By increasing the degree of orientation at the wavelength of 420 nm to a high degree, You can make the color tone neutral with the direction.

上記波長420nmにおける配向度の算出方法は、上述した波長550nmにおける配向度の算出方法における測定波長を550nmから420nmに変更した方法が挙げられる。 Examples of the method for calculating the degree of orientation at a wavelength of 420 nm include a method in which the measurement wavelength in the method for calculating the degree of orientation at a wavelength of 550 nm described above is changed from 550 nm to 420 nm.

[液晶性化合物]
光吸収異方性層は、液晶性化合物を含む。液晶性化合物を含むことで、二色性物質の析出を抑止しながら、二色性物質を高い配向度で配向させることができる。
液晶性化合物は、二色性を示さない液晶性化合物である。
液晶性化合物としては、低分子液晶性化合物および高分子液晶性化合物のいずれを用いることも可能であり、両方を併用することも好ましい。ここで、「低分子液晶性化合物」とは、化学構造中に繰り返し単位を有さない液晶性化合物のことをいう。また、「高分子液晶性化合物」とは、化学構造中に繰り返し単位を有する液晶性化合物のことをいう。
[Liquid crystal compound]
The light absorption anisotropic layer contains a liquid crystal compound. By including a liquid crystal compound, the dichroic substance can be oriented with a high degree of orientation while suppressing precipitation of the dichroic substance.
A liquid crystal compound is a liquid crystal compound that does not exhibit dichroism.
As the liquid crystal compound, it is possible to use either a low-molecular liquid crystal compound or a high-molecular liquid crystal compound, and it is also preferable to use both in combination. Here, the term "low-molecular liquid crystal compound" refers to a liquid crystal compound that does not have repeating units in its chemical structure. Furthermore, the term "polymer liquid crystal compound" refers to a liquid crystal compound having repeating units in its chemical structure.

低分子液晶性化合物としては、例えば、特開2013-228706号公報に記載されている液晶性化合物が挙げられる。低分子液晶性化合物としては、スメクチック相を示す液晶性化合物も好ましく用いることができる。 Examples of the low-molecular liquid crystal compound include liquid crystal compounds described in JP-A No. 2013-228706. As the low-molecular liquid crystal compound, a liquid crystal compound exhibiting a smectic phase can also be preferably used.

高分子液晶性化合物としては、例えば、特開2011-237513号公報に記載されているサーモトロピック液晶性高分子が挙げられる。また、高分子液晶性化合物は、光吸収異方性膜の強度(特に、耐屈曲性)が優れるという観点から、末端に架橋性基を有する繰り返し単位を有することが好ましい。架橋性基としては、例えば、特開2010-244038号公報の[0040]~[0050]段落に記載された重合性基が挙げられる。これらの中でも、反応性および合成適性の向上の観点から、アクリロイル基、メタクリロイル基、エポキシ基、オキセタニル基、または、スチリル基が好ましく、アクリロイル基、または、メタクリロイル基がより好ましい。 Examples of the polymeric liquid crystalline compound include thermotropic liquid crystalline polymers described in JP-A No. 2011-237513. Further, the polymeric liquid crystal compound preferably has a repeating unit having a crosslinkable group at the end, from the viewpoint that the light absorption anisotropic film has excellent strength (particularly, bending resistance). Examples of the crosslinkable group include the polymerizable groups described in paragraphs [0040] to [0050] of JP-A No. 2010-244038. Among these, from the viewpoint of improving reactivity and synthesis suitability, acryloyl group, methacryloyl group, epoxy group, oxetanyl group, or styryl group is preferable, and acryloyl group or methacryloyl group is more preferable.

本発明における光吸収異方性層が高分子液晶性化合物を含む場合、高分子液晶性化合物は、ネマチック液晶相を形成するのが好ましい。
ネマチック液晶相を示す温度範囲は、室温(23℃)~450℃が好ましく、取り扱いや製造適性の観点から、50~400℃が好ましい。
When the light-absorbing anisotropic layer in the present invention contains a polymer liquid crystal compound, the polymer liquid crystal compound preferably forms a nematic liquid crystal phase.
The temperature range in which the nematic liquid crystal phase is exhibited is preferably room temperature (23°C) to 450°C, and from the viewpoint of handling and manufacturing suitability, 50 to 400°C is preferable.

液晶性化合物の含有量は、光吸収異方性層中の二色性物質の含有量100質量部に対して、25~2000質量部が好ましく、100~1300質量部がより好ましく、200~900質量部がさらに好ましい。液晶性化合物の含有量が上記範囲内にあることで、光吸収異方性層の配向度がより向上する。
液晶性化合物は、1種単独で含まれていてもよいし、2種以上含まれていてもよい。液晶性化合物が2種以上含まれる場合、上記液晶性化合物の含有量は、液晶性化合物の含有量の合計を意味する。
The content of the liquid crystalline compound is preferably 25 to 2000 parts by mass, more preferably 100 to 1300 parts by mass, and 200 to 900 parts by mass based on 100 parts by mass of the dichroic substance in the light-absorbing anisotropic layer. Parts by mass are more preferred. When the content of the liquid crystalline compound is within the above range, the degree of orientation of the light absorption anisotropic layer is further improved.
One type of liquid crystal compound may be contained alone, or two or more types may be contained. When two or more types of liquid crystalline compounds are included, the content of the liquid crystalline compounds means the total content of the liquid crystalline compounds.

液晶性化合物は、配向度がより優れる観点から、下記式(1L)で表される繰り返し単位(以下、「繰り返し単位(1L)」とも言う)を含む高分子液晶性化合物であることが好ましい。 The liquid crystal compound is preferably a polymeric liquid crystal compound containing a repeating unit represented by the following formula (1L) (hereinafter also referred to as "repeat unit (1L)") from the viewpoint of a better degree of alignment.

上記式(1L)中、P1は繰り返し単位の主鎖を表し、L1は単結合または2価の連結基を表し、SP1はスペーサー基を表し、M1はメソゲン基を表し、T1は末端基を表す。 In the above formula (1L), P1 represents the main chain of the repeating unit, L1 represents a single bond or a divalent linking group, SP1 represents a spacer group, M1 represents a mesogenic group, and T1 represents a terminal group. .

P1が表す繰り返し単位の主鎖としては、具体的には、例えば、下記式(P1-A)~(P1-D)で表される基が挙げられ、なかでも、原料となる単量体の多様性および取り扱いが容易である観点から、下記式(P1-A)で表される基が好ましい。 Specific examples of the main chain of the repeating unit represented by P1 include groups represented by the following formulas (P1-A) to (P1-D). From the viewpoint of diversity and ease of handling, a group represented by the following formula (P1-A) is preferred.

式(P1-A)~(P1-D)において、「*」は、式(1L)におけるL1との結合位置を表す。式(P1-A)~(P1-D)において、R、R、RおよびRはそれぞれ独立に、水素原子、ハロゲン原子、炭素数1~10のアルキル基または炭素数1~10のアルコキシ基を表す。上記アルキル基は、直鎖または分岐のアルキル基であってもよいし、環状構造を有するアルキル基(シクロアルキル基)であってもよい。また、上記アルキル基の炭素数は、1~5が好ましい。
式(P1-A)で表される基は、(メタ)アクリル酸エステルの重合によって得られるポリ(メタ)アクリル酸エステルの部分構造の一単位であることが好ましい。
式(P1-B)で表される基は、エポキシ基を有する化合物のエポキシ基を開環重合して形成されるエチレングリコール単位であることが好ましい。
式(P1-C)で表される基は、オキセタン基を有する化合物のオキセタン基を開環重合して形成されるプロピレングリコール単位であることが好ましい。
式(P1-D)で表される基は、アルコキシシリル基およびシラノール基の少なくとも一方の基を有する化合物の縮重合によって得られるポリシロキサンのシロキサン単位であることが好ましい。ここで、アルコキシシリル基およびシラノール基の少なくとも一方の基を有する化合物としては、式SiR(OR-で表される基を有する化合物が挙げられる。式中、Rは、式(P1-D)におけるRと同義であり、複数のRはそれぞれ独立に、水素原子または炭素数1~10のアルキル基を表す。
In formulas (P1-A) to (P1-D), "*" represents the bonding position with L1 in formula (1L). In formulas (P1-A) to (P1-D), R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or a C 1 to 10 alkyl group. represents an alkoxy group. The alkyl group may be a linear or branched alkyl group, or may be an alkyl group having a cyclic structure (cycloalkyl group). Further, the number of carbon atoms in the alkyl group is preferably 1 to 5.
The group represented by formula (P1-A) is preferably one unit of a partial structure of a poly(meth)acrylic ester obtained by polymerization of a (meth)acrylic ester.
The group represented by formula (P1-B) is preferably an ethylene glycol unit formed by ring-opening polymerization of the epoxy group of a compound having an epoxy group.
The group represented by formula (P1-C) is preferably a propylene glycol unit formed by ring-opening polymerization of the oxetane group of a compound having an oxetane group.
The group represented by formula (P1-D) is preferably a siloxane unit of a polysiloxane obtained by polycondensation of a compound having at least one of an alkoxysilyl group and a silanol group. Here, the compound having at least one of an alkoxysilyl group and a silanol group includes a compound having a group represented by the formula SiR 4 (OR 5 ) 2 -. In the formula, R 4 has the same meaning as R 4 in formula (P1-D), and each of the plurality of R 5s independently represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.

L1は、単結合または2価の連結基である。
L1が表す2価の連結基としては、-C(O)O-、-OC(O)-、-O-、-S-、-C(O)NR-、-NRC(O)-、-SO-、および、-NR-などが挙げられる。式中、RおよびRはそれぞれ独立に、水素原子、置換基W(後述)を有していてもよい炭素数1~6のアルキル基を表す。
P1が式(P1-A)で表される基である場合には、配向度がより優れる観点から、L1は-C(O)O-で表される基が好ましい。
P1が式(P1-B)~(P1-D)で表される基である場合には、配向度がより優れる観点から、L1は単結合が好ましい。
L1 is a single bond or a divalent linking group.
The divalent linking group represented by L1 is -C(O)O-, -OC(O)-, -O-, -S-, -C(O)NR 3 -, -NR 3 C(O) -, -SO 2 -, and -NR 3 R 4 -. In the formula, R 3 and R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may have a substituent W (described later).
When P1 is a group represented by formula (P1-A), L1 is preferably a group represented by -C(O)O- from the viewpoint of a better degree of orientation.
When P1 is a group represented by formulas (P1-B) to (P1-D), L1 is preferably a single bond from the viewpoint of a better degree of orientation.

SP1が表すスペーサー基は、液晶性を発現しやすいことや、原材料の入手性などの観点から、オキシエチレン構造、オキシプロピレン構造、ポリシロキサン構造およびフッ化アルキレン構造からなる群より選択される少なくとも1種の構造を含むことが好ましい。
ここで、SP1が表すオキシエチレン構造は、*-(CH-CHO)n1-*で表される基が好ましい。式中、n1は1~20の整数を表し、*は、上記式(1L)中のL1またはM1との結合位置を表す。n1は、配向度がより優れる観点から、2~10の整数であることが好ましく、2~4の整数であることがより好ましく、3であることがさらに好ましい。
また、SP1が表すオキシプロピレン構造は、配向度がより優れる観点から、*-(CH(CH)-CHO)n2-*で表される基が好ましい。式中、n2は1~3の整数を表し、*はL1またはM1との結合位置を表す。
また、SP1が表すポリシロキサン構造は、配向度がより優れる観点から、*-(Si(CH-O)n3-*で表される基が好ましい。式中、n3は6~10の整数を表し、*はL1またはM1との結合位置を表す。
また、SP1が表すフッ化アルキレン構造は、配向度がより優れる観点から、*-(CF-CFn4-*で表される基が好ましい。式中、n4は6~10の整数を表し、*はL1またはM1との結合位置を表す。
The spacer group represented by SP1 is at least one selected from the group consisting of an oxyethylene structure, an oxypropylene structure, a polysiloxane structure, and a fluorinated alkylene structure, from the viewpoint of easy expression of liquid crystallinity and availability of raw materials. Preferably, it includes a species structure.
Here, the oxyethylene structure represented by SP1 is preferably a group represented by *-(CH 2 -CH 2 O) n1 -*. In the formula, n1 represents an integer of 1 to 20, and * represents the bonding position with L1 or M1 in the above formula (1L). n1 is preferably an integer of 2 to 10, more preferably an integer of 2 to 4, and even more preferably 3, from the viewpoint of a better degree of orientation.
Further, the oxypropylene structure represented by SP1 is preferably a group represented by *-(CH(CH 3 )-CH 2 O) n2 -* from the viewpoint of a better degree of orientation. In the formula, n2 represents an integer of 1 to 3, and * represents the bonding position with L1 or M1.
Further, the polysiloxane structure represented by SP1 is preferably a group represented by *-(Si(CH 3 ) 2 --O) n3 --* from the viewpoint of a better degree of orientation. In the formula, n3 represents an integer from 6 to 10, and * represents the bonding position with L1 or M1.
Furthermore, the fluorinated alkylene structure represented by SP1 is preferably a group represented by *-(CF 2 --CF 2 ) n4 --* from the viewpoint of a better degree of orientation. In the formula, n4 represents an integer from 6 to 10, and * represents the bonding position with L1 or M1.

M1が表すメソゲン基とは、液晶形成に寄与する液晶分子の主要骨格を示す基である。液晶分子は、結晶状態と等方性液体状態との中間の状態(メソフェーズ)である液晶性を示す。メソゲン基については特に制限はなく、例えば、「Flussige Kristalle in Tabellen II」(VEB Deutsche Verlag fur Grundstoff Industrie,Leipzig、1984年刊)、特に第7頁~第16頁の記載、および、液晶便覧編集委員会編、液晶便覧(丸善、2000年刊)、特に第3章の記載、を参照することができる。
メソゲン基としては、例えば、芳香族炭化水素基、複素環基、および脂環式基からなる群より選択される少なくとも1種の環状構造を有する基が好ましい。
メソゲン基は、配向度がより優れる観点から、芳香族炭化水素基を有するのが好ましく、2~4個の芳香族炭化水素基を有するのがより好ましく、3個の芳香族炭化水素基を有するのがさらに好ましい。
The mesogenic group represented by M1 is a group representing the main skeleton of liquid crystal molecules that contributes to liquid crystal formation. Liquid crystal molecules exhibit liquid crystallinity, which is an intermediate state (mesophase) between a crystalline state and an isotropic liquid state. There are no particular restrictions on the mesogenic group, and for example, the description in "Flussige Kristalle in Tabellen II" (VEB Deutsche Verlag fur Grundstoff Industrie, Leipzig, 1984), especially pages 7 to 16, and LCD Handbook Editorial Committee ed., Liquid Crystal Handbook (Maruzen, published in 2000), especially the description in Chapter 3.
As the mesogenic group, for example, a group having at least one type of cyclic structure selected from the group consisting of an aromatic hydrocarbon group, a heterocyclic group, and an alicyclic group is preferable.
From the viewpoint of a better degree of orientation, the mesogenic group preferably has an aromatic hydrocarbon group, more preferably has 2 to 4 aromatic hydrocarbon groups, and more preferably has 3 aromatic hydrocarbon groups. It is even more preferable.

メソゲン基としては、液晶性の発現、液晶相転移温度の調整、原料入手性および合成適性という観点、並びに、配向度がより優れる観点から、下記式(M1-A)または下記式(M1-B)で表される基が好ましく、式(M1-B)で表される基がより好ましい。 As the mesogenic group, the following formula (M1-A) or the following formula (M1-B ) is preferable, and a group represented by formula (M1-B) is more preferable.

式(M1-A)中、A1は、芳香族炭化水素基、複素環基および脂環式基からなる群より選択される2価の基である。これらの基は、アルキル基、フッ化アルキル基、アルコキシ基または置換基Wで置換されていてもよい。
A1で表される2価の基は、4~6員環であることが好ましい。また、A1で表される2価の基は、単環でも、縮環であってもよい。
*は、SP1またはT1との結合位置を表す。
In formula (M1-A), A1 is a divalent group selected from the group consisting of an aromatic hydrocarbon group, a heterocyclic group, and an alicyclic group. These groups may be substituted with an alkyl group, a fluorinated alkyl group, an alkoxy group, or a substituent W.
The divalent group represented by A1 is preferably a 4- to 6-membered ring. Further, the divalent group represented by A1 may be a monocyclic ring or a condensed ring group.
* represents the binding position with SP1 or T1.

A1が表す2価の芳香族炭化水素基としては、フェニレン基、ナフチレン基、フルオレン-ジイル基、アントラセン-ジイル基およびテトラセン-ジイル基などが挙げられ、メソゲン骨格の設計の多様性や原材料の入手性などの観点から、フェニレン基またはナフチレン基が好ましく、フェニレン基がより好ましい。 Examples of the divalent aromatic hydrocarbon group represented by A1 include phenylene group, naphthylene group, fluorene-diyl group, anthracene-diyl group, and tetracene-diyl group. From the viewpoint of properties and the like, a phenylene group or a naphthylene group is preferable, and a phenylene group is more preferable.

A1が表す2価の複素環基としては、芳香族および非芳香族のいずれであってもよいが、配向度がより向上するという観点から、2価の芳香族複素環基であることが好ましい。
2価の芳香族複素環基を構成する炭素以外の原子としては、窒素原子、硫黄原子および酸素原子が挙げられる。芳香族複素環基が炭素以外の環を構成する原子を複数有する場合、これらは同一であっても異なっていてもよい。
2価の芳香族複素環基の具体例としては、例えば、ピリジレン基(ピリジン-ジイル基)、ピリダジン-ジイル基、イミダゾール-ジイル基、チエニレン(チオフェン-ジイル基)、キノリレン基(キノリン-ジイル基)、イソキノリレン基(イソキノリン-ジイル基)、オキサゾール-ジイル基、チアゾール-ジイル基、オキサジアゾール-ジイル基、ベンゾチアゾール-ジイル基、ベンゾチアジアゾール-ジイル基、フタルイミド-ジイル基、チエノチアゾール-ジイル基、チアゾロチアゾール-ジイル基、チエノチオフェン-ジイル基、および、チエノオキサゾール-ジイル基などが挙げられる。
The divalent heterocyclic group represented by A1 may be either aromatic or non-aromatic, but from the viewpoint of further improving the degree of orientation, a divalent aromatic heterocyclic group is preferable. .
Atoms other than carbon constituting the divalent aromatic heterocyclic group include a nitrogen atom, a sulfur atom, and an oxygen atom. When the aromatic heterocyclic group has a plurality of atoms constituting a ring other than carbon, these may be the same or different.
Specific examples of divalent aromatic heterocyclic groups include pyridylene group (pyridine-diyl group), pyridazine-diyl group, imidazole-diyl group, thienylene (thiophene-diyl group), quinolylene group (quinoline-diyl group), etc. ), isoquinolylene group (isoquinoline-diyl group), oxazole-diyl group, thiazole-diyl group, oxadiazole-diyl group, benzothiazole-diyl group, benzothiadiazole-diyl group, phthalimido-diyl group, thienothiazole-diyl group , thiazolothiazole-diyl group, thienothiophene-diyl group, and thienooxazole-diyl group.

A1が表す2価の脂環式基の具体例としては、シクロペンチレン基およびシクロへキシレン基などが挙げられる。 Specific examples of the divalent alicyclic group represented by A1 include a cyclopentylene group and a cyclohexylene group.

式(M1-A)中、a1は1~10の整数を表す。a1が2以上である場合には、複数のA1は同一でも異なっていてもよい。 In formula (M1-A), a1 represents an integer of 1 to 10. When a1 is 2 or more, the plural A1s may be the same or different.

式(M1-B)中、A2およびA3はそれぞれ独立に、芳香族炭化水素基、複素環基および脂環式基からなる群より選択される2価の基である。A2およびA3の具体例および好適態様は、式(M1-A)のA1と同様であるので、その説明を省略する。
式(M1-B)中、a2は1~10の整数を表し、a2が2以上である場合には、複数のA2は同一でも異なっていてもよく、複数のA3は同一でも異なっていてもよく、複数のLA1は同一でも異なっていてもよい。a2は、配向度がより優れる観点から、2以上の整数であることが好ましく、2であることがより好ましい。
式(M1-B)中、a2が1である場合には、LA1は2価の連結基である。a2が2以上である場合には、複数のLA1はそれぞれ独立に、単結合または2価の連結基であり、複数のLA1のうち少なくとも1つが2価の連結基である。a2が2である場合、配向度がより優れる観点から、2つのLA1のうち、一方が2価の連結基であり、他方が単結合であることが好ましい。
In formula (M1-B), A2 and A3 are each independently a divalent group selected from the group consisting of an aromatic hydrocarbon group, a heterocyclic group, and an alicyclic group. Specific examples and preferred embodiments of A2 and A3 are the same as A1 in formula (M1-A), so their explanation will be omitted.
In formula (M1-B), a2 represents an integer from 1 to 10, and when a2 is 2 or more, multiple A2s may be the same or different, and multiple A3s may be the same or different. Often, multiple LA1s may be the same or different. From the viewpoint of improving the degree of orientation, a2 is preferably an integer of 2 or more, and more preferably 2.
In formula (M1-B), when a2 is 1, LA1 is a divalent linking group. When a2 is 2 or more, the plurality of LA1s are each independently a single bond or a divalent linking group, and at least one of the plurality of LA1s is a divalent linking group. When a2 is 2, it is preferable that one of the two LA1s is a divalent linking group and the other is a single bond, from the viewpoint of a better degree of orientation.

式(M1-B)中、LA1が表す2価の連結基としては、-O-、-(CH-、-(CF-、-Si(CH-、-(Si(CHO)-、-(OSi(CH-(gは1~10の整数を表す。)、-N(Z)-、-C(Z)=C(Z’)-、-C(Z)=N-、-N=C(Z)-、-C(Z)-C(Z’)-、-C(O)-、-OC(O)-、-C(O)O-、-O-C(O)O-、-N(Z)C(O)-、-C(O)N(Z)-、-C(Z)=C(Z’)-C(O)O-、-O-C(O)-C(Z)=C(Z’)-、-C(Z)=N-、-N=C(Z)-、-C(Z)=C(Z’)-C(O)N(Z”)-、-N(Z”)-C(O)-C(Z)=C(Z’)-、-C(Z)=C(Z’)-C(O)-S-、-S-C(O)-C(Z)=C(Z’)-、-C(Z)=N-N=C(Z’)-(Z、Z’、Z”はそれぞれ独立に、水素原子、炭素数1~4のアルキル基、シクロアルキル基、アリール基、シアノ基、または、ハロゲン原子を表す。)、-C≡C-、-N=N-、-S-、-S(O)-、-S(O)(O)-、-(O)S(O)O-、-O(O)S(O)O-、-SC(O)-、および、-C(O)S-などが挙げられる。なかでも、配向度がより優れる観点から、-C(O)O-が好ましい。LA1は、これらの基を2つ以上組み合わせた基であってもよい。 In formula (M1-B), the divalent linking group represented by LA1 includes -O-, -(CH 2 ) g -, -(CF 2 ) g -, -Si(CH 3 ) 2 -, -( Si(CH 3 ) 2 O) g -, -(OSi(CH 3 ) 2 ) g - (g represents an integer from 1 to 10), -N(Z)-, -C(Z)=C( Z')-, -C(Z)=N-, -N=C(Z)-, -C(Z) 2 -C(Z') 2 -, -C(O)-, -OC(O) -, -C(O)O-, -O-C(O)O-, -N(Z)C(O)-, -C(O)N(Z)-, -C(Z)=C( Z') -C(O)O-, -O-C(O)-C(Z)=C(Z')-, -C(Z)=N-, -N=C(Z)-, - C(Z)=C(Z')-C(O)N(Z")-,-N(Z")-C(O)-C(Z)=C(Z')-,-C(Z )=C(Z')-C(O)-S-, -S-C(O)-C(Z)=C(Z')-, -C(Z)=N-N=C(Z' )-(Z, Z', Z'' each independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a cycloalkyl group, an aryl group, a cyano group, or a halogen atom.), -C≡C -, -N=N-, -S-, -S(O)-, -S(O)(O)-, -(O)S(O)O-, -O(O)S(O)O -, -SC(O)-, and -C(O)S-.Among them, -C(O)O- is preferable from the viewpoint of a better degree of orientation.LA1 is a group of these groups. The group may be a combination of two or more.

M1の具体例としては、例えば以下の構造が挙げられる。なお、下記具体例において、「Ac」は、アセチル基を表す。 Specific examples of M1 include the following structures. In addition, in the following specific examples, "Ac" represents an acetyl group.

T1が表す末端基としては、水素原子、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシ基、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数1~10のアルキルチオ基、炭素数1~10のアルコキシカルボニルオキシ基、炭素数1~10のアルコキシカルボニル基(ROC(O)-:Rはアルキル基)、炭素数1~10のアシルオキシ基、炭素数1~10のアシルアミノ基、炭素数1~10のアルコキシカルボニルアミノ基、炭素数1~10のスルホニルアミノ基、炭素数1~10のスルファモイル基、炭素数1~10のカルバモイル基、炭素数1~10のスルフィニル基、炭素数1~10のウレイド基、および、(メタ)アクリロイルオキシ基含有基などが挙げられる。上記(メタ)アクリロイルオキシ基含有基としては、例えば、-L-A(Lは単結合または連結基を表す。連結基の具体例は上述したL1およびSP1と同じである。Aは(メタ)アクリロイルオキシ基を表す)で表される基が挙げられる。
T1は、配向度がより優れる観点から、炭素数1~10のアルコキシ基が好ましく、炭素数1~5のアルコキシがより好ましく、メトキシ基がさらに好ましい。これらの末端基は、これらの基、または、上述の架橋性基によって、さらに置換されていてもよい。
T1の主鎖の原子数は、配向度がより優れる観点から、1~20が好ましく、1~15がより好ましく、1~10がさらに好ましく、1~7が特に好ましい。T1の主鎖の原子数が20以下であることで、光吸収異方性層の配向度がより向上する。ここで、T1における「主鎖」とは、M1と結合する最も長い分子鎖を意味し、水素原子はT1の主鎖の原子数にカウントしない。例えば、T1がn-ブチル基である場合には主鎖の原子数は4であり、T1がsec-ブチル基である場合の主鎖の原子数は3である。
The terminal group represented by T1 includes a hydrogen atom, a halogen atom, a cyano group, a nitro group, a hydroxy group, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkylthio group having 1 to 10 carbon atoms, Alkoxycarbonyloxy group having 1 to 10 carbon atoms, alkoxycarbonyl group having 1 to 10 carbon atoms (ROC(O)-: R is an alkyl group), acyloxy group having 1 to 10 carbon atoms, acylamino group having 1 to 10 carbon atoms , alkoxycarbonylamino group having 1 to 10 carbon atoms, sulfonylamino group having 1 to 10 carbon atoms, sulfamoyl group having 1 to 10 carbon atoms, carbamoyl group having 1 to 10 carbon atoms, sulfinyl group having 1 to 10 carbon atoms, carbon Examples include groups containing 1 to 10 ureido groups and (meth)acryloyloxy groups. The (meth)acryloyloxy group-containing group is, for example, -LA (L represents a single bond or a linking group. Specific examples of the linking group are the same as L1 and SP1 described above. A is (meth) (representing an acryloyloxy group).
From the viewpoint of a better degree of orientation, T1 is preferably an alkoxy group having 1 to 10 carbon atoms, more preferably an alkoxy group having 1 to 5 carbon atoms, and even more preferably a methoxy group. These terminal groups may be further substituted with these groups or the above-mentioned crosslinkable groups.
The number of atoms in the main chain of T1 is preferably from 1 to 20, more preferably from 1 to 15, even more preferably from 1 to 10, particularly preferably from 1 to 7, from the viewpoint of a better degree of orientation. When the number of atoms in the main chain of T1 is 20 or less, the degree of orientation of the light absorption anisotropic layer is further improved. Here, the "main chain" in T1 means the longest molecular chain bonded to M1, and hydrogen atoms are not counted in the number of atoms in the main chain of T1. For example, when T1 is an n-butyl group, the number of atoms in the main chain is 4, and when T1 is a sec-butyl group, the number of atoms in the main chain is 3.

繰り返し単位(1L)の含有量は、配向度がより優れる観点から、高分子液晶性化合物が有する全繰り返し単位100質量%に対して、20~100質量%が好ましい。
本発明において、高分子液晶性化合物に含まれる各繰り返し単位の含有量は、各繰り返し単位を得るために使用される各単量体の仕込み量(質量)に基づいて算出される。
繰り返し単位(1L)は、高分子液晶性化合物中において、1種単独で含まれていてもよいし、2種以上含まれていてもよい。なかでも、配向度がより優れる観点から、繰り返し単位(1L)が高分子液晶性化合物中に2種含まれているのがよい。
The content of the repeating unit (1L) is preferably 20 to 100% by mass based on 100% by mass of all repeating units possessed by the polymeric liquid crystalline compound from the viewpoint of a better degree of orientation.
In the present invention, the content of each repeating unit contained in the polymeric liquid crystal compound is calculated based on the amount (mass) of each monomer used to obtain each repeating unit.
The repeating unit (1L) may be contained singly or in combination of two or more types in the polymeric liquid crystal compound. Among these, it is preferable that two types of repeating units (1L) are contained in the polymeric liquid crystal compound from the viewpoint of improving the degree of orientation.

高分子液晶性化合物が繰り返し単位(1L)を2種含む場合、配向度がより優れる観点から、一方(繰り返し単位A)においてT1が表す末端基がアルコキシ基であり、他方(繰り返し単位B)においてT1が表す末端基がアルコキシ基以外の基であることが好ましい。
上記繰り返し単位BにおいてT1が表す末端基は、配向度がより優れる観点から、アルコキシカルボニル基、シアノ基、または、(メタ)アクリロイルオキシ基含有基であることが好ましく、アルコキシカルボニル基、または、シアノ基であることがより好ましい。
高分子液晶性化合物中の上記繰り返し単位Aの含有量と高分子液晶性化合物中の上記繰り返し単位Bの含有量との割合(A/B)は、配向度がより優れる観点から、50/50~95/5であることが好ましく、60/40~93/7であることがより好ましく、70/30~90/10であることがさらに好ましい。
When the polymeric liquid crystal compound contains two types of repeating units (1L), the terminal group represented by T1 in one (repeat unit A) is an alkoxy group, and in the other (repeat unit B), from the viewpoint of a better degree of orientation. It is preferable that the terminal group represented by T1 is a group other than an alkoxy group.
The terminal group represented by T1 in the above repeating unit B is preferably an alkoxycarbonyl group, a cyano group, or a (meth)acryloyloxy group-containing group, and is preferably an alkoxycarbonyl group or a cyano group. More preferably, it is a group.
The ratio (A/B) between the content of the repeating unit A in the polymeric liquid crystalline compound and the content of the repeating unit B in the polymeric liquid crystalline compound is 50/50 from the viewpoint of a better degree of orientation. The ratio is preferably 95/5 to 95/5, more preferably 60/40 to 93/7, even more preferably 70/30 to 90/10.

また、高分子液晶性化合物は、繰り返し単位(1L)とももに、メソゲン基を有しない繰り返し単位を有していてもよい。メソゲン基を有しない繰り返し単位としては、式(1L)におけるM1が単結合である繰り返し単位が挙げられる。
高分子液晶性化合物がメソゲン基を有しない繰り返し単位を有する場合、配向度がより優れる観点から、高分子液晶性化合物が有する全繰り返し単位100質量%に対して、0質量%超30質量%以下が好ましく、10質量%超20質量%以下がより好ましい。
Further, the polymeric liquid crystal compound may have a repeating unit that does not have a mesogenic group, as well as the repeating unit (1L). Examples of repeating units having no mesogenic group include repeating units in which M1 in formula (1L) is a single bond.
When the polymeric liquid crystal compound has a repeating unit that does not have a mesogenic group, from the viewpoint of a better degree of orientation, more than 0% by mass and 30% by mass or less with respect to 100% by mass of all repeating units contained in the polymeric liquid crystalline compound. is preferable, and more than 10% by mass and 20% by mass or less is more preferable.

高分子液晶性化合物の重量平均分子量(Mw)は、配向度がより優れる観点から、1000~500000が好ましく、2000~300000がより好ましい。高分子液晶性化合物のMwが上記範囲内にあれば、高分子液晶性化合物の取り扱いが容易になる。
特に、塗布時のクラック抑制の観点から、高分子液晶性化合物の重量平均分子量(Mw)は、10000以上が好ましく、10000~300000がより好ましい。
また、配向度の温度ラチチュードの観点から、高分子液晶性化合物の重量平均分子量(Mw)は、10000未満が好ましく、2000以上10000未満が好ましい。
ここで、本発明における重量平均分子量および数平均分子量は、ゲル浸透クロマトグラフ(GPC)法により測定された値である。
・溶媒(溶離液):N-メチルピロリドン
・装置名:TOSOH HLC-8220GPC
・カラム:TOSOH TSKgelSuperAWM-H(6mm×15cm)を3本接続して使用
・カラム温度:25℃
・試料濃度:0.1質量%
・流速:0.35mL/min
・校正曲線:TOSOH製TSK標準ポリスチレン Mw=2800000~1050(Mw/Mn=1.03~1.06)までの7サンプルによる校正曲線を使用
The weight average molecular weight (Mw) of the polymeric liquid crystalline compound is preferably 1,000 to 500,000, more preferably 2,000 to 300,000, from the viewpoint of a better degree of orientation. If the Mw of the liquid crystalline polymer compound is within the above range, the liquid crystalline polymer can be easily handled.
In particular, from the viewpoint of suppressing cracks during coating, the weight average molecular weight (Mw) of the polymeric liquid crystal compound is preferably 10,000 or more, more preferably 10,000 to 300,000.
Moreover, from the viewpoint of the temperature latitude of the degree of orientation, the weight average molecular weight (Mw) of the polymeric liquid crystal compound is preferably less than 10,000, and preferably 2,000 or more and less than 10,000.
Here, the weight average molecular weight and number average molecular weight in the present invention are values measured by gel permeation chromatography (GPC).
・Solvent (eluent): N-methylpyrrolidone ・Device name: TOSOH HLC-8220GPC
・Column: 3 TOSOH TSKgelSuperAWM-H (6mm x 15cm) connected together ・Column temperature: 25℃
・Sample concentration: 0.1% by mass
・Flow rate: 0.35mL/min
・Calibration curve: Use the calibration curve of 7 samples of TOSOH TSK standard polystyrene Mw=2800000 to 1050 (Mw/Mn=1.03 to 1.06)

本明細書における置換基Wについて説明する。
置換基Wとしては、例えば、アルキル基(好ましくは炭素数1~20、より好ましくは炭素数1~12、さらに好ましくは炭素数1~8のアルキル基であり、例えば、メチル基、エチル基、イソプロピル基、tert-ブチル基、n-オクチル基、n-デシル基、n-ヘキサデシル基、シクロプロピル基、シクロペンチル基、および、シクロヘキシル基などが挙げられる。)、アルケニル基(好ましくは炭素数2~20、より好ましくは炭素数2~12、さらに好ましくは炭素数2~8のアルケニル基であり、例えば、ビニル基、アリール基、2-ブテニル基、および、3-ペンテニル基などが挙げられる。)、アルキニル基(好ましくは炭素数2~20、より好ましくは炭素数2~12、さらに好ましくは炭素数2~8のアルキニル基であり、例えば、プロパルギル基、および、3-ペンチニル基などが挙げられる。)、アリール基(好ましくは炭素数6~30、より好ましくは炭素数6~20、さらに好ましくは炭素数6~12のアリール基であり、例えば、フェニル基、2,6-ジエチルフェニル基、3,5-ジトリフルオロメチルフェニル基、スチリル基、ナフチル基、および、ビフェニル基などが挙げられる。)、置換もしくは無置換のアミノ基(好ましくは炭素数0~20、より好ましくは炭素数0~10、さらに好ましくは炭素数0~6のアミノ基であり、例えば、無置換アミノ基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、および、アニリノ基などが挙げられる。)、アルコキシ基(好ましくは炭素数1~20、より好ましくは炭素数1~15であり、例えば、メトキシ基、エトキシ基、および、ブトキシ基などが挙げられる。)、オキシカルボニル基(好ましくは炭素数2~20、より好ましくは炭素数2~15、さらに好ましくは2~10であり、例えば、メトキシカルボニル基、エトキシカルボニル基、および、フェノキシカルボニル基などが挙げられる。)、アシルオキシ基(好ましくは炭素数2~20、より好ましくは炭素数2~10、さらに好ましくは2~6であり、例えば、アセトキシ基、ベンゾイルオキシ基、アクリロイル基、および、メタクリロイル基などが挙げられる。)、アシルアミノ基(好ましくは炭素数2~20、より好ましくは炭素数2~10、さらに好ましくは炭素数2~6であり、例えば、アセチルアミノ基、および、ベンゾイルアミノ基などが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2~20、より好ましくは炭素数2~10、さらに好ましくは炭素数2~6であり、例えば、メトキシカルボニルアミノ基などが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7~20、より好ましくは炭素数7~16、さらに好ましくは炭素数7~12であり、例えば、フェニルオキシカルボニルアミノ基などが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1~20、より好ましくは炭素数1~10、さらに好ましくは炭素数1~6であり、例えば、メタンスルホニルアミノ基、および、ベンゼンスルホニルアミノ基などが挙げられる。)、スルファモイル基(好ましくは炭素数0~20、より好ましくは炭素数0~10、さらに好ましくは炭素数0~6であり、例えば、スルファモイル基、メチルスルファモイル基、ジメチルスルファモイル基、および、フェニルスルファモイル基などが挙げられる。)、カルバモイル基(好ましくは炭素数1~20、より好ましくは炭素数1~10、さらに好ましくは炭素数1~6であり、例えば、無置換のカルバモイル基、メチルカルバモイル基、ジエチルカルバモイル基、および、フェニルカルバモイル基などが挙げられる。)、アルキルチオ基(好ましくは炭素数1~20、より好ましくは炭素数1~10、さらに好ましくは炭素数1~6であり、例えば、メチルチオ基、および、エチルチオ基などが挙げられる。)、アリールチオ基(好ましくは炭素数6~20、より好ましくは炭素数6~16、さらに好ましくは炭素数6~12であり、例えば、フェニルチオ基などが挙げられる。)、スルホニル基(好ましくは炭素数1~20、より好ましくは炭素数1~10、さらに好ましくは炭素数1~6であり、例えば、メシル基、および、トシル基などが挙げられる。)、スルフィニル基(好ましくは炭素数1~20、より好ましくは炭素数1~10、さらに好ましくは炭素数1~6であり、例えば、メタンスルフィニル基、および、ベンゼンスルフィニル基などが挙げられる。)、ウレイド基(好ましくは炭素数1~20、より好ましくは炭素数1~10、さらに好ましくは炭素数1~6であり、例えば、無置換のウレイド基、メチルウレイド基、および、フェニルウレイド基などが挙げられる。)、リン酸アミド基(好ましくは炭素数1~20、より好ましくは炭素数1~10、さらに好ましくは炭素数1~6であり、例えば、ジエチルリン酸アミド基、および、フェニルリン酸アミド基などが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、および、ヨウ素原子などが挙げられる。)、シアノ基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、アゾ基、ヘテロ環基(好ましくは炭素数1~30、より好ましくは炭素数1~12のヘテロ環基であり、例えば、窒素原子、酸素原子、硫黄原子などのヘテロ原子を有するヘテロ環基であり、例えば、エポキシ基、オキセタニル基、イミダゾリル基、ピリジル基、キノリル基、フリル基、ピペリジル基、モルホリノ基、マレイミド基、ベンゾオキサゾリル基、ベンズイミダゾリル基、および、ベンズチアゾリル基などが挙げられる。)、シリル基(好ましくは炭素数3~40、より好ましくは炭素数3~30、さらに好ましくは炭素数3~24のシリル基であり、例えば、トリメチルシリル基、および、トリフェニルシリル基などが挙げられる。)、カルボキシ基、スルホン酸基、および、リン酸基などが挙げられる。
The substituent W in this specification will be explained.
Examples of the substituent W include an alkyl group (preferably an alkyl group having 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, even more preferably 1 to 8 carbon atoms, such as a methyl group, an ethyl group, Examples include isopropyl group, tert-butyl group, n-octyl group, n-decyl group, n-hexadecyl group, cyclopropyl group, cyclopentyl group, and cyclohexyl group.), alkenyl group (preferably 2 to 2 carbon atoms) 20, more preferably an alkenyl group having 2 to 12 carbon atoms, and even more preferably 2 to 8 carbon atoms, such as a vinyl group, an aryl group, a 2-butenyl group, and a 3-pentenyl group.) , an alkynyl group (preferably an alkynyl group having 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, even more preferably 2 to 8 carbon atoms, such as a propargyl group and a 3-pentynyl group) ), an aryl group (preferably an aryl group having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, even more preferably 6 to 12 carbon atoms, such as phenyl group, 2,6-diethylphenyl group, (3,5-ditrifluoromethylphenyl group, styryl group, naphthyl group, biphenyl group, etc.), substituted or unsubstituted amino group (preferably 0 to 20 carbon atoms, more preferably 0 to 20 carbon atoms) 10, more preferably an amino group having 0 to 6 carbon atoms, such as an unsubstituted amino group, methylamino group, dimethylamino group, diethylamino group, anilino group, etc.), an alkoxy group (preferably having 1 to 20 carbon atoms, more preferably 1 to 15 carbon atoms, such as methoxy, ethoxy, and butoxy groups, oxycarbonyl groups (preferably having 2 to 20 carbon atoms, more preferably has 2 to 15 carbon atoms, more preferably 2 to 10 carbon atoms, and examples thereof include methoxycarbonyl group, ethoxycarbonyl group, and phenoxycarbonyl group.), acyloxy group (preferably 2 to 20 carbon atoms, and It preferably has 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms, and includes, for example, an acetoxy group, benzoyloxy group, acryloyl group, and methacryloyl group, and an acylamino group (preferably has 2 to 20 carbon atoms). , more preferably 2 to 10 carbon atoms, and even more preferably 2 to 6 carbon atoms, and examples thereof include an acetylamino group and a benzoylamino group. ), alkoxycarbonylamino group (preferably having 2 to 20 carbon atoms, more preferably 2 to 10 carbon atoms, even more preferably 2 to 6 carbon atoms, such as methoxycarbonylamino group), aryloxy carbonylamino group (preferably has 7 to 20 carbon atoms, more preferably has 7 to 16 carbon atoms, still more preferably has 7 to 12 carbon atoms; examples include phenyloxycarbonylamino group), sulfonylamino group ( It preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and still more preferably 1 to 6 carbon atoms, such as methanesulfonylamino group, benzenesulfonylamino group, etc.), sulfamoyl group. (Preferably 0 to 20 carbon atoms, more preferably 0 to 10 carbon atoms, still more preferably 0 to 6 carbon atoms, such as sulfamoyl group, methylsulfamoyl group, dimethylsulfamoyl group, and phenylsulfamoyl group) ), carbamoyl group (preferably 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, even more preferably 1 to 6 carbon atoms, such as unsubstituted carbamoyl group, methyl carbamoyl group, diethylcarbamoyl group, phenylcarbamoyl group, etc.), alkylthio group (preferably carbon number 1 to 20, more preferably carbon number 1 to 10, still more preferably carbon number 1 to 6, Examples include methylthio group, ethylthio group, etc.), arylthio group (preferably 6 to 20 carbon atoms, more preferably 6 to 16 carbon atoms, even more preferably 6 to 12 carbon atoms, such as phenylthio ), a sulfonyl group (preferably a carbon number of 1 to 20, more preferably a carbon number of 1 to 10, and still more preferably a carbon number of 1 to 6, such as a mesyl group and a tosyl group). ), a sulfinyl group (preferably a carbon number of 1 to 20, more preferably a carbon number of 1 to 10, and still more preferably a carbon number of 1 to 6), such as a methanesulfinyl group and a benzenesulfinyl group. ), a ureido group (preferably having 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, even more preferably 1 to 6 carbon atoms, such as unsubstituted ureido group, methylureido group, and phenyl ), a phosphoric acid amide group (preferably a carbon number of 1 to 20, more preferably a carbon number of 1 to 10, and even more preferably a carbon number of 1 to 6; for example, a diethyl phosphoamide group, and a phenylphosphoric acid amide group. ), hydroxy group, mercapto group, halogen atom (for example, fluorine atom, chlorine atom, bromine atom, and iodine atom), cyano group, nitro group, hydroxamic acid group, sulfino group, hydrazino group, imino group group, azo group, heterocyclic group (preferably a heterocyclic group having 1 to 30 carbon atoms, more preferably 1 to 12 carbon atoms, for example, a heterocyclic group having a heteroatom such as a nitrogen atom, an oxygen atom, a sulfur atom, etc.) Examples include epoxy group, oxetanyl group, imidazolyl group, pyridyl group, quinolyl group, furyl group, piperidyl group, morpholino group, maleimide group, benzoxazolyl group, benzimidazolyl group, and benzthiazolyl group. ), a silyl group (preferably a silyl group having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, even more preferably 3 to 24 carbon atoms, such as trimethylsilyl group and triphenylsilyl group) ), a carboxy group, a sulfonic acid group, and a phosphoric acid group.

[二色性物質]
本発明に用いられる二色性物質は、特に限定されず、可視光吸収物質(二色性色素、二色性アゾ化合物)、発光物質(蛍光物質、燐光物質)、紫外線吸収物質、赤外線吸収物質、非線形光学物質、カーボンナノチューブ、および、無機物質(例えば量子ロッド)などが挙げられ、従来公知の二色性物質(二色性色素)を使用することができる。
[Dichroic substance]
The dichroic substances used in the present invention are not particularly limited, and include visible light absorbing substances (dichroic dyes, dichroic azo compounds), luminescent substances (fluorescent substances, phosphorescent substances), ultraviolet absorbing substances, and infrared absorbing substances. , nonlinear optical substances, carbon nanotubes, and inorganic substances (for example, quantum rods), and conventionally known dichroic substances (dichroic dyes) can be used.

特に好ましく用いられる二色性物質は、二色性アゾ色素化合物である。
二色性アゾ色素化合物は、特に限定されず、従来公知の二色性アゾ色素を使用することができるが、後述の化合物が好ましく用いられる。
A particularly preferably used dichroic substance is a dichroic azo dye compound.
The dichroic azo dye compound is not particularly limited, and conventionally known dichroic azo dyes can be used, but the compounds described below are preferably used.

本発明において、二色性アゾ色素化合物とは、方向によって吸光度が異なる色素を意味する。
二色性アゾ色素化合物は、液晶性を示してもよいし、液晶性を示さなくてもよい。
二色性アゾ色素化合物が液晶性を示す場合には、ネマチック性またはスメクチック性のいずれを示してもよい。液晶相を示す温度範囲は、室温(約20℃~28℃)~300℃が好ましく、取扱い性および製造適性の観点から、50~200℃であることがより好ましい。
In the present invention, a dichroic azo dye compound means a dye whose absorbance differs depending on the direction.
The dichroic azo dye compound may or may not exhibit liquid crystallinity.
When the dichroic azo dye compound exhibits liquid crystallinity, it may exhibit either nematic or smectic properties. The temperature range in which the liquid crystal phase is exhibited is preferably room temperature (approximately 20° C. to 28° C.) to 300° C., and more preferably 50° C. to 200° C. from the viewpoint of ease of handling and manufacturing suitability.

本発明においては、色味調整の観点から、光吸収異方性層が、波長560~700nmの範囲に極大吸収波長を有する少なくとも1種の色素化合物(以下、「第1の二色性アゾ色素化合物」とも略す。)と、波長455nm以上560nm未満の範囲に極大吸収波長を有する少なくとも1種の色素化合物(以下、「第2の二色性アゾ色素化合物」とも略す。)とを少なくとも含むことが好ましく、具体的には、後述する式(1)で表される二色性アゾ色素化合物と、後述する式(2)で表される二色性アゾ色素化合物とを少なくとも含むことがより好ましい。 In the present invention, from the viewpoint of color adjustment, the light absorption anisotropic layer contains at least one dye compound (hereinafter referred to as "first dichroic azo dye") having a maximum absorption wavelength in the wavelength range of 560 to 700 nm. and at least one type of dye compound (hereinafter also abbreviated as "second dichroic azo dye compound") having a maximum absorption wavelength in the wavelength range of 455 nm or more and less than 560 nm. is preferable, and specifically, it is more preferable to include at least a dichroic azo dye compound represented by formula (1) described below and a dichroic azo dye compound represented by formula (2) described below. .

本発明においては、3種以上の二色性アゾ色素化合物を併用してもよく、例えば、光吸収異方性層を黒色に近づける観点から、第1の二色性アゾ色素化合物と、第2の二色性アゾ色素化合物と、波長380nm以上455nm未満の範囲に極大吸収波長を有する少なくとも1種の色素化合物(以下、「第3の二色性アゾ色素化合物」とも略す。)とを併用することが好ましい。 In the present invention, three or more types of dichroic azo dye compounds may be used in combination. For example, from the viewpoint of making the light absorption anisotropic layer closer to black, a first dichroic azo dye compound and a second dichroic azo dye compound may be used together. A dichroic azo dye compound and at least one dye compound having a maximum absorption wavelength in the wavelength range of 380 nm or more and less than 455 nm (hereinafter also abbreviated as "third dichroic azo dye compound") are used together. It is preferable.

本発明においては、耐押圧性がより良好となる観点からは、二色性アゾ色素化合物が架橋性基を有していることが好ましい。
架橋性基としては、具体的には、例えば、(メタ)アクリロイル基、エポキシ基、オキセタニル基、および、スチリル基などが挙げられ、中でも、(メタ)アクリロイル基が好ましい。
In the present invention, the dichroic azo dye compound preferably has a crosslinkable group from the viewpoint of better pressure resistance.
Specific examples of the crosslinkable group include a (meth)acryloyl group, an epoxy group, an oxetanyl group, and a styryl group, among which a (meth)acryloyl group is preferred.

(第1の二色性アゾ色素化合物)
第1の二色性アゾ色素化合物は、核である発色団と、発色団の末端に結合する側鎖と、を有する化合物であることが好ましい。
発色団の具体例としては、芳香族環基(例えば、芳香族炭化水素基、芳香族複素環基)、および、アゾ基などが挙げられ、芳香族環基およびアゾ基の両方を有する構造が好ましく、芳香族複素環基(好ましくはチエノチアゾール基)と2つのアゾ基とを有するビスアゾ構造がより好ましい。
側鎖としては、特に限定されず、後述の式(1)のR1、R2およびR3で表される基が挙げられる。
(First dichroic azo dye compound)
The first dichroic azo dye compound is preferably a compound having a chromophore as a core and a side chain bonded to the terminal of the chromophore.
Specific examples of chromophores include aromatic ring groups (e.g., aromatic hydrocarbon groups, aromatic heterocyclic groups) and azo groups. Preferably, a bisazo structure having an aromatic heterocyclic group (preferably a thienothiazole group) and two azo groups is more preferable.
The side chain is not particularly limited, and includes groups represented by R1, R2, and R3 in formula (1) described below.

第1の二色性アゾ色素化合物は、波長560nm以上700nm以下の範囲に最大吸収波長を有する二色性アゾ色素化合物であり、光吸収異方性層の色味調整の観点から、波長560~650nmの範囲に最大吸収波長を有する二色性アゾ色素化合物であることが好ましく、波長560~640nmの範囲に最大吸収波長を有する二色性アゾ色素化合物であるのがより好ましい。
本明細書における二色性アゾ色素化合物の最大吸収波長(nm)は、二色性アゾ色素化合物を良溶媒中に溶解させた溶液を用いて、分光光度計によって測定される波長380~800nmの範囲における紫外可視光スペクトルから求められる。
The first dichroic azo dye compound is a dichroic azo dye compound having a maximum absorption wavelength in the wavelength range of 560 nm or more and 700 nm or less. A dichroic azo dye compound having a maximum absorption wavelength in the range of 650 nm is preferable, and a dichroic azo dye compound having a maximum absorption wavelength in the wavelength range of 560 to 640 nm is more preferable.
In this specification, the maximum absorption wavelength (nm) of the dichroic azo dye compound is a wavelength of 380 to 800 nm measured by a spectrophotometer using a solution in which the dichroic azo dye compound is dissolved in a good solvent. It is determined from the ultraviolet-visible light spectrum in the range.

本発明においては、形成される光吸収異方性層の配向度が更に向上する観点から、第1の二色性アゾ色素化合物が、下記式(1)で表される化合物であることが好ましい。 In the present invention, the first dichroic azo dye compound is preferably a compound represented by the following formula (1) from the viewpoint of further improving the degree of orientation of the light absorption anisotropic layer to be formed. .

式(1)中、Ar1およびAr2はそれぞれ独立に、置換基を有していてもよいフェニレン基、または、置換基を有していてもよいナフチレン基を表し、フェニレン基が好ましい。 In formula (1), Ar1 and Ar2 each independently represent a phenylene group that may have a substituent or a naphthylene group that may have a substituent, and a phenylene group is preferred.

式(1)中、R1は、水素原子、炭素数1~20の置換基を有していてもよい直鎖もしくは分岐状のアルキル基、アルコキシ基、アルキルチオ基、アルキルスルホニル基、アルキルカルボニル基、アルキルオキシカルボニル基、アシルオキシ基、アルキルカーボネート基、アルキルアミノ基、アシルアミノ基、アルキルカルボニルアミノ基、アルコキシカルボニルアミノ基、アルキルスルホニルアミノ基、アルキルスルファモイル基、アルキルカルバモイル基、アルキルスルフィニル基、アルキルウレイド基、アルキルリン酸アミド基、アルキルイミノ基、または、アルキルシリル基を表す。
上記アルキル基を構成する-CH-は、-O-、-CO-、-C(O)-O-、-O-C(O)-、-Si(CH-O-Si(CH-、-N(R1’)-、-N(R1’)-CO-、-CO-N(R1’)-、-N(R1’)-C(O)-O-、-O-C(O)-N(R1’)-、-N(R1’)-C(O)-N(R1’)-、-CH=CH-、-C≡C-、-N=N-、-C(R1’)=CH-C(O)-、または、-O-C(O)-O-によって置換されていてもよい。
R1が水素原子以外の基である場合、各基が有する水素原子は、ハロゲン原子、ニトロ基、シアノ基、-N(R1’)、アミノ基、-C(R1’)=C(R1’)-NO、-C(R1’)=C(R1’)-CN、または、-C(R1’)=C(CN)、によって置換されていてもよい。
R1’は、水素原子または炭素数1~6の直鎖もしくは分岐状のアルキル基を表す。各基において、R1’が複数存在する場合、互いに同一であっても異なっていてもよい。
In formula (1), R1 is a hydrogen atom, a linear or branched alkyl group which may have a substituent having 1 to 20 carbon atoms, an alkoxy group, an alkylthio group, an alkylsulfonyl group, an alkylcarbonyl group, Alkyloxycarbonyl group, acyloxy group, alkylcarbonate group, alkylamino group, acylamino group, alkylcarbonylamino group, alkoxycarbonylamino group, alkylsulfonylamino group, alkylsulfamoyl group, alkylcarbamoyl group, alkylsulfinyl group, alkylureido group, an alkylphosphoamide group, an alkylimino group, or an alkylsilyl group.
-CH 2 - constituting the above alkyl group is -O-, -CO-, -C(O)-O-, -O-C(O)-, -Si(CH 3 ) 2 -O-Si( CH 3 ) 2 -, -N(R1')-, -N(R1')-CO-, -CO-N(R1')-, -N(R1')-C(O)-O-, - OC(O)-N(R1')-, -N(R1')-C(O)-N(R1')-, -CH=CH-, -C≡C-, -N=N- , -C(R1')=CH-C(O)-, or -OC(O)-O-.
When R1 is a group other than a hydrogen atom, the hydrogen atom possessed by each group is a halogen atom, a nitro group, a cyano group, -N(R1') 2 , an amino group, -C(R1')=C(R1' )-NO 2 , -C(R1')=C(R1')-CN, or -C(R1')=C(CN) 2 .
R1' represents a hydrogen atom or a straight or branched alkyl group having 1 to 6 carbon atoms. In each group, when a plurality of R1's exist, they may be the same or different from each other.

式(1)中、R2およびR3は、それぞれ独立に、水素原子、炭素数1~20の置換基を有していてもよい直鎖もしくは分岐状のアルキル基、アルコキシ基、アシル基、アルキルオキシカルボニル基、アルキルアミド基、アルキルスルホニル基、アリール基、アリールカルボニル基、アリールスルホニル基、アリールオキシカルボニル基、または、アリールアミド基を表す。
上記アルキル基を構成する-CH-は、-O-、-S-、-C(O)-、-C(O)-O-、-O-C(O)-、-C(O)-S-、-S-C(O)-、-Si(CH-O-Si(CH-、-NR2’-、-NR2’-CO-、-CO-NR2’-、-NR2’-C(O)-O-、-O-C(O)-NR2’-、-NR2’-C(O)-NR2’-、-CH=CH-、-C≡C-、-N=N-、-C(R2’)=CH-C(O)-、または、-O-C(O)-O-、によって置換されていてもよい。
R2およびR3が水素原子以外の基である場合、各基が有する水素原子は、ハロゲン原子、ニトロ基、シアノ基、-OH基、-N(R2’)、アミノ基、-C(R2’)=C(R2’)-NO、-C(R2’)=C(R2’)-CN、または、-C(R2’)=C(CN)によって置換されていてもよい。
R2’は、水素原子または炭素数1~6の直鎖もしくは分岐状のアルキル基を表す。各基において、R2’が複数存在する場合、互いに同一であっても異なっていてもよい。
R2およびR3は、互いに結合して環を形成してもよいし、R2またはR3は、Ar2と結合して環を形成してもよい。
In formula (1), R2 and R3 each independently represent a hydrogen atom, a linear or branched alkyl group which may have a substituent having 1 to 20 carbon atoms, an alkoxy group, an acyl group, an alkyloxy Represents a carbonyl group, an alkylamido group, an alkylsulfonyl group, an aryl group, an arylcarbonyl group, an arylsulfonyl group, an aryloxycarbonyl group, or an arylamido group.
-CH 2 - constituting the above alkyl group is -O-, -S-, -C(O)-, -C(O)-O-, -O-C(O)-, -C(O) -S-, -S-C(O)-, -Si(CH 3 ) 2 -O-Si(CH 3 ) 2 -, -NR2'-, -NR2'-CO-, -CO-NR2'-, -NR2'-C(O)-O-, -OC(O)-NR2'-, -NR2'-C(O)-NR2'-, -CH=CH-, -C≡C-, - It may be substituted by N=N-, -C(R2')=CH-C(O)-, or -O-C(O)-O-.
When R2 and R3 are groups other than hydrogen atoms, the hydrogen atoms possessed by each group include halogen atoms, nitro groups, cyano groups, -OH groups, -N(R2') 2 , amino groups, -C(R2')=C(R2')-NO 2 , -C(R2')=C(R2')-CN, or -C(R2')=C(CN) 2 .
R2' represents a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms. In each group, when a plurality of R2's exist, they may be the same or different from each other.
R2 and R3 may be combined with each other to form a ring, or R2 or R3 may be combined with Ar2 to form a ring.

耐光性の観点からは、R1は電子吸引性基であることが好ましく、R2およびR3は電子供与性が低い基であることが好ましい。
このような基の具体例として、R1としては、アルキルスルホニル基、アルキルカルボニル基、アルキルオキシカルボニル基、アシルオキシ基、アルキルスルホニルアミノ基、アルキルスルファモイル基、アルキルスルフィニル基、および、アルキルウレイド基などが挙げられ、R2およびR3としては、下記の構造の基などが挙げられる。なお下記の構造の基は、上記式(1)において、R2およびR3が結合する窒素原子を含む形で示す。
From the viewpoint of light resistance, R1 is preferably an electron-withdrawing group, and R2 and R3 are preferably groups with low electron-donating properties.
As specific examples of such groups, R1 includes an alkylsulfonyl group, an alkylcarbonyl group, an alkyloxycarbonyl group, an acyloxy group, an alkylsulfonylamino group, an alkylsulfamoyl group, an alkylsulfinyl group, and an alkylureido group. Examples of R2 and R3 include groups having the following structures. In addition, the group having the following structure is shown in the form containing a nitrogen atom to which R2 and R3 are bonded in the above formula (1).

第1の二色性アゾ色素化合物の具体例を以下に示すが、これに限定されるものではない。 Specific examples of the first dichroic azo dye compound are shown below, but the invention is not limited thereto.

(第2の二色性アゾ色素化合物)
第2の二色性アゾ色素化合物は、第1の二色性アゾ色素化合物とは異なる化合物であり、具体的にはその化学構造が異なっている。
第2の二色性アゾ色素化合物は、二色性アゾ色素化合物の核である発色団と、発色団の末端に結合する側鎖と、を有する化合物であることが好ましい。
発色団の具体例としては、芳香族環基(例えば、芳香族炭化水素基、芳香族複素環基)、および、アゾ基などが挙げられ、芳香族炭化水素基およびアゾ基の両方を有する構造が好ましく、芳香族炭化水素基と2つまたは3つのアゾ基とを有するビスアゾまたはトリスアゾ構造がより好ましい。
側鎖としては、特に限定されず、後述の式(2)のR4、R5またはR6で表される基が挙げられる。
(Second dichroic azo dye compound)
The second dichroic azo dye compound is a different compound from the first dichroic azo dye compound, and specifically has a different chemical structure.
The second dichroic azo dye compound is preferably a compound having a chromophore, which is the core of the dichroic azo dye compound, and a side chain bonded to the terminal of the chromophore.
Specific examples of chromophores include aromatic ring groups (e.g., aromatic hydrocarbon groups, aromatic heterocyclic groups), azo groups, etc. Structures having both aromatic hydrocarbon groups and azo groups is preferred, and a bisazo or trisazo structure having an aromatic hydrocarbon group and two or three azo groups is more preferred.
The side chain is not particularly limited, and includes groups represented by R4, R5, or R6 in formula (2) described below.

第2の二色性アゾ色素化合物は、波長455nm以上560nm未満の範囲に最大吸収波長を有する二色性アゾ色素化合物であり、光吸収異方性層の色味調整の観点から、波長455~555nmの範囲に最大吸収波長を有する二色性アゾ色素化合物であることが好ましく、波長455~550nmの範囲に最大吸収波長を有する二色性アゾ色素化合物であることがより好ましい。
特に、560~700nmの範囲に最大吸収波長を有する第1の二色性アゾ色素化合物と、455nm以上560nm未満の範囲に最大吸収波長を有する第2の二色性アゾ色素化合物と、を用いれば、光吸収異方性層の色味調整がより容易になる。
The second dichroic azo dye compound is a dichroic azo dye compound having a maximum absorption wavelength in the wavelength range of 455 nm or more and less than 560 nm. A dichroic azo dye compound having a maximum absorption wavelength in the range of 555 nm is preferable, and a dichroic azo dye compound having a maximum absorption wavelength in the wavelength range of 455 to 550 nm is more preferable.
In particular, if a first dichroic azo dye compound having a maximum absorption wavelength in the range of 560 to 700 nm and a second dichroic azo dye compound having a maximum absorption wavelength in the range of 455 nm or more and less than 560 nm are used. This makes it easier to adjust the color of the light-absorbing anisotropic layer.

第2の二色性アゾ色素化合物は、光吸収異方性層の配向度がより向上する点から、式(2)で表される化合物であるのが好ましい。 The second dichroic azo dye compound is preferably a compound represented by formula (2) from the viewpoint of further improving the degree of orientation of the light absorption anisotropic layer.

式(2)中、nは1または2を表す。
式(2)中、Ar3、Ar4およびAr5はそれぞれ独立に、置換基を有していてもよいフェニレン基、置換基を有していてもよいナフチレン基または置換基を有していてもよい複素環基を表す。
複素環基としては、芳香族および非芳香族のいずれであってもよい。
芳香族複素環基を構成する炭素以外の原子としては、窒素原子、硫黄原子および酸素原子が挙げられる。芳香族複素環基が炭素以外の環を構成する原子を複数有する場合、これらは同一であっても異なっていてもよい。
芳香族複素環基の具体例としては、例えば、ピリジレン基(ピリジン-ジイル基)、ピリダジン-ジイル基、イミダゾール-ジイル基、チエニレン(チオフェン-ジイル基)、キノリレン基(キノリン-ジイル基)、イソキノリレン基(イソキノリン-ジイル基)、オキサゾール-ジイル基、チアゾール-ジイル基、オキサジアゾール-ジイル基、ベンゾチアゾール-ジイル基、ベンゾチアジアゾール-ジイル基、フタルイミド-ジイル基、チエノチアゾール-ジイル基、チアゾロチアゾール-ジイル基、チエノチオフェン-ジイル基、および、チエノオキサゾール-ジイル基などが挙げられる。
In formula (2), n represents 1 or 2.
In formula (2), Ar3, Ar4 and Ar5 each independently represent a phenylene group which may have a substituent, a naphthylene group which may have a substituent, or a hetero compound which may have a substituent. Represents a ring group.
The heterocyclic group may be either aromatic or non-aromatic.
Atoms other than carbon constituting the aromatic heterocyclic group include a nitrogen atom, a sulfur atom, and an oxygen atom. When the aromatic heterocyclic group has a plurality of atoms constituting a ring other than carbon, these may be the same or different.
Specific examples of aromatic heterocyclic groups include pyridylene group (pyridine-diyl group), pyridazine-diyl group, imidazole-diyl group, thienylene (thiophene-diyl group), quinolylene group (quinoline-diyl group), and isoquinolylene group. group (isoquinoline-diyl group), oxazole-diyl group, thiazole-diyl group, oxadiazole-diyl group, benzothiazole-diyl group, benzothiadiazole-diyl group, phthalimido-diyl group, thienothiazole-diyl group, thiazolo Examples include thiazole-diyl group, thienothiophene-diyl group, and thienooxazole-diyl group.

式(2)中、R4の定義は、式(1)中のR1と同様である。
式(2)中、R5およびR6の定義はそれぞれ、式(1)中のR2およびR3と同様である。
In formula (2), the definition of R4 is the same as R1 in formula (1).
In formula (2), the definitions of R5 and R6 are the same as R2 and R3 in formula (1), respectively.

耐光性の観点からは、R4は電子吸引性基であることが好ましく、R5およびR6は電子供与性が低い基であることが好ましい。
このような基のうち、R4が電子吸引性基である場合の具体例は、R1が電子吸引性基である場合の具体例と同様であり、R5およびR6が電子供与性の低い基である場合の具体例は、R2およびR3が電子供与性の低い基である場合の具体例と同様である。
From the viewpoint of light resistance, R4 is preferably an electron-withdrawing group, and R5 and R6 are preferably groups with low electron-donating properties.
Among these groups, specific examples where R4 is an electron-withdrawing group are the same as those where R1 is an electron-withdrawing group, and R5 and R6 are groups with low electron-donating properties. Specific examples in this case are the same as those in the case where R2 and R3 are groups with low electron donating properties.

第2の二色性アゾ色素化合物の具体例を以下に示すが、これに限定されるものではない。 Specific examples of the second dichroic azo dye compound are shown below, but the invention is not limited thereto.

(logP値の差)
logP値は、化学構造の親水性および疎水性の性質を表現する指標である。第1の二色性アゾ色素化合物の側鎖のlogP値と、第2の二色性アゾ色素化合物の側鎖のlogP値と、の差の絶対値(以下、「logP差」ともいう。)は、2.30以下が好ましく、2.0以下がより好ましく、1.5以下がさらに好ましく、1.0以下が特に好ましい。logP差が2.30以下であれば、第1の二色性アゾ色素化合物と第2の二色性アゾ色素化合物との親和性が高まって、配列構造をより形成しやすくなるため、光吸収異方性層の配向度がより向上する。
なお、第1の二色性アゾ色素化合物または第2の二色性アゾ色素化合物の側鎖が複数ある場合、少なくとも1つのlogP差が上記値を満たすことが好ましい。
ここで、第1の二色性アゾ色素化合物および第2の二色性アゾ色素化合物の側鎖とは、上述した発色団の末端に結合する基を意味する。例えば、第1の二色性アゾ色素化合物が式(1)で表される化合物である場合、式(1)中のR1、R2およびR3が側鎖であり、第2の二色性アゾ色素化合物が式(2)で表される化合物である場合、式(2)中のR4、R5およびR6が側鎖である。特に、第1の二色性アゾ色素化合物が式(1)で表される化合物であり、第2の二色性アゾ色素化合物が式(2)で表される化合物である場合、R1とR4とのlogP値の差、R1とR5とのlogP値の差、R2とR4とのlogP値の差、および、R2とR5とのlogP値の差のうち、少なくとも1つのlogP差が上記値を満たすことが好ましい。
(difference in logP value)
The logP value is an index expressing the hydrophilic and hydrophobic properties of a chemical structure. The absolute value of the difference between the logP value of the side chain of the first dichroic azo dye compound and the logP value of the side chain of the second dichroic azo dye compound (hereinafter also referred to as "logP difference"). is preferably 2.30 or less, more preferably 2.0 or less, even more preferably 1.5 or less, particularly preferably 1.0 or less. If the logP difference is 2.30 or less, the affinity between the first dichroic azo dye compound and the second dichroic azo dye compound increases, making it easier to form an array structure, so light absorption The degree of orientation of the anisotropic layer is further improved.
In addition, when there are multiple side chains of the first dichroic azo dye compound or the second dichroic azo dye compound, it is preferable that at least one logP difference satisfies the above value.
Here, the side chain of the first dichroic azo dye compound and the second dichroic azo dye compound means a group bonded to the terminal of the chromophore described above. For example, when the first dichroic azo dye compound is a compound represented by formula (1), R1, R2, and R3 in formula (1) are side chains, and the second dichroic azo dye When the compound is a compound represented by formula (2), R4, R5 and R6 in formula (2) are side chains. In particular, when the first dichroic azo dye compound is a compound represented by formula (1) and the second dichroic azo dye compound is a compound represented by formula (2), R1 and R4 The difference in logP value between R1 and R5, the difference in logP value between R2 and R4, and the difference in logP value between R2 and R5, at least one logP difference is greater than the above value. It is preferable to meet the requirements.

ここで、logP値は、化学構造の親水性および疎水性の性質を表現する指標であり、親疎水パラメータと呼ばれることがある。logP値は、ChemBioDraw UltraまたはHSPiP(Ver.4.1.07)などのソフトウェアを用いて計算できる。また、OECD Guidelines for the Testing of Chemicals,Sections 1,Test No.117の方法などにより、実験的に求めることもできる。本発明では特に断りのない限り、HSPiP(Ver.4.1.07)に化合物の構造式を入力して算出される値をlogP値として採用する。 Here, the logP value is an index expressing the hydrophilicity and hydrophobicity of a chemical structure, and is sometimes called a hydrophilic-hydrophobic parameter. The logP value can be calculated using software such as ChemBioDraw Ultra or HSPiP (Ver. 4.1.07). In addition, OECD Guidelines for the Testing of Chemicals, Sections 1, Test No. It can also be determined experimentally by the method of No. 117. In the present invention, unless otherwise specified, a value calculated by inputting the structural formula of a compound into HSPiP (Ver. 4.1.07) is employed as the logP value.

(第3の二色性アゾ色素化合物)
第3の二色性アゾ色素化合物は、第1の二色性アゾ色素化合物および第2の二色性アゾ色素化合物以外の二色性アゾ色素化合物であり、具体的には、第1の二色性アゾ色素化合物および第2の二色性アゾ色素化合物とは化学構造が異なっている。光吸収異方性層が第3の二色性アゾ色素化合物を含む場合、光吸収異方性層の色味の調整が容易になるという利点がある。
第3の二色性アゾ色素化合物の最大吸収波長は、380nm以上455nm未満であり、385~454nmが好ましい。
(Third dichroic azo dye compound)
The third dichroic azo dye compound is a dichroic azo dye compound other than the first dichroic azo dye compound and the second dichroic azo dye compound, and specifically, The chemical structure is different from the chromatic azo dye compound and the second dichroic azo dye compound. When the light-absorbing anisotropic layer contains the third dichroic azo dye compound, there is an advantage that the color of the light-absorbing anisotropic layer can be easily adjusted.
The maximum absorption wavelength of the third dichroic azo dye compound is 380 nm or more and less than 455 nm, preferably 385 to 454 nm.

第3の二色性アゾ色素化合物としては、下記式(6)で表される二色性アゾ色素が好ましい。 As the third dichroic azo dye compound, a dichroic azo dye represented by the following formula (6) is preferable.

式(6)中、AおよびBは、それぞれ独立に、架橋性基を表す。
式(6)中、aおよびbは、それぞれ独立に、0または1を表す。波長420nmにおける配向度に優れる観点においては、aおよびbは、ともに0であることが好ましい。
式(6)中、a=0の場合にはLは1価の置換基を表し、a=1の場合にはLは単結合または2価の連結基を表す。また、b=0の場合にはLは1価の置換基を表し、b=1の場合にはLは単結合または2価の連結基を表す。
式(6)中、Arは(n1+2)価の芳香族炭化水素基または複素環基を表し、Arは(n2+2)価の芳香族炭化水素基または複素環基を表し、Arは(n3+2)価の芳香族炭化水素基または複素環基を表す。
式(6)中、R、RおよびRは、それぞれ独立に、1価の置換基を表す。n1≧2である場合には複数のRは互いに同一でも異なっていてもよく、n2≧2である場合には複数のRは互いに同一でも異なっていてもよく、n3≧2である場合には複数のRは互いに同一でも異なっていてもよい。
式(6)中、kは、1~4の整数を表す。k≧2の場合には、複数のArは互いに同一でも異なっていてもよく、複数のRは互いに同一でも異なっていてもよい。
式(6)中、n1、n2およびn3は、それぞれ独立に、0~4の整数を表す。ただし、k=1の場合にはn1+n2+n3≧0であり、k≧2の場合にはn1+n2+n3≧1である。
In formula (6), A and B each independently represent a crosslinkable group.
In formula (6), a and b each independently represent 0 or 1. From the viewpoint of having an excellent degree of orientation at a wavelength of 420 nm, both a and b are preferably 0.
In formula (6), when a=0, L 1 represents a monovalent substituent, and when a=1, L 1 represents a single bond or a divalent linking group. Further, when b=0, L 2 represents a monovalent substituent, and when b=1, L 2 represents a single bond or a divalent linking group.
In formula (6), Ar 1 represents an (n1+2)-valent aromatic hydrocarbon group or heterocyclic group, Ar 2 represents an (n2+2)-valent aromatic hydrocarbon group or heterocyclic group, and Ar 3 represents ( n3+2) represents an aromatic hydrocarbon group or a heterocyclic group.
In formula (6), R 1 , R 2 and R 3 each independently represent a monovalent substituent. When n1≧2, the plurality of R1s may be the same or different from each other; when n2≧2, the plurality of R2s may be the same or different from each other; when n3≧2; , a plurality of R 3 's may be the same or different from each other.
In formula (6), k represents an integer from 1 to 4. In the case of k≧2, a plurality of Ar 2 may be the same or different from each other, and a plurality of R 2 may be the same or different from each other.
In formula (6), n1, n2 and n3 each independently represent an integer of 0 to 4. However, when k=1, n1+n2+n3≧0, and when k≧2, n1+n2+n3≧1.

式(6)において、AおよびBが表す架橋性基としては、例えば、特開2010-244038号公報の[0040]~[0050]段落に記載された重合性基が挙げられる。これらの中でも、反応性および合成適性の向上の観点から、アクリロイル基、メタクリロイル基、エポキシ基、オキセタニル基、または、スチリル基が好ましく、溶解性をより向上できるという観点から、アクリロイル基またはメタクリロイル基がより好ましい。 In formula (6), examples of the crosslinkable groups represented by A and B include the polymerizable groups described in paragraphs [0040] to [0050] of JP-A No. 2010-244038. Among these, from the viewpoint of improving reactivity and synthesis suitability, acryloyl group, methacryloyl group, epoxy group, oxetanyl group, or styryl group is preferable, and from the viewpoint of further improving solubility, acryloyl group or methacryloyl group is preferable. More preferred.

式(6)において、a=0の場合にはLは1価の置換基を表し、a=1の場合にはLは単結合または2価の連結基を表す。また、b=0の場合にはLは1価の置換基を表し、b=1の場合にはLは単結合または2価の連結基を表す。 In formula (6), when a=0, L 1 represents a monovalent substituent, and when a=1, L 1 represents a single bond or a divalent linking group. Further, when b=0, L 2 represents a monovalent substituent, and when b=1, L 2 represents a single bond or a divalent linking group.

およびLが表す1価の置換基としては、二色性物質の溶解性を高めるために導入される基、または、色素としての色調を調節するために導入される電子供与性や電子吸引性を有する基が好ましい。
例えば、置換基としては、
アルキル基(好ましくは炭素数1~20、より好ましくは炭素数1~12、さらに好ましくは炭素数1~8のアルキル基であり、例えば、メチル基、エチル基、イソプロピル基、tert-ブチル基、n-オクチル基、n-デシル基、n-ヘキサデシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などが挙げられる。)、
アルケニル基(好ましくは炭素数2~20、より好ましくは炭素数2~12、さらに好ましくは炭素数2~8のアルケニル基であり、例えば、ビニル基、アリル基、2-ブテニル基、3-ペンテニル基などが挙げられる。)、
アルキニル基(好ましくは炭素数2~20、より好ましくは炭素数2~12、さらに好ましくは炭素数2~8のアルキニル基であり、例えば、プロパルギル基、3-ペンチニル基などが挙げられる。)、
アリール基(好ましくは炭素数6~30、より好ましくは炭素数6~20、さらに好ましくは炭素数6~12のアリール基であり、例えば、フェニル基、2,6-ジエチルフェニル基、3,5-ジトリフルオロメチルフェニル基、ナフチル基、および、ビフェニル基などが挙げられる。)、
置換もしくは無置換のアミノ基(好ましくは炭素数0~20、より好ましくは炭素数0~10、さらに好ましくは炭素数0~6のアミノ基であり、例えば、無置換アミノ基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、および、アニリノ基などが挙げられる。)、
アルコキシ基(好ましくは炭素数1~20、より好ましくは炭素数1~15であり、例えば、メトキシ基、エトキシ基、および、ブトキシ基などが挙げられる。)、
オキシカルボニル基(好ましくは炭素数2~20、より好ましくは炭素数2~15、さらに好ましくは2~10であり、例えば、メトキシカルボニル基、エトキシカルボニル基、および、フェノキシカルボニル基などが挙げられる。)、
アシルオキシ基(好ましくは炭素数2~20、より好ましくは炭素数2~10、さらに好ましくは2~6であり、例えば、アセトキシ基およびベンゾイルオキシ基などが挙げられる。)、
アシルアミノ基(好ましくは炭素数2~20、より好ましくは炭素数2~10、さらに好ましくは炭素数2~6であり、例えば、アセチルアミノ基およびベンゾイルアミノ基などが挙げられる。)、
アルコキシカルボニルアミノ基(好ましくは炭素数2~20、より好ましくは炭素数2~10、さらに好ましくは炭素数2~6であり、例えば、メトキシカルボニルアミノ基などが挙げられる。)、
アリールオキシカルボニルアミノ基(好ましくは炭素数7~20、より好ましくは炭素数7~16、さらに好ましくは炭素数7~12であり、例えば、フェニルオキシカルボニルアミノ基などが挙げられる。)、
スルホニルアミノ基(好ましくは炭素数1~20、より好ましくは炭素数1~10、さらに好ましくは炭素数1~6であり、例えば、メタンスルホニルアミノ基、および、ベンゼンスルホニルアミノ基などが挙げられる。)、
スルファモイル基(好ましくは炭素数0~20、より好ましくは炭素数0~10、さらに好ましくは炭素数0~6であり、例えば、スルファモイル基、メチルスルファモイル基、ジメチルスルファモイル基、および、フェニルスルファモイル基などが挙げられる。)、
カルバモイル基(好ましくは炭素数1~20、より好ましくは炭素数1~10、さらに好ましくは炭素数1~6であり、例えば、無置換のカルバモイル基、メチルカルバモイル基、ジエチルカルバモイル基、および、フェニルカルバモイル基などが挙げられる。)、
アルキルチオ基(好ましくは炭素数1~20、より好ましくは炭素数1~10、さらに好ましくは炭素数1~6であり、例えば、メチルチオ基、および、エチルチオ基などが挙げられる。)、
アリールチオ基(好ましくは炭素数6~20、より好ましくは炭素数6~16、さらに好ましくは炭素数6~12であり、例えば、フェニルチオ基などが挙げられる。)、
スルホニル基(好ましくは炭素数1~20、より好ましくは炭素数1~10、さらに好ましくは炭素数1~6であり、例えば、メシル基、トシル基などが挙げられる。)、
スルフィニル基(好ましくは炭素数1~20、より好ましくは炭素数1~10、さらに好ましくは炭素数1~6であり、例えば、メタンスルフィニル基、および、ベンゼンスルフィニル基などが挙げられる。)、
ウレイド基(好ましくは炭素数1~20、より好ましくは炭素数1~10、さらに好ましくは炭素数1~6であり、例えば、無置換のウレイド基、メチルウレイド基、および、フェニルウレイド基などが挙げられる。)、
リン酸アミド基(好ましくは炭素数1~20、より好ましくは炭素数1~10、さらに好ましくは炭素数1~6であり、例えば、ジエチルリン酸アミド基、および、フェニルリン酸アミド基などが挙げられる。)、
ヘテロ環基(好ましくは炭素数1~30、より好ましくは1~12のヘテロ環基であり、例えば、窒素原子、酸素原子、および、硫黄原子などのヘテロ原子を有するヘテロ環基であり、例えば、イミダゾリル基、ピリジル基、キノリル基、フリル基、ピペリジル基、モルホリノ基、ベンゾオキサゾリル基、ベンズイミダゾリル基、ベンズチアゾリル基などが挙げられる。)、
シリル基(好ましくは、炭素数3~40、より好ましくは炭素数3~30、さらに好ましくは、炭素数3~24のシリル基であり、例えば、トリメチルシリル基、トリフェニルシリル基などが挙げられる。)、
ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、および、ヨウ素原子などが挙げられる。)、
ヒドロキシ基、メルカプト基、シアノ基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、および、アゾ基、などを用いることができる。
これらの置換基は、さらにこれらの置換基によって置換されていてもよい。また、置換基を2つ以上有する場合は、同じでも異なってもよい。また、可能な場合には互いに結合して環を形成していてもよい。
上記置換基がさらに上記置換基によって置換された基としては、例えば、アルコキシ基がアルキル基で置換された基である、R-(O-Rna-基が挙げられる。ここで、式中、Rは炭素数1~5のアルキレン基を表し、Rは炭素数1~5のアルキル基を表し、naは1~10(好ましくは1~5、より好ましくは1~3)の整数を表す。
これらの中でも、LおよびLが表す1価の置換基としては、アルキル基、アルケニル基、アルコキシ基、および、これらの基がさらにこれらの基によって置換された基(例えば、上述したR-(O-Rna-基)が好ましく、アルキル基、アルコキシ基、および、これらの基がさらにこれらの基によって置換された基(例えば、上述したR-(O-Rna-基)がより好ましい。
The monovalent substituent represented by L 1 and L 2 is a group introduced to increase the solubility of a dichroic substance, or an electron-donating or electron-donating group introduced to adjust the color tone of a dye. Groups having attractive properties are preferred.
For example, as a substituent,
Alkyl group (preferably an alkyl group having 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, even more preferably 1 to 8 carbon atoms, such as a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, Examples include n-octyl group, n-decyl group, n-hexadecyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group, etc.).
Alkenyl group (preferably an alkenyl group having 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, even more preferably 2 to 8 carbon atoms, such as vinyl group, allyl group, 2-butenyl group, 3-pentenyl group) ),
Alkynyl group (preferably an alkynyl group having 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, even more preferably 2 to 8 carbon atoms, such as propargyl group, 3-pentynyl group, etc.),
Aryl group (preferably an aryl group having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, even more preferably 6 to 12 carbon atoms, such as phenyl group, 2,6-diethylphenyl group, 3,5 -ditrifluoromethylphenyl group, naphthyl group, biphenyl group, etc.),
Substituted or unsubstituted amino group (preferably an amino group having 0 to 20 carbon atoms, more preferably 0 to 10 carbon atoms, even more preferably 0 to 6 carbon atoms; for example, an unsubstituted amino group, a methylamino group, Examples include dimethylamino group, diethylamino group, and anilino group.)
Alkoxy group (preferably has 1 to 20 carbon atoms, more preferably 1 to 15 carbon atoms, examples include methoxy group, ethoxy group, and butoxy group),
Oxycarbonyl group (preferably has 2 to 20 carbon atoms, more preferably 2 to 15 carbon atoms, and even more preferably 2 to 10 carbon atoms; examples thereof include methoxycarbonyl group, ethoxycarbonyl group, and phenoxycarbonyl group). ),
Acyloxy group (preferably has 2 to 20 carbon atoms, more preferably 2 to 10 carbon atoms, still more preferably 2 to 6 carbon atoms, examples include acetoxy group and benzoyloxy group),
Acylamino group (preferably has 2 to 20 carbon atoms, more preferably 2 to 10 carbon atoms, even more preferably 2 to 6 carbon atoms, examples include acetylamino group and benzoylamino group),
Alkoxycarbonylamino group (preferably has 2 to 20 carbon atoms, more preferably 2 to 10 carbon atoms, and still more preferably has 2 to 6 carbon atoms, such as a methoxycarbonylamino group),
Aryloxycarbonylamino group (preferably has 7 to 20 carbon atoms, more preferably has 7 to 16 carbon atoms, and still more preferably has 7 to 12 carbon atoms; examples include phenyloxycarbonylamino group),
A sulfonylamino group (preferably a carbon number of 1 to 20, more preferably a carbon number of 1 to 10, and still more preferably a carbon number of 1 to 6), such as a methanesulfonylamino group and a benzenesulfonylamino group. ),
Sulfamoyl group (preferably 0 to 20 carbon atoms, more preferably 0 to 10 carbon atoms, even more preferably 0 to 6 carbon atoms, such as sulfamoyl group, methylsulfamoyl group, dimethylsulfamoyl group, and phenylsulfamoyl group, etc.),
Carbamoyl group (preferably 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, even more preferably 1 to 6 carbon atoms, such as unsubstituted carbamoyl group, methylcarbamoyl group, diethylcarbamoyl group, and phenyl Examples include carbamoyl groups.)
Alkylthio group (preferably 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, even more preferably 1 to 6 carbon atoms, examples include methylthio group and ethylthio group),
Arylthio group (preferably has 6 to 20 carbon atoms, more preferably has 6 to 16 carbon atoms, and still more preferably has 6 to 12 carbon atoms; examples include phenylthio group),
Sulfonyl group (preferably 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, even more preferably 1 to 6 carbon atoms, examples include mesyl group, tosyl group, etc.),
Sulfinyl group (preferably 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, even more preferably 1 to 6 carbon atoms; examples include methanesulfinyl group and benzenesulfinyl group),
A ureido group (preferably a carbon number of 1 to 20, more preferably a carbon number of 1 to 10, and still more preferably a carbon number of 1 to 6; for example, an unsubstituted ureido group, a methylureido group, a phenylureido group, etc.) ),
Phosphoramide group (preferably 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, even more preferably 1 to 6 carbon atoms, such as diethyl phosphoamide group and phenyl phosphoamide group) ),
Heterocyclic group (preferably a heterocyclic group having 1 to 30 carbon atoms, more preferably 1 to 12 carbon atoms, for example, a heterocyclic group having heteroatoms such as a nitrogen atom, an oxygen atom, and a sulfur atom, for example , imidazolyl group, pyridyl group, quinolyl group, furyl group, piperidyl group, morpholino group, benzoxazolyl group, benzimidazolyl group, benzthiazolyl group, etc.),
A silyl group (preferably a silyl group having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, and even more preferably 3 to 24 carbon atoms, such as a trimethylsilyl group, a triphenylsilyl group, etc.). ),
Halogen atoms (for example, fluorine atoms, chlorine atoms, bromine atoms, iodine atoms, etc.),
A hydroxy group, a mercapto group, a cyano group, a nitro group, a hydroxamic acid group, a sulfino group, a hydrazino group, an imino group, an azo group, and the like can be used.
These substituents may be further substituted with other substituents. Furthermore, when two or more substituents are present, they may be the same or different. Further, if possible, they may be bonded to each other to form a ring.
Examples of the group in which the above substituent is further substituted with the above substituent include an R B -(O-R A ) na - group, which is a group in which an alkoxy group is substituted with an alkyl group. Here, in the formula, R A represents an alkylene group having 1 to 5 carbon atoms, R B represents an alkyl group having 1 to 5 carbon atoms, and na is 1 to 10 (preferably 1 to 5, more preferably 1 ~3) represents an integer.
Among these, monovalent substituents represented by L 1 and L 2 include alkyl groups, alkenyl groups, alkoxy groups, and groups further substituted with these groups (for example, the above-mentioned R B -(O-R A ) na - group), and alkyl groups, alkoxy groups, and groups further substituted with these groups (for example, the above-mentioned R B -(O-R A ) na - group) is more preferred.

およびLが表す2価の連結基としては、例えば、-O-、-S-、-CO-、-COO-、-OCO-、-O-CO-O-、-CO-NR-、-O-CO-NR-、-NR-CO-NR-、-SO-、-SO-、アルキレン基、シクロアルキレン基、および、アルケニレン基、ならびに、これらの基を2つ以上組み合わせた基などが挙げられる。
これらの中でも、アルキレン基と、-O-、-COO-、-OCO-および-O-CO-O-からなる群より選択される1種以上の基と、を組み合わせた基が好ましい。
ここで、Rは、水素原子またはアルキル基を表す。Rが複数存在する場合には、複数のRは互いに同一でも異なっていてもよい。
Examples of the divalent linking group represented by L 1 and L 2 include -O-, -S-, -CO-, -COO-, -OCO-, -O-CO-O-, -CO-NR N -, -O-CO-NR N -, -NR N -CO-NR N -, -SO 2 -, -SO-, alkylene group, cycloalkylene group, alkenylene group, and two of these groups Examples include groups combining the above.
Among these, a group combining an alkylene group and one or more groups selected from the group consisting of -O-, -COO-, -OCO- and -O-CO-O- is preferred.
Here, RN represents a hydrogen atom or an alkyl group. When a plurality of RNs exist, the plurality of RNs may be the same or different from each other.

二色性物質の溶解性がより向上するという観点からは、LおよびLの少なくとも一方の主鎖の原子の数は、3個以上であることが好ましく、5個以上であることがより好ましく、7個以上であることがさらに好ましく、10個以上であることが特に好ましい。また、主鎖の原子の数の上限値は、20個以下であることが好ましく、12個以下であることがより好ましい。
一方で、光吸収異方性層の配向度がより向上するという観点からは、LおよびLの少なくとも一方の主鎖の原子の数は、1~5個であることが好ましい。
ここで、式(6)におけるAが存在する場合には、Lにおける「主鎖」とは、Lと連結する「O」原子と、「A」と、を直接連結するために必要な部分を指し、「主鎖の原子の数」とは、上記部分を構成する原子の個数のことを指す。同様に、式(6)におけるBが存在する場合には、Lにおける「主鎖」とは、Lと連結する「O」原子と、「B」と、を直接連結するために必要な部分を指し、「主鎖の原子の数」とは、上記部分を構成する原子の数のことを指す。なお、「主鎖の原子の数」には、後述する分岐鎖の原子の数は含まない。
また、Aが存在しない場合には、Lにおける「主鎖の原子の数」とは、分岐鎖を含まないLの原子の個数のことをいう。Bが存在しない場合には、Lにおける「主鎖の原子の数」とは、分岐鎖を含まないLの原子の個数のことをいう。
具体的には、下記式(D1)においては、Lの主鎖の原子の数は5個(下記式(D1)の左側の点線枠内の原子の数)であり、Lの主鎖の原子の数は5個(下記式(D1)の右側の点線枠内の原子の数)である。また、下記式(D10)においては、Lの主鎖の原子の数は7個(下記式(D10)の左側の点線枠内の原子の数)であり、Lの主鎖の原子の数は5個(下記式(D10)の右側の点線枠内の原子の数)である。
From the viewpoint of further improving the solubility of the dichroic substance, the number of atoms in the main chain of at least one of L 1 and L 2 is preferably 3 or more, more preferably 5 or more. The number is preferably 7 or more, more preferably 10 or more. Further, the upper limit of the number of atoms in the main chain is preferably 20 or less, more preferably 12 or less.
On the other hand, from the viewpoint of further improving the degree of orientation of the light absorption anisotropic layer, the number of atoms in the main chain of at least one of L 1 and L 2 is preferably 1 to 5.
Here, when A in formula (6) exists, the "main chain" in L 1 is the "main chain" that is necessary to directly connect the "O" atom that connects with L 1 and "A". The term "number of atoms in the main chain" refers to the number of atoms constituting the above-mentioned part. Similarly, when B in formula (6) exists, the "main chain" in L2 is the "main chain" that is necessary to directly connect the "O" atom that connects with L2 and "B". The term "number of atoms in the main chain" refers to the number of atoms constituting the above-mentioned part. Note that the "number of atoms in the main chain" does not include the number of atoms in the branched chain, which will be described later.
Furthermore, when A does not exist, the "number of atoms in the main chain" in L 1 refers to the number of atoms in L 1 that does not include a branched chain. When B does not exist, the "number of atoms in the main chain" in L 2 refers to the number of atoms in L 2 that does not include branched chains.
Specifically, in the following formula (D1), the number of atoms in the main chain of L 1 is 5 (the number of atoms within the dotted line frame on the left side of the following formula (D1)), and the number of atoms in the main chain of L 2 is 5 (the number of atoms within the dotted line frame on the left side of the following formula (D1)) The number of atoms is 5 (the number of atoms within the dotted line frame on the right side of formula (D1) below). In addition, in the following formula (D10), the number of atoms in the main chain of L 1 is 7 (the number of atoms within the dotted line frame on the left side of the following formula (D10)), and the number of atoms in the main chain of L 2 is 7 The number is 5 (the number of atoms within the dotted line frame on the right side of the following formula (D10)).

およびLは、分岐鎖を有していてもよい。
ここで、式(6)においてAが存在する場合には、Lにおける「分岐鎖」とは、式(6)におけるLと連結する「O」原子と、「A」と、を直接連結するために必要な部分以外の部分をいう。同様に、式(6)においてBが存在する場合には、Lにおける「分岐鎖」とは、式(6)におけるLと連結する「O」原子と、「B」と、を直接連結するために必要な部分以外の部分をいう。
また、式(6)においてAが存在しない場合には、Lにおける「分岐鎖」とは、式(6)におけるLと連結する「O」原子を起点として延びる最長の原子鎖(すなわち主鎖)以外の部分をいう。同様に、式(6)においてBが存在しない場合には、Lにおける「分岐鎖」とは、式(6)におけるLと連結する「O」原子を起点として延びる最長の原子鎖(すなわち主鎖)以外の部分をいう。
分岐鎖の原子の数は、3以下であることが好ましい。分岐鎖の原子の数が3以下であることで、光吸収異方性層の配向度がより向上するなどの利点がある。なお、分岐鎖の原子の数には、水素原子の数は含まれない。
L 1 and L 2 may have a branched chain.
Here, when A exists in formula (6), the "branched chain" in L 1 means a direct connection between "A" and the "O" atom connected to L 1 in formula (6). refers to parts other than those necessary for the purpose of Similarly, when B exists in formula (6), the "branched chain" in L2 means a direct connection between the "O" atom connected to L2 in formula (6) and "B". refers to parts other than those necessary for the purpose of
Furthermore, when A does not exist in formula (6), the "branched chain" in L 1 means the longest atomic chain (i.e., the main chain) extending from the "O" atom connected to L 1 in formula (6). chain). Similarly, when B does not exist in formula (6), the "branched chain" in L 2 means the longest atomic chain extending from the "O" atom connected to L 2 in formula (6) (i.e. This refers to the parts other than the main chain).
The number of atoms in the branched chain is preferably 3 or less. When the number of branched atoms is 3 or less, there is an advantage that the degree of orientation of the light absorption anisotropic layer is further improved. Note that the number of branched chain atoms does not include the number of hydrogen atoms.

式(6)において、Arは(n1+2)価(例えば、n1が1である時は3価)、Arは(n2+2)価(例えば、n2が1である時は3価)、Arは(n3+2)価(例えば、n3が1である時は3価)、の芳香族炭化水素基または複素環基を表す。ここで、Ar~Arはそれぞれ、n1~n3個の置換基(後述するR~R)で置換された2価の芳香族炭化水素基または2価の複素環基と換言できる。
Ar~Arが表す2価の芳香族炭化水素基としては、単環であっても、2環以上の縮環構造を有していてもよい。2価の芳香族炭化水素基の環数は、溶解性がより向上するという観点から、1~4が好ましく、1~2がより好ましく、1(すなわちフェニレン基であること)がさらに好ましい。
2価の芳香族炭化水素基の具体例としては、フェニレン基、アズレン-ジイル基、ナフチレン基、フルオレン-ジイル基、アントラセン-ジイル基およびテトラセン-ジイル基などが挙げられ、溶解性がより向上するという観点から、フェニレン基またはナフチレン基が好ましく、フェニレン基がより好ましい。
以下に、第3の二色性色素化合物の具体例を示すが、本発明はこれらに限定されるものではない。なお、下記具体例中、nは、1~10の整数を表す。
In formula (6), Ar 1 is (n1+2) valent (for example, trivalent when n1 is 1), Ar 2 is (n2+2) valent (for example, trivalent when n2 is 1), and Ar 3 represents an aromatic hydrocarbon group or a heterocyclic group with a valence of (n3+2) (for example, when n3 is 1, it is trivalent). Here, Ar 1 to Ar 3 can each be replaced with a divalent aromatic hydrocarbon group or a divalent heterocyclic group substituted with n1 to n3 substituents (R 1 to R 3 described later).
The divalent aromatic hydrocarbon group represented by Ar 1 to Ar 3 may be monocyclic or may have a condensed ring structure of two or more rings. The number of rings of the divalent aromatic hydrocarbon group is preferably 1 to 4, more preferably 1 to 2, and even more preferably 1 (that is, it is a phenylene group) from the viewpoint of further improving solubility.
Specific examples of divalent aromatic hydrocarbon groups include phenylene group, azulene-diyl group, naphthylene group, fluorene-diyl group, anthracene-diyl group, and tetracene-diyl group, which further improves solubility. From this viewpoint, a phenylene group or a naphthylene group is preferable, and a phenylene group is more preferable.
Specific examples of the third dichroic dye compound are shown below, but the present invention is not limited thereto. In addition, in the following specific examples, n represents an integer of 1 to 10.

420nmの配向度に優れる点では、第3の二色性アゾ色素化合物がラジカル重合性基を有さないことが好ましい。例えば、以下の構造が挙げられる。 In terms of the excellent degree of orientation at 420 nm, it is preferable that the third dichroic azo dye compound does not have a radically polymerizable group. Examples include the following structures.

第3の二色性アゾ色素化合物は、420nmの配向度に特に優れる点で、下記式(1-1)で表される構造を有する二色性物質であるのがより好ましい。 The third dichroic azo dye compound is preferably a dichroic substance having a structure represented by the following formula (1-1), since it has a particularly excellent degree of orientation at 420 nm.

式(1-1)中、R、R、R、R、n1、n3、LおよびLの定義はそれぞれ、式(1)のR、R、R、R、n1、n3、LおよびLと同義である。
式(1-1)中、R21およびR22の定義はそれぞれ独立に、式(1)のRと同義である。
式(1-1)中、n21およびn22の定義はそれぞれ独立に、式(1)のn2と同義である。
n1+n21+n22+n3≧1であり、n1+n21+n22+n3は、1~9が好ましく、1~5がより好ましい。
In formula (1-1), R 1 , R 3 , R 4 , R 5 , n1, n3, L 1 and L 2 are respectively defined as R 1 , R 3 , R 4 , R 5 in formula (1) , n1, n3, L 1 and L 2 .
In formula (1-1), R 21 and R 22 are each independently defined as R 2 in formula (1).
In formula (1-1), n21 and n22 are each independently defined as n2 in formula (1).
n1+n21+n22+n3≧1, and n1+n21+n22+n3 is preferably from 1 to 9, more preferably from 1 to 5.

以下に、二色性物質の具体例を示すが、本発明はこれらに限定されるものではない。 Specific examples of dichroic substances are shown below, but the present invention is not limited thereto.

二色性物質の含有量は、光吸収異方性層の全質量に対して、10~30質量%が好ましく、15~30質量%がより好ましく、18~28質量%がさらに好ましく、20~26質量%が特に好ましい。二色性物質の含有量が上記範囲内にあれば、光吸収異方性層を薄膜にした場合であっても、高配向度の光吸収異方性層を得ることができる。そのため、フレキシブル性に優れた光吸収異方性層が得られやすい。
第1の二色性アゾ色素化合物の含有量は、光吸収異方性層中の二色性物質全体の含有量100質量部に対して、40~90質量部が好ましく、45~75質量部がより好ましい。
第2の二色性アゾ色素化合物の含有量は、光吸収異方性層中の二色性物質全体の含有量100質量に対して、6~50質量部が好ましく、8~35質量部がより好ましい。
第3の二色性アゾ色素化合物の含有量は、光吸収異方性層中の二色性アゾ色素化合物の含有量100質量に対して、3~35質量部が好ましく、5~35質量部がより好ましい。
第1の二色性アゾ色素化合物と、第2の二色性アゾ色素化合物と、および必要に応じて用いられる第3の二色性アゾ色素化合物と、の含有比は、光吸収異方性層の色味調整するために、任意に設定することができる。ただし、第1の二色性アゾ色素化合物に対する第2の二色性アゾ色素化合物の含有比(第2の二色性アゾ色素化合物/第1の二色性アゾ色素化合物)は、モル換算で、0.1~10が好ましく、0.1~2がより好ましく、0.1~0.5がさらに好ましい。第1の二色性アゾ色素化合物に対する第2の二色性アゾ色素化合物の含有比が上記範囲内にあれば、配向度が高められる。
The content of the dichroic substance is preferably 10 to 30% by mass, more preferably 15 to 30% by mass, even more preferably 18 to 28% by mass, and even more preferably 20 to 30% by mass, based on the total mass of the light-absorbing anisotropic layer. 26% by weight is particularly preferred. If the content of the dichroic substance is within the above range, a light-absorbing anisotropic layer with a high degree of orientation can be obtained even when the light-absorbing anisotropic layer is formed into a thin film. Therefore, it is easy to obtain a light absorption anisotropic layer with excellent flexibility.
The content of the first dichroic azo dye compound is preferably 40 to 90 parts by weight, and preferably 45 to 75 parts by weight, based on 100 parts by weight of the entire dichroic substance in the light-absorbing anisotropic layer. is more preferable.
The content of the second dichroic azo dye compound is preferably 6 to 50 parts by mass, and 8 to 35 parts by mass, based on 100 parts by mass of the entire dichroic substance in the light-absorbing anisotropic layer. More preferred.
The content of the third dichroic azo dye compound is preferably 3 to 35 parts by weight, and preferably 5 to 35 parts by weight, based on 100 parts by weight of the dichroic azo dye compound in the light-absorbing anisotropic layer. is more preferable.
The content ratio of the first dichroic azo dye compound, the second dichroic azo dye compound, and the third dichroic azo dye compound used as necessary is determined based on the light absorption anisotropy. It can be set arbitrarily to adjust the color tone of the layer. However, the content ratio of the second dichroic azo dye compound to the first dichroic azo dye compound (second dichroic azo dye compound/first dichroic azo dye compound) is expressed in molar terms. , preferably from 0.1 to 10, more preferably from 0.1 to 2, even more preferably from 0.1 to 0.5. If the content ratio of the second dichroic azo dye compound to the first dichroic azo dye compound is within the above range, the degree of orientation will be increased.

本発明における光吸収異方性層は、例えば、上記液晶性化合物および二色性物質を含む光吸収異方性層形成用組成物を用いて作製できる。
光吸収異方性層形成用組成物は、液晶性化合物および二色性物質以外の成分を含んでいてもよく、例えば、溶媒、垂直配向剤、界面改良剤、重合性成分、および、重合開始剤(例えば、ラジカル重合開始剤)などが挙げられる。この場合、本発明における光吸収異方性層は、液状成分(溶媒など)以外の固形成分を含む。
The light-absorbing anisotropic layer in the present invention can be produced using, for example, a composition for forming a light-absorbing anisotropic layer containing the above liquid crystalline compound and a dichroic substance.
The composition for forming a light-absorbing anisotropic layer may contain components other than the liquid crystal compound and the dichroic substance, such as a solvent, a vertical alignment agent, an interface modifier, a polymerizable component, and a polymerization initiator. agents (for example, radical polymerization initiators), and the like. In this case, the light absorption anisotropic layer in the present invention contains a solid component other than a liquid component (such as a solvent).

界面改良剤としては、後述する実施例欄に記載の界面改良剤を用いることができる。
光吸収異方性層形成用組成物が界面改良剤を含む場合、界面改良剤の含有量は、光吸収異方性層形成用組成物中の上記二色性物質と上記液晶性化合物との合計100質量部に対して、0.001~5質量部が好ましい。
As the interface improver, the interface improvers described in the Examples section below can be used.
When the composition for forming a light-absorbing anisotropic layer contains an interface modifier, the content of the interface modifier is determined based on the amount of the dichroic substance and the liquid crystal compound in the composition for forming a light-absorbing anisotropic layer. It is preferably 0.001 to 5 parts by weight based on a total of 100 parts by weight.

重合性成分としては、アクリレートを含む化合物(例えば、アクリレートモノマー)が挙げられる。この場合、本発明における光吸収異方性層は、上記アクリレートを含む化合物を重合させて得られるポリアクリレートを含む。
重合性成分としては、例えば、特開2017-122776号公報の[0058]段落に記載の化合物が挙げられる。
光吸収異方性層形成用組成物が重合性成分を含む場合、重合性成分の含有量は、光吸収異方性層形成用組成物中の上記二色性物質と上記液晶性化合物との合計100質量部に対して、3~20質量部が好ましい。
Examples of the polymerizable component include compounds containing acrylate (eg, acrylate monomer). In this case, the light absorption anisotropic layer in the present invention contains a polyacrylate obtained by polymerizing a compound containing the above-mentioned acrylate.
Examples of the polymerizable component include compounds described in paragraph [0058] of JP-A No. 2017-122776.
When the composition for forming a light-absorbing anisotropic layer contains a polymerizable component, the content of the polymerizable component is determined based on the amount of the dichroic substance and the liquid crystal compound in the composition for forming a light-absorbing anisotropic layer. It is preferably 3 to 20 parts by weight based on a total of 100 parts by weight.

液晶性化合物を用いる場合、例えば、ゲストホスト型液晶セルの技術を利用して、ホスト液晶の配向に付随させて二色性物質の分子を、上記のような所望の配向にすることができる。具体的には、ゲストとなる二色性物質と、ホスト液晶となる液晶性化合物とを混合し、ホスト液晶を配向させるとともに、その液晶分子の配向に沿って二色性物質の分子を配向させて、その配向状態を固定することで、本発明における光吸収異方性層を作製することができる。 When using a liquid crystal compound, for example, by using the guest-host liquid crystal cell technology, the dichroic substance molecules can be aligned in the desired orientation as described above in association with the alignment of the host liquid crystal. Specifically, a dichroic substance serving as a guest and a liquid crystalline compound serving as a host liquid crystal are mixed, and the host liquid crystal is aligned, and the molecules of the dichroic substance are aligned along the alignment of the liquid crystal molecules. By fixing the orientation state, the light absorption anisotropic layer according to the present invention can be produced.

本発明における光吸収異方性層の光吸収特性の使用環境による変動を防止するために、二色性物質の配向を、化学結合の形成によって固定するのが好ましい。例えば、ホスト液晶、二色性物質、または所望により添加される重合性成分の重合を進行させることで、配向を固定することができる。 In order to prevent variations in the light absorption properties of the light absorption anisotropic layer in the present invention due to the usage environment, it is preferable to fix the orientation of the dichroic substance by forming chemical bonds. For example, the alignment can be fixed by advancing the polymerization of the host liquid crystal, the dichroic substance, or a polymerizable component added as desired.

また、一対の基板に、二色性物質と液晶性化合物(ホスト液晶)とを少なくとも含む液晶層を有するゲストホスト型液晶セルそのものを、本発明における光吸収異方性層として利用してもよい。ホスト液晶の配向(およびそれに付随する二色性物質の配向)は、基板内面に形成された配向膜によって制御することができ、電界などの外部刺激を与えない限り、その配向状態は維持され、本発明における光吸収異方性層の光吸収特性を一定にすることができる。 Furthermore, a guest-host liquid crystal cell itself having a liquid crystal layer containing at least a dichroic substance and a liquid crystal compound (host liquid crystal) on a pair of substrates may be used as the light-absorbing anisotropic layer in the present invention. . The orientation of the host liquid crystal (and the accompanying orientation of the dichroic substance) can be controlled by an alignment film formed on the inner surface of the substrate, and the orientation state is maintained unless external stimulation such as an electric field is applied. The light absorption characteristics of the light absorption anisotropic layer in the present invention can be made constant.

[垂直配向剤]
垂直配向剤としては、ボロン酸化合物、および、オニウム塩が挙げられる。
[Vertical alignment agent]
Vertical alignment agents include boronic acid compounds and onium salts.

ボロン酸化合物としては、式(30)で表される化合物が好ましい。 As the boronic acid compound, a compound represented by formula (30) is preferable.

式(30)
Formula (30)

式(30)中、RおよびRは、それぞれ独立に、水素原子、置換もしくは無置換の脂肪族炭化水素基、置換もしくは無置換のアリール基、または、置換もしくは無置換のヘテロ環基を表す。
は、(メタ)アクリル基を含む置換基を表す。
ボロン酸化合物の具体例としては、特開2008-225281号公報の[0023]~[0032]段落に記載の一般式(I)で表されるボロン酸化合物が挙げられる。
ボロン酸化合物としては、以下に例示する化合物も好ましい。
In formula (30), R 1 and R 2 each independently represent a hydrogen atom, a substituted or unsubstituted aliphatic hydrocarbon group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heterocyclic group. represent.
R 3 represents a substituent containing a (meth)acrylic group.
Specific examples of the boronic acid compound include boronic acid compounds represented by the general formula (I) described in paragraphs [0023] to [0032] of JP-A No. 2008-225281.
As the boronic acid compound, the compounds exemplified below are also preferred.

オニウム塩としては、式(31)で表される化合物が好ましい。 As the onium salt, a compound represented by formula (31) is preferred.

式(31)
Formula (31)

式(31)中、環Aは、含窒素複素環からなる第4級アンモニウムイオンを表す。Xは、アニオンを表す。Lは、2価の連結基を表す。Lは、単結合、または、2価の連結基を表す。Yは、5または6員環を部分構造として有する2価の連結基を表す。Zは、2~20のアルキレン基を部分構造として有する2価の連結基を表す。PおよびPは、それぞれ独立に、重合性エチレン性不飽和結合を有する一価の置換基を表す。
オニウム塩の具体例としては、特開2012-208397号公報の[0052]~[0058]段落に記載のオニウム塩、特開2008-026730号公報の[0024]~[0055]段落に記載のオニウム塩、および、特開2002-037777号公報に記載のオニウム塩が挙げられる。
In formula (31), ring A represents a quaternary ammonium ion consisting of a nitrogen-containing heterocycle. X represents an anion. L 1 represents a divalent linking group. L 2 represents a single bond or a divalent linking group. Y 1 represents a divalent linking group having a 5- or 6-membered ring as a partial structure. Z represents a divalent linking group having 2 to 20 alkylene groups as a partial structure. P 1 and P 2 each independently represent a monovalent substituent having a polymerizable ethylenically unsaturated bond.
Specific examples of onium salts include the onium salts described in paragraphs [0052] to [0058] of JP2012-208397A, and the onium salts described in paragraphs [0024] to [0055] of JP2008-026730A. salts and onium salts described in JP-A-2002-037777.

光吸収異方性層形成用組成物(光吸収異方性層)中の垂直配向剤の含有量は、液晶性化合物全質量に対して、0.1~400質量%が好ましく、0.5~350質量%がより好ましい。
垂直配向剤は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。垂直配向剤が2種以上を用いられる場合、それらの合計量が上記範囲であることが好ましい。
The content of the vertical alignment agent in the composition for forming a light-absorbing anisotropic layer (light-absorbing anisotropic layer) is preferably 0.1 to 400% by mass, and 0.5% by mass based on the total mass of the liquid crystal compound. More preferably 350% by mass.
The vertical alignment agents may be used alone or in combination of two or more. When two or more types of vertical alignment agents are used, the total amount thereof is preferably within the above range.

[垂直配向に適したレベリング剤]
光吸収異方性層形成用組成物(光吸収異方性層)は、以下のレベリング剤を含むことが好ましい。光吸収異方性層形成用組成物(光吸収異方性層)がレベリング剤を含むと、光吸収異方性層の表面にかかる乾燥風による面状の荒れを抑制し、二色性物質がより均一に配向する。
レベリング剤は特に制限されず、フッ素原子を含むレベリング剤(フッ素系レベリング剤)、または、ケイ素原子を含むレベリング剤(ケイ素系レベリング剤)が好ましく、フッ素系レベリング剤がより好ましい。
[Leveling agent suitable for vertical alignment]
The composition for forming a light-absorbing anisotropic layer (light-absorbing anisotropic layer) preferably contains the following leveling agent. When the composition for forming a light-absorbing anisotropic layer (light-absorbing anisotropic layer) contains a leveling agent, it suppresses surface roughness caused by dry wind on the surface of the light-absorbing anisotropic layer, and the dichroic material are oriented more uniformly.
The leveling agent is not particularly limited, and a leveling agent containing a fluorine atom (fluorine-based leveling agent) or a leveling agent containing a silicon atom (silicon-based leveling agent) is preferable, and a fluorine-based leveling agent is more preferable.

フッ素系レベリング剤としては、脂肪酸の一部がフルオロアルキル基で置換された多価カルボン酸の脂肪酸エステル類、および、フルオロ置換基を有するポリアクリレート類が挙げられる。特に、二色性物質および液晶性化合物として棒状化合物を用いる場合、二色性物質および液晶性化合物の垂直配向を促進する観点から、式(40)で表される化合物由来の繰り返し単位を含むレベリング剤が好ましい。 Examples of the fluorine-based leveling agent include fatty acid esters of polyhydric carboxylic acids in which part of the fatty acids are substituted with fluoroalkyl groups, and polyacrylates having fluoro substituents. In particular, when using a rod-like compound as a dichroic substance and a liquid crystal compound, from the viewpoint of promoting vertical alignment of the dichroic substance and liquid crystal compound, leveling containing repeating units derived from the compound represented by formula (40) Agents are preferred.

式(40) Formula (40)

は、水素原子、ハロゲン原子、または、メチル基を表す。
Lは、2価の連結基を表す。Lとしては、炭素数2~16のアルキレン基が好ましく、上記アルキレン基において隣接しない任意の-CH-は、-O-、-COO-、-CO-、または、-CONH-に置換されていてもよい。
nは、1~18の整数を表す。
R 0 represents a hydrogen atom, a halogen atom, or a methyl group.
L represents a divalent linking group. L is preferably an alkylene group having 2 to 16 carbon atoms, and any non-adjacent -CH 2 - in the alkylene group is substituted with -O-, -COO-, -CO-, or -CONH-. It's okay.
n represents an integer from 1 to 18.

式(40)で表される化合物由来の繰り返し単位を有するレベリング剤は、さらに他の繰り返し単位を含んでいてもよい。
他の繰り返し単位としては、式(41)で表される化合物由来の繰り返し単位が挙げられる。
The leveling agent having repeating units derived from the compound represented by formula (40) may further contain other repeating units.
Other repeating units include repeating units derived from the compound represented by formula (41).

式(41) Formula (41)

11は、水素原子、ハロゲン原子、または、メチル基を表す。
Xは、酸素原子、硫黄原子、または、-N(R13)-を表す。R13は、水素原子、または、炭素数1~8のアルキル基を表す。
12は、水素原子、置換基を有してもよいアルキル基、または、置換基を有していてもよい芳香族基を表す。上記アルキル基の炭素数は、1~20が好ましい。上記アルキル基は、直鎖状、分岐鎖状、および、環状のいずれであってもよい。
また、上記アルキル基の有していてもよい置換基としては、ポリ(アルキレンオキシ)基、および、重合性基が挙げられる。重合性基の定義は、上述した通りである。
R 11 represents a hydrogen atom, a halogen atom, or a methyl group.
X represents an oxygen atom, a sulfur atom, or -N(R 13 )-. R 13 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
R 12 represents a hydrogen atom, an alkyl group that may have a substituent, or an aromatic group that may have a substituent. The number of carbon atoms in the alkyl group is preferably 1 to 20. The alkyl group may be linear, branched, or cyclic.
Furthermore, examples of the substituent that the alkyl group may have include a poly(alkyleneoxy) group and a polymerizable group. The definition of the polymerizable group is as described above.

レベリング剤が、式(40)で表される化合物由来の繰り返し単位、および、式(41)で表される化合物由来の繰り返し単位を含む場合、式(40)で表される化合物由来の繰り返し単位の含有量は、レベリング剤が含む全繰り返し単位に対して、10~90モル%が好ましく、15~95モル%がより好ましい。
レベリング剤が、式(40)で表される化合物由来の繰り返し単位、および、式(41)で表される化合物由来の繰り返し単位を含む場合、式(41)で表される化合物由来の繰り返し単位の含有量は、レベリング剤が含む全繰り返し単位に対して、10~90モル%が好ましく、5~85モル%がより好ましい。
When the leveling agent contains a repeating unit derived from the compound represented by formula (40) and a repeating unit derived from the compound represented by formula (41), a repeating unit derived from the compound represented by formula (40) The content of is preferably 10 to 90 mol%, more preferably 15 to 95 mol%, based on all repeating units contained in the leveling agent.
When the leveling agent contains a repeating unit derived from the compound represented by formula (40) and a repeating unit derived from the compound represented by formula (41), a repeating unit derived from the compound represented by formula (41) The content is preferably 10 to 90 mol%, more preferably 5 to 85 mol%, based on all repeating units contained in the leveling agent.

また、レベリング剤としては、上述した式(40)で表される化合物由来の繰り返し単位に代えて、式(42)で表される化合物由来の繰り返し単位を含むレベリング剤も挙げられる。 Further, examples of the leveling agent include a leveling agent containing a repeating unit derived from the compound represented by formula (42) instead of the repeating unit derived from the compound represented by formula (40) described above.

式(42) Formula (42)

は、水素原子、ハロゲン原子、または、メチル基を表す。
は、2価の連結基を表す。
nは、1~18の整数を表す。
R 2 represents a hydrogen atom, a halogen atom, or a methyl group.
L 2 represents a divalent linking group.
n represents an integer from 1 to 18.

レベリング剤の具体例としては、特開2004-331812号公報の[0046]~[0052]段落に例示される化合物、および、特開2008-257205号公報の[0038]~[0052]段落に記載の化合物が挙げられる。 Specific examples of leveling agents include compounds exemplified in paragraphs [0046] to [0052] of JP-A No. 2004-331812, and compounds described in paragraphs [0038] to [0052] of JP-A-2008-257205. The following compounds are mentioned.

光吸収異方性層形成用組成物(光吸収異方性層)中のレベリング剤の含有量は、液晶性化合物全質量に対して、0.001~10質量%が好ましく、0.01~5質量%がより好ましい。
レベリング剤は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。レベリング剤が2種以上を用いられる場合、それらの合計量が上記範囲であることが好ましい。
The content of the leveling agent in the composition for forming a light-absorbing anisotropic layer (light-absorbing anisotropic layer) is preferably 0.001 to 10% by mass, and 0.01 to 10% by mass based on the total mass of the liquid crystal compound. 5% by mass is more preferred.
The leveling agents may be used alone or in combination of two or more. When two or more types of leveling agents are used, the total amount thereof is preferably within the above range.

[重合開始剤]
光吸収異方性層形成用組成物は、重合開始剤を含むことが好ましい。
重合開始剤としては特に制限はないが、感光性を有する化合物、すなわち光重合開始剤であることが好ましい。
光重合開始剤としては、各種の化合物を特に制限なく使用できる。光重合開始剤の例には、α-カルボニル化合物(米国特許第2367661号、同2367670号の各明細書)、アシロインエーテル(米国特許第2448828号明細書)、α-炭化水素置換芳香族アシロイン化合物(米国特許第2722512号明細書)、多核キノン化合物(米国特許第3046127号および同2951758号の各明細書)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書)、アクリジンおよびフェナジン化合物(特開昭60-105667号公報および米国特許第4239850号明細書)、オキサジアゾール化合物(米国特許第4212970号明細書)、o-アシルオキシム化合物(特開2016-027384号公報[0065]段落)および、アシルフォスフィンオキシド化合物(特公昭63-40799号公報、特公平5-029234号公報、特開平10-095788号公報および特開平10-029997号公報)などが挙げられる。
このような光重合開始剤としては、市販品も用いることができ、BASF社製のイルガキュア-184、イルガキュア-907、イルガキュア-369、イルガキュア-651、イルガキュア-819、イルガキュア-OXE-01およびイルガキュア-OXE-02などが挙げられる。
[Polymerization initiator]
The composition for forming a light-absorbing anisotropic layer preferably contains a polymerization initiator.
The polymerization initiator is not particularly limited, but it is preferably a photosensitive compound, that is, a photopolymerization initiator.
As the photopolymerization initiator, various compounds can be used without particular limitation. Examples of photopolymerization initiators include α-carbonyl compounds (US Pat. Nos. 2,367,661 and 2,367,670), asiloin ether (US Pat. No. 2,448,828), and α-hydrocarbon-substituted aromatic acyloins. compound (US Pat. No. 2,722,512), polynuclear quinone compound (US Pat. No. 3,046,127 and US Pat. No. 2,951,758), combination of triarylimidazole dimer and p-aminophenyl ketone (US Pat. No. 3,549,367) ), acridine and phenazine compounds (JP-A-60-105667 and US Pat. No. 4,239,850), oxadiazole compounds (US Pat. No. 4,212,970), o-acyl oxime compounds (JP-A-2016- No. 027384, paragraph [0065]), and acylphosphine oxide compounds (Japanese Patent Publication No. 63-40799, Japanese Patent Publication No. 5-029234, Japanese Patent Application Publication No. 10-095788, and Japanese Patent Application Publication No. 10-029997). Can be mentioned.
Commercially available products can be used as such photopolymerization initiators, such as Irgacure-184, Irgacure-907, Irgacure-369, Irgacure-651, Irgacure-819, Irgacure-OXE-01 and Irgacure-01 manufactured by BASF. Examples include OXE-02.

光吸収異方性層形成用組成物が重合開始剤を含む場合、重合開始剤の含有量は、光吸収異方性層形成用組成物中の上記二色性物質と上記液晶性化合物との合計100質量部に対し、0.01~30質量部が好ましく、0.1~15質量部がより好ましい。重合開始剤の含有量が0.01質量部以上であることで、光吸収異方性膜の耐久性が良好となり、30質量部以下であることで、光吸収異方性膜の配向度がより良好となる。
重合開始剤は、1種単独で用いても2種以上を併用してもよい。重合開始剤を2種以上含む場合、その合計量が上記範囲内であるのが好ましい。
When the composition for forming a light-absorbing anisotropic layer contains a polymerization initiator, the content of the polymerization initiator is determined based on the amount of the dichroic substance and the liquid crystal compound in the composition for forming a light-absorbing anisotropic layer. It is preferably 0.01 to 30 parts by weight, more preferably 0.1 to 15 parts by weight, based on a total of 100 parts by weight. When the content of the polymerization initiator is 0.01 parts by mass or more, the durability of the light-absorbing anisotropic film is improved, and when the content is 30 parts by mass or less, the degree of orientation of the light-absorbing anisotropic film is improved. It will be better.
The polymerization initiators may be used alone or in combination of two or more. When two or more types of polymerization initiators are included, the total amount thereof is preferably within the above range.

[溶媒]
光吸収異方性層形成用組成物は、作業性などの観点から、溶媒を含むのが好ましい。
溶媒としては、例えば、ケトン類(例えば、アセトン、2-ブタノン、メチルイソブチルケトン、シクロペンタノン、および、シクロヘキサノンなど)、エーテル類(例えば、ジオキサン、テトラヒドロフラン、2-メチルテトラヒドロフラン、シクロペンチルメチルエーテル、テトラヒドロピラン、および、ジオキソランなど)、脂肪族炭化水素類(例えば、ヘキサンなど)、脂環式炭化水素類(例えば、シクロヘキサンなど)、芳香族炭化水素類(例えば、ベンゼン、トルエン、キシレン、および、トリメチルベンゼンなど)、ハロゲン化炭素類(例えば、ジクロロメタン、トリクロロメタン、ジクロロエタン、ジクロロベンゼン、および、クロロトルエンなど)、エステル類(例えば、酢酸メチル、酢酸エチル、酢酸ブチル、および、乳酸エチルなど)、アルコール類(例えば、エタノール、イソプロパノール、ブタノール、シクロヘキサノール、イソペンチルアルコール、ネオペンチルアルコール、ジアセトンアルコール、および、ベンジルアルコールなど)、セロソルブ類(例えば、メチルセロソルブ、エチルセロソルブ、および、1,2-ジメトキシエタンなど)、セロソルブアセテート類、スルホキシド類(例えば、ジメチルスルホキシドなど)、アミド類(例えば、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、および、N-エチルピロリドンなど)、および、ヘテロ環化合物(例えば、ピリジンなど)などの有機溶媒、ならびに、水が挙げられる。これの溶媒は、1種単独で用いてもよく、2種以上を併用してもよい。
これらの溶媒のうち、ケトン類(特にシクロペンタノン、シクロヘキサノン)、エーテル類(特にテトラヒドロフラン、シクロペンチルメチルエーテル、テトラヒドロピラン、および、ジオキソラン)、および、アミド類(特に、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、および、N-エチルピロリドン)が好ましい。
光吸収異方性層形成用組成物が溶媒を含む場合、溶媒の含有量は、光吸収異方性層形成用組成物の全質量に対して、80~99質量%が好ましく、83~98質量%がより好ましく、85~96質量%がさらに好ましい。
溶媒が2種以上含まれる場合、上記溶媒の含有量は、溶媒の含有量の合計を意味する。
[solvent]
The composition for forming a light-absorbing anisotropic layer preferably contains a solvent from the viewpoint of workability and the like.
Examples of solvents include ketones (such as acetone, 2-butanone, methyl isobutyl ketone, cyclopentanone, and cyclohexanone), ethers (such as dioxane, tetrahydrofuran, 2-methyltetrahydrofuran, cyclopentyl methyl ether, and tetrahydrofuran). pyran, dioxolane, etc.), aliphatic hydrocarbons (e.g., hexane, etc.), alicyclic hydrocarbons (e.g., cyclohexane, etc.), aromatic hydrocarbons (e.g., benzene, toluene, xylene, and trimethyl benzene, etc.), halogenated carbons (e.g., dichloromethane, trichloromethane, dichloroethane, dichlorobenzene, and chlorotoluene, etc.), esters (e.g., methyl acetate, ethyl acetate, butyl acetate, and ethyl lactate, etc.), alcohols (e.g., ethanol, isopropanol, butanol, cyclohexanol, isopentyl alcohol, neopentyl alcohol, diacetone alcohol, benzyl alcohol, etc.), cellosolves (e.g., methyl cellosolve, ethyl cellosolve, and 1,2-dimethoxy ethane, etc.), cellosolve acetates, sulfoxides (e.g., dimethyl sulfoxide), amides (e.g., dimethylformamide, dimethylacetamide, N-methylpyrrolidone, and N-ethylpyrrolidone, etc.), and heterocyclic compounds (e.g., , pyridine, etc.), and water. These solvents may be used alone or in combination of two or more.
Among these solvents, ketones (especially cyclopentanone, cyclohexanone), ethers (especially tetrahydrofuran, cyclopentyl methyl ether, tetrahydropyran, and dioxolane), and amides (especially dimethylformamide, dimethylacetamide, N- Methylpyrrolidone and N-ethylpyrrolidone) are preferred.
When the composition for forming a light-absorbing anisotropic layer contains a solvent, the content of the solvent is preferably 80 to 99% by mass, and 83 to 98% by mass based on the total mass of the composition for forming a light-absorbing anisotropic layer. % by mass is more preferred, and 85 to 96% by mass is even more preferred.
When two or more types of solvents are included, the content of the above-mentioned solvents means the total content of the solvents.

<光吸収異方性層の形成方法>
光吸収異方性層の形成方法は特に限定されず、上述した光吸収異方性層形成用組成物を塗布して塗布膜を形成する工程(以下、「塗布膜形成工程」ともいう。)と、塗布膜に含まれる液晶性成分を配向させる工程(以下、「配向工程」ともいう。)と、をこの順に含む方法が挙げられる。
なお、液晶性成分とは、上述した液晶性化合物だけでなく、上述した二色性物質が液晶性を有している場合は、液晶性を有する二色性物質も含む成分である。
光吸収異方性層としては、光吸収異方性層形成用組成物を用いて得られる層であることが好ましく、光吸収異方性層形成用組成物を用いて得られる塗布膜に対して硬化処理を施して得られる層(硬化層)であることがより好ましい。
<Method for forming light absorption anisotropic layer>
The method for forming the light-absorbing anisotropic layer is not particularly limited, and includes a step of applying the above-described composition for forming a light-absorbing anisotropic layer to form a coating film (hereinafter also referred to as "coating film forming step"). and a step of orienting the liquid crystal component contained in the coating film (hereinafter also referred to as "orientation step"), in this order.
Note that the liquid crystal component is a component that includes not only the above-mentioned liquid crystal compound but also a dichroic substance having liquid crystallinity when the above-mentioned dichroic substance has liquid crystallinity.
The light-absorbing anisotropic layer is preferably a layer obtained using a composition for forming a light-absorbing anisotropic layer, and is a layer obtained using a composition for forming a light-absorbing anisotropic layer. It is more preferable to use a layer obtained by performing a curing treatment (cured layer).

[塗布膜形成工程]
塗布膜形成工程は、光吸収異方性層形成用組成物を塗布して塗布膜を形成する工程である。
上述した溶媒を含む光吸収異方性層形成用組成物を用いたり、光吸収異方性層形成用組成物を加熱などによって溶融液などの液状物としたものを用いたりすることにより、光吸収異方性層形成用組成物を塗布することが容易になる。
なお、光吸収異方性層形成用組成物中に含まれる各種成分の含有量は、上述した光吸収異方性層中における各成分の含有量となるように調整されることが好ましい。
光吸収異方性層形成用組成物の塗布方法としては、具体的には、例えば、ロールコーティング法、グラビア印刷法、スピンコート法、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法、スプレー法、および、インクジェット法などの公知の方法が挙げられる。
[Coating film formation process]
The coating film forming step is a step of applying a composition for forming a light-absorbing anisotropic layer to form a coating film.
By using a light-absorbing anisotropic layer-forming composition containing the above-mentioned solvent, or by heating the light-absorbing anisotropic layer-forming composition to form a liquid such as a melt, light It becomes easy to apply the composition for forming an absorption anisotropic layer.
In addition, it is preferable that the content of various components contained in the composition for forming a light-absorbing anisotropic layer is adjusted so as to be the content of each component in the light-absorbing anisotropic layer described above.
Specifically, the method for applying the composition for forming a light-absorbing anisotropic layer includes, for example, a roll coating method, a gravure printing method, a spin coating method, a wire bar coating method, an extrusion coating method, a direct gravure coating method, and a reverse coating method. Known methods include gravure coating method, die coating method, spray method, and inkjet method.

[配向工程]
配向工程は、塗布膜に含まれる液晶性成分を配向させる工程である。これにより、光吸収異方性層が得られる。
配向工程は、乾燥処理を有していてもよい。乾燥処理によって、溶媒などの成分を塗布膜から除去することができる。乾燥処理は、塗布膜を室温下において所定時間放置する方法(例えば、自然乾燥)によって行われてもよいし、加熱および/または送風する方法によって行われてもよい。
ここで、光吸収異方性層形成用組成物に含まれる液晶性成分は、上述した塗布膜形成工程または乾燥処理によって、配向する場合がある。例えば、光吸収異方性層形成用組成物が溶媒を含む塗布液として調製されている態様では、塗布膜を乾燥して、塗布膜から溶媒を除去することで、光吸収異方性を持つ塗布膜(すなわち、光吸収異方性膜)が得られる。
乾燥処理が塗布膜に含まれる液晶性成分の液晶相への転移温度以上の温度により行われる場合には、後述する加熱処理は実施しなくてもよい。
[Orientation process]
The alignment process is a process of aligning the liquid crystal component contained in the coating film. As a result, a light absorption anisotropic layer is obtained.
The orientation process may include a drying process. Components such as solvents can be removed from the coating film by the drying process. The drying treatment may be performed by leaving the coating film at room temperature for a predetermined period of time (for example, natural drying), or by heating and/or blowing air.
Here, the liquid crystal component contained in the composition for forming a light-absorbing anisotropic layer may be oriented by the above-mentioned coating film forming step or drying treatment. For example, in an embodiment where the composition for forming a light-absorbing anisotropic layer is prepared as a coating solution containing a solvent, by drying the coating film and removing the solvent from the coating film, the composition for forming a light-absorbing anisotropic layer can be formed. A coating film (ie, a light-absorbing anisotropic film) is obtained.
When the drying treatment is performed at a temperature equal to or higher than the transition temperature of the liquid crystal component contained in the coating film to the liquid crystal phase, the heat treatment described below may not be performed.

塗布膜に含まれる液晶性成分の液晶相への転移温度は、製造適性の面から10~250℃が好ましく、25~190℃がより好ましい。上記転移温度が10℃以上であると、液晶相を呈する温度範囲にまで温度を下げるための冷却処理などが必要とならず、好ましい。また、上記転移温度が250℃以下であると、一旦液晶相を呈する温度範囲よりもさらに高温の等方性液体状態にする場合にも高温を要さず、熱エネルギーの浪費、ならびに、基板の変形および変質などを低減できるため、好ましい。 The transition temperature of the liquid crystal component contained in the coating film to the liquid crystal phase is preferably 10 to 250°C, more preferably 25 to 190°C, from the viewpoint of manufacturing suitability. When the transition temperature is 10° C. or higher, there is no need for cooling treatment to lower the temperature to a temperature range in which a liquid crystal phase is exhibited, which is preferable. Furthermore, if the above transition temperature is 250°C or lower, high temperatures are not required even when the temperature range is higher than the temperature range in which the liquid crystal phase is exhibited, and the temperature is higher than that of the isotropic liquid state, which results in wasted thermal energy and damage to the substrate. This is preferable because deformation, alteration, etc. can be reduced.

配向工程は、加熱処理を有することが好ましい。これにより、塗布膜に含まれる液晶性成分を配向させることができるため、加熱処理後の塗布膜を光吸収異方性膜として好適に使用できる。
加熱処理は、製造適性の面から10~250℃が好ましく、25~190℃がより好ましい。また、加熱時間は、1~300秒が好ましく、1~60秒がより好ましい。
Preferably, the orientation step includes heat treatment. Thereby, the liquid crystal component contained in the coating film can be oriented, so that the coating film after the heat treatment can be suitably used as a light-absorbing anisotropic film.
The heat treatment is preferably performed at 10 to 250°C, more preferably from 25 to 190°C, from the viewpoint of manufacturing suitability. Further, the heating time is preferably 1 to 300 seconds, more preferably 1 to 60 seconds.

配向工程は、加熱処理後に実施される冷却処理を有していてもよい。冷却処理は、加熱後の塗布膜を室温(20~25℃)程度まで冷却する処理である。これにより、塗布膜に含まれる液晶性成分の配向を固定することができる。冷却手段としては、特に限定されず、公知の方法により実施できる。
以上の工程によって、光吸収異方性膜を得ることができる。
なお、本態様では、塗布膜に含まれる液晶性成分を配向する方法として、乾燥処理および加熱処理などを挙げているが、これに限定されず、公知の配向処理によって実施できる。
The orientation step may include a cooling treatment performed after the heat treatment. The cooling treatment is a treatment in which the coated film after heating is cooled to about room temperature (20 to 25° C.). Thereby, the orientation of the liquid crystal component contained in the coating film can be fixed. The cooling means is not particularly limited, and any known method can be used.
Through the above steps, a light absorption anisotropic film can be obtained.
In this embodiment, drying treatment, heat treatment, and the like are mentioned as methods for aligning the liquid crystal component contained in the coating film, but the method is not limited thereto, and any known alignment treatment can be used.

[他の工程]
光吸収異方性層の形成方法は、上記配向工程後に、光吸収異方性層を硬化させる工程(以下、「硬化工程」ともいう。)を有していてもよい。
硬化工程は、例えば、光吸収異方性層が架橋性基(重合性基)を有している場合には、加熱および/または光照射(露光)によって実施される。このなかでも、硬化工程は光照射によって実施されることが好ましい。
硬化に用いる光源は、赤外線、可視光および紫外線など、種々の光源を用いることが可能であるが、紫外線であることが好ましい。また、硬化時に加熱しながら紫外線を照射してもよいし、特定の波長のみを透過するフィルタを介して紫外線を照射してもよい。
露光が加熱しながら行われる場合、露光時の加熱温度は、液晶膜に含まれる液晶性成分の液晶相への転移温度にもよるが、25~140℃であることが好ましい。
また、露光は、窒素雰囲気下で行われてもよい。ラジカル重合によって液晶膜の硬化が進行する場合において、酸素による重合の阻害が低減されるため、窒素雰囲気下で露光することが好ましい。
[Other processes]
The method for forming the light-absorbing anisotropic layer may include a step of curing the light-absorbing anisotropic layer (hereinafter also referred to as "curing step") after the orientation step.
For example, when the light-absorbing anisotropic layer has a crosslinkable group (polymerizable group), the curing step is performed by heating and/or light irradiation (exposure). Among these, it is preferable that the curing step is carried out by light irradiation.
Various light sources can be used for curing, including infrared rays, visible light, and ultraviolet rays, but ultraviolet rays are preferred. Moreover, ultraviolet rays may be irradiated while heating during curing, or ultraviolet rays may be irradiated through a filter that transmits only a specific wavelength.
When the exposure is performed while heating, the heating temperature during the exposure is preferably 25 to 140° C., although it depends on the transition temperature of the liquid crystal component contained in the liquid crystal film to the liquid crystal phase.
Further, the exposure may be performed under a nitrogen atmosphere. When curing of the liquid crystal film progresses by radical polymerization, it is preferable to perform exposure under a nitrogen atmosphere because inhibition of polymerization by oxygen is reduced.

光吸収異方性層の厚さは、特に限定されないが、後述する本発明の積層体を偏光素子に用いた場合のフレキシブル性の観点から、100~8000nmであることが好ましく、300~5000nmであることがより好ましい。 The thickness of the light absorption anisotropic layer is not particularly limited, but from the viewpoint of flexibility when the laminate of the present invention described later is used in a polarizing element, it is preferably 100 to 8000 nm, and preferably 300 to 5000 nm. It is more preferable that there be.

<光吸収異方性層の第2実施態様>
本発明の光吸収異方性層の第2実施態様は、液晶性化合物および少なくとも1種の二色性物質を含む領域Aと、領域Aよりも極角30°から見た斜め透過率が高い領域Bとを有する光吸収異方性層であって、二色性物質が膜面(光吸収異方性層の主面)に対し垂直に配向しており、領域Aの波長550nmにおける配向度が0.95以上である。
光吸収異方性層の第2実施態様は、面内方向において、領域Aと領域Bとの2つの領域を有する。領域Aは、上述した光吸収異方性層の第1実施態様と同様の構成を有する。つまり、領域Aは、上述した液晶性化合物および二色性物質を含む。また、領域A中において二色性物質は膜面に対して垂直に配向しており、領域Aは所定の配向度を示す。
領域Bは、領域Aよりも極角30°から見た斜め透過率が高い領域である。つまり、領域Aを極角30°から見た斜め透過率と、領域Bを極角30°から見た斜め透過率とを比較した場合、領域Bを極角30°から見た斜め透過率のほうが高い。
上記斜め透過率は、波長550nmにおける透過率を意味する。
領域Bは、空間であってもよいし、領域Aと同じく液晶性化合物が含まれる領域であってもよい。領域Bには二色性物質が含まれていてもよいが、上述したように、領域Aと領域Bとが所定の透過率の関係を満たすように、二色性物質の含有量が調整される。領域B中における二色性物質の含有量は、領域B全質量に対して、3質量%以下が好ましく、1質量%以下がより好ましく、0質量%がさらに好ましい。
<Second embodiment of light absorption anisotropic layer>
The second embodiment of the light absorption anisotropic layer of the present invention has a region A containing a liquid crystal compound and at least one dichroic substance, and a region A that has a higher oblique transmittance than the region A when viewed from a polar angle of 30°. A light-absorbing anisotropic layer having a region B, in which the dichroic substance is oriented perpendicularly to the film surface (main surface of the light-absorbing anisotropic layer), and the degree of orientation at a wavelength of 550 nm in region A. is 0.95 or more.
The second embodiment of the light absorption anisotropic layer has two regions, region A and region B, in the in-plane direction. Region A has the same configuration as the first embodiment of the light absorption anisotropic layer described above. That is, region A contains the above-mentioned liquid crystal compound and dichroic substance. Further, in region A, the dichroic substance is oriented perpendicularly to the film surface, and region A exhibits a predetermined degree of orientation.
Region B has a higher oblique transmittance than region A when viewed from a polar angle of 30°. In other words, when comparing the oblique transmittance of area A viewed from a polar angle of 30° and the oblique transmittance of area B viewed from a polar angle of 30°, the oblique transmittance of area B viewed from a polar angle of 30° is It's more expensive.
The above-mentioned oblique transmittance means the transmittance at a wavelength of 550 nm.
Region B may be a space, or, like region A, may be a region containing a liquid crystal compound. Region B may contain a dichroic substance, but as described above, the content of the dichroic substance is adjusted so that region A and region B satisfy a predetermined transmittance relationship. Ru. The content of the dichroic substance in region B is preferably 3% by mass or less, more preferably 1% by mass or less, and even more preferably 0% by mass, based on the total mass of region B.

領域Aの極角30°から見た斜め透過率は10%以下であることが好ましく、領域Bの極角30°から見た斜め透過率は80%以上であることが好ましい。 The diagonal transmittance of region A viewed from a polar angle of 30° is preferably 10% or less, and the diagonal transmittance of region B viewed from a polar angle of 30° is preferably 80% or more.

光吸収異方性層の第2実施態様においては、一部の領域で(偏光の)視野角依存性を強めたり弱めたりすることが可能となる。これにより、視野角依存性を強めた領域にのみ機密度の高い情報を表示したりすることもできる。また、表示装置として視野角依存性を自在に制御することにより、意匠性に優れた設計も可能となる。マイクロLED(light emitting diode)などの表示装置において発光部から周辺領域への光漏れを防止するために、発光部以外の領域を上記領域Bにし、発光部を上記領域Aとするパターニングにすることで画面の中の明暗のコントラストを高めることも可能である。 In the second embodiment of the light absorption anisotropic layer, it is possible to strengthen or weaken the viewing angle dependence (of polarization) in some regions. This makes it possible to display highly confidential information only in areas with increased viewing angle dependence. Further, by freely controlling the viewing angle dependence of the display device, it is possible to design the display device with excellent design. In order to prevent light leakage from the light emitting part to the surrounding area in a display device such as a micro LED (light emitting diode), patterning is performed such that the area other than the light emitting part is the area B, and the light emitting part is the area A. It is also possible to increase the contrast between light and dark on the screen.

なお、光吸収異方性層中における領域Aと領域Bとの配置位置は特に制限されず、使用目的に応じて、適宜配置できる。例えば、領域Aと領域Bとを交互にストライプ状に配置してもよいし、光吸収異方性層の一部を領域Bとして、他の全ての領域を領域Aとしてもよい。 Note that the positions of region A and region B in the light-absorbing anisotropic layer are not particularly limited, and can be appropriately located depending on the purpose of use. For example, regions A and B may be arranged alternately in stripes, or a part of the light-absorbing anisotropic layer may be set as region B, and all other regions may be set as region A.

光吸収異方性層の第2実施態様の形成方法は特に制限されず、WO2019/176918号公報に記載されているような公知の各種の方法が利用可能である。一例として、光吸収異方性層の厚さを面内で制御する方法、光吸収異方性層中の二色性色素化合物を偏在させる方法、および、光学的に均一な光吸収異方性層を後加工する方法などが挙げられる。
光吸収異方性層の厚さを面内で制御する方法としては、リソグラフィを利用する方法、インプリントを利用する方法、および、凹凸構造を有する基材に光吸収異方性層を形成する方法などが挙げられる。
光吸収異方性層中の二色性色素化合物を偏在させる方法としては、溶剤浸漬により二色性色素を抽出する方法(ブリーチング)が挙げられる。
さらに、光学的に均一な光吸収異方性層を後加工する方法としては、レーザー加工などによって、平坦な光吸収異方性層の一部を裁断する方法が挙げられる。
The method for forming the second embodiment of the light-absorbing anisotropic layer is not particularly limited, and various known methods such as those described in WO2019/176918 can be used. Examples include a method of controlling the thickness of a light absorption anisotropic layer in-plane, a method of unevenly distributing a dichroic dye compound in a light absorption anisotropic layer, and an optically uniform light absorption anisotropy. Examples include a method of post-processing the layer.
Methods for controlling the thickness of the light-absorbing anisotropic layer in-plane include methods using lithography, methods using imprinting, and forming the light-absorbing anisotropic layer on a base material having an uneven structure. Examples include methods.
A method for unevenly distributing the dichroic dye compound in the light absorption anisotropic layer includes a method of extracting the dichroic dye by immersion in a solvent (bleaching).
Furthermore, as a method for post-processing the optically uniform light-absorbing anisotropic layer, a method of cutting a part of the flat light-absorbing anisotropic layer by laser processing or the like can be mentioned.

<積層体>
本発明の積層体は、上述した光吸収異方性層(第1実施態様および第2実施態様)と、二色性物質を水平に配向させた偏光子層を積層した積層体である。これにより、斜めの光の透過率を下げることが可能となり、視野角を狭めることによりプライバシーフィルムなどの用途で用いることができる。
二色性物質を水平に配向させた偏光子層は、特に限定されない。ポリビニルアルコールやその他の高分子樹脂に二色性物質を染着して延伸することで水平に配向させた偏光子でもよいし、本発明の光吸収異方性層のように液晶性化合物の配向を活用して二色性物質を水平に配向させた偏光子でもよいが、延伸を行わず、液晶の配向性を利用して二色性物質を配向させた偏光子が好ましい。
液晶の配向性を利用して二色性物質を配向させた偏光子は、厚みが0.1~5μm程度と非常に薄層化できること、特開2019-194685号公報に記載されているように折り曲げた時のクラックが入りにくいことや熱変形が小さいこと、および、特許6483486号公報に記載されるように50%を超えるような透過率の高い偏光板でも耐久性に優れることなど、多くの長所を有する。
これらの長所を生かして、高輝度や小型軽量が求められる用途、微細な光学系用途、曲面を有する部位への成形用途、および、フレキシブルな部位への用途が可能である。
<Laminated body>
The laminate of the present invention is a laminate in which the above-described light absorption anisotropic layer (first embodiment and second embodiment) and a polarizer layer in which a dichroic substance is horizontally oriented are stacked. This makes it possible to lower the transmittance of oblique light, and by narrowing the viewing angle, it can be used in applications such as privacy films.
The polarizer layer in which the dichroic substance is horizontally oriented is not particularly limited. It may be a polarizer that is horizontally oriented by dyeing polyvinyl alcohol or other polymer resin with a dichroic substance and stretching it, or it may be a polarizer that is oriented horizontally by dyeing polyvinyl alcohol or other polymeric resin with a dichroic substance and stretching it. A polarizer in which a dichroic substance is horizontally oriented by utilizing liquid crystal orientation may be used, but a polarizer in which a dichroic substance is oriented horizontally by utilizing the orientation of liquid crystal without stretching is preferable.
As described in JP 2019-194685A, a polarizer in which a dichroic substance is oriented using the orientation of liquid crystals can be made extremely thin, with a thickness of about 0.1 to 5 μm. It has many advantages, such as being resistant to cracks when bent, having little thermal deformation, and being highly durable even with polarizing plates that have a high transmittance of over 50%, as described in Japanese Patent No. 6,483,486. Has advantages.
By taking advantage of these advantages, it is possible to use it in applications that require high brightness, small size and light weight, applications in minute optical systems, applications in molding parts with curved surfaces, and applications in flexible parts.

[バリア層]
本発明の積層体は、光吸収異方性層とともに、バリア層を有していることが好ましい。
ここで、バリア層は、ガス遮断層(酸素遮断層)とも呼ばれ、大気中の酸素などのガス、水分、または、隣接する層に含まれる化合物などから本発明の光吸収異方性層を保護する機能を有する。
バリア層については、例えば、特開2014-159124号公報の[0014]~[0054]段落、特開2017-121721号公報の[0042]~[0075]段落、特開2017-115076号公報の[0045]~[0054]段落、特開2012-213938号公報の[0010]~[0061]段落、および、特開2005-169994号公報の[0021]~[0031]段落の記載を参照できる。
[Barrier layer]
The laminate of the present invention preferably has a barrier layer in addition to the light-absorbing anisotropic layer.
Here, the barrier layer is also called a gas barrier layer (oxygen barrier layer), and the light absorption anisotropic layer of the present invention is protected from gas such as oxygen in the atmosphere, moisture, or compounds contained in an adjacent layer. It has the function of protecting.
Regarding the barrier layer, for example, paragraphs [0014] to [0054] of JP 2014-159124, paragraphs [0042] to [0075] of JP 2017-121721, and [0075] of JP 2017-115076. Reference can be made to the descriptions in paragraphs [0045] to [0054], paragraphs [0010] to [0061] of JP-A No. 2012-213938, and paragraphs [0021] to [0031] of JP-A No. 2005-169994.

[屈折率調整層]
本発明の積層体は、光吸収異方性層の高屈折率に起因する内部反射が問題となる場合がある。その場合に、屈折率調整層が存在することが好ましい。屈折率調整層は、光吸収異方性層に接するように配置される層であり、波長550nmにおける面内平均屈折率が1.55~1.70である。いわゆるインデックスマッチングを行うための屈折率調整層であることが好ましい。
[Refractive index adjustment layer]
In the laminate of the present invention, internal reflection due to the high refractive index of the light-absorbing anisotropic layer may pose a problem. In that case, it is preferred that a refractive index adjusting layer is present. The refractive index adjusting layer is a layer disposed in contact with the light absorption anisotropic layer, and has an in-plane average refractive index of 1.55 to 1.70 at a wavelength of 550 nm. Preferably, it is a refractive index adjustment layer for performing so-called index matching.

<光学フィルム>
本発明の光学フィルムは、上述した光吸収異方性層、または、上述した積層体を有する。
光学フィルムは、光吸収異方性層および積層体以外の他の部材を有していてもよい。
<Optical film>
The optical film of the present invention has the above-mentioned light absorption anisotropic layer or the above-mentioned laminate.
The optical film may have members other than the light-absorbing anisotropic layer and the laminate.

[透明基材フィルム]
本発明の光学フィルムは、透明基材フィルムを有してもよい。
透明基材フィルムとしては、公知の透明樹脂フィルム、透明樹脂板、および、透明樹脂シートなどを用いることができ、特に限定はない。透明樹脂フィルムとしては、セルロースアシレートフィルム(例えば、セルローストリアセテートフィルム(屈折率1.48)、セルロースジアセテートフィルム、セルロースアセテートブチレートフィルム、セルロースアセテートプロピオネートフィルム)、ポリエチレンテレフタレートフィルム、ポリエーテルスルホンフィルム、シクロオレフィン系フィルム、ポリアクリル系樹脂フィルム、ポリウレタン系樹脂フィルム、ポリエステルフィルム、ポリカーボネートフィルム、ポリスルホンフィルム、ポリエーテルフィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、および、(メタ)アクリルニトリルフィルムなどが挙げられる。
[Transparent base film]
The optical film of the present invention may have a transparent base film.
As the transparent base film, known transparent resin films, transparent resin plates, transparent resin sheets, etc. can be used, and there are no particular limitations. Examples of the transparent resin film include cellulose acylate film (for example, cellulose triacetate film (refractive index 1.48), cellulose diacetate film, cellulose acetate butyrate film, cellulose acetate propionate film), polyethylene terephthalate film, polyether sulfone. films, cycloolefin films, polyacrylic resin films, polyurethane resin films, polyester films, polycarbonate films, polysulfone films, polyether films, polymethylpentene films, polyetherketone films, (meth)acrylic nitrile films, etc. can be mentioned.

その中でも、透明性が高く、光学的に複屈折が少なく、製造が容易であり、偏光板の保護フィルムとして一般に用いられているセルロースアシレートフィルムが好ましく、セルローストリアセテートフィルムがより好ましい。
透明基材フィルムの厚さは、通常20~100μmである。
本発明においては、透明基材フィルムがセルロースエステル系フィルムであり、かつ、その膜厚が20~70μmであるのが好ましい。
また、透明基材としてポリアクリル系フィルムまたはハードコート層を設けた高硬度フィルムを用いることで、他部材との貼合工程(たとえば直線偏光板など)や、画像表示装置へ組み込む工程で、本発明の光吸収異方性層が傷つくのを防止することができる。
また、透明基材として、ポリエチレンテレフタレートフィルムまたはシクロオレフィン系フィルムなどの低透湿性・低酸素透過性フィルムを用いることで、光吸収異方性層の高温高湿耐性や耐光性を向上させることができる。
Among these, cellulose acylate film is preferred, and cellulose triacetate film is more preferred, as it has high transparency, low optical birefringence, is easy to manufacture, and is commonly used as a protective film for polarizing plates.
The thickness of the transparent base film is usually 20 to 100 μm.
In the present invention, it is preferable that the transparent base film is a cellulose ester film and has a thickness of 20 to 70 μm.
In addition, by using a polyacrylic film or a high-hardness film with a hard coat layer as a transparent base material, it can be The light absorption anisotropic layer of the invention can be prevented from being damaged.
In addition, by using a low moisture permeability/low oxygen permeability film such as a polyethylene terephthalate film or a cycloolefin film as the transparent base material, it is possible to improve the high temperature and high humidity resistance and light resistance of the light absorption anisotropic layer. can.

[配向膜]
本発明の光学フィルムは、透明基材フィルムと光吸収異方性層との間に、配向膜を有していてもよい。
配向膜は、配向膜上において二色性物質を所望の配向状態とすることができるのであれば、どのような層でもよい。
例えば、多官能アクリレート化合物から形成される膜やポリビニルアルコールを用いてもよい。特に、ポリビニルアルコールが好ましい。
[Alignment film]
The optical film of the present invention may have an alignment film between the transparent base film and the light-absorbing anisotropic layer.
The alignment film may be any layer as long as it can bring the dichroic substance into a desired alignment state on the alignment film.
For example, a film formed from a polyfunctional acrylate compound or polyvinyl alcohol may be used. Particularly preferred is polyvinyl alcohol.

本発明の光吸収異方性層、積層体、および、光学フィルムを、視野角の角度依存性を制御するために、光学異方性フィルムや旋光子と組み合わせて用いることも可能である。 The light-absorbing anisotropic layer, laminate, and optical film of the present invention can also be used in combination with an optically anisotropic film or an optical rotator in order to control the angular dependence of the viewing angle.

<光学フィルムの製造方法>
本発明の光学フィルムの製造方法の一例としては、上記光吸収異方性層形成用組成物を上記透明基材フィルム上に塗布して塗布膜を形成する工程と、上記塗布膜に含まれる液晶性成分を配向させて上記光吸収異方性層を得る工程と、上記光吸収異方性層に隣接するように保護層を形成する工程と、をこの順に含む方法が挙げられる。
各工程は、公知の方法にしたがって実施でき、特に限定されるものではない。
なお、液晶性成分とは、上述した液晶性化合物だけでなく、上述した二色性物質が液晶性を有している場合は、液晶性を有する二色性物質も含む成分である。
<Method for manufacturing optical film>
An example of the method for producing an optical film of the present invention includes a step of coating the above-mentioned light-absorbing anisotropic layer-forming composition on the above-mentioned transparent base film to form a coating film, and a step of forming a coating film with a liquid crystal contained in the coating film. The method includes a step of orienting a polar component to obtain the light-absorbing anisotropic layer, and a step of forming a protective layer adjacent to the light-absorbing anisotropic layer, in this order.
Each step can be performed according to a known method and is not particularly limited.
Note that the liquid crystal component is a component that includes not only the above-mentioned liquid crystal compound but also a dichroic substance having liquid crystallinity when the above-mentioned dichroic substance has liquid crystallinity.

[粘着層]
本発明の積層体および光学フィルムは、粘着層を有していてもよい。
粘着層は通常の液晶表示装置に使用されるものと同様の透明で光学的に等方性の接着剤であることが好ましく、通常は感圧型接着剤が使用される。
[Adhesive layer]
The laminate and optical film of the present invention may have an adhesive layer.
The adhesive layer is preferably a transparent, optically isotropic adhesive similar to that used in ordinary liquid crystal display devices, and pressure-sensitive adhesives are usually used.

粘着層には、母材(粘着剤)、導電性粒子、および必要に応じて用いられる熱膨張性粒子の他に、架橋剤(例えば、イソシアネート系架橋剤、エポキシ系架橋剤など)、粘着付与剤(例えば、ロジン誘導体樹脂、ポリテルペン樹脂、石油樹脂、および、油溶性フェノール樹脂など)、可塑剤、充填剤、老化防止剤、界面活性剤、紫外線吸収剤、光安定剤、並びに、酸化防止剤などの適宜な添加剤を配合してもよい。 In addition to the base material (adhesive), conductive particles, and thermally expandable particles used as necessary, the adhesive layer contains a crosslinking agent (for example, an isocyanate crosslinking agent, an epoxy crosslinking agent, etc.), and a tackifying agent. agents (for example, rosin derivative resins, polyterpene resins, petroleum resins, oil-soluble phenolic resins, etc.), plasticizers, fillers, anti-aging agents, surfactants, ultraviolet absorbers, light stabilizers, and antioxidants Appropriate additives such as the following may be added.

粘着層の厚みは特に制限されず、20~500μmが好ましく、20~250μmがより好ましい。粘着層の厚みが20μm以上の場合、必要な接着力やリワーク適性が得られやすく、粘着層の厚みが500μm以下の場合、画像表示装置の周辺端部から粘着剤がはみ出したり、滲み出すことをより抑制できる。 The thickness of the adhesive layer is not particularly limited, and is preferably 20 to 500 μm, more preferably 20 to 250 μm. When the thickness of the adhesive layer is 20 μm or more, it is easy to obtain the necessary adhesive force and reworkability, and when the thickness of the adhesive layer is 500 μm or less, the adhesive does not protrude or ooze from the peripheral edge of the image display device. It can be controlled more.

粘着層の形成には、例えば、母材、導電性粒子、および必要に応じて、熱膨張性粒子、添加剤、および、溶媒などを含むコーティング液を被塗布物に直接塗布して剥離ライナーを介して圧着する方法、適当な剥離ライナー(剥離紙など)上にコーティング液を塗布して熱膨張性粘着層を形成し、これを被塗布物上に圧着転写(移着)する方法などが挙げられる。 To form the adhesive layer, for example, a release liner is formed by directly applying a coating liquid containing a base material, conductive particles, and if necessary, thermally expandable particles, additives, and a solvent to the object to be coated. A method of applying a coating liquid onto a suitable release liner (such as release paper) to form a thermally expandable adhesive layer, and then pressing and transferring (transferring) this onto the object to be coated. It will be done.

[接着層]
本発明の積層体および光学フィルムは、接着層を有していてもよい。
接着層に含まれる接着剤は、貼り合わせた後の乾燥や反応により接着性を発現する。
例えば、ポリビニルアルコール系接着剤(PVA系接着剤)は、乾燥により接着性が発現し、材料同士を接着することが可能となる。
反応により接着性を発現する硬化型接着剤の具体例としては、(メタ)アクリレート系接着剤のような活性エネルギー線硬化型接着剤やカチオン重合硬化型接着剤が挙げられる。なお、(メタ)アクリレートとは、アクリレートおよび/またはメタクリレートを意味する。(メタ)アクリレート系接着剤における硬化性成分としては、例えば、(メタ)アクリロイル基を有する化合物、および、ビニル基を有する化合物が挙げられる。また、カチオン重合硬化型接着剤としては、エポキシ基またはオキセタニル基を有する化合物も使用できる。エポキシ基を有する化合物は、分子内に少なくとも2個のエポキシ基を有するものであれば特に限定されず、一般に知られている各種の硬化性エポキシ化合物を用いることができる。好ましいエポキシ化合物として、分子内に少なくとも2個のエポキシ基と少なくとも1個の芳香環を有する化合物(芳香族系エポキシ化合物)や、分子内に少なくとも2個のエポキシ基を有し、そのうちの少なくとも1個は脂環式環を構成する隣り合う2個の炭素原子との間で形成されている化合物(脂環式エポキシ化合物)などが例として挙げられる。
中でも、加熱変形耐性の観点から、紫外線照射で硬化する紫外線硬化型接着剤が好ましく用いられる。
[Adhesive layer]
The laminate and optical film of the present invention may have an adhesive layer.
The adhesive contained in the adhesive layer develops adhesive properties through drying and reaction after bonding.
For example, a polyvinyl alcohol adhesive (PVA adhesive) develops adhesive properties when dried, making it possible to bond materials together.
Specific examples of curable adhesives that develop adhesive properties through reaction include active energy ray curable adhesives such as (meth)acrylate adhesives and cationic polymerization curable adhesives. Note that (meth)acrylate means acrylate and/or methacrylate. Examples of the curable component in the (meth)acrylate adhesive include a compound having a (meth)acryloyl group and a compound having a vinyl group. Further, as the cationic polymerization type adhesive, a compound having an epoxy group or an oxetanyl group can also be used. The compound having an epoxy group is not particularly limited as long as it has at least two epoxy groups in the molecule, and various commonly known curable epoxy compounds can be used. Preferred epoxy compounds include compounds having at least two epoxy groups and at least one aromatic ring in the molecule (aromatic epoxy compounds), and compounds having at least two epoxy groups in the molecule and at least one of them. Examples include compounds formed between two adjacent carbon atoms constituting an alicyclic ring (alicyclic epoxy compound).
Among these, from the viewpoint of heat deformation resistance, ultraviolet curable adhesives that are cured by ultraviolet irradiation are preferably used.

接着層および粘着層の各層には、サリチル酸エステル系化合物、ベンゾフェノール系化合物、ベンゾトリアゾール系化合物、シアノアクリレート系化合物、および、ニッケル錯塩系化合物などの紫外線吸収剤で処理する方式により紫外線吸収能をもたせたものであってもよい。 The adhesive layer and each adhesive layer are treated with UV absorbers such as salicylic acid ester compounds, benzophenol compounds, benzotriazole compounds, cyanoacrylate compounds, and nickel complex compounds to improve their ultraviolet absorption ability. It may also be a long one.

フィルムへの粘着層や接着層の付設は、適宜な方式で行いうる。例えば、トルエンや酢酸エチルなどの適宜な溶剤の単独物または混合物からなる溶媒に、ベースポリマーまたはその組成物を溶解または分散させた10~40重量%程度の粘着剤溶液を調製し、それを流延方式や塗工方式などの適宜な展開方式でフィルム上に直接付設する方式、または、セパレータ上に粘着層を形成してそれを移着する方式が挙げられる。 The adhesive layer or the adhesive layer can be attached to the film by any appropriate method. For example, prepare an adhesive solution of about 10 to 40% by weight by dissolving or dispersing the base polymer or its composition in a solvent consisting of a suitable solvent such as toluene or ethyl acetate alone or in a mixture, and pour it. Examples include a method in which the film is attached directly onto the film using an appropriate developing method such as a spreading method or a coating method, or a method in which an adhesive layer is formed on a separator and then transferred.

粘着層および接着層は、異なる組成または種類などのものの重畳層としてフィルムの片面または両面に設けることもできる。また、両面に設ける場合に、フィルムの表裏において異なる組成、種類、および、厚さなどの粘着層とすることもできる。 Adhesive and adhesive layers can also be provided as superimposed layers of different compositions or types on one or both sides of the film. Furthermore, when provided on both sides, the adhesive layers may have different compositions, types, thicknesses, etc. on the front and back sides of the film.

また、接着剤や粘着剤を付設する前に、接着性の向上などを目的として、接着剤や粘着剤が配置される被対象物の表面改質処理を行ってもよい。具体的な処理としては、コロナ処理、プラズマ処理、プライマー処理、および、ケン化処理などが挙げられる。 Furthermore, before attaching the adhesive or pressure-sensitive adhesive, a surface modification treatment may be performed on the object on which the adhesive or pressure-sensitive adhesive is placed, for the purpose of improving adhesiveness or the like. Specific treatments include corona treatment, plasma treatment, primer treatment, and saponification treatment.

<画像表示装置>
本発明の画像表示装置は、上述した本発明の光吸収異方性層、上述した本発明の積層体、または、上述した本発明の光学フィルムを有する。
本発明の光学フィルムは、二色性物質を用いた従来公知の視野角制御フィルムと比較して、正面透過率が高く、かつ、斜め透過率が低いため、狭視野角を実現するために有用性が高い。視野角制御フィルムとしては、3M社製ライトコントロールフィルムも良く知られているが、厚みが大きいことや周期的な構造に起因するモアレが生じやすいことなどの課題を有するため、本発明の光学フィルムに置き換えて使用することで、画像表示装置の画質向上、薄層化、小型化、および、意匠性向上に寄与することができる。
本発明の画像表示装置に用いられる表示素子は特に限定されず、例えば、液晶セル、有機エレクトロルミネッセンス(以下、「EL」と略す。)表示パネル、および、プラズマディスプレイパネルなどが挙げられる。
これらのうち、液晶セルまたは有機EL表示パネルであるのが好ましく、液晶セルであるのがより好ましい。すなわち、本発明の画像表示装置としては、表示素子として液晶セルを用いた液晶表示装置、表示素子として有機EL表示パネルを用いた有機EL表示装置であるのが好ましく、液晶表示装置であるのがより好ましい。
<Image display device>
The image display device of the present invention has the above-described light-absorbing anisotropic layer of the present invention, the above-described laminate of the present invention, or the above-described optical film of the present invention.
The optical film of the present invention has higher frontal transmittance and lower oblique transmittance than conventional viewing angle control films using dichroic substances, so it is useful for realizing narrow viewing angles. Highly sexual. As a viewing angle control film, the light control film made by 3M is well known, but it has problems such as being thick and easily causing moiré due to the periodic structure, so the optical film of the present invention By using it in place of , it is possible to contribute to improved image quality, thinner layers, smaller size, and improved design of the image display device.
The display element used in the image display device of the present invention is not particularly limited, and includes, for example, a liquid crystal cell, an organic electroluminescence (hereinafter abbreviated as "EL") display panel, a plasma display panel, and the like.
Among these, a liquid crystal cell or an organic EL display panel is preferable, and a liquid crystal cell is more preferable. That is, the image display device of the present invention is preferably a liquid crystal display device using a liquid crystal cell as a display element, an organic EL display device using an organic EL display panel as a display element, and a liquid crystal display device is preferable. More preferred.

[液晶表示装置]
本発明の画像表示装置の一例である液晶表示装置としては、上述した本発明の光吸収異方性層と、液晶セルと、を有する態様が好ましく挙げられる。より好適には、上述した本発明の積層体(ただし、λ/4板を含まない)と、液晶セルと、を有する液晶表示装置が挙げられる。
なお、本発明においては、液晶セルの両側に設けられる偏光素子のうち、フロント側の偏光素子として本発明の積層体を用いるのが好ましく、フロント側およびリア側の偏光素子として本発明の積層体を用いるのがより好ましい。
以下に、液晶表示装置を構成する液晶セルについて詳述する。
[Liquid crystal display device]
As a liquid crystal display device which is an example of the image display device of the present invention, an embodiment including the above-described light absorption anisotropic layer of the present invention and a liquid crystal cell is preferably mentioned. More preferably, there is a liquid crystal display device including the above-described laminate of the present invention (however, it does not include a λ/4 plate) and a liquid crystal cell.
In addition, in the present invention, it is preferable to use the laminate of the present invention as the front side polarizing element among the polarizing elements provided on both sides of the liquid crystal cell, and the laminate of the present invention is preferably used as the front side and rear side polarizing elements. It is more preferable to use
The liquid crystal cell constituting the liquid crystal display device will be described in detail below.

(液晶セル)
液晶表示装置に利用される液晶セルは、VA(Vertical Alignment)モード、OCB(Optically Compensated Bend)モード、IPS(In-Plane-Switching)モード、または、TN(Twisted Nematic)モードであることが好ましいが、これらに限定されるものではない。
TNモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に水平配向し、さらに60~120゜にねじれ配向している。TNモードの液晶セルは、カラーTFT(Thin Film Transistor)液晶表示装置として最も多く利用されており、多数の文献に記載がある。
VAモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に垂直に配向している。VAモードの液晶セルには、(1)棒状液晶性分子を電圧無印加時に実質的に垂直に配向させ、電圧印加時に実質的に水平に配向させる狭義のVAモードの液晶セル(特開平2-176625号公報記載)に加えて、(2)視野角拡大のため、VAモードをマルチドメイン化した(MVAモードの)液晶セル(SID97、Digest of tech.Papers(予稿集)28(1997)845記載)、(3)棒状液晶性分子を電圧無印加時に実質的に垂直配向させ、電圧印加時にねじれマルチドメイン配向させるモード(n-ASMモード)の液晶セル(日本液晶討論会の予稿集58~59(1998)記載)および(4)SURVIVALモードの液晶セル(LCDインターナショナル98で発表)が含まれる。また、PVA(Patterned Vertical Alignment)型、光配向型(Optical Alignment)、およびPSA(Polymer-Sustained Alignment)のいずれであってもよい。これらのモードの詳細については、特開2006-215326号公報、および、特表2008-538819号公報に詳細な記載がある。
IPSモードの液晶セルは、棒状液晶性分子が基板に対して実質的に平行に配向しており、基板面に平行な電界が印加することで液晶分子が平面的に応答する。IPSモードは電界無印加状態で黒表示となり、上下一対の偏光板の吸収軸は直交している。光学補償シートを用いて、斜め方向での黒表示時の漏れ光を低減させ、視野角を改良する方法が、特開平10-54982号公報、特開平11-202323号公報、特開平9-292522号公報、特開平11-133408号公報、特開平11-305217号公報、および、特開平10-307291号公報などに開示されている。
(liquid crystal cell)
The liquid crystal cell used in the liquid crystal display device is preferably in VA (Vertical Alignment) mode, OCB (Optically Compensated Bend) mode, IPS (In-Plane-Switching) mode, or TN (Twisted Nematic) mode. , but not limited to these.
In a TN mode liquid crystal cell, rod-like liquid crystal molecules are substantially horizontally aligned when no voltage is applied, and are further twisted at an angle of 60 to 120°. TN mode liquid crystal cells are most commonly used as color TFT (Thin Film Transistor) liquid crystal display devices, and are described in numerous documents.
In a VA mode liquid crystal cell, rod-like liquid crystal molecules are aligned substantially vertically when no voltage is applied. VA mode liquid crystal cells include (1) narrowly defined VA mode liquid crystal cells in which rod-shaped liquid crystal molecules are aligned substantially vertically when no voltage is applied, and substantially horizontally when voltage is applied (Japanese Patent Application Laid-Open No. 2002-2002); In addition to (2) a multi-domain (MVA mode) liquid crystal cell (SID97, described in Digest of tech. Papers (Proceedings) 28 (1997) 845) in which the VA mode is multi-domained to expand the viewing angle. ), (3) Liquid crystal cell in a mode (n-ASM mode) in which rod-shaped liquid crystal molecules are aligned substantially vertically when no voltage is applied, and twisted and multi-domain aligned when a voltage is applied (Proceedings of the Japan Liquid Crystal Conference 58-59) (1998)) and (4) SURVIVAL mode liquid crystal cell (presented at LCD International 98). Further, it may be any of PVA (Patterned Vertical Alignment) type, optical alignment type (Optical Alignment), and PSA (Polymer-Sustained Alignment). Details of these modes are described in Japanese Patent Application Laid-Open No. 2006-215326 and Japanese Patent Application Publication No. 2008-538819.
In an IPS mode liquid crystal cell, rod-shaped liquid crystal molecules are aligned substantially parallel to the substrate, and when an electric field parallel to the substrate surface is applied, the liquid crystal molecules respond in a planar manner. In the IPS mode, a black display occurs when no electric field is applied, and the absorption axes of the pair of upper and lower polarizing plates are perpendicular to each other. A method of using an optical compensatory sheet to reduce leakage light during black display in an oblique direction and improve the viewing angle is disclosed in JP-A-10-54982, JP-A-11-202323, and JP-A-9-292522. JP-A-11-133408, JP-A-11-305217, and JP-A-10-307291.

[有機EL表示装置]
本発明の画像表示装置の一例である有機EL表示装置としては、例えば、視認側から、上述した本発明の光吸収異方性層と、水平配向偏光子と、λ/4板と、有機EL表示パネルと、をこの順で有する態様が好適に挙げられる。
また、有機EL表示パネルは、電極間(陰極および陽極間)に有機発光層(有機エレクトロルミネッセンス層)を挟持してなる有機EL素子を用いて構成された表示パネルである。有機EL表示パネルの構成は特に制限されず、公知の構成が採用される。
[Organic EL display device]
An organic EL display device, which is an example of an image display device of the present invention, includes, from the viewing side, the above-described light-absorbing anisotropic layer of the present invention, a horizontally aligned polarizer, a λ/4 plate, and an organic EL display device. A preferable embodiment includes a display panel and a display panel in this order.
Furthermore, an organic EL display panel is a display panel constructed using an organic EL element in which an organic light emitting layer (organic electroluminescence layer) is sandwiched between electrodes (between a cathode and an anode). The structure of the organic EL display panel is not particularly limited, and a known structure may be employed.

[曲面画像表示装置]
本発明の曲面画像表示装置の一例としては、特開2017-181821号公報、特開2017-181819号公報、特開2017-102456号公報、および、特開2014-095901号公報などに開示されている。
曲面画像表示装置は、表示部分に曲面部を有する。本発明の光吸収異方性層は剛性が小さいため、上記表示部分の曲面部に沿うように、形状を変形することができる。つまり、本発明の光吸収異方性層はそれ自体に曲面部を有するように、変形させることができる。
なお、本発明の積層体および光学フィルムに関しても、剛性が低いため、上記表示部分の曲面部に沿うように、形状を変形することができる。つまり、本発明の積層体および光学フィルムはそれ自体に曲面部を有するように、変形させることができる。
[Curved image display device]
Examples of the curved image display device of the present invention are disclosed in JP-A No. 2017-181821, JP-A No. 2017-181819, JP-A No. 2017-102456, and JP-A No. 2014-095901. There is.
The curved image display device has a curved portion in the display portion. Since the light-absorbing anisotropic layer of the present invention has low rigidity, it can be deformed in shape along the curved surface of the display area. That is, the light absorption anisotropic layer of the present invention can be deformed so that it has a curved surface portion.
In addition, since the laminate and optical film of the present invention also have low rigidity, the shape can be deformed so as to follow the curved surface of the display portion. That is, the laminate and optical film of the present invention can be deformed so that they themselves have curved surfaces.

[視野角切り替え可能な画像表示装置(視野角を切り替えることが可能な画像表示装置)]
本発明の光吸収異方性層、積層体、および、光学フィルムを用いることで、光の射出角度を狭くすることが可能となる。視野角切り替え可能な画像表示装置は、様々な方式が知られているが、狭い射出角度の光を生成する目的で、本発明の光吸収異方性層、積層体、および、光学フィルムを用いることができる。
例えば、本発明の光吸収異方性層、積層体、および、光学フィルムを用いて狭い射出角度の光を生成した後、特開平9-105907号公報に記載のように、光の拡散有無を制御する素子を通過させ、狭視野角/広視野角を切り替えできる。
または、特開2017-098246号公報に記載のように、視認側から、逆プリズムシート、比較的大きな入射角度で上記逆プリズムシートへ光を入射する第一導光板(逆プリズムシートからの出射光は狭視野角)、斜めからの入射光を吸収し狭い射出角度の光を比較的小さな入射角度で上記逆プリズムシートへ光を入射する光フィルター素子と第二導光板(逆プリズムシートからの出射光は狭視野角)からなる狭視野角/広視野角切り替えバックライトシステムにおいて、上記光フィルター素子として、本発明の光吸収異方性層、積層体や光学フィルムを用いることができる。
また、本発明の光吸収異方性層と水平配向偏光子の間に、液晶セルなどの位相差変調素子を配置して、狭視野角/光視野角切り替えを行うこともできる。例えば、位相差変調セルとしてVAモードまたはECBモードの液晶セルを使用すると、液晶セル中の液晶が垂直配向している状態においては狭視野角になり、液晶セル中の液晶が傾斜配向すると広視野角モードとなり、セルの電圧印可有無で狭視野角/広視野角を制御できる。
また、位相差変調セルとして、IPSモードの液晶セルを使用も考えられる。電圧無印可時の液晶セルの配向方向と、水平配向偏光子の吸収軸方向は平行または垂直方向になるようにし、電圧印可によって液晶セルの配向方向を変化させることで、狭視野角から広視野角へと視野角を切り替えることができる。
また、後述の実施例7のように、本発明の請求項3、4で記載の領域A、領域Bを、発光画素毎にパターニングし、発光画素毎の点灯を制御することで、狭視野角/広視野角を切り替えすることが可能となる。
[Image display device that can switch the viewing angle (image display device that can switch the viewing angle)]
By using the light absorption anisotropic layer, laminate, and optical film of the present invention, it is possible to narrow the light emission angle. Various types of image display devices capable of switching viewing angles are known, but the light-absorbing anisotropic layer, laminate, and optical film of the present invention are used for the purpose of generating light with a narrow emission angle. be able to.
For example, after generating light with a narrow emission angle using the light-absorbing anisotropic layer, laminate, and optical film of the present invention, as described in JP-A-9-105907, the presence or absence of light diffusion is determined. You can switch between narrow viewing angle and wide viewing angle by passing through the control element.
Alternatively, as described in JP-A-2017-098246, from the viewing side, an inverted prism sheet, a first light guide plate that allows light to enter the inverted prism sheet at a relatively large incident angle (the light emitted from the inverted prism sheet is a narrow viewing angle), and an optical filter element that absorbs incident light from an oblique angle and enters the light with a narrow exit angle into the above-mentioned inverted prism sheet at a relatively small incident angle, and a second light guide plate (the second light guide plate In a narrow viewing angle/wide viewing angle switching backlight system in which the emitted light has a narrow viewing angle, the light absorption anisotropic layer, laminate, or optical film of the present invention can be used as the optical filter element.
Further, a phase difference modulation element such as a liquid crystal cell may be disposed between the light absorption anisotropic layer of the present invention and the horizontally aligned polarizer to perform narrow viewing angle/light viewing angle switching. For example, when a VA mode or ECB mode liquid crystal cell is used as a phase difference modulation cell, the viewing angle will be narrow if the liquid crystal in the liquid crystal cell is vertically aligned, and the viewing angle will be wide if the liquid crystal in the liquid crystal cell is tilted. It is in angle mode, and the narrow viewing angle/wide viewing angle can be controlled by whether or not voltage is applied to the cell.
Furthermore, it is also possible to use an IPS mode liquid crystal cell as the phase difference modulation cell. The alignment direction of the liquid crystal cell when no voltage is applied is parallel or perpendicular to the absorption axis direction of the horizontally aligned polarizer, and by changing the alignment direction of the liquid crystal cell by applying a voltage, the viewing angle can be changed from a narrow viewing angle to a wide viewing angle. You can switch the viewing angle from corner to corner.
Further, as in Example 7 described later, by patterning the regions A and B according to claims 3 and 4 of the present invention for each light emitting pixel and controlling lighting of each light emitting pixel, narrow viewing angles can be achieved. /It is possible to switch the wide viewing angle.

以下、実施例に基づいて本発明を具体的に説明する。以下の実施例に示す材料、試薬、物質量とその割合、および、操作などは本発明の趣旨から逸脱しない限り適宜変更することができる。従って、本発明は以下の実施例に限定され制限されるものではない。 Hereinafter, the present invention will be specifically explained based on Examples. The materials, reagents, amounts and proportions of substances shown in the following examples, operations, etc. can be changed as appropriate without departing from the spirit of the present invention. Therefore, the present invention is not limited to or limited to the following examples.

<実施例1>
色素が垂直方向に配向した光吸収異方性層を下記のように作製した。
<Example 1>
A light-absorbing anisotropic layer in which dyes were oriented in the vertical direction was prepared as follows.

[透明支持体1の作製]
セルロースアシレートフィルム1(厚み40μmのTAC基材;TG40 富士フイルム社)の表面をアルカリ液で鹸化し、その上に配向層形成用塗布液1をワイヤーバーで塗布した。塗膜が形成された支持体を60℃の温風で60秒間、さらに100℃の温風で120秒間乾燥し、配向層を形成し、配向層付きTACフィルムを得た。
配向層の膜厚は1μmであった。
[Preparation of transparent support 1]
The surface of cellulose acylate film 1 (TAC base material with a thickness of 40 μm; TG40, Fuji Film Co., Ltd.) was saponified with an alkaline solution, and coating liquid 1 for forming an alignment layer was applied thereon using a wire bar. The support on which the coating film was formed was dried with hot air at 60° C. for 60 seconds and then with hot air at 100° C. for 120 seconds to form an alignment layer, thereby obtaining a TAC film with an alignment layer.
The thickness of the alignment layer was 1 μm.

―――――――――――――――――――――――――――――――――
(配向層形成用塗布液1)
―――――――――――――――――――――――――――――――――
・下記の変性ポリビニルアルコール 3.80質量部
・開始剤Irg2959 0.20質量部
・水 70質量部
・メタノール 30質量部
――――――――――――――――――――――――――――――――
――――――――――――――――――――――――――――――――
(Coating liquid 1 for forming alignment layer)
――――――――――――――――――――――――――――――――
・3.80 parts by mass of the following modified polyvinyl alcohol ・0.20 parts by mass of initiator Irg2959 ・70 parts by mass of water ・30 parts by mass of methanol―――――――――――――――――― ――――――――――――

変性ポリビニルアルコール
Modified polyvinyl alcohol

[光吸収異方性層P1の形成]
得られた配向層PA1上に、下記の光吸収異方性層形成用組成物P1をワイヤーバーで連続的に塗布し、塗布層P1を形成した。
次いで、塗布層P1を140℃で30秒間加熱し、塗布層P1を室温(23℃)になるまで冷却した。
次いで、塗布層P1を80℃で60秒間加熱し、再び室温になるまで冷却した。
その後、塗布層P1に対して、LED灯(中心波長365nm)を用いて照度200mW/cmの照射条件で2秒間照射することにより、配向層1上に光吸収異方性層P1を作製した。
塗布層P1の膜厚は3μm、光吸収異方性層P1の波長550nmにおける配向度は、0.96であった。
これを光吸収異方性フィルム1とした。
[Formation of light absorption anisotropic layer P1]
On the obtained alignment layer PA1, the following composition P1 for forming a light-absorbing anisotropic layer was continuously applied using a wire bar to form a coating layer P1.
Next, the coating layer P1 was heated at 140° C. for 30 seconds, and the coating layer P1 was cooled to room temperature (23° C.).
Next, the coating layer P1 was heated at 80° C. for 60 seconds and cooled to room temperature again.
Thereafter, the coating layer P1 was irradiated with an LED lamp (center wavelength 365 nm) for 2 seconds at an illuminance of 200 mW/cm 2 to produce a light-absorbing anisotropic layer P1 on the alignment layer 1. .
The film thickness of the coating layer P1 was 3 μm, and the degree of orientation of the light absorption anisotropic layer P1 at a wavelength of 550 nm was 0.96.
This was designated as Light Absorption Anisotropic Film 1.

―――――――――――――――――――――――――――――――――
光吸収異方性層形成用組成物P1の組成
―――――――――――――――――――――――――――――――――
・下記二色性物質D-1 0.40質量部
・下記二色性物質D-2 0.15質量部
・下記二色性物質D-3 0.63質量部
・下記高分子液晶性化合物P-1 3.65質量部
・重合開始剤
IRGACUREOXE-02(BASF社製) 0.040質量部
・下記化合物E-1 0.060質量部
・下記化合物E-2 0.060質量部
・下記界面活性剤F-1 0.010質量部
・下記界面活性剤F-2 0.015質量部
・シクロペンタノン 47.00質量部
・テトラヒドロフラン 47.00質量部
・ベンジルアルコール 1.00質量部
―――――――――――――――――――――――――――――――――
――――――――――――――――――――――――――――――――
Composition of composition P1 for forming light-absorbing anisotropic layer--------------------------------------------
・The following dichroic substance D-1 0.40 parts by mass ・The following dichroic substance D-2 0.15 parts by mass ・The following dichroic substance D-3 0.63 parts by mass ・The following polymeric liquid crystal compound P -1 3.65 parts by mass ・Polymerization initiator IRGACUREOXE-02 (manufactured by BASF) 0.040 parts by mass ・The following compound E-1 0.060 parts by mass ・The following compound E-2 0.060 parts by mass ・The following surface activity Agent F-1 0.010 parts by mass・Surfactant F-2 below 0.015 parts by mass・Cyclopentanone 47.00 parts by mass・Tetrahydrofuran 47.00 parts by mass・Benzyl alcohol 1.00 parts by mass--- ――――――――――――――――――――――――――――

二色性物質D-1 Dichroic substance D-1

二色性物質D-2 Dichroic substance D-2

二色性物質D-3 Dichroic substance D-3

高分子液晶性化合物P-1 Polymer liquid crystal compound P-1

化合物E-1 Compound E-1

化合物E-2 Compound E-2

界面活性剤F-1 Surfactant F-1

界面活性剤F-2 Surfactant F-2

[積層体A1の作製]
国際公開第2015/166991号記載の片面保護膜付偏光板02と同様の方法で、偏光子の厚さが8μmで、偏光子の片面がむき出しの偏光板1を作製した。
偏光板1の偏光子がむき出し面と、上記で作製した光吸収異方性フィルム1の光吸収異方性層表面をコロナ処理し、下記のPVA接着剤1を用いて貼合し、積層体A1を作製した。
[Preparation of laminate A1]
Polarizing plate 1 with a polarizer thickness of 8 μm and one side of the polarizer exposed was produced in the same manner as polarizing plate 02 with a single-sided protective film described in International Publication No. 2015/166991.
The surface of the polarizing plate 1 on which the polarizer is exposed and the surface of the light-absorbing anisotropic layer of the light-absorbing anisotropic film 1 prepared above were corona-treated and bonded using the PVA adhesive 1 described below to form a laminate. A1 was produced.

(PVA接着剤1の調製)
アセトアセチル基を含有するポリビニルアルコール系樹脂(平均重合度:1200,ケン化度:98.5モル%,アセトアセチル化度:5モル%)100質量部に対し、メチロールメラミン20質量部を、30℃の温度条件下に、純水に溶解し、固形分濃度3.7質量%に調整した水溶液を調製した。
(Preparation of PVA adhesive 1)
For 100 parts by mass of polyvinyl alcohol resin containing acetoacetyl group (average degree of polymerization: 1200, degree of saponification: 98.5 mol%, degree of acetoacetylation: 5 mol%), 20 parts by mass of methylolmelamine was added to 30 parts by mass. An aqueous solution was prepared by dissolving it in pure water and adjusting the solid content concentration to 3.7% by mass under a temperature condition of .degree.

[画像表示装置A1の作製]
IPSモードの液晶表示装置であるiPad Air(登録商標) Wi-Fiモデル 16GB (APPLE社製)を分解し、液晶セルを取り出した。液晶セルから視認側偏光板を剥離し、視認側偏光板を剥離した面に、上記作製した積層体A1を、偏光板1側が液晶セル側になるようにして、下記の粘着剤シート1を用いて貼合した。このとき、偏光板1の吸収軸の方向は、製品に貼合されていた視認側偏光板の吸収軸と同じになるように貼合した。貼合後、組み立て直し、画像表示装置A1を作製した。
[Production of image display device A1]
An iPad Air (registered trademark) Wi-Fi model 16GB (manufactured by APPLE), which is an IPS mode liquid crystal display device, was disassembled and the liquid crystal cell was taken out. Peel off the viewing side polarizing plate from the liquid crystal cell, and apply the above-produced laminate A1 on the surface from which the viewing side polarizing plate was peeled off, with the polarizing plate 1 side facing the liquid crystal cell side, using the following adhesive sheet 1. It was pasted together. At this time, the polarizing plate 1 was laminated so that the direction of its absorption axis was the same as that of the viewing side polarizing plate that had been laminated to the product. After bonding, it was reassembled to produce an image display device A1.

(粘着剤シート1の作製)
以下の手順に従い、アクリレート系ポリマーを調製した。
冷却管、窒素導入管、温度計および撹拌装置を備えた反応容器に、アクリル酸ブチル95重量部、アクリル酸5重量部を溶液重合法により重合させて、平均分子量200万、分子量分布(Mw/Mn)3.0のアクリレート系ポリマーA1を得た。
(Preparation of adhesive sheet 1)
An acrylate polymer was prepared according to the following procedure.
In a reaction vessel equipped with a cooling tube, a nitrogen introduction tube, a thermometer, and a stirring device, 95 parts by weight of butyl acrylate and 5 parts by weight of acrylic acid were polymerized by solution polymerization to obtain an average molecular weight of 2 million and a molecular weight distribution (Mw/ An acrylate polymer A1 having a Mn) of 3.0 was obtained.

次に、得られたアクリレート系ポリマーA1(100質量部)に加えて、コロネートL(トリレンジイソシアネ-トのトリメチロールプロパン付加物の75質量%酢酸エチル溶液、1分子中のイソシアネート基数:3個、日本ポリウレタン工業株式会社製)(1.0質量部)、および、シランカップリング剤KBM-403(信越化学工業社製)(0.2質量部)を混合し、最後に全固形分濃度が10質量%となるように酢酸エチルを添加して、粘着剤形成用組成物を調製した。この組成物を、シリコーン系剥離剤で表面処理したセパレートフィルムにダイコーターを用いて塗布し90℃の環境下で1分間乾燥させ、アクリレート系粘着剤シート(粘着剤シート1)を得た。粘着剤シート1の膜厚は25μm、粘着剤シート1の貯蔵弾性率は0.1MPaであった。 Next, in addition to the obtained acrylate polymer A1 (100 parts by mass), Coronate L (75% by mass ethyl acetate solution of trimethylolpropane adduct of tolylene diisocyanate, number of isocyanate groups in one molecule: 3) (manufactured by Japan Polyurethane Industries, Ltd.) (1.0 parts by mass) and silane coupling agent KBM-403 (manufactured by Shin-Etsu Chemical Co., Ltd.) (0.2 parts by mass), and finally the total solid content A composition for forming an adhesive was prepared by adding ethyl acetate so that the amount was 10% by mass. This composition was applied using a die coater to a separate film surface-treated with a silicone release agent and dried for 1 minute in an environment of 90°C to obtain an acrylate adhesive sheet (adhesive sheet 1). The thickness of the adhesive sheet 1 was 25 μm, and the storage modulus of the adhesive sheet 1 was 0.1 MPa.

<実施例2>
光吸収異方性層形成用組成物P1を光吸収異方性層形成用組成物P2に変更した以外は、実施例1と同様にして、実施例2の画像表示装置A2を作製した。
<Example 2>
Image display device A2 of Example 2 was produced in the same manner as in Example 1, except that the composition for forming a light-absorbing anisotropic layer P1 was changed to the composition P2 for forming a light-absorbing anisotropic layer.

―――――――――――――――――――――――――――――――――
光吸収異方性層形成用組成物P2の組成
―――――――――――――――――――――――――――――――――
・下記二色性物質D-4 0.40質量部
・上記二色性物質D-2 0.15質量部
・上記二色性物質D-3 0.63質量部
・上記高分子液晶性化合物P-1 3.65質量部
・重合開始剤
IRGACUREOXE-02(BASF社製) 0.040質量部
・上記化合物E-1 0.060質量部
・上記化合物E-2 0.060質量部
・上記界面活性剤F-1 0.010質量部
・上記界面活性剤F-2 0.015質量部
・シクロペンタノン 47.00質量部
・テトラヒドロフラン 47.00質量部
・ベンジルアルコール 1.00質量部
―――――――――――――――――――――――――――――――――
――――――――――――――――――――――――――――――――
Composition of composition P2 for forming a light-absorbing anisotropic layer -----------------------------------------------------
・The following dichroic substance D-4 0.40 parts by mass ・The above dichroic substance D-2 0.15 parts by mass ・The above dichroic substance D-3 0.63 parts by mass ・The above polymeric liquid crystal compound P -1 3.65 parts by mass / Polymerization initiator IRGACUREOXE-02 (manufactured by BASF) 0.040 parts by mass / The above compound E-1 0.060 parts by mass / The above compound E-2 0.060 parts by mass / The above surface activity Agent F-1 0.010 parts by mass, surfactant F-2 0.015 parts by mass, cyclopentanone 47.00 parts by mass, tetrahydrofuran 47.00 parts by mass, benzyl alcohol 1.00 parts by mass --- ――――――――――――――――――――――――――――

二色性物質D-4 Dichroic substance D-4

<実施例3>
光吸収異方性層形成用組成物P1を光吸収異方性層形成用組成物P3に変更した以外は、実施例1と同様にして、実施例3の画像表示装置A3を作製した。
<Example 3>
Image display device A3 of Example 3 was produced in the same manner as in Example 1, except that the composition for forming a light-absorbing anisotropic layer P1 was changed to the composition P3 for forming a light-absorbing anisotropic layer.

―――――――――――――――――――――――――――――――――
光吸収異方性層形成用組成物P3の組成
―――――――――――――――――――――――――――――――――
・上記二色性物質D-1 0.40質量部
・上記二色性物質D-2 0.15質量部
・上記二色性物質D-3 0.63質量部
・下記高分子液晶性化合物P-2 3.20質量部
・下記低分子液晶性化合物M-1 0.45質量部
・重合開始剤
IRGACUREOXE-02(BASF社製) 0.040質量部
・下記化合物E-1 0.060質量部
・下記化合物E-2 0.060質量部
・下記界面活性剤F-1 0.010質量部
・下記界面活性剤F-2 0.015質量部
・シクロペンタノン 47.00質量部
・テトラヒドロフラン 47.00質量部
・ベンジルアルコール 1.00質量部
―――――――――――――――――――――――――――――――――
――――――――――――――――――――――――――――――――
Composition of composition P3 for forming light-absorbing anisotropic layer -----------------------------------------------------
- 0.40 parts by mass of the above dichroic substance D-1 - 0.15 parts by mass of the above dichroic substance D-2 - 0.63 parts by mass of the above dichroic substance D-3 - The following polymer liquid crystal compound P -2 3.20 parts by mass - Low molecular weight liquid crystal compound M-1 below 0.45 parts by mass - Polymerization initiator IRGACUREOXE-02 (manufactured by BASF) 0.040 parts by mass - Compound E-1 below 0.060 parts by mass - Compound E-2 below 0.060 parts by mass - Surfactant F-1 below 0.010 parts by mass - Surfactant F-2 below 0.015 parts by mass - Cyclopentanone 47.00 parts by mass - Tetrahydrofuran 47. 00 parts by mass・Benzyl alcohol 1.00 parts by mass――――――――――――――――――――――――――――――

高分子液晶性化合物P-2 Polymer liquid crystal compound P-2

低分子液晶性化合物M-1 Low molecular liquid crystal compound M-1

<実施例4>
光吸収異方性層形成用組成物P1を光吸収異方性層形成用組成物P4に変更した以外は、実施例1と同様にして、実施例4の画像表示装置A4を作製した。
<Example 4>
Image display device A4 of Example 4 was produced in the same manner as in Example 1, except that the composition for forming a light-absorbing anisotropic layer P1 was changed to the composition P4 for forming a light-absorbing anisotropic layer.

―――――――――――――――――――――――――――――――――
光吸収異方性層形成用組成物P4の組成
―――――――――――――――――――――――――――――――――
・下記二色性物質D-5 0.40質量部
・上記二色性物質D-2 0.15質量部
・上記二色性物質D-3 0.63質量部
・上記高分子液晶性化合物P-1 3.65質量部
・重合開始剤
IRGACUREOXE-02(BASF社製) 0.040質量部
・上記化合物E-1 0.060質量部
・上記化合物E-2 0.060質量部
・上記界面活性剤F-1 0.010質量部
・上記界面活性剤F-2 0.015質量部
・シクロペンタノン 47.00質量部
・テトラヒドロフラン 47.00質量部
・ベンジルアルコール 1.00質量部
―――――――――――――――――――――――――――――――――
――――――――――――――――――――――――――――――――
Composition of composition P4 for forming light-absorbing anisotropic layer -----------------------------------------------------
・The following dichroic substance D-5 0.40 parts by mass ・The above dichroic substance D-2 0.15 parts by mass ・The above dichroic substance D-3 0.63 parts by mass ・The above polymeric liquid crystal compound P -1 3.65 parts by mass / Polymerization initiator IRGACUREOXE-02 (manufactured by BASF) 0.040 parts by mass / The above compound E-1 0.060 parts by mass / The above compound E-2 0.060 parts by mass / The above surface activity Agent F-1 0.010 parts by mass, surfactant F-2 0.015 parts by mass, cyclopentanone 47.00 parts by mass, tetrahydrofuran 47.00 parts by mass, benzyl alcohol 1.00 parts by mass --- ――――――――――――――――――――――――――――

二色性物質D-5 Dichroic substance D-5

<実施例5>
[セルロースアシレートフィルム1の作製]
(コア層セルロースアシレートドープの作製)
下記の組成物をミキシングタンクに投入し、撹拌して、各成分を溶解し、コア層セルロースアシレートドープとして用いるセルロースアセテート溶液を調製した。
―――――――――――――――――――――――――――――――――
コア層セルロースアシレートドープ
―――――――――――――――――――――――――――――――――
・アセチル置換度2.88のセルロースアセテート 100質量部
・特開2015-227955号公報の実施例に
記載されたポリエステル化合物B 12質量部
・下記化合物F 2質量部
・メチレンクロライド(第1溶媒) 430質量部
・メタノール(第2溶剤) 64質量部
―――――――――――――――――――――――――――――――――
<Example 5>
[Production of cellulose acylate film 1]
(Preparation of core layer cellulose acylate dope)
The following composition was put into a mixing tank and stirred to dissolve each component to prepare a cellulose acetate solution to be used as a core layer cellulose acylate dope.
――――――――――――――――――――――――――――――――
Core layer cellulose acylate dope――――――――――――――――――――――――――――――――
・100 parts by mass of cellulose acetate with a degree of acetyl substitution of 2.88 ・12 parts by mass of polyester compound B described in the examples of JP-A-2015-227955 ・2 parts by mass of the following compound F ・Methylene chloride (first solvent) 430 Parts by mass/methanol (second solvent) 64 parts by mass――――――――――――――――――――――――――――――

化合物F Compound F

(外層セルロースアシレートドープの作製)
上記のコア層セルロースアシレートドープ90質量部に下記のマット剤溶液を10質量部加え、外層セルロースアシレートドープとして用いるセルロースアセテート溶液を調製した。
(Preparation of outer layer cellulose acylate dope)
10 parts by mass of the following matting agent solution was added to 90 parts by mass of the core layer cellulose acylate dope to prepare a cellulose acetate solution to be used as the outer layer cellulose acylate dope.

―――――――――――――――――――――――――――――――――
マット剤溶液
―――――――――――――――――――――――――――――――――
・平均粒子サイズ20nmのシリカ粒子
(AEROSIL R972、日本アエロジル(株)製) 2質量部
・メチレンクロライド(第1溶媒) 76質量部
・メタノール(第2溶剤) 11質量部
・上記のコア層セルロースアシレートドープ 1質量部
―――――――――――――――――――――――――――――――――
――――――――――――――――――――――――――――――――
Matting agent solution――――――――――――――――――――――――――――――
- 2 parts by mass of silica particles with an average particle size of 20 nm (AEROSIL R972, manufactured by Nippon Aerosil Co., Ltd.) - 76 parts by mass of methylene chloride (first solvent) - 11 parts by mass of methanol (second solvent) - The above core layer cellulose ash Rate dope 1 part by mass――――――――――――――――――――――――――――――――

(セルロースアシレートフィルム2の作製)
上記コア層セルロースアシレートドープと上記外層セルロースアシレートドープとを平均孔径34μmのろ紙および平均孔径10μmの焼結金属フィルターでろ過した後、上記コア層セルロースアシレートドープとその両側に外層セルロースアシレートドープとを3層同時に流延口から20℃のドラム上に流延した(バンド流延機)。
次いで、溶剤含有率略20質量%の状態でフィルムをドラム上から剥ぎ取り、フィルムの幅方向の両端をテンタークリップで固定し、横方向に延伸倍率1.1倍で延伸しつつ乾燥した。
その後、熱処理装置のロール間を搬送することにより、更に乾燥し、厚み20μmの光学フィルムを作製し、これをセルロースアシレートフィルム2とした。得られたセルロースアシレートフィルム2の面内レターデーションは0nmであった。
(Preparation of cellulose acylate film 2)
After filtering the core layer cellulose acylate dope and the outer layer cellulose acylate dope through a filter paper with an average pore size of 34 μm and a sintered metal filter with an average pore size of 10 μm, the core layer cellulose acylate dope and the outer layer cellulose acylate dope are placed on both sides. Three layers of the dope were simultaneously cast from a casting port onto a drum at 20°C (band casting machine).
Next, the film was peeled off from the drum with a solvent content of about 20% by mass, both ends of the film in the width direction were fixed with tenter clips, and the film was dried while being stretched in the transverse direction at a stretching ratio of 1.1 times.
Thereafter, the film was further dried by being conveyed between rolls of a heat treatment device to produce an optical film having a thickness of 20 μm, which was designated as cellulose acylate film 2. The in-plane retardation of the obtained cellulose acylate film 2 was 0 nm.

[透明支持体2の作製]
後述する光配向層形成用塗布液PA1を、ワイヤーバーで連続的に上記セルロースアシレートフィルム2上に塗布した。塗膜が形成された支持体を140℃の温風で120秒間乾燥し、続いて、塗膜に対して偏光紫外線照射(10mJ/cm、超高圧水銀ランプ使用)することで、光配向層PA1を形成し、光配向層付きTACフィルムを得た。光配向層PA1の膜厚は0.3μmであった。
[Preparation of transparent support 2]
Coating liquid PA1 for forming a photo-alignment layer, which will be described later, was continuously applied onto the cellulose acylate film 2 using a wire bar. The support on which the coating film was formed was dried with hot air at 140°C for 120 seconds, and then the coating film was irradiated with polarized ultraviolet light (10 mJ/cm 2 , using an ultra-high pressure mercury lamp) to form a photo-alignment layer. PA1 was formed to obtain a TAC film with a photo-alignment layer. The film thickness of the photo-alignment layer PA1 was 0.3 μm.

―――――――――――――――――――――――――――――――――
(光配向層形成用塗布液PA1)
―――――――――――――――――――――――――――――――――
下記記重合体PA-1 100.00質量部
下記酸発生剤PAG-1 5.00質量部
下記酸発生剤CPI-110TF 0.005質量部
イソプロピルアルコール 16.50質量部
酢酸ブチル 1072.00質量部
メチルエチルケトン 268.00質量部
―――――――――――――――――――――――――――――――――
――――――――――――――――――――――――――――――――
(Coating liquid PA1 for photo-alignment layer formation)
――――――――――――――――――――――――――――――――
The following polymer PA-1 100.00 parts by mass The following acid generator PAG-1 5.00 parts by mass The following acid generator CPI-110TF 0.005 parts by mass Isopropyl alcohol 16.50 parts by mass Butyl acetate 1072.00 parts by mass Methyl ethyl ketone 268.00 parts by mass――――――――――――――――――――――――――――――

重合体PA-1 Polymer PA-1

酸発生剤PAG-1 Acid generator PAG-1

酸発生剤CPI-110F Acid generator CPI-110F

[偏光子層1の形成]
得られた光配向層PA1上に、下記の偏光子層形成用組成物1をワイヤーバーで連続的に塗布し、塗布層1を形成した。
次いで、塗布層1を140℃で30秒間加熱し、塗布層1を室温(23℃)になるまで冷却した。
次いで、得られた塗布層1を80℃で60秒間加熱し、再び室温になるまで冷却した。
その後、LED灯(中心波長365nm)を用いて照度200mW/cmの照射条件で2秒間照射することにより、光配向層PA1上に偏光子層1を作製した。偏光子層1の膜厚は1.6μmであった。
[Formation of polarizer layer 1]
On the obtained photo-alignment layer PA1, the following composition 1 for forming a polarizer layer was continuously applied using a wire bar to form a coating layer 1.
Next, the coating layer 1 was heated at 140° C. for 30 seconds, and the coating layer 1 was cooled to room temperature (23° C.).
Next, the obtained coating layer 1 was heated at 80° C. for 60 seconds and cooled again to room temperature.
Thereafter, the polarizer layer 1 was produced on the photo-alignment layer PA1 by irradiating for 2 seconds using an LED lamp (center wavelength: 365 nm) at an illuminance of 200 mW/cm 2 . The thickness of the polarizer layer 1 was 1.6 μm.

―――――――――――――――――――――――――――――――――
偏光子層形成用組成物1の組成
―――――――――――――――――――――――――――――――――
・上記二色性物質D-1 0.25質量部
・上記二色性物質D-2 0.36質量部
・上記二色性物質D-3 0.59質量部
・上記高分子液晶性化合物P-2 2.21質量部
・上記低分子液晶性化合物M-1 1.36質量部
・重合開始剤
IRGACUREOXE-02(BASF社製) 0.200質量部
・下記界面活性剤F-3 0.026質量部
・シクロペンタノン 46.00質量部
・テトラヒドロフラン 46.00質量部
・ベンジルアルコール 3.00質量部
―――――――――――――――――――――――――――――――――
――――――――――――――――――――――――――――――――
Composition of polarizer layer forming composition 1――――――――――――――――――――――――――――
- 0.25 parts by mass of the dichroic substance D-1 - 0.36 parts by mass of the dichroic substance D-2 - 0.59 parts by mass of the dichroic substance D-3 - The polymeric liquid crystal compound P -2 2.21 parts by mass ・Low molecular weight liquid crystal compound M-1 1.36 parts by mass ・Polymerization initiator IRGACUREOXE-02 (manufactured by BASF) 0.200 parts by mass ・Surfactant F-3 below 0.026 Parts by mass・Cyclopentanone 46.00 parts by mass・Tetrahydrofuran 46.00 parts by mass・Benzyl alcohol 3.00 parts by mass―――――――――――――――――――――― ――――――――――

界面活性剤F-3 Surfactant F-3

[配向層1の形成]
偏光子層1の表面をコロナ処理した後、上記配向層形成用塗布液1をワイヤーバーで連続的に塗布した。その後、100℃の温風で2分間乾燥することにより、偏光子層1上に厚み1.0μmのポリビニルアルコール(PVA)配向層1が形成された。
[Formation of alignment layer 1]
After the surface of the polarizer layer 1 was subjected to corona treatment, the above-mentioned coating liquid 1 for forming an alignment layer was continuously applied using a wire bar. Thereafter, a polyvinyl alcohol (PVA) alignment layer 1 having a thickness of 1.0 μm was formed on the polarizer layer 1 by drying with hot air at 100° C. for 2 minutes.

[光吸収異方性層P1の形成]
得られた配向層1の上に、上記光吸収異方性層形成用組成物P1をワイヤーバーで連続的に塗布し、塗布層P1を形成した。
次いで、塗布層P1を140℃で30秒間加熱し、塗布層P1を室温(23℃)になるまで冷却した。
次いで、得られた塗布層P1を80℃で60秒間加熱し、再び室温になるまで冷却した。
その後、LED灯(中心波長365nm)を用いて照度200mW/cmの照射条件で2秒間照射することにより、配向層1上に光吸収異方性層P1を作製し、積層体A5とした。塗布層P1の膜厚は3μm、光吸収異方性層P1の波長550nmにおける配向度は0.96であった。
[Formation of light absorption anisotropic layer P1]
On the obtained alignment layer 1, the composition P1 for forming a light-absorbing anisotropic layer was continuously applied using a wire bar to form a coating layer P1.
Next, the coating layer P1 was heated at 140° C. for 30 seconds, and the coating layer P1 was cooled to room temperature (23° C.).
Next, the obtained coating layer P1 was heated at 80° C. for 60 seconds and cooled again to room temperature.
Thereafter, a light-absorbing anisotropic layer P1 was produced on the alignment layer 1 by irradiating with an LED lamp (center wavelength 365 nm) for 2 seconds at an illuminance of 200 mW/cm 2 to form a laminate A5. The thickness of the coating layer P1 was 3 μm, and the degree of orientation of the light absorption anisotropic layer P1 at a wavelength of 550 nm was 0.96.

[画像表示装置A5の作製]
IPSモードの液晶表示装置であるiPad Air(登録商標) Wi-Fiモデル 16GB (APPLE社製)を分解し、液晶セルを取り出した。液晶セルから視認側偏光板を剥離し、視認側偏光板を剥離した面に、上記作製した積層体A5を、セルロースアシレートフィルム2側が液晶セル側になるようにして、上記粘着剤シート1を用いて貼合した。このとき、偏光子層1の吸収軸の方向は、製品に貼合されていた視認側偏光板の吸収軸と同じになるように貼合した。貼合後、組み立て直し、画像表示装置A5を作製した。
[Production of image display device A5]
An iPad Air (registered trademark) Wi-Fi model 16GB (manufactured by APPLE), which is an IPS mode liquid crystal display device, was disassembled and the liquid crystal cell was taken out. Peel off the viewing-side polarizing plate from the liquid crystal cell, and place the above-prepared laminate A5 on the surface from which the viewing-side polarizing plate was peeled off, with the cellulose acylate film 2 side facing the liquid crystal cell side, and apply the adhesive sheet 1. It was laminated using At this time, the polarizer layer 1 was bonded so that the direction of the absorption axis was the same as that of the viewing side polarizing plate that was bonded to the product. After bonding, it was reassembled to produce an image display device A5.

<比較例1>
光吸収異方性層形成用組成物P1を光吸収異方性層形成用組成物P5に変更した以外は、実施例1と同様にして画像表示装置B1を作製した。
<Comparative example 1>
An image display device B1 was produced in the same manner as in Example 1, except that the composition P1 for forming a light-absorbing anisotropic layer was changed to the composition P5 for forming a light-absorbing anisotropic layer.

―――――――――――――――――――――――――――――――――
光吸収異方性層形成用組成物P5の組成
―――――――――――――――――――――――――――――――――
・上記二色性物質D-5 8.71質量部
・下記二色性物質D-6 10.59質量部
・下記高分子液晶性化合物P-3 44.13質量部
・重合開始剤
IRGACUREOXE-02(BASF社製) 0.040質量部
・上記化合物E-1 0.800質量部
・上記化合物E-2 0.800質量部
・上記界面活性剤F-2 0.960質量部
・シクロペンタノン 793.90質量部
・テトラヒドロフラン 140.10質量部
―――――――――――――――――――――――――――――――――
――――――――――――――――――――――――――――――――
Composition of composition P5 for forming light-absorbing anisotropic layer -----------------------------------------------------
- 8.71 parts by mass of the above dichroic substance D-5 - 10.59 parts by mass of the following dichroic substance D-6 - 44.13 parts by mass of the following polymer liquid crystal compound P-3 - Polymerization initiator IRGACUREOXE-02 (manufactured by BASF) 0.040 parts by mass・Compound E-1 0.800 parts by mass・Compound E-2 0.800 parts by mass・Surfactant F-2 0.960 parts by mass・Cyclopentanone 793 .90 parts by mass ・Tetrahydrofuran 140.10 parts by mass――――――――――――――――――――――――――――

二色性物質D-6 Dichroic substance D-6

高分子液晶性化合物P-3 Polymer liquid crystal compound P-3

<比較例2>
光吸収異方性層の膜厚を3μmから4.5μmになるように変更した以外は、比較例1と同様にして画像表示装置B2を作製した。
<Comparative example 2>
Image display device B2 was produced in the same manner as Comparative Example 1 except that the thickness of the light-absorbing anisotropic layer was changed from 3 μm to 4.5 μm.

<性能の評価>
(1)配向度の評価
得られた異方性光吸収層の波長550nmにおける配向度は以下の方法によって算出した。
AxoScan OPMF-1(オプトサイエンス社製)を用いて、測定の際に、光吸収異方性層の法線方向に対する角度である極角を0~90°まで5°毎に変更しつつ、各極角における全方位角度での波長550nmでの透過率を測定した。次に、表面反射の影響を除去した後、最も透過率の高い方位角および極角での透過率をTm(0)、最も透過率の高い方位角方向において、最も透過率の高い極角からさらに極角を40°傾けた角度での透過率をTm(40)とする。得られたTm(0)およびTm(40)から下記式により吸光度を算出し、A(0)およびA(40)を算出した。
A=-log(Tm)
ここで、Tmは透過率、Aは吸光度を表す。
算出したA(0)およびA(40)より、下記式で定義された波長550nmにおける配向度Sを算出した。
S=(4.6×A(40)-A(0))/(4.6×A(40)+2×A(0))
上記波長を550nmから420nmに変更することにより、波長420nmにおける配向度Sを算出した。
<Performance evaluation>
(1) Evaluation of degree of orientation The degree of orientation of the obtained anisotropic light absorption layer at a wavelength of 550 nm was calculated by the following method.
Using AxoScan OPMF-1 (manufactured by Optoscience), during measurement, the polar angle, which is the angle to the normal direction of the light absorption anisotropic layer, was changed every 5 degrees from 0 to 90 degrees. Transmittance at a wavelength of 550 nm at all azimuth angles at polar angles was measured. Next, after removing the influence of surface reflection, the transmittance at the azimuthal and polar angles with the highest transmittance is Tm(0), and in the azimuthal direction with the highest transmittance, from the polar angle with the highest transmittance, Furthermore, the transmittance at an angle where the polar angle is tilted by 40 degrees is Tm (40). The absorbance was calculated from the obtained Tm(0) and Tm(40) using the following formula, and A(0) and A(40) were calculated.
A=-log(Tm)
Here, Tm represents transmittance and A represents absorbance.
From the calculated A(0) and A(40), the degree of orientation S at a wavelength of 550 nm defined by the following formula was calculated.
S=(4.6×A(40)-A(0))/(4.6×A(40)+2×A(0))
By changing the above wavelength from 550 nm to 420 nm, the degree of orientation S at a wavelength of 420 nm was calculated.

(2)透過率と色味の評価
上記作製した画像表示装置A1を、測定機(EZ-Contrast XL88、ELDIM社製)を用いて、白表示画面の極角0°(正面方向)の輝度Y(0)A1、極角30°(斜め方向)の輝度Y(30)A1、極角0°の色味a(0)A1、色味b(0)A1、極角30°の色味a(30)A1、色味b(30)A1を測定した。
また、画像表示装置A1の作製において、光吸収異方性層がない偏光板を液晶セルに貼合以外は、実施例1と同様にして、画像表示装置Cを作製し、上記記載と同様にして、白表示画面の極角0°(正面方向)の輝度Y(0)C、極角30°(斜め方向)の輝度Y(30)Cを測定した。光吸収異方性層を含まない画像表示装置Cの輝度と比較することで、正面透過率T0(T(0))および斜め透過率T30(T(30))を求めた。
具体的には、下記式を用いて算出し、下記の基準で透過率を評価した。
T(0)={Y(0)A1/Y(0)C}×100
T(30)={Y(30)A1/Y(30)C}×100
A:極角0°(正面)透過率が80%以上、
且つ、極角30°(斜め)透過率が10%以下。
B:極角0°(正面)透過率が80%より低く、
且つ、極角30°(斜め)透過率が10%以下。
または、極角0°(正面)透過率が80%以上、
且つ、極角30°(斜め)透過率が10%より高い。
または、極角0°(正面)透過率が80%より低く、
且つ、極角30°(斜め)透過率が10%より高い。
(2) Evaluation of transmittance and color tone The image display device A1 produced above was measured using a measuring device (EZ-Contrast XL88, manufactured by ELDIM) to measure the brightness Y of the white display screen at a polar angle of 0° (front direction). (0) A1, brightness Y at a polar angle of 30° (oblique direction) (30) A1, color at a polar angle of 0° a * (0) A1, color b * (0) A1, color at a polar angle of 30° Taste a * (30)A1 and color b * (30)A1 were measured.
In addition, in the production of image display device A1, image display device C was produced in the same manner as in Example 1, except that a polarizing plate without a light-absorbing anisotropic layer was bonded to the liquid crystal cell, and image display device C was produced in the same manner as described above. The brightness Y(0)C at a polar angle of 0° (front direction) and the brightness Y(30)C at a polar angle of 30° (oblique direction) of the white display screen were measured. The front transmittance T0 (T(0)) and the oblique transmittance T30 (T(30)) were determined by comparing with the brightness of the image display device C that does not include the light-absorbing anisotropic layer.
Specifically, it was calculated using the following formula, and the transmittance was evaluated based on the following criteria.
T(0)={Y(0)A1/Y(0)C}×100
T(30)={Y(30)A1/Y(30)C}×100
A: Polar angle 0° (front) transmittance is 80% or more,
In addition, the transmittance at a polar angle of 30° (oblique) is 10% or less.
B: Polar angle 0° (front) transmittance is lower than 80%,
In addition, the transmittance at a polar angle of 30° (oblique) is 10% or less.
Or, polar angle 0° (front) transmittance is 80% or more,
In addition, the transmittance at a polar angle of 30° (oblique) is higher than 10%.
Or, the polar angle 0° (front) transmittance is lower than 80%,
In addition, the transmittance at a polar angle of 30° (oblique) is higher than 10%.

また、色味評価については、下記式を用いて算出し、下記の基準で色味を評価した。
|a|= √(a(0)A1+b(0)A1
+√(a(30)A1+b(30)A1
AA:|a|が12未満
A:|a|が12以上15未満
B:|a|が15以上
Further, the color evaluation was calculated using the following formula, and the color was evaluated based on the following criteria.
|a * b * |= √(a * (0)A1 2 +b * (0)A1 2 )
+√(a * (30)A1 2 +b * (30)A1 2 )
AA: |a * b * | is less than 12 A: |a * b * | is 12 or more and less than 15 B: |a * b * | is 15 or more

画像表示装置A1の代わりに、画像表示装置A2~A5、B1~B2を使用して、上記と同様の手順に従って、透過率と色味の評価を実施した。 In place of the image display device A1, image display devices A2 to A5 and B1 to B2 were used to evaluate transmittance and color tone according to the same procedure as above.

なお、実施例1~5で得られた光吸収異方性層においては、二色性物質が膜面に対し垂直に配向していた。垂直に配向の定義は、上述した通りである。 Note that in the light absorption anisotropic layers obtained in Examples 1 to 5, the dichroic substance was oriented perpendicularly to the film surface. The definition of vertically oriented is as described above.

表1中、「550nm配向度」は、光吸収異方性層の波長550nmにおける配向度を表し、「420nm配向度」は、光吸収異方性層の波長420nmにおける配向度を表す。
「透過率」欄の「正面」欄は、正面透過率を表し、「30°」欄は、極角30°(斜め)透過率を表す。
In Table 1, "550 nm orientation degree" represents the orientation degree of the light absorption anisotropic layer at a wavelength of 550 nm, and "420 nm orientation degree" represents the orientation degree of the light absorption anisotropic layer at a wavelength of 420 nm.
The "Front" column in the "Transmittance" column represents the front transmittance, and the "30°" column represents the polar angle 30° (oblique) transmittance.

[曲面加工適正確認]
曲面を有するスマートフォン(Galaxy Note9 サムスン製)の表示画面に、実施例1で作製した積層体A1を、偏光板1側を貼合側にして、市販の粘着剤SK2057(綜研化学製)を用いて貼合した。積層体A1は膜厚が100μm以下で剛性が低いため、表示画面の曲面部分においても、気泡などが入らず、きれいに貼合できた。
続いて、本発明の光学フィルムと同様の性能を持つ、市場に多く普及しているルーバータイプの光学フィルム(3MTM セキュリティ/プライバシーフィルターPF12 H2シリーズ)を上記スマートフォンの表示画面上に、市販の粘着剤SK2057(綜研化学製)を用いて貼合した。ルーバータイプの光学フィルムは、膜厚が500μmで剛性が高いため、表示画面の曲面部分において、気泡が入ってしまい、きれいに貼合することができなかった。
[Confirmation of suitability for curved surface machining]
The laminate A1 produced in Example 1 was placed on the display screen of a curved smartphone (Galaxy Note 9 manufactured by Samsung) using a commercially available adhesive SK2057 (manufactured by Soken Kagaku) with the polarizing plate 1 side facing the pasting side. Pasted. Since the laminate A1 had a film thickness of 100 μm or less and low rigidity, it could be bonded neatly without air bubbles even on the curved surface of the display screen.
Next, a louver-type optical film (3M TM security/privacy filter PF12 H2 series), which has the same performance as the optical film of the present invention and is widely used in the market, was placed on the display screen of the smartphone using a commercially available adhesive. It was laminated using agent SK2057 (manufactured by Soken Kagaku). Since the louver type optical film has a film thickness of 500 μm and high rigidity, air bubbles were formed in the curved portion of the display screen, making it impossible to bond them neatly.

<実施例6>
[光吸収異方性層の形成]
領域Aと領域Bのパターンを有する光吸収異方性層を下記のように作製した。
実施例1の配向層PA1上に、上記の光吸収異方性層形成用組成物P1をワイヤーバーで連続的に塗布し、塗布層P1を形成した。
次いで、塗布層P1を140℃で30秒間加熱し、塗布層P1を室温(23℃)になるまで冷却した。
次いで、得られた塗布層P1を80℃で60秒間加熱し、再び室温になるまで冷却した。
その後、高圧水銀灯が出射する光を、マスクを介して、照度28mW/cmの照射条件で60秒間照射することにより、配向膜PA上に、面内に液晶性化合物の硬化領域と未硬化領域とを有する光吸収異方性層を作製した。なお、マスクは、領域Aとして縦10mm×横50mmの長方形の光透過部を有する、遮光部(領域B)と光透過部とを有するマスクパターンとした。
作製した面内に液晶性化合物の硬化領域(領域A)と未硬化領域(領域B)とを有する光吸収異方性層を有するフィルムを、エタノール中に3分間浸漬して、重合していない液晶性化合物を洗浄除去し、面内に偏光度の異なる領域Aおよび領域Bを有するパターン光吸収異方性層を有する光吸収異方性フィルム6を形成した。
領域Aにおいては、二色性物質が膜面に対し垂直に配向していた。垂直に配向の定義は、上述した通りである。
また、領域Aにおける波長550nmにおける配向度は0.96であり、波長420nmにおける配向度は0.94であった。
さらに、領域Aは、極角30°透過率が10%以下であり、正面透過率が80%以上であった。領域Bは、極角30°透過率も正面透過率も80%以上であった。
<Example 6>
[Formation of light absorption anisotropic layer]
A light absorption anisotropic layer having a pattern of regions A and B was produced as follows.
On the alignment layer PA1 of Example 1, the above-mentioned composition P1 for forming a light-absorbing anisotropic layer was continuously applied using a wire bar to form a coating layer P1.
Next, the coating layer P1 was heated at 140° C. for 30 seconds, and the coating layer P1 was cooled to room temperature (23° C.).
Next, the obtained coating layer P1 was heated at 80° C. for 60 seconds and cooled again to room temperature.
Thereafter, by irradiating light emitted from a high-pressure mercury lamp through a mask for 60 seconds at an illuminance of 28 mW/cm 2 , a cured region and an uncured region of the liquid crystal compound are formed on the alignment film PA. A light-absorbing anisotropic layer having the following was fabricated. Note that the mask had a mask pattern having a rectangular light transmitting part measuring 10 mm in length x 50 mm in width as region A, a light blocking part (region B), and a light transmitting part.
The produced film having a light-absorbing anisotropic layer having a cured region (area A) and an uncured region (area B) of a liquid crystalline compound in the plane was immersed in ethanol for 3 minutes to confirm that no polymerization had occurred. The liquid crystalline compound was washed and removed to form a light-absorbing anisotropic film 6 having a patterned light-absorbing anisotropic layer having regions A and B with different degrees of polarization in the plane.
In region A, the dichroic substance was oriented perpendicularly to the film surface. The definition of vertically oriented is as described above.
Further, the degree of orientation at a wavelength of 550 nm in region A was 0.96, and the degree of orientation at a wavelength of 420 nm was 0.94.
Further, in region A, the polar angle 30° transmittance was 10% or less, and the front transmittance was 80% or more. In region B, both the polar angle 30° transmittance and the front transmittance were 80% or more.

[積層体A6の作製]
国際公開第2015/166991号記載の片面保護膜付偏光板02と同様の方法で、偏光子の厚さが8μmで、偏光子の片面がむき出しの偏光板1を作製した。
上記偏光板1の偏光子がむき出し面と、作製した光吸収異方性フィルム6の光吸収異方性層表面を上記粘着剤シート1を用いて貼合し、積層体A6を作製した。
[Preparation of laminate A6]
Polarizing plate 1 with a polarizer thickness of 8 μm and one side of the polarizer exposed was produced in the same manner as polarizing plate 02 with a single-sided protective film described in International Publication No. 2015/166991.
The polarizer-exposed surface of the polarizing plate 1 and the surface of the light-absorbing anisotropic layer of the produced light-absorbing anisotropic film 6 were bonded together using the pressure-sensitive adhesive sheet 1 to produce a laminate A6.

[画像表示装置A6の作製]
上記画像表示装置A1と同様にして、積層体A1を積層体A6に変更して、画像表示装置A6を作製した。領域Aの部分のみが狭視野角であり、正面からのみはっきりと視認できた。
[Production of image display device A6]
An image display device A6 was produced in the same manner as the image display device A1 described above by changing the laminate A1 to a laminate A6. Only area A had a narrow viewing angle and was clearly visible only from the front.

<実施例7>
[光吸収異方性層の形成]
領域Aと領域Bのパターンを有する光吸収異方性層を下記のように作製した。
実施例1の配向層PA1上に、上記の光吸収異方性層形成用組成物P1をワイヤーバーで連続的に塗布し、塗布層P1を形成した。
次いで、塗布層P1を140℃で30秒間加熱し、塗布層P1を室温(23℃)になるまで冷却した。
次いで、得られた塗布層P1を80℃で60秒間加熱し、再び室温になるまで冷却した。
その後、高圧水銀灯が出射する光を、マスクを介して、照度28mW/cmの照射条件で60秒間照射することにより、配向膜上に、面内に液晶性化合物の硬化領域と未硬化領域とを有する光吸収異方性層を作製した。なお、マスクは、領域Aとして縦85μm×横50mmの長方形の光透過部を有し、領域Bとして縦85μm×横50mmの長方形の遮光部を有し、領域Aと領域Bが交互に配置され、縦方向50mmの長さを有するマスクパターンを使用した。
作製した面内に液晶性化合物の硬化領域(領域A)と未硬化領域(領域B)とを有する光吸収異方性層を有するフィルムを、エタノール中に3分間浸漬して、重合していない液晶性化合物を洗浄除去し、面内に偏光度の異なる領域Aおよび領域Bを有する光吸収異方性層を有する光吸収異方性フィルム7を形成した。
領域Aにおいては、二色性物質が膜面に対し垂直に配向していた。垂直に配向の定義は、上述した通りである。
また、領域Aにおける波長550nmにおける配向度は0.96であり、波長420nmにおける配向度は0.94であった。
さらに、領域Aは、極角30°透過率が10%以下であり、正面透過率が80%以上であった。領域Bは、極角30°透過率も正面透過率も80%以上であった。
<Example 7>
[Formation of light absorption anisotropic layer]
A light absorption anisotropic layer having a pattern of regions A and B was produced as follows.
On the alignment layer PA1 of Example 1, the above-mentioned composition P1 for forming a light-absorbing anisotropic layer was continuously applied using a wire bar to form a coating layer P1.
Next, the coating layer P1 was heated at 140° C. for 30 seconds, and the coating layer P1 was cooled to room temperature (23° C.).
Next, the obtained coating layer P1 was heated at 80° C. for 60 seconds and cooled again to room temperature.
Thereafter, by irradiating light emitted from a high-pressure mercury lamp through a mask for 60 seconds at an illuminance of 28 mW/cm 2 , a cured region and an uncured region of the liquid crystal compound are formed in the plane on the alignment film. A light absorption anisotropic layer having the following properties was prepared. The mask has a rectangular light-transmitting part measuring 85 μm long x 50 mm wide as area A, and a rectangular light-blocking part measuring 85 μm long x 50 mm wide as area B, and areas A and B are arranged alternately. , a mask pattern having a length of 50 mm in the vertical direction was used.
The produced film having a light-absorbing anisotropic layer having a cured region (area A) and an uncured region (area B) of a liquid crystalline compound in the plane was immersed in ethanol for 3 minutes to confirm that no polymerization had occurred. The liquid crystalline compound was washed and removed to form a light-absorbing anisotropic film 7 having a light-absorbing anisotropic layer having a region A and a region B having different degrees of polarization in the plane.
In region A, the dichroic substance was oriented perpendicularly to the film surface. The definition of vertically oriented is as described above.
Further, the degree of orientation at a wavelength of 550 nm in region A was 0.96, and the degree of orientation at a wavelength of 420 nm was 0.94.
Further, in region A, the polar angle 30° transmittance was 10% or less, and the front transmittance was 80% or more. In region B, both the polar angle 30° transmittance and the front transmittance were 80% or more.

[積層体A7の作製]
国際公開第2015/166991号記載の片面保護膜付偏光板02と同様の方法で、偏光子の厚さが8μmで、偏光子の片面がむき出しの偏光板1を作製した。
上記偏光板1の偏光子がむき出し面と、作製した光吸収異方性フィルム7の光吸収異方性層表面を粘着剤SK2057(綜研化学製)を用いて貼合し、積層体A7を作製した。
[Preparation of laminate A7]
Polarizing plate 1 with a polarizer thickness of 8 μm and one side of the polarizer exposed was produced in the same manner as polarizing plate 02 with a single-sided protective film described in International Publication No. 2015/166991.
The polarizer-exposed surface of the polarizing plate 1 and the surface of the light-absorbing anisotropic layer of the produced light-absorbing anisotropic film 7 were bonded together using adhesive SK2057 (manufactured by Soken Kagaku) to produce a laminate A7. did.

[画像表示装置A7の作製]
Samsung製スマートフォン GaLaxy S4を分解し、EL基板に貼合されている偏光板を剥離した。偏光板を剥離したEL基板上に、粘着剤SK2057(綜研化学製)を用いてピュアエースWR W142(帝人製)と上記記載の積層体A7を、ピュアエースWR W142がEL基板側、また、積層体A7の光吸収異方性フィルム7側が視認側になるように貼合した。この時、積層体A7の領域Aと領域BがEL基板の画素に対して、一致するように貼合した。
[Production of image display device A7]
A Samsung smartphone GaLaxy S4 was disassembled, and the polarizing plate bonded to the EL substrate was peeled off. On the EL substrate from which the polarizing plate has been peeled off, using adhesive SK2057 (manufactured by Soken Kagaku), Pure Ace WR W142 (manufactured by Teijin) and the above-mentioned laminate A7 are stacked, with Pure Ace WR W142 on the EL substrate side. The body A7 was laminated so that the light absorption anisotropic film 7 side was the viewing side. At this time, the laminated body A7 was bonded so that the regions A and B of the laminate A7 were aligned with the pixels of the EL substrate.

作製した画像表示装置A7に、領域Aに重なる画素だけに画像を表示させる画像αと、領域Bに重なる画素だけに画像を表示させる画像βを用意した。画像αを表示させた場合、画像表示装置A7に貼合されたフィルムの吸収軸に対して、極角30°の方向から画像を見た時、画像が暗くなり、画像を認識できなくなった。また、画像βを表示させた場合、画像表示装置A7に貼合されたフィルムの吸収軸に対して、極角30°の方向から画像を見た時、明るさの変化が小さく、画像を認識できた。したがって、パターン光吸収異方性フィルム7を使用することで、視野角を切り替えられる画像表示装置を作製できることを確認できた。 In the manufactured image display device A7, an image α in which an image is displayed only in pixels overlapping area A, and an image β in which an image is displayed only in pixels overlapping area B were prepared. When the image α was displayed, when viewed from a direction at a polar angle of 30° with respect to the absorption axis of the film bonded to the image display device A7, the image became dark and could no longer be recognized. In addition, when image β is displayed, when the image is viewed from a direction at a polar angle of 30° with respect to the absorption axis of the film bonded to image display device A7, the change in brightness is small and the image is recognized. did it. Therefore, it was confirmed that by using the patterned light absorption anisotropic film 7, an image display device that can switch the viewing angle can be manufactured.

<実施例8>
特開2017-098246号公報の実施例を参考に、光フィルター素子140を実施例1で作製した光吸収異方性フィルム1として、視野角切り替え可能なバックライトモジュールを作製した。
図1は、本発明の一実施例のバックライトモジュールの概略図である。
図1を参照すると、本実施例のバックライトモジュール100は第一面光源アセンブリー110、第二面光源アセンブリー120、第一光学シート130および光フィルター素子140を含む。
第一面光源アセンブリー110は第一発光ユニット111および第一導光板112を含み、第一導光板112は対向する第一出光面114と第一底面115、および第一出光面114と第一底面115との間に位置する第一入光面113を有し、第一発光ユニット111が第一導光板112の第一入光面113の近傍に位置する。
第二面光源アセンブリー120は第一面光源アセンブリー110の上方に位置し、かつ第二発光ユニット121および第二導光板122を含み、第二導光板122は対向する第二出光面124と第二底面125、および第二出光面124と第二底面125との間に位置する第二入光面123を有し、第二発光ユニット121は第二導光板122の第二入光面123の近傍に位置する。
第一光学シート130は第二面光源アセンブリー120の上方に位置し、かつ第一方向(例えば、X軸方向)に配列された複数のプリズムピラー131を含み、プリズムピラー131の先端132が第二面光源アセンブリー120に向っている。本実施例において、プリズムピラー131の軸延伸方向が第二方向(例えば、Z軸方向)へ延伸し、かつ第一方向が第二方向に垂直である。光フィルター素子140は第一面光源アセンブリー110と第二面光源アセンブリー120との間に位置し、かつ光フィルター素子140は所定の入射角度範囲内の入射光線を透過させる。
第一発光ユニット111は光線を提供し、この光線が第一入光面113から第一導光板112内に進入し、第一導光板112は光線を変換して、第一導光板112の第一出光面114から出射する第一面光源にする。第二発光ユニット121は光線を提供し、この光線が第二入光面123から第二導光板122内に進入し、第二導光板122は光線を変換して、第二導光板122の第二出光面124から出射する第二面光源にする。
第一発光ユニット111と第二発光ユニット121は、例えば、いずれも基板(図示せず)および基板上に配置された複数の発光素子(図示せず)、例えば発光ダイオードを含むが、これに限定されない。本発明は、第一発光ユニット111および第二発光ユニット121の種類について限定しない。また、第一導光板112の第一底面115および第二導光板122の第二底面125において、光線が第一出光面114および第二出光面124から出射される際の光の型を調整するための微構造(図示せず)を設けることができる。上記微構造は網点、溝などであってもよいが、これに限定されない。
第一光学シート130は、例えば、逆プリズムシートまたは逆プリズムシート構造を有する複合式光学シートであり、入射角度の異なる光線が第一光学シート130から出射させる際に異なる出射角度になるようにできる。プリズムピラー131の第一表面133から入射される光線を例にすると、入射角度が比較的に大きい場合、光線が第二表面134まで屈折され、かつ第二表面134に反射された後、比較的に小さい出射角度で第一光学シート130の出光側135から出射される。入射角度が比較的に小さい場合、光線が屈折された後そのまま比較的に大きい出射角度で第一光学シート130の出光側135から出射される。また、各プリズムピラー131の軸延伸方向が、例えばZ軸方向と平行である。各プリズムピラー131の先端132に面取り処理、例えば丸面取りが施してもよい。
具体的に言うと、第一発光ユニット111がオンの時、光線L1は主に比較的に小さい入射角度で第一光学シート130のプリズムピラー131の第一表面133および第二表面134に入射されるため、比較的に大きい出射角度で第一光学シート130の出光側135から出射される。第二発光ユニット121がオンの時、光線L2は主に比較的に大きい入射角度で図1の第一光学シート130のプリズムピラー131の第一表面133および第二表面134に入射されるため、比較的に小さい出射角度で第一光学シート130の出光側135から出射される。第一発光ユニット111と第二発光ユニット121が共にオンの時、出射角度が比較的に大きい光線L1と出射角度が比較的に小さい光線L2は第一光学シート130の出光側135から出射され、重なった後、広視角面光源を形成することができる。従って、第一発光ユニット111と第二発光ユニット121が共にオンの時、広視角モードと定義することができる。一方、第一発光ユニット111がオフで、第二発光ユニット121がオンの時、出射角度が比較的に小さい光線L2が第一光学シート130の出光側135から出射された後、狭視角面光源が形成される。従って、第二発光ユニット121がオンで、かつ第一発光ユニット111がオフの時、狭視角モードと定義することができる。つまり、図1に記載のバックライトモジュールは、視野角を切り替えることが可能なバックライトモジュールに該当する。
以上より、光フィルター素子140として、本発明の光吸収異方性フィルム1を用いることで、正面輝度が高く、視野角切り替え可能なバックライトモジュールとなることを確認した。
<Example 8>
With reference to the example of JP-A-2017-098246, a backlight module capable of switching the viewing angle was manufactured using the light absorption anisotropic film 1 manufactured in Example 1 as the optical filter element 140.
FIG. 1 is a schematic diagram of a backlight module according to an embodiment of the present invention.
Referring to FIG. 1, the backlight module 100 of the present embodiment includes a first surface light source assembly 110, a second surface light source assembly 120, a first optical sheet 130, and an optical filter element 140.
The first surface light source assembly 110 includes a first light emitting unit 111 and a first light guide plate 112, the first light guide plate 112 having a first light output surface 114 and a first bottom surface 115 facing each other, and a first light output surface 114 and a first bottom surface facing each other. 115 , and the first light emitting unit 111 is located near the first light incident surface 113 of the first light guide plate 112 .
The second surface light source assembly 120 is located above the first surface light source assembly 110 and includes a second light emitting unit 121 and a second light guide plate 122. The second light emitting unit 121 has a bottom surface 125 and a second light entrance surface 123 located between the second light exit surface 124 and the second bottom surface 125, and the second light emitting unit 121 is located near the second light entrance surface 123 of the second light guide plate 122. Located in
The first optical sheet 130 is located above the second surface light source assembly 120 and includes a plurality of prism pillars 131 arranged in a first direction (for example, the towards the surface light source assembly 120. In this embodiment, the axial direction of the prism pillar 131 extends in the second direction (for example, the Z-axis direction), and the first direction is perpendicular to the second direction. The optical filter element 140 is located between the first surface light source assembly 110 and the second surface light source assembly 120, and the optical filter element 140 transmits incident light within a predetermined incident angle range.
The first light emitting unit 111 provides a light beam, and the light beam enters the first light guide plate 112 from the first light incident surface 113, and the first light guide plate 112 converts the light beam to the first light guide plate 112. A first surface light source that emits light from one light output surface 114 is used. The second light guide unit 121 provides a light beam, and the light beam enters the second light guide plate 122 from the second light incident surface 123, and the second light guide plate 122 converts the light beam to the second light guide plate 122. A second surface light source is used which emits light from the second light emitting surface 124.
The first light emitting unit 111 and the second light emitting unit 121 both include, for example, a substrate (not shown) and a plurality of light emitting elements (not shown) disposed on the substrate, such as light emitting diodes, but are limited thereto. Not done. The present invention does not limit the types of the first light emitting unit 111 and the second light emitting unit 121. Furthermore, the type of light when the light rays are emitted from the first light output surface 114 and the second light output surface 124 is adjusted at the first bottom surface 115 of the first light guide plate 112 and the second bottom surface 125 of the second light guide plate 122. Microstructures (not shown) may be provided for this purpose. The fine structure may be a halftone dot, a groove, etc., but is not limited thereto.
The first optical sheet 130 is, for example, an inverted prism sheet or a composite optical sheet having an inverted prism sheet structure, so that light rays having different incident angles can be emitted from the first optical sheet 130 at different exit angles. . Taking the light ray incident from the first surface 133 of the prism pillar 131 as an example, if the angle of incidence is relatively large, the light ray is refracted to the second surface 134 and reflected by the second surface 134, and then The light is emitted from the light emitting side 135 of the first optical sheet 130 at a small emission angle. When the incident angle is relatively small, the light beam is refracted and then output from the light exit side 135 of the first optical sheet 130 at a relatively large exit angle. Further, the axial direction of each prism pillar 131 is parallel to the Z-axis direction, for example. The tip 132 of each prism pillar 131 may be chamfered, for example, rounded.
Specifically, when the first light emitting unit 111 is on, the light beam L1 is mainly incident on the first surface 133 and the second surface 134 of the prism pillar 131 of the first optical sheet 130 at a relatively small incident angle. Therefore, the light is emitted from the light emitting side 135 of the first optical sheet 130 at a relatively large emission angle. When the second light emitting unit 121 is on, the light beam L2 is mainly incident on the first surface 133 and the second surface 134 of the prism pillar 131 of the first optical sheet 130 in FIG. 1 at a relatively large incident angle. The light is emitted from the light emitting side 135 of the first optical sheet 130 at a relatively small emitting angle. When both the first light emitting unit 111 and the second light emitting unit 121 are on, a light beam L1 with a relatively large emission angle and a light beam L2 with a relatively small emission angle are emitted from the light emission side 135 of the first optical sheet 130, After overlapping, a wide viewing angle surface light source can be formed. Therefore, when both the first light emitting unit 111 and the second light emitting unit 121 are turned on, the wide viewing angle mode can be defined. On the other hand, when the first light emitting unit 111 is off and the second light emitting unit 121 is on, the light beam L2 with a relatively small emission angle is emitted from the light emission side 135 of the first optical sheet 130, and then the narrow viewing angle surface light source is formed. Therefore, when the second light emitting unit 121 is on and the first light emitting unit 111 is off, it can be defined as a narrow viewing angle mode. In other words, the backlight module shown in FIG. 1 corresponds to a backlight module whose viewing angle can be switched.
From the above, it was confirmed that by using the light absorption anisotropic film 1 of the present invention as the optical filter element 140, a backlight module with high front brightness and switchable viewing angles could be obtained.

100 バックライトモジュール
110 第一面源アセンブリー
111 第一発光ユニット
112 第一導光板
113 第一入射面
114 第一出射面
115 第一底面
120 第二面源アセンブリー
121 第二発光ユニット
122 第二導光板
123 第二入射面
124 第二出射面
125 第二底面
130 第一光学シート
131 プリズムピラー
132 先端
133 第一表面
134 第二表面
135 出向側
140 光フィルター素子(光吸収異方性フイルム)
151、153 拡散シート
152 プリズムシート
100 Backlight module 110 First surface source assembly 111 First light emitting unit 112 First light guide plate 113 First incident surface 114 First exit surface 115 First bottom surface 120 Second surface source assembly 121 Second light emitting unit 122 Second light guide plate 123 Second incident surface 124 Second exit surface 125 Second bottom surface 130 First optical sheet 131 Prism pillar 132 Tip 133 First surface 134 Second surface 135 Outgoing side 140 Optical filter element (light absorption anisotropic film)
151, 153 Diffusion sheet 152 Prism sheet

Claims (6)

光吸収異方性層と、前記光吸収異方性層に隣接して配置される配向膜(ただし、光配向膜を含まない)と、を含む光学フィルムであって、
前記光吸収異方性層が、液晶性化合物と、少なくとも1種類の二色性物質とを含み、
前記二色性物質が主面に対し垂直に配向しており、
前記光吸収異方性層の波長550nmにおける配向度が0.95以上であり、
前記二色性物質が、波長560~700nmの範囲に極大吸収波長を有する少なくとも1種の色素化合物を含み、
前記色素化合物が、式(1)で表される化合物である、光学フィルム。
式(1)中、Ar1およびAr2はそれぞれ独立に、置換基を有していてもよいフェニレン基、または、置換基を有していてもよいナフチレン基を表す。
式(1)中、R1は、水素原子、炭素数1~20の置換基を有していてもよい直鎖もしくは分岐状のアルキル基、アルコキシ基、アルキルチオ基、アルキルスルホニル基、アルキルカルボニル基、アルキルオキシカルボニル基、アシルオキシ基、アルキルカーボネート基、アルキルアミノ基、アシルアミノ基、アルキルカルボニルアミノ基、アルコキシカルボニルアミノ基、アルキルスルホニルアミノ基、アルキルスルファモイル基、アルキルカルバモイル基、アルキルスルフィニル基、アルキルウレイド基、アルキルリン酸アミド基、アルキルイミノ基、または、アルキルシリル基を表す。
前記アルキル基を構成する-CH-は、-O-、-CO-、-C(O)-O-、-O-C(O)-、-Si(CH-O-Si(CH-、-N(R1’)-、-N(R1’)-CO-、-CO-N(R1’)-、-N(R1’)-C(O)-O-、-O-C(O)-N(R1’)-、-N(R1’)-C(O)-N(R1’)-、-CH=CH-、-C≡C-、-N=N-、-C(R1’)=CH-C(O)-、または、-O-C(O)-O-によって置換されていてもよい。
R1が水素原子以外の基である場合、各基が有する水素原子は、ハロゲン原子、ニトロ基、シアノ基、-N(R1’)、アミノ基、-C(R1’)=C(R1’)-NO、-C(R1’)=C(R1’)-CN、または、-C(R1’)=C(CN)、によって置換されていてもよい。
R1’は、水素原子または炭素数1~6の直鎖もしくは分岐状のアルキル基を表す。各基において、R1’が複数存在する場合、互いに同一であっても異なっていてもよい。
式(1)中、R2およびR3は、それぞれ独立に、水素原子、炭素数1~20の置換基を有していてもよい直鎖もしくは分岐状のアルキル基、アルコキシ基、アシル基、アルキルオキシカルボニル基、アルキルアミド基、アルキルスルホニル基、アリール基、アリールカルボニル基、アリールスルホニル基、アリールオキシカルボニル基、または、アリールアミド基を表す。
前記アルキル基を構成する-CH-は、-O-、-S-、-C(O)-、-C(O)-O-、-O-C(O)-、-C(O)-S-、-S-C(O)-、-Si(CH-O-Si(CH-、-NR2’-、-NR2’-CO-、-CO-NR2’-、-NR2’-C(O)-O-、-O-C(O)-NR2’-、-NR2’-C(O)-NR2’-、-CH=CH-、-C≡C-、-N=N-、-C(R2’)=CH-C(O)-、または、-O-C(O)-O-、によって置換されていてもよい。
R2およびR3が水素原子以外の基である場合、各基が有する水素原子は、ハロゲン原子、ニトロ基、シアノ基、-OH基、-N(R2’)、アミノ基、-C(R2’)=C(R2’)-NO、-C(R2’)=C(R2’)-CN、または、-C(R2’)=C(CN)によって置換されていてもよい。
R2’は、水素原子または炭素数1~6の直鎖もしくは分岐状のアルキル基を表す。各基において、R2’が複数存在する場合、互いに同一であっても異なっていてもよい。
R2およびR3は、互いに結合して環を形成してもよいし、R2またはR3は、Ar2と結合して環を形成してもよい。
An optical film comprising a light-absorbing anisotropic layer and an alignment film (but not including a photo-alignment film) disposed adjacent to the light-absorbing anisotropic layer,
The light absorption anisotropic layer contains a liquid crystal compound and at least one dichroic substance,
the dichroic substance is oriented perpendicularly to the main surface,
The degree of orientation of the light absorption anisotropic layer at a wavelength of 550 nm is 0.95 or more,
The dichroic substance contains at least one dye compound having a maximum absorption wavelength in a wavelength range of 560 to 700 nm,
An optical film, wherein the dye compound is a compound represented by formula (1).
In formula (1), Ar1 and Ar2 each independently represent a phenylene group that may have a substituent or a naphthylene group that may have a substituent.
In formula (1), R1 is a hydrogen atom, a linear or branched alkyl group which may have a substituent having 1 to 20 carbon atoms, an alkoxy group, an alkylthio group, an alkylsulfonyl group, an alkylcarbonyl group, Alkyloxycarbonyl group, acyloxy group, alkylcarbonate group, alkylamino group, acylamino group, alkylcarbonylamino group, alkoxycarbonylamino group, alkylsulfonylamino group, alkylsulfamoyl group, alkylcarbamoyl group, alkylsulfinyl group, alkylureido group, an alkylphosphoamide group, an alkylimino group, or an alkylsilyl group.
-CH 2 - constituting the alkyl group is -O-, -CO-, -C(O)-O-, -O-C(O)-, -Si(CH 3 ) 2 -O-Si( CH 3 ) 2 -, -N(R1')-, -N(R1')-CO-, -CO-N(R1')-, -N(R1')-C(O)-O-, - OC(O)-N(R1')-, -N(R1')-C(O)-N(R1')-, -CH=CH-, -C≡C-, -N=N- , -C(R1')=CH-C(O)-, or -OC(O)-O-.
When R1 is a group other than a hydrogen atom, the hydrogen atom possessed by each group is a halogen atom, a nitro group, a cyano group, -N(R1') 2 , an amino group, -C(R1')=C(R1' )-NO 2 , -C(R1')=C(R1')-CN, or -C(R1')=C(CN) 2 .
R1' represents a hydrogen atom or a straight or branched alkyl group having 1 to 6 carbon atoms. In each group, when a plurality of R1's exist, they may be the same or different from each other.
In formula (1), R2 and R3 each independently represent a hydrogen atom, a linear or branched alkyl group which may have a substituent having 1 to 20 carbon atoms, an alkoxy group, an acyl group, an alkyloxy Represents a carbonyl group, an alkylamido group, an alkylsulfonyl group, an aryl group, an arylcarbonyl group, an arylsulfonyl group, an aryloxycarbonyl group, or an arylamido group.
-CH 2 - constituting the alkyl group is -O-, -S-, -C(O)-, -C(O)-O-, -O-C(O)-, -C(O) -S-, -S-C(O)-, -Si(CH 3 ) 2 -O-Si(CH 3 ) 2 -, -NR2'-, -NR2'-CO-, -CO-NR2'-, -NR2'-C(O)-O-, -OC(O)-NR2'-, -NR2'-C(O)-NR2'-, -CH=CH-, -C≡C-, - It may be substituted by N=N-, -C(R2')=CH-C(O)-, or -O-C(O)-O-.
When R2 and R3 are groups other than hydrogen atoms, the hydrogen atoms possessed by each group include halogen atoms, nitro groups, cyano groups, -OH groups, -N(R2') 2 , amino groups, -C(R2')=C(R2')-NO 2 , -C(R2')=C(R2')-CN, or -C(R2')=C(CN) 2 .
R2' represents a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms. In each group, when a plurality of R2's exist, they may be the same or different from each other.
R2 and R3 may be combined with each other to form a ring, or R2 or R3 may be combined with Ar2 to form a ring.
前記光吸収異方性層の波長420nmにおける配向度が0.93以上である、請求項1に記載の光学フィルム。 The optical film according to claim 1, wherein the degree of orientation of the light absorption anisotropic layer at a wavelength of 420 nm is 0.93 or more. 請求項1または2に記載の光学フィルムを有する、画像表示装置。 An image display device comprising the optical film according to claim 1 or 2. 表示部分に曲面部を有する、請求項3に記載の画像表示装置。 The image display device according to claim 3, wherein the display portion has a curved surface portion. 請求項1または2に記載の光学フィルムを有する、視野角を切り替えることが可能な画像表示装置。 An image display device capable of switching viewing angles, comprising the optical film according to claim 1 or 2. 視認側から、第一導光板、光フィルター素子、および、第二導光板を有し、
前記光フィルター素子が、請求項1または2に記載の光学フィルムである、
視野角を切り替えることが可能なバックライトモジュール。
From the viewing side, it includes a first light guide plate, an optical filter element, and a second light guide plate,
The optical filter element is the optical film according to claim 1 or 2.
Backlight module that allows you to switch viewing angles.
JP2023198385A 2019-12-26 2023-11-22 Light absorption anisotropic layer, laminate, optical film, image display device and backlight module Pending JP2024026152A (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2019236916 2019-12-26
JP2019236916 2019-12-26
JP2020023354 2020-02-14
JP2020023354 2020-02-14
JP2020182666 2020-10-30
JP2020182666 2020-10-30
PCT/JP2020/046278 WO2021131792A1 (en) 2019-12-26 2020-12-11 Light absorption anisotropic layer, laminate, optical film, image display device, back light module
JP2021567239A JPWO2021131792A1 (en) 2019-12-26 2020-12-11

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021567239A Division JPWO2021131792A1 (en) 2019-12-26 2020-12-11

Publications (1)

Publication Number Publication Date
JP2024026152A true JP2024026152A (en) 2024-02-28

Family

ID=76576053

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021567239A Pending JPWO2021131792A1 (en) 2019-12-26 2020-12-11
JP2023198385A Pending JP2024026152A (en) 2019-12-26 2023-11-22 Light absorption anisotropic layer, laminate, optical film, image display device and backlight module

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2021567239A Pending JPWO2021131792A1 (en) 2019-12-26 2020-12-11

Country Status (5)

Country Link
US (1) US11768324B2 (en)
EP (1) EP4083668A4 (en)
JP (2) JPWO2021131792A1 (en)
CN (2) CN117784464A (en)
WO (1) WO2021131792A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118043707A (en) * 2021-09-29 2024-05-14 富士胶片株式会社 Light absorbing anisotropic layer, optical film, viewing angle control system, and image display device
WO2024127911A1 (en) * 2022-12-14 2024-06-20 富士フイルム株式会社 Optical laminate and image display device

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2367661A (en) 1941-12-31 1945-01-23 Du Pont Process of photopolymerization
US2367670A (en) 1941-12-31 1945-01-23 Du Pont Cementing process
US2448828A (en) 1946-09-04 1948-09-07 Du Pont Photopolymerization
US2722512A (en) 1952-10-23 1955-11-01 Du Pont Photopolymerization process
NL108006C (en) 1957-05-17
US3046127A (en) 1957-10-07 1962-07-24 Du Pont Photopolymerizable compositions, elements and processes
US3549367A (en) 1968-05-24 1970-12-22 Du Pont Photopolymerizable compositions containing triarylimidazolyl dimers and p-aminophenyl ketones
US4212970A (en) 1977-11-28 1980-07-15 Fuji Photo Film Co., Ltd. 2-Halomethyl-5-vinyl-1,3,4-oxadiazole compounds
JPS5928328B2 (en) 1977-11-29 1984-07-12 富士写真フイルム株式会社 Photopolymerizable composition
DE2830927A1 (en) 1978-07-14 1980-01-31 Basf Ag ACYLPHOSPHINOXIDE COMPOUNDS AND THEIR USE
DE3337024A1 (en) 1983-10-12 1985-04-25 Hoechst Ag, 6230 Frankfurt LIGHT SENSITIVE COMPOUNDS HAVING TRICHLORMETHYL GROUPS, METHOD FOR THE PRODUCTION THEREOF AND LIGHT SENSITIVE MIXTURE CONTAINING THESE COMPOUNDS
DE3443221A1 (en) 1984-11-27 1986-06-05 ESPE Fabrik pharmazeutischer Präparate GmbH, 8031 Seefeld BISACYLPHOSPHINOXIDE, THEIR PRODUCTION AND USE
JP2548979B2 (en) 1988-12-28 1996-10-30 富士通株式会社 Liquid crystal display
JP3922735B2 (en) 1995-10-12 2007-05-30 株式会社 日立ディスプレイズ Liquid crystal display
SE520727C2 (en) 1996-03-04 2003-08-19 Ciba Sc Holding Ag Alkylphenyl bisacylphosphine oxide and photoinitiator mixtures
JP3854659B2 (en) 1996-04-26 2006-12-06 キヤノン株式会社 Liquid crystal device
JP3118208B2 (en) 1996-05-15 2000-12-18 富士写真フイルム株式会社 Liquid crystal display
SG53043A1 (en) 1996-08-28 1998-09-28 Ciba Geigy Ag Molecular complex compounds as photoinitiators
JP3946303B2 (en) 1997-05-08 2007-07-18 シャープ株式会社 LCD panel
JP3204182B2 (en) 1997-10-24 2001-09-04 日本電気株式会社 In-plane switching LCD
JP3022463B2 (en) 1998-01-19 2000-03-21 日本電気株式会社 Liquid crystal display device and method of manufacturing the same
JP2982869B2 (en) 1998-04-16 1999-11-29 インターナショナル・ビジネス・マシーンズ・コーポレイション Liquid crystal display
JP4659183B2 (en) 2000-07-21 2011-03-30 富士フイルム株式会社 Aliphatic substituted aminopyridinium derivatives
JP4474114B2 (en) 2003-05-07 2010-06-02 富士フイルム株式会社 Composition, film and polarizing plate containing fluoroaliphatic group-containing polymer
JP4531380B2 (en) 2003-12-15 2010-08-25 大日本印刷株式会社 Gas barrier sheet
JP4523848B2 (en) 2005-02-04 2010-08-11 シャープ株式会社 Liquid crystal display
US8189151B2 (en) 2005-05-13 2012-05-29 Sharp Kabushiki Kaisha Liquid crystal display device
JP2007329234A (en) 2006-06-07 2007-12-20 Fuji Electric Device Technology Co Ltd Method for manufacturing semiconductor element
JP2008026730A (en) 2006-07-24 2008-02-07 Fujifilm Corp Optical compensation film and method of manufacturing the same, and polarizing plate
JP2008098037A (en) * 2006-10-13 2008-04-24 Mitsubishi Electric Corp Planar light source device, display device equipped with planar light source device, and lighting method of planar light source device
JP5221980B2 (en) 2007-03-14 2013-06-26 富士フイルム株式会社 Liquid crystal composition, retardation plate, liquid crystal display device, and method of manufacturing retardation plate
JP2008225281A (en) 2007-03-15 2008-09-25 Fujifilm Corp Optical film, and polarizing plate
JP4902516B2 (en) 2007-12-17 2012-03-21 日東電工株式会社 Viewing angle control system and image display device
JP5620129B2 (en) 2009-03-19 2014-11-05 富士フイルム株式会社 Optical film, retardation plate, elliptically polarizing plate, liquid crystal display device, and compound
JP5566178B2 (en) 2010-05-07 2014-08-06 富士フイルム株式会社 Light-absorbing anisotropic film, method for producing the same, and liquid crystal display device using the same
JP2012208397A (en) 2011-03-30 2012-10-25 Fujifilm Corp Optical film, polarizer, liquid crystal display and homeotropic surfactant
JP2012213938A (en) 2011-03-31 2012-11-08 Mitsubishi Plastics Inc Gas barrier film
JP6268730B2 (en) 2012-03-30 2018-01-31 住友化学株式会社 Circularly polarizing plate and method for producing the same
KR101966739B1 (en) 2012-11-09 2019-04-09 삼성전자주식회사 Curved display apparatus
JP5847743B2 (en) 2013-02-20 2016-01-27 富士フイルム株式会社 Barrier laminate and gas barrier film
JP6276393B2 (en) 2014-05-01 2018-02-07 富士フイルム株式会社 Organic EL display device
JP2016027384A (en) 2014-06-25 2016-02-18 Jsr株式会社 Photosensitive composition for bezel formation, bezel, and display device
JP6483486B2 (en) 2015-03-16 2019-03-13 住友化学株式会社 Polarizing plate and circularly polarizing plate
TWI573123B (en) 2015-11-27 2017-03-01 揚昇照明股份有限公司 Backlight module, driving method therefore, and display apparatus having the backlight module
KR102409703B1 (en) 2015-12-01 2022-06-16 엘지디스플레이 주식회사 Curved display device
JP2017115076A (en) 2015-12-25 2017-06-29 株式会社クラレ Coating agent for barrier
JP2017122776A (en) 2016-01-05 2017-07-13 富士フイルム株式会社 Mirror with image display function and half mirror
JP6638401B2 (en) 2016-01-06 2020-01-29 凸版印刷株式会社 Gas barrier film laminate and method for producing the same
JP2017181819A (en) 2016-03-30 2017-10-05 パナソニック液晶ディスプレイ株式会社 On-vehicle device including curved display
JP2017181821A (en) * 2016-03-30 2017-10-05 パナソニック液晶ディスプレイ株式会社 On-vehicle device including curved display
WO2018079854A1 (en) 2016-10-31 2018-05-03 富士フイルム株式会社 Optical film and liquid crystal display device
KR102313192B1 (en) * 2016-12-28 2021-10-18 후지필름 가부시키가이샤 Liquid crystal composition, polymer liquid crystal compound, light absorbing anisotropic film, laminate and image display device
JP6959324B2 (en) * 2017-03-09 2021-11-02 富士フイルム株式会社 Compositions, dichroic substances, light absorption anisotropic films, laminates and image display devices
JP6811846B2 (en) 2017-04-07 2021-01-13 富士フイルム株式会社 Polarizing element, circular polarizing plate and image display device
JP6932184B2 (en) * 2017-04-25 2021-09-08 富士フイルム株式会社 Liquid crystal composition, light absorption anisotropic film, laminate and image display device
JP6794422B2 (en) * 2017-12-28 2020-12-02 富士フイルム株式会社 Optical laminate and image display device
JP6888168B2 (en) * 2018-03-16 2021-06-16 富士フイルム株式会社 Electroluminescence display device
JP2019194685A (en) 2018-04-25 2019-11-07 住友化学株式会社 Polarizing plate
WO2019225468A1 (en) * 2018-05-25 2019-11-28 富士フイルム株式会社 Polarizer and image display device
JP7013577B2 (en) 2018-06-04 2022-01-31 富士フイルム株式会社 Display device

Also Published As

Publication number Publication date
EP4083668A1 (en) 2022-11-02
EP4083668A4 (en) 2023-06-07
JPWO2021131792A1 (en) 2021-07-01
US20220342134A1 (en) 2022-10-27
US11768324B2 (en) 2023-09-26
CN114930206A (en) 2022-08-19
WO2021131792A1 (en) 2021-07-01
CN117784464A (en) 2024-03-29

Similar Documents

Publication Publication Date Title
JP7109476B2 (en) OPTICAL LAMINATED PRODUCTION METHOD, OPTICAL LAMINATED PRODUCT AND IMAGE DISPLAY DEVICE
JPWO2018186500A1 (en) Polarizing element, circular polarizing plate and image display device
JP2024026152A (en) Light absorption anisotropic layer, laminate, optical film, image display device and backlight module
WO2019131976A1 (en) Light-absorbing anisotropic film, optical layered product, and image display device
JP7428785B2 (en) liquid crystal display device
WO2021246441A1 (en) Optical film, optical laminate, and image display device
JP2023174691A (en) Laminate and image display device
US20220204856A1 (en) Polarizer and image display device
KR20230000979A (en) Optical laminate, viewing angle control system, image display device
CN116635778A (en) Light absorbing anisotropic film, viewing angle control system and image display device
US20210165148A1 (en) Laminate and image display device
WO2021065673A1 (en) Optical laminate, and image display device
US11173694B2 (en) Laminate, manufacturing method of laminate, and image display device
JP7457739B2 (en) Polarizing elements, circular polarizing plates and image display devices
WO2022202141A1 (en) Image display device
JP7367036B2 (en) Composition, polarizer layer, laminate, and image display device
CN116601554A (en) Light absorbing anisotropic film, viewing angle control system and image display device
WO2022181414A1 (en) Laminate, antireflection system, and image display device
JP7454695B2 (en) Composition for photo-alignment film, photo-alignment film and optical laminate
WO2022270466A1 (en) Optical film, method for manufacturing light absorption anisotropic layer, and image display device
JP7481425B2 (en) Optical laminate and display device
US20240094452A1 (en) Light absorption anisotropic layer, laminate, display device, infrared light irradiation device, and infrared light sensing device
WO2024048193A1 (en) Light-absorbing anisotropic film, manufacturing method thereof, laminate, and image display device
WO2022234789A1 (en) Polarizing plate and organic el display device
WO2023085255A1 (en) Organic el display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231127