WO2022233226A1 - 用于斜拉桥主梁安装的三跨缆索吊机及其施工方法 - Google Patents
用于斜拉桥主梁安装的三跨缆索吊机及其施工方法 Download PDFInfo
- Publication number
- WO2022233226A1 WO2022233226A1 PCT/CN2022/087167 CN2022087167W WO2022233226A1 WO 2022233226 A1 WO2022233226 A1 WO 2022233226A1 CN 2022087167 W CN2022087167 W CN 2022087167W WO 2022233226 A1 WO2022233226 A1 WO 2022233226A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cable
- span
- tower
- bridge
- crane
- Prior art date
Links
- 238000010276 construction Methods 0.000 title claims abstract description 74
- 238000009434 installation Methods 0.000 title claims abstract description 18
- 230000007246 mechanism Effects 0.000 claims abstract description 17
- 229910000831 Steel Inorganic materials 0.000 claims description 25
- 239000010959 steel Substances 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 9
- 239000004567 concrete Substances 0.000 claims description 6
- 239000004576 sand Substances 0.000 claims description 3
- 230000005484 gravity Effects 0.000 claims description 2
- 230000008878 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 238000005859 coupling reaction Methods 0.000 claims 1
- 230000009286 beneficial effect Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000032258 transport Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000002131 composite material Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000011374 ultra-high-performance concrete Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01D—CONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
- E01D21/00—Methods or apparatus specially adapted for erecting or assembling bridges
Definitions
- the present application relates to the technical field of bridge construction, and in particular, to a three-span cable crane used for installing the main beam of a cable-stayed bridge and a construction method thereof.
- Cable-stayed bridges have good seismic performance and economic performance, and play an important role in the field of bridge construction in my country.
- there are many technical difficulties in the construction of cable-stayed bridges As the span of the cable-stayed bridge increases and the height of the main tower increases, the structural stability of the cable-stayed bridge gradually decreases during the construction phase, and the difficulty of erecting steel trusses also increases. Therefore, the long-span cable-stayed bridge is at risk of being damaged due to instability before closing. Therefore, in the construction stage of the cable-stayed bridge, it is very important to speed up the construction progress of the hoisting of the steel truss girder and the steel box girder.
- the traditional construction method often has a long construction period and great difficulty in construction, which increases the economic cost and time cost of bridge construction.
- the cable crane uses the flexible steel cable as a large-span overhead bearing member, and the load trolley for suspending the heavy object runs back and forth on the bearing cable, and transports the goods horizontally or vertically.
- the load trolley for suspending the heavy object runs back and forth on the bearing cable, and transports the goods horizontally or vertically.
- the bridge deck crane still needs to be used for the secondary side span, and the air space on the side span of the bridge is small, so it is often necessary to use floating cranes from the middle span.
- the side spans are hoisted and installed in place by erecting large sliding beams and beam storage brackets.
- the main purpose of this application is to provide a three-span cable hoist for installation of the main beam of a cable-stayed bridge with simple structure and convenient construction.
- Another object of the present application is to provide a construction method of the above-mentioned three-span cable crane for the installation of the main girder of the cable-stayed bridge.
- the present application relates to a three-span cable crane for the installation of the main girder of a cable-stayed bridge, including a cable, a tower and a ground anchor arranged on the centerline of the bridge along the bridge, the tower and the ground A set of anchors are respectively provided on both sides of the bridge, the top of the tower is provided with a cable saddle, the two ends of the cable pass through the two saddles on the top of the tower and are connected to the ground anchor, and all the cables are connected to the ground anchor.
- the middle part of the cable is supported by the cable saddles arranged on the two cable towers of the bridge, and the cables are provided with operating mechanisms for hoisting or balancing the horizontal force of the cable towers on both sides of each cable tower.
- the present application relates to a construction method of a three-span cable crane for hoisting the main girder of a cable-stayed bridge as described above, comprising the following steps:
- ground anchors on both sides of the bridge are constructed, and the ground anchors on both sides are located at the intersection of the cast-in-place beams of the side spans and the approach bridges, and the towers are erected, and the three-span cable cranes are installed by using the middle beams of the two cable towers;
- the three-span cable hoist is used to alternate rounds between the two pylons to hoist the beam section, and the two sides of each pylon are loaded synchronously;
- the rigid frame is installed and temporarily welded, and the stay cable is installed and tensioned;
- a three-span cable hoist is innovatively used on the cable-stayed bridge, which utilizes the advantages that the cable hoisting has a large span and is not limited by climate and terrain conditions to realize the verticality of all beam sections. Hoisting, without the coordination of floating cranes, large sliding beams and beam storage brackets, is conducive to controlling the construction period, and there is no need to set up large lifting equipment on the bridge deck, which can effectively reduce the problem of stitching and misalignment caused by inconsistent lateral deformation of beam sections. It can reduce the harm of additional stress of the weld and other temporary loads on the bridge deck, which is beneficial to the control of the cable force of the stay cable and the line shape of the main girder.
- the counterweight block of the hoisting trolley can be applied with a weight of suitable weight to balance the horizontal tension generated by the installation of the beam section on both sides of the cable tower at the other end, thereby ensuring The stability of the cable tower during the construction process reduces the deflection of the cable tower.
- the cable crane is used to realize the vertical hoisting of the beam section, and there is no need to set up large-scale lifting equipment on the bridge deck, which can effectively reduce the stitching error caused by the inconsistent lateral deformation of the beam section matching. It can reduce the damage of the additional stress of the weld, and because of the reduction of the bridge deck load, it can be beneficial to the control of the cable force of the stay cable and the line shape of the main beam.
- the vertical hoisting of all beam sections is realized, which solves the problem that the existing side-span side air space is small, and the floating crane must be installed on the mid-span side and slip into place.
- the beam storage brackets there is no need to set beam storage brackets to avoid the problem of uneven stress on the beam section caused by excessive local load caused by the bracket load, and because the secondary side span is located in the shoal area of the river channel and the area across the embankment and the embankment, the beam transport ship cannot directly reach the beam section.
- the three-span cable hoist of the present application does not need to set up a large-scale support sliding beam to store the beam, which solves the problem of difficulty in setting up the support, the construction is convenient and fast, the construction speed is fast, the construction time is shortened, and the construction cost is saved.
- FIG. 1 is a schematic diagram of an embodiment of a three-span cable hoist of the present application
- Fig. 2 is the structural schematic diagram of the tower in the three-span cable crane of the application
- FIG. 3 is a schematic structural diagram of a cable saddle in the three-span cable crane of the application.
- FIG. 4 is a schematic structural diagram of the ground anchor in the three-span cable crane of the present application.
- Fig. 1 to Fig. 4 in view of the problem that during the installation and construction of the beam section of the existing bridge, the navigation clearance under the bridge is small, so that the beam transport ship cannot normally transport the beam section for construction.
- the application provides a three-span cable crane. , to realize the vertical hoisting of all beam sections, without the cooperation of floating cranes, large sliding beams, and beam storage brackets, the construction is convenient, and at the same time, it can ensure that the deflection of the cable tower is within the warning range during the construction process, and the safety is high.
- the bridge constructed in this application is a double-tower double-cable-plane mixed-beam cable-stayed bridge, wherein the middle span and secondary side span of the main bridge are steel-concrete composite beams with UHPC decks, and the side spans are concrete beams.
- the double-tower and double-cable plane hybrid beam cable-stayed bridge in this embodiment first sets up piers and erects cable towers, and then installs the three-span cable hoist to hoist the beam section to complete the bridge construction.
- the "three-span” mentioned in this application refers to a three-span bridge construction section divided by two cable towers as dividing points.
- the three-span cable crane includes cables 1, towers 2 and ground anchors 3 arranged on the centerline of the bridge along the bridge.
- the top of the tower 2 is provided with a cable saddle 5, and at the same time the middle beams of the two cable towers of the bridge are also provided with a cable saddle 5, and the two ends of the cable 1 are connected by the cable saddles 5 on the top of the towers on both sides.
- the middle part of the cable 1 can be supported by the cable saddle 5 provided on the beam in the cable tower.
- the cable 1 is also provided with a hoisting beam section or The operation mechanism 4 that balances the horizontal force of the tower, realizes the vertical hoisting of the beam section through the operation mechanism 4, and because the cable 1 passes through the cable saddles 5 of the two towers and is divided into three-span bridge construction sections, namely The operation mechanism 4 is respectively arranged at the three construction section positions of the cable 1 to transport the hoisting beam sections synchronously, so as to improve the construction efficiency. Counterweights are used to balance the horizontal forces on both sides of the tower.
- the operation mechanism 4 includes a hoisting trolley 41, a hoisting system and a traction system (not shown in the figure).
- 42 is connected to a hoisting machine (not shown in the figure), so that the hoisting cable 42 can be retracted and unloaded through the hoisting machine, so that the beam section can be lifted or lowered along the hoisting cable 42 .
- the traction system includes a pair of traction ropes respectively connected to both ends of the hoisting trolley 41 and a traction hoist connected to the traction ropes, so that the traction ropes are retracted and unloaded through the traction hoist to pull the hoisting trolley 41 along the cable 1 . If it is moved, the beam section can be lifted vertically and transported to the corresponding construction position without adding other large temporary supports, which optimizes the construction steps.
- the hoisting trolley 41 is also provided with a counterweight frame (not shown in the figure), since the three-span bridge construction section of the present application is divided by two cable towers as dividing points, the construction length of the three-span construction section is different After the construction of some construction sections is completed, there are still construction sections that have not been completed. At this time, the counterweights of different weights can be placed in the counterweight frame of the hoisting trolley 41 without hoisting the beam section to balance the cables on both sides of the tower.
- the horizontal tension of 1, that is, the application of the symmetrical installation method can realize the construction of the three-span synchronous hanging beam of the bridge, thereby improving the construction efficiency, and the application of the three-span synchronous hanging beam construction or counterweight is mainly to ensure that the deflection of the cable tower is Within the early warning range, when the hoisting trolleys 41 on the three spans of the bridge are hoisted at the same time, the independent hoisting does not need to be controlled by the distance of the hoisting beam.
- the cable saddle 5 provided by the cable tower is used to support the cable 1 and guide the cable 1.
- the cable saddle 5 is installed on the top of the tower and the middle beam of the cable tower.
- the cable saddle 5. It includes a cable saddle 51, a pin shaft 52 and a cable saddle wheel 53, the pin shaft 52 extends along the transverse bridge direction, and the cable saddle wheels 53 are arranged side by side along the length direction of the pin shaft 52.
- Each of the cable saddle wheels 53 is rotatably mounted on the pin shaft 52, and at the same time, both ends of the pin shaft 52 are fixed on the cable saddle 51 to prevent the pin shaft 52 from following the cable saddle The rotation of the wheel 53 rotates.
- two sets of the cable saddle wheels 53 are arranged along the bridge direction, so as to improve the supporting and guiding ability of the cable saddle 5 to the cable 1 .
- the top of the cable saddle 51 is also provided with a guide wheel 54 , which is used to pull the traction rope of the hoisting trolley 41 through the guide wheel 54 to improve the walking stability of the hoisting trolley 41 .
- the present application is located at the intersection of the side span cast-in-place beam and the approach bridge, and the tower 2 in this embodiment preferably adopts a steel pipe truss structure, and the steel pipe truss structure is mainly composed of steel pipe piles.
- the tower 2 includes a column 21 , a flat joint 22 and a diagonal brace 23 .
- the column 21 adopts a steel pipe pile
- the flat joint 22 preferably adopts a steel pipe pile.
- the steel pipe, and the parallel joints 22 extend in the horizontal direction and connect the steel pipe piles in the same row or row, and the diagonal braces 23 are arranged between two adjacent parallel joints 22 to strengthen the parallel joints 22, in this embodiment, it is preferable to use a double-joint 20# steel pipe as the diagonal brace 23.
- the bottom of the tower 2 is also provided with a pre-embedded steel pipe 24 embedded in the ground anchor 3 , which further improves the structural stability of the tower 2 to ensure that the tower 2 can provide sufficient supply for the cable 1 . support capacity.
- a sliding track 25 extending along the transverse bridge direction is provided on the top of the tower 2, and the sliding track 25 is provided with a mounting seat (not shown in the figure) for the end of the cable 1 to be installed and connected. , so as to adjust the position of the cable 1 by adjusting the position of the installation seat on the sliding track 25 , and then hoist beam sections at different positions.
- the two ends of the cable 1 are connected to the ground anchor 3 after passing through the cable saddle 5 at the top of the tower.
- the ground anchor 3 resists the tensile force from the cable 1 and transmits it to the foundation, which can be a tower. 2 to provide good tensile capacity to provide good support capacity for the cable 1.
- the ground anchor 3 is set at the center of the route of the bridge approach, and the ground anchor 3 in this embodiment adopts a gravity type concrete anchor 31 structure, which includes an anchor 31 and a pipe pile foundation 32.
- the pipe pile foundation 32 is embedded in the anchorage 31 to support the anchorage 31 to prevent it from sinking, and the anchorage 31 is a frame structure that can be backfilled with sand.
- the frame structure of the anchorage 31 is also provided with an intermediate tank chamber 33 for pouring concrete, and the intermediate tank chamber 33 is set at the symmetrical center of the frame structure, which can effectively eliminate the lateral compression of the soil and prevent
- the anchorage 31 is displaced horizontally, thereby providing passive earth pressure.
- the pipe pile foundation 32 includes a plurality of load-bearing steel pipes with a diameter of 820 mm, so as to prevent the anchorage 31 from settling. Further, the load-bearing steel pipe in this embodiment is inclined, and the inclined installation of the load-bearing steel pipe can improve the anti-settling capability of the anchorage 31 .
- the ground anchor 3 can provide the cable with a tensile strength of 420T, and at the same time, when the weight of the beam section lifted by the hoisting trolley 41 is approximately 340T, the hoisting trolley 41 on one side of the cable tower And the beam section it lifts exerts a horizontal force of approximately 1379T on the tower, and at the same time exerts a vertical force of approximately 237T, which can be borne by the tower. Because the two sides of the cable tower are constructed at the same time or the counterweight is carried out by the counterweight frame of the hoisting trolley 41 to balance the horizontal tension on both sides of the cable tower, thereby ensuring the structural stability of the cable tower, avoiding the construction of the beam end of the cable tower during the process. effect of offset.
- the present application innovatively uses a three-span cable crane on the cable-stayed bridge, which utilizes the advantages that the cable 1 has a large hoisting span and is not restricted by climate and terrain conditions to realize the vertical hoisting of all beam sections, without the need for floating cranes, large sliding beams,
- the matching of beams and brackets is beneficial to control the construction period, and there is no need to install large-scale lifting equipment loads on the bridge deck, which can effectively reduce the problem of seams and seams caused by inconsistent lateral deformation of beam sections, and reduce the harm of additional stress on welds. Reducing other temporary loads on the bridge deck is beneficial to the control of the cable force of the stay cables and the line shape of the main girder.
- the three-span cable crane of the present application can realize the simultaneous construction of the three-span bridge section by arranging three groups of hoisting trolleys 41 on the cables 1 corresponding to the three-span bridge section respectively, which speeds up the construction progress, shortens the construction time, and improves the construction progress.
- the counterweight block of the hoisting trolley 41 can be applied with a counterweight with a suitable weight to balance the horizontal tension on both sides of the cable tower, thereby ensuring the stability of the cable tower during the construction process. , to reduce the deflection of the tower.
- the present application also relates to a construction method for a three-span cable hoist, wherein the three-span cable hoist is the aforementioned three-span cable hoist, and specifically includes the following steps:
- the ground anchors 3 on both sides of the bridge are constructed, the towers 2 are erected at the intersections of the cast-in-place beams and the approach bridge on both sides of the ground anchors 3, and the three-span cable crane is installed by using the middle beams of the two cable towers .
- the tower frame 2, cable saddle 5, cable 1 and operation mechanism 4 of the three-span cable crane are installed in sequence along the centerline of the bridge.
- the ground anchor 3 is located between the side span cast-in-place beam and the approach bridge.
- the tower 2 is a temporary tower, which is erected on the ground anchor 3 and located between the side span cast-in-place beam and the approach bridge.
- a pre-buried steel pipe 24 can be embedded at the ground anchor, and then the The tower is erected on the basis of the embedded steel pipe.
- the cable saddle 5 is installed and fixed on the top of the tower 2 and the middle beam of the cable tower by bolts or berets, and then the cable 1 is installed.
- the saddle is connected to the ground anchor, and the cable 1 is provided with a set of operation mechanisms 4 for each three-span bridge construction section with two cable towers as dividing points.
- the hoisting trolleys 41 on both sides of each cable tower are synchronously loaded to hoist the beam sections.
- the operation mechanism 4 is used to hoist the corresponding beam sections and slide on the cables 1 to install them in place. Assemble afterwards.
- the whole bridge composite beam is divided into 10 types A to H, with a total of 91 segments, and the two pylons in this embodiment are respectively defined as 1# pylon and 2# pylon.
- the hoisting of the construction section of the three-span bridge adopts the flow operation method, that is, firstly install the two cantilever beam sections on both sides of the 1# cable tower, and at the same time, the operation mechanism 4 at the side span of the 2# cable tower is counterweight, and then the 2# cable tower is carried out.
- the rigid frame is installed and temporarily welded.
- the stay cable is installed and then tensioned. Open the limitation of the current beam section by the hoisting system of the running mechanism 4 .
- the girth welding, wet joint and secondary tensioning of the beam section of the 1# cable tower can be carried out simultaneously. Alternately, assemble other beam sections according to the above-mentioned beam section assembly steps. When the construction reaches the mid-span closing section, the operating mechanisms 4 on both sides of the bridge need to be counterweighted at the same time until all the main beam sections are assembled. Finish.
- wet joints of the present application can be post-cast in multiple passes to optimize the construction process and facilitate the control of the construction period. At the same time, there is no other load on the bridge deck acting on the newly poured wet joints, which can effectively reduce the risk of cracking and improve the bridge. structural stability.
- the double-tower double-cable surface mixed beam cable-stayed bridge of the present application adopts the three-span cable crane for construction, realizes the vertical hoisting of all beam sections, and solves the problem that the existing side span and side air space is small, and a floating crane must be used in the middle span.
- the overall structure of the present application is simple, the construction is convenient and fast, and the construction speed is fast, which shortens the construction time and saves the construction cost.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Bridges Or Land Bridges (AREA)
Abstract
一种用于斜拉桥主梁安装的三跨缆索吊机,三跨缆索吊机包括设于桥梁顺桥向中心线上的缆索(1)、塔架(2)及地锚(3),塔架(2)及地锚(3)分别在桥梁两侧各设一组,塔架(2)的顶部设有索鞍(5),缆索(1)的两端通过两个塔架(2)顶部的索鞍(5)并连接至地锚(3)处,且缆索(5)中部通过设于桥梁两个索塔上的索鞍(5)进行支托,缆索(1)位于每个索塔的两侧设有用作吊装或平衡索塔水平受力的运转机构(4)。还涉及其施工方法。采用三跨缆索吊机实现所有梁段的垂直吊装,无需浮吊、大型滑梁、存梁支架配合,有利于控制工期,无需在桥面搭设大型提吊设备,有效地减少梁段匹配横向变形不一致造成的拼缝错台的问题,减少焊缝附加应力的危害,减少桥面其他临时荷载,有利于斜拉索索力、主梁线型控制。
Description
本申请涉及桥梁施工技术领域,尤其涉及一种用于斜拉桥主梁安装的三跨缆索吊机及其施工方法。
斜拉桥具有良好的抗震性能和经济性能,在我国桥梁建设领域具有举足轻重的地位。但是斜拉桥的施工却存在许多技术难点。随着斜拉桥跨度的增大以及主塔高度增高,斜拉桥施工阶段结构稳定性逐渐降低,钢桁梁架设难度也随之加大。因此大跨径的斜拉桥在合拢之前存在因失稳而易遭受破坏的风险。由此,在斜拉桥施工阶段,加快钢桁梁和钢箱梁吊装的施工进度非常关键。
传统的施工方法往往工期很长,施工难度较大,增加了桥梁建设的经济成本和时间成本。缆索吊机以柔性钢索作为大跨距架空承载构件,供悬吊重物的载重小车在承重索上往返运行,水平或垂直地运输货物。目前,虽然有将缆索吊机运用到桥梁施工中,但是目前仅针对桥梁中跨进行施工,次边跨仍需要采用桥面吊机,而桥梁边跨侧通航空间小,往往需要采用浮吊从中侧跨进行起吊,通过搭设大型滑梁、存梁支架安装就位。
发明内容
本申请的主要目的旨在提供一种结构简单、施工便捷的用于斜拉桥主梁安装的三跨缆索吊机。
本申请的另一目的旨在提供一种上述用于斜拉桥主梁安装的三跨缆索吊机的施工方法。
为了实现上述目的,本申请提供以下技术方案:
作为第一方面,本申请涉及一种用于斜拉桥主梁安装的三跨缆索吊 机,包括设于桥梁顺桥向中心线上的缆索、塔架及地锚,所述塔架及地锚分别在桥梁两侧各设一组,所述塔架的顶部设有索鞍,所述缆索的两端通过两个所述塔架顶部的索鞍并连接至所述地锚处,且所述缆索中部通过设于桥梁两个索塔上的索鞍进行支托,所述缆索位于每个索塔的两侧设有用作吊装或平衡索塔水平受力的运转机构。
作为第二方面,本申请涉及一种如上所述的用于斜拉桥主梁吊装的三跨缆索吊机的施工方法,包括以下步骤:
施工桥梁两侧的地锚,在两侧地锚位于边跨现浇梁和引桥的相交处架设塔架,并利用两个所述索塔的中横梁安装所述三跨缆索吊机;
利用所述三跨缆索吊机依次在两个索塔之间交替轮次来进行梁段的吊装,且每个索塔的两侧同步负重;
待当前吊装的梁段调节就位后,安装劲性骨架并临时栓焊,以及安装斜拉索之后进行张拉;
松开所述三跨缆索吊机对当前梁段的限制,并根据上述梁段的拼装步骤依次拼装主梁的剩余结构,直至主梁梁段拼装完成。
相比现有技术,本申请的方案具有以下优点:
1.在本申请的三跨缆索吊机中,创新地在斜拉桥上采用三跨缆索吊机,其利用缆索吊跨度大、不受气候与地形条件限制的优势,实现所有梁段的垂直吊装,无需浮吊、大型滑梁、存梁支架配合,有利于控制工期,并且无需在桥面搭设大型提吊设备,可有效地减少梁段匹配横向变形不一致造成的拼缝错台的问题,减少焊缝附加应力的危害,同时减少桥面其他临时荷载,有利于斜拉索索力、主梁线型控制。
2.在本申请的三跨缆索吊机中,通过分别在对应在三跨桥段的缆索上设置三组吊装小车,可实现单塔梁段的同时施工,加快了施工进度,缩短施工时间,提高了施工进度。同时,在无需进行梁段吊装施工的索塔两侧,吊装小车的配重框内可施以适配重量的配重块以平衡另一端索塔两侧安装梁段产生的水平拉力,继而确保索塔在施工过程中的稳定性,减少索塔发生偏斜的情况。
3.在本申请的三跨缆索吊机中,采用缆索吊机来实现梁段的垂直吊 装,无需在桥面上设立大型提吊设备,可有效减少梁段匹配横向变形不一致造成的拼缝错台的问题,减少焊缝附加应力的危害,并且由于桥面荷载的减少,可有利于斜拉索索力、主梁线线型的控制。
4.在本申请三跨缆索吊机的施工方法中,实现了所有梁段的垂直吊装,解决了现有边跨侧通航空间小,必须采用浮吊从中跨侧安装、滑移就位的问题,同时也无需设置存梁支架,避免支架荷载致使局部荷载过大导致梁段受力不均的问题,并且由于次边跨位于河道浅滩区以及跨大堤及堤内区域,运梁船无法直达梁段的正下方,而采用本申请的三跨缆索吊机无需搭设大型支架滑梁存梁,解决了支架搭设困难的问题,施工方便快捷、施工速度快,缩短了施工时间,节约了施工成本。
本申请附加的方面和优点将在下面的描述中部分给出,这些将从下面的描述中变得明显,或通过本申请的实践了解到。
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本申请三跨缆索吊机的一个实施例的示意图;
图2为本申请三跨缆索吊机中塔架的结构示意图;
图3为本申请三跨缆索吊机中索鞍的结构示意图;
图4为本申请三跨缆索吊机中地锚的结构示意图。
图中,1、缆索;2、塔架;21、立柱;22、平联;23、斜撑;24、预埋钢管;25、滑移轨道;3、地锚;31、锚碇;32、管桩基础;33、中间箱室;4、运转机构;41、吊装小车;42、起重索;5、索鞍;51、索鞍座;52、销轴;53、索鞍轮;54、导向轮。
请结合图1至图4,针对现有桥梁的梁段安装施工过程中,桥下方通航净空较小导致运梁船无法正常运输梁段施工的问题,本申请提供了一种三跨缆索吊机,实现所有梁段的垂直吊装,无需浮吊、大型滑梁、存梁支 架的配合,施工方便,同时能保证施工过程中,索塔的偏斜在预警范围内,安全性高。
需要说明的是,本申请所施工的桥梁为双塔双索面混合梁斜拉桥,其中,主桥中跨及次边跨梁采用UHPC桥面板的钢混组合梁,边跨采用混凝土梁。具体地,本实施例中的双塔双索面混合梁斜拉桥先设立桥墩并架设索塔,随后进行所述三跨缆索吊机的安装,以吊装梁段继而完成桥梁的施工。另外本申请所说的“三跨”即为以两个索塔为划分点所划分的三跨桥梁施工段。
所述三跨缆索吊机包括设于桥梁沿顺桥向中心线上的缆索1、塔架2及地锚3,所述塔架2及地锚3分别在桥梁两侧各设一组,所述塔架2的顶部设有索鞍5,同时在桥梁的两个索塔的中横梁处亦设有索鞍5,所述缆索1的两端通过两侧塔架顶部的索鞍5并连接到所述地锚3处,所述缆索1中部则可通过设于索塔中横梁的索鞍5进行支托,所述缆索1位于每个索塔的两侧还设有用作吊装梁段或平衡索塔水平受力的运转机构4,通过所述运转机构4来实现梁段的垂直吊装,又由于所述缆索1经过两个索塔的索鞍5被划分为三跨桥梁施工段,即分别在所述缆索1的三个施工段位置处设置运转机构4来同步运输吊装梁段,以提高施工效率,当其中的所述运转机构4无需吊装梁段时,可对该运转机构4进行配重以平衡索塔两侧的水平受力。
具体地,所述运转机构4包括吊装小车41、起重系统及牵引系统(图中未示意),所述起重系统包括起重索42及设于所述吊装小车41上并与起重索42连接的卷扬机(图中未示意),以通过所述卷扬机收放起重索42以实现梁段沿所述起重索42提升或降落。所述牵引系统包括一对分别与吊装小车41的两端连接的牵引绳及与牵引绳连接的牵引卷扬机,从而通过牵引卷扬机收放所述牵引绳以牵动所述吊装小车41沿所述缆索1移动,则可将梁段垂直起吊并运输至相应的施工位置处,无需增设其他大型临时支架,优化了施工步骤。
此外,所述吊装小车41上还设有配重框(图中未示意),由于本申请三跨桥梁施工段是以两个索塔作为划分点进行划分,则三跨施工段的施 工长度不同,在部分施工段施工完成后,仍有施工段未完成施工,则此时可在无需吊装梁段的吊装小车41的配重框内配以不同重量的配重块来平衡索塔两侧缆索1的水平拉力,即本申请利用对称安装法可实现桥梁三跨的同步吊梁施工,从而提高施工效率,且本申请采用三跨同步吊梁施工或配重主要是保证索塔的偏斜在预警范围内,使得桥梁三跨上的吊装小车41在同时吊装时,独立吊装无需受到吊梁的距离控制。
请结合图,索塔设置的索鞍5用于支托缆索1并对缆索1起到导向的作用,所述索鞍5安装在塔架的顶部及索塔的中横梁上,所述索鞍5包括索鞍座51、销轴52及索鞍轮53,所述销轴52沿横桥向延伸,所述索鞍轮53沿所述销轴52的长度方向并排设有若干个,且若干个所述索鞍轮53可转动地安装在所述销轴52上,同时,所述销轴52的两端固定所述索鞍座51上,以防止所述销轴52随所述索鞍轮53的转动而转动。此外,所述索鞍轮53沿顺桥向设有两组,以提高所述索鞍5对所述缆索1的支托及导向能力。所述索鞍座51的顶部还设有导向轮54,用于牵引所述吊装小车41的牵引绳经过所述导向轮54以提高吊装小车41行走的稳定性。
优选地,本申请的位于边跨现浇梁和引桥的相交处,且本实施例的塔架2优选采用钢管桁架结构,所述钢管桁架结构主要采用钢管桩构成。具体地,所述塔架2包括立柱21、平联22及斜撑23,所述立柱21采用钢管桩,所述平联22优选采用
的钢管,且所述平联22沿水平方向延伸并连接同一排或同一列的钢管桩,所述斜撑23设于临近的两根所述平联22之间,以增强所述平联22的结构强度,本实施例中优选采用双拼20#钢管作为斜撑23。所述塔架2的底部还设有埋设在地锚3内的预埋钢管24,进一步提高了所述塔架2的结构稳定性,以确保所述塔架2能够为所述缆索1提供足够的支撑能力。其次,在所述塔架2的顶部设有沿横桥向延伸的滑移轨道25,所述滑移轨道25上设有供所述缆索1端部安装连接的安装座(图中未示意),从而通过调节安装座在滑移轨道25上的位置来调节缆索1的位置,继而起吊不同位置的梁段。
另外,所述缆索1的两端经过所述塔架顶部的索鞍5后连接到地锚3处,通过地锚3来抵抗来自于缆索1的拉力,并传递给地基基础,能够为 塔架2供良好的抗拉能力,以为所述缆索1提供良好的支撑能力。具体地,所述地锚3设于桥梁引桥的路线中心,且本实施例中的地锚3采用重力式砼锚碇31结构,其包括锚碇31及管桩基础32,所述管桩基础32埋设在锚碇31内,以对锚碇31进行承重防止其下沉,且所述锚碇31为可回填砂土的框架结构。所述锚碇31的框架结构内还设有用于浇砼的中间箱室33,并且将所述中间箱室33设于所述框架结构的对称中心,可有效地消除土体侧向压缩,防止所述锚碇31水平位移,从而提供被动土压力。所述管桩基础32包括多根直径为820mm承重钢管,以起到防止锚碇31沉降的作用。进一步的,本实施例中的承重钢管倾斜设置,所述承重钢管倾斜设置可提高所述锚碇31的防沉降能力。
另外在本实施例中,所述地锚3可为缆索提供420T的抗拉能力,同时,当所述吊装小车41所起吊的梁段重量大致为340T时,索塔其中一侧的吊装小车41及其起吊的梁段对索塔施加大致为1379T的水平力,同时施加大致为237T的竖向力,该竖向力可由索塔进行承担。由于索塔两侧同时施工或通过所述吊装小车41的配重框进行配重以平衡索塔两侧的水平拉力,继而确保索塔的结构稳定性,避免在施工梁端的过程中对索塔造成偏移的影响。
本申请创新地在斜拉桥上采用三跨缆索吊机,其利用缆索1吊跨度大、不受气候与地形条件限制的优势,实现所有梁段的垂直吊装,无需浮吊、大型滑梁、存梁支架配合,有利于控制工期,并且无需在桥面搭设大型提吊设备荷载,可有效地减少梁段匹配横向变形不一致造成的拼缝错台的问题,减少焊缝附加应力的危害,同时减少桥面其他临时荷载,有利于斜拉索索力、主梁线型控制。此外,本申请的三跨缆索吊机通过分别在对应在三跨桥段的缆索1上设置三组吊装小车41,可实现三跨桥段的同时施工,加快了施工进度,缩短施工时间,提高了施工进度。同时,在无需进行梁端的吊装施工时,吊装小车41的配重框内可施以适配重量的配重块以平衡索塔两侧的水平拉力,继而确保索塔在施工过程中的稳定性,减少索塔发生偏斜的情况。
本申请还涉及一种三块缆索1吊机的施工方法,所述三跨缆索吊机为 前文中所提及的三跨缆索吊机,具体包括以下步骤:
首先,施工桥梁两侧的地锚3,在两侧地锚3位于边跨现浇梁和引桥的相交处架设塔架2,并利用两个索塔的中横梁安装所述三跨缆索吊机。具体地,在索塔施工至中横梁时,沿桥梁的顺桥向中心线依次安装所述三跨缆索吊机的塔架2、索鞍5、缆索1及运转机构4,所述塔架设于所述地锚3上并位于边跨现浇梁与引桥之间。
所述塔架2为临时塔架,其搭设在所述地锚3上并位于边跨现浇梁与引桥之间,安装前,可先在地锚处埋设预埋钢管24,随后在所述预埋钢管的基础上搭设塔架。所述索鞍5通过螺栓或贝雷销安装固定在所述塔架2的顶部及索塔的中横梁上,随后安装缆索1,所述缆索1的两端经两侧所述塔架的索鞍后连接到所述地锚处,且所述缆索1对应以两个索塔为划分点的三跨桥梁施工段各设一组所述运转机构4。
接着,在索塔施工完成后,每个索塔两侧的吊装小车41进行同步负重中以进行梁段的吊装,具体利用运转机构4吊装相应梁段在缆索1上滑移以安装就位,后进行拼装。
在本实施例中,全桥组合梁划分为A~H的10种类型,共91个节段,并且将本实施例中的两个索塔分别定义为1#索塔和2#索塔。三跨桥梁施工段的吊装采用流水作业法,即先安装1#索塔两侧的两个悬臂梁段,同时2#索塔的边跨处的运转机构4进行配重,接着再进行2#索塔两侧的两个悬臂梁段的施工,同时1#索塔的边跨处的运转机构4配重,每轮次吊装两个索塔两侧的各一梁段,共计四个梁段。
在1#索塔的梁段提吊安装就位、调整定位以确定当前梁段的位置后,安装劲性骨架并临时栓焊,同时安装斜拉索之后进行张拉,张拉完成后可松开所述运转机构4的起重系统对当前梁段的限制。随后进行2#索塔的梁段的吊装时,可同步进行1#索塔梁段的环焊、湿接缝以及二次张拉的施工。以此交替并根据上述梁段的拼装步骤对其他梁段进行拼装,当施工至中跨合龙段处时,需对桥梁两边跨处的运转机构4同时配重,直至将主梁全部梁段拼装完成。
另外,本申请的湿接缝可多道一起后浇,以优化施工工序,有利于工 期的控制,同时桥面无其他荷载作用于新浇湿接缝,可有效降低其开裂的风险,提高桥梁的结构稳定性。
本申请的双塔双索面混合梁斜拉桥采用所述三跨缆索吊机进行施工,实现了所有梁段的垂直吊装,解决了现有边跨侧通航空间小,必须采用浮吊从中跨侧安装、滑移就位的问题,同时也无需设置存梁支架,避免支架荷载致使局部荷载过大导致梁段受力不均的问题,并且由于次边跨位于河道浅滩区以及跨大堤及堤内区域,运梁船无法直达梁段的正下方,而采用本申请的三跨缆索吊机无需搭设大型支架滑梁存梁,解决了支架搭设困难的问题,并且采用缆索1吊机来实现梁段的垂直吊装,无需在桥面上设立大型提吊设备荷载,可有效减少梁段匹配横向变形不一致造成的拼缝错台的问题,减少焊缝附加应力的危害,并且由于桥面荷载的减少,可有利于斜拉索索力、主梁线线型的控制。本申请的总体结构简单、施工方便快捷、施工速度快,缩短了施工时间,节约了施工成本。
以上所述仅是本申请的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。
Claims (10)
- 一种用于斜拉桥主梁安装的三跨缆索吊机,其特征在于,包括设于桥梁顺桥向中心线上的缆索、塔架及地锚,所述塔架及地锚分别在桥梁两侧各设一组,所述塔架的顶部设有索鞍,所述缆索的两端通过两个所述塔架顶部的索鞍并连接至所述地锚处,且所述缆索中部通过设于桥梁两个索塔上的索鞍进行支托,所述缆索位于每个索塔的两侧设有用作吊装或平衡索塔水平受力的运转机构。
- 根据权利要求1所述的用于斜拉桥主梁安装的三跨缆索吊机,其特征在于,所述塔架位于边跨现浇梁和引桥的相交处,所述塔架为钢管桁架结构,所述钢管桁架结构包括立柱、平联及斜撑,所述立柱采用钢管桩,所述平联沿水平方向延伸并连接同一排或同一列的多根钢管桩,所述斜撑倾斜地设于临近的两根所述平联之间。
- 根据权利要求2所述的用于斜拉桥主梁安装的三跨缆索吊机,其特征在于,所述塔架底部设有埋设在地锚上的预埋钢管。
- 根据权利要求1所述的用于斜拉桥主梁安装的三跨缆索吊机,其特征在于,所述地锚为重力式砼锚碇结构,其包括锚碇及管桩基础,所述管桩基础埋设在锚碇中,且所述锚碇为可回填砂土的框架结构。
- 根据权利要求4所述的用于斜拉桥主梁安装的三跨缆索吊机,其特征在于,所述锚碇的框架结构内设有用于浇砼及砂土配重的中间箱室。
- 根据权利要求4所述的用于斜拉桥主梁安装的三跨缆索吊机,其特征在于,所述管桩基础包括多根倾斜设置的承重钢管。
- 根据权利要求1所述的用于斜拉桥主梁安装的三跨缆索吊机,其特征 在于,所述运转机构包括吊装小车、起吊系统及牵引系统,所述起吊系统设于所述吊装小车上并用于吊装梁段,所述牵引系统与所述吊装小车连接以拉动所述吊装小车沿所述缆索移动,所述吊装小车上还设有配重框。
- 根据权利要求1所述的用于斜拉桥主梁安装的三跨缆索吊机,其特征在于,所述索鞍包括索鞍座及索鞍轮,所述索鞍轮沿横桥向设有多个,且所述索鞍座内设有沿横桥向延伸并连接多个所述索鞍轮的销轴。
- 一种如权利要求1-8任一项所述的用于斜拉桥主梁安装的三跨缆索吊机的施工方法,其特征在于,包括以下步骤:施工桥梁两侧的地锚,在两侧地锚位于边跨现浇梁和引桥的相交处架设塔架,并利用两个所述索塔的中横梁安装所述三跨缆索吊机;利用所述三跨缆索吊机依次在两个索塔之间交替轮次来进行梁段的吊装,且每个索塔的两侧同步负重;待当前吊装的梁段调节就位后,安装劲性骨架并临时栓焊,以及安装斜拉索之后进行张拉;松开所述三跨缆索吊机对当前梁段的限制,并根据上述梁段的拼装步骤依次拼装主梁的剩余结构,直至主梁梁段拼装完成。
- 根据权利要求9所述的用于斜拉桥主梁安装的三跨缆索吊机的施工方法,其特征在于,所述三跨缆索吊机的安装方法包括以下步骤:当索塔施工至中横梁处时,依次安装所述三跨缆索吊机的塔架、索鞍、缆索及运转结构,所述塔架设于所述地锚上并位于边跨现浇梁与引桥之间,所述索鞍分别设于所述塔架的顶部及索塔的中横梁处,所述缆索的两端经两侧所述塔架的索鞍后连接到所述地锚处,且所述缆索对应以两个索塔为划分点的三跨桥梁施工段各设一组所述运转机构。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110495816.6A CN113308997A (zh) | 2021-05-07 | 2021-05-07 | 用于斜拉桥主梁安装的三跨缆索吊机及其施工方法 |
CN202110495816.6 | 2021-05-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022233226A1 true WO2022233226A1 (zh) | 2022-11-10 |
Family
ID=77371517
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/087167 WO2022233226A1 (zh) | 2021-05-07 | 2022-04-15 | 用于斜拉桥主梁安装的三跨缆索吊机及其施工方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113308997A (zh) |
WO (1) | WO2022233226A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113308997A (zh) * | 2021-05-07 | 2021-08-27 | 中交路桥华南工程有限公司 | 用于斜拉桥主梁安装的三跨缆索吊机及其施工方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100969005B1 (ko) * | 2009-11-06 | 2010-07-09 | 동아대학교 산학협력단 | 가설케이블을 이용한 무장력 사재케이블 상태의 사장교 시공방법 및 이를 위한 가설케이블 |
CN108643057A (zh) * | 2018-06-20 | 2018-10-12 | 大连理工大学 | 一种悬索桥主梁架设过程中的临时锚索平衡施工法 |
CN113308997A (zh) * | 2021-05-07 | 2021-08-27 | 中交路桥华南工程有限公司 | 用于斜拉桥主梁安装的三跨缆索吊机及其施工方法 |
CN216891994U (zh) * | 2021-05-07 | 2022-07-05 | 中交路桥华南工程有限公司 | 用于斜拉桥主梁安装的三跨缆索吊机 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5326030B2 (zh) * | 1973-06-19 | 1978-07-31 | ||
JP2002038421A (ja) * | 2000-07-27 | 2002-02-06 | Shinko Wire Co Ltd | 構造物の架設工法 |
CN201106155Y (zh) * | 2007-10-16 | 2008-08-27 | 中铁大桥局集团第四工程有限公司 | 斜拉索辅助全悬臂架设钢桁梁装置 |
CN201172597Y (zh) * | 2007-12-20 | 2008-12-31 | 中铁大桥局股份有限公司 | 大跨重载缆索吊机 |
CN109371854B (zh) * | 2018-10-17 | 2020-02-04 | 中交二航局第二工程有限公司 | 缆索吊施工大跨度悬索桥加劲梁的方法 |
CN109750600B (zh) * | 2018-12-17 | 2021-01-05 | 中铁广州工程局集团有限公司 | 一种不对称缆索吊机的施工方法 |
CN109629402B (zh) * | 2019-01-15 | 2021-04-13 | 四川路桥华东建设有限责任公司 | 一种三塔四跨悬索桥主梁的施工方法 |
CN210766431U (zh) * | 2019-06-03 | 2020-06-16 | 中铁二院工程集团有限责任公司 | 钢拱肋顶推系统 |
-
2021
- 2021-05-07 CN CN202110495816.6A patent/CN113308997A/zh active Pending
-
2022
- 2022-04-15 WO PCT/CN2022/087167 patent/WO2022233226A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100969005B1 (ko) * | 2009-11-06 | 2010-07-09 | 동아대학교 산학협력단 | 가설케이블을 이용한 무장력 사재케이블 상태의 사장교 시공방법 및 이를 위한 가설케이블 |
CN108643057A (zh) * | 2018-06-20 | 2018-10-12 | 大连理工大学 | 一种悬索桥主梁架设过程中的临时锚索平衡施工法 |
CN113308997A (zh) * | 2021-05-07 | 2021-08-27 | 中交路桥华南工程有限公司 | 用于斜拉桥主梁安装的三跨缆索吊机及其施工方法 |
CN216891994U (zh) * | 2021-05-07 | 2022-07-05 | 中交路桥华南工程有限公司 | 用于斜拉桥主梁安装的三跨缆索吊机 |
Also Published As
Publication number | Publication date |
---|---|
CN113308997A (zh) | 2021-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109235285B (zh) | 一种大跨度铁路钢筋混凝土拱桥悬臂浇筑系统及施工方法 | |
CN110042769B (zh) | 一种组合梁斜拉桥辅助跨全悬臂拼装施工方法 | |
CN112227206B (zh) | 一种地锚转自锚架梁工艺设计及施工方法 | |
CN110886187B (zh) | 缆索吊系统安装体系及其施工方法 | |
CN106744351A (zh) | 利用缆索吊机进行斜拉桥主梁吊装的方法 | |
CN102367650A (zh) | 一种钢管拱桥的施工方法 | |
WO2024148715A1 (zh) | 一种连续钢桁梁桥的架设方法 | |
CN111807232A (zh) | 一种缆索吊机系统及起吊方法及方法 | |
WO2023005126A1 (zh) | 钢箱梁提运架系统及其施工方法 | |
CN115748513A (zh) | 基于悬臂空中作业平台的超小高跨比全焊钢桁梁桥施工方法 | |
WO2022233226A1 (zh) | 用于斜拉桥主梁安装的三跨缆索吊机及其施工方法 | |
CN210684480U (zh) | 上承式拱桥施工用钢拱架拼装与横移系统 | |
CN112160246B (zh) | 组合梁安装方法 | |
CN212834992U (zh) | 一种基于狭长山涧地形的悬索桥 | |
CN216891994U (zh) | 用于斜拉桥主梁安装的三跨缆索吊机 | |
CN210856954U (zh) | 上承式拱桥用钢拱架的无支架缆索吊装施工结构 | |
CN110616638A (zh) | 悬索桥浅滩区钢箱梁无支架吊装方法 | |
CN111472285A (zh) | 一种利用缆索吊机安装主桥变截面连续钢桁梁的方法 | |
Deng et al. | Design and application of 9000KN hydraulic lifting cable-borne crane for suspension bridge steel girder erection | |
CN221798120U (zh) | 通航孔提升栈桥的桥体和通航孔提升栈桥 | |
CN219637728U (zh) | 用于悬臂拼装超小高跨比全焊钢桁梁桥的空中作业平台 | |
CN220150110U (zh) | 悬臂空中作业平台的主体桁架结构 | |
CN219637727U (zh) | 悬臂空中作业平台的运输系统 | |
CN219137447U (zh) | 悬臂空中作业平台的前移设备 | |
CN113236316B (zh) | 一种隧道锚预应力成品索安装方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22798567 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22798567 Country of ref document: EP Kind code of ref document: A1 |