WO2022234733A1 - 正極合剤層およびリチウムイオン二次電池 - Google Patents

正極合剤層およびリチウムイオン二次電池 Download PDF

Info

Publication number
WO2022234733A1
WO2022234733A1 PCT/JP2022/013041 JP2022013041W WO2022234733A1 WO 2022234733 A1 WO2022234733 A1 WO 2022234733A1 JP 2022013041 W JP2022013041 W JP 2022013041W WO 2022234733 A1 WO2022234733 A1 WO 2022234733A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
vol
mixture layer
electrode mixture
oxide
Prior art date
Application number
PCT/JP2022/013041
Other languages
English (en)
French (fr)
Inventor
広幸 松浦
直也 野原
洋 山本
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to EP22798840.9A priority Critical patent/EP4336583A1/en
Priority to KR1020237041928A priority patent/KR20240004986A/ko
Priority to CN202280032895.XA priority patent/CN117242592A/zh
Publication of WO2022234733A1 publication Critical patent/WO2022234733A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode mixture layer and a lithium ion secondary battery.
  • a positive electrode mixture comprising a composite obtained by combining an active material comprising a compound comprising Li, Ni, Mn, Co and O with a solid electrolyte comprising an oxide having a garnet structure containing Li, La and Zr, and a binder. Layers are known from US Pat.
  • the present invention was made to solve this problem, and an object of the present invention is to provide a positive electrode mixture layer and a lithium ion secondary battery that can improve the charge-discharge cycle life.
  • the positive electrode material mixture layer of the present invention comprises an active material, a solid electrolyte and a binder, the active material comprising a compound containing Li, Ni, Mn, Co and O, and the solid electrolyte comprising Li , La and Zr.
  • the positive electrode mixture layer further contains an ionic liquid containing imidazolium cations and sulfonylimide anions.
  • the ratio of the number of Ni atoms to the total number of atoms of Li, Ni, Mn, Co, and O present in one molecule of the compound is 12.5% or less, and the amount of oxide relative to the positive electrode mixture layer is 1-25 vol%.
  • the lithium ion secondary battery of the present invention includes the positive electrode material mixture layer.
  • the positive electrode mixture layer of the present invention contains an ionic liquid
  • a liquid-solid interface is formed between the compound and the oxide.
  • the ratio of the number of Ni atoms to the total number of atoms of Li, Ni, Mn, Co, and O present in one molecule of the compound is 12.5% or less, and the amount of oxide relative to the positive electrode mixture layer is 1 to 25 vol %, the basicity of compounds and oxides is weakened, and the decomposition of imidazolium cations contained in the ionic liquid can be reduced. Since the resistance of lithium ions moving through the liquid-solid interface between the compound and the oxide is kept low, the charge/discharge cycle life of the positive electrode mixture layer and the lithium ion secondary battery can be improved.
  • FIG. 1 is a cross-sectional view of a lithium ion secondary battery in one embodiment
  • FIG. 1 is a schematic cross-sectional view of a lithium ion secondary battery (hereinafter referred to as "secondary battery") 10 according to one embodiment.
  • the secondary battery 10 according to the present embodiment is a solid battery in which a power generation element is solid.
  • the fact that the power generation element is solid means that the skeleton of the power generation element is solid, and does not exclude, for example, a form in which the skeleton is impregnated with a liquid.
  • the secondary battery 10 includes a positive electrode layer 11, an electrolyte layer 14 and a negative electrode layer 15 in this order.
  • the positive electrode layer 11, the electrolyte layer 14 and the negative electrode layer 15 are housed in a case (not shown).
  • the positive electrode layer 11 is composed of a current collecting layer 12 and a positive electrode material mixture layer 13 superimposed on each other.
  • the current collection layer 12 is a member having conductivity. Examples of the material of the current collecting layer 12 include metals selected from Ni, Ti, Fe and Al, alloys containing two or more of these elements, stainless steel, and carbon materials.
  • the positive electrode mixture layer 13 contains a solid electrolyte, an active material, an ionic liquid, and a binder. In order to lower the resistance of the positive electrode mixture layer 13, the positive electrode mixture layer 13 may contain a conductive aid. Carbon black, acetylene black, ketjen black, carbon fiber, Ni, Pt and Ag are exemplified as conductive aids.
  • the solid electrolyte includes an oxide 18 having a garnet type structure containing Li, La, Zr and O and having lithium ion conductivity.
  • the oxide 18 is exemplified by Li 7 La 3 Zr 2 O 12 in which the pentavalent M cation in the basic composition is replaced with a tetravalent cation.
  • the oxide 18 has a crystal structure of, for example, a cubic system (space group Ia-3d (- indicates an overline indicating rotation operation), JCPDS: 84-1753). Oxide 18 exhibits basicity.
  • the oxide 18 includes Mg, Al, Si, Ca, Ti, V, Ga, Sr, Y, Nb, Sn, Sb, Ba, Hf, Ta, W, Bi, Rb and lanthanoids in addition to Li, La and Zr. It can contain at least one element selected from the group consisting of (excluding La). For example , Li6La3Zr1.5W0.5O12 , Li6.15La3Zr1.75Ta0.25Al0.2O12 , Li6.15La3Zr1.75Ta0 .
  • the oxide 18 particularly contains at least one of Mg and element A (A is at least one element selected from the group consisting of Ca, Sr and Ba), and the molar ratio of each element is from (1) to ( A material that satisfies all of 3) or a material that contains both Mg and the element A and has a molar ratio of each element that satisfies all of the following (4) to (6) is preferable.
  • the element A is preferably Sr because it increases the ionic conductivity of the oxide 18 .
  • the median diameter of the equivalent circle diameter of the oxide 18 appearing in the cross section of the positive electrode mixture layer 13 is preferably 0.5 to 10 ⁇ m or less. This is because the surface area of the oxide 18 is set to an appropriate size, and the amount of lithium ions transferred between the oxide 18 and the ionic liquid having lithium ion conductivity intervening on the surface of the oxide 18 is ensured.
  • the oxide 18 appearing on the cross section of the positive electrode mixture layer 13 (a polished surface or a surface obtained by irradiation with a focused ion beam (FIB)) is observed with a scanning electron microscope.
  • the equivalent circle diameter is calculated from the area of each particle of the oxide 18, and the volume-based particle size distribution is determined.
  • the median diameter is the circle equivalent diameter at which the integrated value of the frequency in the particle size distribution is 50%.
  • the image for obtaining the particle size distribution has an area of 400 ⁇ m 2 or more in the positive electrode mixture layer 13 in order to ensure accuracy.
  • the active material (reactive material) contained in the positive electrode mixture layer 13 contains a compound 19 containing Li, Ni, Mn, Co and O.
  • compound 19 the ratio of the number of Ni atoms to the total number of atoms of Li, Ni, Mn, Co and O present in one molecule of compound 19 is 12.5% or less. This is to weaken the basicity of compound 19.
  • Compound 19 is exemplified by a compound represented by the chemical formula LiNiaMnbCocMxO2 .
  • M is selected from Mg, Ti, Nb, Fe, Cr, Si, Al, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, Bi and Ge.
  • represents one or more elements that are a, b, c, and x are 0.3 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 0.7, 0 ⁇ c ⁇ 0.7, 0 ⁇ x ⁇ 0.3 and 3a+3b+3c+(valence of M) ⁇ x Indicates a number that satisfies 3. However, a/(3+a+b+c) ⁇ 0.125.
  • Compound 19 includes LiNi 1/3 Mn 1/3 Co 1/3 O 2 , LiNi 0.2 Mn 0.4 Co 0.4 O 2 , LiNi 0.5 Mn 0.3 Co 0.2 O 2 , LiNi 0.33Mn0.33Co0.31Mg0.03O2 and LiNi0.33Mn0.33Co0.31Zn0.03O2 are exemplified . _ _ _ _ _
  • a coating layer can be provided on the surface of the compound 19 for the purpose of suppressing the reaction between the compound 19 and the oxide 18 .
  • the coating layer is Al2O3 , ZrO2 , LiNbO3 , Li4Ti5O12 , LiTaO3 , LiNbO3 , LiAlO2 , Li2ZrO3 , Li2WO4 , Li2TiO3 , Li2B4 O7 , Li3PO4 and Li2MoO4 are exemplified .
  • the active materials include inverse spinel oxides such as LiNiVO4 , LiCoPO4 , LiCoVO4 , LiMn1.5Ni0.5O4 , LiMn2O4 , and LiCo0.3Ni0.7 .
  • Spinel type oxides such as O2
  • olivine type oxides such as Fe2 ( SO4 ) 3 and LiFePO4
  • layered oxides such as LiCoO2 and Li1 +x (Fe,Mn,Co) 1- xO2 .
  • the amount of the active material other than compound 19 is 0 vol % or more and less than 50 vol % with respect to the total volume of the active material including compound 19 .
  • the electrolyte salt is dissolved in the ionic liquid contained in the positive electrode mixture layer 13 .
  • Ionic liquids are compounds composed of cations and anions, and are liquid at normal temperature and pressure. Since the ionic liquid in which the electrolyte salt is dissolved constitutes the electrolytic solution, the flame retardancy of the electrolytic solution can be improved.
  • Various physical properties and functions of the electrolytic solution are determined by the types and salt concentrations of the electrolytic salt and ionic liquid.
  • the electrolyte salt is a compound used for exchange of cations between the positive electrode layer 11 and the negative electrode layer 15 .
  • Electrolyte salts are, for example, lithium salts.
  • Anions of electrolyte salts include halide ions (I ⁇ , Cl ⁇ , Br ⁇ etc.), SCN ⁇ , BF 4 ⁇ , BF 3 (CF 3 ) ⁇ , BF 3 (C 2 F 5 ) ⁇ , PF 6 ⁇ , ClO 4 ⁇ , SbF 6 ⁇ , N(SO 2 F) 2 ⁇ , N(SO 2 CF 3 ) 2 ⁇ , N(SO 2 C 2 F 5 ) 2 ⁇ , B(C 6 H 5 ) 4 ⁇ , B ( O2C2H4 ) 2- , C ( SO2F ) 3- , C ( SO2CF3 ) 3- , CF3COO- , CF3SO2O- , C6F5SO2O
  • Sulfonylimides are preferred. This is because the sulfonylimide anion has little effect of increasing the viscosity of the electrolytic solution and decreasing the ionic conductivity even when the salt concentration is high.
  • N(SO 2 F) 2 — is abbreviated as [FSI] ⁇ : bis(fluorosulfonyl)imide anion
  • N(SO 2 CF 3 ) 2 — is abbreviated as [TFSI] ⁇ : bis(trifluoromethanesulfonyl)imide.
  • an anion is sometimes called an anion.
  • the ionic liquid is preferably one that uses imidazolium as a cation species.
  • the imidazolium cation is, for example, a compound represented by formula (1).
  • R 1 to R 5 each independently represent a hydrogen group or an alkyl group.
  • the alkyl group may have a substituent.
  • the number of carbon atoms in the alkyl group (including substituents) represented by R 1 -R 5 is preferably 1-10, more preferably 1-5, still more preferably 1-4. This is to ensure the ionic conductivity of the electrolytic solution.
  • Substituents include alkyl groups, cycloalkyl groups, aryl groups, hydroxyl groups, carboxyl groups, nitro groups, trifluoromethyl groups, amide groups, carbamoyl groups, ester groups, carbonyloxy groups, cyano groups, halogeno groups, alkoxy groups, Examples include an aryloxy group and a sulfonamide group.
  • Sulfonylimide is suitable for the anionic species of the ionic liquid.
  • the sulfonylimide anions are exemplified by N(SO 2 F) 2 ⁇ , N(SO 2 CF 3 ) 2 ⁇ , N(SO 2 C 2 F 5 ) 2 ⁇ , N(SO 2 C 4 F 9 ) 2 ⁇ and the like. be done.
  • Ionic liquids are exemplified by 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide (EMI-FSI) and 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMI-TFSI). .
  • An ionic liquid containing an imidazolium cation and a sulfonylimide anion and in which an electrolyte salt is dissolved is preferable because high ionic conductivity can be ensured.
  • the lithium ion concentration of the electrolytic solution is preferably 1 mol/dm 3 or more, more preferably 3 mol/dm 3 or more. This is to ensure ion conductivity while expanding the oxidation-side potential window of the electrolyte contained in the positive electrode mixture layer 13 . It is assumed that this is due to the interaction between the oxide 18 and the electrolyte.
  • an electrolytic solution with a lithium ion concentration of 3 mol/dm 3 or more even if all solvent molecules are coordinated to Li + , the stable solvation state of Li + cannot be 4-coordination, so coordination by a counter anion, A so-called ionic association is formed.
  • the highest occupied molecular orbital (HOMO) of the electrolytic solution decreases and the oxidation potential increases. Since all solvent molecules are coordinated with Li + , the increase in the oxidation potential of the electrolytic solution appears as an effect of widening the oxidation-side potential window of the positive electrode mixture layer 13 .
  • the amount of the oxide 18 with respect to the positive electrode mixture layer 13 is preferably 1-25 vol%, more preferably 3-15 vol%. This is because the oxide 18 ensures the lithium ion conductivity, suppresses the basicity of the positive electrode mixture layer 13 due to the oxide 18, and reduces the decomposition of the ionic liquid.
  • the amount of compound 19 with respect to the positive electrode mixture layer 13 is preferably 40-85 vol%, more preferably 40-70 vol%. This is to ensure the discharge capacity of the secondary battery 10 and the low internal resistance of the positive electrode mixture layer 13 .
  • the amount of the ionic liquid relative to the positive electrode mixture layer 13 is preferably 3-35 vol%, more preferably 10-30 vol%. This is to ensure a low internal resistance of the positive electrode mixture layer 13 and reduce the occurrence of seepage of the ionic liquid from the positive electrode mixture layer 13 .
  • the amount (vol%) of the oxide 18, the compound 19 and the ionic liquid relative to the positive electrode mixture layer 13 is determined by freezing the positive electrode mixture layer 13 or embedding the positive electrode mixture layer 13 in a tetrafunctional epoxy resin or the like. After hardening, energy dispersive X-ray spectroscopy was performed on a randomly selected 5000-fold field of view from the cross section of the positive electrode mixture layer 13 (a polished surface or a surface obtained by irradiation with a focused ion beam (FIB)). Analyze and determine using SEM equipped with instrument (EDS).
  • EDS SEM equipped with instrument
  • the distribution of La, Zr, Ni, and S is specified, and the contrast of the backscattered electron image is analyzed to specify the areas of the oxide 18, the compound 19, and the ionic liquid, and the positive electrode mixture layer 13.
  • the area ratio in the cross section is regarded as the volume ratio in the positive electrode mixture layer 13 to obtain the amounts (vol %) of the oxide 18 , the compound 19 and the ionic liquid.
  • the binder contained in the positive electrode mixture layer 13 is not particularly limited as long as it is a polymer that binds the oxide 18 and the compound 19 .
  • binders include fluorinated resins, polyolefins, rubber-like polymers such as styrene-butadiene rubber, polyimides, polyvinylpyrrolidone, polyvinyl alcohol, and cellulose ethers.
  • fluorinated resins examples include fully fluorinated resins, partially fluorinated resins, and fluorinated resin copolymers.
  • a fully fluorinated resin is exemplified by polytetrafluoroethylene.
  • Partially fluorinated resins are exemplified by polychlorotrifluoroethylene, polyvinylidene fluoride, and polyvinyl fluoride.
  • Fluorinated resin copolymers include tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene/hexafluoropropylene copolymer, ethylene tetrafluoroethylene copolymer, and ethylene/chlorotrifluoroethylene copolymer. Polymers are exemplified.
  • vinylidene fluoride polymer is not particularly limited as long as it contains —CH 2 CF 2 —.
  • Vinylidene fluoride-based polymers are exemplified by vinylidene fluoride homopolymers and copolymers of vinylidene fluoride and copolymerizable monomers.
  • Copolymerizable monomers include halogen-containing monomers (excluding vinylidene fluoride) and non-halogen copolymerizable monomers.
  • Halogen-containing monomers are exemplified by chlorine-containing monomers such as vinyl chloride; and fluorine-containing monomers such as trifluoroethylene, tetrafluoroethylene, chlorotrifluoroethylene, hexafluoropropylene, and perfluoroalkylvinyl ether.
  • non-halogen copolymerizable monomers examples include olefins such as ethylene and propylene; acrylic monomers such as acrylic acid, methacrylic acid, esters or salts thereof; and vinyl monomers such as acrylonitrile, vinyl acetate, and styrene.
  • One or more of the copolymerizable monomers are polymerized to vinylidene fluoride to form a copolymer.
  • the amount (vol%) of the binder with respect to the positive electrode mixture layer 13 is preferably 10 vol% or less (excluding 0 vol%). This is because the binder ensures the moldability and handleability of the positive electrode mixture layer 13 and reduces the decrease in ion conductivity of the positive electrode mixture layer 13 due to the inclusion of the binder.
  • the amount (vol %) of the binder with respect to the positive electrode mixture layer 13 is assumed to be the same as the area ratio of the binder in the cross section of the positive electrode mixture layer 13 obtained by the SEM-EDS analysis as described above.
  • the positive electrode mixture layer 13 contains an oxide 18 (solid electrolyte), a compound 19 (active material), an electrolyte salt, an ionic liquid, and a binder.
  • Ionic liquids contain imidazolium cations and sulfonylimide anions. Since the ionic liquid (electrolyte) in which the electrolyte salt is dissolved is interposed between the oxide 18 and the compound 19, a liquid-solid interface is formed between the oxide 18 and the compound 19.
  • the ionic liquid is decomposed and the ionic conductivity of the electrolytic solution is lowered.
  • the ratio of the number of Ni atoms to the total number of atoms of Li, Ni, Mn, Co, and O present in one molecule of compound 19 is 12.5% or less, and the positive electrode mixture layer 13 Since the amount of the oxide 18 is 1-25 vol %, the base of the positive electrode mixture layer 13 can be weakened. Since the decomposition of the imidazolium cations contained in the electrolyte can be reduced, the resistance of lithium ions moving across the liquid-solid interface between the oxide 18 and the compound 19 can be kept low. Therefore, the charge/discharge cycle life of the positive electrode mixture layer 13 can be improved.
  • the electrolyte layer 14 contains a solid electrolyte 20 .
  • the solid electrolyte 20 is exemplified by an oxide system, a sulfide system, and a hydride system.
  • the oxide system is exemplified by perovskite type, NASICON type, LISICON type, and garnet type.
  • sulfide-based materials include glasses and glass-ceramics such as thiolysicone type, Li 10 GeP 2 S 12 type, aldirodite type, Li 7 P 3 S 11 type, and Li 2 SP 2 S 5 type.
  • the hydride system is an alkali metal or alkaline earth metal hydride containing at least one Group 13 element of the Group 18 Periodic Table of Elements (e.g., B, Al, Ga, In, Ta). exemplified. Examples include LiBH 4 and LiAlH 4 . Solid electrolyte 20 contains one or more of these.
  • the current collection layer 16 is a member having conductivity.
  • Examples of the material of the collector layer 16 include metals selected from Ni, Ti, Fe, Cu and Si, alloys containing two or more of these elements, stainless steel, and carbon materials.
  • the negative electrode mixture layer 17 contains a solid electrolyte 20 and an active material 21 .
  • the negative electrode mixture layer 17 may contain a conductive aid.
  • Carbon black, acetylene black, ketjen black, carbon fiber, Ni, Pt and Ag are exemplified as conductive aids.
  • the active material 21 is exemplified by Li, Li—Al alloy, Li 4 Ti 5 O 12 , graphite, In, Si, Si—Li alloy, and SiO.
  • the electrolyte layer 14 and the negative electrode mixture layer 17 may contain an electrolytic solution and a binder.
  • the secondary battery 10 is manufactured, for example, as follows. A mixture of an ionic liquid in which an electrolyte salt is dissolved and a solid electrolyte 20 is mixed with a solution in which a binder is dissolved to prepare a slurry. After forming the tape, it is dried to obtain a green sheet (electrolyte sheet) for the electrolyte layer 14 .
  • Compound 19 is mixed with a mixture of ionic liquid in which electrolyte salt is dissolved and oxide 18, and then a solution in which a binder is dissolved is mixed to make a slurry. After forming a tape on the current collecting layer 12 , it is dried to obtain a green sheet (positive electrode sheet) for the positive electrode layer 11 .
  • the active material 21 is mixed with the mixture of the ionic liquid in which the electrolyte salt is dissolved and the solid electrolyte 20, and then the solution in which the binder is dissolved is mixed to make a slurry.
  • a green sheet (negative electrode sheet) for the negative electrode layer 15 is obtained by forming a tape on the current collecting layer 16 and drying it.
  • the positive electrode sheet, electrolyte sheet, and negative electrode sheet After cutting the electrolyte sheet, positive electrode sheet, and negative electrode sheet into predetermined shapes, the positive electrode sheet, electrolyte sheet, and negative electrode sheet are stacked in this order and crimped together to integrate.
  • a terminal (not shown) is connected to each of the current collecting layers 12 and 16 and sealed in a case (not shown) to obtain the secondary battery 10 including the positive electrode layer 11, the electrolyte layer 14 and the negative electrode layer 15 in this order.
  • a binder solution was obtained by dissolving polyvinylidene fluoride as a binder in dimethyl carbonate.
  • Example 1 Active material (compound) LiNi 1/3 Mn 1/3 Co 1/3 O 2 (hereinafter referred to as “NMC111”), solid electrolyte (oxide) Li 7 La 3 Zr 2 O 12 , electrolytic solution and conductive aid ( Carbon fibers) were weighed and mixed in a mortar, and then mixed with a binder solution to obtain a slurry. After the slurry was applied onto an aluminum foil, it was dried under reduced pressure at 90° C. for 1 hour to obtain a positive electrode layer in which a 30 ⁇ m-thick positive electrode mixture layer was laminated on a current collecting layer.
  • the ratio of the number of Ni atoms to the total number of atoms of Li, Ni, Mn, Co and O present in one molecule of NMC111 was 8.3%.
  • the proportions of the compound, oxide, electrolytic solution, conductive aid and binder in the positive electrode mixture layer were 67 vol%, 3 vol%, 20 vol%, 1 vol% and 9 vol%, respectively.
  • An active material naturally graphite
  • a solid electrolyte Li 7 La 3 Zr 2 O 12 an electrolytic solution and a conductive aid (carbon fiber) were weighed and mixed in a mortar, and then a binder solution was added to obtain a slurry. rice field. After coating the slurry on the copper foil, it was dried under reduced pressure at 90° C. for 1 hour to obtain a negative electrode layer in which a negative electrode mixture layer having a thickness of 40 ⁇ m was laminated on a current collecting layer.
  • the proportions of the active material, solid electrolyte, electrolytic solution, conductive aid and binder in the negative electrode mixture layer were 65 vol%, 6 vol%, 20 vol%, 1 vol% and 8 vol%, respectively.
  • a solid electrolyte Li7La3Zr2O12 and an electrolytic solution were weighed , mixed in a mortar, and then mixed with a binder solution to obtain a slurry. After coating the slurry on a synthetic resin film, it was dried under reduced pressure at 90° C. for 1 hour to obtain an electrolyte layer having a thickness of 50 ⁇ m.
  • the proportions of the solid electrolyte, electrolytic solution and binder in the electrolyte layer were 62 vol %, 29 vol % and 9 vol %, respectively.
  • Example 1 After cutting the positive electrode layer, the negative electrode layer and the electrolyte layer into a predetermined size, the electrolyte layer from which the film was removed was pasted between the positive electrode mixture layer and the negative electrode mixture layer, and then sealed in an aluminum laminate film. , the cell in Example 1 was obtained. The above operations were performed in an Ar atmosphere.
  • Example 2 In the same manner as in Example 1, except that the proportions of the positive electrode mixture layer compound, oxide, electrolytic solution, conductive aid, and binder were set to 65 vol%, 5 vol%, 20 vol%, 1 vol%, and 9 vol% in that order. A cell in Example 2 was obtained.
  • Example 3 In the same manner as in Example 1, except that the proportions of the positive electrode mixture layer compound, oxide, electrolytic solution, conductive aid, and binder were set to 60 vol%, 10 vol%, 20 vol%, 1 vol%, and 9 vol%, respectively. A cell in Example 3 was obtained.
  • Example 4 In the same manner as in Example 1, except that the proportions of the positive electrode mixture layer compound, oxide, electrolytic solution, conductive aid, and binder were set to 55 vol%, 15 vol%, 20 vol%, 1 vol%, and 9 vol%, respectively. A cell in Example 4 was obtained.
  • Example 5 In the same manner as in Example 1, except that LiNi 0.5 Mn 0.3 Co 0.2 O 2 (hereinafter referred to as “NMC532”) was used as the active material (compound) of the positive electrode mixture layer, got a cell.
  • the ratio of the number of Ni atoms to the total number of Li, Ni, Mn, Co and O atoms present in one molecule of NMC532 was 12.5%.
  • Example 6 In the same manner as in Example 1, except that the proportions of the positive electrode mixture layer compound, oxide, electrolytic solution, conductive aid, and binder were set to 69 vol%, 1 vol%, 20 vol%, 1 vol%, and 9 vol%, respectively. A cell in Example 6 was obtained.
  • Example 7 In the same manner as in Example 1, except that the proportions of the positive electrode mixture layer compound, oxide, electrolytic solution, conductive aid, and binder were set to 50 vol%, 20 vol%, 20 vol%, 1 vol%, and 9 vol%, respectively. A cell in Example 7 was obtained.
  • Example 8 In the same manner as in Example 1, except that the proportions of the positive electrode mixture layer compound, oxide, electrolytic solution, conductive aid, and binder were set to 45 vol%, 25 vol%, 20 vol%, 1 vol%, and 9 vol%, respectively. A cell in Example 8 was obtained.
  • Example 9 Example except that the compound of the positive electrode mixture layer was NMC532, and the ratios of the compound, oxide, electrolytic solution, conductive aid and binder were set to 45 vol%, 25 vol%, 20 vol%, 1 vol% and 9 vol% in order. A cell in Example 9 was obtained in the same manner as in Example 1.
  • Comparative example 1 In the same manner as in Example 1, except that the proportions of the positive electrode mixture layer compound, oxide, electrolytic solution, conductive aid, and binder were set to 70 vol%, 0 vol%, 20 vol%, 1 vol%, and 9 vol% in that order. A cell in Comparative Example 1 was obtained.
  • Comparative example 2 In the same manner as in Example 1, except that the proportions of the positive electrode mixture layer compound, oxide, electrolytic solution, conductive aid, and binder were set to 40 vol%, 30 vol%, 20 vol%, 1 vol%, and 9 vol%, respectively. A cell in Comparative Example 2 was obtained.
  • Comparative Example 3 Example except that the compound of the positive electrode mixture layer was NMC532, and the ratios of the compound, oxide, electrolytic solution, conductive aid and binder were set to 40 vol%, 30 vol%, 20 vol%, 1 vol% and 9 vol% in order.
  • a cell in Comparative Example 3 was obtained in the same manner as in Example 1.
  • the active material (compound) of the positive electrode mixture layer is LiNi 0.6 Mn 0.2 Co 0.2 O 2 (hereinafter referred to as “NMC622”), and further compound, oxide, electrolytic solution, conductive aid and binder.
  • a cell in Comparative Example 4 was obtained in the same manner as in Example 1 except that the ratios were set to 69 vol%, 1 vol%, 20 vol%, 1 vol% and 9 vol% in order.
  • the ratio of the number of Ni atoms to the total number of atoms of Li, Ni, Mn, Co and O present in one molecule of NMC622 was 15.0%.
  • the active material (compound) of the positive electrode mixture layer is LiNi 0.8 Mn 0.1 Co 0.1 O 2 (hereinafter referred to as “NMC811”), and further compound, oxide, electrolytic solution, conductive aid and binder.
  • a cell in Comparative Example 5 was obtained in the same manner as in Example 1 except that the ratios were set to 69 vol%, 1 vol%, 20 vol%, 1 vol% and 9 vol% in order.
  • the ratio of the number of Ni atoms to the total number of atoms of Li, Ni, Mn, Co and O present in one molecule of NMC811 was 20.0%.
  • the active material (compound) of the positive electrode mixture layer is LiNi 0.8 Co 0.15 Al 0.05 O 2 (hereinafter referred to as “NCA”), and further compound, oxide, electrolytic solution, conductive aid and binder.
  • a cell in Comparative Example 6 was obtained in the same manner as in Example 1 except that the ratios were set to 69 vol%, 1 vol%, 20 vol%, 1 vol% and 9 vol% in order. The ratio of the number of Ni atoms to the total number of atoms of Li, Ni, Co, Al and O present in one molecule of NCA was 20.0%.
  • Table 1 shows the abbreviations and ratios (vol%) of the compounds contained in the positive electrode mixture layer, and the number of Ni atoms with respect to the total number of Li, Ni, Mn, Co and O atoms present in one molecule of the compound.
  • the ratio (%) of the number, the ratio (vol%) of the oxide in the positive electrode mixture layer, and the determination of the capacity retention rate are described.
  • the determination of the capacity retention rate was A for the cell in Example 1-5, B for the cell in Example 6-9, and C for the cell in Comparative Example 1-6.
  • the ratio of Ni atoms in one molecule of the compound is 12.5%, but in Comparative Examples 4-6, the ratio of Ni atoms in one molecule of the compound is 15% or more. do.
  • the basicity of the compound was strengthened, the cations in the electrolyte were decomposed, and the resistance of lithium ions moving across the interface between the compound and the oxide during charging and discharging gradually increased, and the capacity retention rate increased. is presumed to have decreased.
  • the basicity of the compound was weakened, and the decomposition of cations in the electrolytic solution was reduced.
  • Examples 8 and 9 have an oxide ratio of 25 vol %, but Comparative Examples 2 and 3 differ in that the oxide ratio is 30 vol %.
  • Comparative Examples 2 and 3 since the proportion of the oxide is high, the basicity is enhanced, the cations of the electrolyte contained in the positive electrode mixture layer are decomposed, and the interface between the compound and the oxide is exposed to lithium during charging and discharging. It is presumed that the resistance of ions to move gradually increased and the capacity retention rate decreased.
  • Examples 8 and 9 the basicity was weakened, and the decomposition of cations in the electrolytic solution was reduced.
  • Example 1 Comparing Example 1 (judgment A) and Comparative Example 1 (judgment C), both agree that the ratio of Ni atoms in one molecule of the compound is 8.3%.
  • Example 1 contains 3 vol % of oxide, but Comparative Example 1 differs in that no oxide is contained.
  • the decomposition of the electrolytic solution was suppressed by the 3 vol % oxide, and it is assumed that the capacity retention rate was higher than in Comparative Example 1.
  • Example 1-5 Comparing Example 1-5 (judgment A) with Example 6-9 (judgment B), the ratio of Ni atoms in one molecule of the compound is 8.3-12.5%. match.
  • Examples 1-5 have an oxide ratio of 3-15 vol %, but Examples 6-9 differ in that the oxide ratio is less than 3 vol % or more than 15 vol %.
  • the ratio of oxides was 3-15 vol %, it is presumed that the decomposition of the electrolytic solution was suppressed by the oxides, resulting in a higher capacity retention rate than in Examples 6-9.
  • a compound containing Li, Ni, Mn, Co and O a garnet structure oxide containing Li, La and Zr, an ionic liquid containing an imidazolium cation and a sulfonylimide anion, and a binder wherein the ratio of the number of Ni atoms to the total number of atoms of Li, Ni, Mn, Co and O present in one molecule of the compound is 12.5% or less, It was found that the charge/discharge cycle life can be improved when the oxide ratio is 1 to 25 vol %.
  • the secondary battery 10 includes a positive electrode layer 11 having a positive electrode mixture layer 13 provided on one side of a current collecting layer 12 and a negative electrode layer having a negative electrode mixture layer 17 provided on one side of a current collecting layer 16.
  • 15 has been described, but it is not necessarily limited to this.
  • a secondary battery having an electrode layer (a so-called bipolar electrode) in which a positive electrode mixture layer 13 and a negative electrode mixture layer 17 are provided on both sides of a current collecting layer 12. is. If the bipolar electrodes and the electrolyte layers 14 are alternately laminated and housed in a case (not shown), a secondary battery having a so-called bipolar structure can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

充放電サイクル寿命を向上できる正極合剤層およびリチウムイオン二次電池を提供する。正極合剤層は、活物質、固体電解質およびバインダーを含む。活物質は、Li,Ni,Mn,Co及びOを含む化合物を含み、固体電解質は、Li,La及びZrを含むガーネット型構造の酸化物を含む。正極合剤層は、さらにイミダゾリウムカチオン及びスルホニルイミドアニオンを含むイオン液体を含む。化合物の分子1つの中に存在するLi,Ni,Mn,Co及びOの各原子の数の合計に対するNi原子の数の割合は12.5%以下である。正極合剤層に対する酸化物の量は1-25vol%である。

Description

正極合剤層およびリチウムイオン二次電池
 本発明は正極合剤層およびリチウムイオン二次電池に関する。
 Li,Ni,Mn,Co及びOを含む化合物からなる活物質に、Li,La及びZrを含むガーネット型構造の酸化物からなる固体電解質を複合した複合体と、バインダーと、を含む正極合剤層は知られている(特許文献1)。
特開2019-175830号公報
 先行技術では、化合物と酸化物との間の固体-固体の界面をリチウムイオンが移動する抵抗が高いので、充放電のときにリチウムイオンが界面を移動する量が次第に減少する。即ち充放電サイクル寿命が不十分である。
 本発明はこの問題点を解決するためになされたものであり、充放電サイクル寿命を向上できる正極合剤層およびリチウムイオン二次電池を提供することを目的とする。
 この目的を達成するために本発明の正極合剤層は、活物質、固体電解質およびバインダーを含み、活物質は、Li,Ni,Mn,Co及びOを含む化合物を含み、固体電解質は、Li,La及びZrを含むガーネット型構造の酸化物を含む。正極合剤層は、さらにイミダゾリウムカチオン及びスルホニルイミドアニオンを含むイオン液体を含む。化合物の分子1つの中に存在するLi,Ni,Mn,Co及びOの各原子の数の合計に対するNi原子の数の割合は12.5%以下であり、正極合剤層に対する酸化物の量は1-25vol%である。本発明のリチウムイオン二次電池は前記正極合剤層を含む。
 本発明の正極合剤層によればイオン液体を含むので、化合物と酸化物との間に液体-固体の界面ができる。化合物の分子1つの中に存在するLi,Ni,Mn,Co及びOの各原子の数の合計に対するNi原子の数の割合は12.5%以下であり、正極合剤層に対する酸化物の量は1-25vol%だから、化合物や酸化物の塩基性が弱まり、イオン液体に含まれるイミダゾリウムカチオンの分解を低減できる。化合物と酸化物との間の液体-固体の界面をリチウムイオンが移動する抵抗が低く維持されるので、正極合剤層やリチウムイオン二次電池の充放電サイクル寿命を向上できる。
一実施の形態におけるリチウムイオン二次電池の断面図である。
 以下、本発明の好ましい実施の形態について添付図面を参照して説明する。図1は一実施の形態におけるリチウムイオン二次電池(以下「二次電池」と称す)10の模式的な断面図である。本実施形態における二次電池10は、発電要素が固体で構成された固体電池である。発電要素が固体で構成されているとは、発電要素の骨格が固体で構成されていることを意味し、例えば骨格中に液体が含浸した形態を排除するものではない。
 図1に示すように二次電池10は、順に正極層11、電解質層14及び負極層15を含む。正極層11、電解質層14及び負極層15はケース(図示せず)に収容されている。
 正極層11は集電層12と正極合剤層13とが重ね合わされている。集電層12は導電性を有する部材である。集電層12の材料はNi,Ti,Fe及びAlから選ばれる金属、これらの2種以上の元素を含む合金やステンレス鋼、炭素材料が例示される。
 正極合剤層13は、固体電解質、活物質、イオン液体およびバインダーを含む。正極合剤層13の抵抗を低くするために、正極合剤層13に導電助剤が含まれていても良い。導電助剤は、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維、Ni、Pt及びAgが例示される。
 固体電解質は、Li,La,Zr及びOを含むガーネット型構造のリチウムイオン伝導性を有する酸化物18を含む。ガーネット型構造の酸化物18の基本組成はLiLa12(M=Nb,Ta)である。酸化物18は、基本組成の5価のMカチオンを4価のカチオンに置換したLiLaZr12が例示される。酸化物18は、例えば立方晶系(空間群Ia-3d(-は回反操作を意味するオーバーラインを示す)、JCPDS:84-1753)の結晶構造をとる。酸化物18は塩基性を示す。
 酸化物18は、Li,La及びZr以外に、Mg,Al,Si,Ca,Ti,V,Ga,Sr,Y,Nb,Sn,Sb,Ba,Hf,Ta,W,Bi,Rb及びランタノイド(Laは除く)からなる群より選択される少なくとも1種の元素を含むことができる。例えばLiLaZr1.50.512,Li6.15LaZr1.75Ta0.25Al0.212,Li6.15LaZr1.75Ta0.25Ga0.212,Li6.25LaZrGa0.2512,Li6.4LaZr1.4Ta0.612,Li6.5LaZr1.75Te0.2512,Li6.75LaZr1.75Nb0.2512,Li6.9LaZr1.675Ta0.289Bi0.03612,Li6.46Ga0.23LaZr1.850.1512,Li6.8La2.95Ca0.05Zr1.75Nb0.2512,Li7.05La3.00Zr1.95Gd0.0512,Li6.20Ba0.30La2.95Rb0.05Zr12が挙げられる。
 酸化物18は、特にMg及び元素A(AはCa,Sr及びBaからなる群から選択される少なくとも1種の元素)の少なくとも一方を含み、各元素のモル比が以下の(1)から(3)を全て満たすもの、又は、Mg及び元素Aの両方を含み、各元素のモル比が以下の(4)から(6)を全て満たすものが好適である。元素Aは、酸化物18のイオン伝導率を高くするため、Srが好ましい。
(1)1.33≦Li/(La+A)≦3
(2)0≦Mg/(La+A)≦0.5
(3)0≦A/(La+A)≦0.67
(4)2.0≦Li/(La+A)≦2.5
(5)0.01≦Mg/(La+A)≦0.14
(6)0.04≦A/(La+A)≦0.17
 正極合剤層13の断面に現出する酸化物18の円相当径のメジアン径は、0.5-10μm以下が好適である。酸化物18の表面積を適度な大きさにし、酸化物18の表面に介在するリチウムイオン伝導性を有するイオン液体と酸化物18との間のリチウムイオンの移動量を確保するためである。
 酸化物18のメジアン径を求めるには、まず正極合剤層13の断面(研磨面や集束イオンビーム(FIB)を照射して得られた面)に現出する酸化物18の走査型電子顕微鏡(SEM)による画像を解析して、酸化物18の粒子ごとの面積から円相当径を算出し、体積基準の粒度分布を求める。メジアン径は、粒度分布における頻度の積算値が50%となる円相当径である。粒度分布を求める画像は、精度を確保するため、正極合剤層13のうち400μm以上の面積とする。
 正極合剤層13に含まれる活物質(反応物質)は、Li,Ni,Mn,Co及びOを含む化合物19を含む。化合物19は、化合物19の分子1つの中に存在するLi,Ni,Mn,Co及びOの各原子の数の合計に対するNi原子の数の割合が12.5%以下である。化合物19の塩基性を弱めるためである。
 化合物19は、化学式LiNiMnCoで表される化合物が例示される。化学式において、MはMg,Ti,Nb,Fe,Cr,Si,Al,Ga,V,Zn,Cu,Sr,Mo,Zr,Sn,Ta,W,La,Ce,Pb,Bi及びGeから選ばれる1種または2種以上の元素を示す。a,b,c,xは0.3≦a<1、0<b≦0.7、0<c≦0.7、0≦x≦0.3かつ3a+3b+3c+(Mの価数)×x=3を満たす数を示す。但しa/(3+a+b+c)≦0.125である。
 化合物19は、LiNi1/3Mn1/3Co1/3、LiNi0.2Mn0.4Co0.4、LiNi0.5Mn0.3Co0.2、LiNi0.33Mn0.33Co0.31Mg0.03、LiNi0.33Mn0.33Co0.31Zn0.03が例示される。
 化合物19と酸化物18との反応の抑制を目的として、化合物19の表面に被覆層を設けることができる。被覆層は、Al,ZrO,LiNbO,LiTi12,LiTaO,LiNbO,LiAlO,LiZrO,LiWO,LiTiO,Li,LiPO及びLiMoOが例示される。
 活物質は、化合物19以外に、例えばLiNiVO,LiCoPO,LiCoVO等の逆スピネル型酸化物、LiMn1.5Ni0.5,LiMn,LiCo0.3Ni0.7等のスピネル型酸化物、Fe(SO,LiFePO等のオリビン型酸化物、LiCoO,Li1+x(Fe,Mn,Co)1-X等の層状酸化物を含んでいても良い。化合物19以外の活物質の量は、化合物19を含む活物質の全体の体積に対して0vol%以上50vol%未満である。
 正極合剤層13に含まれるイオン液体は、電解質塩が溶解している。イオン液体は、カチオン及びアニオンからなる化合物であり、常温常圧で液体である。電解質塩が溶解したイオン液体が電解液を構成するので、電解液の難燃性を向上できる。電解液の各種物性および機能は、電解質塩およびイオン液体の種類、塩濃度により決定される。
 電解質塩は、正極層11と負極層15との間のカチオンの授受のために用いられる化合物である。電解質塩は例えばリチウム塩である。電解質塩のアニオンは、ハロゲン化物イオン(I,Cl,Br等),SCN,BF ,BF(CF,BF(C,PF ,ClO ,SbF ,N(SOF) ,N(SOCF ,N(SO ,B(C ,B(O ,C(SOF) ,C(SOCF ,CFCOO,CFSO,CSO,B(O ,RCOO(Rは炭素数1-4のアルキル基、フェニル基またはナフチル基)等が例示される。
 電解質塩のアニオンは、スルホニル基-S(=O)-を有するN(SOF) ,N(SOCF ,N(SO 等のスルホニルイミドが好ましい。スルホニルイミドアニオンは、塩濃度が高くなっても電解液の粘度上昇およびイオン伝導率低下の影響が小さいからである。N(SOF) を略称で[FSI]:ビス(フルオロスルホニル)イミドアニオンと呼び、N(SOCF を略称で[TFSI]:ビス(トリフルオロメタンスルホニル)イミドアニオンと呼ぶ場合がある。
 イオン液体はイミダゾリウムをカチオン種とするものが好適である。イミダゾリウムカチオンは、例えば式(1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000001
 式(1)中、R-Rは、それぞれ独立に、水素基またはアルキル基を示す。アルキル基は、置換基を有していても良い。R-Rで表されるアルキル基(置換基を含む)の炭素数は、好ましくは1-10、より好ましくは1-5、さらに好ましくは1-4である。電解液のイオン伝導度を確保するためである。
 置換基は特に制限がない。置換基は、アルキル基、シクロアルキル基、アリール基、ヒドロキシル基、カルボキシル基、ニトロ基、トリフルオロメチル基、アミド基、カルバモイル基、エステル基、カルボニルオキシ基、シアノ基、ハロゲノ基、アルコキシ基、アリールオキシ基、スルホンアミド基などが例示される。
 イオン液体のアニオン種はスルホニルイミドが好適である。スルホニルイミドアニオンは、N(SOF) ,N(SOCF ,N(SO ,N(SO 等が例示される。イオン液体は、1-エチル-3-メチルイミダゾリウム ビス(フルオロスルホニル)イミド(EMI-FSI)、1-エチル-3-メチルイミダゾリウム ビス(トリフルオロメタンスルホニル)イミド(EMI-TFSI)が例示される。イミダゾリウムカチオン及びスルホニルイミドアニオンを含むイオン液体であって電解質塩が溶解したイオン液体(電解液)は、高いイオン伝導性を確保できるので好ましい。
 電解液のリチウムイオン濃度は、1mol/dm以上が好ましく、3mol/dm以上がより好ましい。正極合剤層13に含まれる電解液の酸化側電位窓を拡張しつつイオン伝導率を確保するためである。これは酸化物18と電解液との相互作用によるものと推察している。リチウムイオン濃度が3mol/dm以上の電解液は、全ての溶媒分子がLiに配位してもLiの安定溶媒和状態である4配位を満足できないので、対アニオンによる配位、いわゆるイオン会合が形成される。イオン会合が支配的に存在し未配位溶媒が存在しない電解液では、電解液の最高被占軌道(HOMO)が低下し酸化電位が上昇する。全ての溶媒分子がLiに配位しているので、電解液の酸化電位の上昇が、正極合剤層13の酸化側電位窓の拡張効果として現れる。
 正極合剤層13に対する酸化物18の量は1-25vol%が好ましく、3-15vol%がより好ましい。酸化物18によるリチウムイオン伝導性を確保すると共に、酸化物18による正極合剤層13の塩基性を抑えイオン液体の分解を低減するためである。
 正極合剤層13に対する化合物19の量は40-85vol%が好ましく、40-70vol%がより好ましい。二次電池10の放電容量を確保し、正極合剤層13の低い内部抵抗を確保するためである。
 正極合剤層13に対するイオン液体の量は3-35vol%が好ましく、10-30vol%がより好ましい。正極合剤層13の低い内部抵抗を確保し、正極合剤層13からのイオン液体の染み出しの発生を低減するためである。
 正極合剤層13に対する酸化物18、化合物19及びイオン液体の量(vol%)は、正極合剤層13を凍結させ、又は、4官能性のエポキシ系樹脂などに正極合剤層13を埋め込み固めた後、正極合剤層13の断面(研磨面や集束イオンビーム(FIB)を照射して得られた面)から無作為に選択した5000倍の視野を対象に、エネルギー分散型X線分光器(EDS)が搭載されたSEMを用いて分析し、求める。分析は、La,Zr,Ni,Sの分布を特定したり反射電子像のコントラストを画像解析したりして、酸化物18、化合物19及びイオン液体の面積を特定し、正極合剤層13の断面における面積の割合を正極合剤層13における体積の割合とみなして酸化物18、化合物19及びイオン液体の量(vol%)を得る。
 正極合剤層13に含まれるバインダーは、酸化物18及び化合物19を結着するポリマーであれば、特に制限がない。バインダーは、フッ素化樹脂、ポリオレフィン、スチレンブタジエンゴムなどのゴム状重合体、ポリイミド、ポリビニルピロリドン、ポリビニルアルコール、セルロースエーテルが例示される。
 フッ素化樹脂は、完全フッ素化樹脂、部分フッ素化樹脂、フッ素化樹脂共重合体が挙げられる。完全フッ素化樹脂はポリテトラフルオロエチレンが例示される。部分フッ素化樹脂は、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン、ポリフッ化ビニルが例示される。フッ素化樹脂共重合体は、4フッ化エチレン・パーフルオロアルキルビニルエーテル共重合体、4フッ化エチレン・6フッ化プロピレン共重合体、エチレン4フッ化エチレン共重合体、エチレン・クロロトリフルオロエチレン共重合体が例示される。
 フッ素化樹脂の1種のフッ化ビニリデン系ポリマーは、-CHCF-を含む限り、特に制限がない。フッ化ビニリデン系ポリマーは、フッ化ビニリデンの単独重合体、フッ化ビニリデンと共重合性モノマーとの共重合体が例示される。
 共重合性モノマーは、ハロゲン含有モノマー(フッ化ビニリデンを除く)、非ハロゲン系の共重合性モノマーが挙げられる。ハロゲン含有モノマーは、塩化ビニル等の塩素含有モノマー;トリフルオロエチレン、テトラフルオロエチレン、クロロトリフルオロエチレン、ヘキサフルオロプロピレン、ペルフルオロアルキルビニルエーテル等のフッ素含有モノマーが例示される。非ハロゲン系の共重合性モノマーは、エチレン、プロピレン等のオレフィン;アクリル酸、メタクリル酸、これらのエステル又は塩等のアクリルモノマー;アクリロニトリル、酢酸ビニル、スチレン等のビニルモノマーが例示される。共重合性モノマーの1種または2種以上がフッ化ビニリデンに重合して共重合体を構成する。
 正極合剤層13に対するバインダーの量(vol%)は、10vol%以下(但し0vol%は除く)が好適である。バインダーによって正極合剤層13の成形性およびハンドリング性を確保すると共に、バインダーが含まれることによる正極合剤層13のイオン伝導性の低下を低減するためである。正極合剤層13に対するバインダーの量(vol%)は、上記と同様に、SEM-EDSによる分析によって求めた正極合剤層13の断面におけるバインダーの面積の割合と同じとみなす。
 正極合剤層13は、酸化物18(固体電解質)、化合物19(活物質)、電解質塩、イオン液体およびバインダーを含む。イオン液体はイミダゾリウムカチオン及びスルホニルイミドアニオンを含む。電解質塩が溶解したイオン液体(電解液)が、酸化物18と化合物19との間に介在するので、酸化物18と化合物19との間に液体-固体の界面ができる。
 正極合剤層13の塩基によってイミダゾリウムカチオンのプロトンが脱離すると、イオン液体が分解し、電解液のイオン伝導性は低下する。しかし、化合物19の分子1つの中に存在するLi,Ni,Mn,Co及びOの各原子の数の合計に対するNi原子の数の割合は12.5%以下であり、正極合剤層13に対する酸化物18の量は1-25vol%だから、正極合剤層13の塩基を弱くすることができる。電解液に含まれるイミダゾリウムカチオンの分解を低減できるので、酸化物18と化合物19との間の液体-固体の界面をリチウムイオンが移動する抵抗を低く維持できる。よって正極合剤層13の充放電サイクル寿命を向上できる。
 電解質層14は、固体電解質20が含まれる。固体電解質20は、酸化物系、硫化物系、水素化物系が例示される。酸化物系は、ペロブスカイト型、NASICON型、LISICON型、ガーネット型が例示される。硫化物系は、チオリシコン型、Li10GeP12型、アルジロダイト型、Li11型、LiS-P等のガラスやガラスセラミック系が例示される。水素化物系は、アルカリ金属またはアルカリ土類金属の水素化物であって、18族型元素周期律表の13族元素(例えばB,Al,Ga,In,Ta)の少なくとも1種を含むものが例示される。例えばLiBH,LiAlHが挙げられる。固体電解質20は、これらのうちの1種以上を含む。
 負極層15は集電層16と負極合剤層17とが重ね合わされている。集電層16は導電性を有する部材である。集電層16の材料はNi,Ti,Fe,Cu及びSiから選ばれる金属、これらの元素の2種以上を含む合金やステンレス鋼、炭素材料が例示される。
 負極合剤層17は、固体電解質20及び活物質21を含む。負極合剤層17の抵抗を低くするために、負極合剤層17に導電助剤が含まれていても良い。導電助剤は、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維、Ni、Pt及びAgが例示される。活物質21は、Li、Li-Al合金、LiTi12、黒鉛、In、Si、Si-Li合金、及び、SiOが例示される。正極合剤層13と同様に、電解質層14や負極合剤層17に電解液やバインダーが含まれていても良い。
 二次電池10は、例えば以下のように製造される。電解質塩を溶解したイオン液体と固体電解質20とを混合したものに、バインダーを溶かした溶液を混合し、スラリーを作る。テープ成形後、乾燥して電解質層14のためのグリーンシート(電解質シート)を得る。
 電解質塩を溶解したイオン液体と酸化物18とを混合したものに化合物19を混合し、さらにバインダーを溶かした溶液を混合し、スラリーを作る。集電層12の上にテープ成形後、乾燥して正極層11のためのグリーンシート(正極シート)を得る。
 電解質塩を溶解したイオン液体と固体電解質20とを混合したものに活物質21を混合し、さらにバインダーを溶かした溶液を混合し、スラリーを作る。集電層16の上にテープ成形後、乾燥して負極層15のためのグリーンシート(負極シート)を得る。
 電解質シート、正極シート及び負極シートをそれぞれ所定の形に裁断した後、正極シート、電解質シート、負極シートの順に重ね、互いに圧着して一体化する。集電層12,16にそれぞれ端子(図示せず)を接続しケース(図示せず)に封入して、順に正極層11、電解質層14及び負極層15を含む二次電池10が得られる。
 本発明を実施例によりさらに詳しく説明するが、本発明はこの実施例に限定されるものではない。
 (電解液の調製)
 イオン液体1-エチル-3-メチルイミダゾリウム ビス(フルオロスルホニル)イミド(EMI-FSI)に、電解質塩LiN(SOF)を3mol/dm複合し、電解液を得た。
 (バインダー溶液の調製)
 ポリフッ化ビニリデンをバインダーとして炭酸ジメチルに溶かしてバインダー溶液を得た。
 (実施例1)
 活物質(化合物)LiNi1/3Mn1/3Co1/3(以下「NMC111」と称す)、固体電解質(酸化物)LiLaZr12、電解液および導電助剤(炭素繊維)を秤量し、それらを乳鉢で混合した後、さらにバインダー溶液を混合してスラリーを得た。アルミニウム箔の上にスラリーを塗工した後、90℃で1時間減圧乾燥して、厚さ30μmの正極合剤層が集電層に積層された正極層を得た。NMC111の分子1つの中に存在するLi,Ni,Mn,Co及びOの各原子の数の合計に対するNi原子の数の割合は8.3%であった。正極合剤層における化合物、酸化物、電解液、導電助剤およびバインダーの割合は、順に67vol%,3vol%,20vol%,1vol%,9vol%であった。
 活物質(天然黒鉛)、固体電解質LiLaZr12、電解液および導電助剤(炭素繊維)を秤量し、それらを乳鉢で混合した後、さらにバインダー溶液を混合してスラリーを得た。銅箔の上にスラリーを塗工した後、90℃で1時間減圧乾燥して、厚さ40μmの負極合剤層が集電層に積層された負極層を得た。負極合剤層における活物質、固体電解質、電解液、導電助剤およびバインダーの割合は、順に65vol%,6vol%,20vol%,1vol%,8vol%であった。
 固体電解質LiLaZr12および電解液を秤量し、それらを乳鉢で混合した後、さらにバインダー溶液を混合してスラリーを得た。合成樹脂製フィルムの上にスラリーを塗工した後、90℃で1時間減圧乾燥して、厚さ50μmの電解質層を得た。電解質層における固体電解質、電解液およびバインダーの割合は、順に62vol%,29vol%,9vol%であった。
 正極層、負極層および電解質層を所定の大きさに切断した後、正極合剤層と負極合剤層との間に、フィルムを剥がした電解質層を張り合わせた後、アルミラミネートフィルムに封入して、実施例1におけるセルを得た。以上の作業はAr雰囲気において行った。
 (実施例2)
 正極合剤層の化合物、酸化物、電解液、導電助剤およびバインダーの割合を、順に65vol%,5vol%,20vol%,1vol%,9vol%とした以外は、実施例1と同様にして、実施例2におけるセルを得た。
 (実施例3)
 正極合剤層の化合物、酸化物、電解液、導電助剤およびバインダーの割合を、順に60vol%,10vol%,20vol%,1vol%,9vol%とした以外は、実施例1と同様にして、実施例3におけるセルを得た。
 (実施例4)
 正極合剤層の化合物、酸化物、電解液、導電助剤およびバインダーの割合を、順に55vol%,15vol%,20vol%,1vol%,9vol%とした以外は、実施例1と同様にして、実施例4におけるセルを得た。
 (実施例5)
 正極合剤層の活物質(化合物)をLiNi0.5Mn0.3Co0.2(以下「NMC532」と称す)にした以外は、実施例1と同様にして、実施例5におけるセルを得た。NMC532の分子1つの中に存在するLi,Ni,Mn,Co及びOの各原子の数の合計に対するNi原子の数の割合は12.5%であった。
 (実施例6)
 正極合剤層の化合物、酸化物、電解液、導電助剤およびバインダーの割合を、順に69vol%,1vol%,20vol%,1vol%,9vol%とした以外は、実施例1と同様にして、実施例6におけるセルを得た。
 (実施例7)
 正極合剤層の化合物、酸化物、電解液、導電助剤およびバインダーの割合を、順に50vol%,20vol%,20vol%,1vol%,9vol%とした以外は、実施例1と同様にして、実施例7におけるセルを得た。
 (実施例8)
 正極合剤層の化合物、酸化物、電解液、導電助剤およびバインダーの割合を、順に45vol%,25vol%,20vol%,1vol%,9vol%とした以外は、実施例1と同様にして、実施例8におけるセルを得た。
 (実施例9)
 正極合剤層の化合物をNMC532にし、さらに化合物、酸化物、電解液、導電助剤およびバインダーの割合を、順に45vol%,25vol%,20vol%,1vol%,9vol%とした以外は、実施例1と同様にして、実施例9におけるセルを得た。
 (比較例1)
 正極合剤層の化合物、酸化物、電解液、導電助剤およびバインダーの割合を、順に70vol%,0vol%,20vol%,1vol%,9vol%とした以外は、実施例1と同様にして、比較例1におけるセルを得た。
 (比較例2)
 正極合剤層の化合物、酸化物、電解液、導電助剤およびバインダーの割合を、順に40vol%,30vol%,20vol%,1vol%,9vol%とした以外は、実施例1と同様にして、比較例2におけるセルを得た。
 (比較例3)
 正極合剤層の化合物をNMC532にし、さらに化合物、酸化物、電解液、導電助剤およびバインダーの割合を、順に40vol%,30vol%,20vol%,1vol%,9vol%とした以外は、実施例1と同様にして、比較例3におけるセルを得た。
 (比較例4)
 正極合剤層の活物質(化合物)をLiNi0.6Mn0.2Co0.2(以下「NMC622」と称す)にし、さらに化合物、酸化物、電解液、導電助剤およびバインダーの割合を、順に69vol%,1vol%,20vol%,1vol%,9vol%とした以外は、実施例1と同様にして、比較例4におけるセルを得た。NMC622の分子1つの中に存在するLi,Ni,Mn,Co及びOの各原子の数の合計に対するNi原子の数の割合は15.0%であった。
 (比較例5)
 正極合剤層の活物質(化合物)をLiNi0.8Mn0.1Co0.1(以下「NMC811」と称す)にし、さらに化合物、酸化物、電解液、導電助剤およびバインダーの割合を、順に69vol%,1vol%,20vol%,1vol%,9vol%とした以外は、実施例1と同様にして、比較例5におけるセルを得た。NMC811の分子1つの中に存在するLi,Ni,Mn,Co及びOの各原子の数の合計に対するNi原子の数の割合は20.0%であった。
 (比較例6)
 正極合剤層の活物質(化合物)をLiNi0.8Co0.15Al0.05(以下「NCA」と称す)にし、さらに化合物、酸化物、電解液、導電助剤およびバインダーの割合を、順に69vol%,1vol%,20vol%,1vol%,9vol%とした以外は、実施例1と同様にして、比較例6におけるセルを得た。NCAの分子1つの中に存在するLi,Ni,Co,Al及びOの各原子の数の合計に対するNi原子の数の割合は20.0%であった。
 (充放電試験)
 実施例および比較例におけるセルの充放電試験を室温で行った。試験は、端子電圧が充電上限電圧(3.6V)に達するまで0.1Cレートの定電流でセルに充電し、0.1Cレートの定電流で放電した。これを1サイクルとして10サイクル繰り返した。1サイクル時点の放電容量に対する10サイクル時点の放電容量の割合(容量維持率)が99%以上をA、容量維持率が95%以上99%未満をB、容量維持率が95%未満をCと判定した。
Figure JPOXMLDOC01-appb-T000002
 表1に、正極合剤層に含まれる化合物の略称および割合(vol%)、化合物の分子1つの中に存在するLi,Ni,Mn,Co及びOの各原子の数の合計に対するNi原子の数の割合(%)、正極合剤層における酸化物の割合(vol%)、容量維持率の判定を記した。容量維持率の判定は、実施例1-5におけるセルがA、実施例6-9におけるセルがB、比較例1-6におけるセルがCであった。
 実施例6(判定B)と比較例4-6(判定C)とを対比すると、両者は酸化物が1vol%含まれている点が一致する。一方、実施例6は化合物の分子1つの中のNi原子の割合が12.5%だが、比較例4-6は化合物の分子1つの中のNi原子の割合が15%以上である点が相違する。比較例4-6は化合物の塩基性が強まり、電解液のカチオンが分解し、充放電のときに化合物と酸化物との間の界面をリチウムイオンが移動する抵抗が次第に高くなり、容量維持率が低くなったと推察される。一方、実施例6は化合物の塩基性が弱まり、電解液のカチオンの分解が低減したので、比較例4-6に比べて容量維持率が高くなったと推察される。
 実施例8,9(判定B)と比較例2,3(判定C)とを対比すると、両者は化合物の分子1つの中のNi原子の割合が12.5%以下である点が一致する。一方、実施例8,9は酸化物の割合が25vol%だが、比較例2,3は酸化物の割合が30vol%である点が相違する。比較例2,3は酸化物の割合が多いので、塩基性が強まり、正極合剤層に含まれる電解液のカチオンが分解し、充放電のときに化合物と酸化物との間の界面をリチウムイオンが移動する抵抗が次第に高くなり、容量維持率が低くなったと推察される。一方、実施例8,9は塩基性が弱まり、電解液のカチオンの分解が低減したので、比較例2,3に比べて容量維持率が高くなったと推察される。
 実施例1(判定A)と比較例1(判定C)とを対比すると、両者は化合物の分子1つの中のNi原子の割合が8.3%である点が一致する。一方、実施例1は酸化物が3vol%含まれているが、比較例1は酸化物が含まれていない点が相違する。実施例1は、3vol%の酸化物によって電解液の分解が抑制され、比較例1に比べて容量維持率が高くなったと推察される。
 実施例1-5(判定A)と実施例6-9(判定B)とを対比すると、両者は化合物の分子1つの中のNi原子の割合が8.3-12.5%である点が一致する。一方、実施例1-5は酸化物の割合が3-15vol%だが、実施例6-9は酸化物の割合が3vol%未満または15vol%を超えている点が相違する。実施例1-5は酸化物の割合が3-15vol%なので、酸化物によって電解液の分解が抑制され、実施例6-9に比べて容量維持率が高くなったと推察される。
 この実施例によれば、Li,Ni,Mn,Co及びOを含む化合物、Li,La及びZrを含むガーネット型構造の酸化物、イミダゾリウムカチオン及びスルホニルイミドアニオンを含むイオン液体、及び、バインダーを含む正極合剤層であって、化合物の分子1つの中に存在するLi,Ni,Mn,Co及びOの各原子の数の合計に対するNi原子の数の割合が12.5%以下であり、酸化物の割合が1-25vol%であると、充放電サイクル寿命を向上できることが明らかになった。
 以上、実施の形態に基づき本発明を説明したが、本発明は上記実施形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。
 実施形態では、二次電池10として、集電層12の片面に正極合剤層13が設けられた正極層11、及び、集電層16の片面に負極合剤層17が設けられた負極層15を備えるものを説明したが、必ずしもこれに限られるものではない。例えば集電層12の両面に正極合剤層13と負極合剤層17とをそれぞれ設けた電極層(いわゆるバイポーラ電極)を備える二次電池に、実施形態における各要素を適用することは当然可能である。バイポーラ電極と電解質層14とを交互に積層しケース(図示せず)に収容すれば、いわゆるバイポーラ構造の二次電池が得られる。
 10 リチウムイオン二次電池
 13 正極合剤層
 18 酸化物
 19 化合物

Claims (3)

  1.  活物質、固体電解質およびバインダーを含み、
     前記活物質は、Li,Ni,Mn,Co及びOを含む化合物を含み、
     前記固体電解質は、Li,La及びZrを含むガーネット型構造の酸化物を含む正極合剤層であって、
     イミダゾリウムカチオン及びスルホニルイミドアニオンを含むイオン液体をさらに含み、
     前記化合物の分子1つの中に存在するLi,Ni,Mn,Co及びOの各原子の数の合計に対するNi原子の数の割合は12.5%以下であり、
     前記正極合剤層に対する前記酸化物の量は1-25vol%である正極合剤層。
  2.  前記正極合剤層に対する前記酸化物の量は3-15vol%である請求項1記載の正極合剤層。
  3.  請求項1又は2に記載の正極合剤層を含むリチウムイオン二次電池。
PCT/JP2022/013041 2021-05-06 2022-03-22 正極合剤層およびリチウムイオン二次電池 WO2022234733A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22798840.9A EP4336583A1 (en) 2021-05-06 2022-03-22 Positive electrode mixture layer and lithium-ion secondary battery
KR1020237041928A KR20240004986A (ko) 2021-05-06 2022-03-22 양극 합제층 및 리튬 이온 이차 전지
CN202280032895.XA CN117242592A (zh) 2021-05-06 2022-03-22 正极合剂层和锂离子二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-078300 2021-05-06
JP2021078300A JP2022172507A (ja) 2021-05-06 2021-05-06 正極合剤層およびリチウムイオン二次電池

Publications (1)

Publication Number Publication Date
WO2022234733A1 true WO2022234733A1 (ja) 2022-11-10

Family

ID=83932096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013041 WO2022234733A1 (ja) 2021-05-06 2022-03-22 正極合剤層およびリチウムイオン二次電池

Country Status (5)

Country Link
EP (1) EP4336583A1 (ja)
JP (1) JP2022172507A (ja)
KR (1) KR20240004986A (ja)
CN (1) CN117242592A (ja)
WO (1) WO2022234733A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019175830A (ja) 2017-05-29 2019-10-10 太平洋セメント株式会社 リチウムイオン二次電池用正極活物質複合体又はナトリウムイオン二次電池用正極活物質複合体、これらを用いた二次電池、並びにこれらの製造方法
JP2020038771A (ja) * 2018-09-03 2020-03-12 トヨタ自動車株式会社 固体電池用正極活物質層
JP2020113444A (ja) * 2019-01-11 2020-07-27 トヨタ自動車株式会社 全固体電池用の正極活物質層
WO2021033424A1 (ja) * 2019-08-22 2021-02-25 日本特殊陶業株式会社 蓄電デバイス用電極および蓄電デバイス

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019175830A (ja) 2017-05-29 2019-10-10 太平洋セメント株式会社 リチウムイオン二次電池用正極活物質複合体又はナトリウムイオン二次電池用正極活物質複合体、これらを用いた二次電池、並びにこれらの製造方法
JP2020038771A (ja) * 2018-09-03 2020-03-12 トヨタ自動車株式会社 固体電池用正極活物質層
JP2020113444A (ja) * 2019-01-11 2020-07-27 トヨタ自動車株式会社 全固体電池用の正極活物質層
WO2021033424A1 (ja) * 2019-08-22 2021-02-25 日本特殊陶業株式会社 蓄電デバイス用電極および蓄電デバイス

Also Published As

Publication number Publication date
CN117242592A (zh) 2023-12-15
KR20240004986A (ko) 2024-01-11
JP2022172507A (ja) 2022-11-17
EP4336583A1 (en) 2024-03-13

Similar Documents

Publication Publication Date Title
US11721835B2 (en) Solid electrolyte material and battery
US11404718B2 (en) Solid electrolyte material and battery
US20200328459A1 (en) Solid electrolyte material and battery
WO2020070955A1 (ja) ハロゲン化物固体電解質材料およびこれを用いた電池
CN104835950B (zh) 正极活性物质、其制备方法以及可再充电锂电池
JP5800316B2 (ja) ナトリウムイオン二次電池
JP7432897B2 (ja) 固体電解質材料およびそれを用いた電池
CN111354924B (zh) 钠离子电池正极活性材料、钠离子电池正极材料、钠离子电池正极和钠离子电池及制备方法
US20230223518A1 (en) Modified cathode for high-voltage lithium-ion battery and methods of manufacturing thereof
JPWO2018100792A1 (ja) 正極活物質、および、正極活物質を用いた電池
US11870055B2 (en) Surface-fluorinated silicon-containing electrodes
US20210280906A1 (en) Lithium ion conductive solid electrolyte material, and battery using same
US20230103996A1 (en) Solid electrolyte material, and battery in which same is used
US10177370B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
WO2022234733A1 (ja) 正極合剤層およびリチウムイオン二次電池
WO2015040818A1 (ja) 非水電解質二次電池
US11984554B2 (en) Solid electrolyte material and battery including the same
WO2023149426A1 (ja) リチウムイオン伝導体、シート及び蓄電デバイス
WO2023195212A1 (ja) オキシハロゲン化物材料、電池、および電池システム
JP2018166054A (ja) 正極およびこれを用いたリチウムイオン二次電池
JP2022171030A (ja) 固体電解質、電解質組成物、電解質シート及び蓄電デバイス
JP2022171018A (ja) 電解質組成物、電解質シート及び二次電池
JP2022171043A (ja) 固体電解質、電解質組成物、電解質シート及び蓄電デバイス
JP2022171013A (ja) 電解質組成物、電解質シート及び二次電池
JP2016195107A (ja) 正極材料,非水電解質二次電池用正極及び非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22798840

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280032895.X

Country of ref document: CN

Ref document number: 18558787

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237041928

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237041928

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022798840

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022798840

Country of ref document: EP

Effective date: 20231206