WO2022231148A1 - Method for manufacturing aluminum alloy for heat exchanger - Google Patents
Method for manufacturing aluminum alloy for heat exchanger Download PDFInfo
- Publication number
- WO2022231148A1 WO2022231148A1 PCT/KR2022/004673 KR2022004673W WO2022231148A1 WO 2022231148 A1 WO2022231148 A1 WO 2022231148A1 KR 2022004673 W KR2022004673 W KR 2022004673W WO 2022231148 A1 WO2022231148 A1 WO 2022231148A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aluminum alloy
- heat treatment
- heat exchanger
- temperature
- manufacturing
- Prior art date
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 78
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 26
- 238000010438 heat treatment Methods 0.000 claims abstract description 91
- 230000007797 corrosion Effects 0.000 claims abstract description 58
- 238000005260 corrosion Methods 0.000 claims abstract description 58
- 238000000137 annealing Methods 0.000 claims abstract description 44
- 230000035515 penetration Effects 0.000 claims description 19
- 229910000765 intermetallic Inorganic materials 0.000 claims description 18
- 239000000463 material Substances 0.000 claims description 18
- 229910052751 metal Inorganic materials 0.000 claims description 16
- 239000002184 metal Substances 0.000 claims description 16
- 229910052782 aluminium Inorganic materials 0.000 claims description 14
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 14
- 238000005097 cold rolling Methods 0.000 claims description 13
- 238000005266 casting Methods 0.000 claims description 12
- 238000001816 cooling Methods 0.000 claims description 12
- 239000000654 additive Substances 0.000 claims description 5
- 239000000956 alloy Substances 0.000 abstract description 25
- 238000000265 homogenisation Methods 0.000 abstract description 17
- 230000008569 process Effects 0.000 abstract description 9
- 230000015572 biosynthetic process Effects 0.000 abstract description 5
- 229910045601 alloy Inorganic materials 0.000 description 22
- 238000012360 testing method Methods 0.000 description 13
- 238000011156 evaluation Methods 0.000 description 9
- 238000009826 distribution Methods 0.000 description 6
- 230000001133 acceleration Effects 0.000 description 5
- 238000003916 acid precipitation Methods 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 230000010287 polarization Effects 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 238000011161 development Methods 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 230000000977 initiatory effect Effects 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- 238000005204 segregation Methods 0.000 description 3
- 238000005482 strain hardening Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000009827 uniform distribution Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000000641 cold extrusion Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical class Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 description 1
- 238000000840 electrochemical analysis Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005421 electrostatic potential Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000008570 general process Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000001226 reprecipitation Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B3/00—Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D21/00—Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D21/00—Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
- B22D21/002—Castings of light metals
- B22D21/007—Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0273—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B3/00—Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
- B21B2003/001—Aluminium or its alloys
Definitions
- the present invention relates to a method of manufacturing an aluminum alloy for a heat exchanger, and the present invention relates to a heat treatment process method for simultaneously satisfying excellent penetration corrosion resistance and mechanical properties, targeting an aluminum alloy material used for a heat exchanger, and more particularly presents homogenization heat treatment conditions divided into two stages, high temperature and low temperature for uniform formation of fine precipitated phases, and annealing heat treatment conditions to obtain excellent tensile strength and elongation.
- the aluminum alloy tube of the existing registered patent KR 10-1465389 maintains the extrusion speed and strength at the A1XXX series level while improving the corrosion propagation form and corrosion resistance. to be.
- the mechanical properties of the above alloy are at the level of the A1XXX series, and there is a possibility of damage due to the stress generated during the heat exchanger manufacturing process. Therefore, in the present invention, in order to improve the mechanical properties while maintaining the penetration resistance of the existing alloy, research on the alloy design and heat treatment process was conducted.
- Homogenization is a process that removes fine segregation of cast billets through precipitation phase decomposition and re-precipitation, and removes residual internal stress to prevent product cracking. It is an essential process to achieve uniform distribution of solute atoms in aluminum alloy. to be.
- the Zr element not only improves the strength by refining the grain size in the Al matrix, but also generates a potential difference inside the material and finely disperses the precipitates that act as the starting point of corrosion, so that the narrow and deep shape is difficult to predict. It has the effect of suppressing the occurrence of pitting corrosion, a form of corrosion, and inducing uniform corrosion.
- Zr is an atom with severe segregation in the Al matrix, and in order to induce a uniform distribution of the solute atoms, heat treatment at a higher temperature (500°C or higher) is required than a general process.
- the tensile strength is lower than that of the A3XXX series aluminum alloy at the level of A1XXX series. Accordingly, there is a risk of deformation, cracking, and destruction due to external forces (fin bonding, bending, internal pressure caused by fluid) applied to the product during the manufacturing process.
- the strength of a material can be increased by the disturbance of dislocation movement due to precipitation phases, impurities, defects, etc. present inside the material.
- the above defects can increase the strength by making it difficult to operate the slip system in which the material is deformed, but conversely, the ductility is reduced. Therefore, it is required to secure appropriate strength and ductility to prevent product damage.
- heat treatment conditions that have excellent penetration corrosion resistance through annealing heat treatment after cold working and at the same time satisfy the mechanical properties of aluminum A3XXX series alloys were selected.
- the present invention relates to an aluminum alloy material used in a heat exchanger, and relates to a heat treatment process step for simultaneously satisfying high corrosion resistance and excellent mechanical properties.
- Intermetallic compound (IMC) formation and dispersion through the addition of Mn and Zr It is a material with improved mechanical properties as well as resistance to penetration corrosion by inducing .
- a method of manufacturing an aluminum alloy for a heat exchanger according to an embodiment of the present invention 0.30 to 0.70 wt% of Mn; 0.10 to 0.20 wt % of Zr; the remainder of aluminum; and preparing an aluminum alloy molten metal including other additives; casting the aluminum alloy molten metal; Including the step of heat-treating the aluminum alloy formed through the casting step in two steps, wherein the heat treatment in the two steps is heat-treated at a temperature of 500 to 580° C. for 7 to 10 hours and thereafter at a temperature of 370 to 390° C. 7 to heat treatment for 10 hours.
- the aluminum alloy molten metal is 0.01wt% or less of Cu; 0.3 wt% or less of Fe; and 0.15 wt% or less of Si.
- the method further comprises cold rolling or extruding the aluminum alloy.
- the method further comprises annealing the extruded aluminum alloy at a temperature of 390 to 410° C. for 0.5 to 2 hours.
- the annealing heat treatment temperature is 395 to 405 °C.
- the Al3Zr phase which is an intermetallic compound, is uniformly distributed, so that penetration corrosion resistance and mechanical properties are improved.
- a method of manufacturing an aluminum alloy for a heat exchanger according to an embodiment of the present invention, 0.30 to 0.70 wt% of Mn; 0.10 to 0.20 wt % of Zr; the remainder of aluminum; and preparing an aluminum alloy molten metal including other additives; casting the aluminum alloy molten metal; heat-treating the aluminum alloy formed through the casting step in two steps; air cooling after the heat treatment in the two steps; cold rolling or extruding the aluminum alloy after the air cooling step; and annealing the extruded aluminum alloy at a temperature of 390 to 410° C. for 0.5 to 2 hours, wherein the heat treatment in the two steps is heat treatment at a temperature of 500 to 580° C. for 7 to 10 hours, and then and heat treatment at a temperature of 370 to 390° C. for 7 to 10 hours.
- the aluminum alloy molten metal is 0.01wt% or less of Cu; 0.3 wt% or less of Fe; and 0.15 wt% or less of Si.
- the annealing heat treatment temperature is 395 to 405 °C.
- the Al3Zr phase which is an intermetallic compound, is uniformly distributed, so that penetration corrosion resistance and mechanical properties are improved.
- the present invention is an aluminum alloy for a tube and fin material for a heat exchanger that maintains the properties for penetration corrosion resistance through appropriate control of the content of Zr, Mn, etc. and an optimized heat treatment process, and has mechanical properties equivalent to the existing A3XXX series.
- Figure 1 shows the microstructure and the distribution shape of the intermetallic compound (lower left) after cold rolling (reduction ratio 87.5%) according to the heat treatment temperature in the low temperature section.
- Figure 2 shows the area ratio of the intermetallic compound to the matrix for each temperature condition after cold rolling (reduction ratio 87.5%) according to the heat treatment temperature in the low temperature section.
- Figure 4 shows the tensile curve according to the annealing heat treatment time at 380 °C.
- Figure 5 shows the tensile curve according to the annealing heat treatment time at 400 °C.
- Figure 6 shows the tensile curve according to the annealing heat treatment time at 420 °C.
- FIG. 10 shows a flowchart of a method of manufacturing an aluminum alloy for a heat exchanger according to an embodiment of the present invention.
- FIG. 10 shows a flowchart of a method of manufacturing an aluminum alloy for a heat exchanger according to an embodiment of the present invention.
- the method for manufacturing an aluminum alloy for a heat exchanger includes the steps of: preparing a molten aluminum alloy (S110); casting the aluminum alloy molten metal (S 120); Heating the aluminum alloy formed through the casting step in two steps (S 130); air cooling after the heat treatment in the two steps (S 140); Cold rolling or extruding the aluminum alloy after the air cooling step (S 150); and annealing the extruded aluminum alloy at a temperature of 390 to 410° C. for 0.5 to 2 hours (S 160).
- an aluminum alloy molten metal is prepared.
- Mn 0.30 to 0.70 wt% of molten aluminum alloy; 0.10 to 0.20 wt % of Zr; the remainder of aluminum; and other additives.
- Zr 0.10 wt%
- the Zr content is low, so that the dispersion material (Al3Zr) is not sufficiently generated, making it difficult to induce uniform dispersion of the intermetallic compound.
- the solubility of Zr in Al is about 0.20 wt%, and Zr in excess of this exists as a precipitated phase to deteriorate the ductility of the alloy.
- Mn attention was paid to the effect of suppressing Al3Fe acting as a local corrosion initiation point in the Al alloy so that the Mn/Fe content ratio was set to 1 or more.
- the aluminum alloy molten metal is 0.01wt% or less of Cu; 0.3 wt% or less of Fe; and 0.15 wt% or less of Si.
- Cu it exists as an intermetallic compound at grain boundaries in Al and causes corrosion within grains, so it was suppressed.
- Fe also exists in the Al3Fe phase in Al, and acts as a local corrosion initiation point due to the potential difference with the base material (Al), so it was suppressed.
- Si it was suppressed within the impurity content because it deteriorates the mechanical properties of the Al alloy.
- step S 120 an aluminum alloy molten metal is cast.
- Aluminum alloy specimens can be cast in the form of billets.
- step S 130 the aluminum alloy formed through the casting step is heat-treated in two steps.
- the heat treatment in two steps includes heat treatment at a temperature of 500 to 580° C. for 7 to 10 hours and then heat treating at a temperature of 370 to 390° C. for 7 to 10 hours. That is, by performing a high-temperature heat treatment in two steps first, and then performing a low-temperature heat treatment, the homogenization heat treatment is performed in two steps before the extrusion step.
- the Al 3 Zr phase which is an intermetallic compound, is uniformly distributed to improve penetration corrosion resistance and mechanical properties.
- a homogenization heat treatment divided into two stages, high temperature and low temperature, is performed.
- the temperature range of the two-step heat treatment will be explained to the reason for the limitation of the temperature range in the examples.
- step S 140 an air cooling step is performed.
- step S 150 cold rolling or extrusion of the aluminum alloy is performed after the air cooling step.
- a plate material may be formed by cold rolling or extruding an air-cooled aluminum alloy.
- the alloy can be processed at room temperature with a rolling reduction ratio of 80 to 90% through a double speed rolling mill to form a plate.
- step S 160 annealing the extruded aluminum alloy.
- the extruded aluminum alloy is annealed at a temperature of 390 to 410° C. for 0.5 to 2 hours, preferably the annealing heat treatment temperature is 395 to 405° C., 395 to 400° C., and most preferably about 400° C. Excellent tensile strength and elongation can be obtained by such annealing heat treatment.
- An aluminum alloy for a heat exchanger is obtained by this method, and an aluminum tube for a heat exchanger, an aluminum fin material for a heat exchanger, and a heat exchanger including such a tube and a fin material can be manufactured using the obtained aluminum alloy.
- the annealing heat treatment conditions that can secure the strength of the A3XXX series at the same time as the recovery of the elongation, which is drastically reduced after cold working, were evaluated.
- the electrochemical test it was confirmed that the penetration corrosion property maintained effectively even after annealing heat treatment.
- an aluminum alloy specimen containing Zr: 0.15 wt.%, Mn: 0.5 wt.%, Fe: 0.1 wt.% was produced through casting in the form of a 6-inch billet, followed by two steps (high temperature 10 hours, low temperature). 10 hours) was subjected to homogenization heat treatment.
- the temperature range from 320° C. to 440° C. was divided into 20° C. intervals to analyze the grain size after cold rolling for each condition.
- a tensile test piece was prepared and the tensile properties were measured.
- the open circuit potential (OCP) was measured for 30 hours using a saturated calomel electrode (SCE) as a reference electrode in a solution simulating acid rain, and then the co-potential polarization was performed. Corrosion potential and corrosion rate were measured through the test, and the cross-section of the specimen was observed after performing a potentiostatic corrosion acceleration test to evaluate penetration resistance. Based on this result, it was confirmed that the penetration resistance characteristic effectively maintained even after annealing heat treatment.
- SCE saturated calomel electrode
- composition of the specimen used in the present invention is as follows [Table 1].
- a key technology in the development alloy is an Al 3 Zr phase production optimization process.
- the Al 3 Zr phase plays a role of refining the grain boundary by preventing the grain boundary movement of the Al alloy and suppressing the growth of grains according to the recrystallization treatment after cold working.
- the grain boundaries which act as the main initiation of corrosion in the Al alloy, are also distributed in a uniform form by refining, so that the corrosion reaction occurs uniformly over the entire surface of the material rather than being concentrated in a local area, so the penetration corrosion resistance is greatly improved. .
- the two-step homogenization is performed to produce an Al 3 Zr phase with small, uniform and high density particles.
- Heat treatment was performed.
- heat treatment was performed at high temperature (540° C.) for 10 hours for uniform diffusion of Zr element with severe segregation in the Al matrix.
- the temperature range from 320°C to 440°C was divided into 20°C intervals and homogenized heat treatment was performed in the low-temperature section .
- FIG. 1 is a distribution shape of the microstructure and intermetallic compound after cold rolling according to the heat treatment temperature in the low temperature section, and the area ratio of the intermetallic compound to the base material measured through this is shown in FIG. 2 .
- the intermetallic compound was most uniformly distributed at 380° C. in the case of the homogenization treatment in the low-temperature section as shown in FIGS. 1 and 2, which indicates that the amount of Al 3 Zr phase was maximized. Therefore, after 10 hours of high temperature (540° C.), 10 hours of low temperature (380° C.) was selected as the optimized two-step homogenization heat treatment condition.
- the grain size distribution and average of the corresponding conditions are shown in FIG. 3, and the average grain size and the density of grains are shown in Table 2.
- Annealing heat treatment is a process for removing residual stress after processing and removing the directionality of grains.
- characteristic evaluation under various conditions is required.
- This test was conducted by continuously changing the voltage in the range of +1 V based on the corrosion potential of the electrode in the three-electrode system at a rate of 10 mV/min, and measuring the current density at each voltage. Through this test, it is possible to know the corrosion characteristics of aluminum tube for heat exchanger.
- a specimen polished with #600 abrasive paper was used, and the electrolyte was OCP ( After measuring the open-circuit potential), a potential polarization test was performed, and the corrosion rates before and after heat treatment are shown in FIG. 8 .
- This test is a cross-section of a specimen for a corrosion reaction amount of 26.55 mAh/cm 2 through a potential acceleration test at -530 mV SCE based on a saturated red electrode in an environment simulating acid rain for the developed alloy before and after annealing heat treatment.
- This test is a test that accelerates corrosion of materials by applying an anode polarization potential rather than a corrosion potential after calculating the corrosion potential of a specimen in a three-electrode system.
- the electrostatic potential acceleration test was conducted for the purpose of identifying the corrosion form one year after use, and a cross-sectional view after the test is shown in FIG. 9 .
- the corrosion thinning depth of the developed alloy is 32.21 / 31.73 ⁇ m, respectively, before and after annealing heat treatment, confirming the corrosion resistance 3 times improved compared to 102.77 ⁇ m of A3003.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Extrusion Of Metal (AREA)
Abstract
The present invention relates to a method for manufacturing an aluminum alloy for a heat exchanger. The present invention pertains to a heat treatment process method for simultaneously achieving excellent perforation corrosion resistance and mechanical properties in an aluminum alloy material used in a heat exchanger. More specifically, proposed are: conditions for homogenization heat treatment which is divided into two stages, that is, a high-temperature stage and a low-temperature stage, and is for the uniform formation of fine precipitated phases; and conditions for annealing heat treatment for obtaining excellent tensile strength and elongation.
Description
본 발명은 열교환기용 알루미늄 합금의 제조 방법에 관한 것으로서, 본 발명은 열교환기에 사용되는 알루미늄 합금 소재를 대상으로 하며, 우수한 관통 부식 저항성과 기계적 특성을 동시에 만족하기 위한 열처리 공정 방법에 관한 것으로 더욱 상세하게는 미세한 석출상의 균일한 생성을 위한 고온과 저온, 2 단계로 나뉘어진 균질화 열처리 조건과 우수한 인장 강도 및 연신율을 얻기 위한 소둔 열처리 조건을 제시한다.The present invention relates to a method of manufacturing an aluminum alloy for a heat exchanger, and the present invention relates to a heat treatment process method for simultaneously satisfying excellent penetration corrosion resistance and mechanical properties, targeting an aluminum alloy material used for a heat exchanger, and more particularly presents homogenization heat treatment conditions divided into two stages, high temperature and low temperature for uniform formation of fine precipitated phases, and annealing heat treatment conditions to obtain excellent tensile strength and elongation.
기존 등록특허 KR 10-1465389의 알루미늄 합금 튜브는 압출속도 및 강도를 A1XXX계 수준으로 유지하면서 부식전파 형태 및 내식성을 개선시켜 기존 A1XXX계 및 A3XXX계 알루미늄 합금 튜브보다 관통 부식에 대한 저항성을 향상시킨 소재이다. 그러나 위 합금이 가지는 기계적 특성은 A1XXX계 수준으로 열교환기 제조공정 중 발생하는 응력에 의해 파손이 발생할 가능성이 있다. 따라서 본 발명에서는 기존 합금의 관통 저항성을 유지하며 기계적 특성을 향상시키기 위해 합금 설계 및 열처리 공정에 대한 연구를 진행하였으며, 기존 KR 10-1465389 알루미늄 합금의 관통저항성 유지와 동시에 A3XXX계 합금과 유사한 기계적 특성을 나타내는 열처리 공정 방법을 개발하였다.The aluminum alloy tube of the existing registered patent KR 10-1465389 maintains the extrusion speed and strength at the A1XXX series level while improving the corrosion propagation form and corrosion resistance. to be. However, the mechanical properties of the above alloy are at the level of the A1XXX series, and there is a possibility of damage due to the stress generated during the heat exchanger manufacturing process. Therefore, in the present invention, in order to improve the mechanical properties while maintaining the penetration resistance of the existing alloy, research on the alloy design and heat treatment process was conducted. A heat treatment process method showing
(1) 균질화처리 온도 및 시간 최적화(1) Optimization of temperature and time for homogenization treatment
균질화처리는 석출상 분해 및 재석출을 통해 주조된 빌렛의 미세 편석을 제거하고, 잔류 내부 응력을 제거하여 제품의 균열을 방지하기 위한 공정으로 알루미늄 합금 내 용질 원자의 균일한 분포를 이루기 위해 필수적인 공정이다.Homogenization is a process that removes fine segregation of cast billets through precipitation phase decomposition and re-precipitation, and removes residual internal stress to prevent product cracking. It is an essential process to achieve uniform distribution of solute atoms in aluminum alloy. to be.
개발합금 중 Zr 원소는 Al matrix에서 결정립 크기(Grain Size)를 미세화하여 강도를 향상시킬 뿐만 아니라 소재 내부의 전위차를 발생시켜 부식의 개시점으로 작동하는 석출물들을 미세하게 분산시켜 좁고 깊은 형상의 예측 곤란한 부식의 한 형태인 공식(Pitting Corrosion)의 발생을 억제하고 균일부식을 유도하는 효과가 있다. 그러나 Zr은 Al matrix 내에서 편석 현상이 심하게 나타나는 원자로 해당 용질 원자의 균일한 분포를 유도하기 위해서는 일반적인 공정보다 고온(500℃ 이상)의 열처리가 요구된다. 반면, 내식성에 악영향을 끼치는 Fe 원소를 포함한 금속간화합물의 미세한 분산을 위하여 Al3Zr 상의 생성을 최대화하는 열처리 조건이 요구되는데 이는 일반적인 공정보다 저온(380~400℃)에서의 열처리가 요구된다. 따라서 해당 금속간화합물의 미세편석 제거, 거시적 조성 균질화, 금속간화합물의 최적 결정립 크기 및 분포 유도를 위해 고온과 저온의 2 단계로 나누어진 균질화 열처리에 대한 온도 및 시간의 최적화가 요구된다.Among the developed alloys, the Zr element not only improves the strength by refining the grain size in the Al matrix, but also generates a potential difference inside the material and finely disperses the precipitates that act as the starting point of corrosion, so that the narrow and deep shape is difficult to predict. It has the effect of suppressing the occurrence of pitting corrosion, a form of corrosion, and inducing uniform corrosion. However, Zr is an atom with severe segregation in the Al matrix, and in order to induce a uniform distribution of the solute atoms, heat treatment at a higher temperature (500°C or higher) is required than a general process. On the other hand, for fine dispersion of intermetallic compounds including Fe element that adversely affects corrosion resistance, heat treatment conditions that maximize the generation of Al3Zr phase are required. Therefore, optimization of temperature and time for homogenization heat treatment divided into two stages of high temperature and low temperature is required to remove microsegregation of the intermetallic compound, homogenize the macroscopic composition, and induce optimal grain size and distribution of the intermetallic compound.
(2) 개발합금의 강도(2) Strength of the developed alloy
KR 10-1465389 개발합금의 기계적 특성의 경우 A1XXX계 수준으로 A3XXX계 알루미늄 합금 대비 인장강도가 낮다. 이에 따라 제조공정 중 제품에 가해지는 외력(Fin 결합, bending, 유체에 의한 내압)에 의해 변형, 균열, 파괴 등이 발생할 위험이 있다.In the case of mechanical properties of the alloy developed by KR 10-1465389, the tensile strength is lower than that of the A3XXX series aluminum alloy at the level of A1XXX series. Accordingly, there is a risk of deformation, cracking, and destruction due to external forces (fin bonding, bending, internal pressure caused by fluid) applied to the product during the manufacturing process.
재료의 강도는 소재 내부에 존재하는 석출상, 불순물, 결함 등에 의한 전위 이동의 방해로 증가시킬 수 있다. 위와 같은 결함들은 재료의 변형이 일어나는 슬립 시스템(Slip System)의 작동을 어렵게 만들어 강도를 증가시킬 수 있으나, 역으로 연성(Ductility)은 감소하게 된다. 따라서, 제품의 파손 방지를 위해 적절한 강도와 연성의 확보가 요구된다. The strength of a material can be increased by the disturbance of dislocation movement due to precipitation phases, impurities, defects, etc. present inside the material. The above defects can increase the strength by making it difficult to operate the slip system in which the material is deformed, but conversely, the ductility is reduced. Therefore, it is required to secure appropriate strength and ductility to prevent product damage.
본 발명에서는 냉간 가공 후 소둔 열처리를 통해 우수한 관통 부식 저항성을 가지며 동시에 알루미늄 A3XXX계열 합금수준의 기계적 특성을 만족하는 열처리 조건을 선정하였다. In the present invention, heat treatment conditions that have excellent penetration corrosion resistance through annealing heat treatment after cold working and at the same time satisfy the mechanical properties of aluminum A3XXX series alloys were selected.
본 발명은 열교환기에 사용되는 알루미늄 합금 소재를 대상으로 하며, 고내식성과 우수한 기계적 특성을 동시에 만족하기 위한 열처리 공정 단계에 관한 것으로 Mn, Zr 첨가를 통해 금속간화합물(Intermetallic compound, IMC) 형성 및 분산을 유도하여 관통 부식 저항성 뿐만 아니라 기계적 특성을 향상시킨 재료이며, Mn과 Zr 함량 조절과 최적화된 열처리 공정을 통해 기존 A3XXX계에 준하는 기계적 특성을 가진 열교환기용 튜브 및 핀재 알루미늄 합금을 제공한다.The present invention relates to an aluminum alloy material used in a heat exchanger, and relates to a heat treatment process step for simultaneously satisfying high corrosion resistance and excellent mechanical properties. Intermetallic compound (IMC) formation and dispersion through the addition of Mn and Zr It is a material with improved mechanical properties as well as resistance to penetration corrosion by inducing .
본 발명의 일 실시예에 따른 열교환기용 알루미늄 합금의 제조 방법은, 0.30 내지 0.70wt%의 Mn; 0.10 내지 0.20wt%의 Zr; 잔부의 알루미늄; 및 기타 첨가물을 포함하는 알루미늄 합금 용탕을 제조하는 단계; 상기 알루미늄 합금 용탕을 주조하는 단계; 상기 주조 단계를 통해 형성된 알루미늄 합금을 두 단계로 열처리하는 단계를 포함하고, 상기 두 단계로 열처리하는 단계는 500 내지 580℃의 온도에서 7 내지 10시간 동안 열처리 하고 이후 370 내지 390℃의 온도에서 7 내지 10 시간 동안 열처리하는 단계를 포함한다.A method of manufacturing an aluminum alloy for a heat exchanger according to an embodiment of the present invention, 0.30 to 0.70 wt% of Mn; 0.10 to 0.20 wt % of Zr; the remainder of aluminum; and preparing an aluminum alloy molten metal including other additives; casting the aluminum alloy molten metal; Including the step of heat-treating the aluminum alloy formed through the casting step in two steps, wherein the heat treatment in the two steps is heat-treated at a temperature of 500 to 580° C. for 7 to 10 hours and thereafter at a temperature of 370 to 390° C. 7 to heat treatment for 10 hours.
상기 알루미늄 합금 용탕은 0.01wt% 이하의 Cu; 0.3wt% 이하의 Fe; 및 0.15wt% 이하의 Si를 더 포함한다.The aluminum alloy molten metal is 0.01wt% or less of Cu; 0.3 wt% or less of Fe; and 0.15 wt% or less of Si.
상기 두 단계로 열처리하는 단계 이후 공냉하는 단계를 추가로 포함한다.It further includes the step of air cooling after the step of heat treatment in the two steps.
상기 공냉하는 단계 이후 상기 알루미늄 합금을 냉간 압연 또는 압출하는 단계를 추가로 포함한다.After the air cooling step, the method further comprises cold rolling or extruding the aluminum alloy.
상기 압출된 알루미늄 합금을 390 내지 410℃의 온도에서 0.5 내지 2 시간 동안 소둔 열처리(annealing)하는 단계를 추가로 포함한다. 상기 소둔 열처리 온도는 395 내지 405℃이다.The method further comprises annealing the extruded aluminum alloy at a temperature of 390 to 410° C. for 0.5 to 2 hours. The annealing heat treatment temperature is 395 to 405 ℃.
상기 두 단계로 열처리하는 단계에 의해 금속간화합물인 Al3Zr 상이 균일하게 분포하여 관통 부식 저항성 및 기계적 특성이 향상된다.By the two-step heat treatment, the Al3Zr phase, which is an intermetallic compound, is uniformly distributed, so that penetration corrosion resistance and mechanical properties are improved.
본 발명의 일 실시예에 따른 열교환기용 알루미늄 합금의 제조 방법은, 0.30 내지 0.70wt%의 Mn; 0.10 내지 0.20wt%의 Zr; 잔부의 알루미늄; 및 기타 첨가물을 포함하는 알루미늄 합금 용탕을 제조하는 단계; 상기 알루미늄 합금 용탕을 주조하는 단계; 상기 주조 단계를 통해 형성된 알루미늄 합금을 두 단계로 열처리하는 단계; 상기 두 단계로 열처리하는 단계 이후 공냉하는 단계; 상기 공냉하는 단계 이후 상기 알루미늄 합금을 냉간 압연 또는 압출하는 단계; 및 상기 압출된 알루미늄 합금을 390 내지 410℃의 온도에서 0.5 내지 2 시간 동안 소둔 열처리하는 단계를 포함하고, 상기 두 단계로 열처리하는 단계는 500 내지 580℃의 온도에서 7 내지 10시간 동안 열처리 하고 이후 370 내지 390℃의 온도에서 7 내지 10 시간 동안 열처리하는 단계를 포함한다.A method of manufacturing an aluminum alloy for a heat exchanger according to an embodiment of the present invention, 0.30 to 0.70 wt% of Mn; 0.10 to 0.20 wt % of Zr; the remainder of aluminum; and preparing an aluminum alloy molten metal including other additives; casting the aluminum alloy molten metal; heat-treating the aluminum alloy formed through the casting step in two steps; air cooling after the heat treatment in the two steps; cold rolling or extruding the aluminum alloy after the air cooling step; and annealing the extruded aluminum alloy at a temperature of 390 to 410° C. for 0.5 to 2 hours, wherein the heat treatment in the two steps is heat treatment at a temperature of 500 to 580° C. for 7 to 10 hours, and then and heat treatment at a temperature of 370 to 390° C. for 7 to 10 hours.
상기 알루미늄 합금 용탕은 0.01wt% 이하의 Cu; 0.3wt% 이하의 Fe; 및 0.15wt% 이하의 Si를 더 포함한다.The aluminum alloy molten metal is 0.01wt% or less of Cu; 0.3 wt% or less of Fe; and 0.15 wt% or less of Si.
상기 소둔 열처리 온도는 395 내지 405℃이다.The annealing heat treatment temperature is 395 to 405 ℃.
상기 두 단계로 열처리하는 단계에 의해 금속간화합물인 Al3Zr 상이 균일하게 분포하여 관통 부식 저항성 및 기계적 특성이 향상된다.By the two-step heat treatment, the Al3Zr phase, which is an intermetallic compound, is uniformly distributed, so that penetration corrosion resistance and mechanical properties are improved.
기존 개발합금은 관통 부식 저항성이 향상된 열교환기용 알루미늄 합금이었다. 본 발명은 Zr, Mn 등의 함량의 적절한 조절과 최적화된 열처리 공정을 통해 관통 부식 저항에 대한 특성을 유지하며, 기존 A3XXX계에 준하는 기계적 특성을 가진 열교환기용 튜브 및 핀재 알루미늄 합금이다.Previously developed alloys were aluminum alloys for heat exchangers with improved penetration corrosion resistance. The present invention is an aluminum alloy for a tube and fin material for a heat exchanger that maintains the properties for penetration corrosion resistance through appropriate control of the content of Zr, Mn, etc. and an optimized heat treatment process, and has mechanical properties equivalent to the existing A3XXX series.
도 1은 저온 구간 열처리 온도에 따른 냉간 압연(압하율 87.5%) 후 미세조직 및 금속간화합물의 분포 형상(왼쪽 하단)을 도시한다.Figure 1 shows the microstructure and the distribution shape of the intermetallic compound (lower left) after cold rolling (reduction ratio 87.5%) according to the heat treatment temperature in the low temperature section.
도 2는 저온 구간 열처리 온도에 따른 냉간 압연(압하율 87.5%) 후 온도 조건별 모재(Matrix) 대비 금속간화합물의 면적비를 도시한다.Figure 2 shows the area ratio of the intermetallic compound to the matrix for each temperature condition after cold rolling (reduction ratio 87.5%) according to the heat treatment temperature in the low temperature section.
도 3은 최적화된 2단계 균질화 열처리를 진행한 합금의 냉간 압연(압하율 87.5%) 후 결정립 크기 분포 및 평균을 도시한다.3 shows the grain size distribution and average after cold rolling (reduction ratio 87.5%) of the alloy subjected to the optimized two-step homogenization heat treatment.
도 4는 380℃에서 소둔 열처리 시간에 따른 인장 곡선을 도시한다.Figure 4 shows the tensile curve according to the annealing heat treatment time at 380 ℃.
도 5는 400℃에서 소둔 열처리 시간에 따른 인장 곡선을 도시한다.Figure 5 shows the tensile curve according to the annealing heat treatment time at 400 ℃.
도 6은 420℃에서 소둔 열처리 시간에 따른 인장 곡선을 도시한다.Figure 6 shows the tensile curve according to the annealing heat treatment time at 420 ℃.
도 7은 소둔 열처리 온도별 2시간 처리 후 기계적 특성(인장강도, 연신율)을 도시한다.7 shows mechanical properties (tensile strength, elongation) after 2 hours of treatment at each annealing heat treatment temperature.
도 8은 산성비 모사 환경에서 소둔 열처리 전/후의 부식 특성 평가를 위한 동전위 분극곡선을 도시한다.8 shows a potential polarization curve for corrosion characteristic evaluation before and after annealing heat treatment in an acid rain simulation environment.
도 9는 산성비 모사 환경 정전위 부식가속화 실험 후 단면 (AA3003, 개발합금[ 소둔 열처리 전/후])을 도시한다.9 shows a cross-section (AA3003, developed alloy [before/after annealing heat treatment]) after an acid rain simulation environment potentiostatic corrosion acceleration experiment.
도 10은 본 발명의 일 실시예에 따른 열교환기용 알루미늄 합금의 제조 방법의 순서도를 도시한다.10 shows a flowchart of a method of manufacturing an aluminum alloy for a heat exchanger according to an embodiment of the present invention.
다양한 실시예들이 이제 도면을 참조하여 설명되며, 전체 도면에서 걸쳐 유사한 도면번호는 유사한 엘리먼트를 나타내기 위해서 사용된다. 설명을 위해 본 명세서에서, 다양한 설명들이 본 발명의 이해를 제공하기 위해서 제시된다. 그러나 이러한 실시예들은 이러한 특정 설명 없이도 실행될 수 있음이 명백하다. 다른 예들에서, 공지된 구조 및 장치들은 실시예들의 설명을 용이하게 하기 위해서 블록 다이아그램 형태로 제시된다. BRIEF DESCRIPTION OF THE DRAWINGS Various embodiments are now described with reference to the drawings, wherein like reference numerals are used to refer to like elements throughout. In this specification for purposes of explanation, various descriptions are presented to provide an understanding of the present invention. However, it will be apparent that these embodiments may be practiced without these specific descriptions. In other instances, well-known structures and devices are presented in block diagram form in order to facilitate describing the embodiments.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대해 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. Since the present invention can have various changes and can have various forms, specific embodiments are illustrated in the drawings and described in detail in the text. However, this is not intended to limit the present invention to the specific disclosed form, it should be understood to include all modifications, equivalents and substitutes included in the spirit and scope of the present invention. In describing each figure, like reference numerals have been used for like elements.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로서 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in the present application are used only to describe specific embodiments and are not intended to limit the present invention. The singular expression includes the plural expression unless the context clearly dictates otherwise. In the present application, terms such as “comprise” or “have” are intended to designate that a feature, step, operation, component, part, or combination thereof described in the specification is present, and includes one or more other features or steps. , it should be understood that it does not preclude the possibility of the existence or addition of , operation, components, parts or combinations thereof.
본 발명에서는 알루미늄 개발 합금의 가공 후 결정립 크기의 최소화를 목적으로 연구하였다. 이는 금속간화합물인 Al3Zr 상 생성을 증가시킴으로써 얻을 수 있다. 따라서 해당 상 생성의 최적 조건을 위한 균질화 열처리 조건을 개발하였으며, 이에 대해서 이하에서 설명하도록 하겠다.In the present invention, research was conducted for the purpose of minimizing the grain size after processing of the aluminum developed alloy. This can be achieved by increasing the formation of the intermetallic Al 3 Zr phase. Therefore, a homogenization heat treatment condition was developed for optimal conditions for the generation of the corresponding phase, and this will be described below.
도 10은 본 발명의 일 실시예에 따른 열교환기용 알루미늄 합금의 제조 방법의 순서도를 도시한다.10 shows a flowchart of a method of manufacturing an aluminum alloy for a heat exchanger according to an embodiment of the present invention.
도 10에서 보는 것처럼, 본 발명의 일 실시예에 따른 열교환기용 알루미늄 합금의 제조 방법은, 알루미늄 합금 용탕을 제조하는 단계(S 110); 상기 알루미늄 합금 용탕을 주조하는 단계(S 120); 상기 주조 단계를 통해 형성된 알루미늄 합금을 두 단계로 열처리하는 단계(S 130); 상기 두 단계로 열처리하는 단계 이후 공냉하는 단계(S 140); 상기 공냉하는 단계 이후 상기 알루미늄 합금을 냉간 압연 또는 압출하는 단계(S 150); 및 상기 압출된 알루미늄 합금을 390 내지 410℃의 온도에서 0.5 내지 2 시간 동안 소둔 열처리하는 단계(S 160)를 포함한다.As shown in FIG. 10 , the method for manufacturing an aluminum alloy for a heat exchanger according to an embodiment of the present invention includes the steps of: preparing a molten aluminum alloy (S110); casting the aluminum alloy molten metal (S 120); Heating the aluminum alloy formed through the casting step in two steps (S 130); air cooling after the heat treatment in the two steps (S 140); Cold rolling or extruding the aluminum alloy after the air cooling step (S 150); and annealing the extruded aluminum alloy at a temperature of 390 to 410° C. for 0.5 to 2 hours (S 160).
S 110 단계에서는 알루미늄 합금 용탕을 제조한다. 알루미늄 합금 용탕 0.30 내지 0.70wt%의 Mn; 0.10 내지 0.20wt%의 Zr; 잔부의 알루미늄; 및 기타 첨가물을 포함한다. 0.10wt% 미만의 Zr의 경우, Zr 함량이 낮아 분산재(Al3Zr)가 충분히 생성되지 못해 금속간화합물의 균일한 분산 유도가 어렵게 된다. 또한 상태도 상에서 Al 내 Zr의 고용도는 약 0.20wt% 정도로 이를 초과한 Zr은 석출상으로 존재하여 합금의 연성을 떨어뜨리게 된다. Mn의 경우, Al 합금내에서 국부부식 개시점으로 작용하는 Al3Fe를 억제하는 효과에 주목하여 Mn/Fe 함량비가 1 이상이 되도록 하였다.In step S 110, an aluminum alloy molten metal is prepared. Mn of 0.30 to 0.70 wt% of molten aluminum alloy; 0.10 to 0.20 wt % of Zr; the remainder of aluminum; and other additives. In the case of Zr of less than 0.10 wt%, the Zr content is low, so that the dispersion material (Al3Zr) is not sufficiently generated, making it difficult to induce uniform dispersion of the intermetallic compound. In addition, in the phase diagram, the solubility of Zr in Al is about 0.20 wt%, and Zr in excess of this exists as a precipitated phase to deteriorate the ductility of the alloy. In the case of Mn, attention was paid to the effect of suppressing Al3Fe acting as a local corrosion initiation point in the Al alloy so that the Mn/Fe content ratio was set to 1 or more.
Mn, Zr의 첨가를 통해 금속간화합물 형성 및 분산을 유도하여 관통 부식 저항성뿐만 아니라 기계적 특성의 향상도 도모한다.By inducing the formation and dispersion of intermetallic compounds through the addition of Mn and Zr, not only penetration corrosion resistance but also mechanical properties are improved.
또한, 알루미늄 합금 용탕은 0.01wt% 이하의 Cu; 0.3wt% 이하의 Fe; 및 0.15wt% 이하의 Si를 더 포함할 수 있다. Cu의 경우, Al 내에서 결정립계에 금속간화합물로 존재하며 결정립내 부식을 야기하므로 억제하였다. 또한, Fe 역시 Al 내에서 Al3Fe 상으로 존재하며, 모재(Al)와의 전위차로 인해 국부부식 개시점으로 작용하므로 억제하였다. 마지막으로, Si의 경우 Al 합금의 기계적 특성을 저하시키므로 불순물 함량 내에서 억제하였다.In addition, the aluminum alloy molten metal is 0.01wt% or less of Cu; 0.3 wt% or less of Fe; and 0.15 wt% or less of Si. In the case of Cu, it exists as an intermetallic compound at grain boundaries in Al and causes corrosion within grains, so it was suppressed. In addition, Fe also exists in the Al3Fe phase in Al, and acts as a local corrosion initiation point due to the potential difference with the base material (Al), so it was suppressed. Finally, in the case of Si, it was suppressed within the impurity content because it deteriorates the mechanical properties of the Al alloy.
S 120 단계에서는 알루미늄 합금 용탕을 주조한다. 알루미늄 합금 시험편을 빌렛 형태로 주조할 수 있다.In step S 120, an aluminum alloy molten metal is cast. Aluminum alloy specimens can be cast in the form of billets.
S 130 단계에서는 주조 단계를 통해 형성된 알루미늄 합금을 두 단계로 열처리하는 단계를 거친다. 두 단계로 열처리하는 단계는, 500 내지 580℃의 온도에서 7 내지 10시간 동안 열처리 하고 이후 370 내지 390℃의 온도에서 7 내지 10 시간 동안 열처리하는 단계를 포함한다. 즉 두 단계로 고온 열처리를 먼저 수행하고, 이후 저온 열처리를 수행함으로써 균질화 열처리를 두 단계로 압출 단계 이전에 수행한다. 두 단계로 열처리하는 단계에 의해 금속간화합물인 Al3Zr 상이 균일하게 분포하여 관통 부식 저항성 및 기계적 특성이 향상된다. 즉, 미세한 석출상의 균일한 생성(석출상이 최대로 생성됨을 의미함)을 위해 고온과 저온, 두 단계로 나뉘어진 균질화 열처리를 수행한다. 두 단계 열처리의 온도 범위는 실시예에서 온도 범위의 한정에 대한 이유를 설명하도록 하겠다. In step S 130, the aluminum alloy formed through the casting step is heat-treated in two steps. The heat treatment in two steps includes heat treatment at a temperature of 500 to 580° C. for 7 to 10 hours and then heat treating at a temperature of 370 to 390° C. for 7 to 10 hours. That is, by performing a high-temperature heat treatment in two steps first, and then performing a low-temperature heat treatment, the homogenization heat treatment is performed in two steps before the extrusion step. Through the two-step heat treatment, the Al 3 Zr phase, which is an intermetallic compound, is uniformly distributed to improve penetration corrosion resistance and mechanical properties. That is, in order to uniformly generate a fine precipitated phase (meaning that the precipitated phase is maximally generated), a homogenization heat treatment divided into two stages, high temperature and low temperature, is performed. The temperature range of the two-step heat treatment will be explained to the reason for the limitation of the temperature range in the examples.
S 140 단계에서는 공냉 단계를 수행한다.In step S 140, an air cooling step is performed.
S 150 단계에서는 공냉 단계 이후 알루미늄 합금을 냉간 압연 또는 압출하는 단계를 수행한다. 공냉한 알루미늄 합금을 냉간 압연 또는 압출하여 판재를 형성할 수 있다. 합금을 이주속 압연기를 통해 상온에서 압하율 80~90% 구간으로 가공하여 판재를 형성할 수 있다.In step S 150, cold rolling or extrusion of the aluminum alloy is performed after the air cooling step. A plate material may be formed by cold rolling or extruding an air-cooled aluminum alloy. The alloy can be processed at room temperature with a rolling reduction ratio of 80 to 90% through a double speed rolling mill to form a plate.
S 160 단계에서는 압출된 알루미늄 합금을 소둔 열처리(annealing)한다. 압출된 알루미늄 합금을 390 내지 410℃의 온도에서 0.5 내지 2 시간 동안 소둔 열처리하며, 바람직하게 소둔 열처리 온도는 395 내지 405℃이고, 395 내지 400℃이며, 가장 바람직하게는 약 400℃이다. 이러한 소둔 열처리에 의해 우수한 인장 강도 및 연신율을 얻을 수 있게 된다.In step S 160, annealing the extruded aluminum alloy. The extruded aluminum alloy is annealed at a temperature of 390 to 410° C. for 0.5 to 2 hours, preferably the annealing heat treatment temperature is 395 to 405° C., 395 to 400° C., and most preferably about 400° C. Excellent tensile strength and elongation can be obtained by such annealing heat treatment.
이러한 방법에 의해 열교환기용 알루미늄 합금을 얻게 되며, 얻은 알루미늄 합금을 이용해 열교환기용 알루미늄 튜브, 열교환기용 알루미늄 핀 재, 그리고 이러한 튜브 및 핀 재를 포함한 열교환기를 제조할 수 있다.An aluminum alloy for a heat exchanger is obtained by this method, and an aluminum tube for a heat exchanger, an aluminum fin material for a heat exchanger, and a heat exchanger including such a tube and a fin material can be manufactured using the obtained aluminum alloy.
이하에서는 구체적인 실시예와 함께 본 발명의 내용을 추가적으로 설명하도록 하겠다. Hereinafter, the content of the present invention will be further described along with specific examples.
[실시예 1][Example 1]
본 실시예에서는 냉간 가공 후 격감하는 연신율의 회복과 동시에 A3XXX계열 수준의 강도를 확보할 수 있는 소둔 열처리 조건을 평가하였다. 또한, 전기화학 시험을 통해 소둔 열처리 후에도 유효하게 유지되는 관통 부식 특성을 확인하였다. In this example, the annealing heat treatment conditions that can secure the strength of the A3XXX series at the same time as the recovery of the elongation, which is drastically reduced after cold working, were evaluated. In addition, through the electrochemical test, it was confirmed that the penetration corrosion property maintained effectively even after annealing heat treatment.
구체적인 방법으로는 Zr : 0.15 wt.%, Mn : 0.5 wt.%, Fe : 0.1 wt.%를 포함한 알루미늄 합금 시험편을 6인치 빌렛의 형태로 주조를 통해 제작한 뒤 2단계(고온 10시간, 저온 10시간) 균질화 열처리를 진행하였다. 이때, Al3Zr 상 생성이 최대가 되는 저온 온도 조건의 최적화를 위해 320℃에서 440℃까지의 온도 범위를 20℃ 간격으로 나누어 각각의 조건에 대한 냉간 압연 후 결정립 크기를 분석하였다. 또한, 소둔 열처리에 따른 기계적 특성을 평가하기 위해 인장 시험편을 제작하여 인장 특성을 측정하였다. 마지막으로, 부식 특성에 대한 평가는 산성비를 모사한 용액에서 포화감홍전극(saturated calomel electrode, SCE)을 기준전극으로 사용하여 30시간 개방회로 전위(open circuit potential, OCP)를 측정한 후 동전위 분극시험을 통해 부식전위 및 부식속도를 측정하였으며, 관통저항성 평가를 위해 정전위 부식 가속화 시험을 진행한 후 시편의 단면을 관찰하였다. 이 결과를 바탕으로 소둔 열처리 후에도 유효하게 유지되는 관통저항 특성을 확인하였다. As a specific method, an aluminum alloy specimen containing Zr: 0.15 wt.%, Mn: 0.5 wt.%, Fe: 0.1 wt.% was produced through casting in the form of a 6-inch billet, followed by two steps (high temperature 10 hours, low temperature). 10 hours) was subjected to homogenization heat treatment. At this time, in order to optimize the low-temperature temperature condition in which Al 3 Zr phase production is maximized, the temperature range from 320° C. to 440° C. was divided into 20° C. intervals to analyze the grain size after cold rolling for each condition. In addition, in order to evaluate the mechanical properties according to the annealing heat treatment, a tensile test piece was prepared and the tensile properties were measured. Finally, for the evaluation of the corrosion properties, the open circuit potential (OCP) was measured for 30 hours using a saturated calomel electrode (SCE) as a reference electrode in a solution simulating acid rain, and then the co-potential polarization was performed. Corrosion potential and corrosion rate were measured through the test, and the cross-section of the specimen was observed after performing a potentiostatic corrosion acceleration test to evaluate penetration resistance. Based on this result, it was confirmed that the penetration resistance characteristic effectively maintained even after annealing heat treatment.
(1) 알루미늄 개발합금의 제조(1) Manufacture of aluminum development alloy
본 발명에서 사용된 시편의 조성은 다음 [표 1]과 같다.The composition of the specimen used in the present invention is as follows [Table 1].
조성 (wt.%)Composition (wt.%) | |||||
CuCu | FeFe | SiSi | ZrZr | MnMn | AlAl |
0.01 이하0.01 below |
0.3 이하0.3 below |
0.15 이하0.15 below |
0.150.15 | 0.50.5 | Rem.Rem. |
실험예1: 균질화처리 조건에 따른 가공 후 결정립 크기 평가Experimental Example 1: Evaluation of grain size after processing according to homogenization treatment conditions
개발 합금에서 핵심 기술은 Al3Zr 상의 생성 최적화 공정이다. Al3Zr 상은 Al 합금의 결정립계 이동을 방해하여 냉간 가공 후 재결정화 처리에 따른 결정립의 성장을 억제하는 미세화 역할을 한다. 또한, Al 합금에서 부식의 주된 개시부로 작용하는 결정립계 역시 미세화에 의해 균일한 형태로 분포하게 되어 부식 반응이 국소적인 부위에 집중되는 것이 아닌 소재 전면에서 균일하게 발생하게 되므로 관통 부식 저항성이 크게 향상된다. A key technology in the development alloy is an Al 3 Zr phase production optimization process. The Al 3 Zr phase plays a role of refining the grain boundary by preventing the grain boundary movement of the Al alloy and suppressing the growth of grains according to the recrystallization treatment after cold working. In addition, the grain boundaries, which act as the main initiation of corrosion in the Al alloy, are also distributed in a uniform form by refining, so that the corrosion reaction occurs uniformly over the entire surface of the material rather than being concentrated in a local area, so the penetration corrosion resistance is greatly improved. .
그러나, 상기 알루미늄 합금의 균질화처리에 사용되는 425~490℃ 온도 구간은 Al3Zr 상 석출을 위한 최적 조건이 아니므로, 입자가 작고 균일하며 높은 밀도의 Al3Zr 상을 생성하기 위한 2단계 균질화 열처리를 진행하였다. 2단계 균질화 열처리는 Al matrix 내에서 편석이 심한 Zr 원소의 균일한 확산을 위한 고온(540℃)에서 10시간 열처리를 진행하였다. 이후 Al3Zr 상의 생성량이 최대가 되는 저온 온도 조건 최적화를 위해 320℃에서 440℃까지의 온도 범위를 20℃ 간격으로 나누어 저온 구간 균질화 열처리를 진행하였으며, Al3Zr 상의 생성량은 냉간 가공 후 금속간화합물의 분포 형상 비교를 통해 평가되었다. 도 1은 저온 구간 열처리 온도에 따른 냉간 압연 후 미세조직 및 금속간화합물의 분포 형상이며, 이를 통해 측정된 모재 대비 금속간화합물의 면적비를 도 2에 나타내었다. 분석 결과, 도 1 및 도 2와 같이 저온 구간 균질화처리의 경우 380℃에서 금속간화합물이 가장 균일하게 분포되는 것을 확인하였으며, 이는 Al3Zr 상의 생성량이 최대가 되었음을 나타낸다. 따라서 고온(540℃) 10시간 후 저온(380℃) 10시간 조건을 최적화된 2 단계 균질화 열처리 조건으로 선정하였다. 해당 조건의 결정립 크기 분포 및 평균을 도 3에 나타내었으며, 평균 결정립 크기 및 결정립의 밀도를 표 2에 나타내었다. However, since the temperature range of 425 to 490° C. used for the homogenization treatment of the aluminum alloy is not an optimal condition for the Al 3 Zr phase precipitation, the two-step homogenization is performed to produce an Al 3 Zr phase with small, uniform and high density particles. Heat treatment was performed. In the two-step homogenization heat treatment, heat treatment was performed at high temperature (540° C.) for 10 hours for uniform diffusion of Zr element with severe segregation in the Al matrix. Then, in order to optimize the low-temperature temperature condition in which the amount of Al 3 Zr phase is maximized, the temperature range from 320°C to 440°C was divided into 20°C intervals and homogenized heat treatment was performed in the low-temperature section . It was evaluated through comparison of the distribution shape of the compound. 1 is a distribution shape of the microstructure and intermetallic compound after cold rolling according to the heat treatment temperature in the low temperature section, and the area ratio of the intermetallic compound to the base material measured through this is shown in FIG. 2 . As a result of the analysis, it was confirmed that the intermetallic compound was most uniformly distributed at 380° C. in the case of the homogenization treatment in the low-temperature section as shown in FIGS. 1 and 2, which indicates that the amount of Al 3 Zr phase was maximized. Therefore, after 10 hours of high temperature (540° C.), 10 hours of low temperature (380° C.) was selected as the optimized two-step homogenization heat treatment condition. The grain size distribution and average of the corresponding conditions are shown in FIG. 3, and the average grain size and the density of grains are shown in Table 2.
평균 결정립 크기 [μm]average grain size [μm] |
결정립 밀도 [count/mm2]grain density [count/mm 2 ] |
결정립 크기의 표준 편차grain size Standard Deviation |
|
고온(540oC) 10시간 후 저온(380oC) 10시간After 10 hours of high temperature (540 o C), 10 hours of low temperature (380 o C) | 87.5787.57 | 34.334.3 | 37.637.6 |
실험예2: 소둔 열처리 조건별 기계적 특성 평가Experimental Example 2: Evaluation of mechanical properties by annealing heat treatment conditions
본 연구는 상기 2단계 균질화 열처리가 진행된 소재를 냉간 압연(압하율 87.5%)을 진행한 후 소둔 열처리 조건(온도, 시간)에 따른 기계적 특성에 대한 평가이다. 소둔 열처리는 가공 후 잔류응력 제거 및 결정립의 방향성을 제거하기 위한 공정이다. 소둔 열처리의 경우, 합금의 조성, 완제품의 결정립 크기 및 기계적 특성에 따라 제조방법이 상이하기 때문에 다양한 조건에서의 특성 평가가 요구된다.This study is an evaluation of the mechanical properties according to the annealing heat treatment conditions (temperature, time) after cold rolling (reduction ratio 87.5%) of the material subjected to the two-step homogenization heat treatment. Annealing heat treatment is a process for removing residual stress after processing and removing the directionality of grains. In the case of annealing heat treatment, since the manufacturing method is different depending on the composition of the alloy, the grain size of the finished product, and the mechanical properties, characteristic evaluation under various conditions is required.
실험 온도는 360~440℃ 구간에서 진행되었으며 각 소둔 온도 및 시간 조건에 대한 인장곡선을 도 4 내지 6에 나타내었다. 또한, 온도별 2시간 소둔 열처리 후 인장 강도 및 연성 결과를 도 7에 정리하여 나타내었다. 도 7에서 나타나는 것과 같이 400℃ 미만에서는 열처리에 의한 연신율의 회복이 미미하였으나, 400℃ 이상에서부터 합금의 가공성이 증가하는 것을 확인하였다. 또한 인장 강도의 경우, 소둔 열처리 온도가 증가함에 따라 크게 감소하는 것을 알 수 있다. 따라서, A3XXX계와 유사한 기계적 특성의 최적화를 위해서는 395~405℃, 2시간 소둔 열처리 조건이 적합한 것으로 판단되었다.Experimental temperature was carried out in the range of 360 ~ 440 ℃, and the tensile curves for each annealing temperature and time conditions are shown in FIGS. 4 to 6 . In addition, the results of tensile strength and ductility after annealing heat treatment for each temperature for 2 hours are shown in FIG. 7 . As shown in FIG. 7 , the recovery of elongation by heat treatment was insignificant at less than 400° C., but it was confirmed that the workability of the alloy increased from 400° C. or higher. In addition, in the case of tensile strength, it can be seen that the annealing heat treatment temperature is significantly decreased as the temperature increases. Therefore, in order to optimize the mechanical properties similar to that of the A3XXX series, it was determined that the annealing heat treatment conditions of 395-405°C and 2 hours were suitable.
(2) 내식성 및 관통저항성 평가(2) Evaluation of corrosion resistance and penetration resistance
실험예3: 소둔 열처리 후 내식성 평가Experimental Example 3: Corrosion resistance evaluation after annealing heat treatment
본 시험은 3전극 시스템에서 전극의 부식전위 기준 +1 V 범위의 전압을 10 mV/min 속도로 연속적으로 변화시키며, 각 전압에서의 전류밀도를 측정하는 방법으로 진행되었다. 본 시험을 통하여 열교환기용 알루미늄 튜브의 부식 특성을 알 수 있다.This test was conducted by continuously changing the voltage in the range of +1 V based on the corrosion potential of the electrode in the three-electrode system at a rate of 10 mV/min, and measuring the current density at each voltage. Through this test, it is possible to know the corrosion characteristics of aluminum tube for heat exchanger.
알루미늄 튜브는 #600 연마지로 연마를 진행한 시편을 사용하였으며, 전해질은 SWAAT(salt water acetic-acid test)용액 환경에서 기준전극을 포화감홍전극(saturated calomel electrode, SCE)을 사용하여 30시간 OCP(open-circuit potential)를 측정한 후 동전위 분극시험을 실시하였으며, 열처리 전/후의 부식속도를 도 8에 나타내었다.For the aluminum tube, a specimen polished with #600 abrasive paper was used, and the electrolyte was OCP ( After measuring the open-circuit potential), a potential polarization test was performed, and the corrosion rates before and after heat treatment are shown in FIG. 8 .
도 8은 소둔 열처리 전/후의 동전위 분극 시험 결과를 도식한 그래프로 소둔 열처리 이후에도 소재의 부식 특성(부식 전위, 부식전류밀도)이 유지되는 것을 나타내며, 이 결과를 표 3에 정리하였다.8 is a graph schematically showing the results of the electrostatic polarization test before and after annealing heat treatment, indicating that the corrosion properties (corrosion potential, corrosion current density) of the material are maintained even after the annealing heat treatment, and the results are summarized in Table 3.
부식 전위 [mVSCE]corrosion potential [mV SCE ] |
부식 전류밀도 [μA/cm2]corrosion current density [μA/cm 2 ] |
|
소둔 열처리 전Before annealing heat treatment | -625-625 | 2.0352.035 |
소둔 열처리 후After annealing heat treatment | -636-636 | 2.3932.393 |
실험예4: 소둔 열처리 후 관통저항성 평가Experimental Example 4: Evaluation of penetration resistance after annealing heat treatment
본 시험은 소둔 열처리 전/후의 개발합금을 산성비를 모사한 환경에서 포화감홍전극 기준 -530 mVSCE에서 정전위 가속화 시험을 통해 부식 반응량 26.55 mAh/cm2에 대한 시편의 단면이다. 본 시험은 3전극 시스템에서 시편의 부식전위를 산출한 후 부식전위 보다 양극 분극 전위를 인가하여 재료의 부식을 가속화하는 시험으로 짧은 시간 내에 장기 부식에 의한 특성을 평가할 수 있는 장점이 있다. 해당 정전위 가속화 시험은 사용 후 1년 뒤의 부식형태 파악을 목적으로 진행되었으며 시험 후 단면도를 도 9에 나타내었다. 도 9는 산성비를 모사한 환경에서 정전위 부식가속화 시험 후 단면 분석결과이다. 분석 결과, 개발합금은 관통부식이 나타나지 않은 것을 확인할 수 있으며 A3003에 비해 낮은 부식감육깊이를 나타내고 있다. 각각의 부식감육 깊이를 표 4에 나타내었다. 개발합금의 부식감육깊이는 소둔 열처리 전/후 각 32.21 / 31.73 μm로 A3003의 102.77 μm 대비 3배 향상된 내식성을 확인할 수 있다.This test is a cross-section of a specimen for a corrosion reaction amount of 26.55 mAh/cm 2 through a potential acceleration test at -530 mV SCE based on a saturated red electrode in an environment simulating acid rain for the developed alloy before and after annealing heat treatment. This test is a test that accelerates corrosion of materials by applying an anode polarization potential rather than a corrosion potential after calculating the corrosion potential of a specimen in a three-electrode system. The electrostatic potential acceleration test was conducted for the purpose of identifying the corrosion form one year after use, and a cross-sectional view after the test is shown in FIG. 9 . 9 is a cross-sectional analysis result after a potentiostatic corrosion acceleration test in an environment simulating acid rain. As a result of the analysis, it can be confirmed that the developed alloy did not show penetration corrosion and showed a lower corrosion thinning depth than A3003. The respective corrosion thinning depths are shown in Table 4. The corrosion thinning depth of the developed alloy is 32.21 / 31.73 μm, respectively, before and after annealing heat treatment, confirming the corrosion resistance 3 times improved compared to 102.77 μm of A3003.
소재명Material name | 부식감육깊이 (μm)Corrosion thinning depth (μm) | 비고note | |
평균Average | 표준편차Standard Deviation | ||
A3003A3003 | 102.77 102.77 | 26.75 26.75 | 국부부식local corrosion |
개발합금 소둔 열처리 전development alloy Before annealing heat treatment |
32.2132.21 | 8.248.24 | 균일부식uniform corrosion |
개발합금 소둔 열처리 후development alloy After annealing heat treatment |
31.7331.73 | 7.867.86 | 균일부식uniform corrosion |
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술분야의 숙련된 당업자는 하기의 특허 청구 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the above has been described with reference to the preferred embodiments of the present invention, those skilled in the art can variously modify and change the present invention without departing from the spirit and scope of the present invention as set forth in the claims below. You will understand that you can.
Claims (14)
- 0.30 내지 0.70wt%의 Mn; 0.10 내지 0.20wt%의 Zr; 잔부의 알루미늄; 및 기타 첨가물을 포함하는 알루미늄 합금 용탕을 제조하는 단계;0.30 to 0.70 wt % Mn; 0.10 to 0.20 wt % of Zr; the remainder of aluminum; and preparing an aluminum alloy molten metal including other additives;상기 알루미늄 합금 용탕을 주조하는 단계;casting the aluminum alloy molten metal;상기 주조 단계를 통해 형성된 알루미늄 합금을 두 단계로 열처리하는 단계를 포함하고,Comprising the step of heat-treating the aluminum alloy formed through the casting step in two steps,상기 두 단계로 열처리하는 단계는,The step of heat treatment in the above two steps,500 내지 580℃의 온도에서 7 내지 10시간 동안 열처리 하고 이후 370 내지 390℃의 온도에서 7 내지 10 시간 동안 열처리하는 단계를 포함하는,Heat treatment at a temperature of 500 to 580 ° C. for 7 to 10 hours and then heat treatment at a temperature of 370 to 390 ° C. for 7 to 10 hours.열교환기용 알루미늄 합금의 제조 방법.A method of manufacturing an aluminum alloy for a heat exchanger.
- 제 1 항에 있어서,The method of claim 1,상기 알루미늄 합금 용탕은 0.01wt% 이하의 Cu; 0.3wt% 이하의 Fe; 및 0.15wt% 이하의 Si를 더 포함하는,The aluminum alloy molten metal is 0.01wt% or less of Cu; 0.3 wt% or less of Fe; and 0.15 wt% or less of Si,열교환기용 알루미늄 합금의 제조 방법.A method of manufacturing an aluminum alloy for a heat exchanger.
- 제 1 항에 있어서,The method of claim 1,상기 두 단계로 열처리하는 단계 이후 공냉하는 단계를 추가로 포함하는,Further comprising the step of air cooling after the step of heat treatment in the two steps,열교환기용 알루미늄 합금의 제조 방법.A method of manufacturing an aluminum alloy for a heat exchanger.
- 제 3 항에 있어서,4. The method of claim 3,상기 공냉하는 단계 이후 상기 알루미늄 합금을 냉간 압연 또는 압출하는 단계를 추가로 포함하는,Further comprising the step of cold rolling or extruding the aluminum alloy after the step of air cooling,열교환기용 알루미늄 합금의 제조 방법.A method of manufacturing an aluminum alloy for a heat exchanger.
- 제 4 항에 있어서,5. The method of claim 4,상기 압출된 알루미늄 합금을 390 내지 410℃의 온도에서 0.5 내지 2 시간 동안 소둔 열처리(annealing)하는 단계를 추가로 포함하는,Further comprising the step of annealing the extruded aluminum alloy at a temperature of 390 to 410 ℃ for 0.5 to 2 hours (annealing),열교환기용 알루미늄 합금의 제조 방법.A method of manufacturing an aluminum alloy for a heat exchanger.
- 제 5 항에 있어서,6. The method of claim 5,상기 소둔 열처리 온도는 395 내지 405℃인,The annealing heat treatment temperature is 395 to 405 ℃,열교환기용 알루미늄 합금의 제조 방법.A method of manufacturing an aluminum alloy for a heat exchanger.
- 제 1 항에 있어서,The method of claim 1,상기 두 단계로 열처리하는 단계에 의해 금속간화합물인 Al3Zr 상이 균일하게 분포하여 관통 부식 저항성 및 기계적 특성이 향상된,By the two-step heat treatment, the intermetallic compound Al 3 Zr phase is uniformly distributed, so that penetration corrosion resistance and mechanical properties are improved,열교환기용 알루미늄 합금의 제조 방법.A method of manufacturing an aluminum alloy for a heat exchanger.
- 제 1 항 내지 제 7 항 중 어느 한 항에 따른 열교환기용 알루미늄 합금의 제조 방법에 의해 제조된, 열교환기용 알루미늄 합금.An aluminum alloy for a heat exchanger produced by the method for manufacturing an aluminum alloy for a heat exchanger according to any one of claims 1 to 7.
- 제 8 항의 알루미늄 합금으로 제조된, 열교환기용 알루미늄 튜브.An aluminum tube for a heat exchanger, made of the aluminum alloy of claim 8.
- 제 8 항의 알루미늄 합금으로 제조된, 열교환기용 알루미늄 핀 재.Made of the aluminum alloy of claim 8, an aluminum fin material for a heat exchanger.
- 0.30 내지 0.70wt%의 Mn; 0.10 내지 0.20wt%의 Zr; 잔부의 알루미늄; 및 기타 첨가물을 포함하는 알루미늄 합금 용탕을 제조하는 단계;0.30 to 0.70 wt % Mn; 0.10 to 0.20 wt % of Zr; the remainder of aluminum; and preparing an aluminum alloy molten metal including other additives;상기 알루미늄 합금 용탕을 주조하는 단계;casting the aluminum alloy molten metal;상기 주조 단계를 통해 형성된 알루미늄 합금을 두 단계로 열처리하는 단계;heat-treating the aluminum alloy formed through the casting step in two steps;상기 두 단계로 열처리하는 단계 이후 공냉하는 단계;air cooling after the heat treatment in the two steps;상기 공냉하는 단계 이후 상기 알루미늄 합금을 냉간 압연 또는 압출하는 단계; 및cold rolling or extruding the aluminum alloy after the air cooling step; and상기 압출된 알루미늄 합금을 390 내지 410℃의 온도에서 0.5 내지 2 시간 동안 소둔 열처리하는 단계를 포함하고,Comprising the step of annealing the extruded aluminum alloy at a temperature of 390 to 410 ℃ for 0.5 to 2 hours,상기 두 단계로 열처리하는 단계는,The step of heat treatment in the above two steps,500 내지 580℃의 온도에서 7 내지 10시간 동안 열처리 하고 이후 370 내지 390℃의 온도에서 7 내지 10 시간 동안 열처리하는 단계를 포함하는,Heat treatment at a temperature of 500 to 580 ° C. for 7 to 10 hours and then heat treatment at a temperature of 370 to 390 ° C. for 7 to 10 hours.열교환기용 알루미늄 합금의 제조 방법.A method of manufacturing an aluminum alloy for a heat exchanger.
- 제 11 항에 있어서,12. The method of claim 11,상기 알루미늄 합금 용탕은 0.01wt% 이하의 Cu; 0.3wt% 이하의 Fe; 및 0.15wt% 이하의 Si를 더 포함하는,The aluminum alloy molten metal is 0.01wt% or less of Cu; 0.3 wt% or less of Fe; and 0.15 wt% or less of Si,열교환기용 알루미늄 합금의 제조 방법.A method of manufacturing an aluminum alloy for a heat exchanger.
- 제 11 항에 있어서,12. The method of claim 11,상기 소둔 열처리 온도는 395 내지 405℃인,The annealing heat treatment temperature is 395 to 405 ℃,열교환기용 알루미늄 합금의 제조 방법.A method of manufacturing an aluminum alloy for a heat exchanger.
- 제 11 항에 있어서,12. The method of claim 11,상기 두 단계로 열처리하는 단계에 의해 금속간화합물인 Al3Zr 상이 균일하게 분포하여 관통 부식 저항성 및 기계적 특성이 향상된,By the two-step heat treatment, the intermetallic compound Al 3 Zr phase is uniformly distributed, so that penetration corrosion resistance and mechanical properties are improved,열교환기용 알루미늄 합금의 제조 방법.A method of manufacturing an aluminum alloy for a heat exchanger.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210054041A KR102574902B1 (en) | 2021-04-27 | 2021-04-27 | Method of fabricating aluminum alloy for heat exchanger |
KR10-2021-0054041 | 2021-04-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022231148A1 true WO2022231148A1 (en) | 2022-11-03 |
Family
ID=83846992
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2022/004673 WO2022231148A1 (en) | 2021-04-27 | 2022-04-01 | Method for manufacturing aluminum alloy for heat exchanger |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102574902B1 (en) |
WO (1) | WO2022231148A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000008130A (en) * | 1998-06-19 | 2000-01-11 | Mitsubishi Alum Co Ltd | Member for heat exchanger made of aluminum alloy excellent in corrosion resistance |
JP2008179879A (en) * | 2006-12-28 | 2008-08-07 | Mitsubishi Alum Co Ltd | Method for manufacturing extruded alloy with excellent extrudability for heat exchanger, and flat perforated tube for heat exchanger |
KR20140000406A (en) * | 2012-06-22 | 2014-01-03 | 현대자동차주식회사 | Aluminium alloy composition, extrution tube for intercooler with improved corrosion resistance comprising the same and method for manufacturing thereof |
KR20160020464A (en) * | 2014-08-13 | 2016-02-23 | 엘에스전선 주식회사 | High strength and high corrosion-resistant aluminum alloy for heat exchanger tube and heat exchanger tube prepared from the same |
KR20210006749A (en) * | 2019-07-09 | 2021-01-19 | 성균관대학교산학협력단 | Aluminum alloys for heat exchanger, and heat exchanger made of the same |
-
2021
- 2021-04-27 KR KR1020210054041A patent/KR102574902B1/en active IP Right Grant
-
2022
- 2022-04-01 WO PCT/KR2022/004673 patent/WO2022231148A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000008130A (en) * | 1998-06-19 | 2000-01-11 | Mitsubishi Alum Co Ltd | Member for heat exchanger made of aluminum alloy excellent in corrosion resistance |
JP2008179879A (en) * | 2006-12-28 | 2008-08-07 | Mitsubishi Alum Co Ltd | Method for manufacturing extruded alloy with excellent extrudability for heat exchanger, and flat perforated tube for heat exchanger |
KR20140000406A (en) * | 2012-06-22 | 2014-01-03 | 현대자동차주식회사 | Aluminium alloy composition, extrution tube for intercooler with improved corrosion resistance comprising the same and method for manufacturing thereof |
KR20160020464A (en) * | 2014-08-13 | 2016-02-23 | 엘에스전선 주식회사 | High strength and high corrosion-resistant aluminum alloy for heat exchanger tube and heat exchanger tube prepared from the same |
KR20210006749A (en) * | 2019-07-09 | 2021-01-19 | 성균관대학교산학협력단 | Aluminum alloys for heat exchanger, and heat exchanger made of the same |
Also Published As
Publication number | Publication date |
---|---|
KR102574902B1 (en) | 2023-09-04 |
KR20220147213A (en) | 2022-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6154565B1 (en) | Cu-Ni-Si-based copper alloy sheet and manufacturing method | |
US9401230B2 (en) | Cu-Ni-Si-Co copper alloy for electronic materials and manufacturing method thereof | |
JP5657311B2 (en) | Copper alloy sheet and manufacturing method thereof | |
WO2009122869A1 (en) | Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRONIC MATERIAL AND PROCESS FOR PRODUCING THE SAME | |
JP2011214088A (en) | Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRONIC MATERIAL AND PROCESS FOR PRODUCING SAME | |
WO2012070870A2 (en) | Magnesium alloy sheet having superior formability at room temperature, and method for manufacturing same | |
JP2009242890A (en) | Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL, AND METHOD FOR PRODUCING THE SAME | |
WO2020209485A1 (en) | Cu-co-si-fe-p-based copper alloy having excellent bending workability and method for preparing same | |
DE112014003691T5 (en) | Aluminum alloy sheet for use as an electrical conductor and manufacturing method therefor | |
CN114277291B (en) | Al-Zn-Mg-Cu aluminum alloy extrusion material for aerospace and preparation method thereof | |
KR880012775A (en) | Aluminum offset printing base material and manufacturing process | |
JP2017179569A (en) | Copper alloy for electronic material | |
DE102015226709A1 (en) | Aluminum alloy fin stock for heat exchangers, process for its manufacture, and heat exchanger comprising the fin material | |
JP3511648B2 (en) | Method for producing high-strength Cu alloy sheet strip | |
WO2022231148A1 (en) | Method for manufacturing aluminum alloy for heat exchanger | |
JP3500072B2 (en) | Titanium material for drum for producing electrolytic metal foil and method for producing the same | |
CN113308653A (en) | Aluminum lithium alloy heat treatment preparation method based on spray forming | |
WO2016117768A1 (en) | Method for manufacturing magnesium alloy billet for plastic processing and high-strength wrought magnesium alloy manufacturing method including the same | |
JPH06220594A (en) | Production of copper alloy for electric parts having good workability | |
JP4396874B2 (en) | Manufacturing method of copper base alloy strip for terminal | |
JP3237492B2 (en) | Aluminum alloy sheet for cross fin and method of manufacturing the same | |
CN113249666A (en) | Preparation method for reducing heat shrinkage rate of Cu-Ni-Si alloy | |
WO2018117762A1 (en) | Magnesium alloy plate material with excellent corrosion resistance, and method for producing same | |
JP6310004B2 (en) | Cu-Co-Ni-Si alloy for electronic parts | |
CN112170484A (en) | Preparation method of copper-magnesium alloy strip for automobile relay |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22795982 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22795982 Country of ref document: EP Kind code of ref document: A1 |