WO2022233177A1 - 辅助工装及预制件承载装置及用于预制体增密的装炉结构 - Google Patents

辅助工装及预制件承载装置及用于预制体增密的装炉结构 Download PDF

Info

Publication number
WO2022233177A1
WO2022233177A1 PCT/CN2022/077699 CN2022077699W WO2022233177A1 WO 2022233177 A1 WO2022233177 A1 WO 2022233177A1 CN 2022077699 W CN2022077699 W CN 2022077699W WO 2022233177 A1 WO2022233177 A1 WO 2022233177A1
Authority
WO
WIPO (PCT)
Prior art keywords
preforms
preform
cavity
furnace
densified
Prior art date
Application number
PCT/CN2022/077699
Other languages
English (en)
French (fr)
Inventor
李梦飞
姚宏
成路
赵领航
段滨
杜路路
高攀红
豆菲菲
黄志鹏
Original Assignee
隆基绿能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202120955130.6U external-priority patent/CN216155960U/zh
Priority claimed from CN202121309255.8U external-priority patent/CN215887224U/zh
Application filed by 隆基绿能科技股份有限公司 filed Critical 隆基绿能科技股份有限公司
Publication of WO2022233177A1 publication Critical patent/WO2022233177A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating

Definitions

  • the present disclosure relates to the technical field of photovoltaic crystal pulling, and in particular, to an auxiliary tooling and a preform bearing device and a furnace loading structure for preform densification.
  • Carbon/carbon composites are new high-temperature composites of carbon fiber and its fabric-reinforced carbon matrix. In recent years, with the reduction of cost, it has gradually been used in civil high-temperature furnace insulation equipment and thermal field components, especially in the thermal field components of photovoltaic single crystal furnaces.
  • the commonly used carbon/carbon composite materials are 3D or 2.5D woven carbon fiber braids as preforms, which are densified by chemical vapor infiltration process (CVI process) to obtain carbon/carbon composite materials.
  • CVI process chemical vapor infiltration process
  • the CVI process has high cost and long deposition time, and it usually takes hundreds of hours to prepare carbon/carbon composite photovoltaic thermal field components.
  • the common deposition furnace has a small amount of furnace charging and limited output, which increases the production cost and reduces the deposition efficiency.
  • CVI chemical vapor infiltration
  • the purpose of the present disclosure is to provide an auxiliary tooling and a preform bearing device, so as to increase the single charging capacity of the deposition furnace, improve the deposition efficiency, and reduce the production cost.
  • the present disclosure provides an auxiliary tool for assisting the stacking of a plurality of preforms in a deposition furnace, each preform having a first cavity and a first opening communicating with the first cavity.
  • the auxiliary tooling comprises: at least one base and at least one support plate, each support plate is arranged on the corresponding base, and each support plate has at least one ventilation hole penetrating the support plate.
  • At least part of the base is located inside or outside the first cavity of at least one preform, the at least one preform is located on the corresponding support plate, and the preform located on the corresponding support plate has a first cavity.
  • the cavity is communicated with at least one ventilation hole of the corresponding support plate.
  • the auxiliary tooling provided by the present disclosure includes at least one base and at least one support plate.
  • a plurality of preforms can be stacked in the deposition furnace by the auxiliary tool.
  • the base can be used for supporting The support plate and the at least one preform located on the support plate allow a reasonable gap between each layer of preforms without affecting each other, so that the single charging capacity of the deposition furnace is improved, and because the preforms They are not in contact with each other, therefore, the extrusion deformation between the preforms will not be caused, the deposition efficiency is improved, and the production cost is reduced.
  • each support plate of the auxiliary tool has at least one ventilation hole penetrating the support plate, and when a plurality of preforms are stacked, the preforms on the corresponding support plate have the first cavity and the corresponding support At least one ventilation hole of the plate is connected, so that gas can pass through the inner wall and the outer wall of each of the stacked preforms, so as to ensure that the deposition effect is improved while the furnace charging capacity is increased.
  • the base when at least a part of the base is located in the first cavity of the at least one preform, since the base separates the first cavity, the flow space of the gas flowing through the preform is reduced, so , by arranging the base located in the first cavity of the at least one preform, the flow field can also be improved, and the effect of restricting air can be achieved, thereby improving the deposition effect.
  • the at least one base has a second cavity
  • the support plate cover is provided on the corresponding base.
  • the at least one base has a second cavity
  • the at least one support plate is an annular support plate
  • the annular support plate is annularly arranged on the corresponding base.
  • the at least one base has a second opening, and at least one ventilation hole of the support plate communicates with the second opening.
  • the second cavity is used for accommodating at least one preform.
  • the second cavity can be used for accommodating at least one preform, so as to increase the single loading capacity of the deposition furnace and improve the deposition efficiency.
  • the above-mentioned support plate further has a gas blocking part for blocking the outflow of gas in the second cavity, and the gas blocking part is located at a part of the support plate corresponding to the second opening.
  • the above-mentioned one base and one corresponding support plate constitute a support structure
  • the number of support structures is multiple
  • the multiple support structures are stacked along the height direction of the deposition furnace.
  • the base of the support structure near the top of the deposition furnace is provided on the support plate of the support structure near the bottom of the deposition furnace.
  • a stack can be formed between the plurality of support structures.
  • a corresponding support structure can be placed on the support plate of one support structure, and a plurality of preforms can be arranged in or outside the base of the support structure, which can avoid the phenomenon of extrusion deformation when the preforms are stacked.
  • the occurrence of the deposition furnace can also increase the loading capacity of the deposition furnace.
  • the outer wall contour of at least part of the base matches the inner wall contour of the corresponding preform, and there is a gap between the outer wall contour of the base and the inner wall contour of the corresponding preform, and the size of the gap is the same.
  • the flow space of the gas is further reduced, so that the flow rate of the gas is accelerated, and the flow of the gas through the preform is reduced. time, improving the deposition efficiency.
  • the velocity of the gas is relatively uniform, so that the preform is treated more uniformly by the gas, and the deposition effect is better.
  • At least one support plate is located inside or outside the first cavity of the at least one preform.
  • At least one support plate is provided in the first cavity of the preform, and the corresponding preform can be placed on the support plate to further increase the furnace load, shorten the deposition time, and save production costs.
  • the above-mentioned auxiliary tool further includes a gas restricting structure for accelerating the flow speed of the gas flowing through the corresponding preform.
  • the air limiting structure is located inside or outside the first cavity of the corresponding preform.
  • the flow speed of the gas flowing through the corresponding preform can be accelerated, the gas retention in the preform can be reduced, the occurrence of carbon black can be reduced, and the deposition efficiency can be improved.
  • the outline of the outer wall of the gas confinement structure matches the outline of the inner wall of the first cavity of the corresponding preform, and there is a gap between the outline of the outer wall of each air confinement structure and the outline of the inner wall of the corresponding first cavity , the size of the gap is the same, and the gap communicates with at least one ventilation hole of the corresponding support plate.
  • the above-mentioned gas confinement structure has a third cavity.
  • at least one preform is located inside or outside the third cavity.
  • the third cavity has a third opening, and when a plurality of preforms are mounted on the auxiliary tool, at least one preform is located in the third cavity.
  • the above-mentioned air restricting structure is a closed air restricting structure.
  • the closed air restricting structure is located in the first cavity of the corresponding preform.
  • the above-mentioned gas confinement structure along the height direction of the deposition furnace includes at least two gas confinement parts for accelerating the flow speed of the gas flowing through the corresponding preform.
  • at least one air-restricting portion is located in the first cavity of the corresponding preform.
  • the present disclosure also provides a preform carrying device.
  • the preform carrying device includes a material column and the auxiliary tooling described above or in any possible implementation manner above. When at least two preforms in the material column are stacked, the auxiliary tooling is located in the material column.
  • the beneficial effects of the preform carrying device provided in the second aspect are the same as the beneficial effects of the auxiliary tooling described in the first aspect or any possible implementation manner of the first aspect, and are not repeated here.
  • the present disclosure also provides a furnace loading structure for preform densification, the furnace loading structure is arranged in a furnace cavity, the furnace cavity has a furnace cavity inlet and a furnace cavity outlet, and the furnace loading structure includes at least two groups Assemblies of preforms to be densified, each group of assemblies of preforms to be densified includes at least two preforms to be densified, and the at least two preforms to be densified are nested in sequence to form at least one of the preforms to be densified.
  • the restricting channels between the preforms to be densified, at least two groups of the preforms to be densified are mutually buckled along the direction of gravity to form at least one structural unit, and two groups of the preforms to be densified in each structural unit
  • the flow restricting channels corresponding to the preform assemblies are communicated with each other, and at least one flow restricting path connecting the furnace cavity inlet, the flow restricting channel and the furnace cavity outlet is respectively formed in the furnace cavity.
  • the furnace loading structure includes a plurality of structural units, and the plurality of structural units are stacked along the direction of gravity; the restricting channels of the preform components to be densified in adjacent structural units communicate with each other .
  • the furnace loading structure includes a plurality of preform assemblies to be densified, the plurality of preform assemblies to be densified are distributed in an array in a horizontal plane, and the plurality of preform assemblies to be densified are arranged in an array.
  • the restrictor channels communicate with each other.
  • a spacer is arranged between two adjacent preforms to be densified to form the restrictive channel.
  • the same ends of a pair of the preforms to be densified that have the same size are disposed opposite to each other, wherein at least a pair of the preforms to be densified that are locked to each other are arranged opposite each other.
  • a heightening ring is arranged between the densification preforms, and the heightening rings are respectively in contact with the same ends of the two preforms to be densified; the rest are on the same end of the preforms to be densified. Departments are in contact with each other.
  • an end face of each of the preforms to be densified is provided with a flow opening, and a flow opening is formed in the furnace cavity to communicate with the furnace cavity inlet, at least one of the flow restriction channels, the flow through At least one flow restriction path of the flow opening and the furnace cavity outlet.
  • a cover plate is provided on the flow opening of the innermost preform to be densified.
  • a flow limiting plate is provided on the top of the outermost preform to be densified, and the flow opening on the preform to be densified is provided on the flow limiting plate.
  • the furnace loading structure further includes a base, the base includes a base ring and a distribution plate, the center of the distribution plate is provided with a first inflow port, and the outer periphery of the first inflow port is provided with at least one At least three of the preforms to be densified are sleeved in sequence to form at least two flow restricting channels, the first inflow opening is communicated with the innermost flow restricting channel, and the at least one circle The second inflow ports are respectively communicated with the rest of the restricting flow passages.
  • a hoisting interface is provided on the base ring.
  • the base ring, the flow dividing plate, the restrictor plate, the spacer, the heightening ring and the cover plate are made of graphite or carbon-carbon.
  • the present disclosure provides a furnace loading structure for preform densification.
  • the furnace loading structure includes at least two groups of preform assemblies to be densified, and at least two groups of the preform assemblies to be densified are formed by interlocking with each other along the direction of gravity.
  • At least one structural unit, in each of the structural units, the flow restricting channels corresponding to the two groups of the prefabricated components to be densified are communicated with each other, and the furnace cavity is respectively formed to communicate with the furnace cavity inlet, the restrictor The flow channel and at least one restricted flow path of the oven cavity outlet.
  • the carbon source gas passes through the above-mentioned restricting channels, and can simultaneously deposit multiple preforms to be densified at one time, and can be deposited at the position where the preforms to be densified are prone to damage, which increases the density of the deposition and can greatly prolong the time to be densified.
  • the life of the dense prefabricated body; guided by the limited flow path, the gas flow range is reduced to ensure that the carbon source gas flows in the required area, thereby shortening the gas residence time, avoiding the turbulent flow in the flow field, thereby improving the carbon source utilization rate and realizing prefabrication. rapid deposition of the body.
  • FIG. 1 schematically shows a schematic diagram 1 of the use state of the auxiliary tooling in the embodiment of the present disclosure
  • FIG. 2 schematically shows a schematic structural diagram of an annular support plate in an embodiment of the present disclosure
  • FIG. 3 schematically shows the second schematic diagram of the use state of the auxiliary tooling in the embodiment of the present disclosure
  • FIG. 4 schematically shows a schematic diagram 3 of the use state of the auxiliary tooling in the embodiment of the present disclosure
  • FIG. 5 schematically shows a schematic diagram 4 of the use state of the auxiliary tooling in the embodiment of the present disclosure
  • FIG. 6 schematically shows a schematic diagram 5 of the use state of the auxiliary tool in the embodiment of the present disclosure.
  • FIG. 7 schematically shows a schematic structural diagram of a furnace charging structure for preform densification according to an embodiment of the present disclosure
  • FIG. 8 schematically shows a schematic structural diagram of a distribution plate when the furnace loading structure involved in the embodiment of the present disclosure includes three layers of preforms to be densified;
  • FIG. 9 schematically shows a schematic diagram of the gas flow of the furnace loading structure involved in the embodiment of the present disclosure.
  • FIG. 10 schematically shows a schematic structural diagram when the furnace loading structure involved in the embodiment of the present disclosure includes two layers of preforms to be densified;
  • FIG. 11 schematically shows a schematic structural diagram of a furnace charging structure involved in an embodiment of the present disclosure when a plurality of structural units are charged in an array along the direction of gravity;
  • FIG. 12 schematically shows a schematic structural diagram of the furnace loading structure involved in the embodiment of the present disclosure when a plurality of structural units are installed in an array along a plane.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • plurality means two or more, unless expressly and specifically defined otherwise.
  • Several means one or more than one, unless expressly specifically defined otherwise.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; may be mechanical connection or electrical connection; may be direct connection or indirect connection through an intermediate medium, may be internal communication between two elements or an interaction relationship between the two elements.
  • installed may be a fixed connection or a detachable connection Connection, or integral connection; may be mechanical connection or electrical connection; may be direct connection or indirect connection through an intermediate medium, may be internal communication between two elements or an interaction relationship between the two elements.
  • Carbon-carbon composite material is a new high temperature composite material of carbon fiber and its fabric reinforced carbon matrix. It combines the excellent mechanical properties of fiber reinforced composite materials and the excellent high temperature performance of carbonaceous materials, and has high specific strength and specific modulus. Good toughness and a series of excellent properties such as excellent strength retention rate at high temperature, creep resistance and thermal shock resistance are widely used in aerospace, automobile, metallurgy and other fields. In recent years, with the reduction of cost, carbon-carbon composite materials have also been gradually used in thermal insulation equipment and thermal field components of civil high-temperature furnaces, especially in thermal field components of photovoltaic single crystal furnaces.
  • the carbon-carbon thermal field such as the outer shell of the heat shield and the crucible is made of a 3D or 2.5D woven carbon fiber braid as a preform, and the carbon-carbon composite material is obtained by densifying the preform.
  • the chemical vapor infiltration process is widely used in the mass production of carbon-carbon parts because the chemical vapor infiltration process has a relatively uniform deposition effect and good mechanical properties and can be mass-produced.
  • the chemical vapor infiltration process is costly and takes a long time to process, usually hundreds of hours are usually required to prepare photovoltaic thermal fields.
  • the ordinary deposition furnace has a small amount of furnace loading and limited output, which can no longer keep up with the demand for the thermal field of photovoltaic expansion. Therefore, how to further increase the charging amount, shorten the deposition time, and save the production cost is still the research focus in the field of carbon-carbon composite deposition.
  • the embodiment of the present disclosure provides a preform carrying device, the preform carrying device includes a material column 1 and an auxiliary tool 2 .
  • FIG. 1 illustrates a schematic diagram 1 of the use state of the auxiliary tool provided by the embodiment of the present disclosure. As shown in FIG. 1 , when at least two preforms 3 in the material column 1 are stacked, the auxiliary tool 2 is located in the material column 1 .
  • the auxiliary tool 2 By arranging the auxiliary tool 2 to assist at least two preforms 3 to be stacked together, the number of preforms 3 accommodated by the material column 1 at a time is increased, and the auxiliary tool 2 separates each layer of preforms 3 to avoid one time The backlog deformation of the preforms 3 caused by stacking a plurality of preforms 3 occurs, thereby increasing the single charging capacity of the deposition furnace and improving the deposition efficiency. It should be noted here that if the deposition furnace used is a single column 1 deposition furnace, the auxiliary tool 2 may be directly placed in the deposition furnace cavity without the column 1 .
  • each preform 3 has a first cavity 31 and a first opening 32 communicating with the first cavity 31 .
  • the auxiliary tool 2 includes: at least one base 21 and at least one support plate 22 , each support plate 22 is provided on the corresponding base 21 , and each support plate 22 has at least one ventilation hole 221 passing through the support plate 22 .
  • the materials of the support base 21 and the support plate 22 here may be graphite materials, carbon-carbon materials, etc., which are not limited herein.
  • the first cavity 31 of the preform located on the corresponding support plate 22 communicates with at least one ventilation hole 221 of the corresponding support plate 22 .
  • FIG. 1 after the carbon source gas entering from the bottom of the material column 1 is split through the ventilation holes of the bottom plate 11 of the material column 1 , multiple groups of gas flows are formed to pass through a plurality of gas streams located on the bottom plate 11 of the material column 1 respectively.
  • the gaps between the preforms 3 and between the preforms 3 and the base 21 flow upward into the support plate 22 connected to the base 21 .
  • the carbon source gas entering from the ventilation holes 221 on the support plate 22 is divided to form multiple groups of airflows, and the multiple groups of airflows respectively flow through the multiple preforms 3 nested together on the support plate 22.
  • each layer of the support plate 22 is supported by the base 21 , the overlapping of multiple preforms 3 and the occurrence of the preform 3 being squeezed and deformed are avoided.
  • the auxiliary tool provided by the present disclosure includes at least one base and at least one support plate, when there is an auxiliary tool in the deposition furnace, a plurality of preforms can be stacked in the deposition furnace through the auxiliary tool. And because at least part of the base is located inside or outside the first cavity of the at least one preform, and each support plate is provided on the corresponding base, and the at least one preform is located on the corresponding support plate, the base can be used for The support plate and at least one preform located on the support plate are supported, so that each layer of preforms has a reasonable gap and does not affect each other, so that the single charging capacity of the deposition furnace is improved, and due to The preforms are not in contact with each other, therefore, the extrusion deformation between the preforms will not be caused, the deposition efficiency is improved, and the production cost is reduced.
  • each support plate of the auxiliary tooling is provided with at least one ventilation hole penetrating the support plate, and when a plurality of preforms are stacked, the first cavity of the preforms located on the corresponding support plate is the same as that of the first cavity.
  • the at least one vent hole of the corresponding support plate is communicated, so that both the inner wall and the outer wall of the stacked preforms can be in contact with the gas, so as to improve the deposition effect while increasing the furnace loading capacity.
  • the base when at least a part of the base is located in the first cavity of the at least one preform, since the base separates the first cavity, the gas flowing through the first cavity of the preform flows.
  • the space is reduced, and therefore, by arranging the base located in the first cavity of the at least one preform, the flow field can also be improved, and the air can be restricted, thereby enhancing the deposition effect.
  • the at least one base 21 has a second cavity 211 , and at least one of the support plates 22 is an annular support plate 223 , and the annular support plate 223 is annularly arranged on the corresponding base 21 .
  • FIG. 2 illustrates a schematic structural diagram of an annular support plate provided by an embodiment of the present disclosure.
  • the center of the annular support plate 223 has a through hole 2231 and a plurality of sets of ventilation rings 2232 disposed concentrically with the annular support plate 223 .
  • each group of ventilation rings 2232 is composed of a plurality of ventilation holes 221, and there is a gap between each group of ventilation rings 2232.
  • the preform 3 can be placed at this gap to leak out the vent ring 2232, so that during deposition, gas can enter the interior of the preform 3 through each vent hole 221 in the vent ring 2232.
  • Preform 3 is processed.
  • the support plate 22 may be provided with a groove 2233 matched with the base 21 .
  • the groove 2233 may be located on both the front and the back of the support plate 22 .
  • the support plate 22 when the support plate 22 is an annular support plate 223 and at least one base 21 has a second opening, the support plate 22 has at least one ventilation hole 221 and the second opening.
  • the second cavity 211 can be used to accommodate at least one preform 3 . Because at least one base 21 has a second opening, and at least one ventilation hole 221 of the support plate 22 communicates with the second opening, so that the second cavity 211 of the base 21 is an open cavity, so that the flow into the second cavity The gas in the body 211 can flow out through the at least one ventilation hole 221 of the support plate 22.
  • the second cavity 211 can be used to accommodate at least one preform 3, so as to increase the single charging capacity of the deposition furnace and increase the deposition efficiency.
  • the at least one prefab 3 here can be a plurality of prefabs 3 that are nested together, and the specific quantity of the prefabs 3 can be designed according to the size of the second cavity 211 .
  • FIG. 3 illustrates a second schematic diagram of the use state of the auxiliary tool provided by the embodiment of the present disclosure.
  • the at least one base 21 has a second cavity 211 , and the support plate 22 is covered on the corresponding base 21 .
  • the second cavity 211 may be an open cavity or a closed cavity.
  • the second cavity 211 when the second cavity 211 is an open cavity, at least one base 21 has a second opening, and covers at least one ventilation hole of the support plate 22 provided on the corresponding base 21 . 221 is communicated with the second opening, and the second cavity 211 can be used for accommodating at least one preform 3 so as to increase the capacity of the deposition furnace.
  • the second cavity 211 when the second cavity 211 is a closed cavity, at least one base 21 has a second opening, and the support plate 22 has a second opening for blocking the outflow of gas in the second cavity 211 .
  • the gas blocking portion 222 is located at a portion of the support plate 22 corresponding to the second opening.
  • the above-mentioned one base 21 and the corresponding one support plate 22 constitute a support structure A, and the number of the support structures A is multiple, and the multiple support structures A are stacked along the height direction of the deposition furnace.
  • the base 21 of the support structure A near the top of the deposition furnace is set on the support plate 22 of the support structure A near the bottom of the deposition furnace, so that a plurality of support structures A can be formed between them. Laminate.
  • a corresponding other support structure A can be placed on the support plate 22 of one support structure A, and a plurality of preforms 3 can be arranged in or outside the base 21 of the support structure A, which can avoid the preforms 3 being stacked.
  • the loading capacity of the deposition furnace can also be increased.
  • FIG. 4 illustrates a schematic diagram 3 of the use state of the auxiliary tool provided by the embodiment of the present disclosure.
  • the aforementioned bases 21 are located inside the corresponding preforms 3 .
  • the base 21 located in the preform 3 divides the first cavity 31 of the preform 3
  • the flow space of the gas flowing through the first cavity 31 is reduced, and the flow speed is accelerated, thereby improving the deposition. efficiency.
  • FIG. 5 illustrates a fourth schematic diagram of the use state of the auxiliary tool provided by the embodiment of the present disclosure.
  • the contour of the outer wall of at least a part of the base 21 matches the contour of the inner wall of the corresponding preform 3, and there is a gap between the contour of the outer wall of the base 21 and the contour of the inner wall of the corresponding preform 3, and the size of the gap is the same.
  • the flow space of the gas is reduced, so that the flow rate of the gas is accelerated, the time for the gas to flow through the preform 3 is reduced, and the deposition efficiency is improved.
  • the velocity of the gas is relatively uniform, so that the preform 3 can be processed by the gas more uniformly, and the deposition effect is better.
  • FIG. 6 illustrates a schematic diagram 5 of the use state of the auxiliary tool provided by the embodiment of the present disclosure.
  • at least one support plate 22 is located inside or outside the first cavity 31 of at least one preform 3 .
  • the corresponding preform 3 sleeved in the first cavity 31 can be placed on the support plate 22 to increase the furnace capacity and shorten the Deposition time, saving production cost.
  • each preform layer includes two preforms that are sleeved together.
  • the preform layer includes an outer large preform and a small preform nested inside the large preform.
  • the support plate supporting the large prefab is a large support plate, and the large support plate is located outside the first cavity of the large prefab.
  • the support plate supporting the small preform is a small support plate, and the small support plate is located in the first cavity of the large preform.
  • a base 21 is used to connect the large support plate and the small support plate.
  • the above-mentioned auxiliary tool 2 further includes a gas restricting structure 23 for accelerating the flow speed of the gas flowing through the corresponding preform 3 .
  • the air restricting structure 23 is located inside or outside the first cavity 31 of the corresponding preform 3 .
  • the material of the gas restricting structure 23 here may be a graphite material, a carbon-carbon material, or the like, which is not limited herein.
  • the wall thickness of the auxiliary tooling 2 can be made thinner to reduce the weight of the entire auxiliary tooling 2, thereby reducing the impact of the auxiliary tooling 2 on the deposition furnace and materials. The effect of column 1.
  • the outline of the outer wall of the air-restricting structure 23 can be matched with the outline of the inner wall of the first cavity 31 of the corresponding preform 3 .
  • the gas confinement structure 23 may have a third cavity 231 .
  • the gas confinement structure 23 may have a third cavity 231 .
  • at least one preform 3 is located inside or outside the third cavity 231 .
  • the contour of the outer wall of the air confinement structure 23 may match the contour of the inner wall of the first cavity 31 of the corresponding preform 3
  • the contour of the outer wall of each air confinement structure 23 may match the contour of the corresponding first cavity 31 .
  • There are gaps between the inner wall contours the gaps have the same size, and the gaps communicate with at least one ventilation hole 221 of the corresponding support plate 22 .
  • the third cavity 231 of the air confinement structure 23 has a third opening. When a plurality of preforms 3 are mounted on the auxiliary tool 2 , at least one preform 3 is located in the third cavity 231 .
  • the above-mentioned air-restricting structure 23 is a closed air-restricting structure 23 .
  • the closed air-restricting structure 23 is located on the first part of the corresponding preform 3 .
  • Inside a cavity 31 that is, at least one preform 3 is located outside the third cavity 231 .
  • the gas restricting structure 23 includes at least two gas restricting portions 232 for accelerating the flow velocity of the gas flowing through the corresponding preforms 3 .
  • at least one air restricting portion 232 is located in the first cavity 31 of the corresponding preform 3, and at least one air restricting portion 232 is connected with the base 21.
  • the contour of the outer wall of the base 21 can match the contour of the corresponding preform 3 , and the gap between the outer wall of the base 21 and the corresponding preform 3 is always the same.
  • the at least one preform 3 is located outside the third cavity 231 .
  • FIG. 7 and 8 are schematic diagrams of a furnace loading structure for preform densification provided by an embodiment of the present disclosure.
  • the furnace loading structure for densification of preforms includes a furnace cavity, the bottom and the top of the furnace cavity are respectively provided with a furnace cavity inlet and a furnace cavity outlet, the furnace cavity is provided with a preform component to be densified, and the The preform assembly includes at least two preforms to be densified, and the at least two preforms to be densified are sleeved in sequence to form at least one restricted flow channel between two adjacent preforms to be densified, at least The two groups of the prefabricated components to be densified are buckled with each other along the direction of gravity to form at least one structural unit. At least one flow restricting path is formed in the furnace cavity, which communicates with the furnace cavity inlet, the flow restricting channel and the furnace cavity outlet, respectively.
  • the form of the restricting channel is not limited to the space between two adjacent preforms to be densified, but also includes the inner cavity of the innermost preform to be densified, and may also include the outermost preform to be densified.
  • the preform to be densified here can be a heat shield 7', a crucible 8' or a heat preservation cylinder 3'.
  • the carbon source gas can deposit multiple preforms to be densified at one time through the above-mentioned restricting channels, and can be deposited at the position where the preforms to be densified are prone to damage, which increases the density of the deposition and can Greatly prolongs the life of the preform to be densified; reduces the gas flow range through the guidance of the limited flow path to ensure that the carbon source gas flows in the required area, thereby shortening the gas residence time, avoiding turbulent flow in the flow field, and improving the utilization of carbon source rate to achieve rapid deposition of preforms.
  • a heightened ring 4' is provided between two adjacent parts of the preforms to be densified that are buckled together.
  • the height of the structural unit 11' is adjusted by adjusting the distance between two adjacent preforms to be densified by setting the heightening ring 4'.
  • the same end of a pair of the to-be-densified preforms with the same size is disposed opposite to each other, wherein at least one pair of the to-be-densified preforms that are locked to each other
  • a heightening ring 4' is arranged between the bodies, and the heightening rings 4' are respectively in contact with the same ends of the two preforms to be densified; The ends touch each other.
  • the two ends of the preform to be densified are respectively provided with an opening with a smaller diameter and an opening with a larger diameter, and the ends of each preform to be densified with an opening with a larger diameter are in contact with each other, so as to realize the contact between the two preforms to be densified.
  • Body buckle It should be understood that, the smaller diameter end of the preform to be densified may also be in contact, so that two adjacent preforms to be densified are buckled back against each other to form a structural unit 11'. Among them, a more stable air flow field can be obtained by using one end of the opening with a larger diameter to contact each other.
  • each structural unit 11 ′ when each structural unit 11 ′ is buckled in pairs, one end of the two preforms to be densified are in contact with each other. Specifically, the preforms to be densified close to the entrance of the furnace cavity are set forward and close to the exit of the furnace cavity. The preform to be densified is inverted and arranged on the preform to be densified which is set in the forward direction. When each structural unit 11' is buckled, the other ends of the two preforms to be densified are in contact with each other. Specifically, the preforms to be densified close to the entrance of the furnace cavity are set upside down, and the preforms to be densified close to the exit of the furnace cavity are set upside down. The preform is set forward on the preform to be densified which is set upside down.
  • the height and diameter of the preforms to be densified can be adjusted according to the specifications of the furnace products, and the inner walls of the two preforms to be densified nested with each other are spaced apart by a certain space.
  • the preforms to be densified upright placed in the structural unit 11' except for the outermost preforms to be densified, the rest of the preforms to be densified nested with each other are cushioned with 3 to 6 spacers 6'.
  • the size of the spacer 6' is 50mm ⁇ 40mm ⁇ 30mm.
  • the hardness of the preform to be densified in the lower layer or the structural unit in the lower layer is greater than that of the preform to be densified in the upper layer or the structural unit in the upper layer, wherein the preform to be densified in the lower layer or the structural unit in the upper layer has a higher hardness.
  • the dense preform or the structural units in the lower layer can be selected from preforms or structural units to be densified that have been densified or have more densification cycles.
  • the furnace loading structure includes a plurality of structural units 11', and the plurality of structural units can be stacked along the direction of gravity, and the restricting channels of the preform components to be densified in adjacent structural units communicate with each other.
  • Each of the structural units uses one end of an opening with a larger diameter to contact each other to obtain a more stable airflow field. It is also possible that the plurality of structural units are distributed in an array in a horizontal plane, and the restrictor channels of the prefab components to be densified in adjacent structural units communicate with each other.
  • Each of the structural units uses one end of an opening with a larger diameter to contact each other to obtain a more stable airflow field.
  • a plurality of structural units 11' are stacked along the direction of gravity to form multiple groups of structural units, each group of structural units includes several structural units 11', and the multiple groups of structural units are distributed in an array in a horizontal plane.
  • a furnace charging method in which a plurality of preform components to be densified are combined in an array, the efficiency of preform deposition is improved, and large-scale industrial mass production is realized.
  • the number of preform combinations to be densified can be designed according to the size requirements of the deposition furnace 10', with n layers (n ⁇ 1) stacked along the direction of gravity, and m arrays along the plane (m ⁇ 1).
  • Each of the structural units uses one end of an opening with a larger diameter to contact each other to obtain a more stable airflow field.
  • Each group of structural units stacked in the direction of gravity can be in exactly the same repeating arrangement, for example, two adjacent prefabricated bodies to be densified are buckled against each other or back buckled with each other, or they can be arranged in different ways, such as a structure
  • the unit is two adjacent prefabs to be densified to be buckled with each other, and the adjacent structural unit is that two adjacent prefabs to be densified are buckled to each other.
  • Different groups of structural units stacked in the horizontal direction can be in exactly the same repeated arrangement, for example, in all positions, two adjacent prefabs to be densified are buckled against each other or against each other, or they can be arranged in different ways.
  • the structural unit in one position is two adjacent preforms to be densified to be buckled with each other, and the structural unit of another position is that two adjacent preforms to be densified are buckled against each other.
  • each of the preforms to be densified is provided with a flow opening, and the furnace cavity is respectively formed to communicate with the furnace cavity inlet, at least one of the restrictive flow channels, and the flow through and at least one restricted flow path of the cavity outlet.
  • the flow opening refers to an opening with a smaller diameter provided at the top of the preform to be densified.
  • the overflow port refers to an opening with a larger diameter of the preform to be densified.
  • the size of the overflow port of the innermost preform to be densified must be smaller than the size of the overflow port on the preform to be densified, or even there is no such overflow port, in order to prevent the carbon source gas from flowing back to the innermost side to be densified. Densified preforms.
  • a cover plate 5' is provided on the flow opening of the innermost preform to be densified.
  • the cover plate 5' is placed outside the edge of the opening and covers the opening with a smaller diameter.
  • the cover plate 5' is placed on the edge of the opening end of the preform to be densified and blocks the opening with a larger diameter.
  • the top of the outermost preform to be densified is provided with a restrictor plate 9', and the flow opening on the preform to be densified is provided on the restrictor plate 9'.
  • the restrictor plate 9' may not be provided to block the overflow port on the outermost preform to be densified, and the overflow port on the outermost preform to be densified is smaller than the overflow ports on the other preforms to be densified.
  • the size of the port can block the carbon source gas flowing into the furnace cavity, and can also control the outflow rate of the carbon source gas to a certain extent.
  • the furnace loading structure further includes a base, and the base includes a base ring 1 ′ and a distribution plate 2 ′.
  • the center of the distribution plate 2 ′ is provided with a first inflow port 201 ′.
  • the first inflow port 201 ′ There is at least one second inflow port 202' on the outer periphery of it; at least three prefabricated bodies 11' to be densified are set in sequence to form at least two restrictor channels.
  • the first inflow port 201' is connected to the innermost The flow restricting passages communicate with each other, and the at least one ring of the second inflow ports 202 ′ are respectively connected with the remaining flow restricting passages.
  • the edge of the dividing plate 2' has a mounting portion recessed toward the middle, the lower surface of the mounting portion is assembled with the base ring 1', and the upper surface of the mounting portion is assembled with the outer restrictor cylinder.
  • the center of the manifold 2' is provided with a first inflow port 201' or only a circle of second inflow ports 202' is provided.
  • the two preforms to be densified are sequentially sleeved and placed on the base; formed in the furnace cavity from the furnace cavity inlet to communicate with the inflow port, the flow restricting channel, the first The inflow port 201' or the second inflow port 202' and the restricted flow path of the furnace cavity outlet.
  • a hoisting interface is provided on the base ring 1', and the hoisting interface is used to cooperate with a hoisting device, and the assembled furnace loading structure is put into the deposition furnace 10' through the hoisting device.
  • the base ring 1', the flow dividing plate 2', the restrictor plate 9', the heightening ring 4', the spacer 6' and the cover plate 5' are made of graphite material or carbon carbon material.
  • the preform to be densified is made of carbon fiber filaments with a content of more than 90%, and the density of the preform to be densified is 0.2-0.8 g/cm 3 .
  • furnace loading structure involved in the present disclosure will be further described below with reference to a specific embodiment.
  • a furnace loading structure for preform densification includes a deposition furnace 10 ′ and a preform assembly to be densified located in the deposition furnace 10 ′.
  • the preform assembly to be densified includes a From outside to inside, there are insulation cylinder 3', crucible 8', heat shield 7', and crucible 8' and heat shield 7' both include openings with smaller diameters and openings with larger diameters.
  • the large-diameter opening of the crucible 8' is opposite to the large-diameter opening
  • the large-diameter opening of the insulation cylinder 3' is opposite to the large-diameter opening
  • the large-diameter opening of the heat shield 7' in the crucible 8' is opposite to the large-diameter opening.
  • the opening is opposite.
  • the two opposite heat shields 7 are assembled and placed on the cushion block 6' in the lower crucible 8'. Specifically, the size of the cushion block 6' is 50mm x 40mm x 30mm, and each structural unit is 11'. Place 3-6 pieces inside.
  • a cover plate 5' is respectively placed at the small-diameter openings of the two heat shields 7'.
  • a restrictor plate 9' is provided on the side of the insulation cylinder 3' close to the outlet of the furnace cavity.
  • the air inlet at the bottom of the furnace cavity is provided with a base ring 1', and a distribution plate 2' is arranged on the base ring 1'.
  • a second inflow port 202' is provided, the first inflow port 201' communicates with the restricting channel between the heat shield 7' and the crucible 8', and the second inflow 202' communicates between the crucible 8' and the heat preservation cylinder 3' the current limiting channel.
  • the carbon source gas entering from the bottom of the deposition furnace 10 ′ is divided by the dividing plate 2 ′ to form two air flows.
  • the gap is discharged from the overflow port on the restrictor plate 9' from bottom to top; the second air flow flows from the bottom to the top along the gap formed between the crucible 8' and the heat shield 7' from the overflow on the restrictor plate 9'
  • the port is discharged, thereby forming a complete preform densified furnace charging structure.
  • the base ring 1' is provided with a hoisting interface for placing the assembled preform components to be densified into the deposition furnace 10' through a hoisting device.
  • FIG. 10 shows a schematic structural diagram of setting an airflow channel formed by two layers of preforms to be densified to restrict flow.
  • the preforms in the figure are the crucible 8' and the heat preservation cylinder 3' in sequence from the inside to the outside, wherein a first inflow port 201' is provided in the center of the manifold 2', and a circle is provided on the outer periphery of the first inflow port 201'.
  • the second inflow port 202' enables the carbon source gas entering from the furnace cavity inlet at the bottom of the deposition furnace 10' to pass through the inner cavity of the crucible 8' and the gap between the crucible 8' and the guide cylinder, and from the top of the deposition furnace 10' The oven cavity outlet is pulled out.
  • the height of the insulation cylinder 3' can be adjusted according to the height of the inner crucible 8' and the heat shield 7', that is, a heightening ring 4' is set between the two insulation cylinders 3' to increase the height of the insulation cylinder 3'. adjustment.
  • the two pots 8' adjust their heights according to the height of the inner heat shield 7', and also can place the heightening ring 4' for height adjustment.
  • the base ring 1', the diverter plate 2', the cover plate 5', the heightening ring 4', the spacer 6', and the restrictor plate 9' can be made of graphite material or carbon-carbon material.
  • the preform to be densified is composed of carbon fiber filaments with a content of more than 90%, and the density of the preform to be densified is 0.2-0.8 g/cm 3 .
  • the deposition furnace 10 ′ can be equipped with a furnace charging method in which multiple groups of preforms are combined to improve the efficiency of preform deposition. Design the number of prefab combinations, stack n layers (n ⁇ 1) along the direction of gravity, and array m (m ⁇ 1) along the plane, and realize large-scale industrial mass production by combining multiple prefabs.
  • Figure 11 shows a furnace loading scheme with an array in the direction of gravity. Two layers of structural units 11' are placed from bottom to top. The base ring 1' of the upper structural unit 11' is placed on the upper end of the restrictor plate 9' of the lower structural unit 11'.
  • the lower structural unit 11' is firstly transferred into the deposition furnace according to the upper charging method through the hoisting tool. 10 ′, and then the upper structural unit 11 ′ is transferred into the deposition furnace 10 ′ in the same manner, and placed on the upper structural unit 11 ′.
  • the flow of the carbon source gas between the structural units 11' is as follows: after the gas flows out from the restrictor 9' of the lower structural unit 11', the carbon source gas accumulates in the base ring 1' of the upper structural unit 11', and then It flows into the lower structural unit 11' through the first inflow port 201' and the second inflow port 202'. After flowing through the structural unit 11' of the lower layer, it flows out from the flow opening of the restrictor plate 9' of the structural unit 11' of the upper layer, and is pumped out of the deposition furnace 10'.
  • Figure 12 shows a furnace loading scheme for arrays along the plane. It is formed by an array of five structural units 11', and the five structural units 11' are arrayed at the bottom of the deposition furnace 10', and are spaced apart from each other by 30-100 mm.
  • each furnace chamber inlet is controlled by an independent gas system, and the gas flow in each structural unit 11' can be individually controlled. After the gas enters the bottom of the deposition furnace 10' according to different furnace cavity inlets, it flows out of the gas deposition furnace 10' furnace top through each structural unit 11' and is drawn out of the deposition furnace 10' through the furnace cavity outlet.
  • this embodiment only exemplifies the scheme of arraying five unit cells along the plane. It can be understood that, in fact, the number of in-plane unit cell arrays can be m (m ⁇ 1).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Furnace Charging Or Discharging (AREA)

Abstract

本公开公开一种辅助工装及预制件承载装置,涉及光伏拉晶技术领域,用于提高沉积炉的单次装炉量,提高沉积效率,降低生产成本。该辅助工装包括:至少一个基座和至少一个支撑板,每个支撑板设在相应基座上,每个支撑板具有贯穿支撑板的至少一个透气孔。当多个预制件叠置时,基座的至少部分部位位于至少一个预制件的第一腔体内或外,至少一个预制件位于相应支撑板上,位于相应支撑板上的预制件具有的第一腔体与相应支撑板具有的至少一个透气孔连通。所述预制件承载装置包括料柱以及上述辅助工装,本公开提供的辅助工装用于辅助多个预制件叠置在沉积炉内。本公开还公开一种用于预制体增密的装炉结构。

Description

辅助工装及预制件承载装置及用于预制体增密的装炉结构
相关申请的交叉引用
本申请要求在2021年06月11日提交中国专利局、申请号为202121309255.8、名称为“一种辅助工装及预制件承载装置”的中国专利申请的优先权,和在2021年05月06日提交中国专利局、申请号为202120955130.6、名称为“用于预制体增密的装炉结构”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及光伏拉晶技术领域,尤其涉及一种辅助工装及预制件承载装置及用于预制体增密的装炉结构。
背景技术
碳/碳复合材料是碳纤维及其织物增强的碳基体的新型高温复合材料。近年来,随着成本的降低,逐渐被用于民用高温炉保温设备、热场部件中,尤其是在光伏单晶炉热场部件中。
目前,常用的碳/碳复合材料是以3D或者2.5D编织的碳纤维编织体为预制体,通过化学气相渗透工艺(CVI工艺)进行致密化,得到碳/碳复合材料。但是,CVI工艺成本较高、沉积时间长,通常制备碳/碳复合材料的光伏热场部件需要数百小时。且普通的沉积炉单次装炉量较少,产量有限,使得生产成本增加,沉积效率降低。
在单晶炉拉晶过程中,炉内温度超过1000℃,同时含有大量的硅蒸汽,热场在此环境下同时要兼顾力学、导热、热膨胀、抗腐蚀性能。制备性能稳定、性价比更高的碳碳复合材料是应对客户需求的有效手段。为此设计了各种不同的碳碳复合材料制备工艺,目前主要采用的是化学气相渗透工艺(chemical vapor infiltration,CVI):首先,用碳纤维制备相应的热场预制体;其次,将碳源前驱体(主要含C、H原子)通入沉积炉内进行高温裂解;最终,碳原子沉积在预制体内部,实现预制体增密,同时多余的氢原子形成氢气被排至炉外。 该环节通常时间在几百至上千小时不等,沉积用时过长成为影响碳碳复合材料制备成本的主要问题。通过将预制体套装后沉积可以解决上述问题,但对于具有R弧的预制体产品来说,简单套装会扰乱沉积炉内的气流流场,影响预制体的沉积效果。
概述
本公开的目的在于提供一种辅助工装及预制件承载装置,以提高沉积炉的单次装炉量,提高沉积效率,降低生产成本。
第一方面,本公开提供了一种辅助工装,用于辅助多个预制件叠置在沉积炉内,每个预制件具有第一腔体以及与第一腔体连通的第一开口。该辅助工装包括:至少一个基座和至少一个支撑板,每个支撑板设在相应基座上,每个支撑板具有贯穿支撑板的至少一个透气孔。
当多个预制件叠置时,基座的至少部分部位位于至少一个预制件的第一腔体内或外,至少一个预制件位于相应支撑板上,位于相应支撑板上的预制件具有的第一腔体与相应支撑板具有的至少一个透气孔连通。
采用上述技术方案的情况下,本公开提供的辅助工装包括至少一个基座和至少一个支撑板。当沉积炉内具有辅助工装时,多个预制件可以通过该辅助工装叠置在沉积炉内。由于基座的至少部分部位位于至少一个预制件的第一腔体内或外,且每个支撑板设在相应基座上,至少一个预制件位于相应支撑板上,因此,基座可以用于支撑该支撑板以及位于该支撑板上的至少一个预制件,使得每一层预制件之间具有合理的间隙,相互不影响,从而使得该沉积炉的单次装炉量得到提升,且由于预制件之间相互不接触,因此,不会造成预制件之间的挤压变形,提高了沉积效率,降低生产成本。同时,由于该辅助工装的每个支撑板上具有贯穿该支撑板的至少一个透气孔,且当多个预制件叠置时,位于相应支撑板上的预制件具有的第一腔体与相应支撑板具有的至少一个透气孔连通,使得该叠置在一起的每个预制件的内壁和外壁均有气体通过,从而保证在提高装炉量的同时,提高沉积效果。
另外,当上述基座的至少部分部位位于至少一个预制件的第一腔体内时,由于该基座将第一腔体分隔开,使得流经该预制件的气体的流动空间减小,因 此,通过设置该位于至少一个预制件的第一腔体内的基座还可以改善流场,起到限气的作用,从而提升沉积效果。
在一种可能的实现方式中,上述至少一个基座具有第二腔体,支撑板盖设在相应基座上。
在一种可能的实现方式中,上述至少一个基座具有第二腔体,至少一个支撑板为环状支撑板,环状支撑板环设在相应基座上。
在一种可能的实现方式中,上述至少一个基座具有第二开口,支撑板具有的至少一个透气孔与第二开口连通。其中,第二腔体用于容置至少一个预制件。
采用上述技术方案的情况下,由于至少一个基座具有第二开口,支撑板具有的至少一个透气孔与第二开口连通,使得该基座具有的第二腔体为开放式腔体,使得流入第二腔体内的气体可以经由支撑板具有的至少一个透气孔流出,因此,该第二腔体可以用于容置至少一个预制件,以提升沉积炉的单次装炉量,提高沉积效率。
在一种可能的实现方式中,上述支撑板还具有用于阻挡第二腔体内的气体流出的阻气部,阻气部位于支撑板对应第二开口的部位。
在一种可能的实现方式中,上述一个基座和相应一个支撑板构成一个支撑结构,支撑结构的数量为多个,多个支撑结构沿着沉积炉的高度方向堆叠。相邻两个支撑结构中,靠近沉积炉的顶部的支撑结构的基座设在靠近沉积炉的底部的支撑结构的支撑板上。
采用上述技术方案的情况下,通过将靠近沉积炉的顶部的支撑结构的基座设在靠近沉积炉的底部的支撑结构的支撑板上,使得该多个支撑结构之间可以形成叠层。此时,可以在一个支撑结构的支撑板上放置相应的另一个支撑结构,以及在该支撑结构的基座内或外套设多个预制件,可以避免预制件叠置时的挤压变形的现象的发生,还可以提高了沉积炉的装炉量。
在一种可能的实现方式中,上述基座的至少部分部位的外壁轮廓与相应预制件的内壁轮廓匹配,基座的外壁轮廓与相应预制件的内壁轮廓间具有间隙,间隙的尺寸相同。
采用上述技术方案的情况下,通过设置基座的至少部分部位的外壁轮廓与相应预制件的内壁轮廓匹配,使得气体的流动空间进一步减少,从而使得气 体的流速加快,减少了气体流经预制件的时间,提高了沉积效率。同时,由于间隙的尺寸相同,使得气体的速度较为均一,从而使得气体对预制件的处理更加均匀,使得沉积效果更好。
在一种可能的实现方式中,当上述多个预制件套设时,至少一个支撑板位于至少一个预制件的第一腔体内或外。
采用上述技术方案的情况下,通过在预制件的第一腔体内设置至少一个支撑板,可以在该支撑板上放置相应的预制件,以进一步提升装炉量,缩短沉积时间,节约生产成本。
在一种可能的实现方式中,上述辅助工装还包括用于加快流经相应预制件的气体的流动速度的限气结构。当辅助工装上装设有多个预制件时,限气结构位于相应预制件的第一腔体内或外。
采用上述技术方案的情况下,通过设置限气结构,可以加快流经相应预制件的气体的流动速度,减少气体在预制件内的滞留,减少炭黑的出现,提高沉积效率。
在一种可能的实现方式中,上述限气结构的外壁轮廓与相应预制件的第一腔体的内壁轮廓匹配,每个限气结构的外壁轮廓与相应第一腔体的内壁轮廓间具有间隙,间隙的尺寸相同,间隙与相应支撑板具有的至少一个透气孔连通。
采用上述技术方案的情况下,通过设置外壁轮廓与相应预制件的第一腔体的内壁轮廓匹配的限气结构,且该限气结构与相应的预制件之间的间隙的尺寸相同,使得流经该间隙的气体的流动速度被加快的同时,且尽量保持同一个速度,从而使得预制件的沉积更加均匀,提升了制得的预制件的性能。
在一种可能的实现方式中,上述限气结构具有第三腔体。当辅助工装上装设有多个预制件时,至少一个预制件位于第三腔体内或外。
在一种可能的实现方式中,上述第三腔体具有第三开口,当辅助工装上装设有多个预制件时,至少一个预制件位于第三腔体内。
在一种可能的实现方式中,上述限气结构为封闭式限气结构,当辅助工装上装设有预制件时,封闭式限气结构位于相应预制件的第一腔体内。
在一种可能的实现方式中,上述沿着沉积炉的高度方向,限气结构包括至 少两个用于加快流经相应预制件的气体的流动速度的限气部。当辅助工装上装设有多个预制件时,至少一个限气部位于相应预制件具有的第一腔体内。
第二方面,本公开还提供一种预制件承载装置。该预制件承载装置包括料柱以及上述或上述任一可能的实现方式所描述的辅助工装,当料柱内的至少两个预制件叠置时,辅助工装位于料柱内。
第二方面提供的预制件承载装置的有益效果与第一方面或第一方面任一可能的实现方式所描述的辅助工装的有益效果相同,在此不再赘述。
本公开还提供一种用于预制体增密的装炉结构,所述装炉结构设于炉腔内,所述炉腔具有炉腔入口和炉腔出口,所述装炉结构包括至少两组待增密预制体组件,每组所述待增密预制体组件包括至少两个待增密预制体,所述至少两个待增密预制体依次套设,形成至少一个处于相邻两个所述待增密预制体之间的限流通道,至少两组所述待增密预制体组件沿重力方向相互对扣形成至少一个结构单元,每个所述结构单元中两组所述待增密预制体组件对应的所述限流通道相互连通,在所述炉腔内分别形成连通所述炉腔入口、所述限流通道和所述炉腔出口的至少一条限流路径。
在一个实施例中,所述装炉结构包括多个结构单元,多个结构单元沿重力方向叠放;相邻所述结构单元中所述待增密预制体组件的所述限流通道相互连通。
在一个实施例中,所述装炉结构包括多个待增密预制体组件,所述多个待增密预制体组件在水平面内阵列分布,所述多个待增密预制体组件的所述限流通道相互连通。
在一个实施例中,所述待增密预制体组件中,相邻两个所述待增密预制体之间设置垫块以形成所述限流通道。
在一个实施例中,相互对扣的所述待增密预制体组件中,尺寸相同的一对所述待增密预制体的同一端部相对设置,其中至少一对相互对扣的所述待增密预制体之间设有加高环,所述加高环分别与两个所述待增密预制体的所述同一端部分别接触;其余各对所述待增密预制体的同一端部相互接触。
在一个实施例中,每个所述待增密预制体的端面均设有过流口,在所述炉腔内分别形成连通所述炉腔入口、至少一个所述限流通道、所述过流口和所述炉腔出口的至少一条限流路径。
在一个实施例中,最内侧所述待增密预制体的过流口上设有盖板。
在一个实施例中,最外侧的所述待增密预制体顶部设有设置有限流板,该待增密预制体上的所述过流口设于所述限流板上。
在一个实施例中,所述装炉结构还包括底座,所述底座包括底座环和分流板,所述分流板的中心设有第一入流口,所述第一入流口的外周设有至少一圈第二入流口;至少三个所述待增密预制体依次套设,形成至少两个限流通道,所述第一入流口与最内侧的所述限流通道连通,所述至少一圈第二入流口分别与其余所述限流通道连通。
在一个实施例中,所述底座环上设置有吊装接口。
在一个实施例中,所述底座环、所述分流板、所述限流板、所述垫块、所述加高环和所述盖板为石墨材质或碳碳材质。
与现有技术相比,本公开的有益效果是:
本公开提供一种用于预制体增密的装炉结构,所述装炉结构包括至少两组待增密预制体组件,至少两组所述待增密预制体组件沿重力方向相互对扣形成至少一个结构单元,每个所述结构单元中两组所述待增密预制体组件对应的所述限流通道相互连通,在所述炉腔内分别形成连通所述炉腔入口、所述限流通道和所述炉腔出口的至少一条限流路径。碳源气体经过上述限流通道,能够一次同时沉积多个待增密预制体,并且在待增密预制体容易发生损坏的位置都能进行沉积,增大了沉积的密度,能够大大延长待增密预制体的寿命;通过限流路径引导,减小气体流动范围,确保碳源气体在要求区域内流动,以此缩短气体滞留时间,避免流场产生湍流,进而提高碳源利用率,实现预制体的快速沉积。
上述说明仅是本公开技术方案的概述,为了能够更清楚了解本公开的技术手段,而可依照说明书的内容予以实施,并且为了让本公开的上述和其它目的、特征和优点能够更明显易懂,以下特举本公开的具体实施方式。
附图简述
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1示意性地示出了本公开实施例中辅助工装的使用状态示意图一;
图2示意性地示出了本公开实施例中环状支撑板的结构示意图;
图3示意性地示出了本公开实施例中辅助工装的使用状态示意图二;
图4示意性地示出了本公开实施例中辅助工装的使用状态示意图三;
图5示意性地示出了本公开实施例中辅助工装的使用状态示意图四;
图6示意性地示出了本公开实施例中辅助工装的使用状态示意图五。
图7示意性地示出了本公开实施例涉及的用于预制体增密的装炉结构的结构示意图;
图8示意性地示出了本公开实施例涉及的装炉结构包括三层待增密预制体时分流板的结构示意图;
图9示意性地示出了本公开实施例涉及的装炉结构的气体流动示意图;
图10示意性地示出了本公开实施例涉及的装炉结构包括两层待增密预制体时的结构示意图;
图11示意性地示出了本公开实施例涉及的装炉结构中多个结构单元沿重力方向进行阵列装炉时的结构示意图;
图12示意性地示出了本公开实施例涉及的装炉结构中多个结构单元沿面内进行阵列装炉时的结构示意图。
详细描述
为了使本公开所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本公开进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。“若干”的含义是一个或一个以上,除非另有明确具体的限定。
在本公开的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
在本公开的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
碳-碳复合材料是碳纤维及其织物增强的碳基体的新型高温复合材料,它综合了纤维增强复合材料优良的力学性能及碳质材料优异的高温性能,具有高的比强度、比模量,良好的韧性以及高温下优良的强度保持率、耐蠕变和抗热震等一系列优异性能,被广泛应用航空航天、汽车、冶金等领域。近年来,随着成本的降低,碳-碳复合材料也逐渐被用于民用高温炉保温设备、热场部件中,尤其是在光伏单晶炉热场部件中。
通常热屏外胆、埚帮等碳碳热场是以3D或者2.5D编织的碳纤维编织体为预制体,通过对预制体进行致密化处理,得到碳-碳复合材料。目前,由于化学气相渗透工艺有较均匀的沉积效果及较好的力学性能并且能够批量生产,因此,化学气相渗透工艺广泛应用于碳碳件的量产。但化学气相渗透工艺的成本较高,处理时间长,通常,制备光伏热场通常需要数百小时。此外,普通的沉积炉单次装炉量较少,产量有限,已跟不上光伏扩产对热场的需求量。因此,如何进一步增加装料量,缩短沉积时间,节约生产成本,仍是碳-碳复合材料沉积领域的研究重点。
为了解决上述问题,本公开实施例提供了一种预制件承载装置,该预制件承载装置包括料柱1以及一辅助工装2。图1示例出本公开实施例提供的辅助工装的使用状态示意图一。如图1所示,当料柱1内的至少两个预制件3叠置时,该辅助工装2位于料柱1内。通过设置辅助工装2辅助至少两个预制件3叠置在一起,使得料柱1单次容纳的预制件3的数量得到提升,且辅助 工装2将每层预制件3之间隔开,避免了一次叠置多个预制件3造成的预制件3积压变形的情况发生,从而提升沉积炉的单次装炉量,提升沉积效率。这里需要注意的是,如果使用的沉积炉是单料柱1沉积炉,则可以不用料柱1,直接将辅助工装2放置于沉积炉腔内。
如图1所示,上述辅助工装2用于辅助多个预制件3叠置在沉积炉内。其中,每个预制件3具有第一腔体31以及与第一腔体31连通的第一开口32。该辅助工装2包括:至少一个基座21和至少一个支撑板22,每个支撑板22设在相应基座21上,每个支撑板22具有贯穿该支撑板22的至少一个透气孔221。需要说明的是,这里的支撑基座21和支撑板22的材质可以是石墨材质、也可是碳-碳材质等,在此不作限定。
如图1所示,当多个预制件3叠置时,基座21的至少部分部位位于至少一个预制件3的第一腔体31内或外,至少一个预制件3位于相应支撑板22上,位于相应支撑板22上的预制件具有的第一腔体31与相应支撑板22具有的至少一个透气孔221连通。
在实际应用中,如图1所示,从料柱1的底部进入的碳源气体经过料柱1底盘11的透气孔分流后,形成多组气流分别经过位于料柱1底盘11上的多个预制件3之间,以及预制件3和基座21之间的空隙向上流入与该基座21连接的支撑板22内。从该支撑板22上的透气孔221进入的碳源气体经过分流后,形成多组气流,该多组气流分别流经位于该支撑板22上的多个套设在一起的预制件3之间以及预制件3与基座21之间后,流入上一层支撑板22内,最终经该料柱1的出气口12流出。由于每一层支撑板22通过基座21支撑,从而避免了多层预制件3叠置,使得预制件3被挤压变形的情况发生。
综上,由于本公开提供的辅助工装包括至少一个基座和至少一个支撑板,当沉积炉内具有辅助工装时,多个预制件可以通过该辅助工装叠置在沉积炉内。又由于基座的至少部分部位位于至少一个预制件的第一腔体内或外,且每个支撑板设在相应基座上,至少一个预制件位于相应支撑板上,因此,基座可以用于支撑该支撑板以及位于该支撑板上的至少一个预制件,使得每一层预制件之间具有合理的间隙,且相互不影响,从而使得该沉积炉的单次装炉量得到提升,且由于预制件之间相互不接触,因此,不会造成预制件之间的挤压变 形,提高了沉积效率,降低生产成本。在此基础上,该辅助工装的每个支撑板上具有贯穿该支撑板的至少一个透气孔,且当多个预制件叠置时,位于相应支撑板上的预制件具有的第一腔体与相应支撑板具有的至少一个透气孔连通,使得该叠置在一起的每个预制件的内壁和外壁均均可以与气体接触,从而保证在提高装炉量的同时,提高沉积效果。
另外,当上述基座的至少部分部位位于至少一个预制件的第一腔体内时,由于该基座将第一腔体分隔开,使得流经该预制件的第一腔体内的气体的流动空间减小,因此,通过设置该位于至少一个预制件的第一腔体内的基座还可以改善流场,起到限气的作用,从而提升沉积效果。
如图1所示,上述至少一个基座21具有第二腔体211,至少一个该支撑板22为环状支撑板223,该环状支撑板223环设在相应基座21上。
图2示例出本公开实施例提供的环状支撑板的结构示意图。如图2所示,该环状支撑板223的中心具有通孔2231,以及与该环状支撑板223同心设置的多组透气圈2232。其中,每组透气圈2232由多个透气孔221组成,每组透气圈2232之间具有间隙。在实际应用中,可以将预制件3放置在该间隙处,以将透气圈2232漏出,从而使得在沉积时,气体可以通过透气圈2232内的每一个透气孔221进入预制件3的内部,对预制件3进行处理。这里需要注意的是,为了保证一定的气密性,该支撑板22上可以设置有与该基座21相配合的凹槽2233。该凹槽2233可以同时位于该支撑板22的正面和反面上。
如图1和图2所示,在实际应用中,当该支撑板22为环状支撑板223,且至少一个基座21具有第二开口,支撑板22具有的至少一个透气孔221与第二开口连通时,第二腔体211可以用于容置至少一个预制件3。由于至少一个基座21具有第二开口,支撑板22具有的至少一个透气孔221与第二开口连通,使得该基座21具有的第二腔体211为开放式腔体,使得流入第二腔体211内的气体可以经由支撑板22具有的至少一个透气孔221流出,因此,该第二腔体211可以用于容置至少一个预制件3,以提升沉积炉的单次装炉量,提高沉积效率。当然,这里的至少一个预制件3可以是套设在一起的多个预制件3,具体的预制件3的数量可以根据第二腔体211的大小进行设计。
图3示例出本公开实施例提供的辅助工装的使用状态示意图二。如图3 所示,上述至少一个基座21具有第二腔体211,支撑板22盖设在相应基座21上。此时,该第二腔体211可以是开放式腔体,也可以是封闭式腔体。
例如,如图1所示,当该第二腔体211为开放式腔体时,至少一个基座21具有第二开口,盖设在相应基座21上的支撑板22具有的至少一个透气孔221与第二开口连通,第二腔体211可以用于容置至少一个预制件3,以提高沉积炉的装炉量。
又例如,如图3所示,当该第二腔体211为封闭式腔体时,至少一个基座21具有第二开口,支撑板22具有用于阻挡第二腔体211内的气体流出的阻气部222,该阻气部222位于支撑板22对应第二开口的部位。
如图1和图3所示,上述一个基座21和相应一个支撑板22构成一个支撑结构A,该支撑结构A的数量为多个,多个支撑结构A沿着沉积炉的高度方向堆叠。相邻两个支撑结构A中,靠近沉积炉的顶部的支撑结构A的基座21设在靠近沉积炉的底部的支撑结构A的支撑板22上,使得该多个支撑结构A之间可以形成叠层。此时,可以在一个支撑结构A的支撑板22上放置相应的另一个支撑结构A,以及在该支撑结构A的基座21内或外套设多个预制件3,可以避免预制件3叠置时的挤压变形的现象发生,还可以提高了沉积炉的装炉量。
图4示例出本公开实施例提供的辅助工装的使用状态示意图三。如图4所示,上述基座21位于相应的预制件3的内部。此时,由于位于预制件3内的基座21将该预制件3的第一腔体31分割,使得流经该第一腔体31的气体的流动空间减少,流动速度加快,从而提升了沉积效率。
图5示例出本公开实施例提供的辅助工装的使用状态示意图四。如图5所示,上述基座21的至少部分部位的外壁轮廓与相应预制件3的内壁轮廓匹配,基座21的外壁轮廓与相应预制件3的内壁轮廓间具有间隙,间隙的尺寸相同,使得气体的流动空间减少,从而使得气体的流速加快,减少了气体流经预制件3的时间,提高了沉积效率。同时,由于间隙的尺寸相同,使得气体的速度较为均一,从而使得气体对预制件3的处理更加均匀,使得沉积效果更好。
图6示例出本公开实施例提供的辅助工装的使用状态示意图五。如图6 所示,当上述多个预制件3套设时,至少一个支撑板22位于至少一个预制件3的第一腔体31内或外。通过在预制件3的第一腔体31内设置至少一个支撑板22,可以在该支撑板22上放置相应的套设于第一腔体31内的预制件3,以提升装炉量,缩短沉积时间,节约生产成本。
在实际应用中,如图6所示,料柱1内具有两层预制件层,每层预制件层包括套设在一起的两个预制件。以靠近料柱1的出气口12预制件层为例,该层预制件层包括外部的大预制件以及套设于大预制件内部的小预制件。支撑该大预制件的支撑板为大支撑板,大支撑板位于该大预制件具有的第一腔体外。支撑该小预制件的支撑板为小支撑板,小支撑板位于该该大预制件具有的第一腔体内。大支撑板和小支撑板之间使用基座21连接。
如图1,图3~图6所示,上述辅助工装2还包括用于加快流经相应预制件3的气体的流动速度的限气结构23。当辅助工装2上装设有多个预制件3时,限气结构23位于相应预制件3的第一腔体31内或外。通过设置限气结构23,可以加快流经相应预制件3的气体的流动速度,减少气体在预制件3内的滞留,减少炭黑的出现,提高沉积效率。需要说明的是,这里的限气结构23的材质可以是石墨材质、也可是碳-碳材质等,在此不作限定。例如,当该限气结构23的材质为碳-碳材质时,可以将辅助工装2的壁厚做的较薄,以减轻整个辅助工装2的重量,从而降低该辅助工装2对沉积炉及料柱1的影响。
如图1,图3~图6所示,为了得到更好的限气效果,上述限气结构23的外壁轮廓可以与相应预制件3的第一腔体31的内壁轮廓匹配,每个限气结构23的外壁轮廓与相应第一腔体31的内壁轮廓间具有间隙,间隙的尺寸相同,间隙与相应支撑板22具有的至少一个透气孔221连通,使得流经该间隙的气体的流动速度被加快的同时,且尽量保持同一个速度,从而使得预制件3的沉积更加均匀,提升了制得的预制件3的性能。
如图1,图3~图6所示,上述限气结构23可以具有第三腔体231。当辅助工装2上装设有多个预制件3时,至少一个预制件3位于第三腔体231内或外。
例如,如图1所示,该限气结构23的外壁轮廓可以与相应预制件3的第一腔体31的内壁轮廓匹配,每个限气结构23的外壁轮廓与相应第一腔体31 的内壁轮廓间具有间隙,间隙的尺寸相同,间隙与相应支撑板22具有的至少一个透气孔221连通。该限气结构23具有的第三腔体231具有第三开口,当辅助工装2上装设有多个预制件3时,至少一个预制件3位于第三腔体231内。
又例如,如图4~图6所示,上述限气结构23为封闭式限气结构23,当辅助工装2上装设有预制件3时,封闭式限气结构23位于相应预制件3的第一腔体31内,即至少一个预制件3位于第三腔体231外。
再例如,如图3所示,上述沿着沉积炉的高度方向,限气结构23包括至少两个用于加快流经相应预制件3的气体的流动速度的限气部232。当辅助工装2上装设有多个预制件3时,至少一个限气部232位于相应预制件3具有的第一腔体31内,至少一个限气部232与基座21连接在一起,此时,该基座21的外壁的轮廓可以与相应的预制件3的轮廓相匹配,且该基座21的外壁与相应的预制件3之间的间隙始终相同。该至少一个预制件3位于第三腔体231外。
图7和图8示出了本公开实施例所提供的用于预制体增密的装炉结构的示意图。
预制体增密的装炉结构,包括炉腔,所述炉腔的底部和顶部分别设有炉腔入口和炉腔出口,所述炉腔内设有待增密预制体组件,所述待增密预制体组件包括至少两个待增密预制体,所述至少两个待增密预制体依次套设,形成至少一个处于相邻两个所述待增密预制体之间的限流通道,至少两组所述待增密预制体组件沿重力方向相互对扣形成至少一个结构单元,每个所述结构单元中两组所述待增密预制体组件对应的所述限流通道相互连通,在所述炉腔内分别形成连通所述炉腔入口、所述限流通道和所述炉腔出口的至少一条限流路径。
需要说明的是,限流通道的形式不仅仅局限于相邻的两个待增密预制体之间的空间,还包括最内侧待增密预制体的内腔,同时还可以包括最外侧待增密预制体与炉腔内壁之间的空间。此处的待增密预制体可以是热屏7’、埚帮8’或保温筒3’。
可以看出,碳源气体经过上述限流通道,能够一次同时沉积多个待增密预制体,并且在待增密预制体容易发生损坏的位置都能进行沉积,增大了沉积的 密度,能够大大延长待增密预制体的寿命;通过限流路径引导,减小气体流动范围,确保碳源气体在要求区域内流动,以此缩短气体滞留时间,避免流场产生湍流,进而提高碳源利用率,实现预制体的快速沉积。
可选地,相邻两个所述待增密预制体对扣的部位之间设有加高环4’。通过设置加高环4’调节相邻两个待增密预制体之间的距离,以对结构单元11’的高度进行调整。具体地,相互对扣的所述待增密预制体组件中,尺寸相同的一对所述待增密预制体的同一端部相对设置,其中至少一对相互对扣的所述待增密预制体之间设有加高环4’,所述加高环4’分别与两个所述待增密预制体的所述同一端部分别接触;其余各对所述待增密预制体的同一端部相互接触。
待增密的预制体两端分别设置口径较小的开口和口径较大的开口,各待增密的预制体设有口径较大开口的一端相互接触,以接触实现两个待增密的预制体的对扣。应当理解的是,也可以对待增密的预制体口径较小的一端进行接触,使得相邻两个待增密预制体相互背扣形成一个结构单元11’。其中采用口径较大开口的一端相互接触能获得更稳定的气流流场。
需要说明的是,每个结构单元11’中两两对扣时,两个待增密预制体的一端分别接触,具体是靠近炉腔入口的待增密预制体正向设置,靠近炉腔出口的待增密预制体倒扣设置于正向设置的待增密预制体上。每个结构单元11’中两两背扣时,两个待增密预制体的另一端分别接触,具体是靠近炉腔入口的待增密预制体倒扣设置,靠近炉腔出口的待增密预制体正向设置于倒扣设置的待增密预制体上。
在上述实施例中,所述待增密预制体可以根据装炉产品规格调整自身高度及直径,相互套设的两个述待增密预制体的内壁均间隔一定空间。结构单元11’中正置的待增密预制体中,除最外侧的待增密预制体外,其余相互套设的待增密预制体之间用3至6块垫块6’垫起。具体地,所述垫块6’规格为50mm×40mm×30mm。
为了防止对扣的下层待增密预制体变形,处于下层的待增密预制体或处于下层的结构单元的硬度要大于上层的待增密预制体或上层的结构单元,其中处于下层的待增密预制体或处于下层的结构单元可选自增密过或者增密周期数更多的待增密预制体或结构单元。
所述装炉结构包括多个结构单元11’,多个结构单元可以沿重力方向叠放, 相邻所述结构单元中所述待增密预制体组件的所述限流通道相互连通。其中每个结构单元都采用口径较大开口的一端相互接触能获得更稳定的气流流场。还可以是所述多个结构单元在水平面内阵列分布,相邻所述结构单元中所述待增密预制体组件的限流通道相互连通。其中每个结构单元都采用口径较大开口的一端相互接触能获得更稳定的气流流场。
还可以是,多个结构单元11’沿重力方向叠放形成多组结构单元,每组结构单元包括若干个结构单元11’,所述多组结构单元在水平面内阵列分布。通过在实际的装炉生产过程中,对多个待增密预制体组件进行阵列组合的装炉方式,提高预制体沉积的效率,实现大规模工业化量产。具体可以根据沉积炉10’尺寸要求设计待增密预制体组合的个数,沿重力方向叠放n层(n≥1),沿面内阵列m个(m≥1)。其中每个结构单元都采用口径较大开口的一端相互接触能获得更稳定的气流流场。
沿重力方向叠放的每组结构单元,可以是一模一样的重复排列,比如都是相邻两个待增密的预制体相互对扣或相互背扣,也可以是不同的排列方式,比如一个结构单元是相邻两个待增密的预制体相互对扣,相邻结构单元是相邻两个待增密的预制体相互背扣。
沿水平面内方向叠放的不同组结构单元,可以是一模一样的重复排列,比如所有位置都是相邻两个待增密的预制体相互对扣或相互背扣,也可以是不同的排列方式,比如一个位置的结构单元是相邻两个待增密的预制体相互对扣,另一个位置的结构单元是相邻两个待增密的预制体相互背扣。
需要说明的是,每个所述待增密预制体的端面均设有过流口,在所述炉腔内分别形成连通所述炉腔入口、至少一个所述限流通道、所述过流口和所述炉腔出口的至少一条限流路径。
倒扣设置的结构单元11’中,过流口指的是待增密预制体顶部设置的口径较小的开口。正置的结构单元11’中,过流口指的是待增密预制体口径较大的开口。
需要强调的是,最内侧待增密预制体的过流口的尺寸须小于待增密预制体上过流口的尺寸,甚至是没有上述过流口,以防止碳源气体回流至最内侧待增密预制体。
在一个实施例中,最内侧所述待增密预制体的过流口上设有盖板5’。对 扣设置的结构单元11’中,盖板5’置于开口边缘外侧并遮挡口径较小的开口。背扣设置的结构单元11’中,盖板5’置于待增密预制体开口端边缘并遮挡口径较大的开口。
在一个实施例中,最外侧的所述待增密预制体顶部设有设置有限流板9’,该待增密预制体上的所述过流口设于所述限流板9’上。需要说明的是,也可不设置限流板9’遮挡最外侧待增密预制体上的过流口,最外侧待增密预制体上的过流口小于其余待增密预制体上的过流口的尺寸,对流入炉腔的碳源气体进行遮挡,也能在一定程度上实现对碳源气体的流出速度进行控制。
另外,所述装炉结构还包括底座,所述底座包括底座环1’和分流板2’,所述分流板2’的中心设有第一入流口201’,所述第一入流口201’的外周设有至少一圈第二入流口202’;至少三个待增密预制体11’依次套设,形成至少两个限流通道,所述第一入流口201’与最内侧的所述限流通道连通,所述至少一圈第二入流口202’分别与其余所述限流通道连通。所述分流板2’边缘具有向中间凹陷的安装部,所述安装部的下表面与所述底座环1’装配,所述安装部的上表面与所述外限流筒装配。
所述待增密预制体组件仅包括两个待增密预制体时,根据实际结构,所述分流板2’的中心设有第一入流口201’或仅设一圈第二入流口202’,所述两个待增密预制体依次套设并置于所述底座上;在所述炉腔内形成自所述炉腔入口依次连通所述入流口、一个所述限流通道、第一入流口201’或第二入流口202’和所述炉腔出口的限流路径。
优选的,所述底座环1’上设置有吊装接口,吊装接口用于与吊装装置配合,通过吊装装置将组合好的装炉结构放入沉积炉10’内。
需要强调的是,所述底座环1’、所述分流板2’、所述限流板9’、所述加高环4’、所述垫块6’和所述盖板5’为石墨材质或碳碳材质。所述待增密的预制体由含量90%以上碳纤维丝制成,所述待增密的预制体的密度为0.2-0.8g/cm3。
下面结合一具体实施例对本公开所涉及的装炉结构进一步说明。
如图7和图8所示,一种用于预制体增密的装炉结构,包括沉积炉10’和位于沉积炉10’内的待增密预制体组件,待增密预制体组件包括由外向内依次为保温筒3’、埚帮8’、热屏7’,埚帮8’和热屏7’均包括口径较小的开口和口 径较大的开口。装炉结构中,埚帮8’的大口径开口与大口径开口相对、保温筒3’的大口径开口与大口径开口相对,埚帮8’内的热屏7’的大口径开口与大口径开口相对。所述相对设置的两个热屏7装配放置于所述下部埚帮8’内的垫块6’上,具体所述垫块6’的规格为50mm×40mm×30mm,每个结构单元11’内放置3-6块。装配后两个热屏7’的小口径开口处分别放置一块盖板5’。保温筒3’靠近炉腔出口的一侧设置有限流板9’。所述炉腔底部进气口设有底座环1’,底座环1’上设置有分流板2’,所述分流板2’中心设置有第一入流口201’,第一入流口201’外周设置有第二入流口202’,第一入流口201’连通热屏7’与埚帮8’之间的限流通道,第二入流口202’连通埚帮8’与保温筒3’之间的限流通道。
如图9所示,从沉积炉10’底部进入的碳源气体,经过分流板2’进行分流,形成两路气流,其中第一路气流沿着埚帮8’和保温筒3’之间的间隙自下向上从限流板9’上的过流口排出;第二路气流沿着埚帮8’和热屏7’之间形成的间隙自下向上从限流板9’上的过流口排出,从而形成一个完整的预制体增密的装炉结构。所述底座环1’上设置有吊装接口,用于通过吊装装置将组合好的待增密预制体组件放入沉积炉10’内。
可以根据实际需要对预制体的数量进行增减。图10示出了设置两层待增密预制体形成的气流通道进行限流的结构示意图。图中的预制体由内向外依次为埚帮8’和保温筒3’,其中在分流板2’上的中心设第一入流口201’,所述第一入流口201’的外周设一圈第二入流口202’,使得从沉积炉10’底部炉腔入口进入的碳源气体通过埚帮8’内腔以及埚帮8’与导流筒之间的空隙,从沉积炉10’的顶部炉腔出口被抽出。
进一步地,所述保温筒3’可以按照内层埚帮8’、热屏7’的高度调整自身高度,即在两个保温筒3’之间设置加高环4’进行保温筒3’高度的调节。所述两个埚帮8’根据内层热屏7’的高度调整自身高度,同样可以放置加高环4’进行高度调整。
优选地,所述底座环1’、分流板2’、盖板5’、加高环4’、垫块6’、限流板9’可以为石墨材质或碳碳材质。所述待增密的预制体由含量90%以上碳纤维丝组成,待增密的预制体的密度为0.2-0.8g/cm3。
如图11和图12所示,在实际的装炉生产过程中,沉积炉10’内可以设置 多组预制体组合的装炉方式,提高预制体沉积的效率,可以根据沉积炉10’尺寸要求设计预制体组合的个数,沿重力方向叠放n层(n≥1),沿面内阵列m个(m≥1),通过多个预制体组合进行阵列实现大规模工业化量产。
图11示出了沿重力方向进行阵列的装炉方案。自下而上放置两层结构单元11’。下层的结构单元11’的限流板9’上端放置上层的结构单元11’的底座环1’,在装炉时,通过吊装工装先将下层的结构单元11’按照上装料方式调入沉积炉10’内,接着采用相同的方式将上层的结构单元11’调入沉积炉10’,并放置在上层的结构单元11’上。
碳源气体在结构单元11’之间的流动为:气体从下层的结构单元11’的限流板9’流出后,碳源气体聚集在上层的结构单元11’的底座环1’内,再通过第一入流口201’和第二入流口202’流入下层的结构单元11’内。流经下层的结构单元11’后,从上层的结构单元11’限流板9’过流口流出,并抽至沉积炉10’外。
需要说明,此处举例沿重力方向两层叠放的方案。可以理解,实际上沿重力方向叠放可以为n层结构单元11(n≥1)。
图12示出了沿平面内进行阵列的装炉方案。由五个结构单元11’阵列而成,五个结构单元11’阵列在沉积炉10’底,相互之间间隔30-100mm。
可以在沉积炉10’底设计有对应的五个炉腔入口,每个炉腔入口由独立的气体系统控制,每个结构单元11’内的气体流量可以单独控制。气体按照不同的炉腔入口进入沉积炉10’底后,经各个结构单元11’流出气体沉积炉10’炉顶汇和后由炉腔出口抽出沉积炉10’。
需要说明,本实施例仅举例沿面内阵列五个单胞的方案。可以理解的是,实际上面内单胞阵列可以为m个(m≥1)。
以上描述仅为本公开的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本公开中所涉及的公开范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离前述公开构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本公开中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (24)

  1. 一种辅助工装,其特征在于,用于辅助多个预制件叠置在沉积炉内,每个所述预制件具有第一腔体以及与所述第一腔体连通的第一开口,所述辅助工装包括:至少一个基座和至少一个支撑板,每个所述支撑板设在相应所述基座上,每个所述支撑板具有贯穿所述支撑板的至少一个透气孔;
    当多个所述预制件叠置时,所述基座的至少部分部位位于至少一个所述预制件的第一腔体内或外,至少一个所述预制件位于相应所述支撑板上,位于相应所述支撑板上的所述预制件具有的第一腔体与相应所述支撑板具有的至少一个透气孔连通。
  2. 根据权利要求1所述的辅助工装,其特征在于,至少一个所述基座具有第二腔体;所述支撑板盖设在相应所述基座上;或,
    至少一个所述支撑板为环状支撑板,所述环状支撑板环设在相应所述基座上。
  3. 根据权利要求2所述的辅助工装,其特征在于,至少一个所述基座具有第二开口,所述支撑板具有的至少一个透气孔与所述第二开口连通;其中,所述第二腔体用于容置至少一个所述预制件。
  4. 根据权利要求3所述的辅助工装,其特征在于,所述支撑板还具有用于阻挡所述第二腔体内的气体流出的阻气部,所述阻气部位于所述支撑板对应所述第二开口的部位。
  5. 根据权利要求2所述的辅助工装,其特征在于,一个所述基座和相应一个所述支撑板构成一个支撑结构,所述支撑结构的数量为多个,多个所述支撑结构沿着所述沉积炉的高度方向堆叠;
    相邻两个所述支撑结构中,靠近所述沉积炉的顶部的所述支撑结构的基座设在靠近所述沉积炉的底部的所述支撑结构的所述支撑板上。
  6. 根据权利要求1所述的辅助工装,其特征在于,所述基座的至少部分部位的外壁轮廓与相应所述预制件的内壁轮廓匹配,所述基座的外壁轮廓与相应所述预制件的内壁轮廓间具有间隙,所述间隙的尺寸相同。
  7. 根据权利要求1所述的辅助工装,其特征在于,当多个所述预制件套 设时,至少一个所述支撑板位于至少一个所述预制件的第一腔体内或外。
  8. 根据权利要求1所述的辅助工装,其特征在于,所述辅助工装还包括用于加快流经相应所述预制件的气体的流动速度的限气结构;当所述辅助工装上装设有多个预制件时,所述限气结构位于相应所述预制件的第一腔体内或外。
  9. 根据权利要求8所述的辅助工装,其特征在于,所述限气结构的外壁轮廓与相应所述预制件的第一腔体的内壁轮廓匹配,每个所述限气结构的外壁轮廓与相应所述第一腔体的内壁轮廓间具有间隙,所述间隙的尺寸相同,所述间隙与相应所述支撑板具有的至少一个透气孔连通。
  10. 根据权利要求8所述的辅助工装,其特征在于,所述限气结构具有第三腔体;当所述辅助工装上装设有多个预制件时,至少一个所述预制件位于所述第三腔体内或外。
  11. 根据权利要求10所述的辅助工装,其特征在于,所述第三腔体具有第三开口,当所述辅助工装上装设有多个预制件时,至少一个所述预制件位于所述第三腔体内;或,
    所述限气结构为封闭式限气结构,当所述辅助工装上装设有预制件时,所述封闭式限气结构位于相应所述预制件的第一腔体内。
  12. 根据权利要求8所述的辅助工装,其特征在于,沿着所述沉积炉的高度方向,所述限气结构包括至少两个用于加快流经相应所述预制件的气体的流动速度的限气部;当所述辅助工装上装设有多个预制件时,至少一个所述限气部位于相应所述预制件具有的第一腔体内。
  13. 一种预制件承载装置,其特征在于,包括料柱以及权利要求1~12任一项所述的辅助工装,当所述料柱内的至少两个所述预制件叠置时,所述辅助工装位于所述料柱内。
  14. 一种用于预制体增密的装炉结构,其特征在于,所述装炉结构设于炉腔内,所述炉腔具有炉腔入口和炉腔出口,所述装炉结构包括至少两组待增密预制体组件,每组所述待增密预制体组件包括至少两个待增密预制体,所述至少两个待增密预制体依次套设,形成至少一个处于相邻两个所述待增密预制体之间的限流通道,至少两组所述待增密预制体组件沿重力方向相互对扣形 成至少一个结构单元,每个所述结构单元中两组所述待增密预制体组件对应的所述限流通道相互连通,在所述炉腔内分别形成连通所述炉腔入口、所述限流通道和所述炉腔出口的至少一条限流路径。
  15. 根据权利要求14所述的用于预制体增密的装炉结构,其特征在于,所述装炉结构包括多个结构单元,所述多个结构单元沿重力方向叠放;相邻所述结构单元中所述待增密预制体组件的所述限流通道相互连通。
  16. 根据权利要求14所述的用于预制体增密的装炉结构,其特征在于,所述装炉结构包括多个待增密预制体组件,所述多个待增密预制体组件在水平面内阵列分布,所述多个待增密预制体组件的所述限流通道相互连通。
  17. 根据权利要求14所述的用于预制体增密的装炉结构,其特征在于,所述待增密预制体组件中,相邻两个所述待增密预制体之间设置垫块以形成所述限流通道。
  18. 根据权利要求17所述的用于预制体增密的装炉结构,其特征在于,相互对扣的所述待增密预制体组件中,尺寸相同的一对所述待增密预制体的同一端部相对设置,其中至少一对相互对扣的所述待增密预制体之间设有加高环,所述加高环分别与两个所述待增密预制体的所述同一端部分别接触;其余各对所述待增密预制体的同一端部相互接触。
  19. 根据权利要求18所述的用于预制体增密的装炉结构,其特征在于,每个所述待增密预制体的端面均设有过流口,在所述炉腔内分别形成连通所述炉腔入口、所述限流通道、所述过流口和所述炉腔出口的至少一条限流路径。
  20. 根据权利要求19所述的用于预制体增密的装炉结构,其特征在于,最内侧所述待增密预制体的过流口上设有盖板。
  21. 根据权利要求20所述的用于预制体增密的装炉结构,其特征在于,最外侧的所述待增密预制体顶部设有设置有限流板,该待增密预制体上的所述过流口设于所述限流板上。
  22. 根据权利要求21所述的用于预制体增密的装炉结构,其特征在于,所述装炉结构还包括底座,所述底座包括底座环和分流板,所述分流板的中心设有第一入流口,所述第一入流口的外周设有至少一圈第二入流口;至少三个所述待增密预制体依次套设,形成至少两个限流通道,所述第一入流口与最内 侧的所述限流通道连通,所述至少一圈第二入流口分别与其余所述限流通道连通。
  23. 根据权利要求22所述的用于预制体增密的装炉结构,其特征在于,所述底座环上设置有吊装接口。
  24. 根据权利要求23所述的用于预制体增密的装炉结构,其特征在于,所述底座环、所述分流板、所述限流板、所述垫块、所述加高环和所述盖板为石墨材质或碳碳材质。
PCT/CN2022/077699 2021-05-06 2022-02-24 辅助工装及预制件承载装置及用于预制体增密的装炉结构 WO2022233177A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202120955130.6 2021-05-06
CN202120955130.6U CN216155960U (zh) 2021-05-06 2021-05-06 用于预制体增密的装炉结构
CN202121309255.8U CN215887224U (zh) 2021-06-11 2021-06-11 一种辅助工装及预制件承载装置
CN202121309255.8 2021-06-11

Publications (1)

Publication Number Publication Date
WO2022233177A1 true WO2022233177A1 (zh) 2022-11-10

Family

ID=83932594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077699 WO2022233177A1 (zh) 2021-05-06 2022-02-24 辅助工装及预制件承载装置及用于预制体增密的装炉结构

Country Status (1)

Country Link
WO (1) WO2022233177A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5904957A (en) * 1995-04-18 1999-05-18 Societe Europeenne De Propulsion Vapour phase chemical infiltration process for densifying porous substrates disposed in annular stacks
CN109354508A (zh) * 2018-12-13 2019-02-19 上海康碳复合材料科技有限公司 一种批量快速制备碳/碳复合材料埚帮的cvi工艺方法
US20190360097A1 (en) * 2018-05-25 2019-11-28 Rolls-Royce High Temperature Composites Inc. Apparatus and method for coating specimens
CN110845243A (zh) * 2018-08-21 2020-02-28 通用电气公司 用于对cmc构件进行热处理的系统和方法
CN215887224U (zh) * 2021-06-11 2022-02-22 隆基绿能科技股份有限公司 一种辅助工装及预制件承载装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5904957A (en) * 1995-04-18 1999-05-18 Societe Europeenne De Propulsion Vapour phase chemical infiltration process for densifying porous substrates disposed in annular stacks
US20190360097A1 (en) * 2018-05-25 2019-11-28 Rolls-Royce High Temperature Composites Inc. Apparatus and method for coating specimens
CN110845243A (zh) * 2018-08-21 2020-02-28 通用电气公司 用于对cmc构件进行热处理的系统和方法
CN109354508A (zh) * 2018-12-13 2019-02-19 上海康碳复合材料科技有限公司 一种批量快速制备碳/碳复合材料埚帮的cvi工艺方法
CN215887224U (zh) * 2021-06-11 2022-02-22 隆基绿能科技股份有限公司 一种辅助工装及预制件承载装置

Similar Documents

Publication Publication Date Title
RU2315821C2 (ru) Подогреватель газа
CN1136335C (zh) 化学蒸汽渗透和沉积工艺用的设备
CA2849876C (en) A device for loading porous substrates of three-dimensional shape in order to be densified by directed flow chemical vapor infiltration
CN104357806A (zh) 一种化学气相沉积炉预热装置
CN215887224U (zh) 一种辅助工装及预制件承载装置
WO2022233177A1 (zh) 辅助工装及预制件承载装置及用于预制体增密的装炉结构
CN112830807B (zh) 一种气相沉积装置及碳/碳复合材料的制备方法
KR101483315B1 (ko) 다공성 제품들의 조밀화 방법
CN102212800B (zh) 一种化学气相渗透增密用多料柱式工业炉
CN112687596A (zh) 晶舟、工艺腔室及半导体工艺设备
CN110923671A (zh) 一种化学气相浸渗炉内置物料架
CN216155960U (zh) 用于预制体增密的装炉结构
US20220344067A1 (en) Space nuclear propulsion reactor aft plenum assembly
CN114875377B (zh) 用于预制体增密的沉积装置及装炉结构
CN113683436B (zh) 一种进气组件、气相沉积装置及其复合材料制备方法
CN220952046U (zh) 一种垫块及具有该垫块的沉积炉
CN220746076U (zh) 一种化学气相沉积炉气体预热装置
CN219260192U (zh) 一种碳碳复合材料压差沉积法的工装
CN217868660U (zh) 一种制造c/c复合材料的沉积工装
CN113277870B (zh) 薄壁筒状炭/炭复合材料快速致密化方法
CN115959918A (zh) 一种筒状碳碳热场材料的制备设备及制备方法
CN117936128A (zh) 燃料组件及堆芯
CN117550908A (zh) 一种高碳收率碳/碳复合材料刹车盘的制备方法
CN115784762A (zh) 一种碳碳热场材料的沉积方法及沉积设备
CN116200729A (zh) 一种在立式cvd炉中制备筒状热场材料的设备及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22798519

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22798519

Country of ref document: EP

Kind code of ref document: A1