WO2022233049A1 - 控制方法、装置、计算机可读存储介质 - Google Patents

控制方法、装置、计算机可读存储介质 Download PDF

Info

Publication number
WO2022233049A1
WO2022233049A1 PCT/CN2021/092208 CN2021092208W WO2022233049A1 WO 2022233049 A1 WO2022233049 A1 WO 2022233049A1 CN 2021092208 W CN2021092208 W CN 2021092208W WO 2022233049 A1 WO2022233049 A1 WO 2022233049A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection range
condition information
road condition
point cloud
mirror
Prior art date
Application number
PCT/CN2021/092208
Other languages
English (en)
French (fr)
Inventor
龙承辉
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2021/092208 priority Critical patent/WO2022233049A1/zh
Priority to CN202180083960.7A priority patent/CN116601517A/zh
Publication of WO2022233049A1 publication Critical patent/WO2022233049A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Definitions

  • the present application relates to the field of automatic driving, and in particular, to a control method, a device, a computer-readable storage medium, a detection device, a control system, and a movable platform.
  • the vehicle can perceive the current environment through the onboard detection device.
  • the detection device can scan the scene within the detection range by emitting a light pulse sequence, so as to collect the point cloud corresponding to the scene.
  • the relevant information of the scene can be obtained to realize the perception of the environment.
  • embodiments of the present application provide a control method, a device, a computer-readable storage medium, a detection device, a control system, and a movable platform, one of which is to enable the detection range of the detection device to be adaptive to different road conditions and improve driving safety.
  • a first aspect of the embodiments of the present application provides a control method, including:
  • the road is detected by using the detecting device after adjusting the attribute.
  • a second aspect of an embodiment of the present application provides a control device, comprising: a processor and a memory storing a computer program, where the processor implements the following steps when executing the computer program:
  • the road is detected by using the detecting device after adjusting the attribute.
  • a third aspect of the embodiments of the present application provides a detection device, including:
  • a light source a first reflector and a second reflector
  • the light source is used to emit a light pulse sequence, and the light beam emitted by the light source can reach different positions in the detection range after being reflected by the first reflecting mirror and the second reflecting mirror, wherein the first reflecting mirror
  • the detection range can be scanned by the light beam in the vertical direction through step-by-step swing, and the detection range can be scanned by the light beam in the horizontal direction by the continuous rotation of the second mirror;
  • a processor and a memory in which a computer program is stored the processor implementing the following steps when executing the computer program:
  • the attributes of the detection range at least include the position of the detection range and/or the distribution of point clouds within the detection range;
  • the road is detected by using the detection range after adjusting the attribute.
  • a fourth aspect of the embodiments of the present application provides a control system, including: a detection device and a processing device;
  • the processing device is configured to control the detection device by using any one of the control methods provided in the embodiments of the present application.
  • a fifth aspect of the embodiments of the present application provides a movable platform, including:
  • a detection device mounted on the vehicle body
  • a processor and a memory storing a computer program the processor implements any one of the control methods provided by the embodiments of the present application when executing the computer program.
  • a sixth aspect of the embodiments of the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, any one of the control methods provided by the embodiments of the present application is implemented.
  • the control method provided by the embodiment of the present application can adjust the position of the detection range and/or the point cloud distribution within the detection range according to the road condition information of the current driving road, so that the attributes of the detection range can be adapted to the current road conditions.
  • the detection device detects the road, which can improve the safety of vehicle driving.
  • FIG. 1 is a flowchart of a control method provided by an embodiment of the present application.
  • 2A-2C are schematic diagrams of position adjustment of a detection range provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a detection device provided by an embodiment of the present application.
  • FIG. 4 is a working schematic diagram of the first reflecting mirror provided by the embodiment of the present application.
  • FIG. 5 is a working schematic diagram of the second reflector provided by the embodiment of the present application.
  • FIG. 6 is a schematic diagram of a frame of point cloud frames provided by an embodiment of the present application.
  • FIG. 7A and FIG. 7B are schematic diagrams of the adjustment method of the detection range when facing up and down slopes provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the adjustment of the first reflecting mirror when the position of the detection range provided by the embodiment of the present application is adjusted.
  • FIG. 9 is a scene diagram of a vehicle tilting in the front-rear direction according to an embodiment of the present application.
  • FIG. 10 is a scene diagram of a vehicle tilting in a left-right direction according to an embodiment of the present application.
  • FIG. 11 is a point cloud image obtained by scanning when the vehicle is upturned according to an embodiment of the present application.
  • FIG. 12 is a point cloud image obtained by scanning when the vehicle is tilted left and right according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a detection range of a vehicle in a high-speed motion scene provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of a detection range of a vehicle in a low-speed motion scene provided by an embodiment of the present application.
  • FIG. 15 is a schematic diagram of a distance change at the bottom of a point cloud under different road conditions provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a control device provided by an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of a control system provided by an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of a movable platform provided by an embodiment of the present application.
  • the vehicle can perceive the current environment through the onboard detection device.
  • the detection device can scan the scene within the detection range by emitting a light pulse sequence, so as to collect the point cloud corresponding to the scene.
  • the relevant information of the scene can be obtained to realize the perception of the environment.
  • Vehicles may encounter various road conditions during driving, and different road conditions impose different requirements on the perception of vehicles. If the detection device mounted on the vehicle cannot make corresponding adjustments according to the current road conditions, the vehicle's perception will not be able to meet the requirements of the current road conditions, and the risk of accidents will increase.
  • the embodiment of the present application provides a control method, which can adjust the attributes of the detection range of the detection device according to the road condition information of the currently driving road, so that the detection range of the detection device can adapt to the current road conditions and improve the safety of vehicle driving.
  • control method provided in this embodiment of the present application may be applied to the detection device itself.
  • the detection device may include a processor and a memory.
  • the processor executes the computer program stored in the memory
  • the implementation of the present application may be executed.
  • control method provided in this embodiment of the present application can also be applied to a processing device, and the processing device is another device that can be independent of the detection device, can be connected to the detection device, and can be provided by executing the embodiment of the present application.
  • the control method controls the detection device.
  • the processing device may be a central control system of the vehicle body, that is, the central control system of the vehicle body may control the detection device mounted on the vehicle body by executing the control method provided by the embodiment of the present application.
  • FIG. 1 is a flowchart of a control method provided by an embodiment of the present application, and the control method may include the following steps:
  • a detection device may be mounted on the vehicle body, and a plurality of detection devices may be mounted in a plurality of different positions.
  • the detection device may be used to obtain relevant information of the scene within the detection range, and the relevant information of the scene may include, for example, the position of the object in the scene, the type of the object in the scene, the reflectivity of the object in the scene, and the like.
  • the detection device may be a lidar or a laser ranging device.
  • the detection range of the detection device may include various attributes, wherein the adjustable attributes include at least the position of the detection range and/or the point cloud distribution within the detection range.
  • the position of the detection range may be the position of the detection range relative to the detection device or the vehicle body. 2A to 2C, the detection range in FIG. 2A is located directly in front of the vehicle body, the position of the detection range in FIG. 2B is moved up, and the position of the detection range in FIG. 2C is moved down.
  • the distribution of point clouds within the detection range may include the density of point clouds in different areas within the detection range.
  • the detection range may include multiple areas. In the point cloud frame obtained by scanning (ie, a frame of point cloud), the point clouds of different areas are The densities can be the same or different. Adjusting the point cloud distribution of the detection range may include adjusting the point cloud density of different regions within the detection range.
  • the control method provided by the embodiment of the present application can adjust the position of the detection range and/or the point cloud distribution within the detection range according to the road condition information of the current driving road, so that the attributes of the detection range can be adapted to the current road conditions.
  • the detection device detects the road, which can improve the safety of vehicle driving.
  • the detection device can adjust the attributes of its detection range.
  • the detection device may include a light source, a first mirror and a second mirror.
  • the light source can emit a sequence of light pulses, that is, the light source can emit light beams one after another, and the first reflecting mirror and the second reflecting mirror can be arranged on the optical path, so that the light beam emitted by the light source can pass through the first reflecting mirror and the second reflecting mirror. The reflection of the mirror reaches a certain position in the detection range.
  • FIG. 3 is a schematic structural diagram of a detection apparatus provided by an embodiment of the present application.
  • the first reflecting mirror may be a galvanometer mirror, which may be connected with a stepping motor, and can realize step-by-step oscillation under the driving of the stepping motor.
  • the so-called step-by-step swing means that the first mirror will maintain the current posture for a period of time after swinging for one step (ie, remain stationary for a period of time), and then swing for the next step after this period.
  • the first reflecting mirror can be connected to a rotating motor, and the rotating motor can be driven to rotate at a continuously variable speed.
  • the first mirror can also be rotated at a constant speed under the driving of the rotating motor.
  • the second reflecting mirror may include at least two reflecting surfaces, and the second reflecting mirror may be connected to a rotating motor to realize continuous rotation under the driving of the rotating motor.
  • the so-called continuous rotation means that the rotation of the second mirror is continuous.
  • the continuous rotation may be a constant speed rotation or a variable speed rotation.
  • each reflecting surface of the second reflecting mirror can be rotated to the optical path in turn to reflect the light beam on the optical path.
  • the second reflecting mirror may include three reflecting surfaces that are connected end to end. When the second reflecting mirror is rotated, the three reflecting surfaces of the second reflecting mirror can be rotated to the optical path in sequence.
  • the first reflecting mirror When scanning the detection range, the first reflecting mirror can swing in a stepwise manner. Through the step-by-step swing, the first reflector can change its own posture, and different light beams can be emitted at different angles in the vertical direction after being reflected by the first reflector in different attitudes, thereby forming a detection range in Scan in vertical direction.
  • the angle in the vertical direction may be the angle between the exit direction of the light beam and the horizontal plane.
  • the first reflecting mirror swings to different postures, the light beam can exit at different angles in the vertical direction after passing through the first reflecting mirror.
  • the second mirror When scanning the detection range, the second mirror can be continuously rotated. Since the second reflector is continuously rotating, different light beams can enter the second reflector at different angles, and exit at different angles in the horizontal direction after being reflected by the second reflector, so that the detection range can be detected in the horizontal direction. scan.
  • the angle in the horizontal direction may be the angle between the outgoing direction of the light beam and the vertical plane serving as the reference.
  • different light beams in FIG. 5 may exit at different angles in the horizontal direction after passing through the second mirror, so as to realize the scanning of the horizontal FOV (field of view).
  • the light pulse sequence emitted by the light source can cover the entire detection range, so that the point cloud corresponding to the scene in the detection range can be collected.
  • the position of the first reflector in the optical path may precede the second reflector, that is, the light beam may first enter the first reflector, exit from the first reflector, and then enter the second reflector.
  • Such an arrangement sequence is beneficial to realize the miniaturization of the first reflecting mirror, thereby realizing the miniaturization of the detection device, especially for the detection device whose scanning angle in the horizontal direction is larger than that in the vertical direction.
  • the first reflector when the first reflector performs step-wise swing, the first reflector can swing from the first attitude to the second attitude through multiple steps, and then swing from the second attitude to the second attitude through one step.
  • first gesture when the first reflecting mirror swings back from the second posture to the first posture, it may swing in a clockwise direction or in a counterclockwise direction.
  • the timing of the light source emitting the sequence of light pulses may be coordinated with the first mirror.
  • the light source may emit the light pulse sequence during the swing of the first mirror from the first attitude to the second attitude, and not emit the light pulse sequence during the swing of the first mirror from the second attitude to the first attitude.
  • the first mirror swings from the first posture to the second posture through a plurality of steps, and the first mirror will remain stationary for a period of time every time the first mirror swings by one step.
  • the light source may emit the light pulse sequence during the period in which the first mirror remains stationary during the swing of the first mirror from the first posture to the second posture, and during the swing of the first mirror The optical pulse sequence may not be emitted during the period.
  • the first mirror may be oscillated during the black-vision period.
  • the so-called black-view period refers to the period during which the light beam cannot be emitted from the detection device when the second mirror rotates to a specific angle interval.
  • the second reflector includes a plurality of reflecting surfaces that are connected end to end, and there is an interface area between the reflecting surface and the reflecting surface. In one case, when the interface area is rotated to the optical path, the beam It will not be able to shoot normally, and a black vision period will appear at this time.
  • the edge area of the reflective surface when the edge area of the reflective surface is rotated to the optical path, the light beam also cannot exit normally because the reflection angle of the edge area is too large, and a black vision period also occurs at this time. In one case, a blacksight period also occurs when the reflective surface closest to the optical path is approximately parallel to the optical path.
  • the detection device may scan the detection range by means of line-by-line scanning, and the point cloud frame obtained by scanning within one frame duration may include multiple point cloud lines.
  • FIG. 6 is a schematic diagram of one frame of point cloud frame.
  • the first mirror when the detection range is scanned by line-by-line scanning, the first mirror can continuously swing from the first posture to the second posture through multiple steps, and then from the second posture through a The step swings to the first posture, and the second mirror can rotate continuously.
  • the first mirror may enter a stationary period after swinging for one step, and the light source may be emitted during the stationary period of the first mirror
  • the second mirror since the second mirror is still rotating during the stationary period of the first mirror, different light beams can exit at different angles in the horizontal direction after being reflected by the second mirror.
  • the current height can be scanned to get a line of point cloud lines.
  • the first reflecting mirror can swing by the next step to change the exit angle of the light beam in the vertical direction, so that the next line of point clouds can be scanned in the stationary period.
  • the first mirror swings to the second posture and passes the static period, the last line of the currently scanned point cloud frame is scanned, and the first mirror can swing back to the first posture by one step, and start the next step.
  • a progressive scan of the frame point cloud is
  • the method provided by the embodiment of the present application can adjust the attribute of the detection range of the detection device.
  • the properties of the detection range can be adjusted by adjusting at least one of the following parameters of the detection device: the step size and/or the swing frequency of the stepping motor; the rotational speed of the rotating motor; the emission frequency of the light source.
  • adjusting different parameters of the detection device can realize different adjustments to the properties of the detection range. For example, reducing the step size of the stepping motor can increase the point cloud density of the detection range in the vertical direction, and reduce the rotation speed of the rotating motor. The rotation speed can increase the point cloud density in the horizontal direction of the detection range.
  • adjusting a certain parameter of the detection device can change the properties of one or more aspects of the detection range at the same time. For example, when the step size of the stepper motor is reduced, although the distance between the point cloud rows in the scanned point cloud frame becomes smaller, the point cloud density in the vertical direction of the detection range increases, but if the step size is not increased at the same time
  • the swing frequency of the motor means that the cumulative swing angle of the first mirror in one frame becomes smaller, and the scanning angle of the detection device in the vertical direction is smaller, that is, the vertical FOV (field of view) of the detection device is smaller.
  • adjusting the step size of the stepping motor simultaneously changes the size of the detection range and the distribution of point clouds within the detection range.
  • the vehicle There may be various road conditions on the road the vehicle is currently driving on.
  • the detection device still maintains the original detection range (that is, the position of the detection range remains directly in front of the vehicle)
  • the road conditions on the slope will not be detected, and the vehicle will not be able to perceive To obstacles, pedestrians or vehicles on the slope, the probability of an accident will be greatly increased. Therefore, in one embodiment, if the determined road condition information indicates that there is a slope on the road ahead, the position of the detection range may be adjusted in the vertical direction.
  • the position of the detection range can be adjusted upward; if the slope of the road ahead corresponds to a downward slope, the position of the detection range can be adjusted downward, please refer to FIGS. 7A and 7B .
  • Whether the slope is uphill or downhill can be determined according to the calculated slope of the slope. For example, if the calculated slope of the slope is positive and greater than the preset upper limit of the slope, it can be determined that the slope corresponds to the uphill. If the slope of the slope is negative and less than the preset lower limit of the slope, it can be determined that the slope corresponds to the downhill.
  • the slope of the slope can be calculated in various ways, and the specific calculation method will be described later.
  • the detection device corresponding to the first posture can be adjusted by adjusting the posture angles of the first posture and the second posture corresponding to the first reflector.
  • the light exit angle of the second posture corresponds to the light exit angle of the detection device.
  • the attitude angle of the first reflector in the first attitude is A1
  • the attitude angle of the first reflector in the second attitude is B1.
  • the first reflector is in the first attitude, the light beam is reflected by the first reflector. Then, it can be emitted at an angle of a1.
  • the first reflector is in the second posture, the light beam can be emitted at an angle of b1 after being reflected by the first reflector.
  • the attitude angle corresponding to the first attitude can be adjusted to A2, and the attitude angle corresponding to the second attitude can be adjusted to B2.
  • the first reflector When the first reflector is in the first attitude, the beam After being reflected by the first reflector, it can exit at angle a2.
  • the first reflector When the first reflector is in the second attitude, the light beam can exit at angle b2 after being reflected by the first reflector, realizing upward adjustment of the position of the detection range.
  • the point cloud density of the region of interest within the detection range may be increased. Specifically, if the slope of the road ahead corresponds to an uphill, the region of interest may be located in the upper part of the detection range, that is, the point cloud density in the upper area of the detection range may be increased. If the slope of the road ahead corresponds to a downslope, the region of interest can be located in the lower part of the detection range, that is, the density of the point cloud in the lower part of the detection range can be increased. By increasing the point cloud density of the region of interest, the vehicle's perception accuracy of objects on the slope can be improved, thereby improving the driving safety of the vehicle when facing the slope.
  • the position of the detection range can also be adjusted in the vertical direction and the point cloud density of the region of interest within the detection range can be increased at the same time.
  • the road on which the vehicle is currently driving may be bumpy.
  • the vehicle body will not be able to remain level, and the front and rear directions and/or the left and right directions will tilt.
  • the detection device mounted on the vehicle body will also occur.
  • the inclination of the up-down direction and/or the left-right direction causes the detection range of the detection device to be unable to be kept directly in front of the driving direction, and the driving safety of the vehicle is reduced.
  • FIG. 9 when the vehicle drives over the speed bump, the vehicle will tilt in the front-rear direction, causing the detection range of the detection device to shift up and down, and it cannot be kept in front of the vehicle's driving direction.
  • the vehicle will tilt in the left and right directions when driving through the road pit, causing the detection range of the detection device to be tilted left and right, and the scanned point cloud row cannot be kept horizontal.
  • the position of the detection range may be stabilized and adjusted.
  • the position of the detection range can be stabilized and adjusted, so that the position of the detection range can be kept roughly unchanged and maintained directly in front of the driving direction.
  • the first mirror can be controlled to swing to a specific attitude, so as to correct the currently scanned point cloud row to the position before the deviation.
  • a specific attitude can be calculated according to the inclination angle of the vehicle to control the first reflection. The mirror rapidly swings to the specific attitude in one or several steps, so that the currently scanned point cloud row is corrected back to the original height, so as to stabilize the position of the detection range in the vertical direction.
  • the currently scanned point cloud row will not be able to remain horizontal, and it will extend in a non-horizontal direction.
  • the first mirror is controlled to swing continuously, and the scanning direction of the point cloud row is corrected to be horizontal and straight. It can be understood that when the vehicle is driving on a flat road, the light source can only emit the light pulse sequence during the stationary period of the first reflector, and the light pulse sequence can maintain the exit angle in the vertical direction, while the second reflector continuously rotates.
  • the first mirror can be controlled to continue to swing during the original static period, so that each beam of light is in the vertical direction.
  • the exit angle in the straight direction can be corrected to correct the slanted point cloud row back to straight.
  • the attribute of the detection range may also include a range corresponding to the detection range. After determining the road condition information of the road currently driving, the point cloud within the detection range may be analyzed according to the current scene indicated by the road condition information. The range corresponding to the distribution and/or detection range is adjusted.
  • the point cloud density of the middle area within the detection range may be increased and/or the range corresponding to the middle area within the detection range may be increased.
  • the high-speed motion scene may be a scene where the allowable driving speed of the vehicle is higher than a preset threshold, for example, the preset threshold may be 60km/h, and the scene where the speed limit is higher than 60km/h may be a high-speed motion scene, such as a highway , expressways, roads on viaducts, etc.
  • the middle area may be an area located in the middle of the detection range. In one example, the middle area may be an area where the center point coincides with the center point of the detection range.
  • the point cloud distribution and range of the detection range can be adjusted as shown in FIG. 13 .
  • the detection range may include a middle area 1, an edge area 2 and an edge area 3 located on both sides of the middle area 1, wherein, the middle area 1 can correspond to the highest point cloud density and the maximum range (200m), and the edge area 2 corresponds to The point cloud density is next, the range is next (100m), and the point cloud corresponding to edge area 3 has the lowest density and the smallest range (30m).
  • the range corresponding to the detection range there are many ways to adjust the range corresponding to the detection range.
  • it can be realized by adjusting the luminous power of the light source, and in another embodiment, it can be realized by adjusting the magnification of the receiving circuit of the detection device.
  • the luminous power of the light source in order to increase the range of the middle area within the detection range, in one example, when scanning the middle area, the luminous power of the light source can be increased, and in one example, when scanning the middle area, the detection device can be increased The amplification factor of the receiving circuit.
  • the size of the detection range may also be adjusted according to the road condition information of the currently traveling road.
  • the detection range can be reduced, that is, the horizontal FOV and vertical FOV of the detection device can be reduced, and the detection range can be narrowed down to the limited front of the vehicle.
  • the power consumption of the detection device can be reduced and the life of the detection device can be prolonged.
  • the point cloud distribution within the detection range may be adjusted to be uniformly distributed and/or the range corresponding to the detection range may be reduced.
  • the low-speed motion scene may include a scene where the vehicle speed is lower than a preset threshold, such as urban areas, villages, and parks.
  • a preset threshold such as urban areas, villages, and parks.
  • FIG. 14 shows a schematic diagram of the detection range of the detection device in a low-speed motion scene.
  • the road condition information may include obstacle information in the scene. If the road condition information indicates that there is an obstacle on the road ahead, the point cloud density of the area where the obstacle is located within the detection range may be increased.
  • the first reflector can pass a plurality of steps from the first attitude After the long swing to the second attitude, the first mirror is controlled to swing from the second attitude to the first attitude along the original path in multiple steps, so that the area where the obstacle is located can be scanned twice, and the area where the obstacle is located can be increased.
  • Point cloud density considering that the obstacle is usually located in the lower area of the detection range, in order to enhance the scanning of the obstacle, when it is determined that there is an obstacle on the road ahead, the first reflector can pass a plurality of steps from the first attitude After the long swing to the second attitude, the first mirror is controlled to swing from the second attitude to the first attitude along the original path in multiple steps, so that the area where the obstacle is located can be scanned twice, and the area where the obstacle is located can be increased. Point cloud density.
  • the swing step size of the first mirror can be reduced, so that the distance between the point cloud rows can be shortened, and the points in the vertical direction of the detection range can be provided. Cloud density.
  • the swing frequency of the first reflector can be increased, then within a fixed frame duration, the first reflector can swing from the first posture to the second posture for multiple steps, thereby increasing the The point cloud density of the detection range.
  • the rotation speed of the second mirror when scanning a specific area of the detection range, can be reduced, that is, the rotation motor for driving the second mirror can be controlled to rotate at a lower speed, so that the specific area of the detection range can be shortened.
  • the horizontal spacing between the points in the area increases the density of the point cloud in the horizontal direction in a specific area.
  • the light-emitting frequency of the light source when scanning a specific area of the detection range, may be increased, thereby increasing the point cloud density of the specific area in the horizontal direction.
  • the above-mentioned specific area may be any one of the area of interest, the intermediate area, and the area where the obstacle is located in the foregoing.
  • the road condition information can be used to indicate whether there is a slope on the road ahead, whether there is a bump on the road currently driving, and can also be used to indicate the scene where the vehicle is currently located.
  • the road condition information can be obtained by analyzing the point cloud frames scanned by the detection device. Specifically, the point cloud frame scanned by the detection device can be used to fit the road ahead, so that whether there is a slope ahead can be determined according to the road surface obtained by fitting.
  • whether there is a slope on the road ahead can also be determined according to the distance corresponding to the point cloud point at the bottom of the point cloud frame scanned by the detection device. Specifically, when the road ahead is flat and has no slopes, in the point cloud frame obtained by scanning, the distance corresponding to the point cloud point or point cloud row at the bottom of the detection range (D in Figure 15) is relatively unchanged. When there is a slope, the distance corresponding to the point cloud at the bottom of the detection range will change. For example, if there is an uphill on the road ahead, the distance corresponding to the point cloud at the bottom of the detection range will decrease. The distance corresponding to the point cloud at the bottom of the detection range will increase, please refer to Figure 15. Therefore, according to the distance corresponding to the point cloud at the bottom of the scanned point cloud frame, it can be determined whether there is a slope on the road ahead.
  • whether there is a slope on the road ahead may be determined according to the calibrated position and attitude of the detection device and at least one frame of point cloud frames scanned by the detection device.
  • the position of the detection device may be the installation position of the detection device relative to the vehicle—three-dimensional coordinate information (x, y, z)
  • the posture of the detection device may be the installation posture of the detection device relative to the vehicle—three-dimensional rotation information (row , pitch, yaw).
  • the calibrated position and attitude of the detection device can accurately reflect the installation position and installation attitude of the detection device relative to the vehicle, thereby ensuring that the point cloud information obtained by scanning is true and accurate.
  • the current scene can be identified by scanning the point cloud frame obtained by the detection device. Specifically, at least one point cloud frame scanned by the detection device can be obtained, and the point cloud frame can be identified by an identification algorithm to identify the scene in which the vehicle is currently located, such as the high-speed motion scene or the low-speed motion scene described above. In one embodiment, the current scene can also be determined by querying a map according to the current position information of the vehicle.
  • the detection device may be equipped with an attitude sensor, so that it can be determined whether there is a bump on the road currently driving according to the change of the attitude information measured by the attitude sensor.
  • the detection device may be connected to the processing device, which in one example may be a central control system of the vehicle body.
  • the processing device which in one example may be a central control system of the vehicle body.
  • the control method provided by the embodiment of the present application can adjust the position of the detection range and/or the point cloud distribution within the detection range according to the road condition information of the current driving road, so that the attributes of the detection range can be adapted to the current road conditions.
  • the detection device detects the road, which can improve the safety of vehicle driving.
  • FIG. 16 is a schematic structural diagram of a control apparatus provided by an embodiment of the present application.
  • the apparatus includes: a processor 1610 and a memory 1620 storing a computer program.
  • the processor implements the following when executing the computer program. step:
  • the road is detected by using the detecting device after adjusting the attribute.
  • the detection device includes: a light source, a first reflection mirror and a second reflection mirror;
  • the light source is used for emitting a sequence of light pulses, and the light beam emitted by the light source can reach different positions in the detection range after being reflected by the first reflecting mirror and the second reflecting mirror, wherein the first The reflecting mirror can make the light beam scan the detection range in the vertical direction by stepping and swing, and the second reflecting mirror can make the light beam scan the detection range in the horizontal direction by continuously rotating.
  • the first reflection mirror is driven by a stepper motor to realize stepwise swing.
  • the adjustment of the attribute of the detection range is realized by adjusting at least one of the following parameters of the detection device:
  • step size and/or the oscillation frequency of the stepper motor are the step size and/or the oscillation frequency of the stepper motor
  • the emission frequency of the light source is the emission frequency of the light source.
  • the first mirror swings from the first posture to the second posture through multiple steps, and then swings from the second posture to the first posture through one step.
  • the light source emits a light pulse sequence during the process of swinging the first mirror from the first posture to the second posture, and when the first mirror swings from the second posture to the second posture. No light pulse sequence is emitted during the first attitude.
  • the light source emits a light pulse sequence during a period when the first mirror is stationary during the process of swinging the first mirror from the first posture to the second posture.
  • the processor when adjusting the attribute of the detection range of the detection device mounted on the vehicle body according to the road condition information, the processor is configured to:
  • the position of the detection range is adjusted upward, or if the slope corresponds to a downward slope, the position of the detection range is adjusted downward.
  • the first mirror swings from the first posture to the second posture by a plurality of steps, and then swings from the second posture to the first posture by one step, and the
  • the processor adjusts the position of the detection range in the vertical direction, it is used for:
  • the attitude angles of the first attitude and the second attitude are adjusted to adjust the light exit angle of the detection device corresponding to the first attitude and the light exit angle of the detection device corresponding to the second attitude.
  • the processor adjusts the attribute of the detection range of the detection device mounted on the vehicle body according to the road condition information:
  • the road condition information indicates that there is a slope on the road ahead, increase the point cloud density of the region of interest within the detection range.
  • the region of interest is located in the upper part of the detection range.
  • the region of interest is located in the lower part of the detection range.
  • the detection device scans the detection range by means of line-by-line scanning, and the point cloud frame obtained by scanning within one frame duration includes a plurality of point cloud lines.
  • the second mirror In the process of swinging the first mirror from the first posture to the second posture by a plurality of steps, after the first mirror swings for one step, the second mirror The mirror continuously rotates to scan the light beam in the horizontal direction at the current height, and after the scanning of the current point cloud row is completed, the first mirror swings for the next step.
  • the processor adjusts the attribute of the detection range of the detection device mounted on the vehicle body according to the road condition information:
  • the position of the detection range is adjusted for stabilization.
  • the processor when the processor performs stabilization adjustment on the position of the detection range, it is used for:
  • the first mirror is controlled to swing to a specific attitude to correct the currently scanned point cloud row to the position before the deviation.
  • the processor when the processor performs stabilization adjustment on the position of the detection range, it is used for:
  • the first reflecting mirror is controlled to continuously swing during the scanning process of the current point cloud row, so as to correct the currently scanned point cloud row to be straight.
  • the attribute of the detection range further includes: a range corresponding to the detection range.
  • the processor adjusts the attribute of the detection range of the detection device mounted on the vehicle body according to the road condition information:
  • the point cloud distribution within the detection range and/or the range corresponding to the detection range is adjusted.
  • the processor adjusts the point cloud distribution within the detection range and/or the range corresponding to the detection range according to the current scene indicated by the road condition information:
  • the road condition information indicates that the current scene is a high-speed motion scene, increase the point cloud density in the middle area within the detection range and/or increase the range corresponding to the middle area, where the high-speed motion scene includes vehicle speed Scenes above a preset threshold.
  • the processor increases the range corresponding to the intermediate region, it is used for:
  • the luminous power of the light source is increased.
  • the processor is also used for:
  • the detection range is narrowed down to the intermediate region.
  • the processor adjusts the point cloud distribution within the detection range and/or the range corresponding to the detection range according to the current scene indicated by the road condition information:
  • the road condition information indicates that the current scene is a low-speed motion scene, adjust the point cloud distribution within the detection range to be evenly distributed and/or reduce the range corresponding to the detection range, and the low-speed motion scene includes vehicle speed Scenes below a preset threshold.
  • the processor adjusts the attribute of the detection range of the detection device mounted on the vehicle body according to the road condition information:
  • the point cloud density of the area where the obstacle is located within the detection range is increased.
  • the point cloud density of the specific area is increased in at least one of the following ways:
  • the luminous frequency of the light source is increased.
  • the specific area includes the area of interest or the intermediate area or the area where the obstacle is located.
  • the road condition information is used to indicate whether there is a slope on the road ahead, and when the processor determines the road condition information of the currently driving road, it is used to:
  • the road condition information is used to indicate whether there is a slope on the road ahead, and the road condition information is determined according to the distance corresponding to the point cloud point at the bottom of the point cloud frame scanned by the detection device.
  • the road condition information is used to indicate whether there is a slope on the road ahead, and the road condition information is determined according to the calibrated position and attitude of the detection device and at least one frame of point cloud frames scanned by the detection device. .
  • the road condition information is used to indicate the current scene, and the road condition information is determined by using the point cloud frame scanned by the detection device to identify and determine the current scene.
  • the road condition information is used to indicate the current scene, and the road condition information is determined by querying a map according to the current location information.
  • the road condition information is used to indicate whether there is bumps on the road currently driving, and the road condition information is determined according to attitude information measured by an attitude sensor of the detection device.
  • the road condition information is obtained by the detection device from a central control system of the vehicle body.
  • the control device provided by the embodiment of the present application can adjust the position of the detection range and/or the point cloud distribution within the detection range according to the road condition information of the current driving road, so that the attributes of the detection range can be adapted to the current road conditions.
  • the detection device detects the road, which can improve the safety of vehicle driving.
  • the embodiment of the present application also provides a detection device, the structure of which may refer to FIG. 3, including:
  • a light source a first reflector and a second reflector
  • the light source is used to emit a light pulse sequence, and the light beam emitted by the light source can reach different positions in the detection range after being reflected by the first reflecting mirror and the second reflecting mirror, wherein the first reflecting mirror
  • the detection range can be scanned by the light beam in the vertical direction through step-by-step swing, and the detection range can be scanned by the light beam in the horizontal direction by the continuous rotation of the second mirror;
  • a processor and a memory in which a computer program is stored the processor implementing the following steps when executing the computer program:
  • the attributes of the detection range at least include the position of the detection range and/or the distribution of point clouds within the detection range;
  • the road is detected by using the detection range after adjusting the attribute.
  • the first reflection mirror is driven by a stepper motor to realize stepwise swing.
  • the adjustment of the attribute of the detection range is realized by adjusting at least one of the following parameters of the detection device:
  • step size and/or the oscillation frequency of the stepper motor are the step size and/or the oscillation frequency of the stepper motor
  • the emission frequency of the light source is the emission frequency of the light source.
  • the first mirror swings from the first posture to the second posture through multiple steps, and then swings from the second posture to the first posture through one step.
  • the light source emits a light pulse sequence during the process of swinging the first mirror from the first posture to the second posture, and when the first mirror swings from the second posture to the second posture. No light pulse sequence is emitted during the first attitude.
  • the light source emits a light pulse sequence during a period when the first mirror is stationary during the process of swinging the first mirror from the first posture to the second posture.
  • the processor when adjusting the attribute of the detection range according to the road condition information, is configured to:
  • the position of the detection range is adjusted upward, or if the slope corresponds to a downward slope, the position of the detection range is adjusted downward.
  • the first mirror swings from the first posture to the second posture by a plurality of steps, and then swings from the second posture to the first posture by one step, and the
  • the processor adjusts the position of the detection range in the vertical direction, it is used for:
  • the attitude angles of the first attitude and the second attitude are adjusted to adjust the light exit angle of the detection device corresponding to the first attitude and the light exit angle of the detection device corresponding to the second attitude.
  • the road condition information indicates that there is a slope on the road ahead, increase the point cloud density of the region of interest within the detection range.
  • the region of interest is located in the upper part of the detection range.
  • the region of interest is located in the lower part of the detection range.
  • the detection device scans the detection range by means of line-by-line scanning, and the point cloud frame obtained by scanning within one frame duration includes a plurality of point cloud lines.
  • the second mirror In the process of swinging the first mirror from the first posture to the second posture by a plurality of steps, after the first mirror swings for one step, the second mirror The mirror continuously rotates to scan the light beam in the horizontal direction at the current height, and after the scanning of the current point cloud row is completed, the first mirror swings for the next step.
  • the position of the detection range is adjusted for stabilization.
  • the processor when the processor performs stabilization adjustment on the position of the detection range, it is used for:
  • the first mirror is controlled to swing to a specific attitude to correct the currently scanned point cloud row to the position before the deviation.
  • the processor when the processor performs stabilization adjustment on the position of the detection range, it is used for:
  • the first reflecting mirror is controlled to continuously swing during the scanning process of the current point cloud row, so as to correct the currently scanned point cloud row to be straight.
  • the attribute of the detection range further includes: a range corresponding to the detection range.
  • the point cloud distribution within the detection range and/or the range corresponding to the detection range is adjusted.
  • the processor adjusts the point cloud distribution within the detection range and/or the range corresponding to the detection range according to the current scene indicated by the road condition information:
  • the road condition information indicates that the current scene is a high-speed motion scene, increase the point cloud density in the middle area within the detection range and/or increase the range corresponding to the middle area, where the high-speed motion scene includes vehicle speed Scenes above a preset threshold.
  • the processor increases the range corresponding to the intermediate region, it is used for:
  • the luminous power of the light source is increased.
  • the processor is also used for:
  • the detection range is narrowed down to the intermediate region.
  • the processor adjusts the point cloud distribution within the detection range and/or the range corresponding to the detection range according to the current scene indicated by the road condition information:
  • the road condition information indicates that the current scene is a low-speed motion scene, adjust the point cloud distribution within the detection range to be evenly distributed and/or reduce the range corresponding to the detection range, and the low-speed motion scene includes vehicle speed Scenes below a preset threshold.
  • the processor adjusts the attribute of the detection range of the detection device mounted on the vehicle body according to the road condition information:
  • the point cloud density of the area where the obstacle is located within the detection range is increased.
  • the point cloud density of the specific area is increased in at least one of the following ways:
  • the luminous frequency of the light source is increased.
  • the specific area includes the area of interest or the intermediate area or the area where the obstacle is located.
  • the road condition information is used to indicate whether there is a slope on the road ahead, and when the processor determines the road condition information of the currently driving road, it is used to:
  • the road condition information is used to indicate whether there is a slope on the road ahead, and the road condition information is determined according to the distance corresponding to the point cloud point at the bottom of the point cloud frame scanned by the detection device.
  • the road condition information is used to indicate whether there is a slope on the road ahead, and the road condition information is determined according to the calibrated position and attitude of the detection device and at least one frame of point cloud frames scanned by the detection device. .
  • the road condition information is used to indicate the current scene, and the road condition information is determined by using the point cloud frame scanned by the detection device to identify and determine the current scene.
  • the road condition information is used to indicate the current scene, and the road condition information is determined by querying a map according to the current location information.
  • the road condition information is used to indicate whether there is bumps on the road currently driving, and the road condition information is determined according to attitude information measured by an attitude sensor of the detection device.
  • the road condition information is obtained by the detection device from a central control system of the vehicle body.
  • the detection device provided by the embodiment of the present application can adjust the position of the detection range and/or the point cloud distribution within the detection range according to the road condition information of the current driving road, so that the attributes of the detection range can be adapted to the current road conditions.
  • the detection device detects the road, which can improve the safety of vehicle driving.
  • FIG. 17 is a schematic structural diagram of a control system provided by an embodiment of the present application.
  • the control system includes: a detection device 1710 and a processing device 1720;
  • the processing device is used for:
  • the attribute of the detection range at least includes the position of the detection range and/or the point cloud distribution within the detection range;
  • the road is detected by using the detecting device after adjusting the attribute.
  • the processing device includes a central control system of the vehicle body.
  • the processing device may also be used to execute any of the control methods provided by the embodiments of the present application.
  • control methods provided by the embodiments of the present application.
  • the control system provided by the embodiment of the present application can adjust the position of the detection range and/or the point cloud distribution within the detection range according to the road condition information of the current driving road, so that the attributes of the detection range can be adapted to the current road conditions.
  • the detection device detects the road, which can improve the safety of vehicle driving.
  • FIG. 18 is a schematic structural diagram of a movable platform provided by an embodiment of the present application.
  • the movable platform includes:
  • a detection device 1820 mounted on the vehicle body
  • a processor 1830 and a memory 1840 storing a computer program the processor may implement any one of the control methods provided in the embodiments of the present application when the processor executes the computer program.
  • the movable platform provided by the embodiment of the present application can adjust the position of the detection range and/or the point cloud distribution within the detection range according to the road condition information of the current driving road, so that the attributes of the detection range can be adapted to the current road conditions, and the adjusted attributes
  • the rear detection device detects the road, which can improve the safety of vehicle driving.
  • the embodiments of the present application further provide a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, any one of the control methods provided by the embodiments of the present application is implemented.
  • Embodiments of the present application may take the form of a computer program product implemented on one or more storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having program code embodied therein.
  • Computer-usable storage media includes permanent and non-permanent, removable and non-removable media, and storage of information can be accomplished by any method or technology.
  • Information may be computer readable instructions, data structures, modules of programs, or other data.
  • Examples of computer storage media include, but are not limited to, phase-change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory (ROM), Electrically Erasable Programmable Read Only Memory (EEPROM), Flash Memory or other memory technology, Compact Disc Read Only Memory (CD-ROM), Digital Versatile Disc (DVD) or other optical storage, Magnetic tape cartridges, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission medium that can be used to store information that can be accessed by a computing device.
  • PRAM phase-change memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • RAM random access memory
  • ROM read only memory
  • EEPROM Electrically Erasable Programmable Read Only Memory
  • Flash Memory or other memory technology
  • CD-ROM Compact Disc Read Only Memory
  • CD-ROM Compact Disc Read Only Memory
  • DVD Digital Versatile Disc
  • Magnetic tape cartridges magnetic tape magnetic disk storage or other magnetic storage devices or any other non-

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种控制方法,包括:确定当前行驶的道路的路况信息;根据所述路况信息对车体上搭载的探测装置的探测范围的属性进行调整,所述探测范围的属性至少包括探测范围的位置和/或探测范围内的点云分布;利用调整所述属性后的探测装置对所述道路进行探测。该控制方法可以使探测装置的探测范围能够自适应不同的路况,提高车辆驾驶的安全性。

Description

控制方法、装置、计算机可读存储介质 技术领域
本申请涉及自动驾驶领域,尤其涉及一种控制方法、装置、计算机可读存储介质,一种探测装置、控制系统及可移动平台。
背景技术
在自动驾驶应用中,车辆可以通过搭载的探测装置对当前所处的环境进行感知。在利用探测装置对当前所处的环境进行感知时,探测装置可以通过发射光脉冲序列对探测范围内的场景进行扫描,从而可以采集到场景对应的点云。通过对场景对应的点云进行分析,可以获得场景的相关信息,实现对环境的感知。
发明内容
有鉴于此,本申请实施例提供了一种控制方法、装置、计算机可读存储介质,一种探测装置、控制系统及可移动平台,目的之一是使探测装置的探测范围能够自适应不同的路况,提高车辆驾驶的安全性。
本申请实施例第一方面提供一种控制方法,包括:
确定当前行驶的道路的路况信息;
根据所述路况信息对车体上搭载的探测装置的探测范围的属性进行调整,所述探测范围的属性至少包括探测范围的位置和/或探测范围内的点云分布;
利用调整所述属性后的探测装置对所述道路进行探测。
本申请实施例第二方面提供一种控制装置,包括:处理器和存储有计算机程序的存储器,所述处理器在执行所述计算机程序时实现以下步骤:
确定当前行驶的道路的路况信息;
根据所述路况信息对车体上搭载的探测装置的探测范围的属性进行调整,所述探测范围的属性至少包括探测范围的位置和/或探测范围内的点云分布;
利用调整所述属性后的探测装置对所述道路进行探测。
本申请实施例第三方面提供一种探测装置,包括:
光源、第一反射镜和第二反射镜;
所述光源用于发射光脉冲序列,所述光源发射的光束在经过所述第一反射镜和所述第二反射镜的反射后能够到达探测范围的不同位置,其中,所述第一反射镜能够通过步进式摆动使光束在竖直方向上对所述探测范围进行扫描,所述第二反射镜能够通过连续式转动使光束在水平方向上对所述探测范围进行扫描;
处理器和存储有计算机程序的存储器,所述处理器在执行所述计算机程序时实现以下步骤:
确定当前行驶的道路的路况信息;
根据所述路况信息对所述探测范围的属性进行调整,所述探测范围的属性至少包括探测范围的位置和/或探测范围内的点云分布;
利用调整所述属性后的探测范围对所述道路进行探测。
本申请实施例第四方面提供一种控制系统,包括:探测装置和处理装置;
所述处理装置用于通过本申请实施例提供的任一种控制方法对所述探测装置进行控制。
本申请实施例第五方面提供一种可移动平台,包括:
车体;
搭载在所述车体上的探测装置;
处理器和存储有计算机程序的存储器,所述处理器在执行所述计算机程序时实现本申请实施例提供的任一种控制方法。
本申请实施例第六方面提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例提供的任一种控制方法。
本申请实施例提供的控制方法,可以根据当前行驶道路的路况信息对探测范围的位置和/或探测范围内的点云分布进行调整,使探测范围的属性能够适应当前的路况,利用调整属性后的探测装置对道路进行探测,可以提高车辆驾驶的安全性。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附 图获得其他的附图。
图1是本申请实施例提供的控制方法的流程图。
图2A-图2C是本申请实施例提供的探测范围的位置调整示意图。
图3是本申请实施例提供的一种探测装置的结构示意图。
图4是本申请实施例提供的第一反射镜的工作示意图。
图5是本申请实施例提供的第二反射镜的工作示意图。
图6是本申请实施例提供的一帧点云帧的示意图。
图7A和图7B是本申请实施例提供的面对上下坡时探测范围的调整方式示意图。
图8是本申请实施例提供的探测范围位置调整时第一反射镜的调整示意图。
图9是本申请实施例提供的车辆前后方向倾斜的场景图。
图10是本申请实施例提供的车辆左右方向倾斜的场景图。
图11是本申请实施例提供的车辆上翘时扫描得到的点云图。
图12是本申请实施例提供的车辆左右倾斜时扫描得到的点云图。
图13是本申请实施例提供的车辆在高速运动场景中的探测范围的示意图。
图14是本申请实施例提供的车辆在低速运动场景中的探测范围的示意图。
图15是本申请实施例提供的不同的路况时点云底部的距离变化示意图。
图16是本申请实施例提供的控制装置的结构示意图。
图17是本申请实施例提供的控制系统的结构示意图。
图18是本申请实施例提供的可移动平台的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在自动驾驶应用中,车辆可以通过搭载的探测装置对当前所处的环境进行感知。在利用探测装置对当前所处的环境进行感知时,探测装置可以通过发射光脉冲序列对探测范围内的场景进行扫描,从而可以采集到场景对应的点云。通过对场景对应的点云进行分析,可以获得场景的相关信息,实现对环境的感知。
车辆在行驶过程中可能会遇到各种路况,不同的路况对车辆的感知提出了不同的 要求。若车辆搭载的探测装置不能根据当前的路况作出相应的调整,则车辆的感知将无法满足当前路况的要求,发生事故的风险将会增加。
本申请实施例提供了一种控制方法,可以根据当前行驶的道路的路况信息对探测装置的探测范围的属性进行调整,使探测装置的探测范围能够适应当前的路况,提高车辆驾驶的安全性。
在一种实施方式中,本申请实施例提供的控制方法可以应用于探测装置本身,例如探测装置可以包括处理器和存储器,当处理器在执行存储器中存储的计算机程序时,可以执行本申请实施例提供的控制方法。
在一种实施方式中,本申请实施例提供的控制方法也可以应用于处理装置,处理装置是可以独立于探测装置的其它装置,其可以与探测装置连接,并可以通过执行本申请实施例提供的控制方法对探测装置进行控制。在一个例子中,处理装置可以是车体的中控系统,即车体的中控系统可以通过执行本申请实施例提供的控制方法对车体搭载的探测装置进行控制。
可以参考图1,图1是本申请实施例提供的控制方法的流程图,该控制方法可以包括以下步骤:
S102、确定当前行驶的道路的路况信息。
S104、根据所述路况信息对车体上搭载的探测装置的探测范围的属性进行调整。
S106、利用调整所述属性后的探测装置对所述道路进行探测。
车体上可以搭载探测装置,并且可以在多个不同位置搭载多个探测装置。探测装置可以用于获取探测范围内场景的相关信息,场景的相关信息例如可以包括场景中物体的位置、场景中物体的类型、场景中物体的反射率等等。在一个例子中,探测装置可以是激光雷达或者激光测距设备。
探测装置的探测范围可以包括多种属性,其中,可调整的属性至少包括探测范围的位置和/或探测范围内的点云分布。探测范围的位置可以是探测范围相对于探测装置或者车体的位置。为便于理解,可以参考图2A至图2C,图2A中探测范围位于车体的正前方,图2B中探测范围的位置发生了上移,图2C中探测范围的位置发生了下移。探测范围内的点云分布可以包括探测范围内不同区域的点云密度,例如,探测范围可以包括多个区域,在扫描得到的点云帧(即一帧点云)中,不同区域的点云密度可以相同或不同。调整探测范围的点云分布可以包括调整探测范围内不同区域的点云密度。
本申请实施例提供的控制方法,可以根据当前行驶道路的路况信息对探测范围的位置和/或探测范围内的点云分布进行调整,使探测范围的属性能够适应当前的路况, 利用调整属性后的探测装置对道路进行探测,可以提高车辆驾驶的安全性。
本申请实施例提供的探测装置,可以对其探测范围的属性进行调整。在一种实施方式中,探测装置可以包括光源、第一反射镜和第二反射镜。其中,光源可以发射光脉冲序列,即光源可以一束接一束的发射光束,第一反射镜和第二反射镜可以设置在光路上,从而光源发射的光束可以经过第一反射镜和第二反射镜的反射后到达探测范围中的某一位置。
可以参考图3,图3是本申请实施例提供的一种探测装置的结构示意图。
在一种实施方式中,第一反射镜可以是振镜,其可以与步进电机连接,在步进电机的驱动下实现步进式摆动。所谓步进式摆动,即第一反射镜在摆动一个步长后会保持当前姿态一段时间(即保持静止一段时间),在这段时间过后再摆动下一个步长。或者,第一反射镜可以与旋转电机连接,在该旋转电机的驱动下实现连续变速旋转。当然,在一些示例中,第一反射镜也可以在旋转电机的驱动下匀速旋转。
在一种实施方式中,第二反射镜可以包括至少两个反射面,第二反射镜可以与旋转电机连接,在旋转电机的驱动下实现连续式转动。所谓连续式转动,即第二反射镜的转动是连续的。该连续旋转可以是匀速旋转,也可以是变速旋转。当第二反射镜转动时,第二反射镜的各个反射面可以依次转动到光路上,对光路上的光束进行反射。如图3所示,第二反射镜可以包括三个首尾相接的反射面,当第二反射镜转动时,第二反射镜的三个反射面可以依次转动到光路上。
在对探测范围进行扫描时,第一反射镜可以进行步进式的摆动。通过步进式的摆动,第一反射镜可以改变自身的姿态,不同的光束经过不同姿态下的第一反射镜的反射后可以以不同的竖直方向的角度出射,从而可以形成对探测范围在竖直方向上的扫描。这里,竖直方向的角度可以是光束的出射方向与水平面的夹角。可以参考图4,图4中第一反射镜摆动到不同姿态时,光束在经过第一反射镜后可以以不同的竖直方向的角度出射。
在对探测范围进行扫描时,第二反射镜可以进行连续式的转动。由于第二反射镜在持续转动,因此不同的光束可以以不同的角度入射第二反射镜,在经过第二反射镜的反射后以不同的水平方向的角度出射,实现对探测范围在水平方向上的扫描。这里,水平方向的角度可以是光束的出射方向与作为基准的竖直面的夹角。可以参考图5,图5中不同光束在经过第二反射镜后可以以不同的水平方向的角度出射,实现对水平FOV(视场角)的扫描。
通过第一反射镜和第二反射镜的配合,光源发射的光脉冲序列可以覆盖整个探测 范围,从而可以采集到探测范围中场景对应的点云。
在一种实施方式中,第一反射镜在光路中的位置可以先于第二反射镜,即光束可以先入射第一反射镜,从第一反射镜出射后再入射第二反射镜。这样的设置顺序有利于实现第一反射镜的小型化,进而实现探测装置的小型化,尤其对于在水平方向的扫描角度大于在竖直方向的扫描角度的探测装置。
在一种实施方式中,第一反射镜在进行步进式摆动时,第一反射镜可以从第一姿态通过多个步长摆动至第二姿态,再从第二姿态通过一个步长摆动至第一姿态。这里,第一反射镜从第二姿态摆动回第一姿态时,可以沿顺时针方向摆动,也可以沿逆时针方向摆动。
在一种实施方式中,光源发射光脉冲序列的时机可以与第一反射镜配合。例如,光源可以在第一反射镜从第一姿态摆动至第二姿态的过程中发射光脉冲序列,在第一反射镜从第二姿态摆动至第一姿态的过程中不发射光脉冲序列。
如前所述,第一反射镜是通过多个步长从第一姿态摆动至第二姿态的,而第一反射镜每摆动一个步长将保持一段时间的静止。在一种实施方式中,光源可以在第一反射镜从第一姿态摆动至第二姿态的过程中,在第一反射镜保持静止的时段内发射光脉冲序列,而在第一反射镜摆动的时段内可以不发射光脉冲序列。
在一种实施方式中,第一反射镜可以在黑视时段进行摆动。所谓黑视时段,即当第二反射镜转动到特定的角度区间时,光束无法从探测装置出射的时段。由前文记载的内容可知,第二反射镜包括多个首尾相接的反射面,而在反射面和反射面之间存在交界区域,在一种情况中,当交界区域转动到光路上时,光束将无法正常出射,此时出现黑视时段。在一种情况中,当反射面的边缘区域转动到光路上时,由于边缘区域的反射角度过大,光束同样无法正常出射,此时也出现黑视时段。在一种情况中,当与光路最近的反射面与光路大致平行时,也会出现黑视时段。
在一种实施方式中,探测装置可以采用逐行扫描的方式对探测范围进行扫描,则在一帧时长内扫描得到的点云帧可以包括多个点云行。可以参考图6,图6是一帧点云帧的示意图。
在一种实施方式中,在采用逐行扫描的方式对探测范围进行扫描时,第一反射镜可以不断的从第一姿态通过多个步长摆动至第二姿态,再从第二姿态通过一个步长摆动至第一姿态,第二反射镜可以连续不断的转动。在第一反射镜在从第一姿态通过多个步长摆动至第二姿态的过程中,第一反射镜在摆动一个步长后可以进入静止时段,光源可以在第一反射镜的静止时段发射光脉冲序列,由于第二反射镜在第一反射镜的 静止时段内仍然在不停的转动,因此不同的光束在经过第二反射镜的反射后可以以不同的水平方向的角度出射,从而在当前高度可以扫描得到一行点云行。静止时段结束后,第一反射镜可以摆动下一个步长,使光束在竖直方向的出射角度发生变化,从而可以在静止时段对下一行点云行进行扫描。重复该过程,当第一反射镜摆动至第二姿态并经过静止时段后,当前扫描的点云帧的最后一行扫描完成,第一反射镜可以通过一个步长摆动回第一姿态,开始下一帧点云的逐行扫描。
为适应不同的路况,本申请实施例提供的方法可以对探测装置的探测范围的属性进行调整。在一种实施方式中,可以通过调整探测装置的以下至少一项参数实现对探测范围的属性的调整:步进电机的步长和/或摆动频率;旋转电机的转动速度;光源的发射频率。可以理解的,调整探测装置的不同参数可以实现对探测范围的属性的不同调整,比如,减小步进电机的步长可以提高探测范围在竖直方向上的点云密度,减小旋转电机的转动速度可以提高探测范围在水平方向上的点云密度。
需要说明的是,在一些情况中,调整探测装置的某一项参数可以同时改变探测范围一个或多个方面的属性。比如在减小步进电机的步长时,虽然扫描得到的点云帧中点云行之间的间距变小,探测范围在竖直方向的点云密度增大,但若不同时提高步进电机的摆动频率,则在一帧时长内第一反射镜累积摆动的角度也变小,则探测装置在竖直方向的扫描角度变小,即探测装置的竖直FOV(视场角)变小。可见,在该例子中,调整步进电机的步长同时改变了探测范围的大小和探测范围内的点云分布两种属性。
车辆当前行驶的道路可能出现各种路况。在一种情况中,当前方路面出现斜坡时,若探测装置仍然保持原来的探测范围(即探测范围的位置保持在车辆的正前方),则斜坡上的路况将无法被探测到,车辆无法感知到斜坡上的障碍物、行人或者车辆,事故发生的概率将大大提升。因此,在一种实施方式中,若确定的路况信息指示前方路面存在斜坡,可以对探测范围的位置进行竖直方向的调整。具体的,若前方路面的斜坡对应上坡,则可以将探测范围的位置向上调整,若前方路面的斜坡对应下坡,则可以将探测范围的位置向下调整,可以参考图7A和图7B。
对于斜坡属于上坡还是下坡,可以根据计算出的斜坡的坡度确定,例如,若计算出的斜坡坡度为正数且大于预设的坡度上限,则可以确定斜坡对应上坡,若计算出的斜坡坡度为负数且小于预设的坡度下限,则可以确定斜坡对应下坡。斜坡的坡度可以有多种方式计算得到,具体的计算方式在后文进行说明。
在对探测范围的位置进行竖直方向的调整时,在一种实施方式中,可以通过调整 第一反射镜对应的第一姿态和第二姿态的姿态角,以调整第一姿态对应的探测装置的光出射角度和第二姿态对应的探测装置的光出射角度。可以参考图8,第一反射镜处于第一姿态时的姿态角是A1,处于第二姿态时的姿态角是B1,当第一反射镜在第一姿态时,光束经过第一反射镜的反射后可以以a1角度出射,当第一反射镜在第二姿态时,光束经过第一反射镜的反射后可以以b1角度出射。此时,若路况信息指示前方路面存在上坡,则可以调整第一姿态对应的姿态角至A2,调整第二姿态对应的姿态角至B2,则当第一反射镜在第一姿态时,光束经过第一反射镜的反射后可以以a2角度出射,当第一反射镜在第二姿态时,光束经过第一反射镜的反射后可以以b2角度出射,实现了探测范围的位置的向上调整。
当确定的路况信息指示前方路面存在斜坡,在一种实施方式中,可以增大探测范围内的感兴趣区域的点云密度。具体的,若前方路面的斜坡对应上坡,则感兴趣区域可以位于探测范围的上部,即可以增大探测范围上部区域的点云密度。若前方路面的斜坡对应下坡,则感兴趣区域可以位于探测范围的下部,即可以增大探测范围下部区域的点云密度。通过增大感兴趣区域的点云密度,可以提高车辆对斜坡面上的物体的感知精度,从而可以提高车辆在面对斜坡时的驾驶安全性。
在一种实施方式中,若确定的路况信息指示前方路面存在斜坡,也可以同时对探测范围的位置进行竖直方向的调整以及增大探测范围内的感兴趣区域的点云密度。
在一种情况中,车辆当前行驶的路面可能发生颠簸,此时,车体将无法保持水平,出现前后方向和/或左右方向的倾斜,相应的,搭载在车体上的探测装置也会发生上下方向和/或左右方向的倾斜,导致探测装置的探测范围无法保持在行驶方向的正前方,车辆的行驶安全性下降。如图9所示,车辆在驶过减速带时将发生前后方向的倾斜,导致探测装置的探测范围上下偏移,无法保持在车辆行驶方向的正前方。如图10所示,车辆在驶过路面坑位时会发生左右方向的倾斜,导致探测装置的探测范围左右倾斜,扫描的点云行无法保持水平。
在一种实施方式中,若路况信息指示当前行驶的路面存在颠簸,可以对探测范围的位置进行增稳调整。对探测范围的位置进行增稳调整,可以使探测范围的位置大致保持不变,维持在行驶方向的正前方。
在一种实施方式中,若当前扫描的点云行发生竖直方向的偏离,可以控制第一反射镜摆动至特定姿态,以将当前扫面的点云行修正至偏离前的位置。可以参考图11,在扫描点云行的过程中,若车辆由于颠簸发生上翘,则当前扫描的点云行将偏离至上方,此时,可以根据车辆的倾斜角度计算特定姿态,控制第一反射镜以一个或若干个 步长快速摆动至所述特定姿态,使当前扫描的点云行修正回原来的高度,实现在竖直方向上对探测范围的位置进行增稳。
在一种实施方式中,若车辆由于颠簸发生左右倾斜,则当前扫描的点云行将无法保持水平,沿非水平方向延伸,可以参考图12,此时,可以在当前点云行的扫描过程中控制第一反射镜持续摆动,将点云行的扫描方向修正至水平平直。可以理解的,当车辆行驶在平坦的路面时,光源可以仅在第一反射镜的静止时段发射光脉冲序列,光脉冲序列可以保持竖直方向的出射角度,而在第二反射镜的连续转动下以不同的水平方向的角度出射,沿水平方向扫描得到一行点云行,而在车辆发生左右倾斜时,可以控制在第一反射镜在原本静止的时段持续摆动,使每一束光在竖直方向的出射角度可以得到修正,将倾斜的点云行修正回平直。
在一种实施方式中,探测范围的属性还可以包括探测范围对应的量程,在确定当前行驶的道路的路况信息后,可以根据路况信息指示的当前所处的场景,对探测范围内的点云分布和/或探测范围对应的量程进行调整。
在一种实施方式中,若路况信息指示当前所处的场景是高速运动场景,可以增大探测范围内的中间区域的点云密度和/或增大探测范围内的中间区域对应的量程。这里,高速运动场景可以是车辆的允许行驶速度高于预设阈值的场景,比如预设阈值可以是60km/h,则限速高于60km/h的场景均可以是高速运动场景,例如高速公路、快速路、高架桥上的道路等等。由于高速运动场景通常拥有较为简单的路况,比如没有行人或行人较少,没有十字路口或较少十字路口等,因此可以重点关注探测范围内的中间区域,可以增大中间区域的点云密度,以提高中间区域物体的识别精度,也可以增大中间区域的量程,提高中间区域物体的测量精度。中间区域可以是位于探测范围中部的区域,在一个例子中,中间区域可以是中心点与探测范围的中心点重合的区域。
可以参考图13,在一种实施方式中,当路况信息指示当前所处的场景是高速运动场景时,可以将探测范围的点云分布和量程按照图13所示的方式调整。具体的,探测范围可以包括中间区域1,位于中间区域1两侧的边缘区域2和边缘区域3,其中,可以使中间区域1对应点云密度最高、量程最大(200m),边缘区域2对应的点云密度次之、量程次之(100m),边缘区域3对应的点云密度最低、量程最小(30m)。
调整探测范围对应的量程可以有多种实现方式,在一种实施方式中,可以通过调整光源的发光功率实现,在一种实施方式中,可以通过调整探测装置的接收电路的放大倍数实现。例如,为增加探测范围内的中间区域的量程,在一个例子中,可以在对中间区域进行扫描时,提高光源的发光功率,在一个例子中,可以在对中间区域进行 扫描时,提高探测装置的接收电路的放大倍数。
在一种实施方式中,还可以根据当前行驶的道路的路况信息调整探测范围的大小。在一个例子中,当路况信息指示当前所处的场景是高速运动场景时,可以将探测范围进行缩小,即可以缩小探测装置的水平FOV和竖直FOV,将探测范围缩小为车辆正前方有限的中间区域,从而可以降低探测装置的功耗,延长探测装置的寿命。
在一种实施方式中,若路况信息指示当前所处的场景是低速运动场景,可以调整探测范围内的点云分布为均匀分布和/或减小探测范围对应的量程。这里,低速运动场景可以包括车速低于预设阈值的场景,比如城区、乡村、园区等。当车辆行驶在低速运动场景时,由于低速运动场景的路况比较复杂,比如行人较多、车辆间的间距较小等,需要对环境进行更全面的感知,因此,可以增大探测范围在水平和/或竖直方向的扫描角度,即增大探测装置的水平FOV和/或竖直FOV。并且,可以使探测范围内的点云均匀分布,以对场景中的各个区域均给予足够的关注度。此外,考虑到低速运动场景中的物体距离较近,且激光能量需要受到安规的限制,因此,可以减小探测范围对应的量程,即可以以较低的发光功率对探测范围进行扫描。可以参考图14,图14示出低速运动场景下探测装置的探测范围示意图。
在一种实施方式中,路况信息可以包括场景中的障碍物信息,若路况信息指示前方路面存在障碍物,可以增大探测范围内的障碍物所在区域的点云密度。
在一种实施方式中,考虑到障碍物通常位于探测范围的下部区域,为了增强对障碍物的扫描,可以在确定前方路面存在障碍物时,在第一反射镜从第一姿态通过多个步长摆动至第二姿态后,控制第一反射镜从第二姿态沿原路以多个步长摆动回第一姿态,从而可以对障碍物所在的区域进行二次扫描,增加障碍物所在区域的点云密度。
增加探测范围内的特定区域的点云密度可以有多种实施方式。在一种实施方式中,可以在对探测范围的特定区域进行扫描时,减小第一反射镜的摆动步长,从而可以缩短点云行之间的间距,提供探测范围在竖直方向的点云密度。在一种实施方式中,可以提高第一反射镜的摆动频率,则在固定的一帧时长内,第一反射镜可以多次从第一姿态摆动多个步长到第二姿态,从而增加了探测范围的点云密度。在一种实施方式中,可以在对探测范围的特定区域进行扫描时,降低第二反射镜的转速,即控制用于驱动第二反射镜的旋转电机以较低的速度旋转,从而可以缩短特定区域中点与点之间的横向间距,提高特定区域在水平方向上的点云密度。在一种实施方式中,还可以在对探测范围的特定区域进行扫描时,提高光源的发光频率,从而提高特定区域在水平方向上的点云密度。
可以理解的,上述特定区域可以是前文中的感兴趣区域、中间区域、障碍物所在区域中的任一区域。
在前文中已有说明,路况信息可以用于指示前方路面是否存在斜坡,也可以用于指示当前行驶的路面是否存在颠簸,也可以用于指示车辆当前所处的场景。在一种实施方式中,路况信息可以根据探测装置扫描得到的点云帧分析得到。具体的,可以利用探测装置扫描得到的点云帧对前方路面进行拟合,从而可以根据拟合得到的路面确定前方是否存在斜坡。
在一种实施方式中,也可以根据探测装置扫描得到的点云帧底部的点云点对应的距离确定前方路面是否存在斜坡。具体的,在前方路面平坦无斜坡时,扫描得到的点云帧中,探测范围底部的点云点或者点云行对应的距离(图15中的D)是相对不变的,当在前方路面存在斜坡时,探测范围底部的点云对应的距离将会发生变化,比如,若前方路面存在上坡,则探测范围底部的点云对应的距离将会减小,若前方路面存在下坡,则探测范围底部的点云对应的距离将会增大,可以参考图15。因此,根据扫描得到的点云帧底部的点云对应的距离可以确定前方路面是否存在斜坡。
在一种实施方式中,可以根据标定后的探测装置的位置和姿态以及至少一帧探测装置扫描得到的点云帧确定前方路面是否存在斜坡。这里,探测装置的位置可以是探测装置相对于车辆的安装位置——三维坐标信息(x,y,z),探测装置的姿态可以是探测装置相对于车辆的安装姿态——三维旋转信息(row,pitch,yaw)。标定后的探测装置的位置和姿态能够准确反映探测装置相对于车辆的安装位置和安装姿态,从而可以确保扫描得到点云信息真实、准确。
在一种实施方式中,可以利用探测装置扫描得到点云帧识别当前所处的场景。具体的,可以获取探测装置扫描得到的至少一帧点云帧,通过识别算法对点云帧进行识别,可以识别出车辆当前所处的场景,例如前文中的高速运动场景或低速运动场景。在一种实施方式中,当前所处的场景还可以根据车辆当前的位置信息查询地图确定。
在一种实施方式中,探测装置可以搭载有姿态传感器,从而可以根据姿态传感器测量得到的姿态信息的变化,确定当前行驶的路面是否存在颠簸。
如前所述,探测装置可以与处理装置连接,处理装置在一个例子中可以是车体的中控系统。在一种实施方式中,若本申请实施例提供的方法由探测装置执行,则当前行驶的道路的路况信息可以是探测装置从车体的中控系统中获取的。
本申请实施例提供的控制方法,可以根据当前行驶道路的路况信息对探测范围的位置和/或探测范围内的点云分布进行调整,使探测范围的属性能够适应当前的路况, 利用调整属性后的探测装置对道路进行探测,可以提高车辆驾驶的安全性。
下面可以参考图16,图16是本申请实施例提供的控制装置的结构示意图,该装置包括:处理器1610和存储有计算机程序的存储器1620,所述处理器在执行所述计算机程序时实现以下步骤:
确定当前行驶的道路的路况信息;
根据所述路况信息对车体上搭载的探测装置的探测范围的属性进行调整,所述探测范围的属性至少包括探测范围的位置和/或探测范围内的点云分布;
利用调整所述属性后的探测装置对所述道路进行探测。
可选的,所述探测装置包括:光源、第一反射镜和第二反射镜;
所述光源用于发射光脉冲序列,所述光源发射的光束在经过所述第一反射镜和所述第二反射镜的反射后能够到达所述探测范围的不同位置,其中,所述第一反射镜能够通过步进式摆动使光束在竖直方向上对所述探测范围进行扫描,所述第二反射镜能够通过连续式转动使光束在水平方向上对所述探测范围进行扫描。
可选的,所述第一反射镜是在步进电机的驱动下实现步进式摆动的。
可选的,所述探测范围的属性的调整是通过调整所述探测装置的以下至少一项参数实现的:
所述步进电机的步长和/或摆动频率;
旋转电机的转动速度,所述旋转电机是所述第二反射镜的驱动电机;
所述光源的发射频率。
可选的,所述第一反射镜在步进式摆动时从第一姿态通过多个步长摆动至第二姿态,再从所述第二姿态通过一个步长摆动至所述第一姿态。
可选的,所述光源在所述第一反射镜从所述第一姿态摆动至所述第二姿态的过程中发射光脉冲序列,在所述第一反射镜从所述第二姿态摆动至所述第一姿态的过程中不发射光脉冲序列。
可选的,所述光源在所述第一反射镜从所述第一姿态摆动至所述第二姿态的过程中,在所述第一反射镜静止的时段内发射光脉冲序列。
可选的,所述处理器在根据所述路况信息对车体上搭载的探测装置的探测范围的属性进行调整时用于:
若所述路况信息指示前方路面存在斜坡,对所述探测范围的位置进行竖直方向的调整。
可选的,若所述斜坡对应上坡,将所述探测范围的位置向上调整,或者,若所述 斜坡对应下坡,将所述探测范围的位置向下调整。
可选的,所述第一反射镜从所述第一姿态通过多个步长摆动至所述第二姿态,再从所述第二姿态通过一个步长摆动至所述第一姿态,所述处理器对所述探测范围的位置进行竖直方向的调整时用于:
调整所述第一姿态和所述第二姿态的姿态角,以调整所述第一姿态对应的所述探测装置的光出射角度以及所述第二姿态对应的所述探测装置的光出射角度。
可选的,所述处理器根据所述路况信息对车体上搭载的探测装置的探测范围的属性进行调整时用于:
若所述路况信息指示前方路面存在斜坡,增大所述探测范围内的感兴趣区域的点云密度。
可选的,若所述斜坡对应上坡,所述感兴趣区域位于所述探测范围的上部。
可选的,若所述斜坡对应下坡,所述感兴趣区域位于所述探测范围的下部。
可选的,所述探测装置采用逐行扫描的方式对所述探测范围进行扫描,一帧时长内扫描得到的点云帧包括多个点云行。
可选的,在所述第一反射镜从所述第一姿态通过多个步长摆动至所述第二姿态的过程中,所述第一反射镜在摆动一个步长后,所述第二反射镜通过连续转动使光束在当前高度沿水平方向进行扫描,在完成当前点云行的扫描后,所述第一反射镜再摆动下一个步长。
可选的,所述处理器根据所述路况信息对车体上搭载的探测装置的探测范围的属性进行调整时用于:
若所述路况信息指示当前行驶的路面存在颠簸,对所述探测范围的位置进行增稳调整。
可选的,所述处理器对所述探测范围的位置进行增稳调整时用于:
若当前扫描的点云行发生竖直方向上的偏离,控制所述第一反射镜摆动至特定姿态以将当前扫描的点云行修正至偏离前的位置。
可选的,所述处理器对所述探测范围的位置进行增稳调整时用于:
若当前扫描的点云行沿非水平方向延伸,控制所述第一反射镜在当前点云行的扫描过程中持续摆动,以将当前扫描的点云行修正至平直。
可选的,所述探测范围的属性还包括:所述探测范围对应的量程。
可选的,所述处理器根据所述路况信息对车体上搭载的探测装置的探测范围的属性进行调整时用于:
根据所述路况信息指示的当前所处的场景,对所述探测范围内的点云分布和/或所述探测范围对应的量程进行调整。
可选的,所述处理器根据所述路况信息指示的当前所处的场景,对所述探测范围内的点云分布和/或所述探测范围对应的量程进行调整时用于:
若所述路况信息指示当前所处的场景是高速运动场景,增大所述探测范围内的中间区域的点云密度和/或增大所述中间区域对应的量程,所述高速运动场景包括车速高于预设阈值的场景。
可选的,所述处理器增大所述中间区域对应的量程时用于:
在对所述中间区域进行扫描时,提高所述光源的发光功率。
可选的,所述处理器还用于:
将所述探测范围缩小至所述中间区域。
可选的,所述处理器根据所述路况信息指示的当前所处的场景,对所述探测范围内的点云分布和/或所述探测范围对应的量程进行调整时用于:
若所述路况信息指示当前所处的场景是低速运动场景,将所述探测范围内的点云分布调整为均匀分布和/或减小所述探测范围对应的量程,所述低速运动场景包括车速低于预设阈值的场景。
可选的,所述处理器根据所述路况信息对车体上搭载的探测装置的探测范围的属性进行调整时用于:
若所述路况信息指示前方路面存在障碍物,增大所述探测范围内的所述障碍物所在区域的点云密度。
可选的,在对所述探测范围内的特定区域进行扫描时,所述特定区域的点云密度通过以下至少一种方式增大:
减小所述第一反射镜的摆动步长;
提高所述第一反射镜的摆动频率;
降低所述第二反射镜的转速;
提高所述光源的发光频率。
可选的,所述特定区域包括所述感兴趣区域或所述中间区域或所述障碍物所在区域。
可选的,所述路况信息用于指示前方路面是否存在斜坡,所述处理器确定当前行驶的道路的路况信息时用于:
利用所述探测装置扫描得到的点云帧对前方路面进行拟合;
根据拟合结果确定前方路面是否存在斜坡。
可选的,所述路况信息用于指示前方路面是否存在斜坡,所述路况信息是根据所述探测装置扫描得到的点云帧底部的点云点对应的距离确定的。
可选的,所述路况信息用于指示前方路面是否存在斜坡,所述路况信息是根据标定后的所述探测装置的位置和姿态以及至少一帧所述探测装置扫描得到的点云帧确定的。
可选的,所述路况信息用于指示当前所处的场景,所述路况信息是利用所述探测装置扫描得到的点云帧对当前所处的场景进行识别确定的。
可选的,所述路况信息用于指示当前所处的场景,所述路况信息是根据当前的位置信息查询地图确定的。
可选的,所述路况信息用于指示当前行驶的路面是否存在颠簸,所述路况信息是根据所述探测装置的姿态传感器测量得到的姿态信息确定的。
可选的,所述路况信息是所述探测装置从所述车体的中控系统获取的。
以上的控制装置的各种实施方式,其具体实现可以参考前文中的相关说明,在此不再赘述。
本申请实施例提供的控制装置,可以根据当前行驶道路的路况信息对探测范围的位置和/或探测范围内的点云分布进行调整,使探测范围的属性能够适应当前的路况,利用调整属性后的探测装置对道路进行探测,可以提高车辆驾驶的安全性。
本申请实施例还提供了一种探测装置,其结构可以参考图3,包括:
光源、第一反射镜和第二反射镜;
所述光源用于发射光脉冲序列,所述光源发射的光束在经过所述第一反射镜和所述第二反射镜的反射后能够到达探测范围的不同位置,其中,所述第一反射镜能够通过步进式摆动使光束在竖直方向上对所述探测范围进行扫描,所述第二反射镜能够通过连续式转动使光束在水平方向上对所述探测范围进行扫描;
处理器和存储有计算机程序的存储器,所述处理器在执行所述计算机程序时实现以下步骤:
确定当前行驶的道路的路况信息;
根据所述路况信息对所述探测范围的属性进行调整,所述探测范围的属性至少包括探测范围的位置和/或探测范围内的点云分布;
利用调整所述属性后的探测范围对所述道路进行探测。
可选的,所述第一反射镜是在步进电机的驱动下实现步进式摆动的。
可选的,所述探测范围的属性的调整是通过调整所述探测装置的以下至少一项参数实现的:
所述步进电机的步长和/或摆动频率;
旋转电机的转动速度,所述旋转电机是所述第二反射镜的驱动电机;
所述光源的发射频率。
可选的,所述第一反射镜在步进式摆动时从第一姿态通过多个步长摆动至第二姿态,再从所述第二姿态通过一个步长摆动至所述第一姿态。
可选的,所述光源在所述第一反射镜从所述第一姿态摆动至所述第二姿态的过程中发射光脉冲序列,在所述第一反射镜从所述第二姿态摆动至所述第一姿态的过程中不发射光脉冲序列。
可选的,所述光源在所述第一反射镜从所述第一姿态摆动至所述第二姿态的过程中,在所述第一反射镜静止的时段内发射光脉冲序列。
可选的,所述处理器在根据所述路况信息对所述探测范围的属性进行调整时用于:
若所述路况信息指示前方路面存在斜坡,对所述探测范围的位置进行竖直方向的调整。
可选的,若所述斜坡对应上坡,将所述探测范围的位置向上调整,或者,若所述斜坡对应下坡,将所述探测范围的位置向下调整。
可选的,所述第一反射镜从所述第一姿态通过多个步长摆动至所述第二姿态,再从所述第二姿态通过一个步长摆动至所述第一姿态,所述处理器对所述探测范围的位置进行竖直方向的调整时用于:
调整所述第一姿态和所述第二姿态的姿态角,以调整所述第一姿态对应的所述探测装置的光出射角度以及所述第二姿态对应的所述探测装置的光出射角度。
可选的,所述处理器根据所述路况信息对所述探测范围的属性进行调整时用于:
若所述路况信息指示前方路面存在斜坡,增大所述探测范围内的感兴趣区域的点云密度。
可选的,若所述斜坡对应上坡,所述感兴趣区域位于所述探测范围的上部。
可选的,若所述斜坡对应下坡,所述感兴趣区域位于所述探测范围的下部。
可选的,所述探测装置采用逐行扫描的方式对所述探测范围进行扫描,一帧时长内扫描得到的点云帧包括多个点云行。
可选的,在所述第一反射镜从所述第一姿态通过多个步长摆动至所述第二姿态的过程中,所述第一反射镜在摆动一个步长后,所述第二反射镜通过连续转动使光束在 当前高度沿水平方向进行扫描,在完成当前点云行的扫描后,所述第一反射镜再摆动下一个步长。
可选的,所述处理器根据所述路况信息对所述探测范围的属性进行调整时用于:
若所述路况信息指示当前行驶的路面存在颠簸,对所述探测范围的位置进行增稳调整。
可选的,所述处理器对所述探测范围的位置进行增稳调整时用于:
若当前扫描的点云行发生竖直方向上的偏离,控制所述第一反射镜摆动至特定姿态以将当前扫描的点云行修正至偏离前的位置。
可选的,所述处理器对所述探测范围的位置进行增稳调整时用于:
若当前扫描的点云行沿非水平方向延伸,控制所述第一反射镜在当前点云行的扫描过程中持续摆动,以将当前扫描的点云行修正至平直。
可选的,所述探测范围的属性还包括:所述探测范围对应的量程。
可选的,所述处理器根据所述路况信息对所述探测范围的属性进行调整时用于:
根据所述路况信息指示的当前所处的场景,对所述探测范围内的点云分布和/或所述探测范围对应的量程进行调整。
可选的,所述处理器根据所述路况信息指示的当前所处的场景,对所述探测范围内的点云分布和/或所述探测范围对应的量程进行调整时用于:
若所述路况信息指示当前所处的场景是高速运动场景,增大所述探测范围内的中间区域的点云密度和/或增大所述中间区域对应的量程,所述高速运动场景包括车速高于预设阈值的场景。
可选的,所述处理器增大所述中间区域对应的量程时用于:
在对所述中间区域进行扫描时,提高所述光源的发光功率。
可选的,所述处理器还用于:
将所述探测范围缩小至所述中间区域。
可选的,所述处理器根据所述路况信息指示的当前所处的场景,对所述探测范围内的点云分布和/或所述探测范围对应的量程进行调整时用于:
若所述路况信息指示当前所处的场景是低速运动场景,将所述探测范围内的点云分布调整为均匀分布和/或减小所述探测范围对应的量程,所述低速运动场景包括车速低于预设阈值的场景。
可选的,所述处理器根据所述路况信息对车体上搭载的探测装置的探测范围的属性进行调整时用于:
若所述路况信息指示前方路面存在障碍物,增大所述探测范围内的所述障碍物所在区域的点云密度。
可选的,在对所述探测范围内的特定区域进行扫描时,所述特定区域的点云密度通过以下至少一种方式增大:
减小所述第一反射镜的摆动步长;
提高所述第一反射镜的摆动频率;
降低所述第二反射镜的转速;
提高所述光源的发光频率。
可选的,所述特定区域包括所述感兴趣区域或所述中间区域或所述障碍物所在区域。
可选的,所述路况信息用于指示前方路面是否存在斜坡,所述处理器确定当前行驶的道路的路况信息时用于:
利用所述探测装置扫描得到的点云帧对前方路面进行拟合;
根据拟合结果确定前方路面是否存在斜坡。
可选的,所述路况信息用于指示前方路面是否存在斜坡,所述路况信息是根据所述探测装置扫描得到的点云帧底部的点云点对应的距离确定的。
可选的,所述路况信息用于指示前方路面是否存在斜坡,所述路况信息是根据标定后的所述探测装置的位置和姿态以及至少一帧所述探测装置扫描得到的点云帧确定的。
可选的,所述路况信息用于指示当前所处的场景,所述路况信息是利用所述探测装置扫描得到的点云帧对当前所处的场景进行识别确定的。
可选的,所述路况信息用于指示当前所处的场景,所述路况信息是根据当前的位置信息查询地图确定的。
可选的,所述路况信息用于指示当前行驶的路面是否存在颠簸,所述路况信息是根据所述探测装置的姿态传感器测量得到的姿态信息确定的。
可选的,所述路况信息是所述探测装置从所述车体的中控系统获取的。
以上的控制装置的各种实施方式,其具体实现可以参考前文中的相关说明,在此不再赘述。
本申请实施例提供的探测装置,可以根据当前行驶道路的路况信息对探测范围的位置和/或探测范围内的点云分布进行调整,使探测范围的属性能够适应当前的路况,利用调整属性后的探测装置对道路进行探测,可以提高车辆驾驶的安全性。
可以参考图17,图17是本申请实施例提供的控制系统的结构示意图,该控制系统,包括:探测装置1710和处理装置1720;
所述处理装置用于:
确定当前行驶的道路的路况信息;
根据所述路况信息对所述探测装置的探测范围的属性进行调整,所述探测范围的属性至少包括探测范围的位置和/或探测范围内的点云分布;
利用调整所述属性后的所述探测装置对所述道路进行探测。
可选的,所述处理装置包括车体的中控系统。
所述处理装置还可以用于执行本申请实施例提供的任一种控制方法,对于本申请实施例提供的控制方法的各种实施方式,其具体实现可以参考前文中的相关说明,在此不再赘述。
本申请实施例提供的控制系统,可以根据当前行驶道路的路况信息对探测范围的位置和/或探测范围内的点云分布进行调整,使探测范围的属性能够适应当前的路况,利用调整属性后的探测装置对道路进行探测,可以提高车辆驾驶的安全性。
可以参考图18,图18是本申请实施例提供的可移动平台的结构示意图,可移动平台包括:
车体1810;
搭载在所述车体上的探测装置1820;
处理器1830和存储有计算机程序的存储器1840,所述处理器在执行所述计算机程序时可以实现本申请实施例提供的任一种控制方法。
对于本申请实施例提供的控制方法的各种实施方式,其具体实现可以参考前文中的相关说明,在此不再赘述。
本申请实施例提供的可移动平台,可以根据当前行驶道路的路况信息对探测范围的位置和/或探测范围内的点云分布进行调整,使探测范围的属性能够适应当前的路况,利用调整属性后的探测装置对道路进行探测,可以提高车辆驾驶的安全性。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例提供的任一种控制方法。
以上针对每个保护主题均提供了多种实施方式,在不存在冲突或矛盾的基础上,本领域技术人员可以根据实际情况自由对各种实施方式进行组合,由此构成各种不同的技术方案。而本申请文件限于篇幅,未能对所有组合而得的技术方案展开说明,但 可以理解的是,这些未能展开的技术方案也属于本申请实施例公开的范围。
本申请实施例可采用在一个或多个其中包含有程序代码的存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。计算机可用存储介质包括永久性和非永久性、可移动和非可移动媒体,可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括但不限于:相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本申请实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (105)

  1. 一种控制方法,其特征在于,包括:
    确定当前行驶的道路的路况信息;
    根据所述路况信息对车体上搭载的探测装置的探测范围的属性进行调整,所述探测范围的属性至少包括探测范围的位置和/或探测范围内的点云分布;
    利用调整所述属性后的探测装置对所述道路进行探测。
  2. 根据权利要求1所述的方法,其特征在于,所述探测装置包括:光源、第一反射镜和第二反射镜;
    所述光源用于发射光脉冲序列,所述光源发射的光束在经过所述第一反射镜和所述第二反射镜的反射后能够到达所述探测范围的不同位置,其中,所述第一反射镜能够通过步进式摆动使光束在竖直方向上对所述探测范围进行扫描,所述第二反射镜能够通过连续式转动使光束在水平方向上对所述探测范围进行扫描。
  3. 根据权利要求2所述的方法,其特征在于,所述第一反射镜是在步进电机的驱动下实现步进式摆动的。
  4. 根据权利要求3所述的方法,其特征在于,所述探测范围的属性的调整是通过调整所述探测装置的以下至少一项参数实现的:
    所述步进电机的步长和/或摆动频率;
    旋转电机的转动速度,所述旋转电机是所述第二反射镜的驱动电机;
    所述光源的发射频率。
  5. 根据权利要求2所述的方法,其特征在于,所述第一反射镜在步进式摆动时从第一姿态通过多个步长摆动至第二姿态,再从所述第二姿态通过一个步长摆动至所述第一姿态。
  6. 根据权利要求5所述的方法,其特征在于,所述光源在所述第一反射镜从所述第一姿态摆动至所述第二姿态的过程中发射光脉冲序列,在所述第一反射镜从所述第二姿态摆动至所述第一姿态的过程中不发射光脉冲序列。
  7. 根据权利要求6所述的方法,其特征在于,所述光源在所述第一反射镜从所述第一姿态摆动至所述第二姿态的过程中,在所述第一反射镜静止的时段内发射光脉冲序列。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述根据所述路况信息对车体上搭载的探测装置的探测范围的属性进行调整,包括:
    若所述路况信息指示前方路面存在斜坡,对所述探测范围的位置进行竖直方向的 调整。
  9. 根据权利要求8所述的方法,其特征在于,若所述斜坡对应上坡,将所述探测范围的位置向上调整,或者,若所述斜坡对应下坡,将所述探测范围的位置向下调整。
  10. 根据权利要求8所述的方法,其特征在于,所述第一反射镜从所述第一姿态通过多个步长摆动至所述第二姿态,再从所述第二姿态通过一个步长摆动至所述第一姿态,所述对所述探测范围的位置进行竖直方向的调整,包括:
    调整所述第一姿态和所述第二姿态的姿态角,以调整所述第一姿态对应的所述探测装置的光出射角度以及所述第二姿态对应的所述探测装置的光出射角度。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,所述根据所述路况信息对车体上搭载的探测装置的探测范围的属性进行调整,包括:
    若所述路况信息指示前方路面存在斜坡,增大所述探测范围内的感兴趣区域的点云密度。
  12. 根据权利要求11所述的方法,其特征在于,若所述斜坡对应上坡,所述感兴趣区域位于所述探测范围的上部。
  13. 根据权利要求11所述的方法,其特征在于,若所述斜坡对应下坡,所述感兴趣区域位于所述探测范围的下部。
  14. 根据权利要求1-13任一项所述的方法,其特征在于,所述探测装置采用逐行扫描的方式对所述探测范围进行扫描,一帧时长内扫描得到的点云帧包括多个点云行。
  15. 根据权利要求14所述的方法,其特征在于,在所述第一反射镜从所述第一姿态通过多个步长摆动至所述第二姿态的过程中,所述第一反射镜在摆动一个步长后,所述第二反射镜通过连续转动使光束在当前高度沿水平方向进行扫描,在完成当前点云行的扫描后,所述第一反射镜再摆动下一个步长。
  16. 根据权利要求1-15任一项所述的方法,其特征在于,所述根据所述路况信息对车体上搭载的探测装置的探测范围的属性进行调整,包括:
    若所述路况信息指示当前行驶的路面存在颠簸,对所述探测范围的位置进行增稳调整。
  17. 根据权利要求16所述的方法,其特征在于,所述对所述探测范围的位置进行增稳调整包括:
    若当前扫描的点云行发生竖直方向上的偏离,控制所述第一反射镜摆动至特定姿态以将当前扫描的点云行修正至偏离前的位置。
  18. 根据权利要求16所述的方法,其特征在于,所述对所述探测范围的位置进行 增稳调整包括:
    若当前扫描的点云行沿非水平方向延伸,控制所述第一反射镜在当前点云行的扫描过程中持续摆动,以将当前扫描的点云行修正至平直。
  19. 根据权利要求1-18任一项所述的方法,其特征在于,所述探测范围的属性还包括:所述探测范围对应的量程。
  20. 根据权利要求19所述的方法,其特征在于,所述根据所述路况信息对车体上搭载的探测装置的探测范围的属性进行调整,包括:
    根据所述路况信息指示的当前所处的场景,对所述探测范围内的点云分布和/或所述探测范围对应的量程进行调整。
  21. 根据权利要求20所述的方法,其特征在于,所述根据所述路况信息指示的当前所处的场景,对所述探测范围内的点云分布和/或所述探测范围对应的量程进行调整,包括:
    若所述路况信息指示当前所处的场景是高速运动场景,增大所述探测范围内的中间区域的点云密度和/或增大所述中间区域对应的量程,所述高速运动场景包括车速高于预设阈值的场景。
  22. 根据权利要求21所述的方法,其特征在于,所述增大所述中间区域对应的量程,包括:
    在对所述中间区域进行扫描时,提高所述光源的发光功率。
  23. 根据权利要求22所述的方法,其特征在于,所述方法还包括:
    将所述探测范围缩小至所述中间区域。
  24. 根据权利要求20所述的方法,其特征在于,所述根据所述路况信息指示的当前所处的场景,对所述探测范围内的点云分布和/或所述探测范围对应的量程进行调整,包括:
    若所述路况信息指示当前所处的场景是低速运动场景,将所述探测范围内的点云分布调整为均匀分布和/或减小所述探测范围对应的量程,所述低速运动场景包括车速低于预设阈值的场景。
  25. 根据权利要求1-24任一项所述的方法,其特征在于,所述根据所述路况信息对车体上搭载的探测装置的探测范围的属性进行调整,包括:
    若所述路况信息指示前方路面存在障碍物,增大所述探测范围内的所述障碍物所在区域的点云密度。
  26. 根据权利要求1-25任一项所述的方法,其特征在于,在对所述探测范围内的 特定区域进行扫描时,所述特定区域的点云密度通过以下至少一种方式增大:
    减小所述第一反射镜的摆动步长;
    提高所述第一反射镜的摆动频率;
    降低所述第二反射镜的转速;
    提高所述光源的发光频率。
  27. 根据权利要求26所述的方法,其特征在于,所述特定区域包括所述感兴趣区域或所述中间区域或所述障碍物所在区域。
  28. 根据权利要求1-27任一项所述的方法,其特征在于,所述路况信息用于指示前方路面是否存在斜坡,所述确定当前行驶的道路的路况信息包括:
    利用所述探测装置扫描得到的点云帧对前方路面进行拟合;
    根据拟合结果确定前方路面是否存在斜坡。
  29. 根据权利要求1-27任一项所述的方法,其特征在于,所述路况信息用于指示前方路面是否存在斜坡,所述路况信息是根据所述探测装置扫描得到的点云帧底部的点云点对应的距离确定的。
  30. 根据权利要求1-27任一项所述的方法,其特征在于,所述路况信息用于指示前方路面是否存在斜坡,所述路况信息是根据标定后的所述探测装置的位置和姿态以及至少一帧所述探测装置扫描得到的点云帧确定的。
  31. 根据权利要求1-27任一项所述的方法,其特征在于,所述路况信息用于指示当前所处的场景,所述路况信息是利用所述探测装置扫描得到的点云帧对当前所处的场景进行识别确定的。
  32. 根据权利要求1-27任一项所述的方法,其特征在于,所述路况信息用于指示当前所处的场景,所述路况信息是根据当前的位置信息查询地图确定的。
  33. 根据权利要求1-27任一项所述的方法,其特征在于,所述路况信息用于指示当前行驶的路面是否存在颠簸,所述路况信息是根据所述探测装置的姿态传感器测量得到的姿态信息确定的。
  34. 根据权利要求1-33任一项所述的方法,其特征在于,所述路况信息是所述探测装置从所述车体的中控系统获取的。
  35. 一种控制装置,其特征在于,包括:处理器和存储有计算机程序的存储器,所述处理器在执行所述计算机程序时实现以下步骤:
    确定当前行驶的道路的路况信息;
    根据所述路况信息对车体上搭载的探测装置的探测范围的属性进行调整,所述探 测范围的属性至少包括探测范围的位置和/或探测范围内的点云分布;
    利用调整所述属性后的探测装置对所述道路进行探测。
  36. 根据权利要求35所述的装置,其特征在于,所述探测装置包括:光源、第一反射镜和第二反射镜;
    所述光源用于发射光脉冲序列,所述光源发射的光束在经过所述第一反射镜和所述第二反射镜的反射后能够到达所述探测范围的不同位置,其中,所述第一反射镜能够通过步进式摆动使光束在竖直方向上对所述探测范围进行扫描,所述第二反射镜能够通过连续式转动使光束在水平方向上对所述探测范围进行扫描。
  37. 根据权利要求36所述的装置,其特征在于,所述第一反射镜是在步进电机的驱动下实现步进式摆动的。
  38. 根据权利要求37所述的装置,其特征在于,所述探测范围的属性的调整是通过调整所述探测装置的以下至少一项参数实现的:
    所述步进电机的步长和/或摆动频率;
    旋转电机的转动速度,所述旋转电机是所述第二反射镜的驱动电机;
    所述光源的发射频率。
  39. 根据权利要求36所述的装置,其特征在于,所述第一反射镜在步进式摆动时从第一姿态通过多个步长摆动至第二姿态,再从所述第二姿态通过一个步长摆动至所述第一姿态。
  40. 根据权利要求39所述的装置,其特征在于,所述光源在所述第一反射镜从所述第一姿态摆动至所述第二姿态的过程中发射光脉冲序列,在所述第一反射镜从所述第二姿态摆动至所述第一姿态的过程中不发射光脉冲序列。
  41. 根据权利要求40所述的装置,其特征在于,所述光源在所述第一反射镜从所述第一姿态摆动至所述第二姿态的过程中,在所述第一反射镜静止的时段内发射光脉冲序列。
  42. 根据权利要求1-41任一项所述的装置,其特征在于,所述处理器在根据所述路况信息对车体上搭载的探测装置的探测范围的属性进行调整时用于:
    若所述路况信息指示前方路面存在斜坡,对所述探测范围的位置进行竖直方向的调整。
  43. 根据权利要求42所述的装置,其特征在于,若所述斜坡对应上坡,将所述探测范围的位置向上调整,或者,若所述斜坡对应下坡,将所述探测范围的位置向下调整。
  44. 根据权利要求42所述的装置,其特征在于,所述第一反射镜从所述第一姿态通过多个步长摆动至所述第二姿态,再从所述第二姿态通过一个步长摆动至所述第一姿态,所述处理器对所述探测范围的位置进行竖直方向的调整时用于:
    调整所述第一姿态和所述第二姿态的姿态角,以调整所述第一姿态对应的所述探测装置的光出射角度以及所述第二姿态对应的所述探测装置的光出射角度。
  45. 根据权利要求1-44任一项所述的装置,其特征在于,所述处理器根据所述路况信息对车体上搭载的探测装置的探测范围的属性进行调整时用于:
    若所述路况信息指示前方路面存在斜坡,增大所述探测范围内的感兴趣区域的点云密度。
  46. 根据权利要求45所述的装置,其特征在于,若所述斜坡对应上坡,所述感兴趣区域位于所述探测范围的上部。
  47. 根据权利要求45所述的装置,其特征在于,若所述斜坡对应下坡,所述感兴趣区域位于所述探测范围的下部。
  48. 根据权利要求1-47任一项所述的装置,其特征在于,所述探测装置采用逐行扫描的方式对所述探测范围进行扫描,一帧时长内扫描得到的点云帧包括多个点云行。
  49. 根据权利要求48所述的装置,其特征在于,在所述第一反射镜从所述第一姿态通过多个步长摆动至所述第二姿态的过程中,所述第一反射镜在摆动一个步长后,所述第二反射镜通过连续转动使光束在当前高度沿水平方向进行扫描,在完成当前点云行的扫描后,所述第一反射镜再摆动下一个步长。
  50. 根据权利要求1-49任一项所述的装置,其特征在于,所述处理器根据所述路况信息对车体上搭载的探测装置的探测范围的属性进行调整时用于:
    若所述路况信息指示当前行驶的路面存在颠簸,对所述探测范围的位置进行增稳调整。
  51. 根据权利要求50所述的装置,其特征在于,所述处理器对所述探测范围的位置进行增稳调整时用于:
    若当前扫描的点云行发生竖直方向上的偏离,控制所述第一反射镜摆动至特定姿态以将当前扫描的点云行修正至偏离前的位置。
  52. 根据权利要求50所述的装置,其特征在于,所述处理器对所述探测范围的位置进行增稳调整时用于:
    若当前扫描的点云行沿非水平方向延伸,控制所述第一反射镜在当前点云行的扫描过程中持续摆动,以将当前扫描的点云行修正至平直。
  53. 根据权利要求1-52任一项所述的装置,其特征在于,所述探测范围的属性还包括:所述探测范围对应的量程。
  54. 根据权利要求53所述的装置,其特征在于,所述处理器根据所述路况信息对车体上搭载的探测装置的探测范围的属性进行调整时用于:
    根据所述路况信息指示的当前所处的场景,对所述探测范围内的点云分布和/或所述探测范围对应的量程进行调整。
  55. 根据权利要求54所述的装置,其特征在于,所述处理器根据所述路况信息指示的当前所处的场景,对所述探测范围内的点云分布和/或所述探测范围对应的量程进行调整时用于:
    若所述路况信息指示当前所处的场景是高速运动场景,增大所述探测范围内的中间区域的点云密度和/或增大所述中间区域对应的量程,所述高速运动场景包括车速高于预设阈值的场景。
  56. 根据权利要求55所述的装置,其特征在于,所述处理器增大所述中间区域对应的量程时用于:
    在对所述中间区域进行扫描时,提高所述光源的发光功率。
  57. 根据权利要求56所述的装置,其特征在于,所述处理器还用于:
    将所述探测范围缩小至所述中间区域。
  58. 根据权利要求54所述的装置,其特征在于,所述处理器根据所述路况信息指示的当前所处的场景,对所述探测范围内的点云分布和/或所述探测范围对应的量程进行调整时用于:
    若所述路况信息指示当前所处的场景是低速运动场景,将所述探测范围内的点云分布调整为均匀分布和/或减小所述探测范围对应的量程,所述低速运动场景包括车速低于预设阈值的场景。
  59. 根据权利要求1-58任一项所述的装置,其特征在于,所述处理器根据所述路况信息对车体上搭载的探测装置的探测范围的属性进行调整时用于:
    若所述路况信息指示前方路面存在障碍物,增大所述探测范围内的所述障碍物所在区域的点云密度。
  60. 根据权利要求1-59任一项所述的装置,其特征在于,在对所述探测范围内的特定区域进行扫描时,所述特定区域的点云密度通过以下至少一种方式增大:
    减小所述第一反射镜的摆动步长;
    提高所述第一反射镜的摆动频率;
    降低所述第二反射镜的转速;
    提高所述光源的发光频率。
  61. 根据权利要求60所述的装置,其特征在于,所述特定区域包括所述感兴趣区域或所述中间区域或所述障碍物所在区域。
  62. 根据权利要求1-61任一项所述的装置,其特征在于,所述路况信息用于指示前方路面是否存在斜坡,所述处理器确定当前行驶的道路的路况信息时用于:
    利用所述探测装置扫描得到的点云帧对前方路面进行拟合;
    根据拟合结果确定前方路面是否存在斜坡。
  63. 根据权利要求1-61任一项所述的装置,其特征在于,所述路况信息用于指示前方路面是否存在斜坡,所述路况信息是根据所述探测装置扫描得到的点云帧底部的点云点对应的距离确定的。
  64. 根据权利要求1-61任一项所述的装置,其特征在于,所述路况信息用于指示前方路面是否存在斜坡,所述路况信息是根据标定后的所述探测装置的位置和姿态以及至少一帧所述探测装置扫描得到的点云帧确定的。
  65. 根据权利要求1-61任一项所述的装置,其特征在于,所述路况信息用于指示当前所处的场景,所述路况信息是利用所述探测装置扫描得到的点云帧对当前所处的场景进行识别确定的。
  66. 根据权利要求1-61任一项所述的装置,其特征在于,所述路况信息用于指示当前所处的场景,所述路况信息是根据当前的位置信息查询地图确定的。
  67. 根据权利要求1-61任一项所述的装置,其特征在于,所述路况信息用于指示当前行驶的路面是否存在颠簸,所述路况信息是根据所述探测装置的姿态传感器测量得到的姿态信息确定的。
  68. 根据权利要求1-67任一项所述的装置,其特征在于,所述路况信息是所述探测装置从所述车体的中控系统获取的。
  69. 一种探测装置,其特征在于,包括:
    光源、第一反射镜和第二反射镜;
    所述光源用于发射光脉冲序列,所述光源发射的光束在经过所述第一反射镜和所述第二反射镜的反射后能够到达探测范围的不同位置,其中,所述第一反射镜能够通过步进式摆动使光束在竖直方向上对所述探测范围进行扫描,所述第二反射镜能够通过连续式转动使光束在水平方向上对所述探测范围进行扫描;
    处理器和存储有计算机程序的存储器,所述处理器在执行所述计算机程序时实现 以下步骤:
    确定当前行驶的道路的路况信息;
    根据所述路况信息对所述探测范围的属性进行调整,所述探测范围的属性至少包括探测范围的位置和/或探测范围内的点云分布;
    利用调整所述属性后的探测范围对所述道路进行探测。
  70. 根据权利要求69所述的装置,其特征在于,所述第一反射镜是在步进电机的驱动下实现步进式摆动的。
  71. 根据权利要求70所述的装置,其特征在于,所述探测范围的属性的调整是通过调整所述探测装置的以下至少一项参数实现的:
    所述步进电机的步长和/或摆动频率;
    旋转电机的转动速度,所述旋转电机是所述第二反射镜的驱动电机;
    所述光源的发射频率。
  72. 根据权利要求69所述的装置,其特征在于,所述第一反射镜在步进式摆动时从第一姿态通过多个步长摆动至第二姿态,再从所述第二姿态通过一个步长摆动至所述第一姿态。
  73. 根据权利要求72所述的装置,其特征在于,所述光源在所述第一反射镜从所述第一姿态摆动至所述第二姿态的过程中发射光脉冲序列,在所述第一反射镜从所述第二姿态摆动至所述第一姿态的过程中不发射光脉冲序列。
  74. 根据权利要求73所述的装置,其特征在于,所述光源在所述第一反射镜从所述第一姿态摆动至所述第二姿态的过程中,在所述第一反射镜静止的时段内发射光脉冲序列。
  75. 根据权利要求1-74任一项所述的装置,其特征在于,所述处理器在根据所述路况信息对所述探测范围的属性进行调整时用于:
    若所述路况信息指示前方路面存在斜坡,对所述探测范围的位置进行竖直方向的调整。
  76. 根据权利要求75所述的装置,其特征在于,若所述斜坡对应上坡,将所述探测范围的位置向上调整,或者,若所述斜坡对应下坡,将所述探测范围的位置向下调整。
  77. 根据权利要求75所述的装置,其特征在于,所述第一反射镜从所述第一姿态通过多个步长摆动至所述第二姿态,再从所述第二姿态通过一个步长摆动至所述第一姿态,所述处理器对所述探测范围的位置进行竖直方向的调整时用于:
    调整所述第一姿态和所述第二姿态的姿态角,以调整所述第一姿态对应的所述探测装置的光出射角度以及所述第二姿态对应的所述探测装置的光出射角度。
  78. 根据权利要求1-77任一项所述的装置,其特征在于,所述处理器根据所述路况信息对所述探测范围的属性进行调整时用于:
    若所述路况信息指示前方路面存在斜坡,增大所述探测范围内的感兴趣区域的点云密度。
  79. 根据权利要求78所述的装置,其特征在于,若所述斜坡对应上坡,所述感兴趣区域位于所述探测范围的上部。
  80. 根据权利要求78所述的装置,其特征在于,若所述斜坡对应下坡,所述感兴趣区域位于所述探测范围的下部。
  81. 根据权利要求1-80任一项所述的装置,其特征在于,所述探测装置采用逐行扫描的方式对所述探测范围进行扫描,一帧时长内扫描得到的点云帧包括多个点云行。
  82. 根据权利要求81所述的装置,其特征在于,在所述第一反射镜从所述第一姿态通过多个步长摆动至所述第二姿态的过程中,所述第一反射镜在摆动一个步长后,所述第二反射镜通过连续转动使光束在当前高度沿水平方向进行扫描,在完成当前点云行的扫描后,所述第一反射镜再摆动下一个步长。
  83. 根据权利要求1-82任一项所述的装置,其特征在于,所述处理器根据所述路况信息对所述探测范围的属性进行调整时用于:
    若所述路况信息指示当前行驶的路面存在颠簸,对所述探测范围的位置进行增稳调整。
  84. 根据权利要求83所述的装置,其特征在于,所述处理器对所述探测范围的位置进行增稳调整时用于:
    若当前扫描的点云行发生竖直方向上的偏离,控制所述第一反射镜摆动至特定姿态以将当前扫描的点云行修正至偏离前的位置。
  85. 根据权利要求83所述的装置,其特征在于,所述处理器对所述探测范围的位置进行增稳调整时用于:
    若当前扫描的点云行沿非水平方向延伸,控制所述第一反射镜在当前点云行的扫描过程中持续摆动,以将当前扫描的点云行修正至平直。
  86. 根据权利要求1-85任一项所述的装置,其特征在于,所述探测范围的属性还包括:所述探测范围对应的量程。
  87. 根据权利要求86所述的装置,其特征在于,所述处理器根据所述路况信息对 所述探测范围的属性进行调整时用于:
    根据所述路况信息指示的当前所处的场景,对所述探测范围内的点云分布和/或所述探测范围对应的量程进行调整。
  88. 根据权利要求87所述的装置,其特征在于,所述处理器根据所述路况信息指示的当前所处的场景,对所述探测范围内的点云分布和/或所述探测范围对应的量程进行调整时用于:
    若所述路况信息指示当前所处的场景是高速运动场景,增大所述探测范围内的中间区域的点云密度和/或增大所述中间区域对应的量程,所述高速运动场景包括车速高于预设阈值的场景。
  89. 根据权利要求88所述的装置,其特征在于,所述处理器增大所述中间区域对应的量程时用于:
    在对所述中间区域进行扫描时,提高所述光源的发光功率。
  90. 根据权利要求89所述的装置,其特征在于,所述处理器还用于:
    将所述探测范围缩小至所述中间区域。
  91. 根据权利要求87所述的装置,其特征在于,所述处理器根据所述路况信息指示的当前所处的场景,对所述探测范围内的点云分布和/或所述探测范围对应的量程进行调整时用于:
    若所述路况信息指示当前所处的场景是低速运动场景,将所述探测范围内的点云分布调整为均匀分布和/或减小所述探测范围对应的量程,所述低速运动场景包括车速低于预设阈值的场景。
  92. 根据权利要求1-91任一项所述的装置,其特征在于,所述处理器根据所述路况信息对车体上搭载的探测装置的探测范围的属性进行调整时用于:
    若所述路况信息指示前方路面存在障碍物,增大所述探测范围内的所述障碍物所在区域的点云密度。
  93. 根据权利要求1-92任一项所述的装置,其特征在于,在对所述探测范围内的特定区域进行扫描时,所述特定区域的点云密度通过以下至少一种方式增大:
    减小所述第一反射镜的摆动步长;
    提高所述第一反射镜的摆动频率;
    降低所述第二反射镜的转速;
    提高所述光源的发光频率。
  94. 根据权利要求93所述的装置,其特征在于,所述特定区域包括所述感兴趣区 域或所述中间区域或所述障碍物所在区域。
  95. 根据权利要求1-94任一项所述的装置,其特征在于,所述路况信息用于指示前方路面是否存在斜坡,所述处理器确定当前行驶的道路的路况信息时用于:
    利用所述探测装置扫描得到的点云帧对前方路面进行拟合;
    根据拟合结果确定前方路面是否存在斜坡。
  96. 根据权利要求1-94任一项所述的装置,其特征在于,所述路况信息用于指示前方路面是否存在斜坡,所述路况信息是根据所述探测装置扫描得到的点云帧底部的点云点对应的距离确定的。
  97. 根据权利要求1-94任一项所述的装置,其特征在于,所述路况信息用于指示前方路面是否存在斜坡,所述路况信息是根据标定后的所述探测装置的位置和姿态以及至少一帧所述探测装置扫描得到的点云帧确定的。
  98. 根据权利要求1-94任一项所述的装置,其特征在于,所述路况信息用于指示当前所处的场景,所述路况信息是利用所述探测装置扫描得到的点云帧对当前所处的场景进行识别确定的。
  99. 根据权利要求1-94任一项所述的装置,其特征在于,所述路况信息用于指示当前所处的场景,所述路况信息是根据当前的位置信息查询地图确定的。
  100. 根据权利要求1-94任一项所述的装置,其特征在于,所述路况信息用于指示当前行驶的路面是否存在颠簸,所述路况信息是根据所述探测装置的姿态传感器测量得到的姿态信息确定的。
  101. 根据权利要求1-100任一项所述的装置,其特征在于,所述路况信息是所述探测装置从所述车体的中控系统获取的。
  102. 一种控制系统,其特征在于,包括:探测装置和处理装置;
    所述处理装置用于通过如权利要求1-34任一项所述的控制方法对所述探测装置进行控制。
  103. 根据权利要求102所述的系统,其特征在于,所述处理装置包括车体的中控系统。
  104. 一种可移动平台,其特征在于,包括:
    车体;
    搭载在所述车体上的探测装置;
    处理器和存储有计算机程序的存储器,所述处理器在执行所述计算机程序时实现如权利要求1-34任一项所述的控制方法。
  105. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-34任一项所述的控制方法。
PCT/CN2021/092208 2021-05-07 2021-05-07 控制方法、装置、计算机可读存储介质 WO2022233049A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/092208 WO2022233049A1 (zh) 2021-05-07 2021-05-07 控制方法、装置、计算机可读存储介质
CN202180083960.7A CN116601517A (zh) 2021-05-07 2021-05-07 控制方法、装置、计算机可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/092208 WO2022233049A1 (zh) 2021-05-07 2021-05-07 控制方法、装置、计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2022233049A1 true WO2022233049A1 (zh) 2022-11-10

Family

ID=83931955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092208 WO2022233049A1 (zh) 2021-05-07 2021-05-07 控制方法、装置、计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN116601517A (zh)
WO (1) WO2022233049A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107430195A (zh) * 2015-03-25 2017-12-01 伟摩有限责任公司 具有多个光检测和测距装置(lidar)的车辆
CN108072880A (zh) * 2018-01-17 2018-05-25 上海禾赛光电科技有限公司 激光雷达视场中心指向的调整方法、介质、激光雷达系统
CN108375775A (zh) * 2018-01-17 2018-08-07 上海禾赛光电科技有限公司 车载探测设备及其参数的调整方法、介质、探测系统
CN112352168A (zh) * 2017-12-22 2021-02-09 图达通智能爱尔兰有限公司 高密度lidar扫描
WO2021037710A1 (de) * 2019-08-23 2021-03-04 Continental Automotive Gmbh Verfahren und vorrichtung zur echtzeitbestimmung von eigenschaften einer von einem fahrzeug momentan befahrenen fahrbahn
CN112578404A (zh) * 2019-09-27 2021-03-30 北京地平线机器人技术研发有限公司 一种行驶路径的确定方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107430195A (zh) * 2015-03-25 2017-12-01 伟摩有限责任公司 具有多个光检测和测距装置(lidar)的车辆
CN112352168A (zh) * 2017-12-22 2021-02-09 图达通智能爱尔兰有限公司 高密度lidar扫描
CN108072880A (zh) * 2018-01-17 2018-05-25 上海禾赛光电科技有限公司 激光雷达视场中心指向的调整方法、介质、激光雷达系统
CN108375775A (zh) * 2018-01-17 2018-08-07 上海禾赛光电科技有限公司 车载探测设备及其参数的调整方法、介质、探测系统
WO2021037710A1 (de) * 2019-08-23 2021-03-04 Continental Automotive Gmbh Verfahren und vorrichtung zur echtzeitbestimmung von eigenschaften einer von einem fahrzeug momentan befahrenen fahrbahn
CN112578404A (zh) * 2019-09-27 2021-03-30 北京地平线机器人技术研发有限公司 一种行驶路径的确定方法及装置

Also Published As

Publication number Publication date
CN116601517A (zh) 2023-08-15

Similar Documents

Publication Publication Date Title
US10908265B2 (en) Ladar transmitter with feedback control of dynamic scan patterns
US10705190B2 (en) LiDAR device
US10598788B1 (en) Adaptive control of Ladar shot selection using spatial index of prior Ladar return data
JP5604117B2 (ja) 自律型移動体
US20230092544A1 (en) Terrain Adaptive Pulse Power in a Scanning Lidar
JP2003149338A (ja) 物体認識装置及び距離測定装置
CN109597093A (zh) 激光雷达的参数调整方法及装置
CN110109144B (zh) 基于多线激光雷达的路肩检测方法及装置
CN111398934B (zh) 使用多棱镜的lidar 3d设计
WO2022233049A1 (zh) 控制方法、装置、计算机可读存储介质
CN110109146B (zh) 基于多线激光雷达的路面检测方法及装置
WO2020142675A1 (en) System, method, and components providing compressive active range sampling
US20220146639A1 (en) Distance measuring apparatus
JP6825234B2 (ja) 計測装置、計測方法、加工装置、および被加工物の生産方法
US20230066857A1 (en) Dynamic laser emission control in light detection and ranging (lidar) systems
US20230079909A1 (en) Dynamic laser emission control in light detection and ranging (lidar) systems
JP5516043B2 (ja) 走行制御装置
JP2024007743A (ja) 光センシング装置、光センシングシステム及び光センシング方法
CN118037768A (zh) 目标跟踪方法、控制单元及计算机可读存储介质
JPWO2019177088A1 (ja) センサ制御装置
JP2019109705A (ja) データ構造、記録装置及び記録方法並びに記録用プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21939695

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180083960.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21939695

Country of ref document: EP

Kind code of ref document: A1