WO2022231014A1 - Biomass energy conversion system and biomass energy conversion method - Google Patents

Biomass energy conversion system and biomass energy conversion method Download PDF

Info

Publication number
WO2022231014A1
WO2022231014A1 PCT/JP2022/030824 JP2022030824W WO2022231014A1 WO 2022231014 A1 WO2022231014 A1 WO 2022231014A1 JP 2022030824 W JP2022030824 W JP 2022030824W WO 2022231014 A1 WO2022231014 A1 WO 2022231014A1
Authority
WO
WIPO (PCT)
Prior art keywords
biomass
raw material
energy conversion
combustion
unit
Prior art date
Application number
PCT/JP2022/030824
Other languages
French (fr)
Japanese (ja)
Inventor
幸資 坂本
義行 飛田和
孝元 松竹
Original Assignee
アキシオン株式会社
公益財団法人農村更生協会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021131917A external-priority patent/JP2023026175A/en
Priority claimed from JP2022014506A external-priority patent/JP2023112604A/en
Application filed by アキシオン株式会社, 公益財団法人農村更生協会 filed Critical アキシオン株式会社
Publication of WO2022231014A1 publication Critical patent/WO2022231014A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F11/00Other organic fertilisers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/02Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/08Non-mechanical pretreatment of the charge, e.g. desulfurization
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10CWORKING-UP PITCH, ASPHALT, BITUMEN, TAR; PYROLIGNEOUS ACID
    • C10C5/00Production of pyroligneous acid distillation of wood, dry distillation of organic waste
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L1/00Passages or apertures for delivering primary air for combustion 
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the first present invention provides a subcritical water treatment unit for reducing the molecular weight of the biomass raw material in a subcritical region, carbonizing the low molecular weight biomass raw material to obtain a dry distillation gas, and wood vinegar an extraction unit for extracting liquid and wood tar, a power generation unit for generating power using the dry distillation gas as a raw material, a recycling unit for burning the wood tar to recover heat, and a humus by impregnating the pyroligneous acid with organic matter.
  • a biomass energy conversion comprising: a humus liquid generation unit that generates a liquid; and a dissolution unit that collects exhaust gas containing carbon dioxide generated from the power generation unit or the recycling unit and dissolves it in the humus liquid. provides the system.
  • the first invention by using wood tar, pyroligneous acid, and carbon dioxide, which are by-products of biomass power generation, it is possible to effectively utilize residues that have been discarded in the past, thereby improving the energy conversion efficiency of the entire system. can be done.
  • carbon dioxide exhausted from the power generation unit and the combustion furnace is dissolved in the humus liquid in the dissolving unit, the amount of carbon dioxide emissions can be reduced.
  • the humic solution generating part can generate a humic solution containing a large amount of humic substances such as fulvic acid and humic acid, and also aims at effective utilization of the pyroligneous solution. be able to.
  • the growth of the raw material can be promoted by supplying the humus liquid in which carbon dioxide is dissolved to the raw material growing section.
  • a biomass energy conversion system in which gas components contained in biomass raw materials are used to generate power, pyroligneous acid components are used to generate humus liquid, and the liquid is used again to grow biomass raw materials.
  • the biomass raw material is grown using the humus solution containing fulvic acid and humic acid, the biomass raw material such as trees and seaweed can be grown efficiently.
  • the third invention by supplying biochar to the raw material growing section, it is possible to promote the growing of raw materials as a soil improvement material.
  • a biomass energy conversion system in which gas components contained in the biomass raw material are used to generate power, and biochar, which is combustion residue, is used again to grow the biomass raw material.
  • biochar which is combustion residue
  • by burying biochar in soil or sea highly stable carbon itself can be confined in soil or sea for a long period of time. Plant waste is decomposed by microorganisms in the soil and releases carbon dioxide into the atmosphere, but in the state of biochar, carbon can be sequestered, so the amount of carbon dioxide emissions is suppressed.
  • the energy efficiency of the biomass energy conversion system can be improved by recovering the exhaust heat from the combustion furnace with the heat recovery unit.
  • additional fuel is required, which increases running costs. For these reasons, most of the wood tar generated in conventional biomass energy conversion systems has been discarded.
  • the combustion air is supplied while being rotated by the rotating part in the combustion furnace, thereby generating a rotating airflow around the support shaft in the housing.
  • This rotating airflow can improve the combustion efficiency of the combustion chamber and can completely burn the wood tar at a high temperature, thereby suppressing the generation of harmful substances and combustion residue.
  • the wood tar itself burns at a high temperature, no additional fuel injection is required to maintain the temperature, enabling energy circulation within the biomass energy conversion system.
  • the rotating part is rotated by the thrust of the combustion air, a device for rotating the rotating part is not required, and cost can be reduced.
  • an ion section containing a ceramic material is provided on either the intake side or the exhaust side of the blower, the combustion air containing various ions can be supplied to the housing. . As a result, the combustion efficiency of the combustion chamber can be improved, and the wood tar can be completely burned at a high temperature, thereby suppressing the generation of harmful substances and combustion residue.
  • the sixth invention since a 2-cycle engine is used as the power generation unit, it is possible to reduce the number of parts compared to a 4-cycle engine, improving maintainability.
  • the control section controls the starting and stopping of a plurality of engine units, there is no need to stop the power generation section even in the event of maintenance or failure. This makes it possible to reduce stoppage losses due to troubles and maintenance.
  • the exhaust of one engine is connected to the intake of the other engine, there is no need to supply fuel to the engine combustion chambers from within the crankcase. As a result, it is possible to extend the life of the parts of the crankcase.
  • FIG. 1 is a block diagram of a biomass energy conversion system of the present invention
  • FIG. 1 is a flow chart of the biomass energy conversion system of the present invention
  • FIG. 2 is an exploded perspective view of the ion section of the biomass energy conversion system of the present invention
  • 1 is a perspective view of a first magnetic path of the biomass energy conversion system of the present invention
  • FIG. FIG. 2 is a side view of the first magnetic passage of the biomass energy conversion system of the present invention
  • FIG. 4 is a cross-sectional view of the second magnetic path of the biomass energy conversion system of the present invention
  • 4 is an operation flowchart of the biomass energy conversion system of the present invention;
  • a humic liquid 14 containing a large amount of acid is generated, and carbon dioxide 15 discharged from the biomass power generation section 2 or the recycling section 3 is dissolved in the dissolving section 8 to generate a high-concentration fulvic acid humic liquid 16, and the high-concentration A fulvic acid humus liquid 16 is provided to the raw material growing section 5 .
  • the biomass energy conversion system 1 by circulating processing residues such as pyroligneous acid and wood tar extracted from dry distillation liquid generated in biomass power generation, waste is suppressed to a state of almost zero, and the atmosphere is Achieve perfect zero emissions by capturing and utilizing the carbon dioxide released inside.
  • the biomass power generation section 2 includes a crusher 21 , a subcritical water treatment section 22 , an extraction section 23 , a storage section 24 and a power generation section 25 .
  • wood chips which are woody biomass resources supplied from the raw material growing section 5, are used as raw materials for the biomass power generation section 2, but the present invention is not limited to this.
  • the biomass raw material energy sources derived from animals and plants such as pruned branches, grass clippings, lumber residue, agricultural residue, plant resources, agricultural, forestry and fishery waste, straw and rice husks, livestock manure, sewage sludge, household waste, etc. Available organic resources may also be used.
  • the yield of the final product obtained when using woody biomass resources is about 35% charcoal, about 30% wood vinegar, about 20% wood tar, and about 15% gas. Many by-products are produced in addition to gas. In the present embodiment, wood tar and pyroligneous acid are especially used among these by-products to improve the energy efficiency of the biomass energy conversion system 1 .
  • Wood tar is a dark brown oily liquid that is produced when a woody raw material is carbonized, and contains hydrocarbons, phenols, acetic acid, and the like.
  • the pulverizer 21 finely pulverizes the biomass raw material 10 supplied from the raw material growing unit 5 into chips to obtain woody chips.
  • the shape and size of the wood chips can be arbitrarily set according to the power generation amount of the biomass power generation unit 2 .
  • the subcritical water treatment unit 22 hydrolyzes the biomass raw material 10 obtained from the raw material growing unit 5 by subcritical water treatment.
  • Subcritical water treatment efficiently decomposes organic substances by high-speed hydrolysis reaction in a high temperature and high pressure range (100° C., 1 Mpa to 374° C., 22.1 Mpa).
  • the ionic product of water reaches its maximum value around 530 K (257° C.), and the concentrations of H + and OH ⁇ at that time are 30 times or more than at room temperature.
  • the extreme attack of these ions on potential hydrolytic binding sites leads to rapid hydrolysis.
  • cellulose, hemicellulose, etc. which are the main components of the biomass raw material 10
  • fulvic acid is produced as a by-product.
  • the fulvic acid produced by the subcritical water treatment is treated in the same process as the humus liquid 14 described below.
  • the subcritical water treatment adopts a batch type capable of handling various raw materials, but may be a continuous type in which the biomass raw material 10 is continuously supplied by a conveyor or the like.
  • the continuous type is capable of continuous operation for 24 hours, does not require heating and discharging of steam in one cycle, and requires less input energy.
  • Pyrolysis furnace 26 may be an external heat rotary kiln furnace, fixed bed furnace, stoker furnace, fluidized bed furnace, internal circulation fluidized bed boiler, external circulation fluidized bed boiler, or other types of furnaces. may be used.
  • the external heat type does not burn the wood chips directly, and steams them with heat from the outside, so no harmful substances such as dioxins are generated.
  • the wood chips hydrolyzed and dried by the subcritical water treatment unit 22 are placed in a reaction cylinder made of heat-resistant steel, and the wood chips are heated and gasified while being rotated. As a result, the heat transfer coefficient becomes high due to contact heat transfer, and the wood chips can be efficiently gasified.
  • the dry distillation gas from which impurities have been removed by the scrubber 27 , collector 28 and filter section 29 is stored in the storage section 24 .
  • the power generation unit 25 uses the dry distillation gas stored in the storage unit 24 to generate power with an output of 2 MW. As shown in FIG. 11, the power generation unit 25 includes ten engine units 25A, an engine control unit 25B that controls the engine units 25A, and a cable 25C that electrically connects the engine units 25A and the engine control unit 25B. ,have.
  • the engine unit 25A is a 2-cycle engine, is composed of at least 2 cylinders, and has a structure in which exhaust gas from one cylinder combustion chamber is taken into the other cylinder combustion chamber. Specifically, air containing fuel compressed by one piston is supplied to the other cylinder for ignition and combustion. After that, the air containing the compressed fuel is supplied to one cylinder by the downward movement of the other piston, and is ignited and burned. With such a configuration, there is no need to supply fuel from the crankcase as in a general two-cycle engine, so it is possible to extend the life of parts in the crankcase.
  • a supercharger or an intercooler may be used to improve engine efficiency with dry distillation gas with a low calorific value.
  • the engine control unit 25B controls starting and stopping of multiple engine units 25A via cables 25C. Since the power generation section 25 according to the present embodiment is composed of ten engine units 25A, even if one of the engine units 25A is stopped due to failure or maintenance, the other engine units 25A can continue to operate. can. Carbon dioxide 15 is recovered from the exhaust gas from the power generation unit 25 by a DAC device and is managed in a predetermined storage tank.
  • the reuse section 3 is composed of a combustion furnace 6, a boiler 31, and a turbine 32.
  • the reuse unit 3 incinerates the wood tar 13 produced as a by-product by the extraction unit 23 during the power generation of the biomass power generation unit 2 in the combustion furnace 6, recovers heat with the boiler 31 and the turbine 32, and obtains output.
  • the reuse unit 3 may use at least part of the steam from the boiler 31 as another heat source in the biomass energy conversion system 1 .
  • Carbon dioxide 15 is recovered from the exhaust gas from the combustion furnace 6 by a DAC device and managed in a predetermined storage tank.
  • the boiler 31 and turbine 32 are examples of the heat recovery section of the present invention.
  • the support shaft 71 is a substantially cylindrical shaft that extends in the vertical direction, and is supplied with combustion air A that has passed through the ion section 63 , the first magnetic passage 64 and the second magnetic passage 65 by the blower 62 . As shown in FIG. 4, a shaft passage 71A is defined inside the support shaft 71. As shown in FIG. 4,
  • the rotating part 72 is arranged below the support shaft 71 and is rotatable in the circumferential direction of the support shaft 71 .
  • the rotating part 72 is provided with a first exhaust port 72A that discharges the combustion air A in a substantially tangential direction of the cylindrical support shaft 71 and substantially symmetrically with the first exhaust port 72A with respect to the center of the support shaft 71. and a second exhaust port 72B.
  • the rotating portion 72 When the rotating portion 72 is supplied with the combustion air A from the blower 62, the rotating portion 72 rotates counterclockwise when viewed from above due to the thrust.
  • a counterclockwise rotating updraft U is generated above the rotating portion 72 as shown in FIG. Note that the rotation direction of the rotating portion 72 may be clockwise. Considering the influence of the rotation of the earth, it is desirable to rotate counterclockwise in the northern hemisphere and clockwise in the southern hemisphere in order to efficiently burn the wood tar 13 .
  • the first blowout port 73 is provided above the rotating part 72, and as shown in FIG. 5, the combustion air A is blown out from both ends of the substantially pipe shape. At this time, as shown in FIG. 3, the combustion air A is jetted from the first outlet 73 so as to be inclined downward at an angle of 45°. In other words, the combustion air A blown out from the first blowout port 73 is inclined not toward the exhaust port 61a but toward the rotating portion 72 with respect to a plane 73P orthogonal to the support shaft 71 indicated by the dashed line in FIG. blown out in the direction
  • the injection angle of the first outlet 73 is not limited to the downward oblique angle of 45 degrees, and may be any direction inclined downward from the horizontal direction.
  • the second outlet 74 has substantially the same shape as the first outlet 73 and is provided above the first outlet 73 .
  • the second blowout port 74 has a substantially pipe shape extending in a direction orthogonal to the first blowout port 73, and blows combustion air A from both ends.
  • the combustion air A is jetted from the second outlet 74 so as to be inclined downward at an angle of 45°.
  • the combustion air A blown out from the second outlet 74 is inclined toward the rotating part 72 rather than toward the exhaust port 61a with respect to a plane 74P perpendicular to the support shaft 71 indicated by the dashed line in FIG. blown out in the direction
  • the injection angle of the second outlet 74 is not limited to the downward oblique angle of 45 degrees, and may be any direction that is inclined downward from the horizontal direction.
  • a burner 75 is provided on the bottom surface of the housing 61 and near the rotating portion 72 .
  • the burner 75 is provided for ignition at the start of operation of the combustion furnace 6, and may be stopped after a predetermined period of time has elapsed from the start of operation depending on the type of material to be burned. This reduces the fuel used by the burners 75 and allows the combustion furnace 6 to operate at low cost.
  • a lower side wall of the housing 61 is provided with a nozzle 76 for supplying the wood tar 13, which is a combustion material, to the combustion chamber 61A.
  • the nozzle 76 is connected to the fuel tank 6A, and the pressure pump and the electromagnetic valve 77 spray the wood tar 13 into the combustion chamber 61A at regular intervals.
  • a heater is installed in the fuel tank 6A, and the supplied wood tar 13 is heated to 60°C.
  • the nozzle 76, the solenoid valve 77, and the pressure-feeding pump are examples of the supply section of the present invention.
  • the blower 62 is a vacuum blower and is used to supply combustion air A to the housing 61 . Although the vacuum pressure of the vacuum blower of this embodiment is set to 20 kPa, any value can be set according to the scale of the combustion furnace 6, the input amount of the wood tar 13, the shape of the housing 61, and the like. .
  • the ion section 63 is composed of an outer cylinder 63A, an inner cylinder 63B, and ceramic balls 63C.
  • a large number of ceramic balls 63C are enclosed in an inner cylinder 63B and fixed to an outer cylinder 63A.
  • the ion part 63 is arranged at the intake port of the blower 62, and the air sucked by the blower 62 passes through the gap between the outer cylinder 63A and the inner cylinder 63B and the gap between the ceramic balls 63C.
  • the material enclosed in the inner cylinder 63B is not limited to the ceramic ball 63C, and the shape is not limited as long as it is a ceramic material.
  • Ceramic ball 43 is an example of the ceramic material of the present invention.
  • the ion section 63 is arranged on the intake side of the blower 62, but may be arranged on the exhaust side or both sides.
  • the component of the ceramic ball 63C is not particularly limited, and includes various oxides, nitrides, carbides, borides and other compounds. Ceramic components such as aluminum oxide, calcium oxide, magnesium oxide, zirconium oxide, titanium oxide, fused silica, non-fused silica, spinel, cordierite, forsterite, zircon and mullite, aluminum nitride, zirconium nitride, titanium nitride, boron nitride , aluminum carbide, calcium carbide, silicon carbide, zirconium carbide, titanium carbide, tungsten carbide, zirconium boride, titanium boride, tungsten boride, aluminum titanate and aluminum zirconate titanate.
  • Ceramic components such as aluminum oxide, calcium oxide, magnesium oxide, zirconium oxide, titanium oxide, fused silica, non-fused silica, spinel, cordierite, forsterite, zircon and mullite, aluminum nitride, zirconium
  • mainly composed means that, when the ceramic balls 63C are taken as 100% by mass, the above-mentioned predetermined ceramic components are singular in the case of one kind, and the total is 50% by mass in the case of two or more kinds. It means that it contains more than That is, in the case of one type, the predetermined ceramic component is 100% by mass.
  • This content is the content of the ceramic component when only one of the predetermined ceramic components is contained, and the total of these ceramic components when two or more of the predetermined ceramic components are contained. content.
  • the ceramic ball 63C may be subjected to various treatments to improve corrosion resistance.
  • Various treatments include, for example, various treatments for improving corrosion resistance to molten metal. That is, corrosion-resistant layers formed by coating (zirconia coating layers, calcia coating layers, etc.), impregnated corrosion-resistant layers (layers in which zirconia, calcia, etc. are fixed to the base material surface), and the like can be mentioned.
  • the corrosion-resistant layer formed by impregnation is obtained by immersing the substrate in an aqueous solution of a water-soluble organometallic compound (calcium acetate, etc.) containing a metal element such as Ca (Zr, Mg, etc.) to impregnate the substrate with the aqueous solution.
  • the first magnetic passage 64 is installed in the flow path between the blower 62 and the housing 61, as shown in FIG.
  • the first magnetic path 64 as shown in FIG. 7, has a first base 64A, a second base 64B, and a magnet 64C.
  • the first base 64A and the second base 64B are made of stainless steel.
  • the first base 64A is separated from the second base 64B across a passage H, and contains a plurality of magnets 64C.
  • the total magnetic flux density of the magnet 64C of the first base 64A and the second base 64B is 140,000 Gauss, but any magnetic flux density can be set according to the capacity of the blower 62 and the scale of the combustion furnace 6.
  • a permanent magnet such as a neodymium magnet using a rare earth element or a samarium-cobalt magnet may be used for the magnet 64C.
  • Combustion air A discharged from the blower 62 is throttled by the passage H of the first magnetic passage 64, so that its pressure and temperature rise.
  • Combustion air A travels through the passage H in a zigzag shape such that it approaches the first base 64A, then approaches the second base 64B, approaches the first base 64A again, and approaches the second base 64B. It passes through magnetic passage 64 .
  • the arrangement of the poles of the magnet 64C is set so that the combustion state of the combustion chamber 20 is optimized.
  • the second magnetic passage 65 is installed in the air passage 66 between the first magnetic passage 64 and the housing 61, as shown in FIG.
  • the second magnetic path 65 as shown in FIG. 9, comprises an outer shell 65A, a screw 65B, and a magnet 65C.
  • the outer shell 65A has a predetermined thickness, and a plurality of magnets 65C are arranged inside. Combustion air A flows through the second magnetic passage 65 along the groove 65a of the screw 65B.
  • the outer shell 65A is an example of the outer tube of the present invention
  • the screw 65B is an example of the inner tube of the present invention.
  • the magnets 65C are installed at two positions separated by 180° in the circumferential direction of the screw 65B, and the entire second magnetic path 65 has a magnetic flux density of 80,000 gauss.
  • the magnet 65C utilizes a repelling action by opposing the passage H between SS or NN and an attracting action by opposing the passage H between the SS or NN, thereby causing the air flowing through the groove 65a to move. bend in a certain direction.
  • the combustion air A swirls in the grooves 65a.
  • the arrangement of the poles of the magnet 65C is set in advance so that the air flowing through the grooves 65a can be efficiently stirred.
  • the rotating part 72 rotates counterclockwise about the support shaft 71, and the combustion air A is jetted obliquely downward from the first outlet 73 and the second outlet 74. be.
  • a burner 75 is automatically ignited after a predetermined time has passed since the blower 62 was started.
  • the pressure pump for supplying the wood tar 13 is activated, the electromagnetic valve 77 is opened, and fuel is supplied from the fuel tank 6A to the housing 61. Since the wood tar 13 is sprayed from the nozzle 76 , it is ignited and burned by the flame of the burner 75 . At this time, the wood tar 13 thrown into the housing 61 is raised upward by the counterclockwise rotating rising airflow U generated by the rotating part 72 while burning, and is obliquely discharged from the first outlet 73 and the second outlet 74 .
  • the combustion air A Since it is pushed downward by the combustion air A that is ejected downward, the combustion air A stays in the housing 61 for a long time, and turbulence is generated partially, causing the temperature in the housing 61 to rise to 1500° C. or higher. It reaches a maximum of 1800°C.
  • the humus liquid generation unit 4 has a production tank 41 and a storage unit 42 that stores the humus liquid 14 .
  • the humus liquid 14 is produced by soaking the organic substance, which is the biomass raw material 10 collected by the raw material growing section 5 , in the pyroligneous acid 12 .
  • the produced humus liquid 14 is stored in the storage section 42 .
  • the humic liquid 14 contains humin, humic acid, and fulvic acid as main components, and can be used for soil improvement, chelate marine, fruit tree cultivation, fish and livestock farming, and the like.
  • the pyroligneous acid 12 to be used preferably has a moisture content of 80% or more, an organic acid content of 1.0% or more, a pH (H2O) of 5.0 or less, and an electrical conductivity of 1.0 mS/cm or more.
  • the pyroligneous acid solution is mixed in a volume ratio of 1.0 organic matter to 12 pyroligneous acid in a volume ratio of 0.5 or more to the organic matter in the production tank 41, stirred with a stirrer or the like, and the type of organic matter is mixed for at least 3 hours or more. Depending on the situation, it is soaked for about 600 hours.
  • the humus liquid 14 may be mixed with alginic acid to form a gel so that the elution of the components of the humus liquid 14 is controlled, and the effect of promoting the physiological activity of animals and plants can be maintained.
  • the biochar 11 may be impregnated with the humus liquid 14 so as to be solidified, and the elution of the components of the humus liquid 14 may be controlled to maintain the effect of stimulating the physiological activities of animals and plants.
  • the raw material growing department 5 is a forest, a farm, a fish or livestock farm, a seaweed farm, etc., and uses biochar 11 and humus liquid 14 to efficiently grow animals and plants.
  • the forest by embedding the biochar 11 in the soil and spraying the humus liquid 14 containing fulvic acid, effects such as efficient growth of trees and restoration of salt-damaged paddy fields by soil improvement are expected.
  • farms by spraying the humus liquid 14, effects such as efficient harvesting of crops, reduction in the occurrence of plant diseases, and improvement in sugar content are expected.
  • aquaculture farms it is expected that spraying the humus liquid 14 on facilities will reduce offensive odors, and drinking the liquid will reduce offensive odors and mortality in the facilities.
  • the dissolving section 8 has a dissolving tank 81 to which the carbon dioxide 15 supplied from the biomass power generation section 2 or the recycling section 3 is supplied.
  • the dissolution tank 81 has a higher dissolution efficiency of the carbon dioxide 15 than the supply method by aeration. If the carbon dioxide 15 is supplied by aeration, it escapes to the outside before it dissolves into the liquid. Dissolved carbon dioxide concentration can be achieved.
  • Oxygen Fighter registered trademark
  • Iwatani Corporation is used as the dissolving unit 8 but the present invention is not limited to this, and other non-bubble dissolving devices may be used.
  • the gas dissolved in the humus liquid 14 can be replaced with carbon dioxide, so a higher concentration of carbon dioxide can be achieved compared to aeration.
  • the amount of carbon dioxide 15 supplied to the dissolving tank 81 does not necessarily have to be constant, and the supply amount may be varied according to the external environment such as time and weather. According to such a configuration, since the humic liquid 14 containing fulvic acid is put into the closed dissolution tank 81, carbon dioxide can be dissolved at a high concentration. Furthermore, since the carbon dioxide is dissolved in the closed dissolving tank 81, the carbon dioxide can be efficiently dissolved in the humus liquid 14 without leaking to the outside. In the dissolving tank 81, the dissolved oxygen concentration (DO value), PH value and potential can be freely controlled. In this embodiment, about 500 to 1000 ppm of carbon dioxide 15 is dissolved with the DO value in the dissolving tank 81 set to 0 (zero).
  • a high-concentration fulvic acid humus solution 16 with a pH value of 3 to 5 and a low potential is purified.
  • the gas to be dissolved is not limited to carbon dioxide, and may be nitrogen, oxygen, hydrogen, or the like. Nitrogen, oxygen, etc. are recovered from the exhaust gas of the power generation unit 25 or the atmosphere, and dissolved in the humus liquid 14 in the dissolution tank 81 .
  • FIG. A wood 51 which is an example of the biomass raw material 10, is collected from the raw material growing unit 5 (S1).
  • the pulverizer 21 grinds wood chips finely, and the subcritical water treatment section 22 decomposes the wood into low molecular weight particles under high temperature and high pressure conditions (S2).
  • Low-molecular-weight wood chips are supplied to the pyrolysis furnace 26 and indirectly heated at a high temperature to thermally decompose them into dry distillation gas and biochar 11 (S3).
  • a part of the obtained dry distillation gas is self-contained by circulating it as heating energy.
  • the biochar 11 obtained from the pyrolysis furnace 26 is used for soil reformation in the raw material growing section 5, and is used for improving water retention and permeability, replenishing minerals, purifying water, and stabilizing the pH of acidic soil. (S4).
  • a carbon minus effect can be obtained in which carbon dioxide generated in the decaying process can be fixed in the soil.
  • the supply of the biochar 11 to the raw material growing section 5 can be automated by using a moving device such as a belt conveyor.
  • the dry distillation gas from the pyrolysis furnace 26 is extracted through the scrubber 27, collector 28, and filter section 29 (S5).
  • the separated wood tar 13 is temporarily stored in the fuel tank 6A (S6), and the wood vinegar 12 is extracted and separated (S9).
  • the wood tar 13 is supplied to the combustion furnace 6 and burned at a high temperature (S7), and waste heat is recovered by the boiler 31 and the turbine 32 and used as a heat source in the power generation or biomass power generation section 2 (S8).
  • the pyroligneous acid 12 contains 10 to 1000 ppm of formaldehyde, which must be removed in consideration of the environmental load. Considering the effects on animals and the environment, formaldehyde in the pyroligneous acid 12 is desirably 100 ppm or less, more desirably 10 ppm or less.
  • alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkaline earth metals, alkali metal carbonates, and alkalis such as ammonia are added (S10).
  • S10 alkali metal hydroxides
  • alkaline earth metals alkali metal carbonates
  • alkalis such as ammonia
  • the formaldehyde-reduced pyroligneous acid 12 is transported to the humus liquid generation unit 4 by a pipeline, and the organic matter from the raw material growing unit 5 is added to generate the humus liquid 14 containing fulvic acid (S11).
  • the humic liquid 14 is transported to the dissolving section 8, and the carbon dioxide 15 discharged from the power generation section 25 and the recycling section 3 is dissolved, thereby becoming a humic liquid 16 containing high-concentration fulvic acid (S12).
  • the high-concentration fulvic acid humus liquid 16 has a high fulvic acid concentration of 1000 ppm or more, and has a high soil improvement effect.
  • the high-concentration fulvic acid humus liquid 16 is supplied to the raw material growing section 5 by a transportation system, and is sprayed on the soil, added to the culture tank, administered to the drinking water of cultured animals, and used as a marine chelate.
  • the dry distillation gas from which tar has been removed is stored in the storage unit 24 (S13), and the amount of supply to the power generation unit 25 is adjusted by the control valve.
  • the power generation unit 25 performs biomass power generation using the dry distillation gas as fuel (S14).
  • the biomass raw material 10 is subjected to subcritical water treatment as a pre-process for extracting the dry distillation gas in the extraction unit 23, it is possible to reduce the molecular weight of the biomass raw material 10 and to gasify it in the extraction unit 23 for a short time. It becomes possible.
  • the high-concentration fulvic acid humus liquid 16 in which the carbon dioxide 15 is dissolved is supplied to the raw material growing section 5, thereby promoting the growing of the raw material. Further, it is possible to realize a biomass energy conversion system 1 in which gas components contained in the biomass raw material 10 are used to generate electricity, and humus liquid 14 is produced from the 12 pyroligneous acid components and used again to grow the biomass raw material 10 . In addition, since the biomass raw material 10 is grown using the high-concentration fulvic acid humic liquid 16 containing fulvic acid and humic acid, biomass raw materials such as trees and seaweed can be grown efficiently.
  • the biochar 11 by supplying the biochar 11 to the raw material growing unit 5, it is possible to promote the growing of the raw material as a soil improvement material. Further, it is possible to realize a biomass energy conversion system 1 in which gas components contained in the biomass raw material 10 are used to generate power and the biochar 11 of the combustion residue is used again to grow the biomass raw material 10 .
  • a biomass energy conversion system 1 in which gas components contained in the biomass raw material 10 are used to generate power and the biochar 11 of the combustion residue is used again to grow the biomass raw material 10 .
  • highly stable carbon itself can be confined in the soil or the sea for a long period of time. Plant waste is decomposed by microorganisms in the soil and releases carbon dioxide into the atmosphere, but in the state of biochar 11, it is possible to contain carbon, so the amount of carbon dioxide emissions is suppressed. .
  • the first blowout port 73 and the first blowout port 73 blow out the combustion air A in a direction inclined toward the rotating portion 72 on the plane orthogonal to the support shaft 71 , so that the air generated by the rotating portion 72
  • the rotating ascending airflow U is suppressed from flowing out to the exhaust port 61a, and the combustion air A is kept in the combustion chamber 61A for a long time.
  • the combustion efficiency of the combustion chamber 61A can be improved, and the wood tar 13 can be completely burned at a high temperature, thereby suppressing the generation of harmful substances and combustion residue.
  • the power generation section 25 since a 2-cycle engine is used as the power generation section 25, it is possible to reduce the number of parts compared to a 4-cycle engine and improve maintainability.
  • the engine control section 25B controls the starting and stopping of the plurality of engine units 25A, the power generation section 25 is not stopped even during maintenance or failure. This makes it possible to reduce stoppage losses due to troubles and maintenance.
  • the exhaust of one engine is connected to the intake of the other, there is no need to supply fuel directly from within the crankcase. As a result, it is possible to extend the life of the parts of the crankcase.
  • biomass energy conversion system biomass power generation unit 3 reuse unit 4 humus liquid generation unit 5 raw material generation unit 6 combustion furnace 7 blowing unit 8 melting unit 10 biomass raw material 12 wood vinegar 13 wood tar 14 humus liquid 15 carbon dioxide 16 high concentration fulvo Acid humus liquid 22 Sub-critical water treatment unit 23 Extraction unit 25 Power generation unit 25A Engine unit 25B Engine control unit 26 Pyrolysis furnace 31 Boiler 32 Turbine 41 Production tank 42 Storage unit 61A Combustion chamber 63C Ceramic balls 81 Melting tank

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

[Problem] To provide a biomass energy conversion system and a biomass energy conversion method that decrease the amount of carbon dioxide discharged and effectively utilize the residue generated by biomass power generation to achieve good energy conversion efficiency. [Solution] A biomass energy conversion system 1 has: a subcritical water treatment unit 22 that reduces the molecular weight of a biomass starting material 10 in the subcritical region; an extraction unit 23 that obtains a dry distillation gas by carbonizing the biomass starting material 10 reduced in molecular weight, and extracts pyroligneous acid 12 and wood tar 13; a power generation unit 25 that generates power using the dry distillation gas as a starting material; a combustion furnace 6 that combusts the wood tar 13; a humic solution generation unit 4 that generates a humic solution 14 by impregnating an organic substance with the pyroligneous acid 12; and a dissolution unit 8 that recovers at least some carbon dioxide generated from the power generation unit 25 and the combustion furnace 6, and dissolves the same in the humic solution 14.

Description

バイオマスエネルギー変換システム及びバイオマスエネルギー変換方法Biomass energy conversion system and biomass energy conversion method
 本発明は、バイオマスエネルギー変換システム及びバイオマスエネルギー変換方法に関し、特にバイオマス発電において副産物として生成される木タール及び木酢液を再利用したバイオマスエネルギー変換システム及びバイオマスエネルギー変換方法に関する。 The present invention relates to a biomass energy conversion system and a biomass energy conversion method, and more particularly to a biomass energy conversion system and a biomass energy conversion method that reuse wood tar and wood vinegar that are produced as by-products in biomass power generation.
 近年、バイオマス、特にリグニンを多く含む木質系材料の熱分解ガス化は、新規なエネルギー資源の供給源として大きな可能性を有しており、有効利用する試みが行われている。木質系材料を熱分解でガス化するには、原料となる木質バイオマスを温度200~600℃の低酸素状態で、乾留ガス(CO、H2、CH4、CO2、H2O)、炭化物、炭化水素に分解し、熱分解生成物を酸素又は空気を制限下供給して燃焼し、次に前記炭化物を高温加熱してガス化して水性ガスを生成する。 In recent years, the pyrolysis and gasification of biomass, especially woody materials that contain a large amount of lignin, has great potential as a source of new energy resources, and attempts are being made to effectively utilize it. To gasify woody materials by pyrolysis, raw woody biomass is decomposed into dry distillation gas (CO, H2, CH4, CO2, H2O), carbides, and hydrocarbons in a low-oxygen state at a temperature of 200 to 600°C. The pyrolysis products are then combusted with a controlled supply of oxygen or air, and then the char is gasified by high temperature heating to produce water gas.
 上述の廃木材等バイオマスから炭化物を熱分解して熱分解ガスを発生させる装置としては例えば、特許文献1に記載のバイオマス発電システムがある。バイオマス発電システムは、乾留ガスを発生させる炭化炉と、乾留ガスを燃料とするマイクロガスタービン及びガスエンジンを有する発電機と、乾留ガスに含まれるタール分を除去する精製装置と、精製された乾留ガスの発熱量を調整するホルダと、を備えている。タール分が精製装置によって除去されるため、ガスタービンやガスエンジンの駆動部に付着して性能が低下することを抑制できる。これにより、清掃作業や取り換え作業が不要となり、メンテナンスの作業負担を軽減することができる。 For example, Patent Document 1 describes a biomass power generation system that generates pyrolysis gas by pyrolyzing carbonized matter from biomass such as waste wood. The biomass power generation system includes a carbonization furnace that generates dry distillation gas, a generator having a micro gas turbine and a gas engine that use the dry distillation gas as fuel, a refiner that removes tar from the dry distillation gas, and a refined dry distillation gas. and a holder for adjusting the calorific value of the gas. Since the tar content is removed by the refining device, it is possible to suppress the deterioration of performance due to adhesion to the drive parts of gas turbines and gas engines. This eliminates the need for cleaning work and replacement work, and can reduce the burden of maintenance work.
 特許文献2のバイオマス発電システムでは、炭化処理の際に発生するガス及びタールの一部を取り込んで炭化処理の別の加熱源とする炭化装置と、バイオマス炭化物が投入されるガス化室と、を備えている。炭化装置により、バイオマス燃料から炭化物が生成されると共に、バイオマス燃料の炭化処理の際に発生する可燃性熱分解ガスが回収され、回収された可燃性熱分解ガスが二段式ガス化炉の下段側のガス化・燃焼部、及び上段側のガス改質部に供給される。一方、回収された炭化物は、粉砕機等の加工手段で粉体とされ、二段式ガス化炉のガス化・燃焼部に供給される。これにより、炭化物の燃焼とガス化とを行う共に、ガス改質部に送り込まれた可燃性熱分解ガスを改質して可燃性ガスを生成することができる。 The biomass power generation system of Patent Document 2 includes a carbonization device that takes in part of the gas and tar generated during the carbonization process and uses it as another heat source for the carbonization process, and a gasification chamber into which the biomass carbide is charged. I have. The carbonization device generates charcoal from biomass fuel, collects combustible pyrolysis gas generated during carbonization of biomass fuel, and collects combustible pyrolysis gas in the lower stage of the two-stage gasification furnace. It is supplied to the gasification/combustion section on the side and the gas reforming section on the upper stage. On the other hand, the recovered charcoal is pulverized by processing means such as a pulverizer and supplied to the gasification/combustion section of the two-stage gasification furnace. As a result, the charcoal is burned and gasified, and the combustible pyrolysis gas sent to the gas reforming section is reformed to generate the combustible gas.
特開2004-239162号公報JP-A-2004-239162 特開2016-44215号公報JP 2016-44215 A
 上述のバイオマス発電システムでは、バイオマス原料の熱分解の過程で高分子炭化水素である木タールが発生する。これらは、設備内の配管やフィルタを詰まらせ、発電機に付着することにより故障の原因となるため、各種装置によって除去され廃棄又は再利用される。熱分解の過程で生成される炭の一部は固形燃料として再利用が進んでいるが、大量に発生する木タールの一部を害虫駆除等に利用することがあっても、多くは廃棄されているのが現実であった。また、分留して軽油、重油、およびピッチなどに分けて軽油は溶剤や燃料として利用し、重油は防腐剤に利用することも可能であるが、コスト等の関係から現在ではほとんど行われていない。 In the biomass power generation system described above, wood tar, which is a high-molecular weight hydrocarbon, is generated in the process of thermal decomposition of biomass raw materials. These particles clog the pipes and filters in the facility and adhere to the generator, causing malfunctions. Some of the charcoal produced in the pyrolysis process is being reused as solid fuel, but even if some of the wood tar generated in large quantities is used for pest control, most of it is discarded. was the reality. It is also possible to fractionate and divide into light oil, heavy oil, pitch, etc., and use the light oil as a solvent or fuel, and the heavy oil as a preservative. do not have.
 バイオマス原料の熱分解の際には、乾留液として木酢液等の副産物が排出され、一部は害虫駆除等に利用されるが多くは廃棄されている。さらに、バイオマス原料の乾留ガスを内燃機関によりバイオマス発電を行う際は、多くの二酸化炭素が発生するため環境への影響が懸念されていた。これにより、バイオマスエネルギー変換システムにおいて、バイオマス発電の際に副産物として発生する木タールや木酢液を有効活用することで、システム全体としてのエネルギー効率の改善を図ることが求められていた。 During the thermal decomposition of biomass raw materials, by-products such as pyroligneous acid are discharged as dry distillation liquid, and some are used for pest control, but most are discarded. Furthermore, when biomass power generation is performed by using an internal combustion engine to generate a biomass power using dry distillation gas, which is a raw material of biomass, a large amount of carbon dioxide is generated, and there has been concern about the impact on the environment. As a result, in biomass energy conversion systems, there is a need to improve the energy efficiency of the entire system by effectively utilizing wood tar and pyroligneous acid, which are generated as by-products during biomass power generation.
 本発明は、二酸化炭素の排出量を低減するとともにバイオマス発電で発生する残渣を有効活用してエネルギー変換効率の良いバイオマスエネルギー変換システム及びバイオマスエネルギー変換方法を提供することを目的とする。 The purpose of the present invention is to provide a biomass energy conversion system and a biomass energy conversion method that reduce carbon dioxide emissions and effectively utilize the residue generated in biomass power generation to achieve high energy conversion efficiency.
 上記課題を解決するために第1の本発明は、バイオマス原料を亜臨界領域で低分子化する亜臨界水処理部と、低分子化された前記バイオマス原料を炭化させて乾留ガスを得るとともに木酢液及び木タールを抽出する抽出部と、前記乾留ガスを原料として発電する発電部と、前記木タールを燃焼させて熱回収する再利用部と、前記木酢液に有機物を含侵させることにより腐植液を生成する腐植液生成部と、前記発電部又は前記再利用部から発生する二酸化炭素を含む排気を回収し、前記腐植液に溶解させる溶解部と、を有することを特徴とするバイオマスエネルギー変換システムを提供している。 In order to solve the above-mentioned problems, the first present invention provides a subcritical water treatment unit for reducing the molecular weight of the biomass raw material in a subcritical region, carbonizing the low molecular weight biomass raw material to obtain a dry distillation gas, and wood vinegar an extraction unit for extracting liquid and wood tar, a power generation unit for generating power using the dry distillation gas as a raw material, a recycling unit for burning the wood tar to recover heat, and a humus by impregnating the pyroligneous acid with organic matter. A biomass energy conversion, comprising: a humus liquid generation unit that generates a liquid; and a dissolution unit that collects exhaust gas containing carbon dioxide generated from the power generation unit or the recycling unit and dissolves it in the humus liquid. provides the system.
 第2の発明は、第1の発明のバイオマスエネルギー変換システムであって、前記バイオマス原料は、原料育成部で育成され、前記腐植液は、前記原料育成部に提供されることを特徴としている。 A second invention is the biomass energy conversion system of the first invention, characterized in that the biomass raw material is grown in a raw material growing section, and the humus liquid is provided to the raw material growing section.
 第3の発明では、第1の発明のバイオマスエネルギー変換システムであって、前記バイオマス原料は、原料育成部で育成され、前記抽出部は、前記バイオマス原料を炭化させたバイオ炭を抽出し、前記バイオ炭は、前記原料育成部に提供されることを特徴としている。 In a third invention, in the biomass energy conversion system of the first invention, the biomass raw material is grown in a raw material growing section, the extraction section extracts biochar obtained by carbonizing the biomass raw material, and The biochar is characterized by being provided to the raw material growing section.
 第4の発明は、第1の発明から第3の発明のいずれかのバイオマスエネルギー変換システムであって、前記再利用部は、前記木タールを燃焼する燃焼炉と、前記燃焼炉の熱を回収する熱回収部と、をさらに有し、前記燃焼炉は、内側に燃焼室を備える筐体と、空気通路を通って前記燃焼室に燃焼用空気を送る送風機と、前記燃焼室に設置され、前記燃焼用空気を供給する吹出部と、を有し、前記吹出部は、支持軸と、前記支持軸に回転可能に設けられ前記燃焼用空気が吹き出す回転部と、を有し、前記送風機の吸気側又は排気側のいずれか一方には、セラミック材が収納されたイオン部が設けられ、前記燃焼用空気は、前記イオン部を通過して前記送風機により前記燃焼室に供給されることを特徴としている。 A fourth invention is the biomass energy conversion system according to any one of the first invention to the third invention, wherein the recycling unit comprises a combustion furnace for burning the wood tar and recovering heat from the combustion furnace. and a heat recovery unit, wherein the combustion furnace includes a housing provided with a combustion chamber inside, a blower for sending combustion air to the combustion chamber through an air passage, and a blower installed in the combustion chamber, a blowing part for supplying the combustion air, the blowing part having a support shaft and a rotating part rotatably provided on the support shaft for blowing the combustion air, An ion section containing a ceramic material is provided on either the intake side or the exhaust side, and the combustion air passes through the ion section and is supplied to the combustion chamber by the blower. and
 第5の発明は、第4の発明のいずれかのバイオマスエネルギー変換システムであって、前記燃焼室には燃焼後の空気が排出される排気口が設けられ、前記吹出部は、前記支持軸の径方向外方に前記燃焼用空気が吹き出す押さえ部をさらに有し、前記押さえ部は、前記支持軸において前記回転部よりも前記排気口に近い位置に設置され、前記支持軸に直交する平面において前記回転部側に傾斜する方向に前記燃焼用空気を吹き出すことを特徴としている。 A fifth invention is the biomass energy conversion system according to any one of the fourth inventions, wherein the combustion chamber is provided with an exhaust port through which air after combustion is discharged, and the blow-out portion is located at the support shaft. It further has a pressing portion for blowing out the combustion air radially outward, the pressing portion is installed at a position closer to the exhaust port than the rotating portion on the support shaft, and is arranged on a plane orthogonal to the support shaft. It is characterized in that the combustion air is blown out in a direction inclined toward the rotating part.
 第6の発明は、第1の発明のバイオマスエネルギー変換システムであって前記発電部は、少なくとも2つの2サイクルエンジンを有する複数のエンジンユニットと、前記エンジンユニットの起動及び停止を制御するエンジン制御部と、を有し、前記エンジンは、一方のエンジンの排気が他方のエンジンの吸気に接続されていることを特徴としている。 A sixth invention is the biomass energy conversion system according to the first invention, wherein the power generation unit includes a plurality of engine units having at least two two-cycle engines, and an engine control unit that controls start and stop of the engine units. and said engines are characterized in that the exhaust of one engine is connected to the intake of the other engine.
 第7の発明は、バイオマス原料を亜臨界領域で低分子化するステップと、低分子化された前記バイオマス原料を炭化させて乾留ガスを得るとともに木酢液及び木タールを抽出するステップと、前記乾留ガスを原料として発電するステップと、前記木タールを燃焼させるステップと、前記木酢液を有機物に含侵させることにより腐植液を生成するステップと、前記乾留ガス又は前記木タールの燃焼により発生する二酸化炭素を含む排気を回収し、前記腐植液に溶解させるステップと、を有することを特徴とするバイオマスエネルギー変換方法を提供している。 A seventh aspect of the present invention comprises the steps of: reducing the molecular weight of biomass raw material in a subcritical region; carbonizing the low-molecular-weight biomass raw material to obtain a dry distillation gas and extracting pyroligneous acid and wood tar; a step of generating power using the gas as a raw material; a step of burning the wood tar; a step of impregnating the wood vinegar into organic matter to produce a humus liquid; and carbon dioxide generated by burning the dry distillation gas or the wood tar. recovering exhaust gas containing carbon and dissolving it in the humus liquid.
 第1の発明によると、バイオマス発電によって生じる副産物である木タール、木酢液及び二酸化炭素を利用することにより、従来廃棄されていた残渣の有効活用が可能となりシステム全体のエネルギー変換効率を向上させることができる。また、発電部及び燃焼炉から排気される二酸化炭素を溶解部で腐植液に溶解させるため、二酸化炭素の排出量の低減が可能となる。腐植液生成部は抽出部で抽出された木酢液に有機物を含侵させることにより、フルボ酸やフミン酸等の腐植物質を多く含む腐植液を生成することができるとともに木酢液の有効活用を図ることができる。さらに、腐植液に含まれる菌体成分が二酸化炭素の供給によって増殖し、腐植液の性能を高めることができる。また、抽出部で乾留ガスを抽出する前工程としてバイオマス原料に亜臨界水処理を行っているため、バイオマス原料の低分子化が可能になるとともに抽出部において短時間のガス化が可能となる。 According to the first invention, by using wood tar, pyroligneous acid, and carbon dioxide, which are by-products of biomass power generation, it is possible to effectively utilize residues that have been discarded in the past, thereby improving the energy conversion efficiency of the entire system. can be done. In addition, since carbon dioxide exhausted from the power generation unit and the combustion furnace is dissolved in the humus liquid in the dissolving unit, the amount of carbon dioxide emissions can be reduced. By impregnating the pyroligneous acid extracted by the extraction part with organic matter, the humic solution generating part can generate a humic solution containing a large amount of humic substances such as fulvic acid and humic acid, and also aims at effective utilization of the pyroligneous solution. be able to. Furthermore, the fungus components contained in the humus solution grow with the supply of carbon dioxide, and the performance of the humus solution can be enhanced. In addition, since the biomass raw material is subjected to subcritical water treatment as a pre-process for extracting the dry distillation gas in the extraction section, it is possible to reduce the molecular weight of the biomass raw material and gasify it in a short time in the extraction section.
 第2の発明によると、二酸化炭素が溶解した腐植液が原料育成部に供給されることにより、原料の育成を促進することができる。また、バイオマス原料に含有されるガス成分で発電し、木酢液成分で腐植液を生成して再度バイオマス原料の育成に用いるというバイオマスエネルギー変換システムを実現することができる。また、フルボ酸及びフミン酸を含む腐植液を用いてバイオマス原料を育成するため、効率的に樹木や海藻等のバイオマス原料を育成することができる。 According to the second invention, the growth of the raw material can be promoted by supplying the humus liquid in which carbon dioxide is dissolved to the raw material growing section. In addition, it is possible to realize a biomass energy conversion system in which gas components contained in biomass raw materials are used to generate power, pyroligneous acid components are used to generate humus liquid, and the liquid is used again to grow biomass raw materials. In addition, since the biomass raw material is grown using the humus solution containing fulvic acid and humic acid, the biomass raw material such as trees and seaweed can be grown efficiently.
 第3の発明によると、バイオ炭が原料育成部に供給されることにより、土壌改良資材として原料の育成を促進することができる。また、バイオマス原料に含有されるガス成分で発電し、燃焼残渣のバイオ炭を再度バイオマス原料の育成に用いるというバイオマスエネルギー変換システムを実現することができる。また、バイオ炭を土壌又は海中に埋没させることにより、安定性の高い炭素そのものを長期間土壌又は海中に封じ込めることができる。植物性の廃棄物は、土壌の微生物に分解されることで二酸化炭素が大気中に放出されるが、バイオ炭の状態では炭素の封じ込めが可能となるため二酸化炭素の排出量が抑制される。 According to the third invention, by supplying biochar to the raw material growing section, it is possible to promote the growing of raw materials as a soil improvement material. In addition, it is possible to realize a biomass energy conversion system in which gas components contained in the biomass raw material are used to generate power, and biochar, which is combustion residue, is used again to grow the biomass raw material. In addition, by burying biochar in soil or sea, highly stable carbon itself can be confined in soil or sea for a long period of time. Plant waste is decomposed by microorganisms in the soil and releases carbon dioxide into the atmosphere, but in the state of biochar, carbon can be sequestered, so the amount of carbon dioxide emissions is suppressed.
 第4の発明によると、熱回収部が燃焼炉の排熱を回収することにより、バイオマスエネルギー変換システムのエネルギー効率を改善することができる。また、バイオマス原料に含有されるガス成分で発電し、木タールを燃焼させて熱回収するバイオマスエネルギー変換システムを実現することができる。ここで、木タールを有害物質の発生しない条件で高温燃焼させるためには、追加の燃料が必要となるためランニングコストがかかる。このような理由により、従来のバイオマスエネルギー変換システムで発生した木タールは大部分が廃棄されていた。本発明のバイオマスエネルギー変換システムによると、燃焼炉において燃焼用空気が回転部によって回転しながら供給されることにより、筐体内に支持軸を中心とした回転気流が発生する。この回転気流によって、燃焼室の燃焼効率を向上させるとともに木タールを高温で完全燃焼させることができ、有害物質の発生及び燃焼残渣を抑制することができる。また、木タール自身が高温で燃焼するため、温度を維持するための追加の燃料投下が不要となり、バイオマスエネルギー変換システム内でのエネルギー循環が可能となる。さらに、燃焼用空気が吹き出す推力によって回転部が回転するため、回転部を回転させるための装置が不要となりコスト低減を図ることができる。また、送風機の吸気側又は排気側のいずれか一方にはセラミック材が収納されたイオン部が設けられているため、燃焼用空気に各種イオンを含有させた状態で筐体に供給することができる。これにより、燃焼室の燃焼効率を向上させるとともに木タールを高温で完全燃焼させることができ、有害物質の発生及び燃焼残渣を抑制することができる。 According to the fourth invention, the energy efficiency of the biomass energy conversion system can be improved by recovering the exhaust heat from the combustion furnace with the heat recovery unit. In addition, it is possible to realize a biomass energy conversion system that generates power using gas components contained in biomass raw materials and burns wood tar to recover heat. Here, in order to burn wood tar at a high temperature under conditions where harmful substances are not generated, additional fuel is required, which increases running costs. For these reasons, most of the wood tar generated in conventional biomass energy conversion systems has been discarded. According to the biomass energy conversion system of the present invention, the combustion air is supplied while being rotated by the rotating part in the combustion furnace, thereby generating a rotating airflow around the support shaft in the housing. This rotating airflow can improve the combustion efficiency of the combustion chamber and can completely burn the wood tar at a high temperature, thereby suppressing the generation of harmful substances and combustion residue. In addition, since the wood tar itself burns at a high temperature, no additional fuel injection is required to maintain the temperature, enabling energy circulation within the biomass energy conversion system. Furthermore, since the rotating part is rotated by the thrust of the combustion air, a device for rotating the rotating part is not required, and cost can be reduced. In addition, since an ion section containing a ceramic material is provided on either the intake side or the exhaust side of the blower, the combustion air containing various ions can be supplied to the housing. . As a result, the combustion efficiency of the combustion chamber can be improved, and the wood tar can be completely burned at a high temperature, thereby suppressing the generation of harmful substances and combustion residue.
 第5の発明によると、押さえ部は支持軸に直交する平面において回転部側に傾斜する方向に燃焼用空気を吹き出すため、回転部によって発生した回転気流が排気口へ流出することを抑制し、燃焼用空気を長い時間燃焼室内に留まらせる。これにより、燃焼室の燃焼効率を向上させるとともに木タールを高温で完全燃焼させることができ、有害物質の発生及び燃焼残渣を抑制することができる。 According to the fifth aspect of the present invention, the holding portion blows out combustion air in a direction inclined toward the rotating portion on a plane orthogonal to the support shaft, thereby suppressing the rotating airflow generated by the rotating portion from flowing out to the exhaust port, To keep combustion air in a combustion chamber for a long time. As a result, the combustion efficiency of the combustion chamber can be improved, and the wood tar can be completely burned at a high temperature, thereby suppressing the generation of harmful substances and combustion residue.
 第6の発明によると、発電部として2サイクルエンジンを利用しているため、4サイクルエンジンと比較して部品点数の削減が可能となり、メンテナンス性が向上する。また、制御部が複数のエンジンユニットの起動及び停止を制御しているため、メンテナンスや故障時であっても発電部を停止する必要がない。これにより、トラブルやメンテナンスによる停止ロスを低減することができる。さらに、一方のエンジンの排気が他方のエンジンの吸気に接続されているため、クランクケース内から燃料をエンジン燃焼室に供給する必要がない。これにより、クランクケースの部品の長寿命化を図ることができる。 According to the sixth invention, since a 2-cycle engine is used as the power generation unit, it is possible to reduce the number of parts compared to a 4-cycle engine, improving maintainability. In addition, since the control section controls the starting and stopping of a plurality of engine units, there is no need to stop the power generation section even in the event of maintenance or failure. This makes it possible to reduce stoppage losses due to troubles and maintenance. Furthermore, since the exhaust of one engine is connected to the intake of the other engine, there is no need to supply fuel to the engine combustion chambers from within the crankcase. As a result, it is possible to extend the life of the parts of the crankcase.
 第7の発明によると、バイオマス原料の発電によって生じる副産物である木タール、木酢液及び二酸化炭素を利用することにより、従来廃棄されていた残渣の有効活用が可能となりエネルギー変換効率を向上させることができる。また、発電及び燃焼によって発生する二酸化炭素を腐植液に溶解させるため、二酸化炭素の排出量の低減が可能となる。 According to the seventh invention, by using wood tar, pyroligneous acid, and carbon dioxide, which are by-products of power generation using biomass raw materials, it is possible to make effective use of residues that have been discarded in the past, and improve energy conversion efficiency. can. In addition, since the carbon dioxide generated by power generation and combustion is dissolved in the humus liquid, it is possible to reduce the amount of carbon dioxide emissions.
 本発明によれば、二酸化炭素の排出量を低減するとともにバイオマス発電で発生する残渣を有効活用してエネルギー変換効率の良いバイオマスエネルギー変換システム及びバイオマスエネルギー変換方法を提供することができる。 According to the present invention, it is possible to provide a biomass energy conversion system and a biomass energy conversion method that reduce carbon dioxide emissions and effectively utilize the residue generated in biomass power generation to achieve high energy conversion efficiency.
本発明のバイオマスエネルギー変換システムのブロック図。1 is a block diagram of a biomass energy conversion system of the present invention; FIG. 本発明のバイオマスエネルギー変換システムのフロー図。1 is a flow chart of the biomass energy conversion system of the present invention; FIG. 本発明のバイオマスエネルギー変換システムの燃焼炉の概略図。Schematic of the combustion furnace of the biomass energy conversion system of this invention. 本発明のバイオマスエネルギー変換システムの筐体の断面図。Sectional drawing of the housing|casing of the biomass energy conversion system of this invention. 本発明のバイオマスエネルギー変換システムの筐体の断面図。Sectional drawing of the housing|casing of the biomass energy conversion system of this invention. 本発明のバイオマスエネルギー変換システムのイオン部の分解斜視図。FIG. 2 is an exploded perspective view of the ion section of the biomass energy conversion system of the present invention; 本発明のバイオマスエネルギー変換システムの第1磁気通路の斜視図。1 is a perspective view of a first magnetic path of the biomass energy conversion system of the present invention; FIG. 本発明のバイオマスエネルギー変換システムの第1磁気通路の側面図。FIG. 2 is a side view of the first magnetic passage of the biomass energy conversion system of the present invention; 本発明のバイオマスエネルギー変換システムの第2磁気通路の断面図。FIG. 4 is a cross-sectional view of the second magnetic path of the biomass energy conversion system of the present invention; 本発明のバイオマスエネルギー変換システムの動作フローチャート。4 is an operation flowchart of the biomass energy conversion system of the present invention; 本発明のバイオマスエネルギー変換システムの発電部の概略図。The schematic of the electric power generation part of the biomass energy conversion system of this invention.
 本発明の実施の形態によるバイオマスエネルギー変換システム1を図1から図11に基づき説明する。バイオマスエネルギー変換システム1は、バイオマス発電部2と、再利用部3と、腐植液生成部4と、溶解部8と、から構成される。バイオマスエネルギー変換システム1は、森林等の原料育成部5からのバイオマス原料10によってバイオマス発電部2が発電を行い、木タール13を再利用部3で熱回収し、残渣となる木酢液12からフルボ酸を多く含む腐植液14を生成し、溶解部8でバイオマス発電部2又は再利用部3から排出される二酸化炭素15を溶解させることにより高濃度フルボ酸腐植液16を生成し、当該高濃度フルボ酸腐植液16を原料育成部5に提供する。バイオマスエネルギー変換システム1では、バイオマス発電で発生する乾留液から抽出される木酢液、木タール等の処理残渣をシステム内で循環利用することによって廃棄物を限りなくゼロに近い状態に抑制し、大気中に放出される二酸化炭素を回収し利用することで、パーフェクトゼロエミッションを達成する。 A biomass energy conversion system 1 according to an embodiment of the present invention will be described based on FIGS. 1 to 11. FIG. A biomass energy conversion system 1 is composed of a biomass power generation unit 2 , a reuse unit 3 , a humus liquid generation unit 4 , and a dissolution unit 8 . In the biomass energy conversion system 1, the biomass power generation unit 2 generates power using the biomass raw material 10 from the raw material growing unit 5 such as forests, the wood tar 13 is heat-recovered in the recycling unit 3, and the residual pyroligneous acid 12 is converted to full volume. A humic liquid 14 containing a large amount of acid is generated, and carbon dioxide 15 discharged from the biomass power generation section 2 or the recycling section 3 is dissolved in the dissolving section 8 to generate a high-concentration fulvic acid humic liquid 16, and the high-concentration A fulvic acid humus liquid 16 is provided to the raw material growing section 5 . In the biomass energy conversion system 1, by circulating processing residues such as pyroligneous acid and wood tar extracted from dry distillation liquid generated in biomass power generation, waste is suppressed to a state of almost zero, and the atmosphere is Achieve perfect zero emissions by capturing and utilizing the carbon dioxide released inside.
 バイオマス発電部2は、粉砕機21と、亜臨界水処理部22と、抽出部23と、貯蔵部24と、発電部25と、を備えている。本実施の形態では、バイオマス発電部2の原料として原料育成部5から供給される木質バイオマス資源である木質チップを用いるが、これに限定されない。例えば、バイオマス原料10として、剪定枝、刈草、製材残渣、及び農作物残渣、植物資源、農林水産廃棄物、わらやもみ殻、家畜糞尿、下水汚泥、家庭用廃棄物等の動植物由来のエネルギー源として利用できる有機物系の資源を用いてもよい。木質バイオマス資源を用いたときに得られる最終生成物の収量は、木炭が約35%、木酢液が約30%、木タールが約20%、ガスが約15%となっており、発電に用いるガスの他に多くの副産物が生成される。本実施の形態では、これらの副産物のうち特に木タール及び木酢液を利用しバイオマスエネルギー変換システム1のエネルギー効率の改善を図る。木タールとは、木質原料を乾留した際に生じる黒褐色の油状液体であって、炭化水素、フェノール類、酢酸等を含有する。 The biomass power generation section 2 includes a crusher 21 , a subcritical water treatment section 22 , an extraction section 23 , a storage section 24 and a power generation section 25 . In the present embodiment, wood chips, which are woody biomass resources supplied from the raw material growing section 5, are used as raw materials for the biomass power generation section 2, but the present invention is not limited to this. For example, as the biomass raw material 10, energy sources derived from animals and plants such as pruned branches, grass clippings, lumber residue, agricultural residue, plant resources, agricultural, forestry and fishery waste, straw and rice husks, livestock manure, sewage sludge, household waste, etc. Available organic resources may also be used. The yield of the final product obtained when using woody biomass resources is about 35% charcoal, about 30% wood vinegar, about 20% wood tar, and about 15% gas. Many by-products are produced in addition to gas. In the present embodiment, wood tar and pyroligneous acid are especially used among these by-products to improve the energy efficiency of the biomass energy conversion system 1 . Wood tar is a dark brown oily liquid that is produced when a woody raw material is carbonized, and contains hydrocarbons, phenols, acetic acid, and the like.
 粉砕機21は、原料育成部5から供給されたバイオマス原料10をチップ状に細かく粉砕し木質チップとする。木質チップの形状及びサイズは、バイオマス発電部2の発電量に応じて任意に設定することができる。 The pulverizer 21 finely pulverizes the biomass raw material 10 supplied from the raw material growing unit 5 into chips to obtain woody chips. The shape and size of the wood chips can be arbitrarily set according to the power generation amount of the biomass power generation unit 2 .
 亜臨界水処理部22は、原料育成部5から得られたバイオマス原料10を亜臨界水処理することによって加水分解する。亜臨界水処理とは、高温・高圧の領域(100℃、1Mpa~374℃、22.1Mpa)で高速加水分解反応によって有機物を効率的に分解する。水のイオン積は530K(257℃)付近で最大値を示し、その時のH及びOHの濃度は常温時の30倍以上となる。これらのイオンによる加水分解の起こりうる結合部位への攻撃がきわめて大きくなることで、急速に加水分解が進む。亜臨界の領域では、沸騰直前の状態を維持するため気化しようとする水分子が激しく振動して衝突が繰り返され、処理対象となる物質の分子結合を分離させる。これにより、地球の中心マントルに近い状態を人工的に作り出すことができ、生物や微生物が生存できない状態となる。高圧下の状況において、生物や微生物が生存できない状態となって、水分子の激しい衝突により電離作用が働いて処理対象物の低分子化が行われる。そのため、一般的な燃焼炉と比較すると、二酸化炭素やダイオキシン等の有害物質の発生を抑制することができる。また、含水率に関わらず画一的に処理することができるため、季節やバイオマス原料10の状態によらず一定品質のアウトプットが得られる。 The subcritical water treatment unit 22 hydrolyzes the biomass raw material 10 obtained from the raw material growing unit 5 by subcritical water treatment. Subcritical water treatment efficiently decomposes organic substances by high-speed hydrolysis reaction in a high temperature and high pressure range (100° C., 1 Mpa to 374° C., 22.1 Mpa). The ionic product of water reaches its maximum value around 530 K (257° C.), and the concentrations of H + and OH at that time are 30 times or more than at room temperature. The extreme attack of these ions on potential hydrolytic binding sites leads to rapid hydrolysis. In the subcritical region, the water molecules trying to evaporate vibrate violently and collide repeatedly to maintain the state just before boiling, breaking the molecular bonds of the substance to be treated. As a result, it is possible to artificially create conditions close to the Earth's central mantle, in which living organisms and microorganisms cannot survive. Under high pressure conditions, living organisms and microorganisms cannot survive, and intense collisions of water molecules cause ionization to reduce the molecular weight of the object to be treated. Therefore, generation of harmful substances such as carbon dioxide and dioxin can be suppressed compared to a general combustion furnace. In addition, since uniform processing can be performed regardless of the moisture content, output of constant quality can be obtained regardless of the season or the state of the biomass raw material 10 .
 亜臨界水処理では、バイオマス原料10の主要成分であるセルロース、ヘミセルロース等が加水分解により糖となり、副産物としてフルボ酸が生成される。亜臨界水処理で生成されたフルボ酸は、後述の腐植液14と同様のプロセスで処理される。亜臨界水処理は、多様な原料に対応することが可能なバッチ式が採用されるが、コンベヤ等によってバイオマス原料10を連続的に供給する連続式であっても良い。連続式は24時間の連続運転が可能であって、1サイクルにおける蒸気の加温、排出が不要となり投入エネルギーが少なくてすむ。 In the subcritical water treatment, cellulose, hemicellulose, etc., which are the main components of the biomass raw material 10, are hydrolyzed into sugar, and fulvic acid is produced as a by-product. The fulvic acid produced by the subcritical water treatment is treated in the same process as the humus liquid 14 described below. The subcritical water treatment adopts a batch type capable of handling various raw materials, but may be a continuous type in which the biomass raw material 10 is continuously supplied by a conveyor or the like. The continuous type is capable of continuous operation for 24 hours, does not require heating and discharging of steam in one cycle, and requires less input energy.
 抽出部23は、熱分解炉26と、スクラバー27と、コレクタ28と、フィルタ部29と、を備えている。熱分解炉26は、バイオマス原料10を加熱・蒸し焼きにして熱分解によりガス化する。本実施の形態では、無酸素雰囲気下で600℃~900℃の高温蒸し焼きにする間接加熱によるガス化を行う。ガス化剤としては空気を用いるが、酸素、水素、水蒸気、二酸化炭素等を用いてもよい。 The extraction section 23 includes a pyrolysis furnace 26 , a scrubber 27 , a collector 28 and a filter section 29 . The pyrolysis furnace 26 heats and steams the biomass raw material 10 and gasifies it by pyrolysis. In the present embodiment, gasification is performed by indirect heating such as high-temperature steaming at 600° C. to 900° C. in an oxygen-free atmosphere. Air is used as the gasifying agent, but oxygen, hydrogen, water vapor, carbon dioxide, etc. may also be used.
 熱分解炉26は、外熱式ロータリーキルン炉、固定床炉、ストーカ炉、流動床炉、内部循環式流動床ボイラ、外部循環式流動床ボイラのいずれであっても良く、他の形式の炉を用いてもよい。外熱式により、直接木質チップを燃焼させることがなく外部からの熱によって蒸し焼きにするため、ダイオキシン等の有害物質も発生しない。熱分解炉26では、亜臨界水処理部22により加水分解及び乾燥させた木質チップを耐熱鋼鉄の反応筒に入れ、回転させながら木質チップを加熱し、ガス化する。これにより、接触伝熱となるため熱伝達係数が高くなり、木質チップを効率的にガス化することができる。また、横型の攪拌炉であるため原料形状の制約が少なく、繊維質の絡みやすい原料である樹皮や竹等も処理することができる。熱分解炉26の床部からは、燃焼後のバイオ炭11が回収されるとともに、木酢液12及び木タール13が生成される。熱分解炉26からの排気は、二酸化炭素分離装置(Direct Air Capture)によって気体のまま二酸化炭素15が回収される。DAC装置では、固体吸収材によって二酸化炭素のみを高純度で分離回収し、所定の貯蔵タンクで管理される。なお、DAC装置としては、排気を膜でろ過することにより二酸化炭素15を回収する技術を用いてもよい。 Pyrolysis furnace 26 may be an external heat rotary kiln furnace, fixed bed furnace, stoker furnace, fluidized bed furnace, internal circulation fluidized bed boiler, external circulation fluidized bed boiler, or other types of furnaces. may be used. The external heat type does not burn the wood chips directly, and steams them with heat from the outside, so no harmful substances such as dioxins are generated. In the pyrolysis furnace 26, the wood chips hydrolyzed and dried by the subcritical water treatment unit 22 are placed in a reaction cylinder made of heat-resistant steel, and the wood chips are heated and gasified while being rotated. As a result, the heat transfer coefficient becomes high due to contact heat transfer, and the wood chips can be efficiently gasified. In addition, since it is a horizontal stirring furnace, there are few restrictions on the shape of the raw material, and it is possible to process bark, bamboo, etc., which are raw materials that tend to become entangled with fibers. From the floor of the pyrolysis furnace 26, the biochar 11 after combustion is recovered, and wood vinegar 12 and wood tar 13 are produced. Carbon dioxide 15 is recovered in gaseous form from the exhaust gas from the pyrolysis furnace 26 by a carbon dioxide separator (Direct Air Capture). The DAC device separates and recovers only carbon dioxide with high purity using a solid absorbent material and manages it in a predetermined storage tank. As the DAC device, a technique of recovering carbon dioxide 15 by filtering exhaust gas with a membrane may be used.
 スクラバー27及びコレクタ28では、熱分解炉26からの乾留ガスに水等の液体を散布して冷却するとともに、乾留ガス中に飛散していたバイオマス粉体と炭化物粉体等の固形物と、木酢液12、木タール13をこの液体で捕捉して乾留ガスから分離する。コレクタ28により、上記固形物を含まない乾留ガスと、固形物を含むスラリ状の乾留液とに分離し、比重分離により乾留液から木タール13及び木酢液12を抽出する。乾留ガスの不純物を取り除くために、コレクタ28の下流側にフィルタ部29を設けている。 In the scrubber 27 and the collector 28, the dry distillation gas from the pyrolysis furnace 26 is cooled by spraying a liquid such as water, and solids such as biomass powder and carbide powder scattered in the dry distillation gas and wood vinegar The liquid 12 and wood tar 13 are captured by this liquid and separated from the carbonization gas. The collector 28 separates the dry distillation gas containing no solids from the slurry-like dry distillation liquid containing solids, and the wood tar 13 and the pyroligneous acid 12 are extracted from the dry distillation liquid by specific gravity separation. A filter section 29 is provided downstream of the collector 28 in order to remove impurities from the dry distillation gas.
 スクラバー27、コレクタ28、及びフィルタ部29によって不純物が除去された乾留ガスは、貯蔵部24に蓄えられる。発電部25は、貯蔵部24に蓄えられた乾留ガスによって出力2MWの発電を行う。図11に示すように、発電部25は、10台のエンジンユニット25Aと、エンジンユニット25Aを制御するエンジン制御部25Bと、エンジンユニット25Aとエンジン制御部25Bとを電気的に接続するケーブル25Cと、を有している。 The dry distillation gas from which impurities have been removed by the scrubber 27 , collector 28 and filter section 29 is stored in the storage section 24 . The power generation unit 25 uses the dry distillation gas stored in the storage unit 24 to generate power with an output of 2 MW. As shown in FIG. 11, the power generation unit 25 includes ten engine units 25A, an engine control unit 25B that controls the engine units 25A, and a cable 25C that electrically connects the engine units 25A and the engine control unit 25B. ,have.
 エンジンユニット25Aは2サイクルエンジンであって、少なくとも2気筒で構成され、一方のシリンダ燃焼室からの排気が他方のシリンダ燃焼室に吸気される構造となっている。詳細には、一方のピストンによって圧縮された燃料を含む空気が他方のシリンダに供給されて点火、燃焼する。その後、他方のピストンの下降によって一方のシリンダに圧縮された燃料を含む空気が供給されて点火、燃焼する。このような構成により、一般的な2サイクルエンジンのようにクランクケースから燃料を供給する必要がないため、クランクケース内の部品の長寿命化を図ることができる。熱量の低い乾留ガスでエンジン効率を向上させるため、過給機やインタークーラーを採用しても良い。 The engine unit 25A is a 2-cycle engine, is composed of at least 2 cylinders, and has a structure in which exhaust gas from one cylinder combustion chamber is taken into the other cylinder combustion chamber. Specifically, air containing fuel compressed by one piston is supplied to the other cylinder for ignition and combustion. After that, the air containing the compressed fuel is supplied to one cylinder by the downward movement of the other piston, and is ignited and burned. With such a configuration, there is no need to supply fuel from the crankcase as in a general two-cycle engine, so it is possible to extend the life of parts in the crankcase. A supercharger or an intercooler may be used to improve engine efficiency with dry distillation gas with a low calorific value.
 エンジン制御部25Bは、ケーブル25Cを介して複数のエンジンユニット25Aの起動及び停止を制御する。本実施の形態による発電部25は、10のエンジンユニット25Aで構成されているため、いずれかのエンジンユニット25Aが故障又はメンテナンスにより停止していても、他のエンジンユニット25Aによって連続稼働することができる。発電部25からの排気は、DAC装置によって二酸化炭素15が回収され、所定の貯蔵タンクで管理される。 The engine control unit 25B controls starting and stopping of multiple engine units 25A via cables 25C. Since the power generation section 25 according to the present embodiment is composed of ten engine units 25A, even if one of the engine units 25A is stopped due to failure or maintenance, the other engine units 25A can continue to operate. can. Carbon dioxide 15 is recovered from the exhaust gas from the power generation unit 25 by a DAC device and is managed in a predetermined storage tank.
 再利用部3は、燃焼炉6と、ボイラ31と、タービン32と、から構成される。再利用部3は、バイオマス発電部2の発電時に抽出部23によって副産物として産出される木タール13を燃焼炉6で焼却しボイラ31及びタービン32によって熱回収し出力を得る。なお、再利用部3では、ボイラ31からの蒸気の少なくとも一部をバイオマスエネルギー変換システム1内の他の熱源として利用してもよい。燃焼炉6からの排気は、DAC装置によって二酸化炭素15が回収され、所定の貯蔵タンクで管理される。ボイラ31及びタービン32は、本発明の熱回収部の一例である。 The reuse section 3 is composed of a combustion furnace 6, a boiler 31, and a turbine 32. The reuse unit 3 incinerates the wood tar 13 produced as a by-product by the extraction unit 23 during the power generation of the biomass power generation unit 2 in the combustion furnace 6, recovers heat with the boiler 31 and the turbine 32, and obtains output. Note that the reuse unit 3 may use at least part of the steam from the boiler 31 as another heat source in the biomass energy conversion system 1 . Carbon dioxide 15 is recovered from the exhaust gas from the combustion furnace 6 by a DAC device and managed in a predetermined storage tank. The boiler 31 and turbine 32 are examples of the heat recovery section of the present invention.
 以下、燃焼炉6の構成について図3から図9を参照して詳細に説明する。図中に示すように、上下方向を定義する。燃焼炉6は、筐体61と、送風機62と、イオン部63と、第1磁気通路64と、第2磁気通路65と、空気通路66と、を有している。燃焼炉6では、イオン部63を介して送風機62が取り込んだ燃焼用空気Aが空気通路66に設置された第1磁気通路64及び第1磁気通路64を通過して筐体61に供給される。燃焼炉6は、燃焼のための燃料をほとんど使用することなく、木タール13を1000℃以上の高温で処理することができる。本実施の形態の燃焼炉6では、バイオマス発電部2によって副産物として発生する不純物を多く含んだ木タール13を燃焼処理物とするが、これに限定されず任意の廃棄物又は処理物を有害物質の発生を抑えて燃焼させることができる。 The configuration of the combustion furnace 6 will be described in detail below with reference to FIGS. 3 to 9. FIG. The vertical direction is defined as shown in the figure. The combustion furnace 6 has a housing 61 , a blower 62 , an ion section 63 , a first magnetic passage 64 , a second magnetic passage 65 and an air passage 66 . In the combustion furnace 6, the combustion air A taken in by the blower 62 through the ion part 63 passes through the first magnetic passage 64 and the first magnetic passage 64 installed in the air passage 66, and is supplied to the housing 61. . The combustion furnace 6 can treat the wood tar 13 at a high temperature of 1000° C. or more without using almost any fuel for combustion. In the combustion furnace 6 of the present embodiment, the wood tar 13 containing a large amount of impurities generated as a by-product by the biomass power generation unit 2 is used as the combustion treatment material. can be burned while suppressing the generation of
 筐体61は、所定の肉厚を有する略円筒形状の耐熱セラミックセメントで構成され、上にボイラ31に接続される排気口61aが形成され、内部に燃焼室61Aが規定されている。筐体61は、燃焼室61Aで燃焼した燃焼残渣が落下するように底面が格子状に形成され、燃焼残渣は図示せぬ回収タンクに蓄積する。 The housing 61 is made of a substantially cylindrical heat-resistant ceramic cement having a predetermined thickness, has an exhaust port 61a connected to the boiler 31 formed thereon, and defines a combustion chamber 61A inside. The bottom surface of the housing 61 is formed in a grid pattern so that the combustion residue burned in the combustion chamber 61A falls, and the combustion residue is accumulated in a collection tank (not shown).
 燃焼室61Aの中央には、上下方向に延び送風機62からの燃焼用空気Aを噴出する吹出部7が設けられている。吹出部7は、支持軸71と、回転部72と、第1吹出口73と、第2吹出口74と、を備えている。吹出部7の各部材は、ニッケル基やコバルト基の耐熱合金で構成されているが、各部材の内部を燃焼用空気Aが流れることにより冷却されるため、熱による劣化を抑制することができる。第1吹出口73は本発明の第1押さえ部の一例であり、第2吹出口74は本発明の第2押さえ部の一例である。 At the center of the combustion chamber 61A, a blowing part 7 that extends vertically and blows out the combustion air A from the blower 62 is provided. The blowout portion 7 includes a support shaft 71 , a rotating portion 72 , a first blowout port 73 and a second blowout port 74 . Each member of the blowout part 7 is made of a nickel-based or cobalt-based heat-resistant alloy, but since the inside of each member is cooled by flowing the combustion air A, deterioration due to heat can be suppressed. . The first outlet 73 is an example of the first pressing portion of the present invention, and the second outlet 74 is an example of the second pressing portion of the present invention.
 支持軸71は、上下方向に延びる略円筒形状の軸であって、送風機62によってイオン部63、第1磁気通路64、及び第2磁気通路65を通過した燃焼用空気Aが供給される。図4に示すように、支持軸71の内部には軸通路71Aが規定されている。 The support shaft 71 is a substantially cylindrical shaft that extends in the vertical direction, and is supplied with combustion air A that has passed through the ion section 63 , the first magnetic passage 64 and the second magnetic passage 65 by the blower 62 . As shown in FIG. 4, a shaft passage 71A is defined inside the support shaft 71. As shown in FIG.
 回転部72は、支持軸71の下部に配置され、支持軸71の円周方向に回転可能である。回転部72は、円筒形である支持軸71の略接線方向に燃焼用空気Aを排出する第1排気口72Aと、支持軸71の中心に対して第1排気口72Aと略対称に設けられた第2排気口72Bと、を備えている。回転部72に送風機62からの燃焼用空気Aが供給されると、推力によって上方から見て半時計回りに回転部72が回転する。回転部72が燃焼用空気Aを噴出しながら支持軸71を中心に回転することにより、図3に示すように、回転部72の上方に反時計回りの回転上昇気流Uが発生する。なお、回転部72の回転方向は、時計回りであってもよい。効率的に木タール13の燃焼を行うために地球の自転の影響を勘案すると、北半球では反時計回りであって、南半球では時計回りであることが望ましい。 The rotating part 72 is arranged below the support shaft 71 and is rotatable in the circumferential direction of the support shaft 71 . The rotating part 72 is provided with a first exhaust port 72A that discharges the combustion air A in a substantially tangential direction of the cylindrical support shaft 71 and substantially symmetrically with the first exhaust port 72A with respect to the center of the support shaft 71. and a second exhaust port 72B. When the rotating portion 72 is supplied with the combustion air A from the blower 62, the rotating portion 72 rotates counterclockwise when viewed from above due to the thrust. As the rotating portion 72 rotates about the support shaft 71 while blowing out the combustion air A, a counterclockwise rotating updraft U is generated above the rotating portion 72 as shown in FIG. Note that the rotation direction of the rotating portion 72 may be clockwise. Considering the influence of the rotation of the earth, it is desirable to rotate counterclockwise in the northern hemisphere and clockwise in the southern hemisphere in order to efficiently burn the wood tar 13 .
 第1吹出口73は、回転部72の上方に設けられていて、図5に示すように、略パイプ形状の両端から燃焼用空気Aが吹き出される。このとき、図3に示すように、燃焼用空気Aは、下方斜め45°となるように第1吹出口73から噴出される。換言すると、第1吹出口73から吹き出される燃焼用空気Aは、図3に一点鎖線で示す支持軸71に直交する平面73Pに対して、排気口61a側ではなく回転部72側に傾斜する方向に吹き出される。第1吹出口73の噴射角度は、下方斜め45°に限定されず、水平方向から下方に傾斜した方向であれば良い。 The first blowout port 73 is provided above the rotating part 72, and as shown in FIG. 5, the combustion air A is blown out from both ends of the substantially pipe shape. At this time, as shown in FIG. 3, the combustion air A is jetted from the first outlet 73 so as to be inclined downward at an angle of 45°. In other words, the combustion air A blown out from the first blowout port 73 is inclined not toward the exhaust port 61a but toward the rotating portion 72 with respect to a plane 73P orthogonal to the support shaft 71 indicated by the dashed line in FIG. blown out in the direction The injection angle of the first outlet 73 is not limited to the downward oblique angle of 45 degrees, and may be any direction inclined downward from the horizontal direction.
 第2吹出口74は第1吹出口73と略同一形状であって、第1吹出口73の上方に設けられている。第2吹出口74は、第1吹出口73と直交する方向に延びる略パイプ形状であって、両端から燃焼用空気Aが噴出される。このとき、図3に示すように、燃焼用空気Aは、下方斜め45°となるように第2吹出口74から噴出される。換言すると、第2吹出口74から吹き出される燃焼用空気Aは、図2に一点鎖線で示す支持軸71に直交する平面74Pに対して、排気口61a側ではなく回転部72側に傾斜する方向に吹き出される。第2吹出口74の噴射角度は、下方斜め45°に限定されず、水平方向から下方に傾斜した方向であれば良い。 The second outlet 74 has substantially the same shape as the first outlet 73 and is provided above the first outlet 73 . The second blowout port 74 has a substantially pipe shape extending in a direction orthogonal to the first blowout port 73, and blows combustion air A from both ends. At this time, as shown in FIG. 3, the combustion air A is jetted from the second outlet 74 so as to be inclined downward at an angle of 45°. In other words, the combustion air A blown out from the second outlet 74 is inclined toward the rotating part 72 rather than toward the exhaust port 61a with respect to a plane 74P perpendicular to the support shaft 71 indicated by the dashed line in FIG. blown out in the direction The injection angle of the second outlet 74 is not limited to the downward oblique angle of 45 degrees, and may be any direction that is inclined downward from the horizontal direction.
 筐体61の底面であって回転部72の近傍には、バーナー75が設けられている。バーナー75は、燃焼炉6の運転開始時の着火のために設けられていて、燃焼処理物の種類によっては運転開始から所定時間経過後に停止させてもよい。これにより、バーナー75によって使用される燃料を削減し、低コストでの燃焼炉6の運転が可能となる。 A burner 75 is provided on the bottom surface of the housing 61 and near the rotating portion 72 . The burner 75 is provided for ignition at the start of operation of the combustion furnace 6, and may be stopped after a predetermined period of time has elapsed from the start of operation depending on the type of material to be burned. This reduces the fuel used by the burners 75 and allows the combustion furnace 6 to operate at low cost.
 筐体61の下部側壁には、燃焼室61Aに燃焼処理物である木タール13を供給するノズル76が設けられている。ノズル76は、燃料タンク6Aに接続されていて、圧送ポンプ及び電磁弁77によって一定時間毎に木タール13が燃焼室61A内に噴霧される。燃料タンク6Aにはヒータが設置されていて、供給される木タール13は60℃まで温められている。ノズル76、電磁弁77、及び圧送ポンプは本発明の供給部の一例である。送風機62は、真空ブロワであって筐体61に燃焼用空気Aを供給するために用いられる。本実施の形態の真空ブロワの真空圧は、20kPaに設定したが、燃焼炉6の規模、木タール13の投入量、また筐体61の形状等に応じて任意の値を設定することができる。 A lower side wall of the housing 61 is provided with a nozzle 76 for supplying the wood tar 13, which is a combustion material, to the combustion chamber 61A. The nozzle 76 is connected to the fuel tank 6A, and the pressure pump and the electromagnetic valve 77 spray the wood tar 13 into the combustion chamber 61A at regular intervals. A heater is installed in the fuel tank 6A, and the supplied wood tar 13 is heated to 60°C. The nozzle 76, the solenoid valve 77, and the pressure-feeding pump are examples of the supply section of the present invention. The blower 62 is a vacuum blower and is used to supply combustion air A to the housing 61 . Although the vacuum pressure of the vacuum blower of this embodiment is set to 20 kPa, any value can be set according to the scale of the combustion furnace 6, the input amount of the wood tar 13, the shape of the housing 61, and the like. .
 イオン部63は、図6に示すように、外筒63Aと、内筒63Bと、セラミックボール63Cと、から構成される。イオン部63では、内筒63Bに多数のセラミックボール63Cが封入され外筒63Aに固定される。イオン部63は、送風機62の吸気口に配置されていて、送風機62によって吸引される空気は外筒63Aと内筒63Bとの隙間及びセラミックボール63Cの隙間を通過する。内筒63Bに封入される素材は、セラミックボール63Cに限らず、セラミック素材であれば形状は限定されない。セラミックボール43は、本発明のセラミック材の一例である。イオン部63は、送風機62の吸気側に配置されているが、排気側に配置されていてもよく、両方に配置されていてもよい。 As shown in FIG. 6, the ion section 63 is composed of an outer cylinder 63A, an inner cylinder 63B, and ceramic balls 63C. In the ion section 63, a large number of ceramic balls 63C are enclosed in an inner cylinder 63B and fixed to an outer cylinder 63A. The ion part 63 is arranged at the intake port of the blower 62, and the air sucked by the blower 62 passes through the gap between the outer cylinder 63A and the inner cylinder 63B and the gap between the ceramic balls 63C. The material enclosed in the inner cylinder 63B is not limited to the ceramic ball 63C, and the shape is not limited as long as it is a ceramic material. Ceramic ball 43 is an example of the ceramic material of the present invention. The ion section 63 is arranged on the intake side of the blower 62, but may be arranged on the exhaust side or both sides.
 セラミックボール63Cの成分は特に限定されず、各種酸化物、窒化物、炭化物、ホウ化物及びその他の化合物等が挙げられる。例えば、酸化アルミニウム、酸化カルシウム、酸化マグネシウム、酸化ジルコニウム、酸化チタン、溶融シリカ、非溶融シリカ、スピネル、コージェライト、フォルステライト、ジルコン及びムライトなどセラミック成分、窒化アルミニウム、窒化ジルコニウム、窒化チタン、窒化ホウ素、炭化アルミニウム、炭化カルシウム、炭化ケイ素、炭化ジルコニウム、炭化チタン、炭化タングステン、ホウ化ジルコニウム、ホウ化チタン、ホウ化タングステン、チタン酸アルミニウム及びチタン酸ジルコン酸アルミニウム等のセラミック成分が挙げられる。これらは単独で含有されてもよく、2種以上が含有されてもよい。2種以上が含有される場合とは、例えば、カオリナイト、ハロイサイト、スメクタイト、パイロフィライト、セリサイト及びタルク等の各種粘土鉱物のうちの少なくとも1種を主成分とする粘土、並びに、これらの粘土を原料とするシャモットを焼成して得られた耐火セラミック等が挙げられる。 The component of the ceramic ball 63C is not particularly limited, and includes various oxides, nitrides, carbides, borides and other compounds. Ceramic components such as aluminum oxide, calcium oxide, magnesium oxide, zirconium oxide, titanium oxide, fused silica, non-fused silica, spinel, cordierite, forsterite, zircon and mullite, aluminum nitride, zirconium nitride, titanium nitride, boron nitride , aluminum carbide, calcium carbide, silicon carbide, zirconium carbide, titanium carbide, tungsten carbide, zirconium boride, titanium boride, tungsten boride, aluminum titanate and aluminum zirconate titanate. These may be contained singly or in combination of two or more. When two or more kinds are contained, for example, clay containing at least one of various clay minerals such as kaolinite, halloysite, smectite, pyrophyllite, sericite and talc as a main component, and these Refractory ceramics obtained by sintering chamotte, which is made from clay, can be mentioned.
 ここで言う「主成分とする」とは、セラミックボール63Cを100質量%とした場合に、上記所定のセラミック成分であって1種の場合は単独、2種以上の場合は合計を50質量%以上含有することを意味する。つまり、1種類の場合には所定のセラミック成分が100質量%となる。この含有量は、所定のセラミック成分が1種のみ含有される場合には、このセラミック成分の含有量であり、所定のセラミック成分が2種以上含有される場合には、これらのセラミック成分の合計含有量である。 Here, "mainly composed" means that, when the ceramic balls 63C are taken as 100% by mass, the above-mentioned predetermined ceramic components are singular in the case of one kind, and the total is 50% by mass in the case of two or more kinds. It means that it contains more than That is, in the case of one type, the predetermined ceramic component is 100% by mass. This content is the content of the ceramic component when only one of the predetermined ceramic components is contained, and the total of these ceramic components when two or more of the predetermined ceramic components are contained. content.
 セラミックボール63Cは、浸食性を向上させるために各種の処理を施したものを用いてもよい。各種の処理とは、例えば、溶湯に対する耐食性を向上させる各種の処理が挙げられる。即ち、コーティングにより形成された耐食層(ジルコニア質コート層、カルシア質コート層等)、含浸形成された耐食層(基材表面部にジルコニア、カルシア等が定着された層)などが挙げられる。含浸形成された耐食層とは、Ca等(Zr、Mgなど)の金属元素を含有する水溶性有機金属化合物(酢酸カルシウム等)の水溶液に基材を浸漬して基材に水溶液を含浸させた後、加熱して金属酸化物を基材の表面部に定着させた層や、同様にアルミナゾルに浸漬して基材にアルミナゾルを含浸させた後、加熱してアルミナを基材の表面部に定着させた層などである。セラミックボール63Cは、キャスタブル材及び天然材のいずれであってもよい。また、キャスタブル材である場合には、セメントのみからなるものであってもよく、セラミック繊維及び/又はセラミックフィラー等を含有するものであってもよい。なお、セラミックボール63Cの気孔率は、送風機62の吸込口における抵抗に応じて任意に設定することができる。 The ceramic ball 63C may be subjected to various treatments to improve corrosion resistance. Various treatments include, for example, various treatments for improving corrosion resistance to molten metal. That is, corrosion-resistant layers formed by coating (zirconia coating layers, calcia coating layers, etc.), impregnated corrosion-resistant layers (layers in which zirconia, calcia, etc. are fixed to the base material surface), and the like can be mentioned. The corrosion-resistant layer formed by impregnation is obtained by immersing the substrate in an aqueous solution of a water-soluble organometallic compound (calcium acetate, etc.) containing a metal element such as Ca (Zr, Mg, etc.) to impregnate the substrate with the aqueous solution. After that, a layer in which the metal oxide is fixed to the surface of the substrate by heating, or a layer in which the substrate is impregnated with alumina sol by similarly immersing in alumina sol, and then heated to fix the alumina to the surface of the substrate. layer, etc. The ceramic ball 63C may be either castable material or natural material. Moreover, in the case of a castable material, it may consist of only cement, or may contain ceramic fibers and/or ceramic fillers. The porosity of the ceramic balls 63C can be arbitrarily set according to the resistance at the suction port of the blower 62.
 セラミックボール63Cは、1つのセラミックボール63Cのイオン測定器によって測定される値が500[個/cc]以上であればよく、1000[個/cc]以上であることがより好ましい。イオン部63が送風機62の吸込口に設置されているため、空気がセラミックボール63Cの隙間を通過することにより燃焼用空気Aに多くのマイナスイオン等の各種イオンが含有される。 The ceramic balls 63C should have a value of 500 [pieces/cc] or more, more preferably 1000 [pieces/cc] or more, as measured by an ion meter for one ceramic ball 63C. Since the ion section 63 is installed at the suction port of the blower 62, the air passes through the gaps between the ceramic balls 63C, and the combustion air A contains many negative ions and various other ions.
 第1磁気通路64は、図3に示すように、送風機62と筐体61との間の流路に設置される。第1磁気通路64は、図7に示すように、第1ベース64Aと、第2ベース64Bと、磁石64Cと、を有している。第1ベース64A及び第2ベース64Bは、ステンレス鋼で構成される。第1ベース64Aは、第2ベース64Bと通路Hを隔てて離間しており、複数の磁石64Cを内蔵している。第1ベース64Aと第2ベース64Bの合計で磁石64Cの磁束密度は14万ガウスであるが、送風機62の能力及び燃焼炉6の規模に応じて任意の磁束密度を設定することができる。磁石64Cには、希土類元素を利用したネオジム磁石、又はサマリウムコバルト磁石等の永久磁石を用いてもよい。送風機62から排出された燃焼用空気Aは、第1磁気通路64の通路Hで絞られるため圧力及び温度が上昇する。 The first magnetic passage 64 is installed in the flow path between the blower 62 and the housing 61, as shown in FIG. The first magnetic path 64, as shown in FIG. 7, has a first base 64A, a second base 64B, and a magnet 64C. The first base 64A and the second base 64B are made of stainless steel. The first base 64A is separated from the second base 64B across a passage H, and contains a plurality of magnets 64C. The total magnetic flux density of the magnet 64C of the first base 64A and the second base 64B is 140,000 Gauss, but any magnetic flux density can be set according to the capacity of the blower 62 and the scale of the combustion furnace 6. A permanent magnet such as a neodymium magnet using a rare earth element or a samarium-cobalt magnet may be used for the magnet 64C. Combustion air A discharged from the blower 62 is throttled by the passage H of the first magnetic passage 64, so that its pressure and temperature rise.
 磁石64Cは、図8に示すように、第1ベース64Aと第2ベース64Bとで通路Hを挟んで対応する位置に設けられていて、S極とN極とを所定の順序で配列する。SS又はNNで通路Hを挟んで対向させることによる反発作用、及びSNで通路Hを挟んで対向させることによる吸引作用を利用して、通路Hを流れる空気を一定方向に湾曲させる。空気は一種の磁性流体のように振る舞うため、磁石64Cに引き付けられる。これは、空気に含まれる酸素が例外的に大きな磁化率(常磁性)を有していることに起因する。燃焼用空気Aは、通路H内を第1ベース64Aに近接した後、第2ベース64Bに近接し、再び第1ベース64Aに近接し、第2ベース64Bに近接するようなジグザグ形状で第1磁気通路64を通過する。磁石64Cの極の配置は、燃焼室20の燃焼状態が最適となるように設定する。 As shown in FIG. 8, the magnets 64C are provided at corresponding positions across the passage H between the first base 64A and the second base 64B, and the S poles and N poles are arranged in a predetermined order. The air flowing through the passage H is curved in a certain direction by utilizing the repulsive action of facing the passage H with SS or NN and the suction action of facing with the passage H sandwiched by SN. Air behaves like a type of ferrofluid and is therefore attracted to magnet 64C. This is because oxygen contained in the air has an exceptionally large magnetic susceptibility (paramagnetism). Combustion air A travels through the passage H in a zigzag shape such that it approaches the first base 64A, then approaches the second base 64B, approaches the first base 64A again, and approaches the second base 64B. It passes through magnetic passage 64 . The arrangement of the poles of the magnet 64C is set so that the combustion state of the combustion chamber 20 is optimized.
 第2磁気通路65は、図3に示すように、第1磁気通路64と筐体61との間の空気通路66に設置される。第2磁気通路65は、図9に示すように、外殻65Aと、スクリュー65Bと、マグネット65Cと、を備えている。外殻65Aは所定の肉厚を有しており、内部に複数のマグネット65Cが配置される。燃焼用空気Aは、スクリュー65Bの溝65aに沿って第2磁気通路65内を流れる。外殻65Aは本発明の外管の一例であって、スクリュー65Bは本発明の内管の一例である。 The second magnetic passage 65 is installed in the air passage 66 between the first magnetic passage 64 and the housing 61, as shown in FIG. The second magnetic path 65, as shown in FIG. 9, comprises an outer shell 65A, a screw 65B, and a magnet 65C. The outer shell 65A has a predetermined thickness, and a plurality of magnets 65C are arranged inside. Combustion air A flows through the second magnetic passage 65 along the groove 65a of the screw 65B. The outer shell 65A is an example of the outer tube of the present invention, and the screw 65B is an example of the inner tube of the present invention.
 マグネット65Cは、スクリュー65Bの円周方向において180°隔てた位置に2か所設置され、第2磁気通路65全体で8万ガウスの磁束密度を有する。マグネット65Cは、磁石64Cと同様に、SS又はNNで通路Hを挟んで対向させることによる反発作用、及びSNで通路Hを挟んで対向させることによる吸引作用を利用して、溝65aを流れる空気を一定方向に湾曲させる。詳細には、溝65a内において燃焼用空気Aが旋回するように流れる。本実施の形態では、マグネット65Cの極の配列を予め設定された配列とすることにより、効率的に溝65aを流れる空気を攪拌することができる。 The magnets 65C are installed at two positions separated by 180° in the circumferential direction of the screw 65B, and the entire second magnetic path 65 has a magnetic flux density of 80,000 gauss. As with the magnet 64C, the magnet 65C utilizes a repelling action by opposing the passage H between SS or NN and an attracting action by opposing the passage H between the SS or NN, thereby causing the air flowing through the groove 65a to move. bend in a certain direction. Specifically, the combustion air A swirls in the grooves 65a. In this embodiment, the arrangement of the poles of the magnet 65C is set in advance so that the air flowing through the grooves 65a can be efficiently stirred.
 次に、燃焼炉6の動作フローを説明する。送風機62を起動することにより、回転部72が支持軸71を中心に反時計回りに回転するとともに、第1吹出口73及び第2吹出口74から斜め下方に向けて燃焼用空気Aが噴出される。送風機62が起動してから所定時間経過後、自動的にバーナー75が点火する。 Next, the operation flow of the combustion furnace 6 will be explained. By starting the blower 62, the rotating part 72 rotates counterclockwise about the support shaft 71, and the combustion air A is jetted obliquely downward from the first outlet 73 and the second outlet 74. be. A burner 75 is automatically ignited after a predetermined time has passed since the blower 62 was started.
 バーナー75が点火してから所定時間が経過した後、木タール13を供給するための圧送ポンプが稼働し、電磁弁77が開いて燃料タンク6Aから筐体61に燃料が供給される。木タール13はノズル76から噴霧されるため、バーナー75の炎によって点火し燃焼する。このとき、筐体61に投入された木タール13は、燃焼しながら回転部72によって発生する反時計回りの回転上昇気流Uによって上方に上るとともに第1吹出口73及び第2吹出口74から斜め下方に噴出される燃焼用空気Aによって下方に押し下げられるため、筐体61内に燃焼用空気Aが長い時間滞在するとともに部分的に乱気流が発生して筐体61内の温度が1500℃以上、最大で1800℃に達する。 After a predetermined period of time has passed since the burner 75 was ignited, the pressure pump for supplying the wood tar 13 is activated, the electromagnetic valve 77 is opened, and fuel is supplied from the fuel tank 6A to the housing 61. Since the wood tar 13 is sprayed from the nozzle 76 , it is ignited and burned by the flame of the burner 75 . At this time, the wood tar 13 thrown into the housing 61 is raised upward by the counterclockwise rotating rising airflow U generated by the rotating part 72 while burning, and is obliquely discharged from the first outlet 73 and the second outlet 74 . Since it is pushed downward by the combustion air A that is ejected downward, the combustion air A stays in the housing 61 for a long time, and turbulence is generated partially, causing the temperature in the housing 61 to rise to 1500° C. or higher. It reaches a maximum of 1800°C.
 腐植液生成部4は、製造タンク41と、腐植液14を保管する保管部42と、を有する。製造タンク41では、木酢液12に原料育成部5によって採取されたバイオマス原料10である有機物を漬け込むことにより腐植液14を生成する。生成された腐植液14は、保管部42で保管される。腐植液14は、ヒューミン、フミン酸、フルボ酸を主成分とし、土壌改質、キレートマリン、果樹栽培、魚類及び家畜の養殖等に用いることができる。 The humus liquid generation unit 4 has a production tank 41 and a storage unit 42 that stores the humus liquid 14 . In the production tank 41 , the humus liquid 14 is produced by soaking the organic substance, which is the biomass raw material 10 collected by the raw material growing section 5 , in the pyroligneous acid 12 . The produced humus liquid 14 is stored in the storage section 42 . The humic liquid 14 contains humin, humic acid, and fulvic acid as main components, and can be used for soil improvement, chelate marine, fruit tree cultivation, fish and livestock farming, and the like.
 使用する木酢液12は、水分が80%以上,有機酸含有量が1.0%以上でpH(H2O)5.0以下,電気伝導度が1.0mS/cm以上であることが望ましい。腐植液生成部4では、製造タンク41に容量比で有機物1.0に対して木酢液12を0.5以上の割合で混合して撹拌機等で攪拌し、少なくとも3時間以上、有機物の種類によっては600時間程度漬け込む。長時間浸漬することにより、腐植化が進んでいない木や草又は残渣等に木酢液12を含侵させることができる。養生期間が経過した後の製造タンク41の溶液が、腐植液14となる。 The pyroligneous acid 12 to be used preferably has a moisture content of 80% or more, an organic acid content of 1.0% or more, a pH (H2O) of 5.0 or less, and an electrical conductivity of 1.0 mS/cm or more. In the humus liquid production unit 4, the pyroligneous acid solution is mixed in a volume ratio of 1.0 organic matter to 12 pyroligneous acid in a volume ratio of 0.5 or more to the organic matter in the production tank 41, stirred with a stirrer or the like, and the type of organic matter is mixed for at least 3 hours or more. Depending on the situation, it is soaked for about 600 hours. By immersing the wood for a long period of time, it is possible to impregnate the wood, grass, residue, or the like, which has not undergone humification, with the pyroligneous acid solution 12 . The solution in the production tank 41 after the curing period has passed becomes the humus solution 14 .
 腐植液14は,アルギン酸類と混ぜ合わせることでゲル状となるようにして腐植液14の成分の溶出をコントロールして,動植物の生理活性を促す効果を持続させながら使用してもよい。また、腐植液14をバイオ炭11に染み込ませることにより固形化できるようにして腐植液14の成分の溶出をコントロールして動植物の生理活性を促す効果を持続させながら使用してもよい。 The humus liquid 14 may be mixed with alginic acid to form a gel so that the elution of the components of the humus liquid 14 is controlled, and the effect of promoting the physiological activity of animals and plants can be maintained. Alternatively, the biochar 11 may be impregnated with the humus liquid 14 so as to be solidified, and the elution of the components of the humus liquid 14 may be controlled to maintain the effect of stimulating the physiological activities of animals and plants.
 原料育成部5は、森林、農場、魚類又は家畜の養殖場、海藻の養殖場等であって、バイオ炭11及び腐植液14を利用して効率的に動植物の育成を行っている。森林では、バイオ炭11を土壌に埋め込み、フルボ酸を含む腐植液14を散布することにより、土壌改良による効率的な樹木の育成、及び塩害水田の回復等の効果が見込まれる。農場では、腐植液14を散布することで効率的な作物の収穫、植物疾病の発現の低減、糖度の向上等の効果が見込まれる。養殖場では、腐植液14の施設への散布による悪臭軽減、及び家畜への飲用による施設内の悪臭軽減及び死亡率軽減効果が見込まれる。森林海洋の使用用途としては、バイオ炭11にフルボ酸を含む腐植液14を配合してキレート材とし、フルボ酸鉄とケイ素を溶出させることによって植物性プランクトン(珪藻類)を増殖させ、富栄養状態を抑制することによってヘドロを分解し、水質浄化を行う。フルボ酸鉄は、悪臭及び海中微生物に有害な硫化水素イオンと反応して無害な硫化鉄となって硫化水素の発生を抑制する。これにより、海底生物の生息及び繁殖しやすい環境を整えることができ、海洋生物又はプランクトンの多様性が向上する。同時に、溶出したフルボ酸鉄及びケイ素は、珪藻類に付着した植物性プランクトンによって取り込まれ、付着珪藻を増加させる。これにより、付着珪藻を養分とする海中生物や巻きあがった付着珪藻を捕食する貝類や甲殻類の成長が促進される。また、フルボ酸鉄及びケイ素が植物性プランクトンに取り込まれることで珪藻類が増加し、これらが水中の無機窒素やリンを取り込むことで水質改善を図ることができる。同時に、植物性プランクトンや珪藻類による二酸化炭素の海洋固定化も行うことができる。 The raw material growing department 5 is a forest, a farm, a fish or livestock farm, a seaweed farm, etc., and uses biochar 11 and humus liquid 14 to efficiently grow animals and plants. In the forest, by embedding the biochar 11 in the soil and spraying the humus liquid 14 containing fulvic acid, effects such as efficient growth of trees and restoration of salt-damaged paddy fields by soil improvement are expected. In farms, by spraying the humus liquid 14, effects such as efficient harvesting of crops, reduction in the occurrence of plant diseases, and improvement in sugar content are expected. In aquaculture farms, it is expected that spraying the humus liquid 14 on facilities will reduce offensive odors, and drinking the liquid will reduce offensive odors and mortality in the facilities. As for the use of forests and oceans, biochar 11 is blended with humus liquid 14 containing fulvic acid to form a chelating material, and iron fulvic acid and silicon are eluted to proliferate phytoplankton (diatoms), resulting in eutrophication. By suppressing the state, the sludge is decomposed and the water is purified. Iron fulvic acid reacts with hydrogen sulfide ions, which are harmful to offensive odors and microorganisms in the sea, to become harmless iron sulfide, thereby suppressing the generation of hydrogen sulfide. As a result, it is possible to create an environment in which seafloor organisms can easily live and reproduce, thereby improving the diversity of marine organisms or plankton. At the same time, the eluted iron fulvic acid and silicon are taken up by phytoplankton attached to the diatoms, increasing the attached diatoms. This promotes the growth of marine organisms that feed on the attached diatoms and shellfish and crustaceans that prey on the curled up attached diatoms. In addition, iron fulvic acid and silicon are taken into phytoplankton, which increases diatoms, and these take in inorganic nitrogen and phosphorus in water, thereby improving water quality. At the same time, carbon dioxide can be fixed in the ocean by phytoplankton and diatoms.
 溶解部8は、バイオマス発電部2又は再利用部3から供給された二酸化炭素15が供給される溶解槽81を有している。溶解槽81は、曝気による供給方法よりも二酸化炭素15の溶解効率が高い。曝気によって二酸化炭素15を供給すると液体に溶け出す前に外部に逃げてしまうが、溶解部8では溶解槽81が密閉されていて供給された二酸化炭素のみが液体に溶け出し無駄がなくなるため、高い溶存二酸化炭素濃度を実現することができる。本実施の形態では、溶解部8として岩谷産業株式会社の酸素ファイター(登録商標)を用いるが、これに限定されず他の無気泡溶解装置を用いてもよい。溶解部8によると、腐植液14に溶解している気体を二酸化炭素に置換することができるため、曝気と比較して高い二酸化炭素濃度を実現することができる。 The dissolving section 8 has a dissolving tank 81 to which the carbon dioxide 15 supplied from the biomass power generation section 2 or the recycling section 3 is supplied. The dissolution tank 81 has a higher dissolution efficiency of the carbon dioxide 15 than the supply method by aeration. If the carbon dioxide 15 is supplied by aeration, it escapes to the outside before it dissolves into the liquid. Dissolved carbon dioxide concentration can be achieved. In the present embodiment, Oxygen Fighter (registered trademark) manufactured by Iwatani Corporation is used as the dissolving unit 8, but the present invention is not limited to this, and other non-bubble dissolving devices may be used. According to the dissolving section 8, the gas dissolved in the humus liquid 14 can be replaced with carbon dioxide, so a higher concentration of carbon dioxide can be achieved compared to aeration.
 溶解槽81に供給される二酸化炭素15の量は必ずしも一定である必要は無く、時間や天候等の外部環境に応じて供給量を変動させてもよい。このような構成によると、フルボ酸を含む腐植液14が密閉された溶解槽81に投入されるため、高濃度で二酸化炭素を溶解させることができる。さらに、閉鎖された溶解槽81において二酸化炭素を溶解させるため、二酸化炭素が外に漏れることなく効率的に腐植液14に溶解させることができる。溶解槽81では、溶存酸素濃度(DO値)、PH値、電位を自由にコントロールすることができる。本実施の形態では、溶解槽81におけるDO値を0(ゼロ)として500~1000ppm程度の二酸化炭素15を溶解させる。これにより、PH値が3~5、低電位の高濃度フルボ酸腐植液16が精製される。溶解させる気体は二酸化炭素に限定されず、窒素、酸素、水素等であってもよい。発電部25の排気又は大気中から窒素、酸素等を回収し、溶解槽81で腐植液14に溶解させる。 The amount of carbon dioxide 15 supplied to the dissolving tank 81 does not necessarily have to be constant, and the supply amount may be varied according to the external environment such as time and weather. According to such a configuration, since the humic liquid 14 containing fulvic acid is put into the closed dissolution tank 81, carbon dioxide can be dissolved at a high concentration. Furthermore, since the carbon dioxide is dissolved in the closed dissolving tank 81, the carbon dioxide can be efficiently dissolved in the humus liquid 14 without leaking to the outside. In the dissolving tank 81, the dissolved oxygen concentration (DO value), PH value and potential can be freely controlled. In this embodiment, about 500 to 1000 ppm of carbon dioxide 15 is dissolved with the DO value in the dissolving tank 81 set to 0 (zero). As a result, a high-concentration fulvic acid humus solution 16 with a pH value of 3 to 5 and a low potential is purified. The gas to be dissolved is not limited to carbon dioxide, and may be nitrogen, oxygen, hydrogen, or the like. Nitrogen, oxygen, etc. are recovered from the exhaust gas of the power generation unit 25 or the atmosphere, and dissolved in the humus liquid 14 in the dissolution tank 81 .
 次に、バイオマスエネルギー変換システム1の流れについて、図2及び図10を参照して説明する。原料育成部5よりバイオマス原料10の一例である木材51を採取する(S1)。粉砕機21で細かく砕いて木質チップとし、亜臨界水処理部22で、高温高圧下において低分子化を行う(S2)。熱分解炉26に低分子化された木質チップを供給して高温間接加熱することによって乾留ガスとバイオ炭11とに熱分解する(S3)。得られた乾留ガスの一部は、加熱エネルギーとして循環させることにより、自己完結させる。 Next, the flow of the biomass energy conversion system 1 will be described with reference to FIGS. 2 and 10. FIG. A wood 51, which is an example of the biomass raw material 10, is collected from the raw material growing unit 5 (S1). The pulverizer 21 grinds wood chips finely, and the subcritical water treatment section 22 decomposes the wood into low molecular weight particles under high temperature and high pressure conditions (S2). Low-molecular-weight wood chips are supplied to the pyrolysis furnace 26 and indirectly heated at a high temperature to thermally decompose them into dry distillation gas and biochar 11 (S3). A part of the obtained dry distillation gas is self-contained by circulating it as heating energy.
 熱分解炉26から得られたバイオ炭11は、原料育成部5の土壌改質に利用され、保水性及び透水性の改善、ミネラル補充、水質浄化、酸性土壌のpH安定化のために用いられる(S4)。また、バイオ炭11を土壌に埋め込むことで、腐朽していく過程で発生する二酸化炭素を土壌に固定することができるカーボンマイナス効果も得られる。原料育成部5へのバイオ炭11の供給は、ベルトコンベヤー等の移動装置によって行うことにより自動化できる。 The biochar 11 obtained from the pyrolysis furnace 26 is used for soil reformation in the raw material growing section 5, and is used for improving water retention and permeability, replenishing minerals, purifying water, and stabilizing the pH of acidic soil. (S4). In addition, by embedding the biochar 11 in the soil, a carbon minus effect can be obtained in which carbon dioxide generated in the decaying process can be fixed in the soil. The supply of the biochar 11 to the raw material growing section 5 can be automated by using a moving device such as a belt conveyor.
 熱分解炉26からの乾留ガスは、スクラバー27、コレクタ28、及びフィルタ部29を経由することで抽出される(S5)。分離された木タール13は、燃料タンク6Aに一時的に貯蔵され(S6)、木酢液12が抽出・分離される(S9)。木タール13は、燃焼炉6に供給されて高温燃焼し(S7)、排熱はボイラ31及びタービン32によって熱回収され、発電又はバイオマス発電部2内の熱源として利用される(S8)。 The dry distillation gas from the pyrolysis furnace 26 is extracted through the scrubber 27, collector 28, and filter section 29 (S5). The separated wood tar 13 is temporarily stored in the fuel tank 6A (S6), and the wood vinegar 12 is extracted and separated (S9). The wood tar 13 is supplied to the combustion furnace 6 and burned at a high temperature (S7), and waste heat is recovered by the boiler 31 and the turbine 32 and used as a heat source in the power generation or biomass power generation section 2 (S8).
木酢液12には、10~1000ppmのホルムアルデヒトが含まれており、環境負荷を考慮して除去する必要がある。動物及び環境の影響を考慮して、木酢液12のホルムアルデヒトは望ましくは100ppm以下、より望ましくは10ppm以下とする。本実施の形態では、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物、アルカリ土類金属、アルカリ金属炭酸塩、アンモニア等のアルカリを添加する(S10)。木酢液12がアルカリ性となることにより、ホルムアルデヒトとフェノール類との付加反応が起こりやすくなり、ホルムアルデヒトが付加反応産物となる。これにより、木酢液12中のホルムアルデヒト含有量が低下する。木酢液12のpHは8~10に調整することが望ましい。 The pyroligneous acid 12 contains 10 to 1000 ppm of formaldehyde, which must be removed in consideration of the environmental load. Considering the effects on animals and the environment, formaldehyde in the pyroligneous acid 12 is desirably 100 ppm or less, more desirably 10 ppm or less. In this embodiment, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkaline earth metals, alkali metal carbonates, and alkalis such as ammonia are added (S10). When the pyroligneous acid 12 becomes alkaline, the addition reaction between formaldehyde and phenols easily occurs, and formaldehyde becomes an addition reaction product. This reduces the formaldehyde content in the pyroligneous acid 12 . It is desirable to adjust the pH of the pyroligneous acid 12 to 8-10.
 ホルムアルデヒドが低減された木酢液12は、パイプラインによって腐植液生成部4に輸送され、原料育成部5からの有機物が投入されることでフルボ酸を含む腐植液14が生成される(S11)。腐植液14は、溶解部8に輸送され発電部25及び再利用部3から排出される二酸化炭素15が溶解されることにより高濃度フルボ酸含有腐植液16となる(S12)。高濃度フルボ酸腐植液16はフルボ酸濃度が1000ppm以上と高濃度であり、土壌改善効果が高い。高濃度フルボ酸腐植液16は、輸送システムによって原料育成部5に供給され、土壌への散布、養殖槽への添加、養殖動物の飲料水への投与、海洋キレートへの活用等が行われる。 The formaldehyde-reduced pyroligneous acid 12 is transported to the humus liquid generation unit 4 by a pipeline, and the organic matter from the raw material growing unit 5 is added to generate the humus liquid 14 containing fulvic acid (S11). The humic liquid 14 is transported to the dissolving section 8, and the carbon dioxide 15 discharged from the power generation section 25 and the recycling section 3 is dissolved, thereby becoming a humic liquid 16 containing high-concentration fulvic acid (S12). The high-concentration fulvic acid humus liquid 16 has a high fulvic acid concentration of 1000 ppm or more, and has a high soil improvement effect. The high-concentration fulvic acid humus liquid 16 is supplied to the raw material growing section 5 by a transportation system, and is sprayed on the soil, added to the culture tank, administered to the drinking water of cultured animals, and used as a marine chelate.
 タール分が除去された乾留ガスは、貯蔵部24に貯蔵され(S13)、コントロールバルブによって発電部25への供給量が調整される。発電部25は、乾留ガスを燃料としてバイオマス発電を行う(S14)。 The dry distillation gas from which tar has been removed is stored in the storage unit 24 (S13), and the amount of supply to the power generation unit 25 is adjusted by the control valve. The power generation unit 25 performs biomass power generation using the dry distillation gas as fuel (S14).
 このような構成によると、バイオマス発電部2で生じる副産物である木タール13、木酢液12及び二酸化炭素15を利用することにより、従来廃棄されていた残渣の有効活用が可能となりシステム全体のエネルギー変換効率を向上させることができる。また、発電部25及び燃焼炉6から発生する二酸化炭素15を溶解部8で腐植液14に溶解させるため、二酸化炭素15の排出量の低減が可能となる。腐植液生成部4は抽出部23で抽出された木酢液12に有機物を含侵させることにより、フルボ酸やフミン酸等の腐植物質を多く含む腐植液14を生成することができるとともに木酢液12の有効活用を図ることができる。さらに、腐植液14に含まれる菌体成分が二酸化炭素15の供給によって増殖し、腐植液14の性能を高めた高濃度フルボ酸腐植液16を生成することができる。また、抽出部23で乾留ガスを抽出する前工程としてバイオマス原料10に亜臨界水処理を行っているため、バイオマス原料10の低分子化が可能になるとともに抽出部23において短時間のガス化が可能となる。 According to such a configuration, by using the wood tar 13, pyroligneous acid 12 and carbon dioxide 15, which are by-products generated in the biomass power generation unit 2, it is possible to effectively utilize the residue that has been discarded in the past, and the energy conversion of the entire system. Efficiency can be improved. Further, since the carbon dioxide 15 generated from the power generation unit 25 and the combustion furnace 6 is dissolved in the humus liquid 14 in the dissolving unit 8, the amount of carbon dioxide 15 emitted can be reduced. The humic solution generating unit 4 impregnates the pyroligneous acid 12 extracted by the extracting unit 23 with an organic substance, thereby producing the humic solution 14 containing a large amount of humic substances such as fulvic acid and humic acid, and the pyroligneous solution 12. can be effectively utilized. Furthermore, the fungus components contained in the humus liquid 14 grow by the supply of the carbon dioxide 15, and the high-concentration fulvic acid humus liquid 16 with enhanced performance of the humus liquid 14 can be produced. In addition, since the biomass raw material 10 is subjected to subcritical water treatment as a pre-process for extracting the dry distillation gas in the extraction unit 23, it is possible to reduce the molecular weight of the biomass raw material 10 and to gasify it in the extraction unit 23 for a short time. It becomes possible.
 このような構成によると、二酸化炭素15が溶解した高濃度フルボ酸腐植液16が原料育成部5に供給されることにより、原料の育成を促進することができる。また、バイオマス原料10に含有されるガス成分で発電し、木酢液12成分で腐植液14を生成して再度バイオマス原料10の育成に用いるというバイオマスエネルギー変換システム1を実現することができる。また、フルボ酸及びフミン酸を含む高濃度フルボ酸腐植液16を用いてバイオマス原料10を育成するため、効率的に樹木や海藻等のバイオマス原料を育成することができる。 According to such a configuration, the high-concentration fulvic acid humus liquid 16 in which the carbon dioxide 15 is dissolved is supplied to the raw material growing section 5, thereby promoting the growing of the raw material. Further, it is possible to realize a biomass energy conversion system 1 in which gas components contained in the biomass raw material 10 are used to generate electricity, and humus liquid 14 is produced from the 12 pyroligneous acid components and used again to grow the biomass raw material 10 . In addition, since the biomass raw material 10 is grown using the high-concentration fulvic acid humic liquid 16 containing fulvic acid and humic acid, biomass raw materials such as trees and seaweed can be grown efficiently.
 このような構成によると、バイオ炭11が原料育成部5に供給されることにより、土壌改良資材として原料の育成を促進することができる。また、バイオマス原料10に含有されるガス成分で発電し、燃焼残渣のバイオ炭11を再度バイオマス原料10の育成に用いるというバイオマスエネルギー変換システム1を実現することができる。また、バイオ炭11を土壌又は海中に埋没させることにより、安定性の高い炭素そのものを長期間土壌又は海中に封じ込めることができる。植物性の廃棄物は、土壌の微生物に分解されることで二酸化炭素が大気中に放出されるが、バイオ炭11の状態では炭素の封じ込めが可能となるため二酸化炭素の排出量が抑制される。 According to such a configuration, by supplying the biochar 11 to the raw material growing unit 5, it is possible to promote the growing of the raw material as a soil improvement material. Further, it is possible to realize a biomass energy conversion system 1 in which gas components contained in the biomass raw material 10 are used to generate power and the biochar 11 of the combustion residue is used again to grow the biomass raw material 10 . In addition, by burying the biochar 11 in the soil or the sea, highly stable carbon itself can be confined in the soil or the sea for a long period of time. Plant waste is decomposed by microorganisms in the soil and releases carbon dioxide into the atmosphere, but in the state of biochar 11, it is possible to contain carbon, so the amount of carbon dioxide emissions is suppressed. .
 このような構成によると、ボイラ31及びタービン32で燃焼炉6の排熱を回収することによりバイオマスエネルギー変換システム1のエネルギー効率を改善することができる。また、バイオマス原料10に含有されるガス成分で発電し、木タール13を燃焼させて熱回収するバイオマスエネルギー変換システム1を実現することができる。ここで、木タール13を有害物質の発生しない条件で高温燃焼させるためには、追加の燃料が必要となるためランニングコストがかかる。このような理由により、従来のバイオマスエネルギー変換システムで発生した木タールは、大部分が廃棄されていた。本発明のバイオマスエネルギー変換システム1によると、燃焼炉6において燃焼用空気Aが回転部72によって回転しながら供給されることにより、筐体61内に支持軸71を中心とした回転上昇気流Uが発生する。この回転上昇気流Uによって、燃焼室61Aの燃焼効率を向上させるとともに木タール13を高温で完全燃焼させることができ、有害物質の発生及び燃焼残渣を抑制することができる。また、木タール13自身が高温で燃焼するため、温度を維持するための追加の燃料投下が不要となり、バイオマスエネルギー変換システム1内でのエネルギー循環が可能となる。さらに、燃焼用空気Aが吹き出す推力によって回転部72が回転するため、回転部72を回転させるための装置が不要となりコスト低減を図ることができる。また、送風機62の吸気側又は排気側のいずれか一方にはセラミックボール63Cが収納されたイオン部63が設けられているため、燃焼用空気Aに各種イオンを含有させた状態で筐体61に供給することができる。これにより、燃焼室61Aの燃焼効率を向上させるとともに木タール13を高温で完全燃焼させることができ、有害物質の発生及び燃焼残渣を抑制することができる。 According to such a configuration, the energy efficiency of the biomass energy conversion system 1 can be improved by recovering the waste heat of the combustion furnace 6 with the boiler 31 and the turbine 32. Further, it is possible to realize the biomass energy conversion system 1 that generates power using gas components contained in the biomass raw material 10 and burns the wood tar 13 to recover heat. Here, in order to burn the wood tar 13 at a high temperature under conditions where harmful substances are not generated, additional fuel is required, resulting in high running costs. For these reasons, most of the wood tar generated in conventional biomass energy conversion systems has been discarded. According to the biomass energy conversion system 1 of the present invention, the combustion air A is supplied while being rotated by the rotating part 72 in the combustion furnace 6, so that the rotating updraft U around the support shaft 71 is generated in the housing 61. Occur. The rotating ascending airflow U can improve the combustion efficiency of the combustion chamber 61A and completely burn the wood tar 13 at a high temperature, thereby suppressing the generation of harmful substances and combustion residue. Moreover, since the wood tar 13 itself burns at a high temperature, there is no need to supply additional fuel to maintain the temperature, and energy circulation within the biomass energy conversion system 1 becomes possible. Furthermore, since the rotating portion 72 is rotated by the thrust of the combustion air A, a device for rotating the rotating portion 72 is not necessary, and cost reduction can be achieved. In addition, since the ion section 63 containing the ceramic balls 63C is provided on either the intake side or the exhaust side of the blower 62, the combustion air A containing various ions is supplied to the housing 61. can supply. As a result, the combustion efficiency of the combustion chamber 61A can be improved, and the wood tar 13 can be completely burned at a high temperature, thereby suppressing the generation of harmful substances and combustion residue.
 このような構成によると、第1吹出口73及び第1吹出口73は支持軸71に直交する平面において回転部72側に傾斜する方向に燃焼用空気Aを吹き出すため、回転部72によって発生した回転上昇気流Uが排気口61aへ流出することを抑制し、燃焼用空気Aを長い時間燃焼室61A内に留まらせる。これにより、燃焼室61Aの燃焼効率を向上させるとともに木タール13を高温で完全燃焼させることができ、有害物質の発生及び燃焼残渣を抑制することができる。 According to such a configuration, the first blowout port 73 and the first blowout port 73 blow out the combustion air A in a direction inclined toward the rotating portion 72 on the plane orthogonal to the support shaft 71 , so that the air generated by the rotating portion 72 The rotating ascending airflow U is suppressed from flowing out to the exhaust port 61a, and the combustion air A is kept in the combustion chamber 61A for a long time. As a result, the combustion efficiency of the combustion chamber 61A can be improved, and the wood tar 13 can be completely burned at a high temperature, thereby suppressing the generation of harmful substances and combustion residue.
 このような構成によると、発電部25として2サイクルエンジンを利用しているため、4サイクルエンジンと比較して部品点数の削減が可能となり、メンテナンス性が向上する。また、エンジン制御部25Bが複数のエンジンユニット25Aの起動及び停止を制御しているため、メンテナンスや故障時であっても発電部25を停止することがない。これにより、トラブルやメンテナンスによる停止ロスを低減することができる。さらに、一方のエンジンの排気が他方のエンジンの吸気に接続されているため、クランクケース内から燃料を直接供給する必要がない。これにより、クランクケースの部品の長寿命化を図ることができる。 According to such a configuration, since a 2-cycle engine is used as the power generation section 25, it is possible to reduce the number of parts compared to a 4-cycle engine and improve maintainability. In addition, since the engine control section 25B controls the starting and stopping of the plurality of engine units 25A, the power generation section 25 is not stopped even during maintenance or failure. This makes it possible to reduce stoppage losses due to troubles and maintenance. Furthermore, since the exhaust of one engine is connected to the intake of the other, there is no need to supply fuel directly from within the crankcase. As a result, it is possible to extend the life of the parts of the crankcase.
 本発明によるバイオマスエネルギー変換システム及びバイオマスエネルギー変換方法は、上述した実施の形態に限定されず、請求の範囲に記載された発明の要旨の範囲内で種々の変更が可能である。 The biomass energy conversion system and biomass energy conversion method according to the present invention are not limited to the above-described embodiments, and various modifications are possible within the scope of the invention described in the claims.
 本発明は、バイオマス原料による発電システムで排出された木タール及び木酢液を回収して再利用するバイオマスエネルギー変換システムと及びバイオマスエネルギー変換方法に利用可能である。 The present invention can be used in biomass energy conversion systems and biomass energy conversion methods that recover and reuse wood tar and pyroligneous acid discharged from power generation systems using biomass raw materials.
1   バイオマスエネルギー変換システム
2   バイオマス発電部
3   再利用部
4   腐植液生成部
5   原料生成部
6   燃焼炉
7   吹出部
8   溶解部
10  バイオマス原料
12  木酢液
13  木タール
14  腐植液
15  二酸化炭素
16  高濃度フルボ酸腐植液
22  亜臨界水処理部
23  抽出部
25  発電部
25A エンジンユニット
25B エンジン制御部
26  熱分解炉
31  ボイラ
32  タービン
41  製造タンク
42  保管部
61A  燃焼室
63C セラミックボール
81  溶解槽
1 biomass energy conversion system 2 biomass power generation unit 3 reuse unit 4 humus liquid generation unit 5 raw material generation unit 6 combustion furnace 7 blowing unit 8 melting unit 10 biomass raw material 12 wood vinegar 13 wood tar 14 humus liquid 15 carbon dioxide 16 high concentration fulvo Acid humus liquid 22 Sub-critical water treatment unit 23 Extraction unit 25 Power generation unit 25A Engine unit 25B Engine control unit 26 Pyrolysis furnace 31 Boiler 32 Turbine 41 Production tank 42 Storage unit 61A Combustion chamber 63C Ceramic balls 81 Melting tank

Claims (7)

  1.  バイオマス原料を亜臨界領域で低分子化する亜臨界水処理部と、
     低分子化された前記バイオマス原料を炭化させて乾留ガスを得るとともに木酢液及び木タールを抽出する抽出部と、
     前記乾留ガスを原料として発電する発電部と、
     前記木タールを燃焼させて熱回収する再利用部と、
     前記木酢液に有機物を含侵させることにより腐植液を生成する腐植液生成部と、
     前記発電部又は前記再利用部から発生する二酸化炭素を含む排気を回収し、前記腐植液に溶解させる溶解部と、を有することを特徴とするバイオマスエネルギー変換システム。
    a sub-critical water treatment unit that reduces the molecular weight of the biomass raw material in the sub-critical region;
    an extraction unit for carbonizing the low-molecular-weight biomass raw material to obtain dry distillation gas and extracting pyroligneous acid and wood tar;
    a power generation unit that generates power using the dry distillation gas as a raw material;
    a recycling unit that burns the wood tar to recover heat;
    a humus liquid generating unit that generates a humus liquid by impregnating the pyroligneous acid with an organic matter;
    A biomass energy conversion system, comprising: a dissolution section for recovering exhaust gas containing carbon dioxide generated from the power generation section or the recycling section and dissolving it in the humus liquid.
  2.  前記バイオマス原料は、原料育成部で育成され、
     前記腐植液は、前記原料育成部に提供されることを特徴とする請求項1に記載のバイオマスエネルギー変換システム。
    The biomass raw material is grown in a raw material growing section,
    The biomass energy conversion system according to claim 1, wherein the humus liquid is provided to the raw material growing section.
  3.  前記バイオマス原料は、原料育成部で育成され、
     前記抽出部は、前記バイオマス原料を炭化させたバイオ炭を抽出し、
     前記バイオ炭は、前記原料育成部に提供されることを特徴とする請求項1に記載のバイオマスエネルギー変換システム。
    The biomass raw material is grown in a raw material growing section,
    The extraction unit extracts biochar obtained by carbonizing the biomass raw material,
    2. The biomass energy conversion system of claim 1, wherein the biochar is provided to the raw material growing unit.
  4.  前記再利用部は、前記木タールを燃焼する燃焼炉と、前記燃焼炉の熱を回収する熱回収部と、をさらに有し、
     前記燃焼炉は、
      内側に燃焼室を備える筐体と、
      空気通路を通って前記燃焼室に燃焼用空気を送る送風機と、
      前記燃焼室に設置され、前記燃焼用空気を供給する吹出部と、を有し、
      前記吹出部は、支持軸と、前記支持軸に回転可能に設けられ前記燃焼用空気が吹き出す回転部と、を有し、
     前記送風機の吸気側又は排気側のいずれか一方には、セラミック材が収納されたイオン部が設けられ、
     前記燃焼用空気は、前記イオン部を通過して前記送風機により前記燃焼室に供給されることを特徴とする請求項1から3のいずれか1項に記載のバイオマスエネルギー変換システム。
    The reuse unit further includes a combustion furnace that burns the wood tar and a heat recovery unit that recovers heat from the combustion furnace,
    The combustion furnace is
    a housing having a combustion chamber inside;
    a blower for sending combustion air to the combustion chamber through an air passage;
    a blowout portion installed in the combustion chamber for supplying the combustion air;
    The blowout part has a support shaft and a rotating part rotatably provided on the support shaft from which the combustion air is blown out,
    An ion section containing a ceramic material is provided on either the intake side or the exhaust side of the blower,
    4. The biomass energy conversion system according to any one of claims 1 to 3, wherein the combustion air passes through the ion section and is supplied to the combustion chamber by the blower.
  5.  前記燃焼室には燃焼後の空気が排出される排気口が設けられ、
     前記吹出部は、前記支持軸の径方向外方に前記燃焼用空気が吹き出す押さえ部をさらに有し、
     前記押さえ部は、前記支持軸において前記回転部よりも前記排気口に近い位置に設置され、前記支持軸に直交する平面において前記回転部側に傾斜する方向に前記燃焼用空気を吹き出すことを特徴とする請求項4に記載のバイオマス発エネルギー変換システム。
    The combustion chamber is provided with an exhaust port through which air after combustion is discharged,
    The blowout portion further has a holding portion for blowing out the combustion air radially outward of the support shaft,
    The pressing portion is installed at a position on the support shaft closer to the exhaust port than the rotating portion, and blows out the combustion air in a direction inclined toward the rotating portion on a plane perpendicular to the support shaft. The biomass generation energy conversion system according to claim 4.
  6.  前記発電部は、少なくとも2つの2サイクルエンジンを有する複数のエンジンユニットと、前記エンジンユニットの起動及び停止を制御するエンジン制御部と、を有し、
     前記エンジンは、一方のエンジンの排気が他方のエンジンの吸気に接続されていることを特徴とする請求項1に記載のバイオマスエネルギー変換システム。
    The power generation unit has a plurality of engine units having at least two two-cycle engines, and an engine control unit that controls start and stop of the engine units,
    2. The biomass energy conversion system according to claim 1, wherein the engines are such that the exhaust of one engine is connected to the intake of the other engine.
  7.  バイオマス原料を亜臨界領域で低分子化するステップと、
     低分子化された前記バイオマス原料を炭化させて乾留ガスを得るとともに木酢液及び木タールを抽出するステップと、
     前記乾留ガスを原料として発電するステップと、
     前記木タールを燃焼させるステップと、
     前記木酢液を有機物に含侵させることにより腐植液を生成するステップと、
     前記乾留ガス又は前記木タールの燃焼により発生する二酸化炭素を含む排気を回収し、前記腐植液に溶解させるステップと、を有することを特徴とするバイオマスエネルギー変換方法。
    a step of reducing the molecular weight of the biomass raw material in a subcritical region;
    a step of carbonizing the low-molecular-weight biomass raw material to obtain dry distillation gas and extracting pyroligneous acid and wood tar;
    a step of generating electricity using the dry distillation gas as a raw material;
    burning the wood tar;
    producing a humus solution by impregnating organic matter with the pyroligneous acid;
    and a step of recovering an exhaust gas containing carbon dioxide generated by combustion of the dry distillation gas or the wood tar and dissolving it in the humus liquid.
PCT/JP2022/030824 2021-08-13 2022-08-12 Biomass energy conversion system and biomass energy conversion method WO2022231014A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2021-131917 2021-08-13
JP2021131917A JP2023026175A (en) 2021-08-13 2021-08-13 Biomass energy conversion system and biomass energy conversion method
JP2021175201 2021-10-27
JP2021-175201 2021-10-27
JP2022014506A JP2023112604A (en) 2022-02-01 2022-02-01 biomass power generation system
JP2022-014506 2022-02-01

Publications (1)

Publication Number Publication Date
WO2022231014A1 true WO2022231014A1 (en) 2022-11-03

Family

ID=83846942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030824 WO2022231014A1 (en) 2021-08-13 2022-08-12 Biomass energy conversion system and biomass energy conversion method

Country Status (1)

Country Link
WO (1) WO2022231014A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003089792A (en) * 2000-12-11 2003-03-28 Miyagawa Koki Co Ltd Combined power generator for simultaneously producing charcoal, and the like
JP2018008834A (en) * 2016-07-11 2018-01-18 国土防災技術株式会社 Seaweed and algae recycling method
JP2018111055A (en) * 2017-01-10 2018-07-19 株式会社ファインテック Modification method of vegetable system biomass
JP7076657B1 (en) * 2022-02-01 2022-05-27 義行 飛田和 Combustion furnace

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003089792A (en) * 2000-12-11 2003-03-28 Miyagawa Koki Co Ltd Combined power generator for simultaneously producing charcoal, and the like
JP2018008834A (en) * 2016-07-11 2018-01-18 国土防災技術株式会社 Seaweed and algae recycling method
JP2018111055A (en) * 2017-01-10 2018-07-19 株式会社ファインテック Modification method of vegetable system biomass
JP7076657B1 (en) * 2022-02-01 2022-05-27 義行 飛田和 Combustion furnace

Similar Documents

Publication Publication Date Title
EP3143331B1 (en) Biochar carbonizer
CN105505469B (en) A kind of downdraft fixed bed gasification steam-electric power combined production device and technique
AU2007270878B2 (en) Method of controlling an apparatus for generating electric power and apparatus for use in said method
CN110295063B (en) Biomass external heating method heat and carbon co-production system and method
US20110308157A1 (en) Biomass gasification device and process
CN202581348U (en) High-temperature pyrolysis treatment device for leaves in pharmaceutical process
CN111621311A (en) Self-heating type carbon heat co-production biomass pyrolysis equipment and process
KR20210049011A (en) Biochar including the cast of black soldier fly and preparing method thereof
WO2022231014A1 (en) Biomass energy conversion system and biomass energy conversion method
CN201809316U (en) Fixed-bed biomass gasification and power generation device
CN114806614A (en) Rotary kiln pyrolysis carbonization device and process based on smoke injection recycling
CN105351019A (en) Power generation technique based on pyrolyzation and gasification of refuse derived fuel (RDF) prepared from household refuse and incineration of fuel gas
CN110257093B (en) Control method of carbonization system in biomass external heating method heat and carbon co-production system
JP2023112604A (en) biomass power generation system
CN107523361A (en) High nitrogen antibiotic bacterium dregs prepare the process and system of low nitrogen biological fuel gas
JPWO2021156628A5 (en)
JP2019196859A (en) Method of drying plant biomass fuel, and biomass power generation facility
JP2023026175A (en) Biomass energy conversion system and biomass energy conversion method
CN213060745U (en) Self-heating type carbon heat co-production biomass pyrolysis equipment
CN209857020U (en) Biomass energy heat supply system
CN112342045A (en) Direct-fired power generation system based on biomass pyrolysis charcoal making and co-production process thereof
CN201155794Y (en) High efficiency unpowered biomass gasification combustion furnace for apartment
CN112725035A (en) Fire pan type gasification carbonization furnace
CN205061992U (en) Oxidation biomass gasification device
TWI730754B (en) A method for converting organic waste into energy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795926

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22795926

Country of ref document: EP

Kind code of ref document: A1