WO2022233172A1 - 利用多普勒效应的接触式振动光子传感器及其制造方法 - Google Patents

利用多普勒效应的接触式振动光子传感器及其制造方法 Download PDF

Info

Publication number
WO2022233172A1
WO2022233172A1 PCT/CN2022/076865 CN2022076865W WO2022233172A1 WO 2022233172 A1 WO2022233172 A1 WO 2022233172A1 CN 2022076865 W CN2022076865 W CN 2022076865W WO 2022233172 A1 WO2022233172 A1 WO 2022233172A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
cantilever beam
doppler effect
contact
mirror
Prior art date
Application number
PCT/CN2022/076865
Other languages
English (en)
French (fr)
Inventor
刘晓海
郭怡然
Original Assignee
欧梯恩智能科技(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 欧梯恩智能科技(苏州)有限公司 filed Critical 欧梯恩智能科技(苏州)有限公司
Priority to US18/030,564 priority Critical patent/US20230375397A1/en
Publication of WO2022233172A1 publication Critical patent/WO2022233172A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00134Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
    • B81C1/0015Cantilevers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02002Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies
    • G01B9/02003Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies using beat frequencies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02041Interferometers characterised by particular imaging or detection techniques
    • G01B9/02045Interferometers characterised by particular imaging or detection techniques using the Doppler effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • G01H9/004Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means using fibre optic sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere

Definitions

  • the present application belongs to the technical field of photonic chips, and in particular, relates to a contact vibration photonic sensor utilizing the Doppler effect and a manufacturing method thereof.
  • the Internet of Things requires the interconnection of all things through various information sensors.
  • the all-optical network has the advantages of greatly improving the speed and reliability of the network because its network transmission and switching process are all realized through optical fibers, and it is not necessary to realize electro-optical and optical-electrical conversion. Compared with the traditional cable network better solution.
  • traditional sensors such as piezoelectric, capacitive, and piezoresistive have shortcomings such as bandwidth limitation, clock skew, severe crosstalk, and high power consumption when accessing. Therefore, in the selection of the sensor, the sensor that detects vibration through the optical principle becomes the best choice.
  • optical fiber vibration sensing technology there are two main technologies for vibration measurement through optical principles, one is optical fiber vibration sensing technology, and the other is laser Doppler vibration measurement technology.
  • Optical fiber vibration sensing technology can be divided into intensity modulation type, phase modulation type, wavelength modulation type, polarization state modulation type and mode modulation type according to the modulation type.
  • intensity modulation type the more common products in the market are the intensity modulation type and the wavelength modulation type.
  • the basic principle of the intensity-modulated optical fiber vibration sensor is that the vibration of the object to be measured causes the change of the light intensity of the transmitted light in the optical fiber, and the vibration is measured by detecting the change of the light intensity.
  • the advantages of this type of sensor are simple structure, low cost and easy implementation, so the development and application are earlier.
  • wavelength-modulated optical fiber vibration sensor Due to the limitation of the principle, it is easily affected by light source fluctuation and connector loss, and its detected light intensity is greatly affected by the optical path and the environment, so it can only be applied to occasions with low precision requirements and small interference sources.
  • the basic principle of wavelength-modulated optical fiber vibration sensor is that the vibration of the object to be measured acts directly or indirectly on the sensitive optical fiber, causing the wavelength of the transmitted light in the optical fiber to change, and then the vibration is detected by measuring the change in the wavelength of the light.
  • the wavelength-modulated optical fiber vibration sensor adopts a fiber Bragg grating structure. The fiber containing the Bragg grating is fixed on the cantilever beam.
  • the vibration of the object to be measured causes the cantilever beam to vibrate, which drives the grating to periodically stretch or shrink, thereby causing the transmission of light wavelengths. change to measure vibration.
  • the advantages of this type of sensor are anti-electromagnetic interference, long transmission distance, and reusability. However, it has the disadvantages that the system measurement accuracy is restricted by the spatial resolution, the detection signal is weak, and a very high signal-to-noise ratio is required.
  • Laser Doppler vibration measurement technology is a measurement technology that uses the principles of laser Doppler effect and optical heterodyne interference to measure the vibration of objects.
  • the existing laser Doppler vibration measurement technology has become a cutting-edge technology with great development potential and application prospects in the field of vibration measurement due to its advantages of high precision, non-contact, and large dynamic range.
  • speckle noise refers to the diversification of the target surface roughness, which makes the laser light scattered from the surface with different roughness to form different speckle characteristics, and the existence of the speckle further affects the size of the measurement carrier-to-noise ratio.
  • the technical problem to be solved by the present application is to provide a contact vibratory photonic sensor utilizing the Doppler effect and a manufacturing method thereof in order to solve the deficiencies in the prior art.
  • a contact vibrating photonic sensor utilizing the Doppler effect comprising an outer encapsulation layer, the outer encapsulation layer further comprising:
  • Silicon-based material including sidewalls and a cavity surrounded by the sidewalls with a top opening
  • the mirror body is arranged in the cavity, the top of the mirror body has a mirror layer, and the side surface of the mirror body is connected with the side wall through a cantilever beam, and the cantilever beam is spring-shaped.
  • the mirror body is an axisymmetric cylindrical body with at least two parallel sides.
  • the mirror body when the mirror body is in the shape of a cube, two opposite sides can be connected to the side wall through a cantilever beam, or all four sides can be connected to the side wall through a cantilever beam. connect.
  • the cantilever beam has grooves that are perpendicular to the mirror layer and have different opening directions, and the projections of the two grooves on the plane where the mirror layer is located are misaligned.
  • the cantilever beam has grooves that are parallel to the mirror layer and have different opening directions, and the central axis of the connection between the cantilever beam and the mirror body is connected to the mirror body.
  • the central axis is collinear.
  • the thickness of the cantilever beam is greater on the side away from the mirror body than on the side close to the mirror body.
  • the present application also provides a method for preparing a contact vibration photonic sensor utilizing the Doppler effect, comprising the following steps:
  • S1 take an SOI wafer, the SOI wafer includes a base layer, a top layer and an oxide layer located between the base layer and the top layer, and a mirror layer is plated on the upper surface of the top layer;
  • S5 The cantilever beam is etched and thinned from bottom to top to form a groove with a downward opening in the spring shape;
  • the bottom silicon-based material is used to bond the bottom of the base layer to close the opening at the bottom of the base layer.
  • the bottom silicon-based material is bonded to the bottom of the base layer by means of BCB glue bonding.
  • the present application also provides a method for preparing a contact vibration photonic sensor utilizing the Doppler effect, comprising the following steps:
  • S1 take an SOI wafer, the SOI wafer includes a base layer, a top layer and an oxide layer located between the base layer and the top layer, and a mirror layer is plated on the upper surface of the top layer;
  • the sensor structure Compared with intensity modulation products in optical fiber vibration sensing, the sensor structure mainly overcomes the high dependence on the accuracy and stability of the optical path structure.
  • the sensor structure uses the Doppler effect as the vibration measurement principle, and derives the target vibration information from the frequency information of the reflected light. Compared with the traditional light intensity modulation, it does not require precise alignment of the optical path and high stability of the optical path to ensure the reflected light. Strong changes are caused by vibration rather than other factors such as optical path. It is because of the above factors that the sensor structure has higher accuracy than the intensity-modulated products in optical fiber vibration sensing.
  • the sensor structure Compared with the fiber grating, which is a wavelength-modulated product in optical fiber vibration sensing, the sensor structure mainly overcomes the shortcomings of weak detection signal and high signal-to-noise ratio.
  • the Bragg grating used in fiber grating is a semi-transparent and semi-reflective interface, which cannot achieve total transmission or total reflection. Therefore, light will be attenuated when passing through the Bragg grating, resulting in a weak detection signal.
  • this structure adopts a gold-plated reflector, which has a very high reflectivity, which greatly reduces the attenuation of light, enhances the detection signal, and reduces the signal-to-noise ratio requirement.
  • this sensor structure mainly solves the influence of speckle noise.
  • the measurement light is directly irradiated on the surface of the object to be measured. Due to the diversification of the surface roughness of the object to be measured, different speckle characteristics are formed after the laser is scattered from the surface of different roughness. The existence further affects the size of the measured carrier-to-noise ratio.
  • the measuring fiber of this structure is directly irradiated on the surface of the gold-coated mirror to generate specular reflection, thereby eliminating speckle noise.
  • the use of a spring-shaped cantilever beam can increase the amplitude of the mirror body and improve the sensitivity of the sensor when sensing vibration.
  • FIG. 1 is a side cross-sectional view of a contact vibratory photonic sensor utilizing the Doppler effect according to Embodiment 1 of the present application;
  • FIG. 2 is a top cross-sectional view of a contact vibratory photonic sensor utilizing the Doppler effect according to Embodiment 1 of the present application;
  • FIG. 3 is a top cross-sectional view of another embodiment of the contact vibratory photonic sensor utilizing the Doppler effect according to Example 1 of the present application;
  • FIG. 4 is a side cross-sectional view of a contact vibratory photonic sensor utilizing the Doppler effect according to Embodiment 2 of the present application;
  • FIG. 5 is a top cross-sectional view of a contact vibratory photonic sensor utilizing the Doppler effect according to Embodiment 2 of the present application;
  • FIG. 6 is a schematic structural diagram of an SOI wafer in a method for preparing a contact vibratory photonic sensor utilizing the Doppler effect in Embodiment 3;
  • Fig. 7 is the structural representation after SOI wafer is coated with mirror surface layer among the embodiment 3;
  • Example 8 is a schematic view of the structure after the SOI wafer plating top is etched in Example 3;
  • Example 9 is a schematic structural diagram of SOI wafer plating after bottom etching in Example 3.
  • Fig. 10 is the structural representation after the SOI wafer is plated on the oxide layer and etched in Example 3;
  • FIG. 11 is a schematic structural diagram of bonding the SOI wafer to the bottom silicon-based material in Example 3.
  • FIG. 11 is a schematic structural diagram of bonding the SOI wafer to the bottom silicon-based material in Example 3.
  • This embodiment provides a contact vibrating photonic sensor utilizing the Doppler effect, including an outer packaging layer 9, as shown in FIG. 1, the outer packaging layer 9 further includes:
  • the silicon-based material 1 includes sidewalls 10 and a cavity 11 surrounded by the sidewalls 10 with a top opening;
  • the mirror body 2 is arranged in the cavity 11, the top of the mirror body 2 has a mirror layer 21, the side surface of the mirror body 2 is connected with the side wall 10 through a cantilever beam 22, and the cantilever beam 22 is a spring-shaped ( That is, the cantilever beam 22 has grooves perpendicular to the mirror layer 21 and with different opening directions, and the projections of the two grooves on the plane where the mirror layer 21 is located are dislocated).
  • the shape of the mirror body 2 may be a cube shape, or may be a cylindrical body with at least two parallel sides.
  • the mirror body 2 When the mirror body 2 is in the shape of a cube, two opposite sides may be connected to the side wall 10 through the cantilever beam 22 , or all four sides may be connected to the side wall 10 through the cantilever beam 22 .
  • the use of a spring-shaped cantilever beam can increase the amplitude of the mirror body 2 and improve the sensitivity of the sensor when sensing vibration.
  • This embodiment provides a contact vibratory photonic sensor utilizing the Doppler effect, including an outer packaging layer 9, as shown in FIG. 4 and FIG. 5, the outer packaging layer 9 further includes:
  • the silicon-based material 1 includes sidewalls 10 and a cavity 11 surrounded by the sidewalls 10 with a top opening;
  • the mirror body 2 is arranged in the cavity 11, the top of the mirror body 2 has a mirror layer 21, and the side surface of the mirror body 2 is connected to the side wall 10 through a cantilever beam 22, and the cantilever beam 22 is spring-shaped;
  • the shape of the mirror body 2 may be a cube shape, or may be a cylindrical body with at least two parallel sides.
  • the cantilever beam 22 has grooves that are parallel to the mirror layer 21 and have different opening directions, and the central axis of the connection between the cantilever beam 22 and the mirror body 2 is collinear with the central axis of the mirror body 2 , as shown by the dotted line in FIG. 5 . ;
  • the collinear arrangement of the central axis can make the vibration direction of the mirror body 2 fixed, so that the light reflection angle can be kept consistent.
  • the thickness of the cantilever beam 22 is greater on the side away from the mirror body 2 than on the side close to the mirror body 2 , so that the center of mass of the overall cantilever beam 22 is biased toward the position close to the silicon-based material 1 , without affecting the amplitude. case, improve the structural strength.
  • a three-stage stepped structure with gradually decreasing thickness is formed.
  • the detection of vibrations by the sensor structures of the above two embodiments is based on the Doppler effect, which states that the received frequency of the wave becomes higher when the wave source moves toward the observer, and the received frequency becomes lower when the wave source moves away from the observer.
  • the physical principle is that the reflected light from the moving object will have the vibration characteristics of the moving object itself, that is, the Doppler frequency shift.
  • ⁇ f D represents the Doppler frequency shift that occurs after the laser is reflected by the vibrating object
  • V is the moving speed of the object
  • is the laser wavelength
  • the sensor structure of the present application can use a MEMS package structure.
  • the optical fiber 8 is connected from the outside, and the access end of the optical fiber 8 is fixed in a V-groove made by MEMS technology, so as to ensure the collimation of the optical path.
  • a mirror surface body 2 made of silicon
  • a mirror surface layer 21 (reflector) is formed by coating a layer of gold film on the upper surface of the mirror surface body 2 .
  • the left and right sides of the mirror body 2 are cantilever beams 22 made by MEMS technology. One end of the cantilever beam 22 is connected to the mirror body 2 and the other end is connected to the "concave" silicon substrate.
  • the whole structure is a typical MEMS structure.
  • the MEMS structure part and the optical fiber access part are packaged in the cuboid cavity by the packaging technology.
  • the principle of vibration detection of the sensor structure of the present application is that the sensor of this embodiment is fixed on the surface of the object to be measured, and when the object to be measured vibrates, the structure vibrates together with the object to be measured because it is relatively stationary.
  • the mirror body 2 in the cavity 11 remains stationary due to inertia, so a relative velocity is generated between the mirror body 2 and the cavity 11 (including the access fiber).
  • a beam of laser light with a fixed frequency f is perpendicular to the cantilever beam 22 through the optical fiber, and is reflected by the mirror layer 21 (reflector) made of gold on the upper surface of the cantilever beam 22, and then returns to the optical fiber.
  • the frequency of the reflected light becomes f+ ⁇ f D due to the Doppler effect.
  • the vibration velocity V of the measuring point is determined, and then the movement direction, movement amplitude (ie, displacement) and movement frequency of the point are obtained to reflect the vibration characteristics of the object itself.
  • the present embodiment provides a method for preparing a contact vibratory photonic sensor utilizing the Doppler effect, which corresponds to the structure of Embodiment 1 and includes the following steps:
  • the SOI wafer Take an SOI wafer, the structure is shown in Figure 6, the SOI wafer includes a base layer 31, a top layer 33 and an oxide layer 32 located between the base layer 31 and the top layer 33, and a mirror layer 21 is plated on the upper surface of the top layer 33, as shown in 7 ;
  • the cantilever beam 22 is etched and thinned from bottom to top to form a spring-shaped groove with a downward opening;
  • step S5 the bottom silicon base material 34 is used to bond the bottom contact part of the base layer 31 with the bottom silicon base material 34 by means of BCB glue bonding, so as to close the bottom opening, Figure 11.
  • This embodiment provides a method for preparing a contact vibratory photonic sensor utilizing the Doppler effect, which corresponds to the structure of Embodiment 2 and includes the following steps:
  • S1 take an SOI wafer, the SOI wafer includes a base layer 31, a top layer 33 and an oxide layer 32 between the base layer 31 and the top layer 33, and the upper surface of the top layer 33 is coated with a mirror layer 21;
  • the chip processing process in this application includes: photolithography, etching, ion implantation or doping, wafer bonding process, sputtering or deposition process. Unless otherwise specified, existing techniques can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

一种利用多普勒效应的接触式振动光子传感器,包括外封装层(9),外封装层(9)内还包括硅基材料(1)和镜面体(2);硅基材料(1)包括侧壁(10)和顶部开口的由侧壁(10)包围形成的腔体(11);镜面体(2)设置于腔体(11)内,且镜面体(2)顶部具有镜面层(21),镜面体(2)的侧面通过悬臂梁(22)与侧壁(10)连接,悬臂梁(22)为弹簧形。接触式振动光子传感器利用多普勒效应提供准确的精准度,使用弹簧形的悬臂梁(22),可以提高镜面体(2)的振幅,提高传感器感应振动时的灵敏度。还公开了一种利用多普勒效应的接触式振动光子传感器的制造方法。

Description

利用多普勒效应的接触式振动光子传感器及其制造方法
本申请要求申请日为2020年5月7日的中国发明专利申请号2021104941269的优先权,该专利申请的内容在此被援引加入本文。
技术领域
本申请属于光子芯片技术领域,尤其是涉及一种利用多普勒效应的接触式振动光子传感器及其制造方法。
背景技术
作为信息科技产业的第三次革命,物联网(IOT)要求通过各种信息传感器实现万物互联。在互联方式的选择中,全光网由于其网络传输和交换过程全部通过光纤实现,不必在其中实现电光和光电转换,从而大大提高网速及可靠性的优势,成为相较于传统电缆网络的更优解。在全光网络中,传统的诸如压电式、电容式、压阻式传感器在接入时存在着诸如带宽限制、时钟偏移、严重串话、高功耗等缺点。因此,在传感器的选择中,通过光学原理进行振动检测的传感器成为不二之选。
目前通过光学原理进行振动测量的技术主要有两种,一种是光纤振动传感技术,另一种是激光多普勒振动测量技术。
光纤振动传感技术根据调制类型可分为强度调制型、相位调制型、波长调制型、偏振态调制型以及模式调制型。目前在市场产品中较为普遍的是强度调制型和波长调制型。强度调制型光纤振动传感器的基本原理是待测物体振动引起光纤中传输光光强的变化,通过检测光强的变化来测量振动。此类传感器的优点是结构简单、成本低、容易实现,因此开发及应用较早。但由于原理的限制,其易受光源波动及连接器损耗等影响,并且其检测量光强受光路影响及环境影响较大,因此只能适用于低精度要求、干扰源较小的场合。波长调制型光纤振动传感器的基本原理是待测物体振动直接或间接作用于敏感光纤,引起光纤中传输光的波长改变,进而通过测量光波长的变化来检测振动。目前波长调制型光纤振动传感器采用光纤布拉格光栅结构,内含布拉格光栅的光纤被固定于悬臂梁上,待测物体振动引起悬臂梁振动,带动光栅产生周期性拉伸或收缩,从而引起传输光波长变化以测量振动。此类传感器的优点是抗电磁干扰、传输距离远、可复用,但其存在系统测量精度受空间分辨力制约、检测信号较弱,需要极高信噪比的缺点。
激光多普勒振动测量技术是利用激光多普勒效应、光外差干涉等原理对物体振动进行测量的一种测量技术。现有的激光多普勒振动测量技术以其精度高、无接触、动态范围大等优势在振动测量领域中成为极具发展潜力与应用前景的前沿技术。但是该技术依旧存在一些缺点未被克服,例如斑点噪声、难以测量对激光反射不敏感物体以及一段光路暴露在外界环境中,受环境影响较大的问题。斑点噪声是指由于目标表面粗糙度的多样化,这使得激光从不同粗糙度表面散射后形成不同的散斑特征,而散斑的存在又进一步影响了测量载噪比的大小。
申请内容
本申请要解决的技术问题是:为解决现有技术中的不足,从而提供一种利用多普勒效应的接触式振动光子传感器及其制造方法。
本申请解决其技术问题所采用的技术方案是:
一种利用多普勒效应的接触式振动光子传感器,包括外封装层,所述外封装层内还包括:
硅基材料,包括侧壁和顶部开口的由侧壁包围形成的腔体;
镜面体,设置于腔体内,所述镜面体顶部具有镜面层,所述镜面体的侧面 通过悬臂梁与所述侧壁连接,所述悬臂梁为弹簧形。
优选地,本申请的利用多普勒效应的接触式振动光子传感器,镜面体为轴对称的、至少具有平行的两边柱形体。
优选地,本申请的用多普勒效应的接触式振动光子传感器,所述镜面体为立方体形时,可以是两条对边通过悬臂梁与侧壁连接,或者四边都通过悬臂梁与侧壁连接。
优选地,本申请的用多普勒效应的接触式振动光子传感器,所述悬臂梁具有与镜面层垂直的且开口方向不同的槽,两种槽在镜面层所在平面上的投影错位设置。
优选地,本申请的用多普勒效应的接触式振动光子传感器,所述悬臂梁具有与镜面层平行的且开口方向不同的槽,所述悬臂梁与镜面体连接处的中轴线与镜面体的中轴线共线。
优选地,本申请的用多普勒效应的接触式振动光子传感器,所述悬臂梁的厚度在远离所述镜面体的一侧大于靠近镜面体的一侧。
本申请还提供一种利用多普勒效应的接触式振动光子传感器制备方法,包括以下步骤:
S1:取一SOI晶片,所述SOI晶片包括基层、顶层和位于基层与顶层之间的氧化层,在顶层的上表面镀上镜面层;
S2:将顶层无悬臂梁的部分从上向下刻蚀到氧化层处形成上腔体,并将悬臂梁顶端进行刻蚀形成弹簧形中开口向上的凹槽;
S3:将基层从下向上刻蚀到氧化层处形成下腔体;
S4:将氧化层刻蚀使上腔体和下腔体联通形成腔体;
S5:将悬臂梁从下向上进行刻蚀减薄并形成弹簧形中开口向下的凹槽;
S6:将刻蚀完的SOI晶片封装形成利用多普勒效应的接触式振动光子传感器。
优选地,本申请的利用多普勒效应的接触式振动光子传感器制备方法,S5步骤后,使用底部硅基材料与基层底部进行键合以封闭基层底部的开口。
优选地,本申请的利用多普勒效应的接触式振动光子传感器制备方法,采用BCB胶键合的方式将底部硅基材料与基层底部进行键合。
本申请还提供一种利用多普勒效应的接触式振动光子传感器制备方法,包括以下步骤:
S1:取一SOI晶片,所述SOI晶片包括基层、顶层和位于基层与顶层之间的氧化层,在顶层的上表面镀上镜面层;
S2:将顶层无悬臂梁的部分从上向下刻蚀到氧化层处形成上腔体,并将悬臂梁顶端进行刻蚀形成弹簧形中平行于镜面层的槽,并使悬臂梁形成所需厚度;
S3:将基层从下向上刻蚀到氧化层处形成下腔体;
S4:将氧化层刻蚀使上腔体和下腔体联通形成腔体;
S5:将刻蚀完的SOI晶片封装形成利用多普勒效应的接触式振动光子传感器。
本申请的有益效果是:
相较于光纤振动传感中的强度调制型产品,本传感器结构主要克服了对于光路结构精确性和稳定性的高度依赖。本传感器结构以多普勒效应作为振动测量原理,通过反射光频率信息推导目标振动信息,与传统的光强调制相比,不需要光路的精确对准以及光路的高稳定性以保证反射光光强变化由振动产生而非光 路等其他因素影响。正是由于以上因素,本传感器结构相较于光纤振动传感中的强度调制型产品有更高的精确度。
相较于光纤振动传感中的波长调制型产品即光纤光栅,本传感器结构主要克服了其检测信号较弱,需要极高信噪比的缺点。光纤光栅使用的布拉格光栅本身属于半透半反界面,无法达成全透射或全反射,因此光在经过布拉格光栅时会产生衰减,从而导致其检测信号较弱。而本结构采用镀金反射镜,具有极高的反射率,大大减少了光的衰减,增强了检测信号,降低了信噪比要求。
相较于激光多普勒振动测量产品,本传感器结构主要解决了其存在的斑点噪声的影响。激光多普勒振动测量产品中,测量光线直接照射在被测物体表面,由于被测物体表面粗糙度的多样化,使得激光从不同粗糙度表面散射后形成不同的散斑特征,而散斑的存在又进一步影响了测量载噪比的大小。而本结构的测量光纤直接照射在镀金反射镜表面,产生镜面反射,从而消除了斑点噪声。同时由于硅材料本身弹性有限,因此使用弹簧形的悬臂梁,可以提高镜面体的振幅,提高传感器感应振动时的灵敏度。
附图说明
下面结合附图和实施例对本申请的技术方案进一步说明。
图1是本申请实施例1的利用多普勒效应的接触式振动光子传感器的侧面剖视图;
图2是本申请实施例1的利用多普勒效应的接触式振动光子传感器的俯视剖视图;
图3是本申请实施例1的利用多普勒效应的接触式振动光子传感器另一种实施方式的俯视剖视图;
图4是本申请实施例2的利用多普勒效应的接触式振动光子传感器的侧面剖视图;
图5是本申请实施例2的利用多普勒效应的接触式振动光子传感器的俯视剖视图;
图6是实施例3中利用多普勒效应的接触式振动光子传感器制备方法中SOI晶片结构示意图;
图7是实施例3中SOI晶片镀上镜面层后的结构示意图;
图8是实施例3中SOI晶片镀顶部刻蚀后的结构示意图;
图9是实施例3中SOI晶片镀上底部刻蚀后的结构示意图;
图10是实施例3中SOI晶片镀上氧化层刻蚀后的结构示意图;
图11是实施例3中SOI晶片与底部硅基材料键合的结构示意图。
图中的附图标记为:
1 硅基材料;
2 镜面体;
8 光纤;
9 外封装层;
10 侧壁;
11 腔体;
21 镜面层;
22 悬臂梁;
31 基层;
32 氧化层;
33 顶层;
34 底部硅基材料。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
下面将参考附图并结合实施例来详细说明本申请的技术方案。
实施例1
本实施例提供一种利用多普勒效应的接触式振动光子传感器,包括外封装层9,如图1所示,所述外封装层9内还包括:
硅基材料1,包括侧壁10和顶部开口的由侧壁10包围形成的腔体11;
镜面体2,设置于腔体11内,所述镜面体2顶部具有镜面层21,所述镜面体2的侧面通过悬臂梁22与所述侧壁10连接,所述悬臂梁22为弹簧形(也即悬臂梁22具有与镜面层21垂直的且开口方向不同的槽,两种槽在镜面层21所在平面上的投影错位设置)。
镜面体2的形状可以为立方体形,也可以为至少具有平行的两边柱形体。
所述镜面体2为立方体形时,可以是两条对边通过悬臂梁22与侧壁10连接,也可以是四边都通过悬臂梁22与侧壁10连接。
由于硅材料本身弹性有限,因此使用弹簧形的悬臂梁,可以提高镜面体2的振幅,提高传感器感应振动时的灵敏度。
实施例2
本实施例提供一种利用多普勒效应的接触式振动光子传感器,包括外封装层9,如图4和图5所示,所述外封装层9内还包括:
硅基材料1,包括侧壁10和顶部开口的由侧壁10包围形成的腔体11;
镜面体2,设置于腔体11内,所述镜面体2顶部具有镜面层21,所述镜面体2的侧面通过悬臂梁22与所述侧壁10连接,所述悬臂梁22为弹簧形;
镜面体2的形状可以为立方体形,也可以为至少具有平行的两边柱形体。
所述悬臂梁22具有与镜面层21平行的且开口方向不同的槽,所述悬臂梁22与镜面体2连接处的中轴线与镜面体2的中轴线共线,如图5的虚线所示;中轴线共线设置可以使得镜面体2振动方向固定,使光线反射角度保持一致。
进一步地,所述悬臂梁22的厚度在远离所述镜面体2的一侧大于靠近镜面体2的一侧,从而使整体悬臂梁22的质心偏向靠近硅基材料1的位置,在不影响振幅的情况下,提高结构强度。如图4所示,形成了三段厚度逐渐降低的阶梯式结构。
上述两个实施例的传感器结构对振动的检测基于多普勒效应,多普勒效应指出,波在波源移向观察者时接收频率变高,而在波源远离观察者时接收频率变低。其物理原理在于从运动物体反射回来的反射光会带有运动着的物体本身的振动特性,即多普勒频移。
Figure PCTCN2022076865-appb-000001
式中,Δf D表示激光经振动着的物体反射后所发生的多普勒频移,V是物 体的运动速度,λ是激光波长。由此可知,其原理就是基于测量从物体表面微小区域反射回的相干激光光波的多普勒频率Δf D,进而确定该测点的振动速度V,进而获得该点的运动方向、运动幅度(即位移大小)以及运动频率等反映物体本身振动特性的信息。
本申请的传感器结构可以使用MEMS封装结构。其中,光纤8从外部接入,将光纤8接入端置于使用MEMS工艺制成的V槽中固定,以确保光路的准直性。光纤8正下方为硅制成的镜面体2,在该镜面体2上表面镀一层金膜制成镜面层21(反射镜)。镜面体2左右两侧是通过MEMS工艺制成的悬臂梁22,悬臂梁22一端连接镜面体2,另一端连接“凹”型硅基底。整个结构是典型的MEMS结构。通过封装技术将MEMS结构部分与光纤接入部分封装在长方体腔内。
本申请的传感器结构进行振动检测的原理是:将本实施例的传感器固定于待测物体表面,当待测物体发生振动时,该结构由于与待测物体相对静止,故一同振动。腔体11内镜面体2由于惯性而保持静止,因此,镜面体2与腔体11(包括接入光纤)间产生了相对速度。一束固定频率f的激光通过光纤垂直射向悬臂梁22,经由悬臂梁22上表面由金制成的镜面层21(反射镜)反射后返回光纤。由于悬臂梁22与光纤8之间存在相对速度,故反射光频率由于多普勒效应变为f+Δf D。通过对频率已改变的反射光进行分析处理,从而确定该测点的振动速度V,进而获得该点的运动方向、运动幅度(即位移大小)以及运动频率等反映物体本身振动特性的信息。
实施例3
本实施例提供一种利用多普勒效应的接触式振动光子传感器制备方法,对应于实施例1的结构,包括以下步骤:
S1:取一SOI晶片,结构如图6,所述SOI晶片包括基层31、顶层33和位于基层31与顶层33之间的氧化层32,在顶层33的上表面镀上镜面层21,如7;
S2:将顶层33无悬臂梁22的部分从上向下刻蚀到氧化层32处形成上腔体,并将悬臂梁22顶端进行刻蚀形成弹簧形中开口向上的凹槽,如图8;
S3:将基层31从下向上刻蚀到氧化层32处形成下腔体,如图9;
S4:将氧化层32刻蚀使上腔体和下腔体联通形成腔体11(镜面体2和悬臂梁22底部露出),如图10;
S5:将悬臂梁22从下向上进行刻蚀减薄并形成弹簧形中开口向下的凹槽;
S6:将刻蚀完的SOI晶片封装形成实施例1的利用多普勒效应的接触式振动光子传感器。
如需将基层31的底部开口封闭,S5步骤后,使用底部硅基材料34并采用BCB胶键合的方式将底部硅基材料34与基层31底部接触部分键合,从而将底部开口封闭掉,如图11。
实施例4
本实施例提供一种利用多普勒效应的接触式振动光子传感器制备方法,对应于实施例2的结构,包括以下步骤:
S1:取一SOI晶片,所述SOI晶片包括基层31、顶层33和位于基层31与顶层33之间的氧化层32,在顶层33的上表面镀上镜面层21;
S2:将顶层33无悬臂梁22的部分从上向下刻蚀到氧化层32处形成上腔体,并将悬臂梁22顶端进行刻蚀形成弹簧形中平行于镜面层21的槽,并使悬臂梁22形成所需厚度;
S3:将基层31从下向上刻蚀到氧化层32处形成下腔体;
S4:将氧化层32刻蚀使上腔体和下腔体联通形成腔体11;
S5:将刻蚀完的SOI晶片封装形成利用多普勒效应的接触式振动光子传感器。
本申请中的芯片加工工艺包括:光刻,刻蚀,离子注入或掺杂,晶圆键合工艺,溅射或淀积工艺。除了特别说明外,均可使用现有的工艺。
以上述依据本申请的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项申请技术思想的范围内,进行多样的变更以及修改。本项申请的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (10)

  1. 一种利用多普勒效应的接触式振动光子传感器,包括外封装层(9),其特征在于,所述外封装层(9)内还包括:
    硅基材料(1),包括侧壁(10)和顶部开口的由侧壁(10)包围形成的腔体(11);
    镜面体(2),设置于腔体(11)内,所述镜面体(2)顶部具有镜面层(21),所述镜面体(2)的侧面通过悬臂梁(22)与所述侧壁(10)连接,所述悬臂梁(22)为弹簧形。
  2. 根据权利要求1所述的利用多普勒效应的接触式振动光子传感器,其特征在于,镜面体(2)为轴对称的、至少具有平行的两边柱形体。
  3. 根据权利要求2所述的用多普勒效应的接触式振动光子传感器,其特征在于,所述镜面体(2)为立方体形时,可以是两条对边通过悬臂梁(22)与侧壁(10)连接,或者四边都通过悬臂梁(22)与侧壁(10)连接。
  4. 根据权利要求2或3所述的用多普勒效应的接触式振动光子传感器,其特征在于,所述悬臂梁(22)具有与镜面层(21)垂直的且开口方向不同的槽,两种槽在镜面层(21)所在平面上的投影错位设置。
  5. 根据权利要求2或3所述的用多普勒效应的接触式振动光子传感器,其特征在于,所述悬臂梁(22)具有与镜面层(21)平行的且开口方向不同的槽,所述悬臂梁(22)与镜面体(2)连接处的中轴线与镜面体(2)的中轴线共线。
  6. 根据权利要求5所述的用多普勒效应的接触式振动光子传感器,其特征在于,所述悬臂梁(22)的厚度在远离所述镜面体(2)的一侧大于靠近镜面体(2)的一侧。
  7. 一种利用多普勒效应的接触式振动光子传感器制备方法,其特征在于,包括以下步骤:
    S1:取一SOI晶片,所述SOI晶片包括基层(31)、顶层(33)和位于基层(31)与顶层(33)之间的氧化层(32),在顶层(33)的上表面镀上镜面层(21);
    S2:将顶层(33)无悬臂梁(22)的部分从上向下刻蚀到氧化层(32)处形成上腔体,并将悬臂梁(22)顶端进行刻蚀形成弹簧形中开口向上的凹槽;
    S3:将基层(31)从下向上刻蚀到氧化层(32)处形成下腔体;
    S4:将氧化层(32)刻蚀使上腔体和下腔体联通形成腔体(11);
    S5:将悬臂梁(22)从下向上进行刻蚀减薄并形成弹簧形中开口向下的凹槽;
    S6:将刻蚀完的SOI晶片封装形成利用多普勒效应的接触式振动光子传感器。
  8. 根据权利要求7所述的利用多普勒效应的接触式振动光子传感器制备方法,其特征在于,S5步骤后,使用底部硅基材料(34)与基层(31)底部进行键合以封闭基层(31)底部的开口。
  9. 根据权利要求8所述的利用多普勒效应的接触式振动光子传感器制备方法,其特征在于,采用BCB胶键合的方式将底部硅基材料(34)与基层(31)底部进行键合。
  10. 一种利用多普勒效应的接触式振动光子传感器制备方法,其特征在于,包括以下步骤:
    S1:取一SOI晶片,所述SOI晶片包括基层(31)、顶层(33)和位于基 层(31)与顶层(33)之间的氧化层(32),在顶层(33)的上表面镀上镜面层(21);
    S2:将顶层(33)无悬臂梁(22)的部分从上向下刻蚀到氧化层(32)处形成上腔体,并将悬臂梁(22)顶端进行刻蚀形成弹簧形中平行于镜面层(21)的槽,并使悬臂梁(22)形成所需厚度;
    S3:将基层(31)从下向上刻蚀到氧化层(32)处形成下腔体;
    S4:将氧化层(32)刻蚀使上腔体和下腔体联通形成腔体(11);
    S5:将刻蚀完的SOI晶片封装形成利用多普勒效应的接触式振动光子传感器。
PCT/CN2022/076865 2021-05-07 2022-02-18 利用多普勒效应的接触式振动光子传感器及其制造方法 WO2022233172A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/030,564 US20230375397A1 (en) 2021-05-07 2022-02-18 Contact-type vibration photon sensor using doppler effect and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110494126.9A CN112903085B (zh) 2021-05-07 2021-05-07 利用多普勒效应的接触式振动光子传感器及其制造方法
CN202110494126.9 2021-05-07

Publications (1)

Publication Number Publication Date
WO2022233172A1 true WO2022233172A1 (zh) 2022-11-10

Family

ID=76108996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076865 WO2022233172A1 (zh) 2021-05-07 2022-02-18 利用多普勒效应的接触式振动光子传感器及其制造方法

Country Status (3)

Country Link
US (1) US20230375397A1 (zh)
CN (1) CN112903085B (zh)
WO (1) WO2022233172A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116249058A (zh) * 2023-01-19 2023-06-09 江苏光微半导体有限公司 量子声纹识别探头、mems声敏结构及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112903085B (zh) * 2021-05-07 2021-07-20 欧梯恩智能科技(苏州)有限公司 利用多普勒效应的接触式振动光子传感器及其制造方法
CN113418595B (zh) * 2021-06-22 2022-03-15 欧梯恩智能科技(苏州)有限公司 一种桥墩碰撞检测方法及系统
CN114236683A (zh) * 2021-12-23 2022-03-25 欧梯恩智能科技(苏州)有限公司 一种自耦合光子加速度传感器芯片及其制造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0972780A (ja) * 1995-09-05 1997-03-18 Suzuki Motor Corp レーザドップラ振動測定装置及び方法
CN101608944A (zh) * 2008-06-19 2009-12-23 上海前所光电科技有限公司 一种光纤振动传感头及其制作方法
JP2012103068A (ja) * 2010-11-09 2012-05-31 Fukuoka Univ Mems測定方法
CN205506859U (zh) * 2016-03-14 2016-08-24 中国海洋大学 一种声学多普勒海流计
CN105953908A (zh) * 2016-06-24 2016-09-21 合肥工业大学 一种基于dvd光学读取头和悬臂结构的低频微纳振动测试仪
CN107490428A (zh) * 2016-06-09 2017-12-19 松下知识产权经营株式会社 振动可视化元件、振动计测系统及振动计测方法
CN108663113A (zh) * 2018-06-22 2018-10-16 西安交通大学 一种光纤悬臂梁振动传感器及其制备方法
CN110220583A (zh) * 2018-03-01 2019-09-10 Imec 非营利协会 散斑减轻方面的改进或与散斑减轻相关的改进
CN112903085A (zh) * 2021-05-07 2021-06-04 欧梯恩智能科技(苏州)有限公司 利用多普勒效应的接触式振动光子传感器及其制造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0972780A (ja) * 1995-09-05 1997-03-18 Suzuki Motor Corp レーザドップラ振動測定装置及び方法
CN101608944A (zh) * 2008-06-19 2009-12-23 上海前所光电科技有限公司 一种光纤振动传感头及其制作方法
JP2012103068A (ja) * 2010-11-09 2012-05-31 Fukuoka Univ Mems測定方法
CN205506859U (zh) * 2016-03-14 2016-08-24 中国海洋大学 一种声学多普勒海流计
CN107490428A (zh) * 2016-06-09 2017-12-19 松下知识产权经营株式会社 振动可视化元件、振动计测系统及振动计测方法
CN105953908A (zh) * 2016-06-24 2016-09-21 合肥工业大学 一种基于dvd光学读取头和悬臂结构的低频微纳振动测试仪
CN110220583A (zh) * 2018-03-01 2019-09-10 Imec 非营利协会 散斑减轻方面的改进或与散斑减轻相关的改进
CN108663113A (zh) * 2018-06-22 2018-10-16 西安交通大学 一种光纤悬臂梁振动传感器及其制备方法
CN112903085A (zh) * 2021-05-07 2021-06-04 欧梯恩智能科技(苏州)有限公司 利用多普勒效应的接触式振动光子传感器及其制造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116249058A (zh) * 2023-01-19 2023-06-09 江苏光微半导体有限公司 量子声纹识别探头、mems声敏结构及其制备方法
CN116249058B (zh) * 2023-01-19 2023-10-27 江苏光微半导体有限公司 量子声纹识别探头、mems声敏结构及其制备方法

Also Published As

Publication number Publication date
US20230375397A1 (en) 2023-11-23
CN112903085A (zh) 2021-06-04
CN112903085B (zh) 2021-07-20

Similar Documents

Publication Publication Date Title
WO2022233172A1 (zh) 利用多普勒效应的接触式振动光子传感器及其制造方法
US6886404B2 (en) Fiber optic accelerometer
CN101960252B (zh) 采用导模谐振的角传感器、系统
JPS63262504A (ja) 集積光学で使用される変位変換器
CN106443065B (zh) 高精度波长形加速度传感器及其制备方法
CN110133321B (zh) 基于相位检测的单片集成光学加速度计
CN110531513B (zh) 一种mems换能结构及其应用
CA2332604A1 (en) An optically addressed sensing system
CN108663113A (zh) 一种光纤悬臂梁振动传感器及其制备方法
CN104502630A (zh) 单芯片双轴水平光纤加速度传感器及其制备方法
CN115876090A (zh) 反射式法布里珀罗光栅干涉位移测量方法及系统
US7630590B2 (en) Optical sensor for measuring thin film disposition in real time
CN113267648A (zh) 基于迈克尔逊干涉的混合集成光学加速度计
US5521884A (en) Vibrating element transducer
CN112097680A (zh) 一种基于多腔fp干涉仪的表面形貌测试装置及测试方法
US11898899B2 (en) Micro-opto-mechanical system sensor, arrangement and manufacturing method
CN109655635A (zh) 基于迈克尔逊干涉仪的微型偏轴光纤迈克尔逊非本征型加速度计
US4717240A (en) Interferometeric beamsplitter
CN114414844B (zh) 法珀光学mems加速度敏感芯片、增敏方法及传感器
CN112945370B (zh) 全固态法布里-珀罗腔内嵌薄膜式的振动传感器及系统
JP3393049B2 (ja) 速度測定装置およびその製造方法
JP2000028316A (ja) 集積型マイクロ変位計
Sawada et al. Integrated micro-laser displacement sensor
CN114034300A (zh) 光学加速度计和惯性导航系统
CN116773851A (zh) 基于储备池腔光增强的腔光力学mems加速度传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22798514

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22798514

Country of ref document: EP

Kind code of ref document: A1