WO2022234626A1 - 測距装置、測距方法及び測距プログラム - Google Patents

測距装置、測距方法及び測距プログラム Download PDF

Info

Publication number
WO2022234626A1
WO2022234626A1 PCT/JP2021/017411 JP2021017411W WO2022234626A1 WO 2022234626 A1 WO2022234626 A1 WO 2022234626A1 JP 2021017411 W JP2021017411 W JP 2021017411W WO 2022234626 A1 WO2022234626 A1 WO 2022234626A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light receiving
receiving element
sensitivity
distance measurement
Prior art date
Application number
PCT/JP2021/017411
Other languages
English (en)
French (fr)
Inventor
真士 福永
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112021007183.1T priority Critical patent/DE112021007183B4/de
Priority to PCT/JP2021/017411 priority patent/WO2022234626A1/ja
Priority to CN202180097579.6A priority patent/CN117295969A/zh
Priority to JP2023518559A priority patent/JP7286058B2/ja
Publication of WO2022234626A1 publication Critical patent/WO2022234626A1/ja
Priority to US18/367,524 priority patent/US20230417883A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/36Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4868Controlling received signal intensity or exposure of sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/493Extracting wanted echo signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/495Counter-measures or counter-counter-measures using electronic or electro-optical means

Definitions

  • the present disclosure relates to technology for distance measurement using light.
  • Ranging technology includes a technology for measuring the distance to a range-finding object using light.
  • Direct ranging uses the ToF (Time of Flight) principle to perform ranging.
  • indirect ranging uses the phase difference of sensor light to perform ranging.
  • the ToF principle is a method of calculating a distance from the time it takes for light to travel back and forth between a range-finding object and a sensor.
  • one of the principles of indirect ranging is the indirect ToF principle.
  • light used for ranging is amplitude-modulated.
  • the distance is indirectly calculated from the phase difference between the irradiation light irradiated to the object for distance measurement and the reflected light reflected by the object for distance measurement.
  • the present disclosure relates to ranging techniques that utilize the indirect ToF principle.
  • the wavelength of the light used for distance measurement differs depending on the distance measurement object. Light with a short wavelength such as ultraviolet rays is used when a small object such as a gas or a particle is the target of distance measurement. On the other hand, when an object having a certain size, such as a person or a car, is to be measured, light with a large wavelength such as infrared light is used.
  • LiDAR Light Detection and Ranging
  • a photodiode is generally used as a light-receiving element of a sensor of an optical distance measuring device.
  • An optical rangefinder using a photodiode is expected to be used in various environments such as indoors, outdoors, daytime, and nighttime. Therefore, an optical distance measuring device using a photodiode adopts a method of removing noise in order to maintain sensitivity. Specifically, in such an optical distance measuring device, noise is eliminated by adjusting the sensitivity of the light receiving element to maximize the S/N ratio.
  • Patent Document 1 discloses an optical distance measuring device that uses an APD (Avalanche Photo Diode) as a light receiving element. Further, Patent Document 1 discloses a method of maximizing the S/N ratio by controlling the bias voltage applied to the APD.
  • An APD is a light receiving element that can increase the sensitivity of a photodiode using the principle of avalanche amplification. By controlling the voltage applied to the APD, the most sensitive state can be maintained.
  • a jamming attack is an attack that interferes with reflected light to make distance measurement difficult.
  • a jamming attack there is a blind attack that intentionally reduces the amount of reflected light to make accurate distance measurement difficult. Countermeasures against jamming attacks including blind attacks are difficult, and jamming attacks are a fatal problem for an optical rangefinder having only one sensor.
  • the light receiving sensitivity of the light receiving element of the rangefinder As a countermeasure, if the light-receiving sensitivity of the light-receiving element is increased, the light received by the light-receiving element will include a large amount of light other than the reflected light. As a result, the noise component increases in the electrical signal output by the light receiving element. Therefore, if the light receiving sensitivity of the light receiving element is increased when the amount of reflected light is reduced, there is a problem that accurate distance measurement cannot be performed due to the presence of noise components.
  • the main purpose of this disclosure is to solve such problems. More specifically, the main object is to enable accurate distance measurement even when the amount of reflected light is reduced.
  • the distance measuring device is a sensitivity adjustment unit that adjusts the light receiving sensitivity of the light receiving element so that the light receiving sensitivity is high; After the light-receiving sensitivity is adjusted by the sensitivity adjustment unit, the irradiation light emitted from the light-emitting element paired with the light-receiving element and the reflected light reflected by the distance measurement object, which is the object of distance measurement, are reflected from the irradiation light. and a noise elimination unit that analyzes the temporal transition of the phase difference with respect to the light received by the light receiving element, and eliminates noise components contained in the light received by the light receiving element.
  • accurate distance measurement can be performed even when the amount of reflected light is reduced.
  • FIG. 2 is a diagram showing a functional configuration example of a distance measuring device according to Embodiment 1;
  • FIG. 2 is a diagram showing a hardware configuration example of a distance measuring device according to Embodiment 1;
  • FIG. 4 is a flowchart showing an operation example of the distance measuring device according to Embodiment 1;
  • FIG. 1 shows a functional configuration example of a distance measuring device 100 according to this embodiment.
  • the distance measuring device 100, the light emitting element 300, and the light receiving element 400 are shown as independent devices, but the distance measuring device 100, the light emitting element 300, and the light receiving element 400 may be integrated. .
  • the light-emitting element 300 emits light toward a range-finding object 200, which is a range-finding object.
  • the light emitted by the light emitting element 300 is hereinafter referred to as irradiation light 301 .
  • the light emitting element 300 emits, for example, a radar pulse as the irradiation light 301 .
  • the light-receiving element 400 receives the light reflected by the range-finding object 200 from the irradiation light 301 .
  • the light reflected by the range-finding object 200 is hereinafter referred to as reflected light 401 .
  • the light receiving element 400 also receives disturbance light 402 in addition to the reflected light 401 .
  • the light receiving element 400 photoelectrically converts the received light and transmits an electric signal obtained by the photoelectric conversion to the distance measuring device 100 .
  • the electrical signal that the light receiving element 400 transmits to the distance measuring device 100 is hereinafter referred to as a light reception signal 411 .
  • the light receiving element 400 is a DPD (Dynamic Photo Diode).
  • a DPD is a photodiode that operates at a low voltage and has adjustable light sensitivity. Unlike APDs, DPDs can operate at low voltages and can achieve higher measurement accuracy than APDs under low light conditions.
  • the light-emitting element 300 and the light-receiving element 400 are paired to form a LiDAR.
  • Distance measuring device 100 measures the distance from light receiving element 400 to distance measuring object 200 .
  • Rangefinder 100 is a computer.
  • the operation procedure of the distance measuring device 100 corresponds to the distance measurement processing method.
  • a program that implements the operation of the rangefinder 100 corresponds to a rangefinder program.
  • the ranging device 100 has a determining section 101 , a sensitivity adjusting section 102 , a noise eliminating section 103 and a ranging section 104 .
  • the determination unit 101 receives the light receiving signal 411 from the light receiving element 400 . Then, the determination unit 101 performs FFT (Fast Fourier Transform) on the received light signal 411 .
  • the received light signal 411 after FFT is hereinafter referred to as an FFT signal 412 .
  • the determination unit 101 analyzes the FFT signal 412 and determines whether or not the received light intensity of the light receiving element 400 is appropriate. If the received light intensity of the light receiving element 400 is not appropriate, the determination unit 101 determines to change the light receiving sensitivity of the light receiving element 400 .
  • the light receiving sensitivity modes of the light receiving element 400 include a high sensitivity mode and a normal sensitivity mode.
  • the determination unit 101 determines to change the light receiving sensitivity mode of the light receiving element 400 to the high sensitivity mode.
  • the determination unit 101 determines to change the light receiving sensitivity mode of the light receiving element 400 to the normal sensitivity mode. If the received light intensity of the light receiving element 400 is appropriate and the current light receiving sensitivity mode is the high sensitivity mode, the determining section 101 outputs the FFT signal 412 to the noise eliminating section 103 . On the other hand, if the received light intensity of the light receiving element 400 is appropriate and the current light receiving sensitivity mode is the normal sensitivity mode, the determining section 101 outputs the FFT signal 412 to the distance measuring section 104 .
  • the sensitivity adjusting section 102 adjusts the light receiving sensitivity of the light receiving element 400 according to the determination of the determining section 101 .
  • the sensitivity adjustment unit 102 changes the light sensitivity mode of the light receiving element 400 to the high sensitivity mode. That is, the sensitivity adjustment unit 102 adjusts the light receiving sensitivity of the light receiving element 400 so that the light receiving sensitivity of the light receiving element 400 is increased.
  • the sensitivity adjustment unit 102 changes the light sensitivity mode of the light receiving element 400 to the normal sensitivity mode.
  • the sensitivity adjustment unit 102 adjusts the light sensitivity of the light receiving element 400 so that the light receiving sensitivity of the light receiving element 400 is lowered.
  • the sensitivity adjusting section 102 adjusts the light receiving sensitivity of the light receiving element 400 by controlling the reverse bias voltage.
  • the sensitivity adjustment section 102 applies a reverse bias voltage to the light receiving element 400 .
  • DPD reverse bias voltage
  • the sensitivity adjusting section 102 stops applying the reverse bias voltage. Note that the processing performed by the sensitivity adjustment unit 102 corresponds to sensitivity adjustment processing.
  • the noise removal section 103 removes noise components from the FFT signal 412 output from the determination section 101 .
  • the noise removal section 103 removes the noise component from the FFT signal 412 when the light receiving sensitivity mode of the light receiving element 400 is the high sensitivity mode and the light receiving intensity of the light receiving element 400 is appropriate. If the light-receiving sensitivity of the light-receiving element 400 is increased, the light received by the light-receiving element 400 will contain more disturbance light 402 , and the FFT signal 412 will contain more noise components. Therefore, the noise removal unit 103 removes noise components from the FFT signal 412 .
  • the noise removal unit 103 analyzes the time transition of the phase difference between the irradiation light 301 and the light received by the light receiving element 400 (reflected light 401 and disturbance light 402). Then, among the components contained in the light received by the light receiving element 400, the component whose phase difference with the irradiation light 301 changes randomly is removed as a noise component.
  • the noise removal section 103 outputs the FFT signal 412 from which the noise component has been removed to the ranging section 104 as the noise-removed FFT signal 413 . Note that the processing performed by the noise elimination unit 103 corresponds to noise elimination processing.
  • the distance measurement unit 104 measures the distance from the light receiving element 400 to the distance measurement object 200 using the FFT signal 412 output from the determination unit 101 .
  • the distance measurement unit 104 uses the FFT signal 412 to detect the range from the light receiving element 400 to the object 200 for distance measurement. Measure the distance to Also, the distance measurement unit 104 measures the distance from the light receiving element 400 to the object 200 for distance measurement using the noise-removed FFT signal 413 output from the noise removal unit 103 .
  • the distance measurement unit 104 when the light receiving sensitivity mode of the light receiving element 400 is the high sensitivity mode and the light receiving intensity of the light receiving element 400 is appropriate, the distance measurement unit 104 outputs the FFT signal from which the noise component has been removed by the noise removal unit 103. The distance from the light-receiving element 400 to the range-finding object 200 is measured using the noise-removed FFT signal 412 .
  • the distance measurement unit 104 may output the distance measurement result to an application program inside the distance measurement device 100 or to an application program outside the distance measurement device 100 . Alternatively, the distance measurement unit 104 may store the distance measurement result in the auxiliary storage device 903 to be described later without outputting the distance measurement result.
  • FIG. 2 shows a hardware configuration example of the distance measuring device 100 according to the present embodiment.
  • the distance measuring device 100 includes a processor 901, a main storage device 902, an auxiliary storage device 903, and a communication device 904 as hardware.
  • the auxiliary storage device 903 stores a program that implements the functions of the determination unit 101 , the sensitivity adjustment unit 102 , the noise removal unit 103 and the distance measurement unit 104 . These programs are loaded from the auxiliary storage device 903 to the main storage device 902 . Then, the processor 901 executes these programs to perform the operations of the determination section 101 , the sensitivity adjustment section 102 , the noise removal section 103 and the distance measurement section 104 .
  • FIG. 2 schematically shows a state in which the processor 901 is executing a program that implements the functions of the determination unit 101 , the sensitivity adjustment unit 102 , the noise removal unit 103 and the distance measurement unit 104 .
  • FIG. 3 is a flow chart showing an operation example of the distance measuring device 100 according to this embodiment.
  • An operation example of the distance measuring device 100 according to the present embodiment will be described below with reference to FIG.
  • step S ⁇ b>101 the determination unit 101 receives the received light signal 411 from the light receiving element 400 via the communication device 904 .
  • the received light signal 411 is an electric signal obtained by photoelectric conversion in the light receiving element 400, as described above.
  • the received light signal 411 is a three-dimensional point group signal.
  • the determination unit 101 performs FFT on the received light signal 411 and converts the received light signal 411 into an FFT signal 412 . Specifically, the determination unit 101 performs four-point sampling on the received light signal 411 .
  • the phase difference between the irradiation light 301 and the reflected light 401 or the phase difference between the irradiation light 301 and the disturbance light 402 at each point of the three-dimensional point group can be obtained.
  • the intensity of the reflected light 401 or the intensity of the disturbance light 402 at each point of the three-dimensional point group is obtained by the determination unit 101 performing four-point sampling on the received light signal 411 .
  • the determination unit 101 analyzes the FFT signal 412 and determines whether or not the received light intensity of the light receiving element 400 is appropriate. That is, the determination unit 101 determines whether the intensity of light received by the light receiving element 400 is appropriate. As described above, the light received by the light receiving element 400 includes disturbance light 402 in addition to reflected light 401 . Specifically, the determining unit 101 determines that the received light intensity is not appropriate when the received light intensity is too small or when the received light intensity is too large. A case where the received light intensity is too small is a case where the received light intensity value of each point in the three-dimensional point group is 0 (invalid value).
  • the received light intensity value of each point in the three-dimensional point group is saturated at the maximum value (invalid value).
  • the determining unit 101 determines that the received light intensity is appropriate except when the received light intensity is too small and when the received light intensity is too large. If the received light intensity is inappropriate, the process proceeds to step S103. If the received light intensity is appropriate, the process proceeds to step S108.
  • step S103 the determination unit 101 determines whether or not a period in which the received light intensity is inappropriate continues. For example, when it is determined that the received light intensity is inappropriate twice in succession, the determining unit 101 determines that the period during which the received light intensity is inappropriate continues. If the determination unit 101 determines that the period in which the received light intensity is inappropriate continues, the process proceeds to step S104. On the other hand, if the determining unit 101 does not determine that the period in which the received light intensity is inappropriate continues, the process proceeds to step S101, waits for the reception of the next light receiving signal 411 from the light receiving element 400, and then receives the next light receiving signal 411. The above-described processing is performed on the received light signal 411 obtained.
  • step S104 the determination unit 101 determines whether or not the received light intensity is too low. If the received light intensity is too low, the process proceeds to step S105. On the other hand, when the received light intensity is excessive, the process proceeds to step S106.
  • step S105 the determination unit 101 determines to change the light-receiving sensitivity mode of the light-receiving element 400 to the high-sensitivity mode. That is, since the light receiving intensity of the light receiving element 400 is too low in the normal sensitivity mode, the determination unit 101 determines that the light receiving sensitivity of the light receiving element 400 needs to be increased.
  • the determination unit 101 outputs a high-sensitivity mode instruction signal that instructs the sensitivity adjustment unit 102 to change the light-receiving sensitivity mode to the high-sensitivity mode. Further, the determination unit 101 sets the sensitivity mode flag indicating the current light sensitivity mode of the light receiving element 400 to the high sensitivity mode.
  • step S106 the determination unit 101 determines to change the light receiving sensitivity mode of the light receiving element 400 to the normal sensitivity mode. That is, since the light receiving intensity of the light receiving element 400 is excessive in the high sensitivity mode, the determination unit 101 determines that the light receiving sensitivity of the light receiving element 400 needs to be lowered. Determination section 101 outputs a normal sensitivity mode instruction signal for instructing sensitivity adjustment section 102 to change the light sensitivity mode to the normal sensitivity mode. Also, the determination unit 101 sets the sensitivity mode flag to the normal sensitivity mode.
  • the sensitivity adjustment section 102 changes the light sensitivity mode of the light receiving element 400 according to the instruction signal from the determination section 101 . That is, when the high-sensitivity mode instruction signal is output from the determination section 101, the sensitivity adjustment section 102 changes the light-receiving sensitivity mode of the light-receiving element 400 to the high-sensitivity mode. Specifically, the sensitivity adjustment section 102 applies a reverse bias voltage to the light receiving element 400 to increase the light receiving sensitivity of the light receiving element 400 . On the other hand, when the normal sensitivity mode instruction signal is output from the determination section 101, the sensitivity adjustment section 102 changes the light receiving sensitivity mode of the light receiving element 400 to the normal sensitivity mode. Specifically, the sensitivity adjustment unit 102 stops applying the reverse bias voltage to the light receiving element 400 to lower the light receiving sensitivity of the light receiving element 400 . After that, the process returns to step S101.
  • step S108 the determination unit 101 confirms the current light receiving sensitivity mode. Specifically, the determination unit 101 refers to the sensitivity mode flag to check the current light sensitivity mode. If the current light sensitivity mode is the high sensitivity mode, the process proceeds to step S109. Also, in this case, determination section 101 outputs FFT signal 412 to noise removal section 103 . On the other hand, if the current light sensitivity mode is the normal sensitivity mode, the process proceeds to step S110. Also, in this case, determination section 101 outputs FFT signal 412 to distance measurement section 104 .
  • step S ⁇ b>109 the noise removal unit 103 analyzes the time transition of the phase difference at each point included in the FFT signal 412 to extract noise components, and removes the extracted noise components from the FFT signal 412 .
  • the noise removal unit 103 generates time-series information of the phase difference at each point from the n (n ⁇ 2) FFT signals 412 .
  • the noise elimination unit 103 can generate time-series information of the phase difference at each point from the latest FFT signal 412 and the previous FFT signal 412 .
  • the noise removal unit 103 analyzes the time-series information of the phase difference at each point and extracts the noise component.
  • the phase difference at the point corresponding to the signal component (the point within the object for distance measurement 200 ) is the phase difference between the irradiated light 301 and the reflected light 401 . Therefore, the phase difference at the point corresponding to the signal component changes according to the distance between the distance measurement object 200 and the light receiving element 400 . For example, when at least one of the distance measurement object 200 and the light receiving element 400 is moving, the point corresponding to the signal component is proportional to the movement of at least one of the distance measurement object 200 and the light receiving element 400. Phase difference changes. Further, when the distance measurement object 200 and the distance measurement object 200 are stationary, the phase difference at the point corresponding to the signal component does not change.
  • the phase difference at the point corresponding to the noise component is the phase difference between the irradiation light 301 and the disturbance light 402. FIG. Therefore, the phase difference at the point corresponding to the noise component changes randomly, and no regularity can be found.
  • the noise elimination unit 103 extracts such points where the phase difference changes randomly as noise components, and eliminates the extracted noise components from the FFT signal 412 . Then, noise removal section 103 outputs FFT signal 412 from which the noise component has been removed to ranging section 104 as noise-removed FFT signal 413 . The process then proceeds to step S110.
  • the distance measurement unit 104 measures the distance between the distance measurement object 200 and the light receiving element 400 .
  • the distance measurement unit 104 uses the FFT signal 412 to measure the distance from the light receiving element 400 to the distance measurement object 200 .
  • the noise elimination FFT signal 413 is output from the noise elimination section 103
  • the distance measurement section 104 measures the distance from the light receiving element 400 to the distance measurement object 200 using the noise elimination FFT signal 413 .
  • the distance measurement unit 104 measures the distance from the light receiving element 400 to the distance measurement object 200 based on the indirect ToF principle.
  • the determining unit 101 determines that the light receiving intensity of the light receiving element 400 is not appropriate continues (NO in step S102 and YES in step S103).
  • the determination unit 101 determines to change the light sensitivity mode of the light receiving element 400 to the high sensitivity mode (YES in step S104, step S105), and the sensitivity adjustment unit 102 increases the light sensitivity of the light receiving element 400. (Step S107).
  • the determination unit 101 determines that the received light intensity of the light receiving element 400 is appropriate (YES in step S102), and the current light sensitivity mode is the high sensitivity mode ("high sensitivity mode" in step S108). ), the noise removal unit 103 removes the noise component from the FFT signal 412 . If the light-receiving sensitivity of the light-receiving element 400 is increased, the light received by the light-receiving element 400 will contain more disturbance light 402 , and the FFT signal 412 will contain more noise components. Therefore, the noise removal unit 103 removes noise components from the FFT signal 412 . As a result, the distance measurement unit 104 measures the distance to the distance measurement object 200 using the noise-removed FFT signal 413 .
  • the determination unit 101 determines to change the light sensitivity mode of the light receiving element 400 to the normal sensitivity mode (NO in step S104, step S106), and the sensitivity adjustment unit 102 lowers the light receiving sensitivity of the light receiving element 400. (Step S107).
  • the determination unit 101 determines that the received light intensity of the light receiving element 400 is appropriate (YES in step S102), and the current light sensitivity mode is the normal sensitivity mode ("normal sensitivity mode" in step S108). ), the noise removal unit 103 does not need to remove the noise component from the FFT signal 412 . In other words, the light received by the light receiving element 400 does not contain much disturbance light 402 , and the FFT signal 412 does not contain many noise components. Therefore, it is not necessary to remove noise components.
  • the distance measurement unit 104 measures the distance to the distance measurement object 200 using the FFT signal 412 as it is.
  • the light receiving sensitivity is adjusted according to the amount of reflected light, and noise components that increase due to the adjustment of the light receiving sensitivity are removed. Therefore, according to the present embodiment, even when the amount of reflected light is reduced by a blind attack or a blind spot, the S/N ratio can be increased and accurate distance measurement can be performed.
  • a processor 901 shown in FIG. 2 is an IC (Integrated Circuit) that performs processing.
  • the processor 901 is a CPU (Central Processing Unit), a DSP (Digital Signal Processor), or the like.
  • the main memory device 902 shown in FIG. 2 is a RAM (Random Access Memory).
  • the auxiliary storage device 903 shown in FIG. 2 is a ROM (Read Only Memory), flash memory, HDD (Hard Disk Drive), or the like.
  • the communication device 904 shown in FIG. 2 is an electronic circuit that performs data communication processing.
  • the communication device 904 is, for example, a communication chip or a NIC (Network Interface Card).
  • the auxiliary storage device 903 also stores an OS (Operating System). At least part of the OS is executed by the processor 901 .
  • the processor 901 executes a program that realizes the functions of the determination unit 101, the sensitivity adjustment unit 102, the noise removal unit 103, and the distance measurement unit 104 while executing at least part of the OS. Task management, memory management, file management, communication control, and the like are performed by the processor 901 executing the OS.
  • at least one of information, data, signal values, and variable values indicating the processing results of the determination unit 101, the sensitivity adjustment unit 102, the noise removal unit 103, and the distance measurement unit 104 is stored in the main storage device 902 and the auxiliary storage device 903.
  • a program that realizes the functions of the determination unit 101, the sensitivity adjustment unit 102, the noise removal unit 103, and the distance measurement unit 104 is compatible with magnetic disks, flexible disks, optical disks, compact disks, Blu-ray (registered trademark) disks, DVDs, and the like. It may be stored in a transport recording medium.
  • a portable recording medium storing a program for implementing the functions of the determination unit 101, the sensitivity adjustment unit 102, the noise removal unit 103, and the distance measurement unit 104 may be distributed.
  • the “units” of the determination unit 101, the sensitivity adjustment unit 102, the noise removal unit 103, and the distance measurement unit 104 may be read as “circuit”, “step”, “procedure”, “processing”, or “circuitry”. good.
  • the distance measuring device 100 may be realized by a processing circuit.
  • the processing circuits are, for example, logic ICs (Integrated Circuits), GAs (Gate Arrays), ASICs (Application Specific Integrated Circuits), and FPGAs (Field-Programmable Gate Arrays).
  • the determination unit 101, the sensitivity adjustment unit 102, the noise elimination unit 103, and the distance measurement unit 104 are each realized as part of the processing circuit.
  • the general concept of processors and processing circuits is referred to as "processing circuitry.”
  • processors and processing circuitry are each examples of "processing circuitry.”

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

感度調整部(102)は、受光素子(400)の受光感度を、受光感度が高くなるように調整する。雑音除去部(103)は、感度調整部(102)により受光感度が調整された後に、受光素子(400)と対になる発光素子(300)から照射された照射光と照射光が測距の対象物である測距対象物(200)で反射した反射光を含む受光素子(400)で受光された光との位相差の時間推移を解析し、受光素子(400)で受光した光に含まれる雑音成分を除去する。

Description

測距装置、測距方法及び測距プログラム
 本開示は、光を用いて測距を行う技術に関する。
 測距技術には、光を用いて測距対象物までの距離を測定する技術がある。
 光を用いた測距には、直接測距と間接測距の2種類がある。直接測距は、ToF(Time of Flight)原理を利用して測距を行う。一方、間接測距は、センサ光の位相差を利用して測距を行う。
 ToF原理とは、光が測距対象物とセンサとを往復する時間から距離を計算する方法である。一方で、間接測距の原理の1つに間接ToF原理がある。間接ToF原理では、測距に用いる光に振幅変調をかける。そして、間接ToF原理では、測距対象物に照射した照射光と、測距対象物で反射した反射光との位相差から距離を間接的に算出する。本開示は間接ToF原理を利用した測距技術に関する。
 また、測距対象物によって測距に用いられる光の波長が異なる。気体、粒子等の小さな物体が測距対象物である場合は紫外線のような波長が小さい光が用いられる。一方で、人、車等のある程度の大きさを持つ物体が測距対象物である場合は赤外線のような波長が大きい光が用いられる。
 特に、近赤外線を用いて測距を行う測距装置をLiDAR(Light Detection and Ranging)という。LiDARは車両、ドローン等のモビリティに搭載され、将来的に幅広い場所で用いられると予想される。
 光測距装置のセンサの受光素子として、一般的にフォトダイオードが用いられる。フォトダイオードを用いた光測距装置は、屋内、野外、昼間、夜間といった多様な環境下で使用されることが想定される。
 そのため、フォトダイオードを用いた光測距装置では感度を保つために雑音を取り除く方法が取り入れられている。具体的には、このような光測距装置では、受光素子の感度を調整してS/N比を最大化することによって雑音の除去を行っている。
 例えば、特許文献1では、受光素子としてAPD(Avalanche Photo Diode)を用いる光測距装置を開示する。また、特許文献1では、APDに印加するバイアス電圧を制御してS/N比を最大化する方法が開示されている。APDはアバランシェ増幅原理を利用してフォトダイオードの感度を上げることができる受光素子である。APDに印加する電圧を制御することで、最も感度がよい状態を保つことができる。
特開2008-286669号公報
 光測距装置は光を使用するため、光を反射しにくい物質(ブラインドスポット)及び妨害攻撃が脅威となる。
 妨害攻撃とは、反射光を妨害して測距を困難にする攻撃である。妨害攻撃として、意図的に反射光の光量を減少させて正確な測距を困難にするブラインド攻撃がある。ブラインド攻撃を含む妨害攻撃に対する対策は難しく、センサが一つのみの光測距装置にとって妨害攻撃は致命的な問題である。
 例えばブラインド攻撃によって極端に反射光の光量が減る場合は、対策として、測距装置の受光素子の受光感度を高くすることが考えられる。しかし、受光素子の受光感度を高くすると受光素子が受光する光に反射光以外の光が多く含まれることになる。この結果、受光素子が出力する電気信号内で雑音成分が増加する。このため、反射光の光量が減少する場合に受光素子の受光感度を高くすると、雑音成分の存在により正確に測距することができないという課題がある。
 本開示は、このような課題を解決することを主な目的とする。より具体的には、反射光の光量が減少する場合でも、正確な測距を可能にすることを主な目的とする。
 本開示に係る測距装置は、
 受光素子の受光感度を、前記受光感度が高くなるように調整する感度調整部と、
 前記感度調整部により前記受光感度が調整された後に、前記受光素子と対になる発光素子から照射された照射光と前記照射光が測距の対象物である測距対象物で反射した反射光を含む前記受光素子で受光された光との位相差の時間推移を解析し、前記受光素子で受光した光に含まれる雑音成分を除去する雑音除去部とを有する。
 本開示によれば、反射光の光量が減少する場合でも、正確な測距を行うことができる。
実施の形態1に係る測距装置の機能構成例を示す図。 実施の形態1に係る測距装置のハードウェア構成例を示す図。 実施の形態1に係る測距装置の動作例を示すフローチャート。
 以下、実施の形態を図を用いて説明する。以下の実施の形態の説明及び図面において、同一の符号を付したものは、同一の部分又は相当する部分を示す。
 実施の形態1.
***構成の説明***
 図1は、本実施の形態に係る測距装置100の機能構成例を示す。
 図1では、測距装置100と発光素子300と受光素子400はそれぞれ独立した個別の機器として示されているが、測距装置100と発光素子300と受光素子400が一体となっていてもよい。
 発光素子300は、測距の対象物である測距対象物200に向けて光を照射する。以下では、発光素子300が照射する光を照射光301という。
 発光素子300は、照射光301として例えばレーダパルスを照射する。
 受光素子400は、照射光301が測距対象物200で反射した光を受光する。以下、測距対象物200で反射した光を反射光401という。
 受光素子400は、反射光401以外に外乱光402も受光する。
 受光素子400は、受光した光の光電変換を行い、光電変換により得られた電気信号を測距装置100に送信する。以下では、受光素子400が測距装置100に送信する電気信号を受光信号411という。
 本実施の形態では、受光素子400はDPD(Dynamic Photo Diode)である。DPDは低電圧で動作する受光感度を調整可能なフォトダイオードである。DPDは、APDと異なり低電圧で動作可能であり、弱い光の下でAPDよりも高い測定精度を実現することができる。
 なお、発光素子300と受光素子400は対となり、LiDARを構成する。
 測距装置100は、受光素子400から測距対象物200までの距離を測定する。
 測距装置100は、コンピュータである。測距装置100の動作手順は、測距処理方法に相当する。また、測距装置100の動作を実現するプログラムは、測距プログラムに相当する。
 測距装置100は、判定部101、感度調整部102、雑音除去部103及び測距部104を有する。
 判定部101は、受光素子400から受光信号411を受信する。そして、判定部101は、受光信号411にFFT(高速フーリエ変換)を行う。以下では、FFT実施後の受光信号411をFFT信号412という。
 また、判定部101は、FFT信号412を解析し、受光素子400の受光強度が適切か否かを判定する。受光素子400の受光強度が適切でない場合は、判定部101は、受光素子400の受光感度を変更することを決定する。本実施の形態では、受光素子400の受光感度モードとして、高感度モードと通常感度モードとがある。判定部101は、受光素子400の受光強度が過小であると判定した場合に、受光素子400の受光感度モードを高感度モードに変更することを決定する。一方、受光素子400の受光強度が過大であると判定した場合に、判定部101は、受光素子400の受光感度モードを通常感度モードに変更することを決定する。
 また、受光素子400の受光強度が適切であり、現在の受光感度モードが高感度モードであれば、判定部101はFFT信号412を雑音除去部103に出力する。一方、受光素子400の受光強度が適切であり、現在の受光感度モードが通常感度モードであれば、判定部101はFFT信号412を測距部104に出力する。
 感度調整部102は、判定部101の決定に従い、受光素子400の受光感度を調整する。
 判定部101が受光素子400の受光感度モードを高感度モードに変更することを決定した場合は、感度調整部102は、受光素子400の受光感度モードを高感度モードに変更する。つまり、感度調整部102は、受光素子400の受光感度が高くなるように、受光素子400の受光感度を調整する。一方、判定部101が受光素子400の受光感度モードを通常感度モードに変更することを決定した場合は、感度調整部102は、受光素子400の受光感度モードを通常感度モードに変更する。つまり、感度調整部102は、受光素子400の受光感度が低くなるように、受光素子400の受光感度を調整する。
 具体的には、感度調整部102は、逆バイアス電圧を制御して受光素子400の受光感度を調整する。受光素子400の受光感度を高くする場合は、感度調整部102は受光素子400に逆バイアス電圧を印加する。受光素子400(DPD)に逆バイアス電圧を印加することによって、半導体原子に光子が衝突したときに発生する電子を加速させることができる。この結果、受光素子400は、微弱な光を捕捉することができるようになる。一方、受光素子400の受光感度を低くする場合は、感度調整部102は、逆バイアス電圧の印加を停止する。
 なお、感度調整部102により行われる処理は感度調整処理に相当する。
 雑音除去部103は、判定部101から出力されたFFT信号412から雑音成分を除去する。つまり、雑音除去部103は、受光素子400の受光感度モードが高感度モードであり、受光素子400の受光強度が適切である場合に、FFT信号412から雑音成分を除去する。受光素子400の受光感度を高くすると受光素子400が受光する光に外乱光402が多く含まれることになり、FFT信号412に雑音成分が多く含まれることになる。このため、雑音除去部103は、FFT信号412から雑音成分を除去する。
 より具体的には、雑音除去部103は、FFT信号412において、照射光301と、受光素子400で受光した光(反射光401と外乱光402)との位相差の時間推移を解析する。そして、受光素子400で受光した光に含まれる成分のうち、照射光301との位相差がランダムに変化する成分を雑音成分として除去する。
 雑音除去部103は、雑音成分が除去された後のFFT信号412を雑音除去FFT信号413として測距部104に出力する。
 なお、雑音除去部103により行われる処理は雑音除去処理に相当する。
 測距部104は、判定部101から出力されたFFT信号412を用いて受光素子400から測距対象物200までの距離を測定する。つまり、測距部104は、受光素子400の受光感度モードが通常感度モードであり、受光素子400の受光強度が適切である場合に、FFT信号412を用いて受光素子400から測距対象物200までの距離を測定する。
 また、測距部104は、雑音除去部103から出力された雑音除去FFT信号413を用いて受光素子400から測距対象物200までの距離を測定する。つまり、測距部104は、受光素子400の受光感度モードが高感度モードであり、受光素子400の受光強度が適切である場合に、雑音除去部103により雑音成分が除去された状態のFFT信号412である雑音除去FFT信号413を用いて受光素子400から測距対象物200までの距離を測定する。
 測距部104は、測距結果を測距装置100内部のアプリケーションプログラムに出力してもよいし、測距装置100外部のアプリケーションプログラムに出力してもよい。また、測距部104は、測距結果を出力せずに、後述する補助記憶装置903に格納してもよい。
 図2は、本実施の形態に係る測距装置100のハードウェア構成例を示す。
 測距装置100は、ハードウェアとして、プロセッサ901、主記憶装置902、補助記憶装置903及び通信装置904を備える。
 補助記憶装置903には、判定部101、感度調整部102、雑音除去部103及び測距部104の機能を実現するプログラムが記憶されている。
 これらプログラムは、補助記憶装置903から主記憶装置902にロードされる。そして、プロセッサ901がこれらプログラムを実行して、判定部101、感度調整部102、雑音除去部103及び測距部104の動作を行う。
 図2では、プロセッサ901が判定部101、感度調整部102、雑音除去部103及び測距部104の機能を実現するプログラムを実行している状態を模式的に表している。
***動作の説明***
 次に、本実施の形態に係る測距装置100の動作例を説明する。
 図3は、本実施の形態に測距装置100の動作例を示すフローチャートである。以下、図3を参照して本実施の形態に係る測距装置100の動作例を説明する。
 ステップS101において、判定部101は、通信装置904を介して受光素子400から受光信号411を受信する。受光信号411は、前述したように、受光素子400での光電変換により得られた電気信号である。受光信号411は、3次元点群の信号である。判定部101は、受信した受光信号411にFFTを行い、受光信号411をFFT信号412に変換する。判定部101は、具体的には、受光信号411に4点サンプリングを行う。判定部101が受光信号411に4点サンプリングを行うことで、3次元点群の各点の照射光301と反射光401との位相差又は照射光301と外乱光402との位相差が得られる。また、判定部101が受光信号411に4点サンプリングを行うことで、3次元点群の各点での反射光401の強度又は外乱光402の強度が得られる。
 次に、ステップS102において、判定部101は、FFT信号412を解析し、受光素子400の受光強度が適切か否かを判定する。すなわち、判定部101は、受光素子400で受光された光の強さが適切か否かを判定する。前述したように、受光素子400で受光された光には反射光401の他に外乱光402にも含まれる。
 具体的には、判定部101は、受光強度が過小である場合又は受光強度が過大である場合に、受光強度が適切ではないと判定する。受光強度が過小である場合とは、3次元点群の各点の受光強度値が0(無効値)である場合である。一方、受光強度が過大である場合は、3次元点群の各点の受光強度値が最大値(無効値)で飽和している場合である。受光強度が過小である場合及び受光強度が過大である場合以外は、判定部101は受光強度が適切と判定する。
 受光強度が不適であれば処理がステップS103に進む。
 受光強度が適切であれば処理がステップS108に進む。
 ステップS103では、判定部101は、受光強度が不適な期間が継続しているか否かを判定する。
 例えば、2回連続して受光強度が不適であると判定した場合に、判定部101は受光強度が不適な期間が継続していると判定する。
 受光強度が不適な期間が継続していると判定部101が判定した場合は、処理がステップS104に進む。
 一方、受光強度が不適な期間が継続していると判定部101が判定しなかった場合は、処理がステップS101に進み、受光素子400からの次の受光信号411の受信を待ち、次に受信した受光信号411に対して上述の処理が行われる。
 ステップS104では、判定部101は、受光強度が過小であるか否かを判定する。
 受光強度が過小である場合は、処理がステップS105に進む。一方、受光強度が過大である場合は、処理がステップS106に進む。
 ステップS105では、判定部101は、受光素子400の受光感度モードを高感度モードに変更するよう決定する。すなわち、通常感度モードでは受光素子400の受光強度が過小であるため、判定部101は、受光素子400の受光感度を高くする必要があると判定する。
 判定部101は、感度調整部102に受光感度モードを高感度モードに変更するよう指示する高感度モード指示信号を出力する。
 また、判定部101は、受光素子400の現在の受光感度モードを示す感度モードフラグを高感度モードに設定する。
 ステップS106では、判定部101は、受光素子400の受光感度モードを通常感度モードに変更するよう決定する。すなわち、高感度モードでは受光素子400の受光強度が過大であるため、判定部101は、受光素子400の受光感度を低くする必要があると判定する。
 判定部101は、感度調整部102に受光感度モードを通常感度モードに変更するよう指示する通常感度モード指示信号を出力する。
 また、判定部101は、感度モードフラグを通常感度モードに設定する。
 次に、ステップS107において、感度調整部102が判定部101からの指示信号に従って受光素子400の受光感度モードを変更する。
 すなわち、判定部101から高感度モード指示信号が出力されている場合は、感度調整部102は、受光素子400の受光感度モードを高感度モードに変更する。具体的には、感度調整部102は、受光素子400に逆バイアス電圧を印加して、受光素子400の受光感度を高くする。
 一方、判定部101から通常感度モード指示信号が出力されている場合は、感度調整部102は、受光素子400の受光感度モードを通常感度モードに変更する。具体的には、感度調整部102は、受光素子400への逆バイアス電圧の印加を停止して、受光素子400の受光感度を低くする。
 その後、処理がステップS101に戻る。
 また、ステップS102において受光素子400の受光強度が適切と判定された場合は、ステップS108において、判定部101が現在の受光感度モードを確認する。
 具体的には、判定部101は、感度モードフラグを参照して、現在の受光感度モードを確認する。
 現在の受光感度モードが高感度モードであれば処理がステップS109に進む。また、この場合は、判定部101は、FFT信号412を雑音除去部103に出力する。
 一方、現在の受光感度モードが通常感度モードであれば処理がステップS110に進む。また、この場合は、判定部101は、FFT信号412を測距部104に出力する。
 ステップS109では、雑音除去部103は、FFT信号412に含まれる各点における位相差の時間推移を解析して雑音成分を抽出し、抽出した雑音成分をFFT信号412から除去する。
 雑音除去部103は、n(n≧2)回のFFT信号412から、各点の位相差の時系列情報を生成する。例えば、n=2とし、雑音除去部103は、最新のFFT信号412と1つ前のFFT信号412から、各点の位相差の時系列情報を生成することが考えられる。そして、雑音除去部103は、各点の位相差の時系列情報を解析して雑音成分を抽出する。
 信号成分に相当する点(測距対象物200内の点)での位相差は、照射光301と反射光401との位相差である。このため、信号成分に相当する点での位相差は測距対象物200と受光素子400との間の距離に応じて変化する。例えば、測距対象物200及び受光素子400の少なくともいずれかが移動している場合は、測距対象物200及び受光素子400の少なくともいずれかの移動に比例して信号成分に相当する点での位相差が変化する。また、測距対象物200及び測距対象物200が静止している場合は、信号成分に相当する点での位相差は変化がない。このように、信号成分に相当する点では、位相差の時間推移に規則性が見いだせる。一方で、雑音成分に相当する点(測距対象物200外の点)での位相差は、照射光301と外乱光402との位相差である。このため、雑音成分に相当する点での位相差はランダムに変化し、規則性が見いだせない。
 雑音除去部103は、このような位相差がランダムに変化する点を雑音成分として抽出し、抽出した雑音成分をFFT信号412から除去する。
 そして、雑音除去部103は、雑音成分を除去した後のFFT信号412を雑音除去FFT信号413として測距部104に出力する。
 次に、処理はステップS110に進む。
 ステップS110では、測距部104が測距対象物200と受光素子400との距離を測定する。
 判定部101からFFT信号412が出力されている場合は、測距部104は、FFT信号412を用いて受光素子400から測距対象物200までの距離を測定する。一方、雑音除去部103から雑音除去FFT信号413が出力されている場合は、測距部104は、雑音除去FFT信号413を用いて受光素子400から測距対象物200までの距離を測定する。
 FFT信号412及び雑音除去FFT信号413のいずれを用いる場合も、測距部104は、間接ToF原理に基づいて受光素子400から測距対象物200までの距離を測定する。
 次に、図3に示すフローを具体的に説明する。
 ブラインド攻撃が発生した場合又は移動している測距対象物200がブラインドスポットに入った場合は、反射光401の光量が極端に小さくなる。すなわち、受光強度値が0の状態が続く。
 このため、判定部101が受光素子400の受光強度が適切ではないと判定する期間が継続する(ステップS102でNO及びステップS103でYES)。この結果、判定部101は、受光素子400の受光感度モードを高感度モードに変更することを決定し(ステップS104でYES、ステップS105)、感度調整部102が受光素子400の受光感度を高くする(ステップS107)。
 その後は、判定部101は受光素子400の受光強度は適切であると判定し(ステップS102でYES)、また、現在の受光感度モードは高感度モードであるから(ステップS108で「高感度モード」)、雑音除去部103がFFT信号412から雑音成分を除去する。受光素子400の受光感度を高くすると受光素子400が受光する光に外乱光402が多く含まれることになり、FFT信号412に雑音成分が多く含まれることになる。このため、雑音除去部103は、FFT信号412から雑音成分を除去する。この結果、測距部104は、雑音除去FFT信号413を用いて測距対象物200までの距離を測定する。
 一方、ブラインド攻撃が終了した場合又は測距対象物200がブラインドスポットから出た場合は、反射光401の光量が急激に上昇する。すなわち、受光強度値が最大値である状態が続く。
 このため、判定部101が受光素子400の受光強度が適切ではないと判定する期間が継続する(ステップS102でNO及びステップS103でYES)。この結果、判定部101は、受光素子400の受光感度モードを通常感度モードに変更することを決定し(ステップS104でNO、ステップS106)、感度調整部102が受光素子400の受光感度を低くする(ステップS107)。
 その後は、判定部101は受光素子400の受光強度は適切であると判定し(ステップS102でYES)、また、現在の受光感度モードは通常感度モードであるから(ステップS108で「通常感度モード」)、雑音除去部103がFFT信号412から雑音成分を除去する必要がない。つまり、受光素子400が受光する光には外乱光402は多くは含まれておらず、FFT信号412には含まれる雑音成分は多くはない。このため、雑音成分を除去しなくてもよい。測距部104は、FFT信号412をそのまま用いて測距対象物200までの距離を測定する。
***実施の形態の効果の説明***
 本実施の形態では、反射光の光量に対応させて受光感度を調整し、受光感度の調整により増加する雑音成分を除去する。このため、本実施の形態によれば、ブラインド攻撃又はブラインドスポットによって反射光の光量が減少する場合でも、S/N比を高くすることができ、正確な測距を行うことができる。
 なお、本実施の形態で説明した手順の一部のみを実施しても構わない。
 また、本実施の形態で説明した手順の少なくとも一部と、本実施の形態で説明していない手順とを組み合わせて実施しても構わない。
 また、本実施の形態に記載された構成及び手順を必要に応じて変更してもよい。
***ハードウェア構成の補足説明***
 最後に、測距装置100のハードウェア構成の補足説明を行う。
 図2に示すプロセッサ901は、プロセッシングを行うIC(Integrated Circuit)である。
 プロセッサ901は、CPU(Central Processing Unit)、DSP(Digital Signal Processor)等である。
 図2に示す主記憶装置902は、RAM(Random Access Memory)である。
 図2に示す補助記憶装置903は、ROM(Read Only Memory)、フラッシュメモリ、HDD(Hard Disk Drive)等である。
 図2に示す通信装置904は、データの通信処理を実行する電子回路である。
 通信装置904は、例えば、通信チップ又はNIC(Network Interface Card)である。
 また、補助記憶装置903には、OS(Operating System)も記憶されている。
 そして、OSの少なくとも一部がプロセッサ901により実行される。
 プロセッサ901はOSの少なくとも一部を実行しながら、判定部101、感度調整部102、雑音除去部103及び測距部104の機能を実現するプログラムを実行する。
 プロセッサ901がOSを実行することで、タスク管理、メモリ管理、ファイル管理、通信制御等が行われる。
 また、判定部101、感度調整部102、雑音除去部103及び測距部104の処理の結果を示す情報、データ、信号値及び変数値の少なくともいずれかが、主記憶装置902、補助記憶装置903、プロセッサ901内のレジスタ及びキャッシュメモリの少なくともいずれかに記憶される。
 また、判定部101、感度調整部102、雑音除去部103及び測距部104の機能を実現するプログラムは、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ブルーレイ(登録商標)ディスク、DVD等の可搬記録媒体に格納されていてもよい。そして、判定部101、感度調整部102、雑音除去部103及び測距部104の機能を実現するプログラムが格納された可搬記録媒体を流通させてもよい。
 また、判定部101、感度調整部102、雑音除去部103及び測距部104の「部」を、「回路」又は「工程」又は「手順」又は「処理」又は「サーキットリー」に読み替えてもよい。
 また、測距装置100は、処理回路により実現されてもよい。処理回路は、例えば、ロジックIC(Integrated Circuit)、GA(Gate Array)、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)である。
 この場合は、判定部101、感度調整部102、雑音除去部103及び測距部104は、それぞれ処理回路の一部として実現される。
 なお、本明細書では、プロセッサと処理回路との上位概念を、「プロセッシングサーキットリー」という。
 つまり、プロセッサと処理回路とは、それぞれ「プロセッシングサーキットリー」の具体例である。
 100 測距装置、101 判定部、102 感度調整部、103 雑音除去部、104 測距部、200 測距対象物、300 発光素子、301 照射光、400 受光素子、401 反射光、402 外乱光、411 受光信号、412 FFT信号、413 雑音除去FFT信号、901 プロセッサ、902 主記憶装置、903 補助記憶装置、904 通信装置。

Claims (8)

  1.  受光素子の受光感度を、前記受光感度が高くなるように調整する感度調整部と、
     前記感度調整部により前記受光感度が調整された後に、前記受光素子と対になる発光素子から照射された照射光と前記照射光が測距の対象物である測距対象物で反射した反射光を含む前記受光素子で受光された光との位相差の時間推移を解析し、前記受光素子で受光した光に含まれる雑音成分を除去する雑音除去部とを有する測距装置。
  2.  前記雑音除去部は、
     前記受光素子で受光した光に含まれる成分のうち、前記照射光との位相差がランダムに変化する成分を前記雑音成分として除去する請求項1に記載の測距装置。
  3.  前記測距装置は、更に、
     前記感度調整部により前記受光感度が調整された後の前記受光素子の受光強度が適切であるか否かを判定する判定部を有し、
     前記雑音除去部は、
     前記判定部により前記受光強度が適切であると判定された場合に、前記位相差の時間推移の解析及び前記雑音成分の除去を行う請求項1に記載の測距装置。
  4.  前記測距装置は、更に、
     前記受光素子の受光強度が適切であるか否かを判定し、前記受光強度が過小である場合に前記受光素子の前記受光感度を高くすることを決定し、前記受光強度が過大である場合に前記受光素子の前記受光感度を低くすることを決定する判定部を有し、
     前記感度調整部は、
     前記判定部が前記受光感度を高くすることを決定した場合に、前記受光素子の前記受光感度を、前記受光感度が高くなるように調整し、
     前記判定部が前記受光感度を低くすることを決定した場合に、前記受光素子の前記受光感度を、前記受光感度が低くなるように調整する請求項1に記載の測距装置。
  5.  前記雑音除去部は、
     前記感度調整部により前記受光感度が低くなるように調整された場合は、前記位相差の解析及び前記雑音成分の除去を行わない請求項4に記載の測距装置。
  6.  前記受光素子がDPD(Dynamic Photo Diode)である請求項1に記載の測距装置。
  7.  コンピュータが、受光素子の受光感度を、前記受光感度が高くなるように調整し、
     前記コンピュータが、前記受光感度が調整された後に、前記受光素子と対になる発光素子から照射された照射光と前記照射光が測距の対象物である測距対象物で反射した反射光を含む前記受光素子で受光された光との位相差の時間推移を解析し、前記受光素子で受光した光に含まれる雑音成分を除去する測距方法。
  8.  受光素子の受光感度を、前記受光感度が高くなるように調整する感度調整処理と、
     前記感度調整処理により前記受光感度が調整された後に、前記受光素子と対になる発光素子から照射された照射光と前記照射光が測距の対象物である測距対象物で反射した反射光を含む前記受光素子で受光された光との位相差の時間推移を解析し、前記受光素子で受光した光に含まれる雑音成分を除去する雑音除去処理とをコンピュータに実行させる測距プログラム。
PCT/JP2021/017411 2021-05-06 2021-05-06 測距装置、測距方法及び測距プログラム WO2022234626A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112021007183.1T DE112021007183B4 (de) 2021-05-06 2021-05-06 Entfernungsmesseinrichtung, entfernungsmessverfahren und entfernungsmessprogramm
PCT/JP2021/017411 WO2022234626A1 (ja) 2021-05-06 2021-05-06 測距装置、測距方法及び測距プログラム
CN202180097579.6A CN117295969A (zh) 2021-05-06 2021-05-06 测距装置、测距方法以及测距程序
JP2023518559A JP7286058B2 (ja) 2021-05-06 2021-05-06 測距装置、測距方法及び測距プログラム
US18/367,524 US20230417883A1 (en) 2021-05-06 2023-09-13 Ranging device, ranging method and computer readable medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/017411 WO2022234626A1 (ja) 2021-05-06 2021-05-06 測距装置、測距方法及び測距プログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/367,524 Continuation US20230417883A1 (en) 2021-05-06 2023-09-13 Ranging device, ranging method and computer readable medium

Publications (1)

Publication Number Publication Date
WO2022234626A1 true WO2022234626A1 (ja) 2022-11-10

Family

ID=83932648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017411 WO2022234626A1 (ja) 2021-05-06 2021-05-06 測距装置、測距方法及び測距プログラム

Country Status (5)

Country Link
US (1) US20230417883A1 (ja)
JP (1) JP7286058B2 (ja)
CN (1) CN117295969A (ja)
DE (1) DE112021007183B4 (ja)
WO (1) WO2022234626A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004257961A (ja) * 2003-02-27 2004-09-16 Komatsu Engineering Corp 光波位相差測定装置及び光波位相差測定方法
US9048370B1 (en) * 2013-03-14 2015-06-02 Google Inc. Dynamic control of diode bias voltage (photon-caused avalanche)
WO2016021238A1 (ja) * 2014-08-05 2016-02-11 富士フイルム株式会社 測距装置、測距方法、及び測距プログラム
JP2017219502A (ja) * 2016-06-10 2017-12-14 株式会社リコー 物体検出装置、センシング装置及び移動体装置
JP2019211358A (ja) * 2018-06-06 2019-12-12 株式会社デンソー 光学的測距装置およびその方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5137106B2 (ja) 2007-05-18 2013-02-06 株式会社 ソキア・トプコン 光波距離計
KR20220030948A (ko) 2019-07-12 2022-03-11 소니 세미컨덕터 솔루션즈 가부시키가이샤 광 검출 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004257961A (ja) * 2003-02-27 2004-09-16 Komatsu Engineering Corp 光波位相差測定装置及び光波位相差測定方法
US9048370B1 (en) * 2013-03-14 2015-06-02 Google Inc. Dynamic control of diode bias voltage (photon-caused avalanche)
WO2016021238A1 (ja) * 2014-08-05 2016-02-11 富士フイルム株式会社 測距装置、測距方法、及び測距プログラム
JP2017219502A (ja) * 2016-06-10 2017-12-14 株式会社リコー 物体検出装置、センシング装置及び移動体装置
JP2019211358A (ja) * 2018-06-06 2019-12-12 株式会社デンソー 光学的測距装置およびその方法

Also Published As

Publication number Publication date
JP7286058B2 (ja) 2023-06-02
DE112021007183T5 (de) 2023-12-21
DE112021007183B4 (de) 2024-05-29
US20230417883A1 (en) 2023-12-28
JPWO2022234626A1 (ja) 2022-11-10
CN117295969A (zh) 2023-12-26

Similar Documents

Publication Publication Date Title
EP2446301B1 (en) Pulsed light optical rangefinder
US10775507B2 (en) Adaptive transmission power control for a LIDAR
CN110244311B (zh) 激光雷达接收装置、激光雷达系统和激光测距方法
CN211554305U (zh) LiDAR读出电路
KR102526443B1 (ko) 광자의 비행 시간을 결정하기 위한 히스토그램 판독 방법 및 회로
US20210239806A1 (en) Selecting lidar pulse detector depending on pulse type
US10768281B2 (en) Detecting a laser pulse edge for real time detection
JP6665873B2 (ja) 光検出器
CN110622038B (zh) 光传感器、电子设备、运算装置及对光传感器与检测对象物之间的距离进行测量的方法
JP2020003446A (ja) 光測距装置
US20210088663A1 (en) Optical distance measuring device and method for the same
EP3848722A1 (en) Lidar device and method of operating the same
US10989814B2 (en) Method for managing dynamic range of an optical detection device, and corresponding device
CN113424077A (zh) 光学测距装置
KR20210087349A (ko) 라이다 장치 및 그 동작 방법
JP7286058B2 (ja) 測距装置、測距方法及び測距プログラム
KR102542126B1 (ko) 라이다 센서 및 그의 노이즈 제거 방법
KR102526759B1 (ko) 거리 측정 장치 및 그 방법
KR20220008734A (ko) Fmcw 라이다를 위한 리드아웃 아키텍쳐
US20230213652A1 (en) LiDAR DEVICE AND OPERATING METHOD THEREOF
Li et al. A Multi-Mode SPAD-Based Ranging System Integrated Nonlinear Histogram and FIR With Adaptive Coefficient Adjustment
WO2023150920A1 (en) Methods and apparatus for single-shot time-of-flight ranging with background light rejection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21939819

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023518559

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180097579.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 112021007183

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21939819

Country of ref document: EP

Kind code of ref document: A1