WO2022230889A1 - Multilayer optical film - Google Patents

Multilayer optical film Download PDF

Info

Publication number
WO2022230889A1
WO2022230889A1 PCT/JP2022/018916 JP2022018916W WO2022230889A1 WO 2022230889 A1 WO2022230889 A1 WO 2022230889A1 JP 2022018916 W JP2022018916 W JP 2022018916W WO 2022230889 A1 WO2022230889 A1 WO 2022230889A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical film
meth
acrylate
edge
film
Prior art date
Application number
PCT/JP2022/018916
Other languages
French (fr)
Japanese (ja)
Inventor
泰介 笹川
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to JP2023517565A priority Critical patent/JPWO2022230889A1/ja
Priority to CN202280022932.9A priority patent/CN117042961A/en
Priority to KR1020237027590A priority patent/KR20240002732A/en
Publication of WO2022230889A1 publication Critical patent/WO2022230889A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a laminated optical film.
  • a display panel has a laminated structure including, for example, a pixel panel, a touch panel, and a surface protective cover.
  • Various functional optical films having predetermined optical functions are also included in the laminated structure of the display panel.
  • Functional optical films include, for example, polarizer films and retardation films.
  • the functional optical film is incorporated in a laminated structure in the form of a laminated optical film, for example, in a state where it is bonded to another optical film such as a protective film via an adhesive.
  • a laminated optical film is described, for example, in Patent Document 1 below.
  • the present invention provides a laminated optical film suitable for suppressing damage to the edges of the optical film.
  • the present invention [1] is a laminated optical film comprising a first optical film, an adhesive layer, and a second optical film in order in the thickness direction, wherein the adhesive layer is bonded to the first optical film. and bonded to the second optical film, the adhesive layer has an extending edge, and the extending edge extends from the first optical film in a plane direction orthogonal to the thickness direction.
  • a laminated optical film extending outwardly from one edge and a second edge of the second optical film.
  • the adhesive layer sandwiched between the first optical film and the second optical film has an extension end extending outward from both optical films.
  • the extended end portion extends further outward than both optical films. is subjected to collisions with external members.
  • further approaching of the external member is prevented, and collision of the external member with the first edge of the first optical film and the second edge of the second optical film is prevented.
  • the impact force against these edges is mitigated.
  • Such collision prevention and impact mitigation are suitable for suppressing damage to the edges of the optical film in the laminated optical film.
  • the fact that the adhesive layer of the laminated optical film has an extended end is suitable for suppressing the occurrence and growth of microcracks at the ends of the first and second optical films.
  • the present invention [2] is the laminated optical system according to [1] above, wherein the first optical film is a polarizer film, and the first edge is outside the second edge in the plane direction. Including film.
  • Such a configuration is preferable for suppressing damage to the second edge of the second optical film in the laminated optical film.
  • the present invention [3] is the laminate according to [1] or [2] above, wherein the extending length of the extending end portion from the first edge in the surface direction is 0.01 ⁇ m or more and 5 ⁇ m or less Includes optical film.
  • Such a configuration is preferable for achieving both suppression of damage and suppression of peeling at the first edge of the first optical film.
  • the present invention [4] provides any one of [1] to [3] above, wherein the extending length of the extending end portion from the second edge in the planar direction is 0.03 ⁇ m or more and 10 ⁇ m or less.
  • Such a configuration is preferable for achieving both suppression of damage and suppression of peeling at the second edge of the second optical film.
  • the indentation modulus E1 at 25° C. of the adhesive layer and the indentation modulus E2 at 80° C. of the adhesive layer are 0.05 ⁇ E2/E1 ⁇ 0.05.
  • Such a configuration is preferable for forming the above-described extended end portion when the laminated optical film is manufactured through film contour processing in which the end portion of the laminated optical film is heated.
  • FIG. 1 It is a cross-sectional schematic diagram of one Embodiment of the laminated optical film of this invention. 2 is an enlarged cross-sectional view of an end portion of the laminated optical film shown in FIG. 1; FIG. Represents a function of the extended end of the adhesive layer.
  • a laminated optical film X as an embodiment of the laminated optical film of the present invention comprises an optical film 10 (first optical film), an optical film 20 (second optical film), and an adhesive layer, as shown in FIG. 30.
  • the laminated optical film X has a sheet shape with a predetermined thickness and spreads in a direction orthogonal to the thickness direction H (plane direction).
  • the laminated optical film X includes an optical film 10, an adhesive layer 30, and an optical film 20 in the thickness direction H in this order.
  • the adhesive layer 30 bonds the optical films 10 and 20 together.
  • the laminated optical film X is a composite film incorporated into the laminated structure of the display panel.
  • the laminated optical film X may be in the form of a sheet or in the form of a roll.
  • the optical film 10 is a functional optical film in this embodiment.
  • Functional optical films include, for example, polarizer films and retardation films.
  • a polarizer film includes, for example, a hydrophilic polymer film that has undergone a dyeing treatment with a dichroic substance and a subsequent stretching treatment.
  • Dichroic substances include, for example, iodine and dichroic dyes.
  • Hydrophilic polymer films include, for example, polyvinyl alcohol (PVA) films, partially formalized PVA films, and partially saponified ethylene-vinyl acetate copolymer films.
  • Polarizer films also include oriented polyene films. Materials for the oriented polyene film include, for example, dehydrated PVA and dehydrochlorinated polyvinyl chloride.
  • a PVA film that has undergone a dyeing treatment with iodine and a subsequent uniaxial stretching treatment is preferable because it has excellent optical properties such as polarizing properties.
  • the thickness of the optical film 10 as a polarizer film is preferably 15 ⁇ m or less, more preferably 12 ⁇ m or less, even more preferably 10 ⁇ m or less, and particularly preferably 8 ⁇ m or less, from the viewpoint of thinning.
  • a thin polarizer film has excellent visibility due to its small thickness unevenness, and is excellent in durability against thermal shock due to its small dimensional change due to temperature change.
  • the thickness of the optical film 10 as a polarizer film is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, from the viewpoint of strength.
  • retardation films include ⁇ /2 wavelength films, ⁇ /4 wavelength films, and viewing angle compensation films.
  • Materials for the retardation film include, for example, polymer films birefringent by stretching.
  • Polymeric films include, for example, cellulose films and polyester films.
  • Cellulose films include, for example, triacetyl cellulose films.
  • Polyester films include, for example, polyethylene terephthalate films and polyethylene naphthalate films.
  • the thickness of the optical film 10 as a retardation film is, for example, 20 ⁇ m or more and, for example, 150 ⁇ m or less.
  • a film comprising a substrate such as a cellulose film and an orientation layer of a liquid crystal compound such as a liquid crystalline polymer on the substrate can also be preferably used.
  • the optical film 20 is a transparent protective film in this embodiment.
  • the transparent protective film is, for example, a flexible transparent resin film.
  • Materials for the transparent protective film include, for example, polyolefin, polyester, polyamide, polyimide, polyvinyl chloride, polyvinylidene chloride, cellulose, modified cellulose, polystyrene, and polycarbonate.
  • Polyolefins include, for example, cycloolefin polymers (COP), polyethylene, polypropylene, ethylene-propylene copolymers, ethylene-vinyl acetate copolymers, and ethylene-vinyl alcohol copolymers.
  • COP cycloolefin polymers
  • Polyesters include, for example, polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate.
  • Polyamides include, for example, polyamide 6, polyamide 6,6, and partially aromatic polyamides. Examples of modified cellulose include triacetyl cellulose. These materials may be used alone, or two or more of them may be used in combination.
  • polyolefin is preferably used, and COP is more preferably used.
  • the optical film 20 is preferably a uniaxially stretched film or a biaxially stretched film.
  • the thickness of the optical film 20 is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and even more preferably 20 ⁇ m or more. From the viewpoint of thinning the laminated optical film X, the thickness of the optical film 20 is preferably 100 ⁇ m or less, more preferably 70 ⁇ m or less, and even more preferably 50 ⁇ m or less.
  • the adhesive layer 30 is a cured adhesive composition.
  • the adhesive layer 30 bonds directly to the optical film 10 and directly bonds to the optical film 20 .
  • the adhesive composition contains a curable resin. The components of the adhesive composition are specifically described below.
  • the thickness T1 of the adhesive layer 30 is preferably 0.1 ⁇ m or more, more preferably 0.4 ⁇ m or more, even more preferably 0.7 ⁇ m or more, and particularly preferably 0 .8 ⁇ m or more. From the viewpoint of thinning the laminated optical film X, the thickness T1 of the adhesive layer 30 is preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, still more preferably 1.5 ⁇ m or less, and particularly preferably 1 ⁇ m or less.
  • At least part of the peripheral edge of the adhesive layer 30 has an extended end portion 30a, as shown in FIG.
  • the extending end portion 30a extends outward ( In FIG. 2, it is a part extending leftward in the drawing.
  • the extension end portion 30a extending outward from the optical films 10 and 20 receives the collision of the external member M.
  • FIG. As a result, further approach of the external member M is prevented, and collision of the external member M against the edge 11 of the optical film 10 and the edge 21 of the optical film 20 is prevented.
  • the edge 11 is preferably outside the edge 21 in the plane direction. Such a configuration is preferable for suppressing damage to the edge 21 of the optical film 20 in the laminated optical film X.
  • the extension length L1 of the extension end portion 30a from the edge 11 in the surface direction is preferably 0.01 ⁇ m or more, more preferably 0.05 ⁇ m or more, still more preferably 0.1 ⁇ m, and particularly preferably 0.3 ⁇ m or more. is. Such a configuration is preferable for suppressing damage to the edge 11 of the optical film 10 . Also, the extension length L1 is preferably 8 ⁇ m or less, more preferably 5 ⁇ m or less, even more preferably 4 ⁇ m or less, still more preferably 3 ⁇ m, and particularly preferably 1 ⁇ m or less.
  • the extension length L1 is specifically the distance in the surface direction between the edge 11 of the optical film 10 and the edge 31 of the adhesive layer 30 .
  • the extension length L2 of the extension end portion 30a from the edge 21 in the plane direction is preferably 0.03 ⁇ m or more, more preferably 0.1 ⁇ m or more, still more preferably 0.3 ⁇ m, and particularly preferably 0.5 ⁇ m or more. is. Such a configuration is preferable for suppressing damage to the edge 21 of the optical film 20 . Also, the extension length L2 is preferably 10 ⁇ m or less, more preferably 7 ⁇ m or less, still more preferably 5 ⁇ m, and particularly preferably 3 ⁇ m or less. Such a configuration is preferable for suppressing peeling from the adhesive layer 30 at the edge 21 of the optical film 20 .
  • the extension length L2 is specifically the distance in the surface direction between the edge 21 of the optical film 20 and the edge 31 of the adhesive layer 30 .
  • the ratio (L2/L1) of the extension length L2 to the extension length L1 is preferably 1.1 or more, more preferably 1.5 or more, still more preferably 2 or more, and particularly preferably 2.5 or more.
  • the ratio (L2/L1) is preferably 10 or less, more preferably 8 or less, even more preferably 7 or less, and particularly preferably 5 or less.
  • the indentation elastic modulus (indentation elastic modulus E1) of the adhesive layer 30 at 25° C. measured by the nanoindentation method is preferably 0.5 GPa or more, more preferably 1 GPa or more, still more preferably 1.5 GPa or more, Particularly preferably, it is 2 GPa or more.
  • Such a configuration is preferable from the viewpoint of securing the bonding strength between the optical films 10 and 20 .
  • such a configuration is preferable for ensuring the above-described collision prevention and collision force mitigation functions of the extension end portion 30a, and for achieving both the above-described damage suppression and peeling suppression in the optical films 10 and 20. Helpful.
  • the indentation modulus E1 is preferably 7 GPa or less, more preferably 5 GPa or less, and even more preferably 3 GPa or less. Such a configuration is preferable for ensuring flexibility of the adhesive layer 30 when the laminated optical film X is used for a repeatedly foldable display panel.
  • Methods for adjusting the indentation modulus of the adhesive layer 30 include, for example, adjusting the composition of the adhesive composition. Specifically, the adjustment of the number of functional groups of the polymerizable compound described later in the adhesive composition forming the adhesive layer 30, that is, the adjustment of the acrylic equivalent and epoxy equivalent of the polymerizable compound, is effective for the pressing of the adhesive layer 30. It is effective as an elastic modulus adjustment method.
  • the nanoindentation method is a technique for measuring various physical properties of samples on a nanometer scale.
  • the nanoindentation method is performed in compliance with ISO14577.
  • a process of pushing an indenter into a sample set on a stage (loading process) and then a process of withdrawing the indenter from the sample (unloading process) are performed.
  • the load acting between the indenter and the sample and the relative displacement of the indenter with respect to the sample are measured (load-displacement measurement). This makes it possible to obtain a load-displacement curve. From this load-displacement curve, it is possible to obtain various physical properties of the measurement sample based on nanometer scale measurement.
  • a nanoindenter (trade name “Triboindenter”, manufactured by Hysitron) can be used for the load-displacement measurement of the cross section of the adhesive layer by the nanoindentation method. Specifically, it is as described later with respect to Examples.
  • the indentation elastic modulus (indentation elastic modulus E2) of the adhesive layer 30 at 80° C. measured by the nanoindentation method is preferably 0.05 GPa or more, more preferably 0.1 GPa or more, and still more preferably 0.2 GPa. More preferably, it is 0.3 GPa or more.
  • Such a configuration is preferable for suppressing heat shrinkage of the adhesive layer 30 and forming the extension end portion 30a during the later-described film contour processing when the temperature of the end portion of the laminated optical film X rises.
  • the indentation modulus E2 is preferably 0.7 GPa or less, more preferably 0.5 GPa or less, and even more preferably 0.4 GPa or less.
  • the indentation elastic moduli E1 and E2 preferably satisfy 0.05 ⁇ E2/E1 ⁇ 0.25. Such a configuration is preferable for suppressing heat shrinkage of the adhesive layer 30 and forming the extension end portion 30a during the later-described film contour processing when the temperature of the end portion of the laminated optical film X rises.
  • the value of E2/E1 is more preferably 0.1 or more, still more preferably 0.12 or more, and more preferably 0.2 or less, still more preferably 0.18 or less.
  • the 90° peel strength of the optical film 20 to the optical film 10 at 25°C is preferably 1 N/15 mm or more, more preferably 1.2 N/15 mm or more, and still more preferably 1.5 N/15 mm or more. is.
  • Such a configuration is preferable for achieving good bonding strength between the optical films 10 and 20, and particularly preferable for ensuring bonding strength between the optical films 10 and 20 for a foldable display panel.
  • the 90° peel strength is, for example, 10 N/15 mm or less.
  • the 90° peel strength can be measured using, for example, a Tensilon universal tester (product name: "RTC", manufactured by A&D).
  • the measurement temperature is 25° C.
  • the peeling angle is 90°
  • the peeling speed is 1000 mm/min.
  • a method for adjusting the 90° peel strength for example, adjustment of the composition of the adhesive composition can be mentioned.
  • Specific examples of the method for adjusting the 90° peel strength include adjustment of the number of functional groups of the polymerizable compound described later in the adhesive composition, that is, adjustment of the acrylic equivalent and epoxy equivalent of the polymerizable compound.
  • the ratio of the 90° peel strength (N/15mm) to the indentation modulus E2 (GPa) described above is preferably 5 or more, more preferably 10 or more, still more preferably 15 or more, and preferably 30 or less, more It is preferably 25 or less. Such a configuration is preferable from the standpoint of processing resistance of the adhesive layer 30 .
  • the adhesive layer 30 is, for example, a cured product of an adhesive composition (active energy ray-curable composition) containing an active energy ray-curable resin.
  • Active energy ray-curable compositions include, for example, electron beam-curable compositions, UV-curable compositions, and visible light-curable compositions.
  • the active energy ray-curable composition is either one or both of a radically polymerizable composition and a cationic polymerizable composition in the present embodiment.
  • the composition contains a radically polymerizable compound as a monomer.
  • a radically polymerizable compound is a compound having a radically polymerizable functional group.
  • examples of radically polymerizable functional groups include ethylenically unsaturated bond-containing groups.
  • Ethylenically unsaturated bond-containing groups include, for example, (meth)acryloyl groups, vinyl groups, and allyl groups.
  • a (meth)acryloyl group means an acryloyl group and/or a methacryloyl group.
  • the active energy ray-curable composition preferably contains a radically polymerizable compound having a (meth)acryloyl group as a main component.
  • a main component means the component with the largest mass ratio.
  • the proportion of the (meth)acryloyl group-containing radically polymerizable compound in the active energy ray-curable composition is, for example, 50% by mass or more, preferably 70% by mass or more, and more preferably 80% by mass or more.
  • the radically polymerizable compound includes a monofunctional radically polymerizable compound and a difunctional or higher polyfunctional radically polymerizable compound.
  • Examples of monofunctional radically polymerizable compounds include (meth)acrylamide derivatives having a (meth)acrylamide group.
  • (Meth)acrylamide derivatives include N-alkyl group-containing (meth)acrylamide derivatives, N-hydroxyalkyl group-containing (meth)acrylamide derivatives, N-aminoalkyl group-containing (meth)acrylamide derivatives, N-alkoxy group-containing (meth)acrylamide derivatives, ) acrylamide derivatives and N-mercaptoalkyl group-containing (meth)acrylamide derivatives.
  • N-alkyl group-containing (meth)acrylamide derivatives include, for example, N-methyl(meth)acrylamide, N,N-dimethyl(meth)acrylamide, N,N-diethyl(meth)acrylamide, N-isopropyl(meth)acrylamide , N-butyl(meth)acrylamide, and N-hexyl(meth)acrylamide, preferably N,N-diethylacrylamide is used.
  • N-hydroxyalkyl group-containing (meth)acrylamide derivatives include, for example, N-methylol(meth)acrylamide, N-hydroxyethyl(meth)acrylamide, and N-methylol-N-propane(meth)acrylamide, preferably is N-hydroxyethyl acrylamide.
  • the (meth)acrylamide derivatives may be used alone, or two or more of them may be used in combination.
  • Examples of monofunctional radically polymerizable compounds include (meth)acrylic acid derivatives having a (meth)acryloyloxy group.
  • Examples of the (meth)acrylic acid derivative include (meth)acrylic acid alkyl esters and (meth)acrylic acid derivatives other than (meth)acrylic acid alkyl esters.
  • the (meth)acrylic acid derivatives may be used alone, or two or more of them may be used in combination.
  • (Meth)acrylic acid alkyl esters include, for example, methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, ) acrylate, n-pentyl (meth) acrylate, 2,2-dimethylbutyl (meth) acrylate, n-hexyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, 4-methyl- 2-propylpentyl (meth)acrylate, and n-octadecyl (meth)acrylate.
  • Examples of (meth)acrylic acid derivatives other than (meth)acrylic acid alkyl esters include (meth)acrylic acid cycloalkyl esters, (meth)acrylic acid aralkyl esters, hydroxyl group-containing (meth)acrylic acid derivatives, alkoxy group-containing ( Examples include meth)acrylic acid derivatives and phenoxy group-containing (meth)acrylic acid derivatives.
  • (Meth)acrylic acid cycloalkyl esters include, for example, cyclohexyl (meth)acrylate and cyclopentyl (meth)acrylate.
  • (Meth)acrylic acid aralkyl esters include, for example, benzyl (meth)acrylate and 3-phenoxybenzyl (meth)acrylate.
  • hydroxyl group-containing (meth)acrylic acid derivatives include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 4 -hydroxybutyl (meth)acrylate, [4-(hydroxymethyl)cyclohexyl]methyl acrylate, and 2-hydroxy-3-phenoxypropyl (meth)acrylate.
  • Alkoxy group-containing (meth)acrylic acid derivatives include, for example, 2-methoxyethyl (meth)acrylate, 2-ethoxyethyl (meth)acrylate, and 3-methoxybutyl (meth)acrylate.
  • Phenoxy group-containing (meth)acrylic acid derivatives include, for example, phenoxyethyl (meth)acrylate and phenoxydiethylene glycol (meth)acrylate.
  • the (meth)acrylic acid derivative other than the (meth)acrylic acid alkyl ester is preferably at least one selected from the group consisting of 3-phenoxybenzyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate, and phenoxydiethylene glycol acrylate. one is used.
  • Carboxyl group-containing monomers are also included as monofunctional radically polymerizable compounds.
  • Carboxyl group-containing monomers include, for example, (meth)acrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, crotonic acid, and isocrotonic acid.
  • the monofunctional radically polymerizable compound also includes a lactam-based vinyl monomer.
  • Lactamic vinyl monomers include, for example, N-vinyl-2-pyrrolidone, N-vinyl- ⁇ -caprolactam, and methylvinylpyrrolidone.
  • Examples of monofunctional radically polymerizable compounds include vinyl-based monomers having nitrogen-containing heterocycles.
  • Such monomers include, for example, vinylpyridine, vinylpiperidone, vinylpyrimidine, vinylpiperazine, vinylpyrazine, vinylpyrrole, vinylimidazole, vinyloxazole, and vinylmorpholine.
  • polyfunctional radically polymerizable compounds include tripropylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate.
  • acrylate 1,10-decanediol diacrylate, 2-ethyl-2-butylpropanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, tricyclodecanedimethanol di(meth)acrylate, cyclic trimethylol propane formal (meth)acrylate, dioxane glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, and dipentaerythritol hexa(meth)acrylate are used, preferably tripropylene glycol diacrylate.
  • the polyfunctional radically polymerizable compounds may be used alone, or two or more of them may be used in combination.
  • a polyfunctional radically polymerizable compound
  • the active energy ray curable composition When the active energy ray-curable composition is an ultraviolet curable composition or a visible light curable composition, the active energy ray curable composition preferably contains a photopolymerization initiator.
  • Photoinitiators include, for example, benzophenone compounds, benzoin ether compounds, and thioxanthone compounds.
  • Benzophenone compounds include, for example, benzyl, benzophenone, benzoylbenzoic acid, and 3,3'-dimethyl-4-methoxybenzophenone.
  • Benzoin ether compounds include, for example, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, and benzoin butyl ether.
  • Thioxanthone compounds include, for example, thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2,4-dimethylthioxanthone, isopropylthioxanthone, 2,4-dichlorothioxanthone, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone, and dodecylthioxanthone.
  • a photopolymerization initiator that is highly sensitive to light of 380 nm or longer is preferably used.
  • photopolymerization initiators include, for example, 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-(4-morphol linophenyl)-butanone-1,2-(dimethylamino)-2-[(4-methylphenyl)methyl]-1-[4-(4-morpholinyl)phenyl]-1-butanone, 2,4,6- trimethylbenzoyl-diphenyl-phosphine oxide, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, and bis( ⁇ 5-2,4-cyclopentadien-1-yl)-bis(2,6-difluoro -3-(1H-pyrrol-1-yl)-
  • 2,4-diethylthioxanthone and/or 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one are preferably used.
  • the content of the photopolymerization initiator in the active energy ray-curable composition is preferably 0.1 parts by mass or more, more preferably 0.05 parts by mass with respect to 100 parts by mass of the curable component (radical polymerizable compound). Above, more preferably 0.1 parts by mass or more, preferably 20 parts by mass or less, more preferably 10 parts by mass or less, and even more preferably 5 parts by mass or less.
  • the composition contains a cationic polymerizable compound as a monomer.
  • the cationically polymerizable compound is a compound having a cationically polymerizable functional group, and includes a monofunctional cationically polymerizable compound having one cationically polymerizable functional group and a polyfunctional cationically polymerizable compound having two or more cationically polymerizable functional groups. compounds.
  • a monofunctional cationic polymerizable compound has a relatively low liquid viscosity. By adding such a monofunctional cationically polymerizable compound to the resin composition, the viscosity of the resin composition can be lowered.
  • monofunctional cationically polymerizable compounds often have functional groups that exhibit various functions.
  • various functions can be expressed in the resin composition and/or the cured product of the resin composition.
  • the resin composition containing the polyfunctional cationically polymerizable compound by curing the resin composition containing the polyfunctional cationically polymerizable compound, a cured product having a three-dimensional crosslinked portion is obtained (the polyfunctional cationically polymerizable compound functions as a crosslinking agent). From such a point of view, it is preferable to use polyfunctional cationically polymerizable compounds.
  • the amount of the polyfunctional cationically polymerizable compound relative to 100 parts by weight of the monofunctional cationically polymerizable compound is, for example, 10 parts by weight or more. It is 1000 mass parts or less.
  • Cationic polymerizable functional groups include, for example, epoxy groups, oxetanyl groups, and vinyl ether groups.
  • Compounds having an epoxy group include, for example, aliphatic epoxy compounds, alicyclic epoxy compounds, and aromatic epoxy compounds.
  • an alicyclic epoxy compound is preferably used from the viewpoint of curability and adhesiveness of the cationic polymerizable composition.
  • the alicyclic epoxy compounds include, for example, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, or caprolactone-modified 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, Examples include trimethylcaprolactone-modified products and valerolactone-modified products.
  • Examples of commercially available alicyclic epoxy compounds include Celoxide 2021, Celoxide 2021A, Celoxide 2021P, Celoxide 2081, Celoxide 2083, and Celoxide 2085 (manufactured by Daicel Chemical Industries, Ltd.), and Cyracure UVR-6105.
  • Cyracure UVR-6107 Cyracure 30, and R-6110 (manufactured by Dow Chemical Japan). From the viewpoint of improving curability and reducing viscosity of the cationic polymerizable composition, it is preferable to use a compound having an oxetanyl group and/or a compound having a vinyl ether group.
  • Compounds having an oxetanyl group include, for example, 3-ethyl-3-hydroxymethyloxetane, 1,4-bis[(3-ethyl-3-oxetanyl)methoxymethyl]benzene, 3-ethyl-3-(phenoxymethyl) oxetane, di[(3-ethyl-3-oxetanyl)methyl]ether, 3-ethyl-3-(2-ethylhexyloxymethyl)oxetane, and phenol novolac oxetane.
  • oxetanyl group examples include, for example, Aron oxetane OXT-101, Aron oxetane OXT-121, Aron oxetane OXT-211, Aron oxetane OXT-221, and Aron oxetane OXT-212 (manufactured by Toagosei Co., Ltd.). is mentioned.
  • Examples of compounds having a vinyl ether group include 2-hydroxyethyl vinyl ether, diethylene glycol monovinyl ether, 4-hydroxybutyl vinyl ether, diethylene glycol vinyl ether, triethylene glycol divinyl ether, cyclohexanedimethanol divinyl ether, cyclohexanedimethanol monovinyl ether, tricyclo.
  • the active energy ray curable composition When the active energy ray-curable composition is an ultraviolet curable composition or a visible light curable composition, the active energy ray curable composition contains a photocationic polymerization initiator.
  • a photocationic polymerization initiator generates cationic species or Lewis acid upon irradiation with active energy rays (visible light, ultraviolet rays, X-rays, electron beams, etc.) and initiates the polymerization reaction of the cationic polymerizable functional groups.
  • the photocationic polymerization initiator includes a photoacid generator and a photobase generator, preferably a photoacid generator.
  • the active energy ray-curable composition is used as a visible light-curable composition
  • a cationic photopolymerization initiator that is particularly sensitive to light of 380 nm or longer.
  • a photocationic polymerization initiator it is preferable to use together a photosensitizer showing maximum absorption of light having a wavelength longer than 380 nm.
  • a photocationic polymerization initiator is generally a compound that exhibits maximum absorption in a wavelength region near or shorter than 300 nm. Long wavelength light can be effectively used to promote the generation of cationic species or Lewis acids from the photocationic polymerization initiator.
  • photosensitizers include anthracene compounds, pyrene compounds, carbonyl compounds, organic sulfur compounds, persulfides, redox compounds, azo compounds, diazo compounds, halogen compounds, and photoreducible dyes. These may be used alone, or two or more of them may be used in combination. In particular, an anthracene compound is preferable because of its excellent photosensitizing effect.
  • commercially available anthracene compounds as photosensitizers include, for example, Anthracure UVS-1331 and Anthracure UVS-1221 (manufactured by Kawasaki Kasei Co., Ltd.). The content of the photosensitizer in the composition is, for example, 0.1 to 5% by weight.
  • the active energy ray-curable composition may contain an oligomer.
  • Oligomers include acrylic oligomers, fluorine oligomers, and silicone oligomers, preferably acrylic oligomers.
  • Incorporation of the oligomer into the active energy ray-curable composition is useful for suppressing shrinkage of the composition upon curing. Suppression of cure shrinkage of the active energy ray-curable composition is preferable for reducing interfacial stress between the formed adhesive layer 30 and the optical films 10 and 20 . Suppression of interfacial stress is useful for securing bonding strength between the optical films 10 and 20 .
  • Examples of (meth)acrylic monomers that form acrylic oligomers include (meth)acrylic acid alkyl esters having 1 to 20 carbon atoms, cycloalkyl (meth)acrylates, aralkyl (meth)acrylates, polycyclic (meth)acrylates, Examples include hydroxyl group-containing (meth)acrylic acid esters and halogen-containing (meth)acrylic acid esters.
  • (Meth)acrylic acid alkyl esters for example, methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, 2-methyl-2-nitropropyl (meth)acrylate , n-butyl (meth)acrylate, isobutyl (meth)acrylate, S-butyl (meth)acrylate, t-butyl (meth)acrylate, n-pentyl (meth)acrylate, t-pentyl (meth)acrylate, 3-pentyl (Meth)acrylate, 2,2-dimethylbutyl (meth)acrylate, n-hexyl (meth)acrylate, cetyl (meth)acrylate, n-octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, 4-methyl- 2-propylpentyl (meth)acrylate
  • Cycloalkyl (meth)acrylates include, for example, cyclohexyl (meth)acrylate and cyclopentyl (meth)acrylate.
  • Aralkyl (meth)acrylates include, for example, benzyl (meth)acrylate.
  • Polycyclic (meth)acrylates include, for example, 2-isobornyl (meth)acrylate, 2-norbornylmethyl (meth)acrylate, 5-norbornen-2-yl-methyl (meth)acrylate, and 3-methyl- 2-Norbornylmethyl (meth)acrylate can be mentioned.
  • hydroxyl group-containing (meth)acrylic acid esters examples include hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, and 2,3-dihydroxypropylmethyl-butyl (meth)methacrylate.
  • Halogen-containing (meth)acrylic acid esters include, for example, 2,2,2-trifluoroethyl (meth)acrylate, 2,2,2-trifluoroethylethyl (meth)acrylate, tetrafluoropropyl (meth)acrylate, hexafluoropropyl (meth)acrylate, octafluoropentyl (meth)acrylate, heptadecafluorodecyl (meth)acrylate. These (meth)acrylates may be used alone, or two or more of them may be used in combination.
  • the weight average molecular weight (Mw) of the acrylic oligomer is preferably 15,000 or less, more preferably 10,000 or less, even more preferably 5,000 or less. Mw of the acrylic oligomer is preferably 500 or more, more preferably 1000 or more, and even more preferably 1500 or more.
  • the content of the acrylic oligomer in the active energy ray-curable composition is preferably 2% by mass or more, more preferably 4% by mass or more, and is preferably 20% by mass or less, more preferably 15% by mass or less. .
  • the active energy ray-curable composition may contain other components.
  • Other ingredients include silane coupling agents, leveling agents, surfactants, plasticizers, and UV absorbers.
  • the blending amount of the other component is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, and still more preferably 3 parts by mass or less with respect to 100 parts by mass of the curable component. Part by mass or more.
  • the viscosity of the active energy ray-curable composition at 25° C. is preferably 3 mPa ⁇ s or more, more preferably 5 mPa ⁇ s or more, and still more preferably 10 mPa ⁇ s or more, from the viewpoint of coatability in the coating step described later. and is preferably 100 mPa ⁇ s or less, more preferably 50 mPa ⁇ s or less, and still more preferably 30 mPa ⁇ s or less.
  • the viscosity of the composition is a value measured with an E-type viscometer (cone plate type viscometer).
  • the laminated optical film X can be produced, for example, as follows.
  • an active energy ray-curable composition is applied to one side (surface to be bonded) of one optical film (optical film 10 or optical film 20) to form a coating film of the composition (application step).
  • the surface to be bonded of the optical film may be subjected to a surface modification treatment.
  • Surface modification treatments include corona treatment, plasma treatment, excimer-treatment, and flame treatment.
  • Examples of coating methods in this step include reverse coaters, gravure coaters, bar reverse coaters, roll coaters, die coaters, bar coaters, and rod coaters.
  • the other optical film (optical film 20 or optical film 10) is attached to one optical film via the composition coating film.
  • a roll laminator can be used for lamination.
  • the composition coating film between the optical films 10 and 20 is irradiated with an active energy ray to cure the coating film (active energy ray-curable composition) to form the adhesive layer 30 (adhesion
  • the adhesive layer 30 is not a pressure sensitive adhesive layer).
  • the optical films 10 and 20 are joined via the adhesive layer 30, and the raw material film of the laminated optical film X is obtained.
  • Electron beams, ultraviolet rays, and visible rays can be used as active energy rays.
  • Examples of electron beam irradiation means include an electron beam accelerator.
  • Ultraviolet and visible light sources include, for example, LED lights, gallium-filled metal halide lamps, low-pressure mercury lamps, medium-pressure mercury lamps, high-pressure mercury lamps, ultra-high pressure mercury lamps, xenon lamps, halogen lamps, and gallium lamps.
  • a wavelength cut filter for cutting a part of the wavelength range of ultraviolet rays and/or visible light emitted from the light source may be used as needed.
  • At least a portion of the peripheral edge of the raw material film is contoured (outer contouring step). For example, one longitudinal end of a roll-shaped raw material film is trimmed. For example, a roll-shaped raw material film is cut into sheets.
  • these contour processing methods include laser processing such as CO 2 laser irradiation, cutting with a punch blade, and end mill processing. Relatively large heat shrinkage occurs in the optical films 10 and 20 at the portion of the raw material film where the outer shape is processed, and the extended end portion 30a is formed. Specifically, the edges 11 and 21 of the optical films 10 and 20 are retracted from the edge 31 of the adhesive layer 30 inward in the plane direction at the edges of the raw material film. It contracts to form the extended end 30a.
  • the length of shrinkage of the ends of the optical films 10 and 20, that is, the extension lengths L1 and L2 of the extension end portion 30a, depends on the material (dimensional shrinkage rate) and thickness of the optical films 10 and 20 and the processing conditions. can be adjusted by adjusting Processing conditions include, for example, adjustment of the draw ratio.
  • the laminated optical film X can be manufactured as described above.
  • Example 1 The following components were mixed at 25° C. for 1 hour to prepare an adhesive composition (preparation step).
  • the adhesive composition was applied onto a 23 ⁇ m thick COP film (product name “Zeonor Film ZF14”, manufactured by Nippon Zeon Co., Ltd.) as a transparent protective film to form an adhesive coating film of 1 ⁇ m thick.
  • COP film product name “Zeonor Film ZF14”, manufactured by Nippon Zeon Co., Ltd.
  • MCD coater manufactured by Fuji Machine Co., Ltd.
  • the polarizer film was attached to the transparent protective film via the adhesive coating film on the same film.
  • the adhesive coating between the films was cured by irradiating the adhesive coating with ultraviolet rays from the transparent protective film side.
  • UV irradiation an ultraviolet irradiation apparatus (product name: "Light HAMMER10", bulb: V bulb, manufactured by Fusion UV Systems, Inc.) equipped with a gallium-encapsulated metal halide lamp as a light source was used.
  • the peak illuminance was 1600 mW/cm 2 and the cumulative irradiance was 1000 mJ/cm 2 (wavelength 380 to 440 nm) (illuminance was measured using the “Sola-Check system” manufactured by Solatell. ).
  • the transparent conductive film and the polarizer film were bonded to obtain a laminated optical film.
  • the laminated optical film was subjected to external processing (external processing step). Specifically, the laminated optical film was cut in the thickness direction by irradiation with a CO 2 laser to obtain a laminated optical film having a predetermined plan view shape.
  • the wavelength was 9.4 ⁇ m
  • the power was 48 W
  • the scanning speed was 500 mm/sec.
  • the laminated optical film was then left at room temperature for 24 hours.
  • the laminated optical film of Example 1 was produced as described above.
  • the laminated optical film of Example 1 includes a polarizer film (5 ⁇ m thick), an adhesive layer, and a transparent protective film (23 ⁇ m thick) in this order in the thickness direction.
  • Example 2 A laminated optical film (polarizer film/adhesive layer/transparent protective film) of Example 2 was produced in the same manner as the laminated optical film of Example 1 except for the following. In the preparation process, the blending amount of “Aronix M-220” was changed from 15 parts by weight to 5 parts by weight, and the thickness of the adhesive layer coating film formed on the transparent protective film was set to 1 ⁇ m.
  • Example 3 A laminated optical film (polarizer film/second adhesive layer/transparent protective film) of Example 3 was produced in the same manner as the laminated optical film of Example 1 except for the following.
  • the blending amount of “light acrylate POB-A” was 43 parts by mass
  • the blending amount of “light acrylate P2H-A” was 29 parts by mass
  • the blending amount of “Aronix M-220” was 3 parts by mass. did.
  • the thickness of the adhesive layer coating film formed on the transparent protective film was set to 1 ⁇ m.
  • Comparative Example 1 A laminated optical film (polarizer film/adhesive layer/transparent protective film) of Comparative Example 1 was produced in the same manner as the laminated optical film of Example 1 except for the following.
  • the indentation elastic modulus of the adhesive layer in each of the laminated optical films of Examples 1 to 3 and Comparative Example 1 was measured by the nanoindentation method (first elastic modulus measurement). Specifically, first, a film piece (laminated optical film) having a size of 5 mm ⁇ 10 mm was cut out from the laminated optical film. Next, the laminated optical film was cut by a cryomicrotome method. Specifically, the laminated optical film was cooled to ⁇ 30° C., cut with a hard knife in the thickness direction of the same film, and then returned to room temperature. Thus, a sample for measurement was obtained.
  • first elastic modulus measurement Specifically, first, a film piece (laminated optical film) having a size of 5 mm ⁇ 10 mm was cut out from the laminated optical film. Next, the laminated optical film was cut by a cryomicrotome method. Specifically, the laminated optical film was cooled to ⁇ 30° C., cut with a hard knife in the thickness direction of the same film, and then returned
  • the indentation elastic modulus at 80° C. of the adhesive layer in each of the laminated optical films of Examples 1 to 3 and Comparative Example 1 was the first elastic modulus except that the measurement temperature was changed to 80° C. instead of 25° C. It was measured in the same manner as the measurement (second elastic modulus measurement). The value is shown in Table 1 as indentation elastic modulus E2 (GPa). Table 1 also shows the ratio (E2/E1) of the indentation modulus E2 at 80°C to the indentation modulus E1 at 25°C.
  • the laminated optical film of the present invention can be used, for example, as an element included in the laminated structure of a display panel such as a foldable display panel.

Abstract

A multilayer optical film (X) according to the present invention is sequentially provided with an optical film (10), an adhesive layer (30) and an optical film (20) in the thickness direction (H). The adhesive layer (30) is bonded to the optical film (10), while also being bonded to the optical film (20). The adhesive layer (30) has an extended end part (30a). The extended end part (30a) extends outwardly beyond an edge (11) of the optical film (10) and an edge (21) of the optical film (20) in a plane direction that is perpendicular to the thickness direction (H).

Description

積層光学フィルムlaminated optical film
 本発明は、積層光学フィルムに関する。 The present invention relates to a laminated optical film.
 ディスプレイパネルは、例えば、画素パネル、タッチパネル、表面保護カバーなどを含む積層構造を有する。ディスプレイパネルの積層構造中には、所定の光学的機能を有する種々の機能性光学フィルムも含まれる。機能性光学フィルムとしては、例えば、偏光子フィルムおよび位相差フィルムが挙げられる。機能性光学フィルムは、例えば、保護フィルムなど他の光学フィルムと接着剤を介して接合された状態で、即ち積層光学フィルムの形態で、積層構造中に組み込まれている。そのような積層光学フィルムについては、例えば下記の特許文献1に記載されている。 A display panel has a laminated structure including, for example, a pixel panel, a touch panel, and a surface protective cover. Various functional optical films having predetermined optical functions are also included in the laminated structure of the display panel. Functional optical films include, for example, polarizer films and retardation films. The functional optical film is incorporated in a laminated structure in the form of a laminated optical film, for example, in a state where it is bonded to another optical film such as a protective film via an adhesive. Such a laminated optical film is described, for example, in Patent Document 1 below.
特開2019-147865号公報JP 2019-147865 A
 ディスプレイパネルの薄型化に伴い、光学フィルムの薄膜化が進んでいる。積層光学フィルムにおける光学フィルムが薄いほど、積層光学フィルムの端部は、外力によってクラックなど損傷を生じやすい。積層光学フィルムの端部にクラックが生じると、当該クラックは、例えば、同フィルムの面方向における内部領域に延びるように成長する。端部でのクラックの発生は、このような大きなクラックの原因となり、好ましくない。また、非矩形の異形ディスプレイパネルでは、パネル端縁まで表示機能が利用されるので、端部クラックの抑制が強く求められる。スマートフォンなどの異形ディスプレイパネルでは、従来、当該パネルが組み込まれたデバイスの長期使用により、異形加工周辺部におけるパネル端部の微小なクラックがパネル内方へと進展してデバイス表示画面に輝線が生じやすい。このような不具合の抑制が強く求められるのである。 As display panels become thinner, optical films are becoming thinner. The thinner the optical film in the laminated optical film is, the more likely the edges of the laminated optical film are to be cracked or otherwise damaged by an external force. When a crack occurs at the edge of the laminated optical film, the crack grows, for example, extending to the inner region in the plane direction of the film. The occurrence of cracks at the edges causes such large cracks, which is undesirable. In addition, in a non-rectangular irregular-shaped display panel, since the display function is used up to the edge of the panel, suppression of edge cracks is strongly desired. Conventionally, in irregular-shaped display panels such as smartphones, due to long-term use of the device in which the panel is incorporated, minute cracks at the edge of the panel in the periphery of the irregular-shaped processing progress into the panel, causing bright lines on the device display screen. Cheap. There is a strong demand for suppression of such defects.
 本発明は、光学フィルムの端部の損傷を抑制するのに適した積層光学フィルムを提供する。 The present invention provides a laminated optical film suitable for suppressing damage to the edges of the optical film.
 本発明[1]は、第1光学フィルムと、接着剤層と、第2光学フィルムとを厚さ方向に順に備える積層光学フィルムであって、前記接着剤層が、前記第1光学フィルムに接合し、且つ前記第2光学フィルムに接合し、前記接着剤層が延出端部を有し、当該延出端部は、前記厚さ方向と直交する面方向において、前記第1光学フィルムの第1端縁および前記第2光学フィルムの第2端縁よりも外方に延出する、積層光学フィルムを含む。 The present invention [1] is a laminated optical film comprising a first optical film, an adhesive layer, and a second optical film in order in the thickness direction, wherein the adhesive layer is bonded to the first optical film. and bonded to the second optical film, the adhesive layer has an extending edge, and the extending edge extends from the first optical film in a plane direction orthogonal to the thickness direction. A laminated optical film extending outwardly from one edge and a second edge of the second optical film.
 本積層光学フィルムでは、上記のように、第1光学フィルムと第2光学フィルムとに挟まれた接着剤層が、両光学フィルムよりも外方に延出する延出端部を有する。このような延出端部が存在する箇所では、積層光学フィルムに対して例えば面方向外方から外部部材が接近して衝突するとき、両光学フィルムよりも外方に延出する延出端部が、外部部材の衝突を受ける。これにより、外部部材の更なる接近が阻止されて、第1光学フィルムの第1端縁と第2光学フィルムの第2端縁とに対する外部部材の衝突が防止される。或いは、第1端縁および/または第2端縁に外部部材が衝突したとしても、これら端部に対する衝突力が緩和される。このような衝突の防止および衝突力の緩和は、積層光学フィルムにおいて、光学フィルムの端部の損傷を抑制するのに適する。加えて、本積層光学フィルムの接着剤層が延出端部を有することは、第1・第2光学フィルム端部における微小クラックの発生・成長を抑制するのに適する。 In the present laminated optical film, as described above, the adhesive layer sandwiched between the first optical film and the second optical film has an extension end extending outward from both optical films. At a location where such an extended end portion exists, when an external member approaches and collides with the laminated optical film from the outside in the plane direction, the extended end portion extends further outward than both optical films. is subjected to collisions with external members. As a result, further approaching of the external member is prevented, and collision of the external member with the first edge of the first optical film and the second edge of the second optical film is prevented. Alternatively, if the external member collides with the first edge and/or the second edge, the impact force against these edges is mitigated. Such collision prevention and impact mitigation are suitable for suppressing damage to the edges of the optical film in the laminated optical film. In addition, the fact that the adhesive layer of the laminated optical film has an extended end is suitable for suppressing the occurrence and growth of microcracks at the ends of the first and second optical films.
 本発明[2]は、前記第1光学フィルムが偏光子フィルムであり、前記面方向において、前記第1端縁が前記第2端縁よりも外側にある、上記[1]に記載の積層光学フィルムを含む。 The present invention [2] is the laminated optical system according to [1] above, wherein the first optical film is a polarizer film, and the first edge is outside the second edge in the plane direction. Including film.
 このような構成は、積層光学フィルムにおいて、第2光学フィルムの第2端縁の損傷を抑制するのに好ましい。 Such a configuration is preferable for suppressing damage to the second edge of the second optical film in the laminated optical film.
 本発明[3]は、前記面方向における前記第1端縁からの前記延出端部の延出長さが0.01μm以上5μm以下である、上記[1]または[2]に記載の積層光学フィルムを含む。 The present invention [3] is the laminate according to [1] or [2] above, wherein the extending length of the extending end portion from the first edge in the surface direction is 0.01 μm or more and 5 μm or less Includes optical film.
 このような構成は、第1光学フィルムの第1端縁において、損傷の抑制と剥離の抑制とを両立するのに好ましい。 Such a configuration is preferable for achieving both suppression of damage and suppression of peeling at the first edge of the first optical film.
 本発明[4]は、前記面方向における前記第2端縁からの前記延出端部の延出長さが0.03μm以上10μm以下である、上記[1]から[3]のいずれか一つに記載の積層光学フィルムを含む。 The present invention [4] provides any one of [1] to [3] above, wherein the extending length of the extending end portion from the second edge in the planar direction is 0.03 μm or more and 10 μm or less. The laminated optical film described in 1.
 このような構成は、第2光学フィルムの第2端縁において、損傷の抑制と剥離の抑制とを両立するのに好ましい。 Such a configuration is preferable for achieving both suppression of damage and suppression of peeling at the second edge of the second optical film.
 本発明[5]は、前記接着剤層が有する25℃での押込み弾性率E1、および、前記接着剤層が有する80℃での押込み弾性率E2が、0.05≦E2/E1≦0.25を満たす、上記[1]から[4]のいずれか一つに記載の積層光学フィルムを含む。 In the present invention [5], the indentation modulus E1 at 25° C. of the adhesive layer and the indentation modulus E2 at 80° C. of the adhesive layer are 0.05≦E2/E1≦0.05. 25, the laminated optical film according to any one of the above [1] to [4].
 このような構成は、積層光学フィルム端部が昇温するフィルム外形加工を経て積層光学フィルムが製造される場合に、上述の延出端部を形成するのに好ましい。 Such a configuration is preferable for forming the above-described extended end portion when the laminated optical film is manufactured through film contour processing in which the end portion of the laminated optical film is heated.
本発明の積層光学フィルムの一実施形態の断面模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a cross-sectional schematic diagram of one Embodiment of the laminated optical film of this invention. 図1に示す積層光学フィルムの端部の拡大断面図である。2 is an enlarged cross-sectional view of an end portion of the laminated optical film shown in FIG. 1; FIG. 接着剤層の延出端部の一機能を表す。Represents a function of the extended end of the adhesive layer.
 本発明の積層光学フィルムの一実施形態としての積層光学フィルムXは、図1に示すように、光学フィルム10(第1光学フィルム)と、光学フィルム20(第2光学フィルム)と、接着剤層30とを備える。積層光学フィルムXは、所定の厚さのシート形状を有し、厚さ方向Hと直交する方向(面方向)に広がる。積層光学フィルムXは、具体的には、光学フィルム10と、接着剤層30と、光学フィルム20とを、厚さ方向Hに順に備える。接着剤層30は、光学フィルム10,20間を接合している。また、積層光学フィルムXは、ディスプレイパネルの積層構造中に組み込まれる複合フィルムである。積層光学フィルムXは、枚葉状でもよいし、ロール状でもよい。 A laminated optical film X as an embodiment of the laminated optical film of the present invention comprises an optical film 10 (first optical film), an optical film 20 (second optical film), and an adhesive layer, as shown in FIG. 30. The laminated optical film X has a sheet shape with a predetermined thickness and spreads in a direction orthogonal to the thickness direction H (plane direction). Specifically, the laminated optical film X includes an optical film 10, an adhesive layer 30, and an optical film 20 in the thickness direction H in this order. The adhesive layer 30 bonds the optical films 10 and 20 together. Also, the laminated optical film X is a composite film incorporated into the laminated structure of the display panel. The laminated optical film X may be in the form of a sheet or in the form of a roll.
 光学フィルム10は、本実施形態では、機能性の光学フィルムである。機能性光学フィルムとしては、例えば、偏光子フィルムおよび位相差フィルムが挙げられる。 The optical film 10 is a functional optical film in this embodiment. Functional optical films include, for example, polarizer films and retardation films.
 偏光子フィルムとしては、例えば、二色性物質による染色処理とその後の延伸処理とを経た親水性高分子フィルムが挙げられる。二色性物質としては、例えば、ヨウ素および二色性染料が挙げられる。親水性高分子フィルムとしては、例えば、ポリビニルアルコール(PVA)フィルム、部分ホルマール化PVAフィルム、および、エチレン・酢酸ビニル共重合体の部分ケン化フィルムが挙げられる。偏光子フィルムとしては、ポリエン配向フィルムも挙げられる。ポリエン配向フィルムの材料としては、例えば、PVAの脱水処理物、および、ポリ塩化ビニルの脱塩酸処理物が挙げられる。偏光子フィルムとしては、偏光特性など光学特性に優れることから、ヨウ素による染色処理とその後の一軸延伸処理とを経たPVAフィルムが好ましい。 A polarizer film includes, for example, a hydrophilic polymer film that has undergone a dyeing treatment with a dichroic substance and a subsequent stretching treatment. Dichroic substances include, for example, iodine and dichroic dyes. Hydrophilic polymer films include, for example, polyvinyl alcohol (PVA) films, partially formalized PVA films, and partially saponified ethylene-vinyl acetate copolymer films. Polarizer films also include oriented polyene films. Materials for the oriented polyene film include, for example, dehydrated PVA and dehydrochlorinated polyvinyl chloride. As the polarizer film, a PVA film that has undergone a dyeing treatment with iodine and a subsequent uniaxial stretching treatment is preferable because it has excellent optical properties such as polarizing properties.
 偏光子フィルムとしての光学フィルム10の厚さは、薄型化の観点から、好ましくは15μm以下、より好ましくは12μm以下、更に好ましくは10μm以下、特に好ましくは8μm以下である。薄型の偏光子フィルムは、厚みムラが少ないために視認性に優れ、また、温度変化による寸法変化が小さいために熱衝撃に対する耐久性に優れる。偏光子フィルムとしての光学フィルム10の厚さは、強度の観点から、好ましくは3μm以上、より好ましくは5μm以上である。 The thickness of the optical film 10 as a polarizer film is preferably 15 μm or less, more preferably 12 μm or less, even more preferably 10 μm or less, and particularly preferably 8 μm or less, from the viewpoint of thinning. A thin polarizer film has excellent visibility due to its small thickness unevenness, and is excellent in durability against thermal shock due to its small dimensional change due to temperature change. The thickness of the optical film 10 as a polarizer film is preferably 3 μm or more, more preferably 5 μm or more, from the viewpoint of strength.
 位相差フィルムとしては、例えば、λ/2波長フィルムおよびλ/4波長フィルム、および視野角補償フィルムが挙げられる。位相差フィルムの材料としては、例えば、延伸処理によって複屈折化された高分子フィルムが挙げられる。高分子フィルムのとしては、例えば、セルロースフィルムおよびポリエステルフィルムが挙げられる。セルロースフィルムとしては、例えばトリアセチルセルロースフィルムが挙げられる。ポリエステルフィルムとしては、例えば、ポリエチレンテレフタレートフィルムおよびポリエチレンナフタレートフィルムが挙げられる。位相差フィルムとしての光学フィルム10の厚さは、例えば20μm以上であり、例えば150μm以下である。また、位相差フィルムとしては、セルロースフィルムなどの基材と、当該基材上の液晶性ポリマーなど液晶化合物の配向層とを備えるフィルムも、好ましく用いることができる。 Examples of retardation films include λ/2 wavelength films, λ/4 wavelength films, and viewing angle compensation films. Materials for the retardation film include, for example, polymer films birefringent by stretching. Polymeric films include, for example, cellulose films and polyester films. Cellulose films include, for example, triacetyl cellulose films. Polyester films include, for example, polyethylene terephthalate films and polyethylene naphthalate films. The thickness of the optical film 10 as a retardation film is, for example, 20 μm or more and, for example, 150 μm or less. As the retardation film, a film comprising a substrate such as a cellulose film and an orientation layer of a liquid crystal compound such as a liquid crystalline polymer on the substrate can also be preferably used.
 光学フィルム20は、本実施形態では、透明保護フィルムである。透明保護フィルムは、例えば、可撓性を有する透明な樹脂フィルムである。透明保護フィルムの材料としては、例えば、ポリオレフィン、ポリエステル、ポリアミド、ポリイミド、ポリ塩化ビニル、ポリ塩化ビニリデン、セルロース、変性セルロース、ポリスチレン、およびポリカーボネートが挙げられる。ポリオレフィンとしては、例えば、シクロオレフィンポリマー(COP)、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、エチレン・酢酸ビニル共重合体、およびエチレン・ビニルアルコール共重合体が挙げられる。ポリエステルとしては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、およびポリブチレンテレフタレートが挙げられる。ポリアミドとしては、例えば、ポリアミド6、ポリアミド6,6、および部分芳香族ポリアミドが挙げられる。変性セルロースとしては、例えばトリアセチルセルロースが挙げられる。これら材料は、単独で用いられてもよいし、二種類以上が併用されてもよい。透明保護フィルムの材料としては、清浄度の観点から、好ましくはポリオレフィンが用いられ、より好ましくはCOPが用いられる。また、光学フィルム20は、好ましくは、一軸延伸フィルムまたは二軸延伸フィルムである。 The optical film 20 is a transparent protective film in this embodiment. The transparent protective film is, for example, a flexible transparent resin film. Materials for the transparent protective film include, for example, polyolefin, polyester, polyamide, polyimide, polyvinyl chloride, polyvinylidene chloride, cellulose, modified cellulose, polystyrene, and polycarbonate. Polyolefins include, for example, cycloolefin polymers (COP), polyethylene, polypropylene, ethylene-propylene copolymers, ethylene-vinyl acetate copolymers, and ethylene-vinyl alcohol copolymers. Polyesters include, for example, polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate. Polyamides include, for example, polyamide 6, polyamide 6,6, and partially aromatic polyamides. Examples of modified cellulose include triacetyl cellulose. These materials may be used alone, or two or more of them may be used in combination. As a material for the transparent protective film, from the viewpoint of cleanliness, polyolefin is preferably used, and COP is more preferably used. Also, the optical film 20 is preferably a uniaxially stretched film or a biaxially stretched film.
 光学フィルム20の厚さは、積層光学フィルムXの強度の観点から、好ましくは5μm以上、より好ましくは10μm以上、更に好ましくは20μm以上である。積層光学フィルムXの薄型化の観点から、光学フィルム20の厚さは、好ましくは100μm以下、より好ましくは70μm以下、更に好ましくは50μm以下である。 From the viewpoint of the strength of the laminated optical film X, the thickness of the optical film 20 is preferably 5 µm or more, more preferably 10 µm or more, and even more preferably 20 µm or more. From the viewpoint of thinning the laminated optical film X, the thickness of the optical film 20 is preferably 100 μm or less, more preferably 70 μm or less, and even more preferably 50 μm or less.
 接着剤層30は、接着剤組成物の硬化物である。接着剤層30は、光学フィルム10に対して直接に接合し、且つ光学フィルム20に対して直接に接合する。接着剤組成物は、硬化性樹脂を含有する。接着剤組成物の成分は、具体的には後述のとおりである。 The adhesive layer 30 is a cured adhesive composition. The adhesive layer 30 bonds directly to the optical film 10 and directly bonds to the optical film 20 . The adhesive composition contains a curable resin. The components of the adhesive composition are specifically described below.
 接着剤層30の厚さT1は、光学フィルム10,20間の接合力の観点から、好ましくは0.1μm以上、より好ましくは0.4μm以上、更に好ましくは0.7μm以上、特に好ましくは0.8μm以上である。接着剤層30の厚さT1は、積層光学フィルムXの薄型化の観点から、好ましくは5μm以下、より好ましくは3μm以下、更に好ましくは1.5μm以下、特に好ましくは1μm以下である。 From the viewpoint of bonding strength between the optical films 10 and 20, the thickness T1 of the adhesive layer 30 is preferably 0.1 μm or more, more preferably 0.4 μm or more, even more preferably 0.7 μm or more, and particularly preferably 0 .8 μm or more. From the viewpoint of thinning the laminated optical film X, the thickness T1 of the adhesive layer 30 is preferably 5 μm or less, more preferably 3 μm or less, still more preferably 1.5 μm or less, and particularly preferably 1 μm or less.
 接着剤層30は、周端縁の少なくとも一部において、図2に示すように、延出端部30aを有する。延出端部30aは、厚さ方向Hと直交する面方向において、光学フィルム10の端縁11(第1端縁)または光学フィルム20の端縁21(第2端縁)よりも外方(図2では図中左方向)に延出している部位である。積層光学フィルムXにおいて、このような延出端部30aが存在する箇所では、例えば図3に示すように、積層光学フィルムXに対して面方向外方から外部部材Mが接近して衝突するとき、光学フィルム10,20よりも外方に延出する延出端部30aが、外部部材Mの衝突を受ける。これにより、外部部材Mの更なる接近が阻止されて、光学フィルム10の端縁11と光学フィルム20の端縁21とに対する外部部材Mの衝突が防止される。或いは、端縁11および/または端縁21に外部部材Mが衝突したとしても、これら端縁11,21に対する衝突力が緩和される。このような衝突の防止および衝突力の緩和は、積層光学フィルムXにおいて、光学フィルム10,20の端部の損傷を抑制するのに適する。加えて、積層光学フィルムXの接着剤層30が延出端部30aを有することは、光学フィルム10,20の端部における微小クラックの発生・成長を抑制するのに適する。 At least part of the peripheral edge of the adhesive layer 30 has an extended end portion 30a, as shown in FIG. The extending end portion 30a extends outward ( In FIG. 2, it is a part extending leftward in the drawing. In the laminated optical film X, when the external member M approaches and collides with the laminated optical film X from the outside in the plane direction, as shown in FIG. , the extension end portion 30a extending outward from the optical films 10 and 20 receives the collision of the external member M. As shown in FIG. As a result, further approach of the external member M is prevented, and collision of the external member M against the edge 11 of the optical film 10 and the edge 21 of the optical film 20 is prevented. Alternatively, even if the external member M collides with the edge 11 and/or the edge 21, the impact force against these edges 11 and 21 is alleviated. Such collision prevention and collision force mitigation are suitable for suppressing damage to the edges of the optical films 10 and 20 in the laminated optical film X. FIG. In addition, the fact that the adhesive layer 30 of the laminated optical film X has the extended end portion 30a is suitable for suppressing the occurrence and growth of microcracks at the end portions of the optical films 10 and 20. FIG.
 光学フィルム10が偏光子フィルムであり且つ光学フィルム20が透明保護フィルムである場合、端縁11は、好ましくは、端縁21よりも面方向外側にある。このような構成は、積層光学フィルムXにおいて、光学フィルム20の端縁21の損傷を抑制するのに好ましい。 When the optical film 10 is a polarizer film and the optical film 20 is a transparent protective film, the edge 11 is preferably outside the edge 21 in the plane direction. Such a configuration is preferable for suppressing damage to the edge 21 of the optical film 20 in the laminated optical film X.
 面方向における端縁11からの延出端部30aの延出長さL1は、好ましくは0.01μm以上、より好ましくは0.05μm以上、更に好ましくは0.1μm、特に好ましくは0.3μm以上である。このような構成は、光学フィルム10の端縁11の損傷を抑制するのに好ましい。また、延出長さL1は、好ましくは8μm以下、より好ましくは5μm以下、更に好ましくは4μm以下、一層好ましくは3μm、特に好ましくは1μm以下である。このような構成は、積層光学フィルムXがスマートフォン等のディスプレイパネルに組み込まれた場合において、外形加工時に過度に延出した接着剤によってパネル端部に糊残りが発生することを抑制するのに好ましく、当該糊残り起因する表示ムラを抑制するのに好ましい。延出長さL1は、具体的には、光学フィルム10の端縁11と接着剤層30の端縁31との間の面方向の距離である。 The extension length L1 of the extension end portion 30a from the edge 11 in the surface direction is preferably 0.01 μm or more, more preferably 0.05 μm or more, still more preferably 0.1 μm, and particularly preferably 0.3 μm or more. is. Such a configuration is preferable for suppressing damage to the edge 11 of the optical film 10 . Also, the extension length L1 is preferably 8 μm or less, more preferably 5 μm or less, even more preferably 4 μm or less, still more preferably 3 μm, and particularly preferably 1 μm or less. Such a configuration is preferable for suppressing the occurrence of adhesive residue on the edge of the panel due to the excessively extended adhesive when the laminated optical film X is incorporated into a display panel of a smartphone or the like. , it is preferable to suppress the display unevenness caused by the adhesive residue. The extension length L1 is specifically the distance in the surface direction between the edge 11 of the optical film 10 and the edge 31 of the adhesive layer 30 .
 面方向における端縁21からの延出端部30aの延出長さL2は、好ましくは0.03μm以上、より好ましくは0.1μm以上、更に好ましくは0.3μm、特に好ましくは0.5μm以上である。このような構成は、光学フィルム20の端縁21の損傷を抑制するのに好ましい。また、延出長さL2は、好ましくは10μm以下、より好ましくは7μm以下、更に好ましくは5μm、特に好ましくは3μm以下である。このような構成は、光学フィルム20の端縁21において、接着剤層30からの剥離を抑制するのに好ましい。延出長さL2は、具体的には、光学フィルム20の端縁21と接着剤層30の端縁31との間の面方向の距離である。 The extension length L2 of the extension end portion 30a from the edge 21 in the plane direction is preferably 0.03 μm or more, more preferably 0.1 μm or more, still more preferably 0.3 μm, and particularly preferably 0.5 μm or more. is. Such a configuration is preferable for suppressing damage to the edge 21 of the optical film 20 . Also, the extension length L2 is preferably 10 μm or less, more preferably 7 μm or less, still more preferably 5 μm, and particularly preferably 3 μm or less. Such a configuration is preferable for suppressing peeling from the adhesive layer 30 at the edge 21 of the optical film 20 . The extension length L2 is specifically the distance in the surface direction between the edge 21 of the optical film 20 and the edge 31 of the adhesive layer 30 .
 延出長さL1に対する延出長さL2の比率(L2/L1)は、好ましくは1.1以上、より好ましくは1.5以上、更に好ましくは2以上、特に好ましくは2.5以上である。比率(L2/L1)は、好ましくは10以下、より好ましくは8以下、更に好ましくは7以下、特に好ましくは5以下である。これら構成は、光学フィルム10,20における上述の損傷抑制と剥離抑制とを両立するのに好ましい。 The ratio (L2/L1) of the extension length L2 to the extension length L1 is preferably 1.1 or more, more preferably 1.5 or more, still more preferably 2 or more, and particularly preferably 2.5 or more. . The ratio (L2/L1) is preferably 10 or less, more preferably 8 or less, even more preferably 7 or less, and particularly preferably 5 or less. These configurations are preferable for achieving both the above-described suppression of damage and suppression of peeling of the optical films 10 and 20 .
 接着剤層30の、ナノインデンテーション法により測定される25℃での押込み弾性率(押込み弾性率E1)は、好ましくは0.5GPa以上、より好ましくは1GPa以上、更に好ましくは1.5GPa以上、特に好ましくは2GPa以上である。このような構成は、光学フィルム10,20間の接合力確保の観点から好ましい。また、このような構成は、延出端部30aの上述の衝突防止および衝突力緩和の機能を確保するのに好ましく、光学フィルム10,20における上述の損傷抑制と剥離抑制とを両立するのに役立つ。押込み弾性率E1は、好ましくは7GPa以下、より好ましくは5GPa以下、更に好ましくは3GPa以下である。このような構成は、繰り返し折り曲げ可能(フォルダブル)なディスプレイパネルに積層光学フィルムXを用いる場合の、接着剤層30の屈曲性を確保するのに好ましい。接着剤層30の押込み弾性率を調整する方法としては、例えば、接着剤組成物の組成の調整が挙げられる。具体的には、接着剤層30を形成する接着剤組成物中の後述の重合性化合物の官能基数の調整、即ち、重合性化合物のアクリル当量やエポキシ当量の調整が、接着剤層30の押込み弾性率調整方法として効果的である。 The indentation elastic modulus (indentation elastic modulus E1) of the adhesive layer 30 at 25° C. measured by the nanoindentation method is preferably 0.5 GPa or more, more preferably 1 GPa or more, still more preferably 1.5 GPa or more, Particularly preferably, it is 2 GPa or more. Such a configuration is preferable from the viewpoint of securing the bonding strength between the optical films 10 and 20 . In addition, such a configuration is preferable for ensuring the above-described collision prevention and collision force mitigation functions of the extension end portion 30a, and for achieving both the above-described damage suppression and peeling suppression in the optical films 10 and 20. Helpful. The indentation modulus E1 is preferably 7 GPa or less, more preferably 5 GPa or less, and even more preferably 3 GPa or less. Such a configuration is preferable for ensuring flexibility of the adhesive layer 30 when the laminated optical film X is used for a repeatedly foldable display panel. Methods for adjusting the indentation modulus of the adhesive layer 30 include, for example, adjusting the composition of the adhesive composition. Specifically, the adjustment of the number of functional groups of the polymerizable compound described later in the adhesive composition forming the adhesive layer 30, that is, the adjustment of the acrylic equivalent and epoxy equivalent of the polymerizable compound, is effective for the pressing of the adhesive layer 30. It is effective as an elastic modulus adjustment method.
 ナノインデンテーション法とは、試料の諸物性をナノメートルスケールで測る技術である。本実施形態において、ナノインデンテーション法は、ISO14577に準拠して実施される。ナノインデンテーション法では、ステージ上にセットされた試料に圧子を押し込む過程(荷重印加過程)と、それより後に試料から圧子を引き抜く過程(除荷過程)とが実施されて、一連の過程中、圧子-試料間に作用する荷重と、試料に対する圧子の相対変位とが測定される(荷重-変位測定)。これにより、荷重-変位曲線を得ることが可能である。この荷重-変位曲線から、測定試料について、ナノメートルスケール測定に基づく諸物性を求めることが可能である。ナノインデンテーション法による接着剤層断面の荷重-変位測定には、例えば、ナノインデンター(商品名「Triboindenter」,Hysitron社製)を使用できる。具体的には、実施例に関して後述するとおりである。 The nanoindentation method is a technique for measuring various physical properties of samples on a nanometer scale. In this embodiment, the nanoindentation method is performed in compliance with ISO14577. In the nanoindentation method, a process of pushing an indenter into a sample set on a stage (loading process) and then a process of withdrawing the indenter from the sample (unloading process) are performed. The load acting between the indenter and the sample and the relative displacement of the indenter with respect to the sample are measured (load-displacement measurement). This makes it possible to obtain a load-displacement curve. From this load-displacement curve, it is possible to obtain various physical properties of the measurement sample based on nanometer scale measurement. For example, a nanoindenter (trade name “Triboindenter”, manufactured by Hysitron) can be used for the load-displacement measurement of the cross section of the adhesive layer by the nanoindentation method. Specifically, it is as described later with respect to Examples.
 接着剤層30の、ナノインデンテーション法により測定される80℃での押込み弾性率(押込み弾性率E2)は、好ましくは0.05GPa以上、より好ましくは0.1GPa以上、更に好ましくは0.2GPa以上、特に好ましくは0.3GPa以上である。このような構成は、積層光学フィルムXの端部が昇温する後述のフィルム外形加工時に、接着剤層30の熱収縮を抑制して上述の延出端部30aを形成するのに好ましい。押込み弾性率E2は、接着剤層30の加工耐性の観点からは、好ましくは0.7GPa以下、より好ましくは0.5GPa以下、更に好ましくは0.4GPa以下である。 The indentation elastic modulus (indentation elastic modulus E2) of the adhesive layer 30 at 80° C. measured by the nanoindentation method is preferably 0.05 GPa or more, more preferably 0.1 GPa or more, and still more preferably 0.2 GPa. More preferably, it is 0.3 GPa or more. Such a configuration is preferable for suppressing heat shrinkage of the adhesive layer 30 and forming the extension end portion 30a during the later-described film contour processing when the temperature of the end portion of the laminated optical film X rises. From the viewpoint of the processing resistance of the adhesive layer 30, the indentation modulus E2 is preferably 0.7 GPa or less, more preferably 0.5 GPa or less, and even more preferably 0.4 GPa or less.
 押込み弾性率E1,E2は、好ましくは、0.05≦E2/E1≦0.25を満たす。このような構成は、積層光学フィルムXの端部が昇温する後述のフィルム外形加工時に、接着剤層30の熱収縮を抑制して上述の延出端部30aを形成するのに好ましい。E2/E1の値は、より好ましくは0.1以上、更に好ましくは0.12以上であり、また、より好ましくは0.2以下、更に好ましくは0.18以下である。 The indentation elastic moduli E1 and E2 preferably satisfy 0.05≦E2/E1≦0.25. Such a configuration is preferable for suppressing heat shrinkage of the adhesive layer 30 and forming the extension end portion 30a during the later-described film contour processing when the temperature of the end portion of the laminated optical film X rises. The value of E2/E1 is more preferably 0.1 or more, still more preferably 0.12 or more, and more preferably 0.2 or less, still more preferably 0.18 or less.
 積層光学フィルムXにおいて、光学フィルム10に対する光学フィルム20の25℃での90°剥離強度は、好ましくは1N/15mm以上、より好ましくは1.2N/15mm以上、更に好ましくは1.5N/15mm以上である。このような構成は、光学フィルム10,20間の良好な接合力を実現するのに好ましく、特に、フォルダブルディスプレイパネル用の光学フィルム10,20の間の接合力を確保するのに好ましい。90°剥離強度は、例えば10N/15mm以下である。90°剥離強度は、例えばテンシロン万能試験機(品名「RTC」,エー・アンド・デイ社製)を使用して測定できる。本測定では、測定温度を25℃とし、剥離角度を90°とし、剥離速度を1000mm/分とする。また、90°剥離強度の調整方法としては、例えば、接着剤組成物の組成の調整が挙げられる。90°剥離強度の調整方法としては、具体的には、接着剤組成物中の後述の重合性化合物の官能基数の調整、即ち、重合性化合物のアクリル当量やエポキシ当量の調整が、挙げられる。 In the laminated optical film X, the 90° peel strength of the optical film 20 to the optical film 10 at 25°C is preferably 1 N/15 mm or more, more preferably 1.2 N/15 mm or more, and still more preferably 1.5 N/15 mm or more. is. Such a configuration is preferable for achieving good bonding strength between the optical films 10 and 20, and particularly preferable for ensuring bonding strength between the optical films 10 and 20 for a foldable display panel. The 90° peel strength is, for example, 10 N/15 mm or less. The 90° peel strength can be measured using, for example, a Tensilon universal tester (product name: "RTC", manufactured by A&D). In this measurement, the measurement temperature is 25° C., the peeling angle is 90°, and the peeling speed is 1000 mm/min. Moreover, as a method for adjusting the 90° peel strength, for example, adjustment of the composition of the adhesive composition can be mentioned. Specific examples of the method for adjusting the 90° peel strength include adjustment of the number of functional groups of the polymerizable compound described later in the adhesive composition, that is, adjustment of the acrylic equivalent and epoxy equivalent of the polymerizable compound.
 上述の押込み弾性率E2(GPa)に対する90°剥離強度(N/15mm)の比率は、好ましくは5以上、より好ましくは10以上、更に好ましくは15以上であり、また、好ましくは30以下、より好ましくは25以下である。このような構成は、接着剤層30の加工耐性の観点から好ましい。 The ratio of the 90° peel strength (N/15mm) to the indentation modulus E2 (GPa) described above is preferably 5 or more, more preferably 10 or more, still more preferably 15 or more, and preferably 30 or less, more It is preferably 25 or less. Such a configuration is preferable from the standpoint of processing resistance of the adhesive layer 30 .
 接着剤層30は、例えば、活性エネルギー線硬化型の硬化性樹脂を含有する接着剤組成物(活性エネルギー線硬化型組成物)の硬化物である。活性エネルギー線硬化型組成物としては、例えば、電子線硬化型組成物、紫外線硬化型組成物、および可視光線硬化型組成物が挙げられる。また、活性エネルギー線硬化型組成物は、本実施形態では、ラジカル重合型組成物およびカチオン重合型組成物のいずれか一方または両方である。 The adhesive layer 30 is, for example, a cured product of an adhesive composition (active energy ray-curable composition) containing an active energy ray-curable resin. Active energy ray-curable compositions include, for example, electron beam-curable compositions, UV-curable compositions, and visible light-curable compositions. In addition, the active energy ray-curable composition is either one or both of a radically polymerizable composition and a cationic polymerizable composition in the present embodiment.
 活性エネルギー線硬化型組成物がラジカル重合型組成物である場合、同組成物は、ラジカル重合性化合物をモノマーとして含有する。ラジカル重合性化合物は、ラジカル重合性の官能基を有する化合物である。ラジカル重合性官能基としては、例えばエチレン性不飽和結合含有基が挙げられる。エチレン性不飽和結合含有基としては、例えば、(メタ)アクリロイル基、ビニル基、およびアリル基が挙げられる。(メタ)アクリロイル基は、アクリロイル基および/またはメタクリロイル基を意味する。活性エネルギー線硬化型組成物の硬化性の観点から、活性エネルギー線硬化型組成物は、(メタ)アクリロイル基を有するラジカル重合性化合物を主成分として含有するのが好ましい。主成分とは、質量割合で最も多い成分を意味する。活性エネルギー線硬化型組成物における(メタ)アクリロイル基含有ラジカル重合性化合物の割合は、例えば50質量%以上であり、好ましくは70質量%以上、より好ましくは80質量%以上である。また、ラジカル重合性化合物としては、単官能ラジカル重合性化合物、および、二官能以上の多官能ラジカル重合性化合物が挙げられる。 When the active energy ray-curable composition is a radically polymerizable composition, the composition contains a radically polymerizable compound as a monomer. A radically polymerizable compound is a compound having a radically polymerizable functional group. Examples of radically polymerizable functional groups include ethylenically unsaturated bond-containing groups. Ethylenically unsaturated bond-containing groups include, for example, (meth)acryloyl groups, vinyl groups, and allyl groups. A (meth)acryloyl group means an acryloyl group and/or a methacryloyl group. From the viewpoint of curability of the active energy ray-curable composition, the active energy ray-curable composition preferably contains a radically polymerizable compound having a (meth)acryloyl group as a main component. A main component means the component with the largest mass ratio. The proportion of the (meth)acryloyl group-containing radically polymerizable compound in the active energy ray-curable composition is, for example, 50% by mass or more, preferably 70% by mass or more, and more preferably 80% by mass or more. Moreover, the radically polymerizable compound includes a monofunctional radically polymerizable compound and a difunctional or higher polyfunctional radically polymerizable compound.
 単官能ラジカル重合性化合物としては、例えば、(メタ)アクリルアミド基を有する(メタ)アクリルアミド誘導体が挙げられる。(メタ)アクリルアミド誘導体としては、N-アルキル基含有(メタ)アクリルアミド誘導体、N-ヒドロキシアルキル基含有(メタ)アクリルアミド誘導体、N-アミノアルキル基含有(メタ)アクリルアミド誘導体、N-アルコキシ基含有(メタ)アクリルアミド誘導体、およびN-メルカプトアルキル基含有(メタ)アクリルアミド誘導体が挙げられる。N-アルキル基含有(メタ)アクリルアミド誘導体としては、例えば、N-メチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、およびN-ヘキシル(メタ)アクリルアミドが挙げられ、好ましくはN,N-ジエチルアクリルアミドが用いられる。N-ヒドロキシアルキル基含有(メタ)アクリルアミド誘導体としては、例えば、N-メチロール(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミド、およびN-メチロール-N-プロパン(メタ)アクリルアミドが挙げられ、好ましくはN-ヒドロキシエチルアクリルアミドが用いられる。(メタ)アクリルアミド誘導体は、単独で用いられてもよいし、二種類以上が併用されてもよい。 Examples of monofunctional radically polymerizable compounds include (meth)acrylamide derivatives having a (meth)acrylamide group. (Meth)acrylamide derivatives include N-alkyl group-containing (meth)acrylamide derivatives, N-hydroxyalkyl group-containing (meth)acrylamide derivatives, N-aminoalkyl group-containing (meth)acrylamide derivatives, N-alkoxy group-containing (meth)acrylamide derivatives, ) acrylamide derivatives and N-mercaptoalkyl group-containing (meth)acrylamide derivatives. N-alkyl group-containing (meth)acrylamide derivatives include, for example, N-methyl(meth)acrylamide, N,N-dimethyl(meth)acrylamide, N,N-diethyl(meth)acrylamide, N-isopropyl(meth)acrylamide , N-butyl(meth)acrylamide, and N-hexyl(meth)acrylamide, preferably N,N-diethylacrylamide is used. N-hydroxyalkyl group-containing (meth)acrylamide derivatives include, for example, N-methylol(meth)acrylamide, N-hydroxyethyl(meth)acrylamide, and N-methylol-N-propane(meth)acrylamide, preferably is N-hydroxyethyl acrylamide. The (meth)acrylamide derivatives may be used alone, or two or more of them may be used in combination.
 単官能ラジカル重合性化合物としては、例えば、(メタ)アクリロイルオキシ基を有する(メタ)アクリル酸誘導体も挙げられる。当該(メタ)アクリル酸誘導体としては、例えば、(メタ)アクリル酸アルキルエステル、および、(メタ)アクリル酸アルキルエステル以外の(メタ)アクリル酸誘導体が挙げられる。(メタ)アクリル酸誘導体は、単独で用いられてもよいし、二種類以上が併用されてもよい。 Examples of monofunctional radically polymerizable compounds include (meth)acrylic acid derivatives having a (meth)acryloyloxy group. Examples of the (meth)acrylic acid derivative include (meth)acrylic acid alkyl esters and (meth)acrylic acid derivatives other than (meth)acrylic acid alkyl esters. The (meth)acrylic acid derivatives may be used alone, or two or more of them may be used in combination.
 (メタ)アクリル酸アルキルエステル類としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、2,2-ジメチルブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、4-メチル-2-プロピルペンチル(メタ)アクリレート、およびn-オクタデシル(メタ)アクリレートが挙げられる。 (Meth)acrylic acid alkyl esters include, for example, methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, ) acrylate, n-pentyl (meth) acrylate, 2,2-dimethylbutyl (meth) acrylate, n-hexyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, 4-methyl- 2-propylpentyl (meth)acrylate, and n-octadecyl (meth)acrylate.
 (メタ)アクリル酸アルキルエステル以外の(メタ)アクリル酸誘導体としては、例えば、(メタ)アクリル酸シクロアルキルエステル、(メタ)アクリル酸アラルキルエステル、水酸基含有(メタ)アクリル酸誘導体、アルコキシ基含有(メタ)アクリル酸誘導体、およびフェノキシ基含有(メタ)アクリル酸誘導体が挙げられる。(メタ)アクリル酸シクロアルキルエステルとしては、例えば、シクロヘキシル(メタ)アクリレート、およびシクロペンチル(メタ)アクリレートが挙げられる。(メタ)アクリル酸アラルキルエステルとしては、例えば、ベンジル(メタ)アクリレート、および3-フェノキシベンジル(メタ)アクリレートが挙げられる。水酸基含有(メタ)アクリル酸誘導体としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、[4-(ヒドロキシメチル)シクロヘキシル]メチルアクリレート、および、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレートが挙げられる。アルコキシ基含有(メタ)アクリル酸誘導体としては、例えば、2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、および3-メトキシブチル(メタ)アクリレートが挙げられる。フェノキシ基含有(メタ)アクリル酸誘導体としては、例えば、フェノキシエチル(メタ)アクリレート、および、フェノキシジエチレングリコール(メタ)アクリレートが挙げられる。(メタ)アクリル酸アルキルエステル以外の(メタ)アクリル酸誘導体としては、好ましくは、3-フェノキシベンジルアクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、およびフェノキシジエチレングリコールアクリレートからなる群より選択される少なくとも一つが用いられる。 Examples of (meth)acrylic acid derivatives other than (meth)acrylic acid alkyl esters include (meth)acrylic acid cycloalkyl esters, (meth)acrylic acid aralkyl esters, hydroxyl group-containing (meth)acrylic acid derivatives, alkoxy group-containing ( Examples include meth)acrylic acid derivatives and phenoxy group-containing (meth)acrylic acid derivatives. (Meth)acrylic acid cycloalkyl esters include, for example, cyclohexyl (meth)acrylate and cyclopentyl (meth)acrylate. (Meth)acrylic acid aralkyl esters include, for example, benzyl (meth)acrylate and 3-phenoxybenzyl (meth)acrylate. Examples of hydroxyl group-containing (meth)acrylic acid derivatives include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 4 -hydroxybutyl (meth)acrylate, [4-(hydroxymethyl)cyclohexyl]methyl acrylate, and 2-hydroxy-3-phenoxypropyl (meth)acrylate. Alkoxy group-containing (meth)acrylic acid derivatives include, for example, 2-methoxyethyl (meth)acrylate, 2-ethoxyethyl (meth)acrylate, and 3-methoxybutyl (meth)acrylate. Phenoxy group-containing (meth)acrylic acid derivatives include, for example, phenoxyethyl (meth)acrylate and phenoxydiethylene glycol (meth)acrylate. The (meth)acrylic acid derivative other than the (meth)acrylic acid alkyl ester is preferably at least one selected from the group consisting of 3-phenoxybenzyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate, and phenoxydiethylene glycol acrylate. one is used.
 単官能ラジカル重合性化合物としては、カルボキシル基含有モノマーも挙げられる。カルボキシル基含有モノマーとしては、例えば、(メタ)アクリル酸、カルボキシエチルアクリレート、カルボキシペンチルアクリレート、イタコン酸、マレイン酸、フマル酸、クロトン酸、およびイソクロトン酸が挙げられる。  Carboxyl group-containing monomers are also included as monofunctional radically polymerizable compounds. Carboxyl group-containing monomers include, for example, (meth)acrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, crotonic acid, and isocrotonic acid.
 単官能ラジカル重合性化合物としては、ラクタム系ビニルモノマーも挙げられる。ラクタム系ビニルモノマーとしては、例えば、N-ビニル-2-ピロリドン、N-ビニル-ε-カプロラクタム、およびメチルビニルピロリドンが挙げられる。  The monofunctional radically polymerizable compound also includes a lactam-based vinyl monomer. Lactamic vinyl monomers include, for example, N-vinyl-2-pyrrolidone, N-vinyl-ε-caprolactam, and methylvinylpyrrolidone.
 単官能ラジカル重合性化合物としては、窒素含有複素環を有するビニル系モノマーも挙げられる。当該モノマーとしては、例えば、ビニルピリジン、ビニルピペリドン、ビニルピリミジン、ビニルピペラジン、ビニルピラジン、ビニルピロール、ビニルイミダゾール、ビニルオキサゾール、およびビニルモルホリンが挙げられる。 Examples of monofunctional radically polymerizable compounds include vinyl-based monomers having nitrogen-containing heterocycles. Such monomers include, for example, vinylpyridine, vinylpiperidone, vinylpyrimidine, vinylpiperazine, vinylpyrazine, vinylpyrrole, vinylimidazole, vinyloxazole, and vinylmorpholine.
 多官能ラジカル重合性化合物としては、例えば、トリプロピレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジアクリレート、2-エチル-2-ブチルプロパンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリート、環状トリメチロールプロパンフォルマル(メタ)アクリレート、ジオキサングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、およびジペンタエリスリトールヘキサ(メタ)アクリレートが用いられ、好ましくはトリプロピレングリコールジアクリレートが用いられる。多官能ラジカル重合性化合物は、単独で用いられてもよいし、二種類以上が併用されてもよい。多官能ラジカル重合性化合物は、架橋剤として機能する。 Examples of polyfunctional radically polymerizable compounds include tripropylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate. ) acrylate, 1,10-decanediol diacrylate, 2-ethyl-2-butylpropanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, tricyclodecanedimethanol di(meth)acrylate, cyclic trimethylol propane formal (meth)acrylate, dioxane glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, and dipentaerythritol hexa(meth)acrylate are used, preferably tripropylene glycol diacrylate. The polyfunctional radically polymerizable compounds may be used alone, or two or more of them may be used in combination. A polyfunctional radically polymerizable compound functions as a cross-linking agent.
 活性エネルギー線硬化型組成物が紫外線硬化型組成物または可視光線硬化型組成物である場合、活性エネルギー線硬化型組成物は、好ましくは光重合開始剤を含有する。光重合開始剤としては、例えば、ベンゾフェノン化合物、ベンゾインエーテル化合物、およびチオキサントン化合物が挙げられる。ベンゾフェノン化合物としては、例えば、ベンジル、ベンゾフェノン、ベンゾイル安息香酸、および3,3'-ジメチル-4-メトキシベンゾフェノンが挙げられる。ベンゾインエーテル化合物としては、例えば、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、およびベンゾインブチルエーテルが挙げられる。チオキサントン化合物としては、例えば、チオキサントン、2-クロロチオキサントン、2-メチルチオキサントン、2,4-ジメチルチオキサントン、イソプロピルチオキサントン、2,4-ジクロロチオキサントン、2,4-ジエチルチオキサントン、2,4-ジイソプロピルチオキサントン、およびドデシルチオキサントンが挙げられる。 When the active energy ray-curable composition is an ultraviolet curable composition or a visible light curable composition, the active energy ray curable composition preferably contains a photopolymerization initiator. Photoinitiators include, for example, benzophenone compounds, benzoin ether compounds, and thioxanthone compounds. Benzophenone compounds include, for example, benzyl, benzophenone, benzoylbenzoic acid, and 3,3'-dimethyl-4-methoxybenzophenone. Benzoin ether compounds include, for example, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, and benzoin butyl ether. Thioxanthone compounds include, for example, thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2,4-dimethylthioxanthone, isopropylthioxanthone, 2,4-dichlorothioxanthone, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone, and dodecylthioxanthone.
 活性エネルギー線硬化型組成物が可視光線硬化型組成物である場合、好ましくは、380nm以上の光に対して高感度な光重合開始剤が用いられる。そのような光重合開始剤としては、例えば、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、およびビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウムが挙げられる。 When the active energy ray-curable composition is a visible light-curable composition, a photopolymerization initiator that is highly sensitive to light of 380 nm or longer is preferably used. Such photopolymerization initiators include, for example, 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-(4-morphol linophenyl)-butanone-1,2-(dimethylamino)-2-[(4-methylphenyl)methyl]-1-[4-(4-morpholinyl)phenyl]-1-butanone, 2,4,6- trimethylbenzoyl-diphenyl-phosphine oxide, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, and bis(η5-2,4-cyclopentadien-1-yl)-bis(2,6-difluoro -3-(1H-pyrrol-1-yl)-phenyl)titanium.
 光重合開始剤としては、好ましくは、2,4-ジエチルチオキサントン、および/または、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オンが用いられる。 As the photopolymerization initiator, 2,4-diethylthioxanthone and/or 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one are preferably used.
 活性エネルギー線硬化型組成物における光重合開始剤の含有量は、硬化性成分(ラジカル重合性化合物)100質量部に対して、好ましくは0.1質量部以上、より好ましくは0.05質量部以上、更に好ましくは0.1質量部以上であり、また、好ましくは20質量部以下、より好ましくは10質量部以下、更に好ましくは5質量部以下である。 The content of the photopolymerization initiator in the active energy ray-curable composition is preferably 0.1 parts by mass or more, more preferably 0.05 parts by mass with respect to 100 parts by mass of the curable component (radical polymerizable compound). Above, more preferably 0.1 parts by mass or more, preferably 20 parts by mass or less, more preferably 10 parts by mass or less, and even more preferably 5 parts by mass or less.
 活性エネルギー線硬化型組成物がカチオン重合型組成物である場合、同組成物は、カチオン重合性化合物をモノマーとして含有する。カチオン重合性化合物は、カチオン重合性の官能基を有する化合物であり、カチオン重合性官能基を一つ有する単官能カチオン重合性化合物と、カチオン重合性官能基を二つ以上有する多官能カチオン重合性化合物とを含む。単官能カチオン重合性化合物は比較的液粘度が低い。このような単官能カチオン重合性化合物を樹脂組成物に配合することにより、当該樹脂組成物の粘度を低下させられる。また、単官能カチオン重合性化合物は各種機能を発現させる官能基を有している場合が多い。このような単官能カチオン重合性化合物を樹脂組成物に配合することにより、当該樹脂組成物、および/または、樹脂組成物の硬化物に、各種機能を発現させられる。一方、多官能カチオン重合性化合物が配合された樹脂組成物の硬化により、3次元架橋部を有する硬化物が得られる(多官能カチオン重合性化合物は架橋剤として機能する)。このような観点から、多官能カチオン重合性化合物の利用は好ましい。単官能カチオン重合性化合物と多官能カチオン重合性化合物とを併用する場合、単官能カチオン重合性化合物100質量部に対する多官能カチオン重合性化合物を量は、例えば10質量部以上であり、また、例えば1000質量部以下である。カチオン重合性官能基としては、例えば、エポキシ基、オキセタニル基、およびビニルエーテル基が挙げられる。エポキシ基を有する化合物としては、例えば、脂肪族エポキシ化合物、脂環式エポキシ化合物、および芳香族エポキシ化合物が挙げられる。エポキシ基を有する化合物としては、カチオン重合型組成物の硬化性および接着性の観点から、好ましくは脂環式エポキシ化合物が用いられる。脂環式エポキシ化合物としては、例えば、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、または3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレートの、カプロラクトン変性物、トリメチルカプロラクトン変性物、およびバレロラクトン変性物が挙げられる。脂環式エポキシ化合物の市販品としては、例えば、セロキサイド2021、セロキサイド2021A、セロキサイド2021P、セロキサイド2081、セロキサイド2083、およびセロキサイド2085(以上、ダイセル化学工業社製)が挙げられ、また、サイラキュアUVR-6105、サイラキュアUVR-6107、サイラキュア30、およびR-6110(以上、ダウ・ケミカル日本社製)が挙げられる。カチオン重合型組成物の硬化性の改善および粘度低下の観点からは、オキセタニル基を有する化合物、および/または、ビニルエーテル基を有する化合物を用いるのが好ましい。オキセタニル基を有する化合物としては、例えば、3-エチル-3-ヒドロキシメチルオキセタン、1,4-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ベンゼン、3-エチル-3-(フェノキシメチル)オキセタン、ジ[(3-エチル-3-オキセタニル)メチル]エーテル、3-エチル-3-(2-エチルヘキシロキシメチル)オキセタン、およびフェノールノボラックオキセタンが挙げられる。オキセタニル基を有する化合物の市販品としては、例えば、アロンオキセタンOXT-101、アロンオキセタンOXT-121、アロンオキセタンOXT-211、アロンオキセタンOXT-221、アロンオキセタンOXT-212(以上、東亞合成社製)が挙げられる。ビニルエーテル基を有する化合物としては、例えば、2-ヒドロキシエチルビニルエーテル、ジエチレングリコールモノビニルエーテル、4-ヒドロキシブチルビニルエーテル、ジエチレングリコールものビニルエーテル、トリエチレングリコールジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、シクロヘキサンジメタノールモノビニルエーテル、トリシクロデカンビニルエーテル、シクロヘキシルビニルエーテル、メトキシエチルビニルエーテル、エトキシエチルビニルエーテル、およびペンタエリスリトール型テトラビニルエーテルが挙げられる。 When the active energy ray-curable composition is a cationic polymerizable composition, the composition contains a cationic polymerizable compound as a monomer. The cationically polymerizable compound is a compound having a cationically polymerizable functional group, and includes a monofunctional cationically polymerizable compound having one cationically polymerizable functional group and a polyfunctional cationically polymerizable compound having two or more cationically polymerizable functional groups. compounds. A monofunctional cationic polymerizable compound has a relatively low liquid viscosity. By adding such a monofunctional cationically polymerizable compound to the resin composition, the viscosity of the resin composition can be lowered. In addition, monofunctional cationically polymerizable compounds often have functional groups that exhibit various functions. By incorporating such a monofunctional cationically polymerizable compound into the resin composition, various functions can be expressed in the resin composition and/or the cured product of the resin composition. On the other hand, by curing the resin composition containing the polyfunctional cationically polymerizable compound, a cured product having a three-dimensional crosslinked portion is obtained (the polyfunctional cationically polymerizable compound functions as a crosslinking agent). From such a point of view, it is preferable to use polyfunctional cationically polymerizable compounds. When a monofunctional cationically polymerizable compound and a polyfunctional cationically polymerizable compound are used in combination, the amount of the polyfunctional cationically polymerizable compound relative to 100 parts by weight of the monofunctional cationically polymerizable compound is, for example, 10 parts by weight or more. It is 1000 mass parts or less. Cationic polymerizable functional groups include, for example, epoxy groups, oxetanyl groups, and vinyl ether groups. Compounds having an epoxy group include, for example, aliphatic epoxy compounds, alicyclic epoxy compounds, and aromatic epoxy compounds. As the compound having an epoxy group, an alicyclic epoxy compound is preferably used from the viewpoint of curability and adhesiveness of the cationic polymerizable composition. The alicyclic epoxy compounds include, for example, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, or caprolactone-modified 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, Examples include trimethylcaprolactone-modified products and valerolactone-modified products. Examples of commercially available alicyclic epoxy compounds include Celoxide 2021, Celoxide 2021A, Celoxide 2021P, Celoxide 2081, Celoxide 2083, and Celoxide 2085 (manufactured by Daicel Chemical Industries, Ltd.), and Cyracure UVR-6105. , Cyracure UVR-6107, Cyracure 30, and R-6110 (manufactured by Dow Chemical Japan). From the viewpoint of improving curability and reducing viscosity of the cationic polymerizable composition, it is preferable to use a compound having an oxetanyl group and/or a compound having a vinyl ether group. Compounds having an oxetanyl group include, for example, 3-ethyl-3-hydroxymethyloxetane, 1,4-bis[(3-ethyl-3-oxetanyl)methoxymethyl]benzene, 3-ethyl-3-(phenoxymethyl) oxetane, di[(3-ethyl-3-oxetanyl)methyl]ether, 3-ethyl-3-(2-ethylhexyloxymethyl)oxetane, and phenol novolac oxetane. Commercially available compounds having an oxetanyl group include, for example, Aron oxetane OXT-101, Aron oxetane OXT-121, Aron oxetane OXT-211, Aron oxetane OXT-221, and Aron oxetane OXT-212 (manufactured by Toagosei Co., Ltd.). is mentioned. Examples of compounds having a vinyl ether group include 2-hydroxyethyl vinyl ether, diethylene glycol monovinyl ether, 4-hydroxybutyl vinyl ether, diethylene glycol vinyl ether, triethylene glycol divinyl ether, cyclohexanedimethanol divinyl ether, cyclohexanedimethanol monovinyl ether, tricyclo. Decane vinyl ether, cyclohexyl vinyl ether, methoxyethyl vinyl ether, ethoxyethyl vinyl ether, and pentaerythritol type tetravinyl ether.
 活性エネルギー線硬化型組成物が紫外線硬化型組成物または可視光線硬化型組成物である場合、活性エネルギー線硬化型組成物は、光カチオン重合開始剤を含有する。光カチオン重合開始剤は、活性エネルギー線(可視光線、紫外線、X線、電子線など)の照射を受けて、カチオン種またはルイス酸を発生し、カチオン重合性官能基の重合反応を開始させる。光カチオン重合開始剤としては、光酸発生剤および光塩基発生剤が挙げられ、好ましくは光酸発生剤が用いられる。活性エネルギー線硬化型組成物を可視光線硬化型組成物とする場合には、特に380nm以上の光に対して高感度な光カチオン重合開始剤を用いるのが好ましい。また、光カチオン重合開始剤を用いる場合、380nmより長い波長の光に対して極大吸収を示す光増感剤を併用するのが好ましい。光カチオン重合開始剤は、一般に、300nm付近またはそれより短い波長域に極大吸収を示す化合物であるため、380nmより長い波長の光に極大吸収を示す光増感剤を併用することで、380nmより長い波長の光を効果的に利用して、光カチオン重合開始剤からのカチオン種またはルイス酸の発生を促進させることができる。光増感剤としては、例えば、アントラセン化合物、ピレン化合物、カルボニル化合物、有機硫黄化合物、過硫化物、レドックス系化合物、アゾ化合物、ジアゾ化合物、ハロゲン化合物、および光還元性色素が挙げられる。これらは、単独で用いられてもよいし、二種類以上が併用されてもよい。特にアントラセン化合物は、光増感効果に優れるため好ましい。光増感剤としてのアントラセン化合物の市販品としては、例えば、アントラキュアUVS-1331およびアントラキュアUVS-1221(川崎化成社製)が挙げられる。組成物中の光増感剤の含有量は、例えば0.1~5重量%である。 When the active energy ray-curable composition is an ultraviolet curable composition or a visible light curable composition, the active energy ray curable composition contains a photocationic polymerization initiator. A photocationic polymerization initiator generates cationic species or Lewis acid upon irradiation with active energy rays (visible light, ultraviolet rays, X-rays, electron beams, etc.) and initiates the polymerization reaction of the cationic polymerizable functional groups. The photocationic polymerization initiator includes a photoacid generator and a photobase generator, preferably a photoacid generator. When the active energy ray-curable composition is used as a visible light-curable composition, it is preferable to use a cationic photopolymerization initiator that is particularly sensitive to light of 380 nm or longer. Moreover, when a photocationic polymerization initiator is used, it is preferable to use together a photosensitizer showing maximum absorption of light having a wavelength longer than 380 nm. A photocationic polymerization initiator is generally a compound that exhibits maximum absorption in a wavelength region near or shorter than 300 nm. Long wavelength light can be effectively used to promote the generation of cationic species or Lewis acids from the photocationic polymerization initiator. Examples of photosensitizers include anthracene compounds, pyrene compounds, carbonyl compounds, organic sulfur compounds, persulfides, redox compounds, azo compounds, diazo compounds, halogen compounds, and photoreducible dyes. These may be used alone, or two or more of them may be used in combination. In particular, an anthracene compound is preferable because of its excellent photosensitizing effect. Commercially available anthracene compounds as photosensitizers include, for example, Anthracure UVS-1331 and Anthracure UVS-1221 (manufactured by Kawasaki Kasei Co., Ltd.). The content of the photosensitizer in the composition is, for example, 0.1 to 5% by weight.
 活性エネルギー線硬化型組成物は、オリゴマーを含有してもよい。オリゴマーとしては、アクリルオリゴマー、フッ素オリゴマー、およびシリコーンオリゴマーが挙げられ、好ましくはアクリルオリゴマーが用いられる。活性エネルギー線硬化型組成物へのオリゴマーの配合は、同組成物の硬化時収縮の抑制に役立つ。活性エネルギー線硬化型組成物の硬化収縮の抑制は、形成される接着剤層30と光学フィルム10,20との間の界面応力を低減するのに好ましい。界面応力の抑制は、光学フィルム10,20間の接合力確保に役立つ。 The active energy ray-curable composition may contain an oligomer. Oligomers include acrylic oligomers, fluorine oligomers, and silicone oligomers, preferably acrylic oligomers. Incorporation of the oligomer into the active energy ray-curable composition is useful for suppressing shrinkage of the composition upon curing. Suppression of cure shrinkage of the active energy ray-curable composition is preferable for reducing interfacial stress between the formed adhesive layer 30 and the optical films 10 and 20 . Suppression of interfacial stress is useful for securing bonding strength between the optical films 10 and 20 .
 アクリルオリゴマーを形成する(メタ)アクリルモノマーとしては、例えば、炭素数1~20の(メタ)アクリル酸アルキルエステル、シクロアルキル(メタ)アクリレート、アラルキル(メタ)アクリレート、多環式(メタ)アクリレート、水酸基含有(メタ)アクリル酸エステル、およびハロゲン含有(メタ)アクリル酸エステルが挙げられる。(メタ)アクリル酸アルキルエステルとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、2-メチル-2-ニトロプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、S-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、t-ペンチル(メタ)アクリレート、3-ペンチル(メタ)アクリレート、2,2-ジメチルブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、セチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、4-メチル-2-プロピルペンチル(メタ)アクリレート、およびN-オクタデシル(メタ)アクリレートが挙げられる。シクロアルキル(メタ)アクリレートとしては、例えば、シクロヘキシル(メタ)アクリレート、およびシクロペンチル(メタ)アクリレートが挙げられる。アラルキル(メタ)アクリレートとしては、例えば、ベンジル(メタ)アクリレートが挙げられる。多環式(メタ)アクリレートとしては、例えば、2-イソボルニル(メタ)アクリレート、2-ノルボルニルメチル(メタ)アクリレート、5-ノルボルネン-2-イル-メチル(メタ)アクリレート、および3-メチル-2-ノルボルニルメチル(メタ)アクリレートが挙げられる。水酸基含有(メタ)アクリル酸エステルとしては、例えば、ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2,3-ジヒドロキシプロピルメチル-ブチル(メタ)メタクリレートが挙げられる。ハロゲン含有(メタ)アクリル酸エステルとしては、例えば、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,2-トリフルオロエチルエチル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート、ヘキサフルオロプロピル(メタ)アクリレート、オクタフルオロペンチル(メタ)アクリレート、ヘプタデカフルオロデシル(メタ)アクリレートが挙げられる。これら(メタ)アクリレートは、単独で用いられてもよいし、二種類以上が併用されてもよい。 Examples of (meth)acrylic monomers that form acrylic oligomers include (meth)acrylic acid alkyl esters having 1 to 20 carbon atoms, cycloalkyl (meth)acrylates, aralkyl (meth)acrylates, polycyclic (meth)acrylates, Examples include hydroxyl group-containing (meth)acrylic acid esters and halogen-containing (meth)acrylic acid esters. (Meth)acrylic acid alkyl esters, for example, methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, 2-methyl-2-nitropropyl (meth)acrylate , n-butyl (meth)acrylate, isobutyl (meth)acrylate, S-butyl (meth)acrylate, t-butyl (meth)acrylate, n-pentyl (meth)acrylate, t-pentyl (meth)acrylate, 3-pentyl (Meth)acrylate, 2,2-dimethylbutyl (meth)acrylate, n-hexyl (meth)acrylate, cetyl (meth)acrylate, n-octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, 4-methyl- 2-propylpentyl (meth)acrylate, and N-octadecyl (meth)acrylate. Cycloalkyl (meth)acrylates include, for example, cyclohexyl (meth)acrylate and cyclopentyl (meth)acrylate. Aralkyl (meth)acrylates include, for example, benzyl (meth)acrylate. Polycyclic (meth)acrylates include, for example, 2-isobornyl (meth)acrylate, 2-norbornylmethyl (meth)acrylate, 5-norbornen-2-yl-methyl (meth)acrylate, and 3-methyl- 2-Norbornylmethyl (meth)acrylate can be mentioned. Examples of hydroxyl group-containing (meth)acrylic acid esters include hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, and 2,3-dihydroxypropylmethyl-butyl (meth)methacrylate. Halogen-containing (meth)acrylic acid esters include, for example, 2,2,2-trifluoroethyl (meth)acrylate, 2,2,2-trifluoroethylethyl (meth)acrylate, tetrafluoropropyl (meth)acrylate, hexafluoropropyl (meth)acrylate, octafluoropentyl (meth)acrylate, heptadecafluorodecyl (meth)acrylate. These (meth)acrylates may be used alone, or two or more of them may be used in combination.
 アクリルオリゴマーの重量平均分子量(Mw)は、好ましくは15000以下、より好ましくは10000以下、更に好ましくは5000以下である。アクリルオリゴマーのMwは、好ましくは500以上、より好ましくは1000以上、更に好ましくは1500以上である。 The weight average molecular weight (Mw) of the acrylic oligomer is preferably 15,000 or less, more preferably 10,000 or less, even more preferably 5,000 or less. Mw of the acrylic oligomer is preferably 500 or more, more preferably 1000 or more, and even more preferably 1500 or more.
 活性エネルギー線硬化型組成物におけるアクリルオリゴマーの含有量は、好ましくは2質量%以上、より好ましくは4質量%以上であり、また、好ましくは20質量%以下、より好ましくは15質量%以下である。 The content of the acrylic oligomer in the active energy ray-curable composition is preferably 2% by mass or more, more preferably 4% by mass or more, and is preferably 20% by mass or less, more preferably 15% by mass or less. .
 活性エネルギー線硬化型組成物は、他の成分を含有してもよい。他の成分としては、シランカップリング剤、レベリング剤、界面活性剤、可塑剤、および紫外線吸収剤が挙げられる。当該他の成分の配合量は、硬化性成分100質量部に対して、好ましくは10質量部以下、より好ましくは5質量部以下、更に好ましくは3質量部以下であり、また、例えば0.01質量部以上である。 The active energy ray-curable composition may contain other components. Other ingredients include silane coupling agents, leveling agents, surfactants, plasticizers, and UV absorbers. The blending amount of the other component is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, and still more preferably 3 parts by mass or less with respect to 100 parts by mass of the curable component. Part by mass or more.
 活性エネルギー線硬化型組成物の25℃での粘度は、後記の塗布工程での塗工性の観点から、好ましくは3mPa・s以上、より好ましくは5mPa・s以上、更に好ましくは10mPa・s以上であり、また、好ましくは100mPa・s以下、より好ましくは50mPa・s以下、更に好ましくは30mPa・s以下である。組成物の粘度は、E型粘度計(コーンプレート型粘度計)での測定値である。 The viscosity of the active energy ray-curable composition at 25° C. is preferably 3 mPa·s or more, more preferably 5 mPa·s or more, and still more preferably 10 mPa·s or more, from the viewpoint of coatability in the coating step described later. and is preferably 100 mPa·s or less, more preferably 50 mPa·s or less, and still more preferably 30 mPa·s or less. The viscosity of the composition is a value measured with an E-type viscometer (cone plate type viscometer).
 積層光学フィルムXは、例えば次のようにして製造できる。 The laminated optical film X can be produced, for example, as follows.
 まず、一方の光学フィルム(光学フィルム10または光学フィルム20)の片面(接合予定面)に活性エネルギー線硬化型組成物を塗布して、同組成物の塗膜を形成する(塗布工程)。この塗布工程の前に、光学フィルムの接合予定面は表面改質処理されてもよい。表面改質処理としては、コロナ処理、プラズマ処理、エキシマ-処理、およびフレーム処理が挙げられる。本工程での塗布方法としては、例えば、リバースコーター、グラビアコーター、バーリバースコーター、ロールコーター、ダイコーター、バーコーター、およびロッドコーターが挙げられる。 First, an active energy ray-curable composition is applied to one side (surface to be bonded) of one optical film (optical film 10 or optical film 20) to form a coating film of the composition (application step). Prior to this coating step, the surface to be bonded of the optical film may be subjected to a surface modification treatment. Surface modification treatments include corona treatment, plasma treatment, excimer-treatment, and flame treatment. Examples of coating methods in this step include reverse coaters, gravure coaters, bar reverse coaters, roll coaters, die coaters, bar coaters, and rod coaters.
 次に、一方の光学フィルムに対して組成物塗膜を介して他方の光学フィルム(光学フィルム20または光学フィルム10)を貼り合わせる。貼り合わせには、例えばロールラミネーターを使用できる。 Next, the other optical film (optical film 20 or optical film 10) is attached to one optical film via the composition coating film. For lamination, for example, a roll laminator can be used.
 次に、光学フィルム10,20間の組成物塗膜に対して活性エネルギー線を照射して、同塗膜(活性エネルギー線硬化型組成物)を硬化させて接着剤層30を形成する(接着剤層30は感圧性接着剤層ではない)。これより、接着剤層30を介して光学フィルム10,20が接合されて、積層光学フィルムXの原材フィルムが得られる。本工程では、機能性光学フィルムとしての光学フィルム10の劣化抑制の観点から、光学フィルム30側から活性エネルギー線を照射するのが好ましい。活性エネルギー線としては、電子線、紫外線、および可視光線を用いることができる。電子線照射手段としては、例えば電子線加速器が挙げられる。紫外線および可視光線の光源としては、例えば、LEDライト、ガリウム封入メタルハライドランプ、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、キセノンランプ、ハロゲンランプ、およびガリウムランプが挙げられる。本工程では、光源から出射される紫外線および/または可視光線における一部の波長領域をカットするための波長カットフィルターを、必要に応じて用いてもよい。 Next, the composition coating film between the optical films 10 and 20 is irradiated with an active energy ray to cure the coating film (active energy ray-curable composition) to form the adhesive layer 30 (adhesion The adhesive layer 30 is not a pressure sensitive adhesive layer). As a result, the optical films 10 and 20 are joined via the adhesive layer 30, and the raw material film of the laminated optical film X is obtained. In this step, from the viewpoint of suppressing deterioration of the optical film 10 as a functional optical film, it is preferable to irradiate the active energy ray from the optical film 30 side. Electron beams, ultraviolet rays, and visible rays can be used as active energy rays. Examples of electron beam irradiation means include an electron beam accelerator. Ultraviolet and visible light sources include, for example, LED lights, gallium-filled metal halide lamps, low-pressure mercury lamps, medium-pressure mercury lamps, high-pressure mercury lamps, ultra-high pressure mercury lamps, xenon lamps, halogen lamps, and gallium lamps. In this step, a wavelength cut filter for cutting a part of the wavelength range of ultraviolet rays and/or visible light emitted from the light source may be used as needed.
 次に、原材フィルムの周端部の少なくとも一部を外形加工する(外形加工工程)。例えば、ロール状の原材フィルムの長手方向一端部をトリミング加工する。例えば、ロール状の原材フィルムを枚葉状に切断加工する。これら外形加工の方法としては、例えば、COレーザー照射などによるレーザー加工、打抜き刃による切断、およびエンドミル加工が挙げられる。原材フィルムの外形加工箇所では、光学フィルム10,20に比較的大きな熱収縮が生じ、延出端部30aが形成される。具体的には、原材フィルム端部において光学フィルム10,20の端縁11,21が接着剤層30の端縁31から面方向内側に退避するように、光学フィルム10,20の端部が収縮し、延出端部30aが形成される。光学フィルム10,20の端部が収縮する長さ、即ち、延出端部30aの延出長さL1,L2は、光学フィルム10,20の材料(寸法収縮率)および厚さ、並びに加工条件の調整により、調整できる。加工条件としては、例えば、延伸倍率の調整が挙げられる。 Next, at least a portion of the peripheral edge of the raw material film is contoured (outer contouring step). For example, one longitudinal end of a roll-shaped raw material film is trimmed. For example, a roll-shaped raw material film is cut into sheets. Examples of these contour processing methods include laser processing such as CO 2 laser irradiation, cutting with a punch blade, and end mill processing. Relatively large heat shrinkage occurs in the optical films 10 and 20 at the portion of the raw material film where the outer shape is processed, and the extended end portion 30a is formed. Specifically, the edges 11 and 21 of the optical films 10 and 20 are retracted from the edge 31 of the adhesive layer 30 inward in the plane direction at the edges of the raw material film. It contracts to form the extended end 30a. The length of shrinkage of the ends of the optical films 10 and 20, that is, the extension lengths L1 and L2 of the extension end portion 30a, depends on the material (dimensional shrinkage rate) and thickness of the optical films 10 and 20 and the processing conditions. can be adjusted by adjusting Processing conditions include, for example, adjustment of the draw ratio.
 例えば以上のようにして、積層光学フィルムXを製造できる。 For example, the laminated optical film X can be manufactured as described above.
 本発明について、以下に実施例を示して具体的に説明する。本発明は、実施例に限定されない。また、以下に記載されている配合量(含有量)、物性値、パラメータなどの具体的数値は、上述の「発明を実施するための形態」において記載されている、それらに対応する配合量(含有量)、物性値、パラメータなどの上限(「以下」または「未満」として定義されている数値)または下限(「以上」または「超える」として定義されている数値)に代替できる。 The present invention will be specifically described below with reference to examples. The invention is not limited to the examples. In addition, the specific numerical values such as the compounding amount (content), physical property values, parameters, etc. described below are the corresponding compounding amounts ( content), physical properties, parameters, etc., upper limits (values defined as “less than” or “less than”) or lower limits (values defined as “greater than” or “greater than”).
〔実施例1〕
 下記の成分を、25℃で1時間混合し、接着剤組成物を調製した(調製工程)。
[Example 1]
The following components were mixed at 25° C. for 1 hour to prepare an adhesive composition (preparation step).
45質量部の3-フェノキシベンジルアクリレート(品名「ライトアクリレート POB-A」,モノマー,共栄社化学社製)
25質量部のフェノキシジエチレングリコールアクリレート(品名「ライトアクリレートP2H-A」,モノマー,共栄社化学社製)
15質量部のトリプロピレングリコールジアクリレート(品名「アロニックス M-220」,モノマー,東亞合成社製)
10質量部の2-ヒドロキシ-3-フェノキシプロピルアクリレート(品名「アロニックス M-5700」,モノマー,東亞合成社製)
5質量部のヒドロキシエチルアクリルアミド(品名「HEAA」,モノマー,KJケミカルズ社製)
5質量部のジエチルアクリルアミド(品名「DEAA」,モノマー,KJケミカルズ社製)
3質量部の2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン(品名「OMINIRAD907」,光重合開始剤,IGM Resins社製)
3質量部の2,4-ジエチルチオキサントン(品名「KAYACURE DETX-S」,光重合開始剤,日本化薬社製)
5質量部のアクリルオリゴマー(品名「アルフォン1190」,粘度6000mPa・s(25℃),Mw1700,Tg -50℃,東亞合成社製)
0.5質量部の、アクリル基を有する変性ポリジメチルシロキサン(品名「BYK-UV3505」,レベリング剤,BYK社製)
45 parts by mass of 3-phenoxybenzyl acrylate (product name “Light Acrylate POB-A”, monomer, manufactured by Kyoeisha Chemical Co., Ltd.)
25 parts by mass of phenoxydiethylene glycol acrylate (product name “Light Acrylate P2H-A”, monomer, manufactured by Kyoeisha Chemical Co., Ltd.)
15 parts by mass of tripropylene glycol diacrylate (product name "Aronix M-220", monomer, manufactured by Toagosei Co., Ltd.)
10 parts by mass of 2-hydroxy-3-phenoxypropyl acrylate (product name "Aronix M-5700", monomer, manufactured by Toagosei Co., Ltd.)
5 parts by mass of hydroxyethyl acrylamide (product name "HEAA", monomer, manufactured by KJ Chemicals)
5 parts by mass of diethylacrylamide (product name "DEAA", monomer, manufactured by KJ Chemicals)
3 parts by mass of 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one (product name "OMINIRAD907", photopolymerization initiator, manufactured by IGM Resins)
3 parts by mass of 2,4-diethylthioxanthone (product name “KAYACURE DETX-S”, photopolymerization initiator, manufactured by Nippon Kayaku Co., Ltd.)
5 parts by mass of acrylic oligomer (product name “ALPHON 1190”, viscosity 6000 mPa s (25 ° C.), Mw 1700, Tg −50 ° C., manufactured by Toagosei Co., Ltd.)
0.5 parts by mass of modified polydimethylsiloxane having an acrylic group (product name "BYK-UV3505", leveling agent, manufactured by BYK)
 次に、透明保護フィルムとしての厚さ23μmのCOPフィルム(品名「ゼオノアフィルム ZF14」,日本ゼオン社製)上に、接着剤組成物を塗工して厚さ1μmの接着剤塗膜を形成した。塗工には、MCDコーター(富士機械社製)(セル形状:ハニカム,グラビアロール線数1000本/inch,回転速度140%/対ライン速)を使用した。次に、透明保護フィルムに対し、同フィルム上の接着剤塗膜を介して偏光子フィルムを貼り合わせた。次に、接着剤塗膜に対して透明保護フィルム側から紫外線を照射することにより、フィルム間の接着剤塗膜を硬化させた。紫外線照射には、光源としてガリウム封入メタルハライドランプを具備した紫外線照射装置(品名「Light HAMMER10」,バルブ:Vバルブ,Fusion UV Systems,Inc社製)を使用した。紫外線照射において、ピーク照度は1600mW/cmであり、積算照射量は1000mJ/cm(波長380~440nm)とした(照度は、Solatell社製の「Sola-Checkシステム」を使用して測定した)。これにより、透明導電性フィルムと偏光子フィルムとを接合して積層光学フィルムを得た。 Next, the adhesive composition was applied onto a 23 μm thick COP film (product name “Zeonor Film ZF14”, manufactured by Nippon Zeon Co., Ltd.) as a transparent protective film to form an adhesive coating film of 1 μm thick. . For coating, an MCD coater (manufactured by Fuji Machine Co., Ltd.) (cell shape: honeycomb, gravure roll number of lines: 1000 lines/inch, rotation speed: 140%/line speed) was used. Next, the polarizer film was attached to the transparent protective film via the adhesive coating film on the same film. Next, the adhesive coating between the films was cured by irradiating the adhesive coating with ultraviolet rays from the transparent protective film side. For ultraviolet irradiation, an ultraviolet irradiation apparatus (product name: "Light HAMMER10", bulb: V bulb, manufactured by Fusion UV Systems, Inc.) equipped with a gallium-encapsulated metal halide lamp as a light source was used. In UV irradiation, the peak illuminance was 1600 mW/cm 2 and the cumulative irradiance was 1000 mJ/cm 2 (wavelength 380 to 440 nm) (illuminance was measured using the “Sola-Check system” manufactured by Solatell. ). As a result, the transparent conductive film and the polarizer film were bonded to obtain a laminated optical film.
 次に、積層光学フィルムを外形加工した(外形加工工程)。具体的には、COレーザーの照射によって積層光学フィルムを厚さ方向に切削して、所定の平面視形状の積層光学フィルムを得た。COレーザー照射において、波長は9.4μmとし、出力は48W、走査速度は500mm/秒とした。次に、積層光学フィルムを、室温で24時間、放置した。 Next, the laminated optical film was subjected to external processing (external processing step). Specifically, the laminated optical film was cut in the thickness direction by irradiation with a CO 2 laser to obtain a laminated optical film having a predetermined plan view shape. In the CO 2 laser irradiation, the wavelength was 9.4 μm, the power was 48 W, and the scanning speed was 500 mm/sec. The laminated optical film was then left at room temperature for 24 hours.
 以上のようにして、実施例1の積層光学フィルムを作製した。実施例1の積層光学フィルムは、偏光子フィルム(厚さ5μm)と、接着剤層と、透明保護フィルム(厚さ23μm)とを厚さ方向にこの順で備える。 The laminated optical film of Example 1 was produced as described above. The laminated optical film of Example 1 includes a polarizer film (5 μm thick), an adhesive layer, and a transparent protective film (23 μm thick) in this order in the thickness direction.
〔実施例2〕
 次のこと以外は実施例1の積層光学フィルムと同様にして、実施例2の積層光学フィルム(偏光子フィルム/接着剤層/透明保護フィルム)を作製した。調製工程において、「アロニックス M-220」の配合量を15質量部に代えて5質量部とし、透明保護フィルム上に形成される接着剤層塗膜の厚さを1μmとした。
[Example 2]
A laminated optical film (polarizer film/adhesive layer/transparent protective film) of Example 2 was produced in the same manner as the laminated optical film of Example 1 except for the following. In the preparation process, the blending amount of “Aronix M-220” was changed from 15 parts by weight to 5 parts by weight, and the thickness of the adhesive layer coating film formed on the transparent protective film was set to 1 μm.
〔実施例3〕
 次のこと以外は実施例1の積層光学フィルムと同様にして、実施例3の積層光学フィルム(偏光子フィルム/第2接着剤層/透明保護フィルム)を作製した。
[Example 3]
A laminated optical film (polarizer film/second adhesive layer/transparent protective film) of Example 3 was produced in the same manner as the laminated optical film of Example 1 except for the following.
 調製工程において、「ライトアクリレート POB-A」の配合量を43質量部とし、「ライトアクリレート P2H-A」の配合量を29質量部とし、「アロニックスM-220」の配合量を3質量部とした。塗布工程において、透明保護フィルム上に形成される接着剤層塗膜の厚さを1μmとした。 In the preparation process, the blending amount of “light acrylate POB-A” was 43 parts by mass, the blending amount of “light acrylate P2H-A” was 29 parts by mass, and the blending amount of “Aronix M-220” was 3 parts by mass. did. In the coating step, the thickness of the adhesive layer coating film formed on the transparent protective film was set to 1 μm.
〔比較例1〕
 次のこと以外は実施例1の積層光学フィルムと同様にして、比較例1の積層光学フィルム(偏光子フィルム/接着剤層/透明保護フィルム)を作製した。
[Comparative Example 1]
A laminated optical film (polarizer film/adhesive layer/transparent protective film) of Comparative Example 1 was produced in the same manner as the laminated optical film of Example 1 except for the following.
 調製工程において、「ライトアクリレート POB-A」と「ライトアクリレート P2H-A」の代わりに、共栄社化学社製の「ライトアクリレート 1.9ND-A」(1,9-ノナンジオールジアクリレート)36質量部と、共栄社化学社製の「ライトアクリレート HPP-A」(ヒドロキシピバリン酸ネオペンチルグリコールアクリル酸付加物)12.5質量部とを用い、「アロニックス M-220」を用いず、「アロニックス M-5700」の配合量を22質量部とし、「HEAA」の配合量を12.5質量部とし、「DEAA」の配合量を6質量部とし、「HEAA」の配合量を12.5質量部とし、「アルフォン1190」の配合量を10質量部とした。 In the preparation process, instead of "light acrylate POB-A" and "light acrylate P2H-A", 36 parts by mass of "light acrylate 1.9ND-A" (1,9-nonanediol diacrylate) manufactured by Kyoeisha Chemical Co., Ltd. And, using 12.5 parts by mass of “Light Acrylate HPP-A” (neopentyl glycol hydroxypivalate glycol acrylic acid adduct) manufactured by Kyoeisha Chemical Co., without using “Aronix M-220”, “Aronix M-5700 ” is 22 parts by mass, the amount of “HEAA” is 12.5 parts by mass, the amount of “DEAA” is 6 parts by mass, the amount of “HEAA” is 12.5 parts by mass, The blending amount of "ALPHON 1190" was set to 10 parts by mass.
〈端部の観察〉
 実施例1~3および比較例1の各積層光学フィルムについて、端部の縦断面形状を調べた。まず、積層光学フィルムの周端部から任意に選択した箇所を厚さ方向に切断し、観察用の縦断面を形成した。次に、当該縦断面を光学顕微鏡によって観察および撮影した。そして、各観察断面において、接着剤層が、フィルム面方向において偏光子フィルムの端縁(第1端縁)および透明保護フィルムの端縁(第2端縁)よりも外方に延出する部分(延出端部)を有することを、確認した。また、各観察断面において、面方向における第1端縁からの延出端部の延出長さL1と、面方向における第2端縁からの延出端部の延出長さL2とを、測定した。その結果を表1に示す。
<Observation of edge>
With respect to each of the laminated optical films of Examples 1 to 3 and Comparative Example 1, the vertical cross-sectional shape of the edge portion was examined. First, a longitudinal section for observation was formed by cutting a portion arbitrarily selected from the peripheral edge of the laminated optical film in the thickness direction. Next, the longitudinal section was observed and photographed with an optical microscope. Then, in each observed cross section, the portion where the adhesive layer extends outward from the edge (first edge) of the polarizer film and the edge (second edge) of the transparent protective film in the film plane direction (Extension end) was confirmed. Further, in each observation section, the extension length L1 of the extension end from the first edge in the plane direction and the extension length L2 of the extension end from the second edge in the plane direction are It was measured. Table 1 shows the results.
 また、積層光学フィルムの損傷の抑制について、上記の観察断面において偏光子フィルムおよび透明保護フィルムの両方に損傷(クラックおよび欠けなど)が生じていない場合を“良”と評価し、偏光子フィルムおよび透明保護フィルムの少なくとも一方に損傷が生じている場合を“不良”と評価する基準で、評価した。その結果を表1に示す。 In addition, regarding the suppression of damage to the laminated optical film, the case where both the polarizer film and the transparent protective film had no damage (such as cracks and chips) in the above observation cross section was evaluated as "good". The evaluation was made on the basis of the criteria for evaluating "poor" when at least one of the transparent protective films was damaged. Table 1 shows the results.
〈押込み弾性率〉
 実施例1~3および比較例1の各積層光学フィルムにおける接着剤層の押込み弾性率を、ナノインデンテーション法によって測定した(第1の弾性率測定)。具体的には、まず、積層光学フィルムから、5mm×10mmのサイズのフィルム片(積層光学フィルム)を切り出した。次に、クライオミクロトーム法により、積層光学フィルムを切削した。具体的には、積層光学フィルムを、-30℃に冷却したうえで、同フィルムの厚さ方向に硬質ナイフで切削し、その後に室温に戻した。これにより、測定用の試料を得た。次に、ナノインデンター(品名「TI950 Triboindenter」,Hysitron社製)を使用して、測定試料における接着剤層の露出表面に対する荷重-変位測定をJIS Z 2255:2003に準拠して実施し、荷重-変位曲線を得た。本測定では、測定モードは単一押込み測定とし、測定温度は25℃とし、使用圧子はBerkovich(三角錐)型のダイヤモンド圧子とし、荷重印加過程での測定試料に対する圧子の最大押込み深さ(最大変位hmax)は50nmとし、その圧子の押込み速度は10nm/秒とし、除荷過程での測定試料からの圧子の引抜き速度は10nm/秒とした。そして、得られた測定データを「TI950 Triboindenter」の専用解析ソフト(Ver. 9.4.0.1)によって処理した。具体的には、得られた荷重(f)-変位(h)曲線に基づき、最大荷重fmax(最大変位hmaxにて圧子に作用する荷重)と、接触投影面積S(最大荷重時における圧子と試料との間の接触領域の投影面積)と、除荷過程開始時における荷重-変位曲線の接線の傾きDとを得た。そして、傾きDと接触投影面積Sから、接着剤層の押込み弾性率(=(π1/2D)/(2S1/2))を算出した。その値を押込み弾性率E1(GPa)として表1に示す。
<Indentation modulus>
The indentation elastic modulus of the adhesive layer in each of the laminated optical films of Examples 1 to 3 and Comparative Example 1 was measured by the nanoindentation method (first elastic modulus measurement). Specifically, first, a film piece (laminated optical film) having a size of 5 mm×10 mm was cut out from the laminated optical film. Next, the laminated optical film was cut by a cryomicrotome method. Specifically, the laminated optical film was cooled to −30° C., cut with a hard knife in the thickness direction of the same film, and then returned to room temperature. Thus, a sample for measurement was obtained. Next, using a nanoindenter (product name “TI950 Triboindenter”, manufactured by Hysitron), load-displacement measurement on the exposed surface of the adhesive layer in the measurement sample was performed in accordance with JIS Z 2255:2003. - A displacement curve was obtained. In this measurement, the measurement mode is single indentation measurement, the measurement temperature is 25 ° C., the indenter used is a Berkovich (triangular pyramid) type diamond indenter, and the maximum indentation depth (maximum The displacement hmax) was 50 nm, the indentation speed was 10 nm/sec, and the indenter withdrawal speed was 10 nm/sec during the unloading process. Then, the obtained measurement data was processed by dedicated analysis software (Ver. 9.4.0.1) of "TI950 Triboindenter". Specifically, based on the obtained load (f)-displacement (h) curve, the maximum load fmax (the load acting on the indenter at the maximum displacement hmax) and the projected contact area S (the indenter and sample at the maximum load and the slope D of the tangent to the load-displacement curve at the beginning of the unloading process. Then, from the slope D and the contact projected area S, the indentation elastic modulus (=(π 1/2 D)/(2S 1/2 )) of the adhesive layer was calculated. The value is shown in Table 1 as indentation elastic modulus E1 (GPa).
 また、実施例1~3および比較例1の各積層光学フィルムにおける接着剤層の80℃での押込み弾性率を、測定温度を25℃に代えて80℃としたこと以外は第1の弾性率測定と同様にして、測定した(第2の弾性率測定)。その値を押込み弾性率E2(GPa)として表1に示す。また、25℃での押込み弾性率E1に対する、80℃での押込み弾性率E2の比率(E2/E1)も、表1に示す。 Further, the indentation elastic modulus at 80° C. of the adhesive layer in each of the laminated optical films of Examples 1 to 3 and Comparative Example 1 was the first elastic modulus except that the measurement temperature was changed to 80° C. instead of 25° C. It was measured in the same manner as the measurement (second elastic modulus measurement). The value is shown in Table 1 as indentation elastic modulus E2 (GPa). Table 1 also shows the ratio (E2/E1) of the indentation modulus E2 at 80°C to the indentation modulus E1 at 25°C.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明の積層光学フィルムは、例えば、フォルダブルディスプレイパネルなどのディスプレイパネルの積層構造に含まれる要素として、用いることができる。 The laminated optical film of the present invention can be used, for example, as an element included in the laminated structure of a display panel such as a foldable display panel.
X   積層光学フィルム
H   厚さ方向
10  光学フィルム(第1光学フィルム)
11  端縁(第1端縁)
20  光学フィルム(第2光学フィルム)
21  端縁(第2端縁)
30  接着剤層
30a 延出端部
31  端縁
X laminated optical film H thickness direction 10 optical film (first optical film)
11 edge (first edge)
20 optical film (second optical film)
21 edge (second edge)
30 Adhesive layer 30a Extension end 31 Edge

Claims (5)

  1.  第1光学フィルムと、接着剤層と、第2光学フィルムとを厚さ方向に順に備える積層光学フィルムであって、
     前記接着剤層が、前記第1光学フィルムに接合し、且つ前記第2光学フィルムに接合し、
     前記接着剤層が延出端部を有し、当該延出端部は、前記厚さ方向と直交する面方向において、前記第1光学フィルムの第1端縁および前記第2光学フィルムの第2端縁よりも外方に延出する、積層光学フィルム。
    A laminated optical film comprising a first optical film, an adhesive layer, and a second optical film in order in the thickness direction,
    the adhesive layer bonds to the first optical film and bonds to the second optical film;
    The adhesive layer has an extending edge, and the extending edge extends from the first edge of the first optical film and the second edge of the second optical film in a plane direction orthogonal to the thickness direction. A laminated optical film extending outwardly beyond an edge.
  2.  前記第1光学フィルムが偏光子フィルムであり、前記面方向において、前記第1端縁が前記第2端縁よりも外側にある、請求項1に記載の積層光学フィルム。 The laminated optical film according to claim 1, wherein the first optical film is a polarizer film, and the first edge is outside the second edge in the plane direction.
  3.  前記面方向における前記第1端縁からの前記延出端部の延出長さが0.01μm以上5μm以下である、請求項1に記載の積層光学フィルム。 2. The laminated optical film according to claim 1, wherein the extended length of said extended end portion from said first edge in said surface direction is 0.01 μm or more and 5 μm or less.
  4.  前記面方向における前記第2端縁からの前記延出端部の延出長さが0.03μm以上10μm以下である、請求項1に記載の積層光学フィルム。 2. The laminated optical film according to claim 1, wherein the extended length of said extended end portion from said second edge in said surface direction is 0.03 μm or more and 10 μm or less.
  5.  前記接着剤層が有する25℃での押込み弾性率E1、および、前記接着剤層が有する80℃での押込み弾性率E2が、0.05≦E2/E1≦0.25を満たす、請求項1から4のいずれか一つに記載の積層光学フィルム。 2. The indentation elastic modulus E1 at 25° C. of the adhesive layer and the indentation elastic modulus E2 at 80° C. of the adhesive layer satisfy 0.05≦E2/E1≦0.25. 5. The laminated optical film according to any one of 4 to 4.
PCT/JP2022/018916 2021-04-30 2022-04-26 Multilayer optical film WO2022230889A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023517565A JPWO2022230889A1 (en) 2021-04-30 2022-04-26
CN202280022932.9A CN117042961A (en) 2021-04-30 2022-04-26 Laminated optical film
KR1020237027590A KR20240002732A (en) 2021-04-30 2022-04-26 Laminated Optical Film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-077102 2021-04-30
JP2021077102 2021-04-30

Publications (1)

Publication Number Publication Date
WO2022230889A1 true WO2022230889A1 (en) 2022-11-03

Family

ID=83848430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018916 WO2022230889A1 (en) 2021-04-30 2022-04-26 Multilayer optical film

Country Status (5)

Country Link
JP (1) JPWO2022230889A1 (en)
KR (1) KR20240002732A (en)
CN (1) CN117042961A (en)
TW (1) TW202308845A (en)
WO (1) WO2022230889A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008257215A (en) * 2007-03-13 2008-10-23 Epson Toyocom Corp Optical device, optical low-pass filter, and solid-state imaging apparatus
WO2013114612A1 (en) * 2012-02-03 2013-08-08 住友化学株式会社 Polarizing laminated film and production method therefor
JP2014115468A (en) * 2012-12-10 2014-06-26 Nitto Denko Corp Optical film having adhesive agent on both sides, and manufacturing method of image display unit using the same
JP2016206641A (en) * 2015-04-17 2016-12-08 日東電工株式会社 Polarizer, polarizing plate and production method of the polarizer
JP2016206640A (en) * 2015-04-17 2016-12-08 日東電工株式会社 Polarizing plate and production method thereof
JP2017021323A (en) * 2015-07-07 2017-01-26 住友化学株式会社 Method for manufacturing polarizing plate
JP2017167428A (en) * 2016-03-17 2017-09-21 日東電工株式会社 Method for producing piece protection polarizing film with transparent resin layer, method for producing polarizing film with adhesive layer, and method for producing optical laminate
JP2018159911A (en) * 2017-01-27 2018-10-11 住友化学株式会社 Polarizing plate and image display device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7137900B2 (en) 2018-02-26 2022-09-15 日東電工株式会社 Active energy ray-curable adhesive composition, polarizing film and method for producing same, optical film, and image display device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008257215A (en) * 2007-03-13 2008-10-23 Epson Toyocom Corp Optical device, optical low-pass filter, and solid-state imaging apparatus
WO2013114612A1 (en) * 2012-02-03 2013-08-08 住友化学株式会社 Polarizing laminated film and production method therefor
JP2014115468A (en) * 2012-12-10 2014-06-26 Nitto Denko Corp Optical film having adhesive agent on both sides, and manufacturing method of image display unit using the same
JP2016206641A (en) * 2015-04-17 2016-12-08 日東電工株式会社 Polarizer, polarizing plate and production method of the polarizer
JP2016206640A (en) * 2015-04-17 2016-12-08 日東電工株式会社 Polarizing plate and production method thereof
JP2017021323A (en) * 2015-07-07 2017-01-26 住友化学株式会社 Method for manufacturing polarizing plate
JP2017167428A (en) * 2016-03-17 2017-09-21 日東電工株式会社 Method for producing piece protection polarizing film with transparent resin layer, method for producing polarizing film with adhesive layer, and method for producing optical laminate
JP2018159911A (en) * 2017-01-27 2018-10-11 住友化学株式会社 Polarizing plate and image display device

Also Published As

Publication number Publication date
JPWO2022230889A1 (en) 2022-11-03
CN117042961A (en) 2023-11-10
KR20240002732A (en) 2024-01-05
TW202308845A (en) 2023-03-01

Similar Documents

Publication Publication Date Title
JP5046721B2 (en) Active energy ray-curable adhesive composition, polarizing plate using the same, and method for producing the same
JP6122337B2 (en) Polarizing film and method for manufacturing the same, optical film and image display device
KR20190007410A (en) Laminated resin film, method for producing the same, laminated optical film, image display apparatus and resin film for easy adhesion
JP6481059B2 (en) Polarizing film and method for manufacturing the same, optical film and image display device
JP7214397B2 (en) Polarizers, polarizing films, optical films, and image display devices
WO2022230889A1 (en) Multilayer optical film
WO2022230890A1 (en) Multilayer optical film
WO2022230888A1 (en) Layered optical film
WO2022230978A1 (en) Layered optical film
JP7417386B2 (en) Manufacturing method of laminated optical film
WO2022230887A1 (en) Multilayer optical film
JP2018092187A (en) Polarizing film and production method of the same, optical film and image display device
TW202115439A (en) Laminated optical film and image display device having the same refractive index on both sides of the optical film
JP2017134413A (en) Polarizing film and production method of the same, optical film, and image display device
KR20210028582A (en) Laminated optical film and image display device
WO2023276931A1 (en) Polarizing film and image display device
WO2023276936A1 (en) Polarizing film and image display device
JP6609075B2 (en) Polarizing film and method for manufacturing the same, optical film and image display device
JP7213037B2 (en) Polarizers, polarizing films, optical films, and image display devices
TW202111980A (en) Laminated optical film and image display device including at least a first optical film and a second optical film that are laminated with an adhesive layer between them
TW202311042A (en) Polarizing film and image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795802

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023517565

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280022932.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE