WO2023276936A1 - Polarizing film and image display device - Google Patents

Polarizing film and image display device Download PDF

Info

Publication number
WO2023276936A1
WO2023276936A1 PCT/JP2022/025540 JP2022025540W WO2023276936A1 WO 2023276936 A1 WO2023276936 A1 WO 2023276936A1 JP 2022025540 W JP2022025540 W JP 2022025540W WO 2023276936 A1 WO2023276936 A1 WO 2023276936A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
polarizing
film
acrylate
polarizer
Prior art date
Application number
PCT/JP2022/025540
Other languages
French (fr)
Japanese (ja)
Inventor
優人 座間
達也 山崎
裕宗 春田
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN202280032369.3A priority Critical patent/CN117321461A/en
Priority to JP2023531925A priority patent/JPWO2023276936A1/ja
Priority to KR1020237031772A priority patent/KR20240025500A/en
Publication of WO2023276936A1 publication Critical patent/WO2023276936A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier

Definitions

  • the present invention relates to a polarizing film in which a transparent protective film is laminated on at least one surface of a polarizer via an adhesive layer.
  • the polarizing film can form an image display device such as a mobile phone, a car navigation device, a monitor for a personal computer, or a television as an optical film laminated with the polarizing film alone.
  • image display devices such as mobile phones and PCs, especially mobile phones with flexible displays, image display devices such as PCs, and polarizing films used for in-vehicle applications have been tested for durability under high temperature and high humidity conditions.
  • a humidification durability test in which the film is exposed to an environment of 85° C.-85% humidity for a predetermined period of time.
  • the non-polarizing portion of the polarizer and the transparent protective film laminated on the polarizer swell due to such a humidification durability test, the optical functions of the polarizing film may be impaired.
  • the present invention was developed in view of the above circumstances, and aims to provide a polarizing film and an image display device which are equipped with a polarizer having a non-polarizing portion and which have excellent optical functions even under high temperature and high humidity conditions.
  • the present invention provides a polarizing film in which a transparent protective film is laminated on at least one surface of a polarizer via an adhesive layer, wherein the polarizer has a non-polarizing portion formed at least in part.
  • a polarizing film (1) characterized in that the dimensional shrinkage rate X1 of the polarizing film containing the non-polarizing portion after being left in an environment of 85° C.-85% humidity for 72 hours is 1.0% or less.
  • the "dimensional shrinkage rate of the polarizing film” is obtained by preparing a polarizing film sample having a sample size of 10 cm x 10 cm, and measuring the dimensional shrinkage rate in the MD direction or the TD direction, more preferably the dimensional shrinkage rate in the MD direction where the dimensional change rate is large.
  • the "MD direction” corresponds to the "absorption axis direction of the polarizer”.
  • polarizing film (1) when the hardness of the non-polarizing portion is H1 (GPa) and the thickness of the non-polarizing portion is d1, H1 ⁇ d1 ⁇ 0.8 A polarizing film (2) is preferred.
  • H3 ⁇ T3 ⁇ 50 A polarizing film (3) is preferred.
  • any one of the polarizing films (1) to (3) when the hardness of the portion of the adhesive layer in contact with the non-polarizing portion is H2 (GPa) and the thickness is d2 ( ⁇ m), H2 ⁇ d2 ⁇ 0.20 A polarizing film (4) is preferred.
  • the polarizing film (5) has an adhesive layer thickness of 2 ⁇ m or less between a portion of the polarizer other than the non-polarizing portion and the transparent protective film. preferable.
  • the present invention includes the polarizing film according to any one of the above (1) to (5), wherein the non-polarizing portion of the polarizing film is arranged at a position corresponding to the sensor portion. It relates to a display device.
  • the polarizing film according to the present invention is designed so that the dimensional shrinkage X1 of the polarizing film containing the non-polarizing portion after being left in an environment of 85° C.-85% humidity for 72 hours is 1.0% or less. .
  • the shape change of the non-polarizing portion can be suppressed, as a result, it is possible to make the optical function of the polarizing film excellent even under high temperature and high humidity, and an image display comprising such a polarizing film
  • the device can be used for a long time.
  • H1 (GPa) is the hardness of the non-polarizing portion and d1 is the thickness of the non-polarizing portion
  • H3 (GPa) the hardness of the transparent protective film
  • T3 (g/m 2 ) the moisture permeability of the transparent protective film
  • FIG. 1 shows an example of a cross-sectional schematic diagram of a polarizing film according to one embodiment of the present invention.
  • a polarizing film 10 of this embodiment is obtained by laminating a transparent protective film 3 on one side of a polarizer 1 with an adhesive layer 2 interposed therebetween.
  • a transparent protective film may be laminated on both sides of the polarizer via an adhesive layer.
  • a non-polarizing portion 1A is formed in at least a portion of the polarizer 1.
  • a method for forming the non-polarizing portion of the polarizer will be described later.
  • the processed surface of the non-polarizing portion is structurally more likely to be recessed than the other portion (polarizing portion) of the polarizer.
  • the embodiment shown in FIG. 1 shows an example in which recesses 1h are formed on the processed surface of the polarizer 1.
  • the polarizer face opposite 1h may be somewhat concave.
  • the side with the larger depth of the recess (usually, the recess on the side of the surface processed to form the non-polarizing portion in the polarizer) is defined as the recess 1h.
  • the polarizing film 10 shown in FIG. 1 is designed so that the dimensional shrinkage rate X1 of the polarizing film containing the non-polarizing portion 1A after being left in an environment of 85° C. and 85% humidity for 72 hours is 1.0% or less. ing.
  • the optical function of the polarizing film 10 can be made excellent even under high temperature and high humidity, and the image display device provided with such a polarizing film 10 can be used for a long period of time.
  • a method for measuring the dimensional shrinkage rate X1 of the polarizing film including the non-polarizing portion 1A will be described later.
  • the dimensional shrinkage ratio X1 of the polarizing film containing the non-polarizing portion 1A is preferably 0.8% or less, and 0.8% or less. It is more preferably 5% or less, and particularly preferably 0.3% or less.
  • H1 ⁇ d1 ⁇ 1.0 is preferable, and H1 ⁇ d1 ⁇ 1.2 is more preferable.
  • the hardness of the transparent protective film 3 is H3 (GPa) and the moisture permeability of the transparent protective film 3 is T3 (g/m 2 ), H3 ⁇ T3 ⁇ 50.
  • the optical function of the polarizing film 10 can be improved even under high temperature and high humidity.
  • the hardness H3 of the transparent protective film 3 is low, the amount of moisture (moisture permeability) from the outside is suppressed, that is, by designing the moisture permeability T3 of the transparent protective film 3 to be low, the non-polarizing portion 1A swelling of the non-polarizing portion 1A can be further suppressed.
  • the moisture permeability T3 of the transparent protective film 3 is high, the moisture content (moisture permeability) from the outside increases. Shape change can be suppressed more.
  • H3 ⁇ T3 ⁇ 40 is more preferable, and H3 ⁇ T3 ⁇ 30 is particularly preferable.
  • a portion of the adhesive layer 2 that adheres the polarizer 1 and the transparent protective film 3 and that is in contact with the non-polarized portion 1A of the polarizer 1 means the non-polarized portion of the adhesive layer 2 in plan view. It means the whole part overlapping with 1A.
  • H2 ⁇ d2 ⁇ 0.30 is more preferable, and H2 ⁇ d2 ⁇ 0.35 is particularly preferable. .
  • the polarizing film 10 shown in FIG. 1 when the thickness of the adhesive layer between the portion other than the non-polarizing portion 1A of the polarizer 1 (hereinafter also referred to as "polarizing portion") and the transparent protective film 3 is 2 ⁇ m or less, It is preferable because expansion of air bubbles under high temperature and high humidity can be suppressed while maintaining the wet heat durability of the polarizing film.
  • a polarizer included in the polarizing film is composed of a resin film containing a dichroic substance.
  • a non-polarizing portion is formed in the polarizer.
  • the non-polarizing portion is typically a portion (low-concentration portion) in which the content of the dichroic substance is lower than that of the portion other than the non-polarizing portion of the polarizer.
  • the non-polarizing portion in the present invention may be a layer from which the dichroic material is removed from the polarizer, or may be another layer containing no dichroic material, and is not limited to these.
  • cracks and delamination can be reduced mechanically (for example, by a method of mechanically removing using an engraving blade punch, plotter, water jet, etc.) compared to the case where through holes are formed. Quality problems such as delamination (delamination) and glue extrusion are avoided.
  • a method of introducing a non-polarizing portion into a polarizer a method of extracting a dichroic substance from the polarizer by chemical treatment and decolorizing it to form a non-polarizing portion in the polarizer (hereinafter referred to as "chemical treatment method”
  • chemical treatment method a method of forming a non-polarized portion by decomposing a dichroic substance with laser light or the like (hereinafter also referred to as a “laser method”).
  • the chemical treatment method can adjust the content of the dichroic substance itself in the non-polarized portion to be low, and maintains the transparency of the non-polarized portion better than the laser method. preferable.
  • the number, arrangement, shape, size, etc. of the non-polarizing portions can be appropriately designed. For example, it is designed according to the position, shape, size, etc. of the sensor section of the image display device to be mounted. Specifically, it is designed so that the non-polarizing portion does not correspond to the portion other than the sensor of the image display device (for example, the image display portion).
  • the transmittance of the non-polarized portion (for example, transmittance measured with light having a wavelength of 550 nm at 23° C.) is preferably 50% or more, more preferably 60% or more, still more preferably 75% or more, and particularly preferably 90% or more. is. With such a transmittance, desired transparency can be ensured. For example, when the non-polarizing portion corresponds to the sensor portion of the image display device, it is possible to prevent adverse effects on the imaging performance of the sensor.
  • the polarizer preferably exhibits absorption dichroism in the wavelength range of 380 nm to 780 nm.
  • Single transmittance (Ts) of the polarizing portion of the polarizer is preferably 39% or more, more preferably 39.5% or more, still more preferably 40% or more, and particularly preferably 40.5% or more.
  • the theoretical upper limit of single transmittance is 50%, and the practical upper limit is 46%.
  • the single transmittance (Ts) is the Y value measured with a JIS Z8701 2-degree field of view (C light source) and corrected for visibility. name: V7100).
  • the degree of polarization of the polarizing portion of the polarizer is preferably 99.8% or higher, more preferably 99.9% or higher, and even more preferably 99.95% or higher.
  • the thickness of the polarizer can be set to any appropriate value.
  • the thickness of the polarizer is typically 0.5 ⁇ m to 80 ⁇ m.
  • the thickness is preferably 30 ⁇ m or less, more preferably 25 ⁇ m or less, even more preferably 18 ⁇ m or less, particularly preferably 12 ⁇ m or less, and even more preferably less than 8 ⁇ m.
  • the thickness is preferably 1 ⁇ m or more. As the thickness of the resin film to be the polarizer is thinner, the content of the dichroic substance can be reduced in a shorter period of time in the step of contacting with the basic solution, which will be described later.
  • dichroic substance examples include iodine and organic dyes. These may be used alone or in combination of two or more. Iodine is preferably used. This is because a non-polarized portion can be favorably formed by contact with a basic solution, which will be described later.
  • the content of the dichroic substance in the non-polarizing portion is preferably 1.0% by weight or less, more preferably 0.5% by weight or less, and even more preferably 0.2% by weight or less. If the content of the dichroic substance in the non-polarizing portion is within this range, the desired transparency can be sufficiently imparted to the non-polarizing portion. Therefore, for example, when the non-polarizing portion is made to correspond to the sensor portion of the image display device, extremely excellent shooting performance can be achieved in terms of both brightness and color. On the other hand, the lower limit of the content of the dichroic substance in the non-polarized portion is usually below the detection limit.
  • the iodine content can be obtained from, for example, a calibration curve prepared in advance using standard samples from X-ray intensities measured by fluorescent X-ray analysis.
  • the difference between the content of the dichroic substance in other parts and the content of the dichroic substance in the non-polarized part is preferably 0.5% by weight or more, more preferably 1% by weight or more.
  • PVA-based resin a polyvinyl alcohol-based resin
  • PVA-based resins include polyvinyl alcohol and ethylene-vinyl alcohol copolymers.
  • Polyvinyl alcohol is obtained by saponifying polyvinyl acetate.
  • An ethylene-vinyl alcohol copolymer is obtained by saponifying an ethylene-vinyl acetate copolymer.
  • the saponification degree of the PVA-based resin is usually 85 mol% or more and less than 100 mol%, preferably 95.0 mol% to 99.95 mol%, more preferably 99.0 mol% to 99.93 mol%. be.
  • the degree of saponification can be determined according to JIS K 6726-1994. By using a PVA-based resin having such a degree of saponification, a polarizer with excellent durability can be obtained. If the degree of saponification is too high, gelation may occur.
  • the average degree of polymerization of the PVA-based resin can be appropriately selected depending on the purpose.
  • the average degree of polymerization is usually 1,000 to 10,000, preferably 1,200 to 4,500, more preferably 1,500 to 4,300.
  • the average degree of polymerization can be determined according to JIS K 6726-1994.
  • a polarizer having a non-polarizing portion can be produced by a chemical treatment method in which a resin film containing a dichroic substance is brought into contact with a treatment liquid, such as a basic solution.
  • a treatment liquid such as a basic solution.
  • the iodine content of the contact portion can be easily reduced (decolorized) by contacting the desired portion of the resin film with a basic solution.
  • the contact may allow the basic solution to penetrate into the interior of the resin film.
  • the iodine complex contained in the resin film is reduced by the base contained in the basic solution to become iodine ions. By reducing the iodine complex to iodine ions, the transmittance of the contact portion can be improved.
  • the iodine converted into iodine ions moves from the resin film into the solvent of the basic solution.
  • the non-polarized portion thus obtained can maintain its transparency satisfactorily.
  • the iodine complex is destroyed to improve the transmittance, the iodine remaining in the resin film forms an iodine complex again with the use of the polarizer, which may reduce the transmittance. Such problems are prevented when the content is reduced.
  • Any appropriate method can be adopted as a method for contacting the basic solution. Examples thereof include a method of dropping, coating, or spraying a basic solution onto a resin film, and a method of immersing a resin film in a basic solution.
  • the resin film may be protected with any suitable protective material so that the basic solution does not come into contact with any part other than the desired part (so that the content of the dichroic substance does not decrease) when the basic solution comes into contact.
  • protective materials for resin films include protective films and surface protective films.
  • the protective film can be used as it is as a protective film for the polarizer.
  • a surface protective film is used temporarily during the production of a polarizer. Since the surface protection film is removed from the resin film at any appropriate timing, it is typically attached to the resin film via an adhesive layer.
  • Another specific example of the protective material is photoresist.
  • any appropriate basic compound can be used as the basic compound.
  • Examples of basic compounds include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide and lithium hydroxide, alkaline earth metal hydroxides such as calcium hydroxide, and inorganic alkali metal salts such as sodium carbonate. , organic alkali metal salts such as sodium acetate, aqueous ammonia, and the like.
  • alkali metal and/or alkaline earth metal hydroxides are preferably used, and sodium hydroxide, potassium hydroxide and lithium hydroxide are more preferably used. This is because the dichroic substance can be efficiently ionized, and the non-polarization portion can be formed more easily.
  • These basic compounds may be used alone or in combination of two or more.
  • any appropriate solvent can be used as the solvent for the basic solution.
  • Specific examples include water, alcohols such as ethanol and methanol, ethers, benzene, chloroform, and mixed solvents thereof.
  • water and alcohol are preferably used because the ionized dichroic substance can be transferred well to the solvent.
  • the concentration of the basic solution is, for example, 0.01N to 5N, preferably 0.05N to 3N, more preferably 0.1N to 2.5N. If the concentration is within such a range, the desired non-polarized portion can be formed satisfactorily.
  • the liquid temperature of the basic solution is, for example, 20°C to 50°C.
  • the contact time of the basic solution is set according to, for example, the thickness of the resin film and the type and concentration of the basic compound contained in the basic solution.
  • the contact time is, for example, 5 seconds to 30 minutes, preferably 5 seconds to 5 minutes.
  • the surface of the resin film is covered with a surface protective film so that at least a portion thereof is exposed when it comes into contact with a basic solution.
  • a surface protective film is produced by bonding a polarizer (resin film) with a surface protective film having small circular through holes, and contacting this with a basic solution.
  • the other side of the resin film is also protected.
  • the resin film may be elongated.
  • roll-to-roll refers to stacking while aligning the longitudinal directions of roll-shaped films while conveying them.
  • Through-holes are formed in the elongated surface protective film at predetermined intervals in the longitudinal direction and/or the width direction thereof, for example.
  • the method for producing a polarizer using the long resin film and the surface protective film used for producing the long resin film are disclosed in JP-A-2016-027135 and JP-A-2016-027136. , JP-A-2016-027137, JP-A-2016-027138, and JP-A-2016-027139, which are incorporated herein by reference.
  • the resin film be in a state where it can be used as a polarizer when it is brought into contact with the basic solution.
  • various treatments such as swelling treatment, stretching treatment, dyeing treatment with the dichroic substance, cross-linking treatment, washing treatment, and drying treatment are preferably performed.
  • the resin film may be a resin layer formed on a substrate.
  • a laminate of a base material and a resin layer can be obtained, for example, by a method of applying a coating liquid containing the resin film-forming material to the base material, a method of laminating a resin film on the base material, or the like.
  • the above dyeing treatment is typically performed by adsorbing a dichroic substance.
  • the adsorption method include a method of immersing the resin film in a dyeing solution containing a dichroic substance, a method of coating the resin film with the dyeing solution, and a method of spraying the resin film with the dyeing solution.
  • a preferred method is to immerse the resin film in a dyeing solution. This is because the dichroic substance can be well adsorbed.
  • an iodine aqueous solution is preferably used as the staining solution.
  • the amount of iodine compounded is preferably 0.04 to 5.0 parts by weight per 100 parts by weight of water.
  • an iodide is preferably used as the iodide.
  • the amount of iodide compounded is preferably 0.3 to 15 parts by weight per 100 parts by weight of water.
  • the resin film is typically uniaxially stretched 3 to 7 times.
  • the stretching direction can correspond to the absorption axis direction of the resulting polarizer.
  • the contact surface (non-polarized portion) of the basic solution is recessed compared to the other polarized portion, thereby forming a recess in the non-polarized portion. be done.
  • the maximum depth of the concave portion varies depending on the thickness of the polarizer and the contact conditions (temperature, time, etc.) with the basic solution, but is 0.1 to 2.0 ( ⁇ m), particularly 0.1 to 1.0 ⁇ m. When it is 0 ( ⁇ m), visibility of the polarizing film can be easily improved under high temperature and high humidity, which is preferable.
  • the thickness and hardness of the non-polarizing portion depend on the manufacturing conditions of the non-polarizing portion (e.g., polarizing in a 1 mol/L (1N) sodium hydroxide aqueous solution).
  • film immersion time (seconds) "polarizing film immersion time in 1 mol/L (1N) hydrochloric acid (seconds)”
  • drying temperature after NaOH treatment and HCl treatment (°C) etc. It can be changed by making appropriate adjustments.
  • any appropriate step may be further included as necessary when manufacturing the polarizer used in the present invention. Examples include a step of reducing alkali metals and/or alkaline earth metals, and removing the basic solution. These steps are performed at any appropriate stage of the manufacturing method described above.
  • hydroxides of alkali metals and/or alkaline earth metals can remain in the contact area.
  • metal salts of alkali metals and/or alkaline earth metals can be generated at the contact portion. These can generate hydroxide ions, and the generated hydroxide ions act (decompose/reduce) dichroic substances (e.g., iodine complexes) present around the contact area, resulting in non-polarized regions (low concentration range) can be widened.
  • Specific examples of the method for removing the basic solution and/or the post-crosslinking solution include washing, wiping removal with a waste cloth, suction removal, natural drying, heat drying, air drying, and reduced pressure drying.
  • Cleaning liquids used for cleaning include, for example, water (pure water), alcohols such as methanol and ethanol, and mixtures thereof. Water is preferably used.
  • the number of washings is not particularly limited, and washing may be performed multiple times.
  • the drying temperature is, for example, 20°C to 100°C.
  • a transparent protective film is laminated on at least one surface of a polarizer via an adhesive layer.
  • the same or different transparent protective film may be further provided via an adhesive layer on the surface of the polarizer opposite to the surface on which the transparent protective film is laminated. .
  • thermoplastic resins which are excellent in transparency, mechanical strength, thermal stability, water barrier properties, isotropy, etc., are used as materials for the transparent protective film.
  • thermoplastic resins include cellulose resins such as triacetyl cellulose, polyester resins, polyethersulfone resins, polysulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, (meth)acrylic resins, cyclic Polyolefin resins (norbornene-based resins), polyarylate resins, polystyrene resins, polyvinyl alcohol resins, and mixtures thereof.
  • cellulose resins such as triacetyl cellulose, polyester resins, polyethersulfone resins, polysulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, (meth)acrylic resins, cyclic Polyolefin resins (norbornene-based resins
  • additives include ultraviolet absorbers, antioxidants, lubricants, plasticizers, release agents, anti-coloring agents, flame retardants, nucleating agents, antistatic agents, pigments, and colorants.
  • the content of the thermoplastic resin in the transparent protective film is preferably 50 to 100% by weight, more preferably 50 to 99% by weight, still more preferably 60 to 98% by weight, and particularly preferably 70 to 97% by weight. . If the content of the thermoplastic resin in the transparent protective film is 50% by weight or less, the high transparency inherent in the thermoplastic resin may not be sufficiently exhibited.
  • the material for forming the transparent protective film a material having excellent transparency, mechanical strength, thermal stability, moisture barrier properties, isotropy, etc. is preferable, and in particular, a material having a moisture permeability of 150 g/m 2 /24h or less. is more preferred, 140 g/m 2 /24h or less is particularly preferred, and 120 g/m 2 /24h or less is even more preferred.
  • a functional layer such as a hard coat layer, an antireflection layer, an antisticking layer, a diffusion layer or an antiglare layer can be provided on the surface of the transparent protective film to which the polarizer is not adhered.
  • Functional layers such as the hard coat layer, antireflection layer, anti-sticking layer, diffusion layer, and antiglare layer can be provided on the transparent protective film itself, or can be provided separately from the transparent protective film. can also
  • the thickness of the transparent protective film can be determined as appropriate, but is generally about 1 to 500 ⁇ m, preferably 1 to 300 ⁇ m, more preferably 5 to 200 ⁇ m, from the viewpoint of strength, workability such as handleability, and thinness. preferable. Further, it is preferably 10 to 200 ⁇ m, more preferably 20 to 80 ⁇ m.
  • a retardation film having a front retardation of 40 nm or more and/or a thickness direction retardation of 80 nm or more can be used as the transparent protective film.
  • the front retardation is usually controlled in the range of 40-200 nm
  • the thickness direction retardation is usually controlled in the range of 80-300 nm.
  • a retardation film may be further provided via an adhesive layer on the surface of the polarizer opposite to the surface on which the transparent protective film is laminated.
  • the retardation film examples include a birefringent film obtained by uniaxially or biaxially stretching a polymer material, an oriented film of a liquid crystal polymer, and a film in which an oriented layer of a liquid crystal polymer is supported.
  • the thickness of the retardation film is not particularly limited, it is generally about 20 to 150 ⁇ m.
  • Re [450] and Re [550] are the in-plane retardation values of the retardation film measured with light having wavelengths of 450 nm and 550 nm, respectively, at 23 ° C.
  • ⁇ n is the slow phase of the retardation film
  • In-plane birefringence that is nx-ny when the refractive indices in the axial direction and the fast axis direction are nx and ny, respectively
  • NZ is the refractive index in the thickness direction of the retardation film, (ratio of nx-nz, which is birefringence in the thickness direction, to nx-ny, which is in-plane birefringence) may be used.
  • a retardation layer may be provided in the polarizing film according to the present invention.
  • the retardation layer may be a single layer or multiple layers, and the retardation layer may also serve as a protective layer for the polarizer.
  • a retardation layer may be provided via an adhesive layer on the surface of the polarizer opposite to the surface on which the transparent protective film is laminated. The type, number, combination, arrangement position, and characteristics of the retardation layer can be appropriately set according to the purpose.
  • a liquid crystalline compound is preferably used for forming the retardation layer.
  • a solvent containing the liquid crystalline compound can be applied using, for example, a wire bar, gap coater, comma coater, gravure coater, slot die, or the like.
  • the applied liquid crystalline solution may be dried naturally or dried by heating.
  • the liquid crystalline solution is preferably applied at a concentration lower than the isotropic phase-liquid crystal phase transition concentration, that is, in an isotropic phase state. In this case, the orientation can be stably achieved by a method such as rubbing treatment or photo-orientation.
  • a transparent protective film is laminated on at least one surface of a polarizer via an adhesive layer.
  • an adhesive layer can be formed of, for example, a cured product layer of a curable resin composition.
  • the present invention is characterized in that the dimensional shrinkage rate X1 of the non-polarizing portion formed in the polarizer is designed to be 1.0% or less after being left in an environment of 85° C. and 85% humidity for 72 hours.
  • the material constituting the adhesive layer so as to satisfy the dimensional shrinkage ratio X1 may be only the curable resin composition described later, or the curable resin composition may be used in combination with an easily bonding composition.
  • the thickness of the adhesive layer between the polarizing portion of the polarizer 1 and the transparent protective film 3 is preferably 2 ⁇ m or less, more preferably 1.8 ⁇ m or less.
  • the lower limit of the thickness of the adhesive layer is preferably 0.5 ⁇ m in order to ensure adhesiveness.
  • the curable resin composition can be classified into a radically polymerizable curable resin composition and a cationically polymerizable curable resin composition.
  • active energy rays with a wavelength range of 10 nm to less than 380 nm are expressed as ultraviolet rays
  • active energy rays with a wavelength range of 380 nm to 800 nm are expressed as visible rays.
  • Examples of monomer components constituting the radically polymerizable curable resin composition include compounds having radically polymerizable functional groups of carbon-carbon double bonds such as (meth)acryloyl groups and vinyl groups. These monomer components can be either monofunctional radically polymerizable compounds or multifunctional radically polymerizable compounds having two or more polymerizable functional groups. Moreover, these radical polymerizable compounds can be used individually by 1 type or in combination of 2 or more types. As these radically polymerizable compounds, for example, compounds having a (meth)acryloyl group are suitable. In the present invention, (meth)acryloyl means an acryloyl group and/or a methacryloyl group, and "(meth)" has the same meaning below.
  • Examples of monofunctional radically polymerizable compounds include (meth)acrylamide derivatives having a (meth)acrylamide group.
  • a (meth)acrylamide derivative is preferable in terms of ensuring adhesiveness to a polarizer and various transparent protective films, and in terms of high polymerization rate and excellent productivity.
  • (meth)acrylamide derivatives include N-methyl(meth)acrylamide, N,N-dimethyl(meth)acrylamide, N,N-diethyl(meth)acrylamide, N-isopropyl(meth)acrylamide, N - N-alkyl group-containing (meth)acrylamide derivatives such as butyl (meth)acrylamide and N-hexyl (meth)acrylamide; N-methylol (meth)acrylamide, N-hydroxyethyl (meth)acrylamide, N-methylol-N- N-hydroxyalkyl group-containing (meth)acrylamide derivatives such as propane (meth)acrylamide; N-aminoalkyl group-containing (meth)acrylamide derivatives such as aminomethyl (meth)acrylamide and aminoethyl (meth)acrylamide; N-methoxymethyl N-alkoxy group-containing (meth)acrylamide derivatives such as acrylamide and N-ethoxymethylacrylamide; N-mercaptoal
  • heterocycle-containing (meth)acrylamide derivative in which the nitrogen atom of the (meth)acrylamide group forms a heterocycle includes, for example, N-acryloylmorpholine, N-acryloylpiperidine, N-methacryloylpiperidine, N-acryloylpyrrolidine etc.
  • N-hydroxyalkyl group-containing (meth)acrylamide derivatives are preferred from the viewpoint of adhesion to polarizers and various transparent protective films.
  • various (meth)acrylic acid derivatives having a (meth)acryloyloxy group are preferred from the viewpoint of adhesion to polarizers and various transparent protective films.
  • Examples of the (meth)acrylic acid derivative include cycloalkyl (meth)acrylates such as cyclohexyl (meth)acrylate and cyclopentyl (meth)acrylate; aralkyl (meth)acrylates such as benzyl (meth)acrylate; 2-isobornyl (meth) acrylate, 2-norbornylmethyl (meth) acrylate, 5-norbornen-2-yl-methyl (meth) acrylate, 3-methyl-2-norbornylmethyl (meth) acrylate, dicyclopentenyl (meth) )
  • Polycyclic (meth)acrylates such as acrylate, dicyclopentenyloxyethyl (meth)acrylate, dicyclopentanyl (meth)acrylate; 2-methoxyethyl (meth)acrylate, 2-ethoxy Ethyl (meth) acrylate, 2-methoxymethoxyethyl (meth) acrylate, 3-
  • the (meth)acrylic acid derivatives include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 4- Hydroxyalkyl (meth)acrylates such as hydroxybutyl (meth)acrylate, 6-hydroxyhexyl (meth)acrylate, 8-hydroxyoctyl (meth)acrylate, 10-hydroxydecyl (meth)acrylate and 12-hydroxylauryl (meth)acrylate and hydroxyl group-containing (meth)acrylates such as [4-(hydroxymethyl)cyclohexyl]methylacrylate, cyclohexanedimethanol mono(meth)acrylate, 2-hydroxy-3-phenoxypropyl (meth)acrylate; glycidyl (meth)acrylate, Epoxy group-containing (meth)acrylates such as 4-hydroxybutyl (meth)acrylate glycidyl ether; 2,2,
  • alkylaminoalkyl (meth)acrylates such as dimethylaminoethyl (meth)acrylate; 3-oxetanylmethyl (meth)acrylate, 3-methyl-oxetanylmethyl (meth)acrylate, 3-ethyl-oxetanylmethyl (meth)acrylate , 3-Butyl-oxetanylmethyl (meth)acrylate, 3-hexyloxetanylmethyl (meth)acrylate, and other oxetane group-containing (meth)acrylates; Tetrahydrofurfuryl (meth)acrylate, butyrolactone (meth)acrylate, and other heterocycles and (meth) acrylates, hydroxypivalic acid neopentyl glycol (meth) acrylic acid adducts, p-phenylphenol (meth) acrylate and the like.
  • examples of monofunctional radically polymerizable compounds include carboxyl group-containing monomers such as (meth)acrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, crotonic acid, and isocrotonic acid.
  • Examples of monofunctional radically polymerizable compounds include lactam vinyl monomers such as N-vinylpyrrolidone, N-vinyl- ⁇ -caprolactam, and methylvinylpyrrolidone; vinylpyridine, vinylpiperidone, vinylpyrimidine, vinylpiperazine, vinylpyrazine, Vinyl-based monomers having a nitrogen-containing heterocyclic ring such as vinylpyrrole, vinylimidazole, vinyloxazole, and vinylmorpholine are included.
  • lactam vinyl monomers such as N-vinylpyrrolidone, N-vinyl- ⁇ -caprolactam, and methylvinylpyrrolidone
  • vinylpyridine vinylpiperidone
  • vinylpyrimidine vinylpiperazine
  • vinylpyrazine vinylpyrazine
  • Vinyl-based monomers having a nitrogen-containing heterocyclic ring such as vinylpyrrole, vinylimidazole, vinyloxazole, and vinylmorpholine are included.
  • a radically polymerizable compound having an active methylene group can be used as the monofunctional radically polymerizable compound.
  • a radically polymerizable compound having an active methylene group is a compound having an active double bond group such as a (meth)acrylic group at the end or in the molecule and an active methylene group.
  • Active methylene groups include, for example, an acetoacetyl group, an alkoxymalonyl group, a cyanoacetyl group, and the like.
  • the active methylene group is an acetoacetyl group.
  • radically polymerizable compounds having an active methylene group include 2-acetoacetoxyethyl (meth)acrylate, 2-acetoacetoxypropyl (meth)acrylate, 2-acetoacetoxy-1-methylethyl (meth)acrylate, and the like.
  • the radically polymerizable compound having an active methylene group is preferably acetoacetoxyalkyl (meth)acrylate.
  • polyfunctional radically polymerizable compounds having two or more polymerizable functional groups include tripropylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, and 1,6-hexanediol di(meth)acrylate.
  • Aronix M-220 manufactured by Toagosei Co., Ltd.
  • light acrylate 1,9ND-A manufactured by Kyoeisha Chemical Co., Ltd.
  • light acrylate DGE-4A manufactured by Kyoeisha Chemical Co., Ltd.
  • light acrylate DCP-A manufactured by Sartomer
  • SR-531 manufactured by Sartomer
  • CD-536 manufactured by Sartomer
  • epoxy (meth)acrylates, urethane (meth)acrylates, polyester (meth)acrylates, various (meth)acrylate monomers, and the like can also be used as necessary.
  • the curable resin composition may contain an acrylic oligomer obtained by polymerizing a (meth)acrylic monomer in addition to the radically polymerizable compound.
  • an acrylic oligomer obtained by polymerizing a (meth)acrylic monomer in addition to the radically polymerizable compound.
  • an acrylic oligomer obtained by polymerizing a (meth)acrylic monomer should also have a low viscosity.
  • the acrylic oligomer which has a low viscosity and can prevent curing shrinkage of the adhesive layer preferably has a weight-average molecular weight (Mw) of 15,000 or less, more preferably 10,000 or less, and particularly 5,000 or less. preferable.
  • Mw weight-average molecular weight
  • the weight average molecular weight (Mw) of the acrylic oligomer is preferably 500 or more, more preferably 1000 or more.
  • the (meth)acrylic monomer constituting the acrylic oligomer include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, 2-methyl- 2-nitropropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, S-butyl (meth)acrylate, t-butyl (meth)acrylate, n-pentyl (meth)acrylate, t-pentyl (meth) acrylate, 3-pentyl (meth) acrylate, 2,2-dimethylbutyl (meth) acrylate, n-hexyl (meth) acrylate, cetyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl ( (Meth)acryl
  • acrylic oligomer (E) examples include "ARUFON” manufactured by Toagosei Co., Ltd., “ACT FLOW” manufactured by Soken Chemical Co., Ltd., and "JONCRYL” manufactured by BASF Japan.
  • the amount of the acrylic oligomer compounded is usually preferably 15 parts by weight or less with respect to 100 parts by weight of the total amount of the monomer components in the curable resin composition. If the content of the acrylic oligomer in the composition is too high, the reaction rate when the composition is irradiated with an active energy ray will decrease significantly, resulting in poor curing in some cases. On the other hand, in order to sufficiently suppress curing shrinkage of the adhesive layer, the composition preferably contains 3 parts by weight or more of the acrylic oligomer.
  • the curable resin composition preferably contains a photopolymerization initiator.
  • a photopolymerization initiator is appropriately selected depending on the active energy ray. When curing with ultraviolet light or visible light, a photopolymerization initiator that is cleaved with ultraviolet light or visible light is used.
  • photopolymerization initiator examples include benzophenone compounds such as benzyl, benzophenone, benzoylbenzoic acid, and 3,3′-dimethyl-4-methoxybenzophenone; 4-(2-hydroxyethoxy)phenyl(2-hydroxy-2 -propyl)ketone, ⁇ -hydroxy- ⁇ , ⁇ '-dimethylacetophenone, 2-methyl-2-hydroxypropiophenone, ⁇ -hydroxycyclohexylphenylketone and other aromatic ketone compounds; methoxyacetophenone, 2,2-dimethoxy- Acetophenone compounds such as 2-phenylacetophenone, 2,2-diethoxyacetophenone, 2-methyl-1-[4-(methylthio)-phenyl]-2-morpholinopropane-1; benzoin methyl ether, Benzoin ether compounds such as benzoin ethyl ether, benzoin isopropyl ether, benzoin butyl ether, and anisoin methyl ether
  • the blending amount of the photopolymerization initiator is 20 parts by weight or less with respect to 100 parts by weight of the total amount of the polymerizable compound A.
  • the blending amount of the photopolymerization initiator is preferably 0.01 to 20 parts by weight, more preferably 0.05 to 10 parts by weight, further preferably 0.1 to 5 parts by weight.
  • the curable resin composition when used as a visible light-curable type, it is preferable to use a photopolymerization initiator that is particularly sensitive to light of 380 nm or more.
  • a photopolymerization initiator highly sensitive to light of 380 nm or more will be described later.
  • the photopolymerization initiator a compound represented by the following general formula (1); (wherein R 1 and R 2 represent —H, —CH 2 CH 3 , —iPr or Cl, and R 1 and R 2 may be the same or different), or the general formula ( It is preferable to use the compound represented by 1) together with a photopolymerization initiator highly sensitive to light of 380 nm or longer, which will be described later.
  • the adhesiveness is superior to that when a photopolymerization initiator highly sensitive to light of 380 nm or more is used alone.
  • diethylthioxanthone in which R 1 and R 2 are —CH 2 CH 3 is particularly preferred.
  • the composition ratio of the compound represented by general formula (1) in the curable resin composition is preferably 0.1 to 5% by weight, preferably 0.5 to 5% by weight, based on the total amount of the curable resin composition. It is more preferably 4% by weight, and even more preferably 0.9 to 3% by weight.
  • polymerization initiation aids include triethylamine, diethylamine, N-methyldiethanolamine, ethanolamine, 4-dimethylaminobenzoic acid, methyl 4-dimethylaminobenzoate, ethyl 4-dimethylaminobenzoate, and isoamyl 4-dimethylaminobenzoate. and ethyl 4-dimethylaminobenzoate is particularly preferred.
  • the amount added is usually 0 to 5% by weight, preferably 0 to 4% by weight, most preferably 0 to 3% by weight, based on the total amount of the curable resin composition. .
  • a known photopolymerization initiator can be used together as needed. Since the transparent protective film having UV absorbability does not transmit light of 380 nm or less, it is preferable to use a photopolymerization initiator that is highly sensitive to light of 380 nm or more.
  • 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1 , 2-(dimethylamino)-2-[(4-methylphenyl)methyl]-1-[4-(4-morpholinyl)phenyl]-1-butanone, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, bis( ⁇ 5-2,4-cyclopentadien-1-yl)-bis(2,6-difluoro-3-(1H-pyrrole- 1-yl)-phenyl) titanium and the like.
  • the curable resin composition preferably contains a silane coupling agent.
  • the silane coupling agent include vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, 2-(3,4 epoxycyclohexyl)ethyltrimethoxysilane, and 3-glycide as active energy ray-curable compounds.
  • xypropyltrimethoxysilane 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane silane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, and the like.
  • the amount of the silane coupling agent is preferably in the range of 0.01 to 20% by mass, preferably 0.05 to 15% by mass, and 0.1 to 10% by mass with respect to the total amount of the adhesive composition. % is more preferred. This is because if the amount exceeds 20% by mass, the storage stability of the adhesive composition deteriorates, and if the amount is less than 0.1% by mass, the effect of adhesive water resistance is not sufficiently exhibited.
  • non-active energy ray-curable silane coupling agents other than the above include 3-ureidopropyltriethoxysilane, 3-chloropropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, and 3-mercaptopropyltrimethoxysilane.
  • the curable resin composition if necessary, further contains a compound according to the following general formula (3);
  • R 6 and R 7 are each independently a hydrogen atom, an optionally substituted aliphatic hydrocarbon group, an aryl group, or a heterocyclic group represents), preferably a compound according to the general formula (3′);
  • the adhesive composition can be incorporated into the adhesive composition.
  • the adhesiveness to the polarizer and the transparent protective film may be improved, which is preferable.
  • the content of the compound represented by the general formula (3) in the curable water-dispersible composition is 0.001 to 50% by mass. preferably 0.1 to 30% by mass, most preferably 1 to 10% by mass.
  • the aliphatic hydrocarbon group is a linear or branched alkyl group which may have a substituent having 1 to 20 carbon atoms, and a substituent having 3 to 20 carbon atoms.
  • cyclic alkyl groups which may be substituted, and alkenyl groups having 2 to 20 carbon atoms. optionally substituted naphthyl groups and the like, and examples of heterocyclic groups include 5- or 6-membered ring groups containing at least one heteroatom and optionally having substituents. These may be linked together to form a ring.
  • R 6 and R 7 are preferably a hydrogen atom or a linear or branched alkyl group having 1 to 3 carbon atoms, most preferably a hydrogen atom.
  • X possessed by the compound represented by the general formula (3) is a functional group containing a reactive group, which is a functional group capable of reacting with the curable component constituting the adhesive layer, and the reactive group contained in X is is, for example, hydroxyl group, amino group, aldehyde group, carboxyl group, vinyl group, (meth)acryl group, styryl group, (meth)acrylamide group, vinyl ether group, epoxy group, oxetane group, ⁇ , ⁇ -unsaturated carbonyl groups, mercapto groups, halogen groups, and the like.
  • the reactive group contained in X is a vinyl group, a (meth)acryl group, a styryl group, a (meth)acrylamide group, a vinyl ether group, X is preferably at least one reactive group selected from the group consisting of an epoxy group, an oxetane group and a mercapto group, especially when the adhesive composition constituting the adhesive layer is radically polymerizable.
  • the reactive group is preferably at least one reactive group selected from the group consisting of a (meth)acryl group, a styryl group and a (meth)acrylamide group, and the compound represented by the general formula (1) is
  • the reactivity is high and the copolymerization rate with the active energy ray-curable resin composition is increased, which is more preferable.
  • the (meth)acrylamide group has a high polarity and is excellent in adhesiveness, so that the effect of the present invention can be efficiently obtained.
  • the reactive group contained in X is a hydroxyl group, an amino group, an aldehyde, a carboxyl group, a vinyl ether group, an epoxy group, an oxetane group, or a mercapto group. It is preferable to have at least one selected functional group, especially when it has an epoxy group, it is preferable for excellent adhesion between the resulting curable resin layer and the adherend, and when it has a vinyl ether group, the curable resin composition is preferred because of its excellent curability.
  • the compound represented by the general formula (3) may be one in which the reactive group and the boron atom are directly bonded.
  • the compound represented by is preferably one in which a reactive group and a boron atom are bonded via an organic group, that is, a compound represented by general formula (3′).
  • a compound represented by general formula (3) when the compound represented by the general formula (3) is bonded to a reactive group via an oxygen atom bonded to a boron atom, the adhesive water resistance of the polarizing film tends to deteriorate.
  • the compound represented by the general formula (3) does not have a boron-oxygen bond, but has a boron-carbon bond and contains a reactive group by bonding a boron atom and an organic group.
  • the organic group specifically means an organic group having 1 to 20 carbon atoms which may have a substituent, and more specifically, for example, having a substituent having 1 to 20 carbon atoms.
  • a naphthylene group which may have 20 substituents may be mentioned.
  • esters of hydroxyethylacrylamide and boric acid in addition to the compounds exemplified above, esters of hydroxyethylacrylamide and boric acid, esters of methylolacrylamide and boric acid, esters of hydroxyethyl acrylate and boric acid, and hydroxybutyl Esters of (meth)acrylates and boric acid can be exemplified, such as esters of acrylate and boric acid.
  • the cationically polymerizable compound used in the cationically polymerizable curable resin composition includes a monofunctional cationically polymerizable compound having one cationically polymerizable functional group in the molecule and two or more cationically polymerizable functional groups in the molecule. It is classified into polyfunctional cationic polymerizable compounds with Since the monofunctional cationically polymerizable compound has a relatively low liquid viscosity, the liquid viscosity can be reduced by including it in the cationically polymerizable curable resin composition. In addition, the monofunctional cationically polymerizable compound often has a functional group that exhibits various functions. Various functions can be expressed in the cured product of the curable resin composition.
  • the polyfunctional cationically polymerizable compound can three-dimensionally crosslink the cured product of the cationically polymerizable curable resin composition, it is preferably contained in the cationically polymerizable curable resin composition.
  • the ratio of the monofunctional cationically polymerizable compound and the polyfunctional cationically polymerizable compound is such that 100 parts by weight of the monofunctional cationically polymerizable compound is mixed with 10 parts by weight to 1000 parts by weight of the polyfunctional cationically polymerizable compound. is preferred.
  • Examples of cationic polymerizable functional groups include epoxy groups, oxetanyl groups, and vinyl ether groups.
  • Compounds having an epoxy group include aliphatic epoxy compounds, alicyclic epoxy compounds, and aromatic epoxy compounds. It is particularly preferred to contain an alicyclic epoxy compound.
  • Alicyclic epoxy compounds include 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, caprolactone-modified products of 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, and trimethylcaprolactone-modified products.
  • Compounds having an oxetanyl group improve the curability of the cationic polymerizable adhesive composition
  • Compounds having an oxetanyl group include 3-ethyl-3-hydroxymethyloxetane, 1,4-bis[(3-ethyl-3-oxetanyl ) methoxymethyl]benzene, 3-ethyl-3-(phenoxymethyl)oxetane, di[(3-ethyl-3-oxetanyl)methyl]ether, 3-ethyl-3-(2-ethylhexyloxymethyl)oxetane, phenol Aron oxetane OXT-101, Aron oxetane OXT-121, Aron oxetane OXT-211, Aron oxetane OXT-221, Aron oxetane OXT-212 (manufactured by Toagosei Co., Ltd.) and
  • a compound having a vinyl ether group has the effect of improving the curability of the cationic polymerizable adhesive composition and lowering the liquid viscosity of the composition, and is therefore preferably contained.
  • 2-hydroxyethyl vinyl ether diethylene glycol monovinyl ether, 4-hydroxybutyl vinyl ether, diethylene glycol monovinyl ether, triethylene glycol divinyl ether, cyclohexanedimethanol divinyl ether, cyclohexanedimethanol monovinyl ether, tricyclodecane vinyl ether, cyclohexyl vinyl ether, methoxyethyl vinyl ether , ethoxyethyl vinyl ether, pentaerythritol type tetravinyl ether, and the like.
  • the cationically polymerizable curable resin composition contains at least one compound selected from the epoxy group-containing compound, the oxetanyl group-containing compound, and the vinyl ether group-containing compound described above as a curable component.
  • a photo cationic polymerization initiator is blended because it is cured by This cationic photopolymerization initiator generates cationic species or Lewis acid upon irradiation with active energy rays such as visible light, ultraviolet rays, X-rays and electron beams, and initiates the polymerization reaction of epoxy groups and oxetanyl groups.
  • active energy rays such as visible light, ultraviolet rays, X-rays and electron beams
  • a photoacid generator described later is preferably used as the photocationic polymerization initiator.
  • a cationic photopolymerization initiator that is particularly sensitive to light of 380 nm or more. Since it is a compound that exhibits maximum absorption in a wavelength region near or shorter than 300 nm, by blending a photosensitizer that exhibits maximum absorption in a wavelength region longer than that, specifically, light with a wavelength longer than 380 nm, this It can respond to light of a wavelength in the vicinity and promote the generation of cationic species or acid from the photocationic polymerization initiator.
  • photosensitizers include anthracene compounds, pyrene compounds, carbonyl compounds, organic sulfur compounds, persulfides, redox compounds, azo and diazo compounds, halogen compounds, photoreducible dyes, and the like. You may use it in mixture of 2 or more types.
  • Anthracene compounds are particularly preferable because of their excellent photosensitizing effect, and specific examples thereof include Anthracure UVS-1331 and Anthracure UVS-1221 (manufactured by Kawasaki Kasei Co., Ltd.).
  • the content of the photosensitizer is preferably 0.1 wt % to 5 wt %, more preferably 0.5 wt % to 3 wt %.
  • the polarizing film according to the present invention is produced by, for example, the following production method; A polarizer manufacturing step of manufacturing a polarizer in which a non-polarizing portion having a concave portion on one side is formed by treating a predetermined position on one surface of the polarizer with a treatment liquid, and the polarizer has the concave portion.
  • It can be manufactured by a method for manufacturing a polarizing film.
  • the polarizer manufacturing process includes a first step of temporarily attaching a surface protective film having through holes to one surface of the polarizer to form a polarizing film laminate, and through the through holes of the surface protective film.
  • the method of applying the curable resin composition to the surface of the polarizer having recesses is appropriately selected depending on the viscosity of the composition and the desired thickness. Therefore, it is preferable to use the post-metering coating method.
  • Specific examples of the post-metering coating method include gravure roll coating, forward roll coating, air knife coating, and rod/bar coating. Among these, the gravure roll coating method is particularly preferable from the viewpoint of the removal of foreign substances on the surface of the transparent protective film and the coatability.
  • an easy-adhesive composition may be coated on the adhesive composition-coated surface of the polarizer.
  • a method for applying the easy-adhesive composition to the bonding surface of the polarizer it is preferable to use a post-metering coating method because the same effects as in the coating step are obtained.
  • the easy-adhesion composition contains the compound represented by the general formula (3), the adhesive strength between the polarizer and the transparent protective film is increased, which is preferable.
  • the pattern formed on the surface of the gravure roll is preferably a honeycomb mesh pattern.
  • the cell volume is preferably 1 to 5 cm 3 /m 2 , more preferably 2 to 3 cm 3 /m 2 in order to increase the surface precision of the coated surface after the easy-adhesion composition is applied. is preferred.
  • the number of cell lines per inch of the roll is preferably 200 to 3000 lines/inch in order to improve the surface precision of the coated surface after coating with the easy-adhesive composition. Further, it is preferable that the rotation speed ratio of the gravure roll to the traveling speed of the polarizer is 100 to 300%.
  • the polarizer and the transparent protective film are bonded together via the curable resin composition coated as described above.
  • the bonding of the polarizer and the transparent protective film can be performed using a roll laminator or the like.
  • the polarizer and the transparent protective film After bonding the polarizer and the transparent protective film together, they are irradiated with active energy rays (electron beams, ultraviolet rays, visible rays, etc.) to cure the curable resin composition and form an adhesive layer.
  • active energy rays electron beams, ultraviolet rays, visible rays, etc.
  • the irradiation direction of the active energy rays can be any suitable direction.
  • irradiation is performed from the transparent protective film side.
  • the polarizer may be deteriorated by active energy rays (electron beams, ultraviolet rays, visible rays, etc.).
  • electron beam irradiation preferably has an acceleration voltage of 5 kV to 300 kV, more preferably 10 kV to 250 kV. If the acceleration voltage is less than 5 kV, the electron beam may not reach the adhesive, resulting in insufficient curing. may give The irradiation dose is 5 to 100 kGy, more preferably 10 to 75 kGy.
  • the adhesive will be insufficiently cured, and if it exceeds 100 kGy, the transparent protective film and polarizer will be damaged, the mechanical strength will decrease and yellowing will occur, and the desired optical properties will not be obtained.
  • Electron beam irradiation is usually carried out in an inert gas, but if necessary, it may be carried out in the air or with a small amount of oxygen introduced. Although it depends on the material of the transparent protective film, by appropriately introducing oxygen, the surface of the transparent protective film that is exposed to the electron beam first is intentionally inhibited by oxygen, and damage to the transparent protective film can be prevented. Efficient electron beam irradiation can be achieved.
  • an active energy ray containing visible light with a wavelength range of 380 nm to 450 nm particularly an active energy ray with the highest irradiation amount of visible light with a wavelength range of 380 nm to 450 nm.
  • ultraviolet rays and visible rays when using a transparent protective film imparted with ultraviolet absorption ability (ultraviolet-impermeable transparent protective film), it absorbs light with a wavelength shorter than about 380 nm. Light of that wavelength does not reach the adhesive composition and does not contribute to its polymerization reaction.
  • the transparent protective film Furthermore, light with a wavelength shorter than 380 nm absorbed by the transparent protective film is converted into heat, and the transparent protective film itself generates heat, causing defects such as curling and wrinkling of the polarizing film. Therefore, when ultraviolet light and visible light are used in the present invention, it is preferable to use a device that does not emit light with a wavelength shorter than 380 nm as an active energy ray generator, and more specifically, an integrated wavelength range of 380 to 440 nm.
  • the ratio of illuminance to integrated illuminance in the wavelength range of 250 to 370 nm is preferably 100:0 to 100:50, more preferably 100:0 to 100:40.
  • a gallium-encapsulated metal halide lamp and an LED light source emitting light in a wavelength range of 380 to 440 nm are preferable as active energy rays.
  • a light source containing visible light can be used, and a band-pass filter can be used to cut off ultraviolet light with a wavelength shorter than 380 nm.
  • a gallium-filled metal halide lamp is used, and light with a wavelength shorter than 380 nm can be blocked. It is preferable to use an active energy ray obtained through a bandpass filter or an active energy ray with a wavelength of 405 nm obtained using an LED light source.
  • the temperature is preferably 40°C or higher, more preferably 50°C or higher.
  • the active energy ray-curable adhesive composition after irradiation with ultraviolet light or visible light (post-irradiation heating). Warming is more preferred.
  • the polarizing film of the present invention can be used as an optical film laminated with other optical layers in practical use.
  • the optical layer is not particularly limited.
  • One or more optical layers may be used.
  • a reflective polarizing film or a semi-transmissive polarizing film obtained by further laminating a reflector or a semi-transmitting reflector on the polarizing film of the present invention an elliptical polarizing film or circularly polarized light obtained by further laminating a retardation plate on the polarizing film A film, a wide viewing angle polarizing film obtained by further laminating a viewing angle compensation film on a polarizing film, or a polarizing film obtained by further laminating a brightness enhancement film on a polarizing film are preferable.
  • the optical film obtained by laminating the above optical layer on the polarizing film can be formed by a method of sequentially and separately laminating in the manufacturing process of an image display device or the like. It is excellent in stability and assembly work, and has the advantage of being able to improve the manufacturing process of image display devices and the like.
  • Appropriate adhesive means such as an adhesive layer can be used for lamination.
  • the above-mentioned polarizing film and optical film laminated with at least one layer of polarizing film can also be provided with an adhesive layer for adhering to other members such as liquid crystal cells.
  • the pressure-sensitive adhesive that forms the pressure-sensitive adhesive layer is not particularly limited, but for example, an acrylic polymer, silicone-based polymer, polyester, polyurethane, polyamide, polyether, fluorine-based polymer, rubber-based polymer, or the like is appropriately selected. can be used as In particular, those having excellent optical transparency, suitable wettability, cohesiveness, and adhesive properties such as acrylic pressure-sensitive adhesives, and excellent weather resistance and heat resistance can be preferably used.
  • the adhesive layer can also be provided on one or both sides of the polarizing film or optical film as a superimposed layer of different compositions or types. Further, when the adhesive layer is provided on both sides, the front and back surfaces of the polarizing film or the optical film may have adhesive layers with different compositions, types, thicknesses, and the like.
  • the thickness of the adhesive layer can be appropriately determined according to the purpose of use, adhesive strength, etc., and is generally 1 to 100 ⁇ m, preferably 5 to 30 ⁇ m, particularly preferably 10 to 20 ⁇ m.
  • the exposed surface of the adhesive layer is temporarily covered with a separator for the purpose of preventing contamination until it is put into practical use. This prevents contact with the adhesive layer during normal handling conditions.
  • a separator excluding the above thickness conditions, suitable thin sheets such as plastic films, rubber sheets, paper, cloth, non-woven fabrics, nets, foam sheets, metal foils, and laminates thereof may be used.
  • An appropriate release agent according to the prior art such as one coated with an appropriate release agent such as chain alkyl, fluorine, or molybdenum sulfide, can be used.
  • the polarizing film of the present invention can be preferably used for forming various devices such as image display devices. Formation of the image display device can be carried out according to the conventional method. That is, an image display device is generally formed by appropriately assembling components such as a liquid crystal cell, a polarizing film or an optical film, and an illumination system as necessary, and incorporating a driving circuit. There is no particular limitation except that the polarizing film or optical film according to the invention is used, and conventional methods can be applied. As for the liquid crystal cell, any type such as TN type, STN type, or ⁇ type can be used.
  • Appropriate image display devices can be formed, such as an image display device in which a polarizing film or an optical film is arranged on one or both sides of a liquid crystal cell, or a device using a backlight or a reflector in an illumination system.
  • the polarizing film or optical film according to the present invention can be placed on one side or both sides of the liquid crystal cell.
  • polarizing films or optical films are provided on both sides, they may be the same or different.
  • appropriate parts such as a diffusion plate, an anti-glare layer, an antireflection film, a protection plate, a prism array, a lens array sheet, a light diffusion plate, a backlight, etc. Two or more layers can be arranged.
  • examples of the image display device of the present invention include an organic EL (electroluminescence) display device, a PDP (plasma display panel), an electronic paper, and the like. be done.
  • the application of the image display device it can be preferably applied to the application that requires a member that is required to have durability characteristics in a high humidity and heat environment, such as a foldable display device and a vehicle display device.
  • the polarizing film according to the present invention has a non-polarizing portion formed on the polarizer, it can be suitably used particularly for an image display device having a sensor function. placed in corresponding positions.
  • Example 1 As the resin substrate, a long amorphous isophthalic acid-copolymerized polyethylene terephthalate (IPA-copolymerized PET) film (thickness: 100 ⁇ m) with a water absorption of 0.75% and a Tg of 75° C. was used. One side of the substrate was subjected to corona treatment, and the corona-treated side was coated with polyvinyl alcohol (degree of polymerization: 4,200, degree of saponification: 99.2 mol%) and acetoacetyl-modified PVA (degree of polymerization: 1,200, degree of acetoacetyl modification: 4.6).
  • polyvinyl alcohol degree of polymerization: 4,200, degree of saponification: 99.2 mol
  • acetoacetyl-modified PVA degree of polymerization: 1,200, degree of acetoacetyl modification: 4.6.
  • a PVA-based resin layer was formed to produce a laminate.
  • the resulting laminate was uniaxially stretched 2.4 times at the free end in the machine direction (longitudinal direction) between rolls with different peripheral speeds in an oven at 120°C (in-air auxiliary stretching).
  • the laminate was immersed in an insolubilizing bath (an aqueous boric acid solution obtained by blending 4 parts by weight of boric acid with 100 parts by weight of water) at a liquid temperature of 30° C. for 30 seconds (insolubilizing treatment).
  • insolubilizing treatment an aqueous boric acid solution obtained by blending 4 parts by weight of boric acid with 100 parts by weight of water
  • it was immersed in a dyeing bath at a liquid temperature of 30° C. while adjusting the iodine concentration and the immersion time so that the polarizing plate had a predetermined transmittance.
  • iodine 0.2 parts by weight of iodine was added to 100 parts by weight of water, and 1.5 parts by weight of potassium iodide was added to the resulting iodine aqueous solution for 60 seconds (dyeing treatment). .
  • it was immersed for 30 seconds in a cross-linking bath at a liquid temperature of 30°C (an aqueous boric acid solution obtained by blending 3 parts by weight of potassium iodide and 3 parts by weight of boric acid with respect to 100 parts by weight of water). (crosslinking treatment). After that, the laminate is immersed in an aqueous solution of boric acid having a liquid temperature of 70° C.
  • a radically polymerizable curable resin composition is applied to the second transparent protective film, and the PVA-based resin layer surface of the laminate obtained above and the radically polymerizable curable resin composition coated surface of the second transparent protective film are were laminated together, and the following ultraviolet rays were irradiated from the second transparent protective film side to cure the adhesive.
  • the substrate was peeled off from the PVA-based resin layer to obtain a long polarizing film (polarizer/second transparent protective film) with a width of about 1300 mm.
  • the polarizer had a thickness of 5 ⁇ m and a single transmittance of 40.8%.
  • ultraviolet rays As an active energy ray, ultraviolet rays (gallium-filled metal halide lamp, irradiation device: Light HAMMER10 manufactured by Fusion UV Systems, Inc., bulb: V bulb, peak illuminance: 1600 mW/cm 2 , cumulative irradiation amount 1000/mJ/cm 2 (wavelength 380-440 nm)) was used. The UV illuminance was measured using a Sola-Check system manufactured by Solatell.
  • An adhesive (acrylic adhesive) was applied to one side of an ester resin film (thickness: 38 ⁇ m) with a width of about 1,300 mm so that the thickness would be 5 ⁇ m.
  • Through-holes having a diameter of 3.0 mm were formed in this adhesive-attached ester resin film at intervals of 250 mm in the longitudinal direction and at intervals of 400 mm in the width direction using a Pycnal blade.
  • the adhesive-attached ester resin film is laminated by roll-to-roll, and this is immersed in a 1 mol / L (1N) sodium hydroxide aqueous solution for 30 seconds, and then , and immersed in 1 mol/L (1N) hydrochloric acid for 10 seconds. Then, it dried at 60 degreeC and formed the non-polarization part in the polarizer.
  • the non-polarizing portion was a thin portion having a concave portion with a maximum depth dh of 0.5 ⁇ m on the side of the ester resin film.
  • the ester-based resin film was peeled off from the laminate obtained above. Subsequently, before bonding the release surface of the ester resin film of the laminate to the first transparent protective film, the easy-adhesion composition 1 is applied to the release surface using a gravure roll coating method equipped with a gravure roll. (coating thickness: 1 ⁇ m), and air-dried at 25° C. for 1 minute (thickness after drying: 0.7 ⁇ m). Subsequently, adhesive composition 1 is applied to an acrylic resin film (thickness 40 ⁇ m) as a first transparent protective film, and the peeling surface (coated surface of easy-adhesion composition 1) of the ester resin film of the laminate is laminated. , UV rays similar to those described above were applied from the acrylic resin film side to cure the adhesive. Table 1 shows the configurations of Adhesive Composition 1 and Easy Adhesive Composition 1. Table 2 shows the thickness of the adhesive layer after curing.
  • ACMO acryloylmorpholine
  • ACMO acryloylmorpholine
  • ACMO 1,9-NDA (1,9-nonanediol diacrylate) manufactured by KJ Chemicals
  • Light acrylate 1,9ND-A P2H manufactured by Kyoeisha Chemical Co., Ltd.
  • -A phenoxydiethylene glycol acrylate
  • P2H-A Kyoeisha Chemical Co., Ltd.
  • HEAA hydroxyethyl acrylamide
  • HEAA BYK UV3505 (UV curable surface conditioner) manufactured by Kojin Co., Ltd.
  • BYK UV3505 manufactured by BYK Chemie Japan Or907 (2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one)
  • trade name "Omnirad 907” manufactured by IGMresins DETX (diethylthioxanthone); trade name "KAYACURE DETX-S", manufactured by Nippon Kayaku Co., Ltd.
  • UP-1190 (acrylic oligomer obtained by polymerizing (meth)acrylic monomer); trade name "ARUFON UP1190", manufactured by Toagosei Co., Ltd. Or819 (bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide); trade name "Omnirad 819", IGM VPBA (4-vinylphenylboronic acid); trade name "4-vinylphenylboronic acid", manufactured by Tokyo Chemical Industry Co., Ltd. HPAA (hydroxypivalic acid diacrylate); trade name "light acrylate HPPA", manufactured by Kyoeisha Chemical Co., Ltd.
  • M5700 (2 -hydroxy-3-phenoxypropyl acrylate); trade name "Aronix M5700”, DEAA (diethylacrylamide) manufactured by Toagosei Co., Ltd.; trade name "DEAA”, EXP4200 manufactured by KJ Chemicals (leveling agent); trade name "OLFINE EXP.4200 , manufactured by Nissin Chemical Industry Co., Ltd.
  • a polarizing film having a configuration of the first transparent protective film/polarizer was produced as described above.
  • the first transparent protective film corresponds to the transparent protective film 3 constituting the polarizing film 10 shown in FIG. 1
  • the polarizer corresponds to the polarizer 1 constituting the polarizing film 10 shown in FIG.
  • the adhesive layer that adheres the protective film and the polarizer corresponds to the adhesive layer 2 that constitutes the polarizing film 10 shown in FIG.
  • Table 2 shows the thickness of the obtained polarizing film and the measurement results of each physical property.
  • the thickness d1 ( ⁇ m) of the non-polarizing portion of the polarizer and the thickness d2 ( ⁇ m) of the portion of the adhesive layer in contact with the non-polarizing portion were measured using a scanning electron microscope (manufactured by ZYGO, product name “New View 7300”).
  • the thickness d3 ( ⁇ m) of the first transparent protective film was measured using a digital micrometer (manufactured by Anritsu Co., Ltd., product name "KC-351C").
  • the dimensional shrinkage rate X1 of the polarizing film containing the non-polarizing portion 1A was measured by the following method. ⁇ Measurement of dimensional shrinkage> An adhesive layer was provided on the transparent protective film side of the polarizing film of Example 1 to prepare a polarizing film with an adhesive layer. Using a CO 2 laser (manufactured by Comnet Co., Ltd., product name: Laser Pro-SPIRIT), the non-polarized portion 1A (the non-polarized portion has a circular shape with a diameter of 3 mm) is formed at a position of 1 cm from the center end.
  • a CO 2 laser manufactured by Comnet Co., Ltd., product name: Laser Pro-SPIRIT
  • a polarizing film with an agent layer (sample size: 10 cm x 10 cm) was cut out and attached to non-alkaline glass having a thickness of 0.5 mm to prepare a sample.
  • the focal lengths (MD direction and TD direction) of the four corners of the sample were measured using a plane biaxial measuring device (manufactured by Mitutoyo Corporation, product name: Quick Vision Apex). Then, the laminate was left in an environment of 85° C. and 85% humidity for 72 hours, and the focal lengths (MD direction and TD direction) of the four corners of the optical laminate were similarly measured. Based on the dimensions before and after the standing, the dimensional shrinkage rate X1 of the polarizing film including the non-polarizing portion 1A was calculated.
  • Table 2 shows the dimensional shrinkage in the MD direction where the dimensional shrinkage is large.
  • the irradiation conditions of the CO2 laser are as follows. (Irradiation conditions) Wavelength: 10.6 ⁇ m Laser output: 30W Oscillation mode: Pulse oscillation Diameter of laser beam: 70 ⁇ m Laser irradiation surface: Protective film side
  • Example 1 As shown in Table 2, in Example 1, the dimensional shrinkage rate X1 of the polarizing film containing the non-polarizing portion 1A is low, and the dimensional stability of the non-polarizing portion 1A is high, so that the optical function is excellent even under high temperature and high humidity. Understand.
  • Example 2-6 As the resin substrate, a long amorphous isophthalic acid-copolymerized polyethylene terephthalate (IPA-copolymerized PET) film (thickness: 100 ⁇ m) with a water absorption of 0.75% and a Tg of 75° C. was used. One side of the substrate was subjected to corona treatment, and the corona-treated side was coated with polyvinyl alcohol (degree of polymerization: 4,200, degree of saponification: 99.2 mol%) and acetoacetyl-modified PVA (degree of polymerization: 1,200, degree of acetoacetyl modification: 4.6).
  • polyvinyl alcohol degree of polymerization: 4,200, degree of saponification: 99.2 mol
  • acetoacetyl-modified PVA degree of polymerization: 1,200, degree of acetoacetyl modification: 4.6).
  • a PVA-based resin layer was formed to produce a laminate.
  • the resulting laminate was uniaxially stretched 2.4 times at the free end in the machine direction (longitudinal direction) between rolls with different peripheral speeds in an oven at 120°C (in-air auxiliary stretching).
  • the laminate was immersed in an insolubilizing bath (an aqueous boric acid solution obtained by blending 4 parts by weight of boric acid with 100 parts by weight of water) at a liquid temperature of 30° C. for 30 seconds (insolubilizing treatment).
  • insolubilizing treatment an aqueous boric acid solution obtained by blending 4 parts by weight of boric acid with 100 parts by weight of water
  • it was immersed in a dyeing bath at a liquid temperature of 30° C. while adjusting the iodine concentration and the immersion time so that the polarizing plate had a predetermined transmittance.
  • iodine 0.2 parts by weight of iodine was added to 100 parts by weight of water, and 1.5 parts by weight of potassium iodide was added to the resulting iodine aqueous solution for 60 seconds (dyeing treatment). .
  • it was immersed for 30 seconds in a cross-linking bath at a liquid temperature of 30°C (an aqueous boric acid solution obtained by blending 3 parts by weight of potassium iodide and 3 parts by weight of boric acid with respect to 100 parts by weight of water). (crosslinking treatment). After that, the laminate is immersed in an aqueous solution of boric acid having a liquid temperature of 70° C.
  • a radically polymerizable curable resin composition is applied to the second transparent protective film, and the PVA-based resin layer surface of the laminate obtained above and the radically polymerizable curable resin composition coated surface of the second transparent protective film are were laminated together, and the following ultraviolet rays were irradiated from the second transparent protective film side to cure the adhesive.
  • the substrate was peeled off from the PVA-based resin layer to obtain a long polarizing film (polarizer/second transparent protective film) with a width of about 1300 mm.
  • the thickness of the polarizer was 5 ⁇ m, and the single transmittance was 40.8%.
  • the thickness of the polarizer was 4 ⁇ m, and the single transmittance was 40.8%.
  • VPBA 4-vinylphenylboronic acid
  • trade name “4-vinylphenylboronic acid” manufactured by Tokyo Chemical Industry Co., Ltd.
  • ultraviolet rays As an active energy ray, ultraviolet rays (gallium-filled metal halide lamp, irradiation device: Light HAMMER10 manufactured by Fusion UV Systems, Inc., bulb: V bulb, peak illuminance: 1600 mW/cm 2 , cumulative irradiation amount 1000/mJ/cm 2 (wavelength 380-440 nm)) was used. The UV illuminance was measured using a Sola-Check system manufactured by Solatell.
  • An adhesive (acrylic adhesive) was applied to one side of an ester resin film (thickness: 38 ⁇ m) with a width of about 1,300 mm so that the thickness would be 5 ⁇ m.
  • Through-holes having a diameter of 3.0 mm were formed in this adhesive-attached ester resin film at intervals of 250 mm in the longitudinal direction and at intervals of 400 mm in the width direction using a Pycnal blade.
  • the adhesive-attached ester resin film was laminated by roll-to-roll.
  • the obtained polarizing film of Examples 2-6 was treated under the treatment conditions shown in Table 3 to produce a polarizing film having a polarizer in which non-polarizing portions having different thicknesses and hardnesses were formed.
  • NaOH treatment time is the time (seconds) during which the polarizing film was immersed in a 1 mol/L (1N) sodium hydroxide aqueous solution
  • HCl treatment time is 1 mol/ The time (seconds) during which the polarizing film was immersed in L (1N) hydrochloric acid
  • drying temperature means the drying temperature (°C) after NaOH treatment and HCl treatment.
  • the ester-based resin film was peeled off from the laminate obtained above. Subsequently, with regard to Example 6, before bonding the release surface of the ester resin film of the laminate to the first transparent protective film, the release surface was easily coated using a gravure roll coating method equipped with a gravure roll.
  • the adhesive composition 1 was applied (coating thickness: 1 ⁇ m) and air-dried at 25° C. for 1 minute (thickness after drying: 0.7 ⁇ m).
  • each adhesive composition shown in Table 3 was applied to the first transparent protective film shown in Table 3, and for Examples 2-5, the coated surface of each adhesive composition of the transparent protective film and the laminate
  • the release surface of the ester resin film, and in Example 6, the coated surface of each adhesive composition of the transparent protective film and the coated surface of the easy-adhesion composition 1 were respectively laminated, and the same ultraviolet rays as described above were irradiated from the transparent protective film side. Allow the adhesive to cure.
  • Table 3 shows the thickness of the adhesive layer after curing.
  • Films (1) to (5) constituting the first transparent protective film shown in Table 3 are shown below.
  • Film (2) Acrylic resin film manufactured by Toyo Kohan Co., Ltd. (thickness: 30 ⁇ m)
  • Film (4) Acrylic resin film manufactured by Toyo Kohan Co., Ltd. (thickness: 40 ⁇ m)
  • a polarizing film having a configuration of the first transparent protective film/polarizer was produced as described above.
  • the first transparent protective film corresponds to the transparent protective film 3 constituting the polarizing film 10 shown in FIG. 1
  • the polarizer corresponds to the polarizer 1 constituting the polarizing film 10 shown in FIG.
  • the adhesive layer that adheres the protective film and the polarizer corresponds to the adhesive layer 2 that constitutes the polarizing film 10 shown in FIG.
  • Table 3 shows the thickness of the obtained polarizing film and the measurement results of each physical property.
  • the fact that the dimensional shrinkage rate of Comparative Example 2 is negative means that the polarizing film expanded after being left in an environment of 85° C. and 85% humidity for 72 hours.
  • Example 1-6 and Comparative Example 1-2 were left in an environment of 85° C. and 85% humidity for 72 hours. After being left standing, the pitch between lattices in the periphery of the non-polarizing portion of the transmitted output image when projecting an input image having grid-like lines on the non-polarizing portion of each polarizing film is increased or decreased.
  • the presence or absence of distortion caused by It means that the less distortion, the better the optical function of the polarizing film even under high temperature and high humidity.
  • indicates the case where almost no distortion was observed, ⁇ indicates that the peripheral portion of the non-polarized portion of the transmitted image appears somewhat curved, but is of a practical level, and ⁇ indicates that the peripheral portion appears greatly distorted. show.
  • Example 2-6 As shown in Tables 2 and 3, in Example 2-6, the dimensional shrinkage rate X1 of the polarizing film containing the non-polarizing portion 1A is low, and the dimensional stability of the non-polarizing portion 1A is high. It can be seen that it is superior to

Abstract

Provided is a polarizing film in which a transparent protective film is stacked on at least one surface of a polarizer with an adhesive layer therebetween, the polarizing film being characterized in that in at least part of the polarizer, a non-polarizing portion is formed, and a dimensional shrinkage rate X1 of the polarizing film including the non-polarizing portion after the polarizing film is left for 72 hours at 85°C in a humidity environment of 85% is 1.0% or less. H1×d1 ≥ 0.8 is preferable where H1 (GPa) is the hardness of the non-polarizing portion, and d1 is the thickness of the non-polarizing portion. H3×T3 < 50 is preferable where H3 (GPa) is the hardness of the transparent protective film, and T3 (g/m2) is the moisture permeability of the transparent protective film. H2×d2 ≥ 0.20 is preferable where H2 (GPa) is the hardness of a portion abutting on the non-polarizing portion of the adhesive layer, and d2 (μm) is the thickness thereof.

Description

偏光フィルムおよび画像表示装置Polarizing film and image display device
 本発明は、偏光子の少なくとも一方の面に接着剤層を介して透明保護フィルムが積層された偏光フィルムに関する。当該偏光フィルムはこれ単独で、またはこれを積層した光学フィルムとして携帯電話、カーナビゲーション装置、パソコン用モニター、テレビなどの画像表示装置を形成しうる。 The present invention relates to a polarizing film in which a transparent protective film is laminated on at least one surface of a polarizer via an adhesive layer. The polarizing film can form an image display device such as a mobile phone, a car navigation device, a monitor for a personal computer, or a television as an optical film laminated with the polarizing film alone.
 携帯電話、ノート型パーソナルコンピューター(PC)などの画像表示装置には、センサーなどの内部電子部品が搭載されているものがある。近年、スマートフォン、タッチパネル式の情報処理装置の急速な普及により、センサー性能などのさらなる向上が望まれている。また、画像表示装置の形状の多様化および高機能化に対応するために、部分的に偏光性能を有する偏光フィルムが求められている。これらの要望に応えるために、化学処理して形成された非偏光部が所定部分に形成された偏光子が提案されている(例えば、特許文献1および2)。 Some image display devices such as mobile phones and notebook personal computers (PCs) are equipped with internal electronic parts such as sensors. In recent years, due to the rapid spread of smart phones and touch panel type information processing devices, there is a demand for further improvements in sensor performance and the like. In addition, in order to cope with the diversification of the shape and the sophistication of image display devices, there is a demand for a polarizing film having partial polarizing performance. In order to meet these demands, a polarizer has been proposed in which a non-polarizing portion formed by chemical treatment is formed at a predetermined portion (for example, Patent Documents 1 and 2).
韓国公開特許第10-2015-0086159号公報Korean Patent Publication No. 10-2015-0086159 特開2015-215609号公報JP 2015-215609 A
 近年、携帯電話、PCなどの画像表示装置、特にはフレキシブルなディスプレイを備える携帯電話、PCなどの画像表示装置や車載用途に使用される偏光フィルムに要求される耐久性試験として、高温高湿下、例えば85℃-85%湿度の環境下に所定時間暴露する加湿耐久性試験がある。かかる加湿耐久性試験により、偏光子の非偏光部および偏光子上に積層された透明保護フィルムが膨潤すると、偏光フィルムの光学機能が阻害される場合がある。 In recent years, image display devices such as mobile phones and PCs, especially mobile phones with flexible displays, image display devices such as PCs, and polarizing films used for in-vehicle applications have been tested for durability under high temperature and high humidity conditions. For example, there is a humidification durability test in which the film is exposed to an environment of 85° C.-85% humidity for a predetermined period of time. When the non-polarizing portion of the polarizer and the transparent protective film laminated on the polarizer swell due to such a humidification durability test, the optical functions of the polarizing film may be impaired.
 本発明は上記実情に鑑みて開発されたものであり、非偏光部を有する偏光子を備え、高温高湿下でも光学機能に優れた偏光フィルムおよび画像表示装置を提供することを目的とする。 The present invention was developed in view of the above circumstances, and aims to provide a polarizing film and an image display device which are equipped with a polarizer having a non-polarizing portion and which have excellent optical functions even under high temperature and high humidity conditions.
 上記課題は下記構成により解決し得る。即ち本発明は、偏光子の少なくとも一方の面に接着剤層を介して透明保護フィルムが積層された偏光フィルムであって、前記偏光子は、少なくとも一部に非偏光部が形成されているものであり、85℃-85%湿度環境下に72時間放置した後の、前記非偏光部を含む偏光フィルムの寸法収縮率X1が1.0%以下であることを特徴とする偏光フィルム(1)に関する。本発明において「偏光フィルムの寸法収縮率」は、サンプルサイズ10cm×10cmの偏光フィルムサンプルを準備し、MD方向またはTD方向の寸法収縮率、より好ましくは寸法変化率の大きいMD方向の寸法収縮率を意味するものとする。なお、一般的に「MD方向」は「偏光子の吸収軸方向」に対応する。 The above issues can be resolved by the following configuration. That is, the present invention provides a polarizing film in which a transparent protective film is laminated on at least one surface of a polarizer via an adhesive layer, wherein the polarizer has a non-polarizing portion formed at least in part. A polarizing film (1) characterized in that the dimensional shrinkage rate X1 of the polarizing film containing the non-polarizing portion after being left in an environment of 85° C.-85% humidity for 72 hours is 1.0% or less. Regarding. In the present invention, the "dimensional shrinkage rate of the polarizing film" is obtained by preparing a polarizing film sample having a sample size of 10 cm x 10 cm, and measuring the dimensional shrinkage rate in the MD direction or the TD direction, more preferably the dimensional shrinkage rate in the MD direction where the dimensional change rate is large. shall mean In general, the "MD direction" corresponds to the "absorption axis direction of the polarizer".
 上記偏光フィルム(1)において、前記非偏光部の硬さをH1(GPa)、前記非偏光部の厚みをd1としたとき、
 H1×d1≧0.8
である偏光フィルム(2)が好ましい。
In the polarizing film (1), when the hardness of the non-polarizing portion is H1 (GPa) and the thickness of the non-polarizing portion is d1,
H1×d1≧0.8
A polarizing film (2) is preferred.
 上記偏光フィルム(1)または(2)において、前記透明保護フィルムの硬さをH3(GPa)、前記透明保護フィルムの透湿度をT3(g/m)としたとき、
 H3×T3<50
である偏光フィルム(3)が好ましい。
In the polarizing film (1) or (2), when the hardness of the transparent protective film is H3 (GPa) and the moisture permeability of the transparent protective film is T3 (g/m 2 ),
H3×T3<50
A polarizing film (3) is preferred.
 上記偏光フィルム(1)~(3)のいずれかにおいて、前記接着剤層の前記非偏光部に接する部分の硬さをH2(GPa)、厚みをd2(μm)としたとき、
 H2×d2≧0.20
である偏光フィルム(4)が好ましい。
In any one of the polarizing films (1) to (3), when the hardness of the portion of the adhesive layer in contact with the non-polarizing portion is H2 (GPa) and the thickness is d2 (μm),
H2×d2≧0.20
A polarizing film (4) is preferred.
 上記偏光フィルム(1)~(4)のいずれかにおいて、前記偏光子の前記非偏光部以外の部分と前記透明保護フィルムとの間の接着剤層厚みが2μm以下である偏光フィルム(5)が好ましい。 In any one of the polarizing films (1) to (4), the polarizing film (5) has an adhesive layer thickness of 2 μm or less between a portion of the polarizer other than the non-polarizing portion and the transparent protective film. preferable.
 また、本発明は前記(1)~(5)のいずれかに記載の偏光フィルムを備え、前記偏光フィルムの前記非偏光部がセンサー部に対応する位置に配置されていることを特徴とする画像表示装置に関する。 Further, the present invention includes the polarizing film according to any one of the above (1) to (5), wherein the non-polarizing portion of the polarizing film is arranged at a position corresponding to the sensor portion. It relates to a display device.
 近年、高温高湿下で使用される偏光フィルム用途は多くあり、高温高湿下でも光学機能を確保することが重要であることは前記のとおりである。偏光フィルムが高温高湿下、例えば85℃-85%湿度環境下に置かれると、偏光子の、非偏光部以外の他の部分が収縮し易く、その影響で非偏光部を引き延ばす方向に力が掛かり易いため、非偏光部の形状変化が生じ易い。加えて、高温高湿下では水分の影響で非偏光部が膨潤し易いため、やはり非偏光部の形状変化が生じ易い。本発明に係る偏光フィルムは、85℃-85%湿度環境下に72時間放置した後の、非偏光部を含む偏光フィルムの寸法収縮率X1が1.0%以下となるように設計されている。これにより、非偏光部の形状変化を抑制することができるため、結果として、高温高湿下でも偏光フィルムの光学機能を優れたものとすることが可能となり、かつ、かかる偏光フィルムを備える画像表示装置を長期に渡り使用することができる。 In recent years, there are many polarizing film applications that are used under high temperature and high humidity, and as mentioned above, it is important to ensure optical functions even under high temperature and high humidity. When the polarizing film is placed in a high-temperature and high-humidity environment, for example, in an environment of 85° C. to 85% humidity, other parts of the polarizer than the non-polarizing part tend to shrink, and as a result, a force is exerted in the direction of stretching the non-polarizing part. The non-polarizing portion is likely to be deformed because the non-polarizing portion is likely to be affected. In addition, since the non-polarized portion tends to swell under the influence of moisture under high temperature and high humidity conditions, the shape of the non-polarized portion also tends to change. The polarizing film according to the present invention is designed so that the dimensional shrinkage X1 of the polarizing film containing the non-polarizing portion after being left in an environment of 85° C.-85% humidity for 72 hours is 1.0% or less. . As a result, since the shape change of the non-polarizing portion can be suppressed, as a result, it is possible to make the optical function of the polarizing film excellent even under high temperature and high humidity, and an image display comprising such a polarizing film The device can be used for a long time.
 特に本発明では、(1)非偏光部の硬さをH1(GPa)、非偏光部の厚みをd1としたとき、H1×d1≧0.8である場合、(2)透明保護フィルムの硬さをH3(GPa)、透明保護フィルムの透湿度をT3(g/m)としたとき、H3×T3<50である場合、さらには(3)接着剤層の非偏光部に接する部分の硬さをH2(GPa)、厚みをd2(μm)としたとき、H2×d2≧0.20である場合、非偏光部の形状変化をさらに抑制することができる。その結果、高温高湿下でも偏光フィルムの光学機能をより優れたものとすることが可能となり、かつ、かかる偏光フィルムを備える画像表示装置をより長期に渡り使用することができる。 In particular, in the present invention, (1) when H1 (GPa) is the hardness of the non-polarizing portion and d1 is the thickness of the non-polarizing portion, (2) the hardness of the transparent protective film is is H3 (GPa), and the moisture permeability of the transparent protective film is T3 (g/m 2 ). If H2×d2≧0.20, where H2 (GPa) is the hardness and d2 (μm) is the thickness, the shape change of the non-polarizing portion can be further suppressed. As a result, the optical function of the polarizing film can be improved even under high temperature and high humidity, and the image display device provided with such a polarizing film can be used for a longer period of time.
本発明の一実施形態に係る偏光フィルムの断面模式図の一例である。BRIEF DESCRIPTION OF THE DRAWINGS It is an example of the cross-sectional schematic diagram of the polarizing film which concerns on one Embodiment of this invention.
 以下、図面を参照して本発明の実施形態について説明する。なお、図面中の厚みなどの比率はあくまでも一例であり、これに限定されるものではない。 Embodiments of the present invention will be described below with reference to the drawings. It should be noted that the thickness ratios in the drawings are merely examples, and the present invention is not limited to these.
 図1に、本発明の一実施形態に係る偏光フィルムの断面模式図の一例を示す。この実施形態の偏光フィルム10は、偏光子1の片面に接着剤層2を介して、透明保護フィルム3が積層されたものである。なお、本発明においては、偏光子の両面に接着剤層を介して、透明保護フィルムが積層されたものであってもよい。 FIG. 1 shows an example of a cross-sectional schematic diagram of a polarizing film according to one embodiment of the present invention. A polarizing film 10 of this embodiment is obtained by laminating a transparent protective film 3 on one side of a polarizer 1 with an adhesive layer 2 interposed therebetween. In the present invention, a transparent protective film may be laminated on both sides of the polarizer via an adhesive layer.
 偏光子1は、少なくとも一部に非偏光部1Aが形成されている。偏光子の非偏光部の形成方法については後述する。偏光子に非偏光部を形成する場合、その処理方法によっては非偏光部の処理面が、偏光子の他の部分(偏光部)に比して、構造上、凹みやすい。図1に示す実施形態では、偏光子1の処理面に凹部1hが形成された例を示す。なお、図1に示す実施形態では、処理面(図面上側)のみに凹部1hを有し、図面下側には凹みがない例を示したが、非偏光部の形成方法や条件によっては、凹部1hの反対側の偏光子面が幾分凹む場合がある。このような場合、本発明では凹み深さが大きい方(通常は、偏光子中に非偏光部を形成するために処理した面側の凹み)を凹部1hとするものとする。 A non-polarizing portion 1A is formed in at least a portion of the polarizer 1. A method for forming the non-polarizing portion of the polarizer will be described later. When the non-polarizing portion is formed in the polarizer, depending on the processing method, the processed surface of the non-polarizing portion is structurally more likely to be recessed than the other portion (polarizing portion) of the polarizer. The embodiment shown in FIG. 1 shows an example in which recesses 1h are formed on the processed surface of the polarizer 1. FIG. In the embodiment shown in FIG. 1, only the treated surface (the upper side of the drawing) has the concave portion 1h, and the lower side of the drawing has no concave portion. The polarizer face opposite 1h may be somewhat concave. In such a case, according to the present invention, the side with the larger depth of the recess (usually, the recess on the side of the surface processed to form the non-polarizing portion in the polarizer) is defined as the recess 1h.
 図1に示す偏光フィルム10は、85℃-85%湿度環境下に72時間放置した後の、非偏光部1Aを含む偏光フィルムの寸法収縮率X1が1.0%以下となるように設計されている。その結果、高温高湿下でも偏光フィルム10の光学機能を優れたものとすることが可能となり、かつ、かかる偏光フィルム10を備える画像表示装置を長期に渡り使用することができる。なお、非偏光部1Aを含む偏光フィルムの寸法収縮率X1の測定方法については後述する。 The polarizing film 10 shown in FIG. 1 is designed so that the dimensional shrinkage rate X1 of the polarizing film containing the non-polarizing portion 1A after being left in an environment of 85° C. and 85% humidity for 72 hours is 1.0% or less. ing. As a result, the optical function of the polarizing film 10 can be made excellent even under high temperature and high humidity, and the image display device provided with such a polarizing film 10 can be used for a long period of time. A method for measuring the dimensional shrinkage rate X1 of the polarizing film including the non-polarizing portion 1A will be described later.
 高温高湿下での偏光フィルム10の光学機能をより優れたものとするためには、非偏光部1Aを含む偏光フィルムの寸法収縮率X1が0.8%以下であることが好ましく、0.5%以下であることがより好ましく、0.3%以下であることが特に好ましい。 In order to improve the optical functions of the polarizing film 10 under high temperature and high humidity conditions, the dimensional shrinkage ratio X1 of the polarizing film containing the non-polarizing portion 1A is preferably 0.8% or less, and 0.8% or less. It is more preferably 5% or less, and particularly preferably 0.3% or less.
 図1に示す偏光フィルム10では、非偏光部1Aの硬さをH1(GPa)、非偏光部1Aの厚みをd1としたとき、H1×d1≧0.8であると、高温高湿下、非偏光部1Aへ水分が侵入することによる非偏光部1Aの膨潤、および高温高湿下、偏光部が収縮することによる非偏光部1Aの引き延ばし(形状変化)が発生したとしても、非偏光部1Aの硬さおよび/または厚みが十分に確保できているため、非偏光部1Aの形状変化をより抑制することができる。その結果、高温高湿下でも偏光フィルムの光学機能をより優れたものとすることが可能となる。非偏光部1Aの硬さH1および非偏光部1Aの厚みd1の測定方法については後述する。 In the polarizing film 10 shown in FIG. 1, when H1 (GPa) is the hardness of the non-polarizing portion 1A and d1 is the thickness of the non-polarizing portion 1A, when H1×d1≧0.8, under high temperature and high humidity, Even if the non-polarizing portion 1A swells due to moisture entering the non-polarizing portion 1A and the non-polarizing portion 1A expands (changes in shape) due to the contraction of the polarizing portion under high temperature and high humidity conditions, the non-polarizing portion 1A Since the hardness and/or thickness of the non-polarizing portion 1A are sufficiently secured, it is possible to further suppress the shape change of the non-polarizing portion 1A. As a result, it is possible to improve the optical functions of the polarizing film even under high temperature and high humidity conditions. A method for measuring the hardness H1 of the non-polarizing portion 1A and the thickness d1 of the non-polarizing portion 1A will be described later.
 高温高湿下での偏光フィルム10の光学機能をより優れたものとするためには、H1×d1≧1.0であることが好ましく、H1×d1≧1.2であることがより好ましい。 In order to improve the optical function of the polarizing film 10 under high temperature and high humidity, H1×d1≧1.0 is preferable, and H1×d1≧1.2 is more preferable.
 図1に示す偏光フィルム10では、透明保護フィルム3の硬さをH3(GPa)、透明保護フィルム3の透湿度をT3(g/m)としたとき、H3×T3<50であると、高温高湿下でも偏光フィルム10の光学機能をより優れたものとすることができるため好ましい。例えば、透明保護フィルム3の硬さH3が低い場合には、外部からの水分量(透湿量)を抑制する、つまり透明保護フィルム3の透湿度T3を低く設計することにより、非偏光部1Aの膨潤を抑制し、非偏光部1Aの形状変化をより抑制することができる。また、透明保護フィルム3の透湿度T3が高い場合は、外部からの水分量(透湿量)が多くなるところ、透明保護フィルム3の硬さH3を高く設計することにより、非偏光部1Aの形状変化をより抑制することができる。 In the polarizing film 10 shown in FIG. 1, when the hardness of the transparent protective film 3 is H3 (GPa) and the moisture permeability of the transparent protective film 3 is T3 (g/m 2 ), H3×T3<50. It is preferable because the optical function of the polarizing film 10 can be improved even under high temperature and high humidity. For example, when the hardness H3 of the transparent protective film 3 is low, the amount of moisture (moisture permeability) from the outside is suppressed, that is, by designing the moisture permeability T3 of the transparent protective film 3 to be low, the non-polarizing portion 1A swelling of the non-polarizing portion 1A can be further suppressed. In addition, when the moisture permeability T3 of the transparent protective film 3 is high, the moisture content (moisture permeability) from the outside increases. Shape change can be suppressed more.
 高温高湿下での偏光フィルム10の光学機能をより優れたものとするためには、H3×T3<40であることがより好ましく、H3×T3<30であることが特に好ましい。 In order to improve the optical function of the polarizing film 10 under high temperature and high humidity conditions, H3×T3<40 is more preferable, and H3×T3<30 is particularly preferable.
 図1に示す偏光フィルム10では、接着剤層2の非偏光部1Aに接する部分の硬さをH2(GPa)、厚みをd2(μm)としたとき、H2×d2≧0.20である場合、非偏光部1Aに接する接着剤層2の厚みd2と硬さH2とが一定以上となるため、高温高湿下で水分が非偏光部1Aに侵入したとしても、非偏光部1Aの膨潤による形状変化をより抑制することができる。その結果、高温高湿下でも偏光フィルムの光学機能をより優れたものとすることが可能となる。「偏光子1と透明保護フィルム3とを接着している接着剤層2のうち、偏光子1の非偏光部1Aに接する部分」とは、接着剤層2のうち、平面視で非偏光部1Aと重なる部分全体を意味する。 In the polarizing film 10 shown in FIG. 1, when H2 (GPa) is the hardness of the portion of the adhesive layer 2 in contact with the non-polarizing portion 1A and d2 (μm) is the thickness, H2×d2≧0.20. , the thickness d2 and hardness H2 of the adhesive layer 2 in contact with the non-polarizing portion 1A are above a certain level. Shape change can be suppressed more. As a result, it is possible to improve the optical functions of the polarizing film even under high temperature and high humidity conditions. “A portion of the adhesive layer 2 that adheres the polarizer 1 and the transparent protective film 3 and that is in contact with the non-polarized portion 1A of the polarizer 1” means the non-polarized portion of the adhesive layer 2 in plan view. It means the whole part overlapping with 1A.
 高温高湿下での偏光フィルム10の光学機能をより優れたものとするためには、H2×d2≧0.30であることがより好ましく、H2×d2≧0.35であることが特に好ましい。 In order to improve the optical function of the polarizing film 10 under high temperature and high humidity conditions, H2×d2≧0.30 is more preferable, and H2×d2≧0.35 is particularly preferable. .
 なお、偏光子と透明保護フィルムとを接着する接着剤層の厚みが大きいほど、高温高湿下での気泡の膨張を抑制し得るため好ましいが、接着剤層の厚みが大きいと偏光フィルムの湿熱耐久性は悪化する傾向にある。図1に示す偏光フィルム10において、偏光子1の非偏光部1A以外の部分(以下、「偏光部」ともいう)と透明保護フィルム3との間の接着剤層厚みが2μm以下である場合、偏光フィルムの湿熱耐久性を維持しつつ、高温高湿下での気泡の膨張を抑制し得るため好ましい。 The thicker the adhesive layer that bonds the polarizer and the transparent protective film, the more preferable it is because it can suppress the expansion of air bubbles under high temperature and high humidity. Durability tends to deteriorate. In the polarizing film 10 shown in FIG. 1, when the thickness of the adhesive layer between the portion other than the non-polarizing portion 1A of the polarizer 1 (hereinafter also referred to as "polarizing portion") and the transparent protective film 3 is 2 μm or less, It is preferable because expansion of air bubbles under high temperature and high humidity can be suppressed while maintaining the wet heat durability of the polarizing film.
 以下に、本発明の偏光フィルムを構成する各部材について説明する。 Each member constituting the polarizing film of the present invention will be described below.
[偏光子]
 偏光フィルムが備える偏光子は、二色性物質を含む樹脂フィルムから構成される。偏光子には、非偏光部が形成されている。非偏光部は、代表的には、偏光子の非偏光部以外の部分よりも二色性物質の含有量が低い部位(低濃度部)である。ただし、本発明における非偏光部としては偏光子から二色性材料が抜けた層でもよいし、二色性材料を含まない別の層であってもよく、これらに限定されるものではない。このような構成によれば、機械的に(例えば、彫刻刃打抜き、プロッター、ウォータージェットなどを用いて機械的に抜き落とす方法により)、貫通穴が形成されている場合に比べて、クラック、デラミ(層間剥離)、糊はみ出しなどの品質上の問題が回避される。
[Polarizer]
A polarizer included in the polarizing film is composed of a resin film containing a dichroic substance. A non-polarizing portion is formed in the polarizer. The non-polarizing portion is typically a portion (low-concentration portion) in which the content of the dichroic substance is lower than that of the portion other than the non-polarizing portion of the polarizer. However, the non-polarizing portion in the present invention may be a layer from which the dichroic material is removed from the polarizer, or may be another layer containing no dichroic material, and is not limited to these. According to such a structure, cracks and delamination can be reduced mechanically (for example, by a method of mechanically removing using an engraving blade punch, plotter, water jet, etc.) compared to the case where through holes are formed. Quality problems such as delamination (delamination) and glue extrusion are avoided.
 偏光子に非偏光部を導入する方法としては、化学処理により、偏光子から二色性物質を抽出し、脱色することで偏光子に非偏光部を形成する方法(以下、「化学処理法」ともいう)、あるいはレーザー光などによる二色性物質の分解により非偏光部を形成する方法(以下、「レーザー法」ともいう)などが挙げられる。これらの方法の中でも、化学処理法は、非偏光部の二色性物質自体の含有量を低く調整することができ、レーザー法に比べて、非偏光部の透明性が良好に維持されるため好ましい。 As a method of introducing a non-polarizing portion into a polarizer, a method of extracting a dichroic substance from the polarizer by chemical treatment and decolorizing it to form a non-polarizing portion in the polarizer (hereinafter referred to as "chemical treatment method" Alternatively, a method of forming a non-polarized portion by decomposing a dichroic substance with laser light or the like (hereinafter also referred to as a “laser method”). Among these methods, the chemical treatment method can adjust the content of the dichroic substance itself in the non-polarized portion to be low, and maintains the transparency of the non-polarized portion better than the laser method. preferable.
 偏光フィルムにおいて、非偏光部の数、配置、形状、サイズなどは、適宜設計され得る。例えば、搭載される画像表示装置のセンサー部の位置、形状、サイズなどに応じて設計される。具体的には、画像表示装置のセンサー以外の部分(例えば、画像表示部)に非偏光部が対応しないように設計される。 In the polarizing film, the number, arrangement, shape, size, etc. of the non-polarizing portions can be appropriately designed. For example, it is designed according to the position, shape, size, etc. of the sensor section of the image display device to be mounted. Specifically, it is designed so that the non-polarizing portion does not correspond to the portion other than the sensor of the image display device (for example, the image display portion).
 非偏光部の透過率(例えば、23℃における波長550nmの光で測定した透過率)は、好ましくは50%以上、より好ましくは60%以上、さらに好ましくは75%以上、特に好ましくは90%以上である。このような透過率であれば、所望の透明性を確保することができる。例えば、画像表示装置のセンサー部に非偏光部を対応させた場合に、センサーの撮影性能に対する悪影響を防止することができる。 The transmittance of the non-polarized portion (for example, transmittance measured with light having a wavelength of 550 nm at 23° C.) is preferably 50% or more, more preferably 60% or more, still more preferably 75% or more, and particularly preferably 90% or more. is. With such a transmittance, desired transparency can be ensured. For example, when the non-polarizing portion corresponds to the sensor portion of the image display device, it is possible to prevent adverse effects on the imaging performance of the sensor.
 偏光子は、好ましくは、波長380nm~780nmの範囲で吸収二色性を示す。偏光子の偏光部(偏光子の非偏光部以外の部位)の単体透過率(Ts)は、好ましくは39%以上、より好ましくは39.5%以上、さらに好ましくは40%以上、特に好ましくは40.5%以上である。なお、単体透過率の理論上の上限は50%であり、実用的な上限は46%である。また、単体透過率(Ts)は、JIS Z8701の2度視野(C光源)により測定して視感度補正を行なったY値であり、例えば、紫外可視分光光度計(日本分光株式会社製、製品名:V7100)を用いて測定することができる。偏光子の偏光部の偏光度は、好ましくは99.8%以上、より好ましくは99.9%以上、さらに好ましくは99.95%以上である。 The polarizer preferably exhibits absorption dichroism in the wavelength range of 380 nm to 780 nm. Single transmittance (Ts) of the polarizing portion of the polarizer (part other than the non-polarizing portion of the polarizer) is preferably 39% or more, more preferably 39.5% or more, still more preferably 40% or more, and particularly preferably 40.5% or more. The theoretical upper limit of single transmittance is 50%, and the practical upper limit is 46%. In addition, the single transmittance (Ts) is the Y value measured with a JIS Z8701 2-degree field of view (C light source) and corrected for visibility. name: V7100). The degree of polarization of the polarizing portion of the polarizer is preferably 99.8% or higher, more preferably 99.9% or higher, and even more preferably 99.95% or higher.
 偏光子(樹脂フィルム)の厚みは、任意の適切な値に設定され得る。偏光子の厚みは、代表的には、0.5μm~80μmである。厚みは、好ましくは30μm以下であり、より好ましくは25μm以下であり、さらに好ましくは18μm以下であり、特に好ましくは12μm以下であり、さらに特に好ましくは8μm未満である。厚みは好ましくは1μm以上である。偏光子となる樹脂フィルムの厚みが薄いほど、後述する塩基性溶液と接触させる工程において、より短時間で二色性物質の含有量を低減させることができる。 The thickness of the polarizer (resin film) can be set to any appropriate value. The thickness of the polarizer is typically 0.5 μm to 80 μm. The thickness is preferably 30 μm or less, more preferably 25 μm or less, even more preferably 18 μm or less, particularly preferably 12 μm or less, and even more preferably less than 8 μm. The thickness is preferably 1 μm or more. As the thickness of the resin film to be the polarizer is thinner, the content of the dichroic substance can be reduced in a shorter period of time in the step of contacting with the basic solution, which will be described later.
 上記二色性物質としては、例えば、ヨウ素、有機染料などが挙げられる。これらは、単独で、または二種以上組み合わせて用いられ得る。好ましくはヨウ素が用いられる。後述する塩基性溶液との接触により、非偏光部が良好に形成され得るからである。 Examples of the dichroic substance include iodine and organic dyes. These may be used alone or in combination of two or more. Iodine is preferably used. This is because a non-polarized portion can be favorably formed by contact with a basic solution, which will be described later.
 非偏光部の二色性物質の含有量は、好ましくは1.0重量%以下、より好ましくは0.5重量%以下、さらに好ましくは0.2重量%以下である。非偏光部の二色性物質の含有量がこのような範囲であれば、非偏光部に所望の透明性を十分に付与することができる。そのため、例えば、画像表示装置のセンサー部に非偏光部を対応させた場合に、明るさおよび色味の両方の観点から非常に優れた撮影性能を実現することができる。一方、非偏光部の二色性物質の含有量の下限値は、通常、検出限界値以下である。なお、二色性物質としてヨウ素を用いる場合、ヨウ素含有量は、例えば、蛍光X線分析で測定したX線強度から、予め標準試料を用いて作成した検量線により求められる。 The content of the dichroic substance in the non-polarizing portion is preferably 1.0% by weight or less, more preferably 0.5% by weight or less, and even more preferably 0.2% by weight or less. If the content of the dichroic substance in the non-polarizing portion is within this range, the desired transparency can be sufficiently imparted to the non-polarizing portion. Therefore, for example, when the non-polarizing portion is made to correspond to the sensor portion of the image display device, extremely excellent shooting performance can be achieved in terms of both brightness and color. On the other hand, the lower limit of the content of the dichroic substance in the non-polarized portion is usually below the detection limit. When iodine is used as the dichroic substance, the iodine content can be obtained from, for example, a calibration curve prepared in advance using standard samples from X-ray intensities measured by fluorescent X-ray analysis.
 他の部位における二色性物質の含有量と非偏光部における二色性物質の含有量との差は、好ましくは0.5重量%以上、さらに好ましくは1重量%以上である。 The difference between the content of the dichroic substance in other parts and the content of the dichroic substance in the non-polarized part is preferably 0.5% by weight or more, more preferably 1% by weight or more.
 上記樹脂フィルムを形成する樹脂としては、任意の適切な樹脂が用いられ得る。好ましくは、ポリビニルアルコール系樹脂(以下、「PVA系樹脂」と称する)が用いられる。PVA系樹脂としては、例えば、ポリビニルアルコール、エチレン-ビニルアルコール共重合体が挙げられる。ポリビニルアルコールは、ポリ酢酸ビニルをケン化することにより得られる。エチレン-ビニルアルコール共重合体は、エチレン-酢酸ビニル共重合体をケン化することにより得られる。PVA系樹脂のケン化度は、通常85モル%以上100モル%未満であり、好ましくは95.0モル%~99.95モル%、さらに好ましくは99.0モル%~99.93モル%である。ケン化度は、JIS K 6726-1994に準じて求めることができる。このようなケン化度のPVA系樹脂を用いることによって、耐久性に優れた偏光子を得ることができる。ケン化度が高すぎる場合には、ゲル化してしまうおそれがある。 Any appropriate resin can be used as the resin forming the resin film. Preferably, a polyvinyl alcohol-based resin (hereinafter referred to as "PVA-based resin") is used. Examples of PVA-based resins include polyvinyl alcohol and ethylene-vinyl alcohol copolymers. Polyvinyl alcohol is obtained by saponifying polyvinyl acetate. An ethylene-vinyl alcohol copolymer is obtained by saponifying an ethylene-vinyl acetate copolymer. The saponification degree of the PVA-based resin is usually 85 mol% or more and less than 100 mol%, preferably 95.0 mol% to 99.95 mol%, more preferably 99.0 mol% to 99.93 mol%. be. The degree of saponification can be determined according to JIS K 6726-1994. By using a PVA-based resin having such a degree of saponification, a polarizer with excellent durability can be obtained. If the degree of saponification is too high, gelation may occur.
 PVA系樹脂の平均重合度は、目的に応じて適切に選択され得る。平均重合度は、通常1000~10000であり、好ましくは1200~4500、さらに好ましくは1500~4300である。なお、平均重合度は、JIS K 6726-1994に準じて求めることができる。 The average degree of polymerization of the PVA-based resin can be appropriately selected depending on the purpose. The average degree of polymerization is usually 1,000 to 10,000, preferably 1,200 to 4,500, more preferably 1,500 to 4,300. The average degree of polymerization can be determined according to JIS K 6726-1994.
 非偏光部を有する偏光子は、二色性物質を含む樹脂フィルムに処理液、例えば塩基性溶液を接触させる化学処理法により製造することができる。二色性物質としてヨウ素を用いる場合、樹脂フィルムの所望の部位に塩基性溶液を接触させることで、接触部のヨウ素含有量を容易に低減させる(脱色する)ことができる。具体的には、接触により、塩基性溶液は樹脂フィルム内部へと浸透し得る。樹脂フィルムに含まれるヨウ素錯体は塩基性溶液に含まれる塩基により還元され、ヨウ素イオンとなる。ヨウ素錯体がヨウ素イオンに還元されることにより、接触部の透過率が向上し得る。そして、ヨウ素イオンとなったヨウ素は、樹脂フィルムから塩基性溶液の溶媒中に移動する。こうして得られる非偏光部は、その透明性が良好に維持され得る。具体的には、ヨウ素錯体を破壊して透過率を向上させた場合、樹脂フィルム内に残存するヨウ素が、偏光子の使用に伴い再度ヨウ素錯体を形成して透過率が低下し得るが、ヨウ素含有量を低減させた場合はそのような問題は防止される。 A polarizer having a non-polarizing portion can be produced by a chemical treatment method in which a resin film containing a dichroic substance is brought into contact with a treatment liquid, such as a basic solution. When iodine is used as the dichroic substance, the iodine content of the contact portion can be easily reduced (decolorized) by contacting the desired portion of the resin film with a basic solution. Specifically, the contact may allow the basic solution to penetrate into the interior of the resin film. The iodine complex contained in the resin film is reduced by the base contained in the basic solution to become iodine ions. By reducing the iodine complex to iodine ions, the transmittance of the contact portion can be improved. Then, the iodine converted into iodine ions moves from the resin film into the solvent of the basic solution. The non-polarized portion thus obtained can maintain its transparency satisfactorily. Specifically, when the iodine complex is destroyed to improve the transmittance, the iodine remaining in the resin film forms an iodine complex again with the use of the polarizer, which may reduce the transmittance. Such problems are prevented when the content is reduced.
 塩基性溶液の接触方法としては、任意の適切な方法が採用され得る。例えば、樹脂フィルムに対し、塩基性溶液を滴下、塗工、スプレーする方法、樹脂フィルムを塩基性溶液に浸漬する方法が挙げられる。 Any appropriate method can be adopted as a method for contacting the basic solution. Examples thereof include a method of dropping, coating, or spraying a basic solution onto a resin film, and a method of immersing a resin film in a basic solution.
 塩基性溶液の接触に際し、所望の部位以外に塩基性溶液が接触しないように(二色性物質の含有量が低くならないように)、任意の適切な保護材で樹脂フィルムを保護してもよい。具体的には、樹脂フィルムの保護材としては、例えば、保護フィルム、表面保護フィルムが挙げられる。保護フィルムは、偏光子の保護フィルムとしてそのまま利用され得るものである。表面保護フィルムは、偏光子の製造時に一時的に用いられるものである。表面保護フィルムは、任意の適切なタイミングで樹脂フィルムから取り除かれるため、代表的には、樹脂フィルムに粘着剤層を介して貼り合わされる。保護材の別の具体例としては、フォトレジストなどが挙げられる。 The resin film may be protected with any suitable protective material so that the basic solution does not come into contact with any part other than the desired part (so that the content of the dichroic substance does not decrease) when the basic solution comes into contact. . Specifically, examples of protective materials for resin films include protective films and surface protective films. The protective film can be used as it is as a protective film for the polarizer. A surface protective film is used temporarily during the production of a polarizer. Since the surface protection film is removed from the resin film at any appropriate timing, it is typically attached to the resin film via an adhesive layer. Another specific example of the protective material is photoresist.
 上記塩基性化合物としては、任意の適切な塩基性化合物を用いることができる。塩基性化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどのアルカリ金属の水酸化物、水酸化カルシウムなどのアルカリ土類金属の水酸化物、炭酸ナトリウムなどの無機アルカリ金属塩、酢酸ナトリウムなどの有機アルカリ金属塩、アンモニア水などが挙げられる。これらの中でも、好ましくはアルカリ金属および/またはアルカリ土類金属の水酸化物が用いられ、さらに好ましくは水酸化ナトリウム、水酸化カリウム、水酸化リチウムが用いられる。二色性物質を効率良くイオン化することができ、より簡便に非偏光部を形成することができるからである。これらの塩基性化合物は単独で用いてもよく、二種以上を組み合わせて用いてもよい。 Any appropriate basic compound can be used as the basic compound. Examples of basic compounds include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide and lithium hydroxide, alkaline earth metal hydroxides such as calcium hydroxide, and inorganic alkali metal salts such as sodium carbonate. , organic alkali metal salts such as sodium acetate, aqueous ammonia, and the like. Among these, alkali metal and/or alkaline earth metal hydroxides are preferably used, and sodium hydroxide, potassium hydroxide and lithium hydroxide are more preferably used. This is because the dichroic substance can be efficiently ionized, and the non-polarization portion can be formed more easily. These basic compounds may be used alone or in combination of two or more.
 塩基性溶液の溶媒としては、任意の適切な溶媒を用いることができる。具体的には、水、エタノール、メタノールなどのアルコール、エーテル、ベンゼン、クロロホルム、および、これらの混合溶媒が挙げられる。これらの中でも、イオン化した二色性物質が良好に溶媒へと移行し得ることから、水、アルコールが好ましく用いられる。 Any appropriate solvent can be used as the solvent for the basic solution. Specific examples include water, alcohols such as ethanol and methanol, ethers, benzene, chloroform, and mixed solvents thereof. Among these, water and alcohol are preferably used because the ionized dichroic substance can be transferred well to the solvent.
 塩基性溶液の濃度は、例えば0.01N~5Nであり、好ましくは0.05N~3Nであり、より好ましくは0.1N~2.5Nである。濃度がこのような範囲であれば、所望の非偏光部が良好に形成され得る。 The concentration of the basic solution is, for example, 0.01N to 5N, preferably 0.05N to 3N, more preferably 0.1N to 2.5N. If the concentration is within such a range, the desired non-polarized portion can be formed satisfactorily.
 塩基性溶液の液温は、例えば20℃~50℃である。塩基性溶液の接触時間は、例えば、樹脂フィルムの厚み、塩基性溶液に含まれる塩基性化合物の種類や濃度に応じて設定される。接触時間は、例えば5秒~30分であり、好ましくは5秒~5分である。 The liquid temperature of the basic solution is, for example, 20°C to 50°C. The contact time of the basic solution is set according to, for example, the thickness of the resin film and the type and concentration of the basic compound contained in the basic solution. The contact time is, for example, 5 seconds to 30 minutes, preferably 5 seconds to 5 minutes.
 1つの実施形態においては、塩基性溶液の接触に際し、樹脂フィルム表面は、その少なくとも一部が露出するように表面保護フィルムで被覆されている。例えば、偏光子(樹脂フィルム)に小円形の貫通穴が形成された表面保護フィルムを貼り合わせ、これに塩基性溶液を接触させることで作製される。その際、樹脂フィルムのもう片側(表面保護フィルムが配置されていない側)も保護されていることが好ましい。 In one embodiment, the surface of the resin film is covered with a surface protective film so that at least a portion thereof is exposed when it comes into contact with a basic solution. For example, it is produced by bonding a polarizer (resin film) with a surface protective film having small circular through holes, and contacting this with a basic solution. At that time, it is preferable that the other side of the resin film (the side on which the surface protective film is not arranged) is also protected.
 なお、上記樹脂フィルムは長尺状であってもよい。樹脂フィルムが長尺状である場合、樹脂フィルムと保護材との積層はロールトゥロールにより行われるのが好ましい。ここで、「ロールトゥロール」とは、ロール状のフィルムを搬送しながら互いの長尺方向を揃えて積層することをいう。長尺状の表面保護フィルムには、例えば、その長手方向および/または幅方向に所定の間隔で貫通穴が形成されている。上記長尺状の樹脂フィルムを用いた偏光子の製造方法、および、長尺状の樹脂フィルムの製造に用いられる表面保護フィルムについては、特開2016-027135号公報、特開2016-027136号公報、特開2016-027137号公報、特開2016-027138号公報、特開2016-027139号公報に記載されており、この記載は本明細書に参考として援用される。 Note that the resin film may be elongated. When the resin film is elongated, it is preferable to laminate the resin film and the protective material by roll-to-roll. Here, "roll-to-roll" refers to stacking while aligning the longitudinal directions of roll-shaped films while conveying them. Through-holes are formed in the elongated surface protective film at predetermined intervals in the longitudinal direction and/or the width direction thereof, for example. The method for producing a polarizer using the long resin film and the surface protective film used for producing the long resin film are disclosed in JP-A-2016-027135 and JP-A-2016-027136. , JP-A-2016-027137, JP-A-2016-027138, and JP-A-2016-027139, which are incorporated herein by reference.
 塩基性溶液を接触させる際、樹脂フィルムは、偏光子として使用し得る状態とされていることが好ましい。具体的には、膨潤処理、延伸処理、上記二色性物質による染色処理、架橋処理、洗浄処理、乾燥処理などの各種処理が施されていることが好ましい。なお、各種処理を施す際、樹脂フィルムは、基材上に形成された樹脂層であってもよい。基材と樹脂層との積層体は、例えば、上記樹脂フィルムの形成材料を含む塗布液を基材に塗布する方法、基材に樹脂フィルムを積層する方法などにより得ることができる。 It is preferable that the resin film be in a state where it can be used as a polarizer when it is brought into contact with the basic solution. Specifically, various treatments such as swelling treatment, stretching treatment, dyeing treatment with the dichroic substance, cross-linking treatment, washing treatment, and drying treatment are preferably performed. In addition, when performing various treatments, the resin film may be a resin layer formed on a substrate. A laminate of a base material and a resin layer can be obtained, for example, by a method of applying a coating liquid containing the resin film-forming material to the base material, a method of laminating a resin film on the base material, or the like.
 上記染色処理は、代表的には二色性物質を吸着させることにより行う。当該吸着方法としては、例えば、二色性物質を含む染色液に樹脂フィルムを浸漬させる方法、樹脂フィルムに当該染色液を塗工する方法、当該染色液を樹脂フィルムに噴霧する方法などが挙げられる。好ましくは、染色液に樹脂フィルムを浸漬させる方法である。二色性物質が良好に吸着し得るからである。 The above dyeing treatment is typically performed by adsorbing a dichroic substance. Examples of the adsorption method include a method of immersing the resin film in a dyeing solution containing a dichroic substance, a method of coating the resin film with the dyeing solution, and a method of spraying the resin film with the dyeing solution. . A preferred method is to immerse the resin film in a dyeing solution. This is because the dichroic substance can be well adsorbed.
 二色性物質としてヨウ素を用いる場合、上記染色液としては、ヨウ素水溶液が好ましく用いられる。ヨウ素の配合量は、水100重量部に対して、好ましくは0.04重量部~5.0重量部である。ヨウ素の水に対する溶解度を高めるため、ヨウ素水溶液にヨウ化物を配合することが好ましい。ヨウ化物としては、ヨウ化カリウムが好ましく用いられる。ヨウ化物の配合量は、水100重量部に対して、好ましくは0.3重量部~15重量部である。 When iodine is used as the dichroic substance, an iodine aqueous solution is preferably used as the staining solution. The amount of iodine compounded is preferably 0.04 to 5.0 parts by weight per 100 parts by weight of water. In order to increase the solubility of iodine in water, it is preferable to add an iodide to the iodine aqueous solution. Potassium iodide is preferably used as the iodide. The amount of iodide compounded is preferably 0.3 to 15 parts by weight per 100 parts by weight of water.
 上記延伸処理において、樹脂フィルムは、代表的には3倍~7倍に一軸延伸される。なお、延伸方向は、得られる偏光子の吸収軸方向に対応し得る。 In the above stretching process, the resin film is typically uniaxially stretched 3 to 7 times. The stretching direction can correspond to the absorption axis direction of the resulting polarizer.
 化学処理による脱色により、偏光子の非偏光部を形成する場合、塩基性溶液の接触面(非偏光部)は、他の偏光部に比して凹むことにより、非偏光部には凹部が形成される。凹部の最大深さは、偏光子の厚みや塩基性溶液との接触条件(温度・時間など)により変更されるが、0.1~2.0(μm)、特には0.1~1.0(μm)である場合、高温高湿下での偏光フィルムの視認性向上が図られやすいため好ましい。 When the non-polarized portion of the polarizer is formed by decolorization by chemical treatment, the contact surface (non-polarized portion) of the basic solution is recessed compared to the other polarized portion, thereby forming a recess in the non-polarized portion. be done. The maximum depth of the concave portion varies depending on the thickness of the polarizer and the contact conditions (temperature, time, etc.) with the basic solution, but is 0.1 to 2.0 (μm), particularly 0.1 to 1.0 μm. When it is 0 (μm), visibility of the polarizing film can be easily improved under high temperature and high humidity, which is preferable.
 化学処理による脱色により、偏光子の非偏光部を形成する場合、非偏光部の厚みおよび硬さは、非偏光部の作製条件(例えば「1mol/L(1N)の水酸化ナトリウム水溶液中に偏光フィルムを浸漬させた時間(秒)」、「1mol/L(1N)の塩酸中に偏光フィルムを浸漬させた時間(秒)」、「NaOH処理およびHCl処理後の乾燥温度(℃)」などを適宜調整することにより変更可能である。 When the non-polarizing portion of the polarizer is formed by decolorization by chemical treatment, the thickness and hardness of the non-polarizing portion depend on the manufacturing conditions of the non-polarizing portion (e.g., polarizing in a 1 mol/L (1N) sodium hydroxide aqueous solution). film immersion time (seconds)", "polarizing film immersion time in 1 mol/L (1N) hydrochloric acid (seconds)", "drying temperature after NaOH treatment and HCl treatment (°C)", etc. It can be changed by making appropriate adjustments.
 本発明において使用する偏光子を製造する際、必要に応じて、任意の適切な工程をさらに含み得る。例えば、アルカリ金属および/またはアルカリ土類金属を低減させる工程、および、上記塩基性溶液の除去などが挙げられる。これらの工程は、上記製造方法の任意の適切な段階で行われる。 Any appropriate step may be further included as necessary when manufacturing the polarizer used in the present invention. Examples include a step of reducing alkali metals and/or alkaline earth metals, and removing the basic solution. These steps are performed at any appropriate stage of the manufacturing method described above.
 樹脂フィルムに塩基性溶液を接触させることにより、接触部にアルカリ金属および/またはアルカリ土類金属の水酸化物が残存し得る。また、樹脂フィルムに塩基性溶液を接触させることにより、接触部にアルカリ金属および/またはアルカリ土類金属の金属塩が生成し得る。これらは水酸化物イオンを生成し得、生成した水酸化物イオンは、接触部周囲に存在する二色性物質(例えば、ヨウ素錯体)に作用(分解・還元)して、非偏光領域(低濃度領域)を広げ得る。したがって、アルカリ金属および/またはアルカリ土類金属を低減させることにより、経時的に非偏光領域が広がるのを抑制して、所望の非偏光部形状を維持し得る。アルカリ金属および/またはアルカリ土類金属を低減させる工程の詳細は、例えば、特開2015-215609号公報、特開2015-215610号公報、および、特開2015-215611号公報に記載されており、この記載は本明細書に参考として援用される。 By bringing the basic solution into contact with the resin film, hydroxides of alkali metals and/or alkaline earth metals can remain in the contact area. Also, by bringing a basic solution into contact with the resin film, metal salts of alkali metals and/or alkaline earth metals can be generated at the contact portion. These can generate hydroxide ions, and the generated hydroxide ions act (decompose/reduce) dichroic substances (e.g., iodine complexes) present around the contact area, resulting in non-polarized regions (low concentration range) can be widened. Therefore, by reducing the amount of alkali metal and/or alkaline earth metal, it is possible to suppress the expansion of the non-polarization region over time and maintain the desired shape of the non-polarization portion. Details of the step of reducing alkali metals and/or alkaline earth metals are described in, for example, JP-A-2015-215609, JP-A-2015-215610, and JP-A-2015-215611. This description is incorporated herein by reference.
 上記塩基性溶液および/または後架橋溶液の除去方法の具体例としては、洗浄、ウエスなどによる拭き取り除去、吸引除去、自然乾燥、加熱乾燥、送風乾燥、減圧乾燥などが挙げられる。洗浄に用いられる洗浄液は、例えば、水(純水)、メタノール、エタノールなどのアルコール、および、これらの混合液などが挙げられる。好ましくは、水が用いられる。洗浄回数は特に限定されず、複数回行ってもよい。乾燥により除去する場合、その乾燥温度は、例えば20℃~100℃である。 Specific examples of the method for removing the basic solution and/or the post-crosslinking solution include washing, wiping removal with a waste cloth, suction removal, natural drying, heat drying, air drying, and reduced pressure drying. Cleaning liquids used for cleaning include, for example, water (pure water), alcohols such as methanol and ethanol, and mixtures thereof. Water is preferably used. The number of washings is not particularly limited, and washing may be performed multiple times. When removing by drying, the drying temperature is, for example, 20°C to 100°C.
[透明保護フィルム]
 本発明の偏光フィルムは、偏光子の少なくとも一方の面に接着剤層を介して透明保護フィルムが積層されている。また、本発明の偏光フィルムにおいては例えば、偏光子の、透明保護フィルムが積層された面の反対側の面に、接着剤層を介してさらに同一または異なる透明保護フィルムが設けられていてもよい。
[Transparent protective film]
In the polarizing film of the present invention, a transparent protective film is laminated on at least one surface of a polarizer via an adhesive layer. In addition, in the polarizing film of the present invention, for example, the same or different transparent protective film may be further provided via an adhesive layer on the surface of the polarizer opposite to the surface on which the transparent protective film is laminated. .
 透明保護フィルムを構成する材料としては、例えば透明性、機械的強度、熱安定性、水分遮断性、等方性などに優れる熱可塑性樹脂が用いられる。このような熱可塑性樹脂の具体例としては、トリアセチルセルロースなどのセルロース樹脂、ポリエステル樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリオレフィン樹脂、(メタ)アクリル樹脂、環状ポリオレフィン樹脂(ノルボルネン系樹脂)、ポリアリレート樹脂、ポリスチレン樹脂、ポリビニルアルコール樹脂、およびこれらの混合物が挙げられる。透明保護フィルム中には任意の適切な添加剤が1種類以上含まれていてもよい。添加剤としては、例えば、紫外線吸収剤、酸化防止剤、滑剤、可塑剤、離型剤、着色防止剤、難燃剤、核剤、帯電防止剤、顔料、着色剤などが挙げられる。透明保護フィルム中の上記熱可塑性樹脂の含有量は、好ましくは50~100重量%、より好ましくは50~99重量%、さらに好ましくは60~98重量%、特に好ましくは70~97重量%である。透明保護フィルム中の上記熱可塑性樹脂の含有量が50重量%以下の場合、熱可塑性樹脂が本来有する高透明性などが十分に発現できないおそれがある。 Thermoplastic resins, which are excellent in transparency, mechanical strength, thermal stability, water barrier properties, isotropy, etc., are used as materials for the transparent protective film. Specific examples of such thermoplastic resins include cellulose resins such as triacetyl cellulose, polyester resins, polyethersulfone resins, polysulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, (meth)acrylic resins, cyclic Polyolefin resins (norbornene-based resins), polyarylate resins, polystyrene resins, polyvinyl alcohol resins, and mixtures thereof. One or more of any suitable additives may be contained in the transparent protective film. Examples of additives include ultraviolet absorbers, antioxidants, lubricants, plasticizers, release agents, anti-coloring agents, flame retardants, nucleating agents, antistatic agents, pigments, and colorants. The content of the thermoplastic resin in the transparent protective film is preferably 50 to 100% by weight, more preferably 50 to 99% by weight, still more preferably 60 to 98% by weight, and particularly preferably 70 to 97% by weight. . If the content of the thermoplastic resin in the transparent protective film is 50% by weight or less, the high transparency inherent in the thermoplastic resin may not be sufficiently exhibited.
 また透明保護フィルムを形成する材料としては、透明性、機械的強度、熱安定性、水分遮断性、等方性などに優れるものが好ましく、特に透湿度が150g/m/24h以下であるものがより好ましく、140g/m/24h以下のものが特に好ましく、120g/m/24h以下のものさらに好ましい。 As the material for forming the transparent protective film, a material having excellent transparency, mechanical strength, thermal stability, moisture barrier properties, isotropy, etc. is preferable, and in particular, a material having a moisture permeability of 150 g/m 2 /24h or less. is more preferred, 140 g/m 2 /24h or less is particularly preferred, and 120 g/m 2 /24h or less is even more preferred.
 透明保護フィルムの偏光子を接着させない面には、ハードコート層、反射防止層、スティッキング防止層、拡散層ないしアンチグレア層などの機能層を設けることができる。なお、上記ハードコート層、反射防止層、スティッキング防止層、拡散層やアンチグレア層などの機能層は、透明保護フィルムそのものに設けることができるほか、別途、透明保護フィルムとは別体のものとして設けることもできる。 A functional layer such as a hard coat layer, an antireflection layer, an antisticking layer, a diffusion layer or an antiglare layer can be provided on the surface of the transparent protective film to which the polarizer is not adhered. Functional layers such as the hard coat layer, antireflection layer, anti-sticking layer, diffusion layer, and antiglare layer can be provided on the transparent protective film itself, or can be provided separately from the transparent protective film. can also
 透明保護フィルムの厚みは、適宜に決定しうるが、一般には強度や取扱性などの作業性、薄層性などの点より1~500μm程度であり、1~300μmが好ましく、5~200μmがより好ましい。さらには10~200μmが好ましく、20~80μmが好ましい。 The thickness of the transparent protective film can be determined as appropriate, but is generally about 1 to 500 μm, preferably 1 to 300 μm, more preferably 5 to 200 μm, from the viewpoint of strength, workability such as handleability, and thinness. preferable. Further, it is preferably 10 to 200 μm, more preferably 20 to 80 μm.
 前記透明保護フィルムとして、正面位相差が40nm以上および/または、厚み方向位相差が80nm以上の位相差を有する位相差フィルムを用いることができる。正面位相差は、通常、40~200nmの範囲に、厚み方向位相差は、通常、80~300nmの範囲に制御される。透明保護フィルムとして位相差フィルムを用いる場合には、当該位相差フィルムが透明保護フィルムとしても機能するため、薄型化を図ることができる。本発明の偏光フィルムにおいては例えば、偏光子の、透明保護フィルムが積層された面の反対側の面に、接着剤層を介してさらに位相差フィルムが設けられていてもよい。 A retardation film having a front retardation of 40 nm or more and/or a thickness direction retardation of 80 nm or more can be used as the transparent protective film. The front retardation is usually controlled in the range of 40-200 nm, and the thickness direction retardation is usually controlled in the range of 80-300 nm. When a retardation film is used as the transparent protective film, the thickness can be reduced because the retardation film also functions as a transparent protective film. In the polarizing film of the present invention, for example, a retardation film may be further provided via an adhesive layer on the surface of the polarizer opposite to the surface on which the transparent protective film is laminated.
 位相差フィルムとしては、高分子素材を一軸または二軸延伸処理してなる複屈折性フィルム、液晶ポリマーの配向フィルム、液晶ポリマーの配向層をフィルムにて支持したものなどがあげられる。位相差フィルムの厚さも特に制限されないが、20~150μm程度が一般的である。 Examples of the retardation film include a birefringent film obtained by uniaxially or biaxially stretching a polymer material, an oriented film of a liquid crystal polymer, and a film in which an oriented layer of a liquid crystal polymer is supported. Although the thickness of the retardation film is not particularly limited, it is generally about 20 to 150 μm.
 位相差フィルムとしては、下記式(1)ないし(3):
0.70<Re[450]/Re[550]<0.97・・・(1)
1.5×10-3<Δn<6×10-3・・・(2)
1.13<NZ<1.50・・・(3)
(式中、Re[450]およびRe[550]は、それぞれ、23℃における波長450nmおよび550nmの光で測定した位相差フィルムの面内の位相差値であり、Δnは位相差フィルムの遅相軸方向、進相軸方向の屈折率を、それぞれnx、nyとしたときのnx-nyである面内複屈折であり、NZはnzを位相差フィルムの厚み方向の屈折率としたときの、厚み方向複屈折であるnx-nzと面内複屈折であるnx-nyとの比である)を満足する逆波長分散型の位相差フィルムを用いてもよい。
As the retardation film, the following formulas (1) to (3):
0.70<Re[450]/Re[550]<0.97 (1)
1.5×10 −3 <Δn<6×10 −3 (2)
1.13<NZ<1.50 (3)
(Wherein, Re [450] and Re [550] are the in-plane retardation values of the retardation film measured with light having wavelengths of 450 nm and 550 nm, respectively, at 23 ° C., and Δn is the slow phase of the retardation film In-plane birefringence that is nx-ny when the refractive indices in the axial direction and the fast axis direction are nx and ny, respectively, and NZ is the refractive index in the thickness direction of the retardation film, (ratio of nx-nz, which is birefringence in the thickness direction, to nx-ny, which is in-plane birefringence) may be used.
 本発明に係る偏光フィルムにおいては位相差層が設けられてもよい。位相差層は単層であっても複数層であってもよく、位相差層が偏光子の保護層を兼ねてもよい。本発明の偏光フィルムにおいては例えば、偏光子の、透明保護フィルムが積層された面の反対側の面に、接着剤層を介して位相差層が設けられていてもよい。位相差層の種類、数、組み合わせ、配置位置、特性は、目的に応じて適切に設定され得る。 A retardation layer may be provided in the polarizing film according to the present invention. The retardation layer may be a single layer or multiple layers, and the retardation layer may also serve as a protective layer for the polarizer. In the polarizing film of the present invention, for example, a retardation layer may be provided via an adhesive layer on the surface of the polarizer opposite to the surface on which the transparent protective film is laminated. The type, number, combination, arrangement position, and characteristics of the retardation layer can be appropriately set according to the purpose.
 位相差層の形成には液晶性化合物が好ましく用いられ 該液晶性化合物を含む溶媒を、例えばワイヤーバー、ギャップコーター、コンマコーター、グラビアコーター、スロットダイなどを使用して塗布することができる。この際、塗布された液晶性溶液は、自然乾燥させてもよいし、加熱乾燥させてもよい。なお、液晶性溶液は、等方相-液晶相転移濃度よりも低い濃度、即ち、等方相状態で塗工することが好ましい。この場合、ラビング処理や光配向などの方法により安定的に配向させることができる。 A liquid crystalline compound is preferably used for forming the retardation layer. A solvent containing the liquid crystalline compound can be applied using, for example, a wire bar, gap coater, comma coater, gravure coater, slot die, or the like. At this time, the applied liquid crystalline solution may be dried naturally or dried by heating. The liquid crystalline solution is preferably applied at a concentration lower than the isotropic phase-liquid crystal phase transition concentration, that is, in an isotropic phase state. In this case, the orientation can be stably achieved by a method such as rubbing treatment or photo-orientation.
[接着剤層]
 本発明の偏光フィルムは、偏光子の少なくとも一方の面に接着剤層を介して透明保護フィルムが積層されている。かかる接着剤層は、例えば硬化性樹脂組成物の硬化物層により形成可能である。
[Adhesive layer]
In the polarizing film of the present invention, a transparent protective film is laminated on at least one surface of a polarizer via an adhesive layer. Such an adhesive layer can be formed of, for example, a cured product layer of a curable resin composition.
 本発明においては、85℃-85%湿度環境下に72時間放置した後の、偏光子に形成された非偏光部の寸法収縮率X1が1.0%以下となるように設計する点に特徴がある。かかる寸法収縮率X1を満たすように接着剤層を構成する材料は、後述する硬化性樹脂組成物のみであってもよく、硬化性樹脂組成物に易接着組成物を併用してもよい。 The present invention is characterized in that the dimensional shrinkage rate X1 of the non-polarizing portion formed in the polarizer is designed to be 1.0% or less after being left in an environment of 85° C. and 85% humidity for 72 hours. There is The material constituting the adhesive layer so as to satisfy the dimensional shrinkage ratio X1 may be only the curable resin composition described later, or the curable resin composition may be used in combination with an easily bonding composition.
 本発明の偏光フィルム10において、偏光子1の偏光部と透明保護フィルム3との間の接着剤層厚みは、2μm以下であることが好ましく、1.8μm以下であることが好ましい。なお、該接着剤層厚みの下限としては、接着性確保のため0.5μmであることが好ましい。 In the polarizing film 10 of the present invention, the thickness of the adhesive layer between the polarizing portion of the polarizer 1 and the transparent protective film 3 is preferably 2 µm or less, more preferably 1.8 µm or less. The lower limit of the thickness of the adhesive layer is preferably 0.5 μm in order to ensure adhesiveness.
 硬化性樹脂組成物は、ラジカル重合硬化性樹脂組成物とカチオン重合硬化性樹脂組成物に区分出来る。本発明において、波長範囲10nm~380nm未満の活性エネルギー線を紫外線、波長範囲380nm~800nmの活性エネルギー線を可視光線として表記する。 The curable resin composition can be classified into a radically polymerizable curable resin composition and a cationically polymerizable curable resin composition. In the present invention, active energy rays with a wavelength range of 10 nm to less than 380 nm are expressed as ultraviolet rays, and active energy rays with a wavelength range of 380 nm to 800 nm are expressed as visible rays.
 ラジカル重合硬化性樹脂組成物を構成する単量体成分としては、(メタ)アクリロイル基、ビニル基などの炭素-炭素二重結合のラジカル重合性の官能基を有する化合物が挙げられる。これら単量体成分は、単官能ラジカル重合性化合物または重合性官能基を2以上有する多官能ラジカル重合性化合物のいずれも用いることができる。また、これらラジカル重合性化合物は、1種を単独で、または2種以上を組み合わせて用いることができる。これらラジカル重合性化合物としては、例えば、(メタ)アクリロイル基を有する化合物が好適である。なお、本発明において、(メタ)アクリロイルとは、アクリロイル基および/またはメタクリロイル基を意味し、「(メタ)」は以下同様の意味である。 Examples of monomer components constituting the radically polymerizable curable resin composition include compounds having radically polymerizable functional groups of carbon-carbon double bonds such as (meth)acryloyl groups and vinyl groups. These monomer components can be either monofunctional radically polymerizable compounds or multifunctional radically polymerizable compounds having two or more polymerizable functional groups. Moreover, these radical polymerizable compounds can be used individually by 1 type or in combination of 2 or more types. As these radically polymerizable compounds, for example, compounds having a (meth)acryloyl group are suitable. In the present invention, (meth)acryloyl means an acryloyl group and/or a methacryloyl group, and "(meth)" has the same meaning below.
 単官能ラジカル重合性化合物としては、例えば、(メタ)アクリルアミド基を有する(メタ)アクリルアミド誘導体が挙げられる。(メタ)アクリルアミド誘導体は、偏光子や各種の透明保護フィルムとの接着性を確保するうえで、また、重合速度が速く生産性に優れる点で好ましい。(メタ)アクリルアミド誘導体の具体例としては、例えば、N-メチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N-ヘキシル(メタ)アクリルアミドなどのN-アルキル基含有(メタ)アクリルアミド誘導体;N-メチロール(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミド、N-メチロール-N-プロパン(メタ)アクリルアミドなどのN-ヒドロキシアルキル基含有(メタ)アクリルアミド誘導体;アミノメチル(メタ)アクリルアミド、アミノエチル(メタ)アクリルアミドなどのN-アミノアルキル基含有(メタ)アクリルアミド誘導体;N-メトキシメチルアクリルアミド、N-エトキシメチルアクリルアミドなどのN-アルコキシ基含有(メタ)アクリルアミド誘導体;メルカプトメチル(メタ)アクリルアミド、メルカプトエチル(メタ)アクリルアミドなどのN-メルカプトアルキル基含有(メタ)アクリルアミド誘導体;などが挙げられる。また、(メタ)アクリルアミド基の窒素原子が複素環を形成している複素環含有(メタ)アクリルアミド誘導体としては、例えば、N-アクリロイルモルホリン、N-アクリロイルピペリジン、N-メタクリロイルピペリジン、N-アクリロイルピロリジンなどがあげられる。 Examples of monofunctional radically polymerizable compounds include (meth)acrylamide derivatives having a (meth)acrylamide group. A (meth)acrylamide derivative is preferable in terms of ensuring adhesiveness to a polarizer and various transparent protective films, and in terms of high polymerization rate and excellent productivity. Specific examples of (meth)acrylamide derivatives include N-methyl(meth)acrylamide, N,N-dimethyl(meth)acrylamide, N,N-diethyl(meth)acrylamide, N-isopropyl(meth)acrylamide, N - N-alkyl group-containing (meth)acrylamide derivatives such as butyl (meth)acrylamide and N-hexyl (meth)acrylamide; N-methylol (meth)acrylamide, N-hydroxyethyl (meth)acrylamide, N-methylol-N- N-hydroxyalkyl group-containing (meth)acrylamide derivatives such as propane (meth)acrylamide; N-aminoalkyl group-containing (meth)acrylamide derivatives such as aminomethyl (meth)acrylamide and aminoethyl (meth)acrylamide; N-methoxymethyl N-alkoxy group-containing (meth)acrylamide derivatives such as acrylamide and N-ethoxymethylacrylamide; N-mercaptoalkyl group-containing (meth)acrylamide derivatives such as mercaptomethyl (meth)acrylamide and mercaptoethyl (meth)acrylamide; be done. Further, the heterocycle-containing (meth)acrylamide derivative in which the nitrogen atom of the (meth)acrylamide group forms a heterocycle includes, for example, N-acryloylmorpholine, N-acryloylpiperidine, N-methacryloylpiperidine, N-acryloylpyrrolidine etc.
 前記(メタ)アクリルアミド誘導体のなかでも、偏光子や各種の透明保護フィルムとの接着性の点から、N-ヒドロキシアルキル基含有(メタ)アクリルアミド誘導体が好ましく、また、単官能ラジカル重合性化合物としては、例えば、(メタ)アクリロイルオキシ基を有する各種の(メタ)アクリル酸誘導体が挙げられる。具体的には、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、2-メチル-2-ニトロプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、s-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、t-ペンチル(メタ)アクリレート、3-ペンチル(メタ)アクリレート、2,2-ジメチルブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、セチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、4-メチル-2-プロピルペンチル(メタ)アクリレート、n-オクタデシル(メタ)アクリレートなどの(メタ)アクリル酸(炭素数1-20)アルキルエステル類が挙げられる。 Among the (meth)acrylamide derivatives, N-hydroxyalkyl group-containing (meth)acrylamide derivatives are preferred from the viewpoint of adhesion to polarizers and various transparent protective films. , for example, various (meth)acrylic acid derivatives having a (meth)acryloyloxy group. Specifically, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, 2-methyl-2-nitropropyl (meth) acrylate, n-butyl ( meth) acrylate, isobutyl (meth) acrylate, s-butyl (meth) acrylate, t-butyl (meth) acrylate, n-pentyl (meth) acrylate, t-pentyl (meth) acrylate, 3-pentyl (meth) acrylate, 2,2-dimethylbutyl (meth)acrylate, n-hexyl (meth)acrylate, cetyl (meth)acrylate, n-octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, 4-methyl-2-propylpentyl ( Examples include (meth)acrylic acid (C1-20) alkyl esters such as meth)acrylate and n-octadecyl (meth)acrylate.
 また、前記(メタ)アクリル酸誘導体としては、例えば、シクロヘキシル(メタ)アクリレート、シクロペンチル(メタ)アクリレートなどのシクロアルキル(メタ)アクリレート;ベンジル(メタ)アクリレートなどのアラルキル(メタ)アクリレート;2-イソボルニル(メタ)アクリレート、2-ノルボルニルメチル(メタ)アクリレート、5-ノルボルネン-2-イル-メチル(メタ)アクリレート、3-メチル-2-ノルボルニルメチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレ-ト、ジシクロペンテニルオキシエチル(メタ)アクリレ-ト、ジシクロペンタニル(メタ)アクリレ-ト、などの多環式(メタ)アクリレート;2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-メトキシメトキシエチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、アルキルフェノキシポリエチレングリコール(メタ)アクリレートなどのアルコキシ基またはフェノキシ基含有(メタ)アクリレートなどが挙げられる。 Examples of the (meth)acrylic acid derivative include cycloalkyl (meth)acrylates such as cyclohexyl (meth)acrylate and cyclopentyl (meth)acrylate; aralkyl (meth)acrylates such as benzyl (meth)acrylate; 2-isobornyl (meth) acrylate, 2-norbornylmethyl (meth) acrylate, 5-norbornen-2-yl-methyl (meth) acrylate, 3-methyl-2-norbornylmethyl (meth) acrylate, dicyclopentenyl (meth) ) Polycyclic (meth)acrylates such as acrylate, dicyclopentenyloxyethyl (meth)acrylate, dicyclopentanyl (meth)acrylate; 2-methoxyethyl (meth)acrylate, 2-ethoxy Ethyl (meth) acrylate, 2-methoxymethoxyethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, ethyl carbitol (meth) acrylate, phenoxyethyl (meth) acrylate, alkylphenoxy polyethylene glycol (meth) acrylate, etc. Alkoxy group- or phenoxy group-containing (meth)acrylates and the like are included.
 また、前記(メタ)アクリル酸誘導体としては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、8-ヒドロキシオクチル(メタ)アクリレート、10-ヒドロキシデシル(メタ)アクリレート、12-ヒドロキシラウリル(メタ)アクリレートなどのヒドロキシアルキル(メタ)アクリレートや、[4-(ヒドロキシメチル)シクロヘキシル]メチルアクリレート、シクロヘキサンジメタノールモノ(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレートなどの水酸基含有(メタ)アクリレート;グリシジル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテルなどのエポキシ基含有(メタ)アクリレート;2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,2-トリフルオロエチルエチル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート、ヘキサフルオロプロピル(メタ)アクリレート、オクタフルオロペンチル(メタ)アクリレート、ヘプタデカフルオロデシル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレートなどのハロゲン含有(メタ)アクリレート;ジメチルアミノエチル(メタ)アクリレートなどのアルキルアミノアルキル(メタ)アクリレート;3-オキセタニルメチル(メタ)アクリレート、3-メチルーオキセタニルメチル(メタ)アクリレート、3-エチルーオキセタニルメチル(メタ)アクリレート、3-ブチルーオキセタニルメチル(メタ)アクリレート、3-ヘキシルーオキセタニルメチル(メタ)アクリレートなどのオキセタン基含有(メタ)アクリレート;テトラヒドロフルフリル(メタ)アクリレート、ブチロラクトン(メタ)アクリレート、などの複素環を有する(メタ)アクリレートや、ヒドロキシピバリン酸ネオペンチルグリコール(メタ)アクリル酸付加物、p-フェニルフェノール(メタ)アクリレートなどが挙げられる。 Further, the (meth)acrylic acid derivatives include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 4- Hydroxyalkyl (meth)acrylates such as hydroxybutyl (meth)acrylate, 6-hydroxyhexyl (meth)acrylate, 8-hydroxyoctyl (meth)acrylate, 10-hydroxydecyl (meth)acrylate and 12-hydroxylauryl (meth)acrylate and hydroxyl group-containing (meth)acrylates such as [4-(hydroxymethyl)cyclohexyl]methylacrylate, cyclohexanedimethanol mono(meth)acrylate, 2-hydroxy-3-phenoxypropyl (meth)acrylate; glycidyl (meth)acrylate, Epoxy group-containing (meth)acrylates such as 4-hydroxybutyl (meth)acrylate glycidyl ether; 2,2,2-trifluoroethyl (meth)acrylate, 2,2,2-trifluoroethylethyl (meth)acrylate, tetra Halogen-containing (meth)acrylates such as fluoropropyl (meth)acrylate, hexafluoropropyl (meth)acrylate, octafluoropentyl (meth)acrylate, heptadecafluorodecyl (meth)acrylate, 3-chloro-2-hydroxypropyl (meth)acrylate, etc. ) acrylates; alkylaminoalkyl (meth)acrylates such as dimethylaminoethyl (meth)acrylate; 3-oxetanylmethyl (meth)acrylate, 3-methyl-oxetanylmethyl (meth)acrylate, 3-ethyl-oxetanylmethyl (meth)acrylate , 3-Butyl-oxetanylmethyl (meth)acrylate, 3-hexyloxetanylmethyl (meth)acrylate, and other oxetane group-containing (meth)acrylates; Tetrahydrofurfuryl (meth)acrylate, butyrolactone (meth)acrylate, and other heterocycles and (meth) acrylates, hydroxypivalic acid neopentyl glycol (meth) acrylic acid adducts, p-phenylphenol (meth) acrylate and the like.
 また、単官能ラジカル重合性化合物としては、(メタ)アクリル酸、カルボキシエチルアクリレート、カルボキシペンチルアクリレート、イタコン酸、マレイン酸、フマル酸、クロトン酸、イソクロトン酸などのカルボキシル基含有モノマーが挙げられる。 Also, examples of monofunctional radically polymerizable compounds include carboxyl group-containing monomers such as (meth)acrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, crotonic acid, and isocrotonic acid.
 また、単官能ラジカル重合性化合物としては、例えば、N-ビニルピロリドン、N-ビニル-ε-カプロラクタム、メチルビニルピロリドンなどのラクタム系ビニルモノマー;ビニルピリジン、ビニルピペリドン、ビニルピリミジン、ビニルピペラジン、ビニルピラジン、ビニルピロール、ビニルイミダゾール、ビニルオキサゾール、ビニルモルホリンなどの窒素含有複素環を有するビニル系モノマーなどが挙げられる。 Examples of monofunctional radically polymerizable compounds include lactam vinyl monomers such as N-vinylpyrrolidone, N-vinyl-ε-caprolactam, and methylvinylpyrrolidone; vinylpyridine, vinylpiperidone, vinylpyrimidine, vinylpiperazine, vinylpyrazine, Vinyl-based monomers having a nitrogen-containing heterocyclic ring such as vinylpyrrole, vinylimidazole, vinyloxazole, and vinylmorpholine are included.
 また、単官能ラジカル重合性化合物としては、活性メチレン基を有するラジカル重合性化合物を用いることができる。活性メチレン基を有するラジカル重合性化合物は、末端または分子中に(メタ)アクリル基などの活性二重結合基を有し、かつ活性メチレン基を有する化合物である。活性メチレン基としては、例えばアセトアセチル基、アルコキシマロニル基、またはシアノアセチル基などが挙げられる。前記活性メチレン基がアセトアセチル基であることが好ましい。活性メチレン基を有するラジカル重合性化合物の具体例としては、例えば2-アセトアセトキシエチル(メタ)アクリレート、2-アセトアセトキシプロピル(メタ)アクリレート、2-アセトアセトキシ-1-メチルエチル(メタ)アクリレートなどのアセトアセトキシアルキル(メタ)アクリレート;2-エトキシマロニルオキシエチル(メタ)アクリレート、2-シアノアセトキシエチル(メタ)アクリレート、N-(2-シアノアセトキシエチル)アクリルアミド、N-(2-プロピオニルアセトキシブチル)アクリルアミド、N-(4-アセトアセトキシメチルベンジル)アクリルアミド、N-(2-アセトアセチルアミノエチル)アクリルアミドなどが挙げられる。活性メチレン基を有するラジカル重合性化合物は、アセトアセトキシアルキル(メタ)アクリレートであることが好ましい。 Also, as the monofunctional radically polymerizable compound, a radically polymerizable compound having an active methylene group can be used. A radically polymerizable compound having an active methylene group is a compound having an active double bond group such as a (meth)acrylic group at the end or in the molecule and an active methylene group. Active methylene groups include, for example, an acetoacetyl group, an alkoxymalonyl group, a cyanoacetyl group, and the like. Preferably, the active methylene group is an acetoacetyl group. Specific examples of radically polymerizable compounds having an active methylene group include 2-acetoacetoxyethyl (meth)acrylate, 2-acetoacetoxypropyl (meth)acrylate, 2-acetoacetoxy-1-methylethyl (meth)acrylate, and the like. 2-ethoxymalonyloxyethyl (meth)acrylate, 2-cyanoacetoxyethyl (meth)acrylate, N-(2-cyanoacetoxyethyl)acrylamide, N-(2-propionylacetoxybutyl) acrylamide, N-(4-acetoacetoxymethylbenzyl)acrylamide, N-(2-acetoacetylaminoethyl)acrylamide and the like. The radically polymerizable compound having an active methylene group is preferably acetoacetoxyalkyl (meth)acrylate.
 また、重合性官能基を2以上有する多官能ラジカル重合性化合物としては、例えば、トリプロピレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジアクリレート、2-エチル-2-ブチルプロパンジオールジ(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、ビスフェノールAエチレンオキサイド付加物ジ(メタ)アクリレート、ビスフェノールAプロピレンオキサイド付加物ジ(メタ)アクリレート、ビスフェノールAジグリシジルエーテルジ(メタ)アクリレート、ネオぺンチルグリコールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリート、環状トリメチロールプロパンフォルマル(メタ)アクリレート、ジオキサングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、EO変性ジグリセリンテトラ(メタ)アクリレートなどの(メタ)アクリル酸と多価アルコールとのエステル化物、9,9-ビス[4-(2-(メタ)アクリロイルオキシエトキシ)フェニル]フルオレンがあげられる。具体例としては、アロニックスM-220(東亞合成社製)、ライトアクリレート1,9ND-A(共栄社化学社製)、ライトアクリレートDGE-4A(共栄社化学社製)、ライトアクリレートDCP-A(共栄社化学社製)、SR-531(Sartomer社製)、CD-536(Sartomer社製)などが挙げられる。また必要に応じて、各種のエポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレートや、各種の(メタ)アクリレート系モノマーなどが挙げられる。 Examples of polyfunctional radically polymerizable compounds having two or more polymerizable functional groups include tripropylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, and 1,6-hexanediol di(meth)acrylate. , 1,9-nonanediol di(meth)acrylate, 1,10-decanediol diacrylate, 2-ethyl-2-butylpropanediol di(meth)acrylate, bisphenol A di(meth)acrylate, bisphenol A ethylene oxide addition di(meth)acrylate, bisphenol A propylene oxide adduct di(meth)acrylate, bisphenol A diglycidyl ether di(meth)acrylate, neopentyl glycol di(meth)acrylate, tricyclodecanedimethanol di(meth) Acrylates, cyclic trimethylolpropane formal (meth)acrylate, dioxane glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol penta (Meth)acrylates, dipentaerythritol hexa(meth)acrylate, esters of (meth)acrylic acid and polyhydric alcohols such as EO-modified diglycerol tetra(meth)acrylate, 9,9-bis[4-(2-) (Meth)acryloyloxyethoxy)phenyl]fluorene. Specific examples include Aronix M-220 (manufactured by Toagosei Co., Ltd.), light acrylate 1,9ND-A (manufactured by Kyoeisha Chemical Co., Ltd.), light acrylate DGE-4A (manufactured by Kyoeisha Chemical Co., Ltd.), light acrylate DCP-A (Kyoeisha Chemical Co., Ltd.) (manufactured by Sartomer), SR-531 (manufactured by Sartomer), CD-536 (manufactured by Sartomer), and the like. Various epoxy (meth)acrylates, urethane (meth)acrylates, polyester (meth)acrylates, various (meth)acrylate monomers, and the like can also be used as necessary.
 本発明において硬化性樹脂組成物中には、ラジカル重合性化合物の他に、(メタ)アクリルモノマーを重合してなるアクリル系オリゴマーを含有することができる。接着剤組成物中にアクリル系オリゴマーを含有することで、該組成物に活性エネルギー線を照射・硬化させる際の硬化収縮を低減し、接着剤層と、偏光子および光学フィルムなどの被着体との界面応力を低減することができる。その結果、接着剤層と被着体との接着性の低下を抑制することができる。 In the present invention, the curable resin composition may contain an acrylic oligomer obtained by polymerizing a (meth)acrylic monomer in addition to the radically polymerizable compound. By containing an acrylic oligomer in the adhesive composition, curing shrinkage when the composition is irradiated with an active energy ray and cured is reduced, and the adhesive layer and the adherend such as a polarizer and an optical film It is possible to reduce the interfacial stress with As a result, deterioration in adhesion between the adhesive layer and the adherend can be suppressed.
 硬化性樹脂組成物は、塗工時の作業性や均一性を考慮した場合、低粘度であることが好ましいため、(メタ)アクリルモノマーを重合してなるアクリル系オリゴマーも低粘度であることが好ましい。低粘度であって、かつ接着剤層の硬化収縮を防止できるアクリル系オリゴマーとしては、重量平均分子量(Mw)が15000以下のものが好ましく、10000以下のものがより好ましく、5000以下のものが特に好ましい。一方、硬化物層(接着剤層)の硬化収縮を十分に抑制するためには、アクリル系オリゴマーの重量平均分子量(Mw)が500以上であることが好ましく、1000以上であることがより好ましく、1500以上であることが特に好ましい。アクリル系オリゴマーを構成する(メタ)アクリルモノマーとしては、具体的には例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、2-メチル-2-ニトロプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、S-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、t-ペンチル(メタ)アクリレート、3-ペンチル(メタ)アクリレート、2,2-ジメチルブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、セチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、4-メチル-2-プロピルペンチル(メタ)アクリレート、N-オクタデシル(メタ)アクリレートなどの(メタ)アクリル酸(炭素数1-20)アルキルエステル類、さらに、例えば、シクロアルキル(メタ)アクリレート(例えば、シクロヘキシル(メタ)アクリレート、シクロペンチル(メタ)アクリレートなど)、アラルキル(メタ)アクリレート(例えば、ベンジル(メタ)アクリレートなど)、多環式(メタ)アクリレート(例えば、2-イソボルニル(メタ)アクリレート、2-ノルボルニルメチル(メタ)アクリレート、5-ノルボルネン-2-イル-メチル(メタ)アクリレート、3-メチル-2-ノルボルニルメチル(メタ)アクリレートなど)、ヒドロキシル基含有(メタ)アクリル酸エステル類(例えば、ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2,3-ジヒドロキシプロピルメチル-ブチル(メタ)メタクリレートなど)、アルコキシ基またはフェノキシ基含有(メタ)アクリル酸エステル類(2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-メトキシメトキシエチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、フェノキシエチル(メタ)アクリレートなど)、エポキシ基含有(メタ)アクリル酸エステル類(例えば、グリシジル(メタ)アクリレートなど)、ハロゲン含有(メタ)アクリル酸エステル類(例えば、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,2-トリフルオロエチルエチル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート、ヘキサフルオロプロピル(メタ)アクリレート、オクタフルオロペンチル(メタ)アクリレート、ヘプタデカフルオロデシル(メタ)アクリレートなど)、アルキルアミノアルキル(メタ)アクリレート(例えば、ジメチルアミノエチル(メタ)アクリレートなど)などが挙げられる。これら(メタ)アクリレートは、単独使用または2種類以上併用することができる。アクリル系オリゴマー(E)の具体例としては、東亞合成社製「ARUFON」、綜研化学社製「アクトフロー」、BASFジャパン社製「JONCRYL」などが挙げられる。 Since the curable resin composition preferably has a low viscosity in consideration of workability and uniformity during coating, an acrylic oligomer obtained by polymerizing a (meth)acrylic monomer should also have a low viscosity. preferable. The acrylic oligomer which has a low viscosity and can prevent curing shrinkage of the adhesive layer preferably has a weight-average molecular weight (Mw) of 15,000 or less, more preferably 10,000 or less, and particularly 5,000 or less. preferable. On the other hand, in order to sufficiently suppress curing shrinkage of the cured product layer (adhesive layer), the weight average molecular weight (Mw) of the acrylic oligomer is preferably 500 or more, more preferably 1000 or more. 1500 or more is particularly preferable. Specific examples of the (meth)acrylic monomer constituting the acrylic oligomer include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, 2-methyl- 2-nitropropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, S-butyl (meth)acrylate, t-butyl (meth)acrylate, n-pentyl (meth)acrylate, t-pentyl (meth) acrylate, 3-pentyl (meth) acrylate, 2,2-dimethylbutyl (meth) acrylate, n-hexyl (meth) acrylate, cetyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl ( (Meth)acrylic acid (C1-20) alkyl esters such as meth)acrylate, 4-methyl-2-propylpentyl (meth)acrylate, N-octadecyl (meth)acrylate, and further, for example, cycloalkyl (meth) ) acrylates (e.g., cyclohexyl (meth) acrylate, cyclopentyl (meth) acrylate, etc.), aralkyl (meth) acrylates (e.g., benzyl (meth) acrylate, etc.), polycyclic (meth) acrylates (e.g., 2-isobornyl (meth) ) acrylate, 2-norbornylmethyl (meth)acrylate, 5-norbornen-2-yl-methyl (meth)acrylate, 3-methyl-2-norbornylmethyl (meth)acrylate, etc.), hydroxyl group-containing (meth) ) Acrylic esters (e.g., hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2,3-dihydroxypropylmethyl-butyl (meth)methacrylate, etc.), alkoxy group- or phenoxy group-containing (meth)acryl Acid esters (2-methoxyethyl (meth)acrylate, 2-ethoxyethyl (meth)acrylate, 2-methoxymethoxyethyl (meth)acrylate, 3-methoxybutyl (meth)acrylate, ethyl carbitol (meth)acrylate, phenoxy ethyl (meth)acrylate, etc.), epoxy group-containing (meth)acrylic acid esters (e.g., glycidyl (meth)acrylate, etc.), halogen-containing (meth)acrylic acid esters (e.g., 2,2,2-trifluoroethyl (meth)acrylate, 2,2,2- trifluoroethylethyl (meth)acrylate, tetrafluoropropyl (meth)acrylate, hexafluoropropyl (meth)acrylate, octafluoropentyl (meth)acrylate, heptadecafluorodecyl (meth)acrylate, etc.), alkylaminoalkyl (meth)acrylate acrylates (eg, dimethylaminoethyl (meth)acrylate, etc.), and the like. These (meth)acrylates can be used alone or in combination of two or more. Specific examples of the acrylic oligomer (E) include "ARUFON" manufactured by Toagosei Co., Ltd., "ACT FLOW" manufactured by Soken Chemical Co., Ltd., and "JONCRYL" manufactured by BASF Japan.
 アクリル系オリゴマーの配合量は、硬化性樹脂組成物中の単量体成分の全量100重量部に対して、通常、15重量部以下であることが好ましい。組成物中のアクリル系オリゴマーの含有量が多すぎると、該組成物に活性エネルギー線を照射した際の反応速度の低下が激しく、硬化不良となる場合がある。一方、接着剤層の硬化収縮を十分に抑制するためには、組成物中、アクリル系オリゴマーを3重量部以上含有することが好ましい。 The amount of the acrylic oligomer compounded is usually preferably 15 parts by weight or less with respect to 100 parts by weight of the total amount of the monomer components in the curable resin composition. If the content of the acrylic oligomer in the composition is too high, the reaction rate when the composition is irradiated with an active energy ray will decrease significantly, resulting in poor curing in some cases. On the other hand, in order to sufficiently suppress curing shrinkage of the adhesive layer, the composition preferably contains 3 parts by weight or more of the acrylic oligomer.
 硬化性樹脂組成物は、光重合性開始剤を含有することが好ましい。光重合開始剤は、活性エネルギー線によって適宜に選択される。紫外線または可視光線により硬化させる場合には紫外線または可視光線開裂の光重合開始剤が用いられる。前記光重合開始剤としては、例えば、ベンジル、ベンゾフェノン、ベンゾイル安息香酸、3,3’-ジメチル-4-メトキシベンゾフェノンなどのベンゾフェノン系化合物;4-(2-ヒドロキシエトキシ)フェニル(2-ヒドロキシ-2-プロピル)ケトン、α-ヒドロキシ-α,α’-ジメチルアセトフェノン、2-メチル-2-ヒドロキシプロピオフェノン、α-ヒドロキシシクロヘキシルフェニルケトンなどの芳香族ケトン化合物;メトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフエノン、2,2-ジエトキシアセトフェノン、2-メチル-1-[4-(メチルチオ)-フェニル]-2-モルホリノプロパン-1などのアセトフェノン系化合物;べンゾインメチルエーテル、べンゾインエチルエーテル、ベンゾインイソプロピルエーテル、べンゾインブチルエーテル、アニソインメチルエーテルなどのベンゾインエーテル系化合物;ベンジルジメチルケタールなどの芳香族ケタール系化合物;2-ナフタレンスルホニルクロリドなどの芳香族スルホニルクロリド系化合物;1-フェノン-1,1-プロパンジオン-2-(o-エトキシカルボニル)オキシムなどの光活性オキシム系化合物;チオキサンソン、2-クロロチオキサンソン、2-メチルチオキサンソン、2,4-ジメチルチオキサンソン、イソプロピルチオキサンソン、2,4-ジクロロチオキサンソン、2,4-ジエチルチオキサンソン、2,4-ジイソプロピルチオキサンソン、ドデシルチオキサントンなどのチオキサンソン系化合物;カンファーキノン;ハロゲン化ケトン;アシルホスフィノキシド;アシルホスフォナートなどがあげられる。 The curable resin composition preferably contains a photopolymerization initiator. A photopolymerization initiator is appropriately selected depending on the active energy ray. When curing with ultraviolet light or visible light, a photopolymerization initiator that is cleaved with ultraviolet light or visible light is used. Examples of the photopolymerization initiator include benzophenone compounds such as benzyl, benzophenone, benzoylbenzoic acid, and 3,3′-dimethyl-4-methoxybenzophenone; 4-(2-hydroxyethoxy)phenyl(2-hydroxy-2 -propyl)ketone, α-hydroxy-α,α'-dimethylacetophenone, 2-methyl-2-hydroxypropiophenone, α-hydroxycyclohexylphenylketone and other aromatic ketone compounds; methoxyacetophenone, 2,2-dimethoxy- Acetophenone compounds such as 2-phenylacetophenone, 2,2-diethoxyacetophenone, 2-methyl-1-[4-(methylthio)-phenyl]-2-morpholinopropane-1; benzoin methyl ether, Benzoin ether compounds such as benzoin ethyl ether, benzoin isopropyl ether, benzoin butyl ether, and anisoin methyl ether; aromatic ketal compounds such as benzyl dimethyl ketal; aromatic sulfonyl chlorides such as 2-naphthalenesulfonyl chloride Photoactive oxime compounds such as 1-phenone-1,1-propanedione-2-(o-ethoxycarbonyl) oxime; thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2,4- Thioxanthone compounds such as dimethylthioxanthone, isopropylthioxanthone, 2,4-dichlorothioxanthone, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone, dodecylthioxanthone; camphorquinone; halogenated ketone; acylphosphinoxide; acylphosphonate, and the like.
 前記光重合開始剤の配合量は、重合性化合物Aの全量100重量部に対して、20重量部以下である。光重合開始剤の配合量は、0.01~20重量部であるのが好ましく、さらには、0.05~10重量部、さらには0.1~5重量部であるのが好ましい。 The blending amount of the photopolymerization initiator is 20 parts by weight or less with respect to 100 parts by weight of the total amount of the polymerizable compound A. The blending amount of the photopolymerization initiator is preferably 0.01 to 20 parts by weight, more preferably 0.05 to 10 parts by weight, further preferably 0.1 to 5 parts by weight.
 また硬化性樹脂組成物を可視光線硬化型で用いる場合には、特に380nm以上の光に対して高感度な光重合開始剤を用いることが好ましい。380nm以上の光に対して高感度な光重合開始剤については後述する。 In addition, when the curable resin composition is used as a visible light-curable type, it is preferable to use a photopolymerization initiator that is particularly sensitive to light of 380 nm or more. A photopolymerization initiator highly sensitive to light of 380 nm or more will be described later.
 前記光重合開始剤としては、下記一般式(1)で表される化合物;
Figure JPOXMLDOC01-appb-C000001
(式中、RおよびRは-H、-CHCH、-iPrまたはClを示し、RおよびRは同一または異なっても良い)を単独で使用するか、あるいは一般式(1)で表される化合物と後述する380nm以上の光に対して高感度な光重合開始剤とを併用することが好ましい。一般式(1)で表される化合物を使用した場合、380nm以上の光に対して高感度な光重合開始剤を単独で使用した場合に比べて接着性に優れる。一般式(1)で表される化合物の中でも、RおよびRが-CHCHであるジエチルチオキサントンが特に好ましい。硬化性樹脂組成物中の一般式(1)で表される化合物の組成比率は、硬化性樹脂組成物の全量に対して、0.1~5重量%であることが好ましく、0.5~4重量%であることがより好ましく、0.9~3重量%であることがさらに好ましい。
As the photopolymerization initiator, a compound represented by the following general formula (1);
Figure JPOXMLDOC01-appb-C000001
(wherein R 1 and R 2 represent —H, —CH 2 CH 3 , —iPr or Cl, and R 1 and R 2 may be the same or different), or the general formula ( It is preferable to use the compound represented by 1) together with a photopolymerization initiator highly sensitive to light of 380 nm or longer, which will be described later. When the compound represented by the general formula (1) is used, the adhesiveness is superior to that when a photopolymerization initiator highly sensitive to light of 380 nm or more is used alone. Among the compounds represented by general formula (1), diethylthioxanthone in which R 1 and R 2 are —CH 2 CH 3 is particularly preferred. The composition ratio of the compound represented by general formula (1) in the curable resin composition is preferably 0.1 to 5% by weight, preferably 0.5 to 5% by weight, based on the total amount of the curable resin composition. It is more preferably 4% by weight, and even more preferably 0.9 to 3% by weight.
 また、必要に応じて重合開始助剤を添加することが好ましい。重合開始助剤としては、トリエチルアミン、ジエチルアミン、N-メチルジエタノールアミン、エタノールアミン、4-ジメチルアミノ安息香酸、4-ジメチルアミノ安息香酸メチル、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸イソアミルなどが挙げられ、4-ジメチルアミノ安息香酸エチルが特に好ましい。重合開始助剤を使用する場合、その添加量は、硬化性樹脂組成物の全量に対して、通常0~5重量%、好ましくは0~4重量%、最も好ましくは0~3重量%である。 In addition, it is preferable to add a polymerization initiation aid as necessary. Examples of polymerization initiation aids include triethylamine, diethylamine, N-methyldiethanolamine, ethanolamine, 4-dimethylaminobenzoic acid, methyl 4-dimethylaminobenzoate, ethyl 4-dimethylaminobenzoate, and isoamyl 4-dimethylaminobenzoate. and ethyl 4-dimethylaminobenzoate is particularly preferred. When a polymerization initiation aid is used, the amount added is usually 0 to 5% by weight, preferably 0 to 4% by weight, most preferably 0 to 3% by weight, based on the total amount of the curable resin composition. .
 また、必要に応じて公知の光重合開始剤を併用することができる。UV吸収能を有する透明保護フィルムは、380nm以下の光を透過しないため、光重合開始剤としては、380nm以上の光に対して高感度な光重合開始剤を使用することが好ましい。具体的には、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウムなどが挙げられる。 In addition, a known photopolymerization initiator can be used together as needed. Since the transparent protective film having UV absorbability does not transmit light of 380 nm or less, it is preferable to use a photopolymerization initiator that is highly sensitive to light of 380 nm or more. Specifically, 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1 , 2-(dimethylamino)-2-[(4-methylphenyl)methyl]-1-[4-(4-morpholinyl)phenyl]-1-butanone, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, bis(η5-2,4-cyclopentadien-1-yl)-bis(2,6-difluoro-3-(1H-pyrrole- 1-yl)-phenyl) titanium and the like.
 硬化性樹脂組成物は、シランカップリング剤を含有することが好ましい。シランカップリング剤の具体例としては、活性エネルギー線硬化性の化合物としてビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシランなどが挙げられる。 The curable resin composition preferably contains a silane coupling agent. Specific examples of the silane coupling agent include vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, 2-(3,4 epoxycyclohexyl)ethyltrimethoxysilane, and 3-glycide as active energy ray-curable compounds. xypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane silane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, and the like.
 好ましくは、2-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシランである。  Preferred are 2-(3,4 epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 3-glycidoxypropyltriethoxysilane.
 シランカップリング剤の配合量は、接着剤組成物の全量に対して、0.01~20質量%の範囲が好ましく、0.05~15質量%であることが好ましく、0.1~10質量%であることがさらに好ましい。20質量%を超える配合量の場合、接着剤組成物の保存安定性が悪化し、また0.1質量%未満の場合は接着耐水性の効果が十分発揮されないためである。 The amount of the silane coupling agent is preferably in the range of 0.01 to 20% by mass, preferably 0.05 to 15% by mass, and 0.1 to 10% by mass with respect to the total amount of the adhesive composition. % is more preferred. This is because if the amount exceeds 20% by mass, the storage stability of the adhesive composition deteriorates, and if the amount is less than 0.1% by mass, the effect of adhesive water resistance is not sufficiently exhibited.
 上記以外の活性エネルギー線硬化性ではないシランカップリング剤の具体例としては、3-ウレイドプロピルトリエトキシシラン、3-クロロプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3-イソシアネートプロピルトリエトキシシラン、イミダゾールシランなどが挙げられる。 Specific examples of non-active energy ray-curable silane coupling agents other than the above include 3-ureidopropyltriethoxysilane, 3-chloropropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, and 3-mercaptopropyltrimethoxysilane. silane, bis(triethoxysilylpropyl)tetrasulfide, 3-isocyanatopropyltriethoxysilane, imidazolesilane, and the like.
 硬化性樹脂組成物は、必要に応じて、さらに下記一般式(3)に記載の化合物; The curable resin composition, if necessary, further contains a compound according to the following general formula (3);
Figure JPOXMLDOC01-appb-C000002
(ただし、Xは反応性基を含む官能基であり、RおよびRはそれぞれ独立に、水素原子、置換基を有してもよい、脂肪族炭化水素基、アリール基、またはヘテロ環基を表す)、好ましくは前記一般式(3’)に記載の化合物;
Figure JPOXMLDOC01-appb-C000002
(where X is a functional group containing a reactive group, R 6 and R 7 are each independently a hydrogen atom, an optionally substituted aliphatic hydrocarbon group, an aryl group, or a heterocyclic group represents), preferably a compound according to the general formula (3′);
Figure JPOXMLDOC01-appb-C000003
(ただし、Yは有機基であり、X’はXが含む反応性基であり、RおよびRは前記と同じ)、さらに好ましくは後述する一般式(3a)~(3d)に記載の化合物;
Figure JPOXMLDOC01-appb-C000003
(where Y is an organic group, X' is a reactive group contained in X, and R 6 and R 7 are the same as described above), more preferably the following general formulas (3a) to (3d) Compound;
Figure JPOXMLDOC01-appb-C000004
を接着剤組成物に配合することができる。接着剤組成物中にこれらの化合物を配合した場合、偏光子や透明保護フィルムとの接着性が向上することがあるため好ましい。偏光子と透明保護フィルムとの接着性および耐水性向上の見地から、硬化性水分散性組成物中、前記一般式(3)に記載の化合物の含有量は、0.001~50質量%であることが好ましく、0.1~30質量%であることがより好ましく、1~10質量%であることが最も好ましい。
Figure JPOXMLDOC01-appb-C000004
can be incorporated into the adhesive composition. When these compounds are blended in the adhesive composition, the adhesiveness to the polarizer and the transparent protective film may be improved, which is preferable. From the viewpoint of improving the adhesiveness and water resistance between the polarizer and the transparent protective film, the content of the compound represented by the general formula (3) in the curable water-dispersible composition is 0.001 to 50% by mass. preferably 0.1 to 30% by mass, most preferably 1 to 10% by mass.
 前記一般式(3)中、前記脂肪族炭化水素基としては、炭素数1~20の置換基を有してもよい直鎖または分岐のアルキル基、炭素数3~20の置換基を有してもよい環状アルキル基、炭素数2~20のアルケニル基が挙げられ、アリール基としては、炭素数6~20の置換基を有してもよいフェニル基、炭素数10~20の置換基を有してもよいナフチル基などが挙げられ、ヘテロ環基としては例えば、少なくとも一つのヘテロ原子を含む、置換基を有してもよい5員環または6員環の基が挙げられる。これらは互いに連結して環を形成してもよい。一般式(3)中、RおよびRとして好ましくは、水素原子、炭素数1~3の直鎖または分岐のアルキル基であり、最も好ましくは、水素原子である。 In the general formula (3), the aliphatic hydrocarbon group is a linear or branched alkyl group which may have a substituent having 1 to 20 carbon atoms, and a substituent having 3 to 20 carbon atoms. cyclic alkyl groups which may be substituted, and alkenyl groups having 2 to 20 carbon atoms. optionally substituted naphthyl groups and the like, and examples of heterocyclic groups include 5- or 6-membered ring groups containing at least one heteroatom and optionally having substituents. These may be linked together to form a ring. In general formula (3), R 6 and R 7 are preferably a hydrogen atom or a linear or branched alkyl group having 1 to 3 carbon atoms, most preferably a hydrogen atom.
 一般式(3)で表される化合物が有するXは反応性基を含む官能基であって、接着剤層を構成する硬化性成分と反応し得る官能基であり、Xが含む反応性基としては、例えば、ヒドロキシル基、アミノ基、アルデヒド基、カルボキシル基、ビニル基、(メタ)アクリル基、スチリル基、(メタ)アクリルアミド基、ビニルエーテル基、エポキシ基、オキセタン基、α,β-不飽和カルボニル基、メルカプト基、ハロゲン基などが挙げられる。接着剤層を構成する硬化性樹脂組成物が活性エネルギー線硬化性である場合、Xが含む反応性基は、ビニル基、(メタ)アクリル基、スチリル基、(メタ)アクリルアミド基、ビニルエーテル基、エポキシ基、オキセタン基およびメルカプト基からなる群より選択される少なくとも1種の反応性基であることが好ましく、特に接着剤層を構成する接着剤組成物がラジカル重合性である場合、Xが含む反応性基は、(メタ)アクリル基、スチリル基および(メタ)アクリルアミド基からなる群より選択される少なくとも1種の反応性基であることが好ましく、一般式(1)で表される化合物が(メタ)アクリルアミド基を有する場合、反応性が高く、活性エネルギー線硬化性樹脂組成物との共重合率が高まるためより好ましい。また、(メタ)アクリルアミド基の極性が高く、接着性に優れるため本発明の効果を効率的に得られるという点からも好ましい。接着剤層を構成する硬化性樹脂組成物がカチオン重合性である場合、Xが含む反応性基は、ヒドロキシル基、アミノ基、アルデヒド、カルボキシル基、ビニルエーテル基、エポキシ基、オキセタン基、メルカプト基から選ばれる少なくとも1つの官能基を有することが好ましく、特にエポキシ基を有する場合、得られる硬化性樹脂層と被着体との密着性に優れるため好ましく、ビニルエーテル基を有する場合、硬化性樹脂組成物の硬化性が優れるため好ましい。 X possessed by the compound represented by the general formula (3) is a functional group containing a reactive group, which is a functional group capable of reacting with the curable component constituting the adhesive layer, and the reactive group contained in X is is, for example, hydroxyl group, amino group, aldehyde group, carboxyl group, vinyl group, (meth)acryl group, styryl group, (meth)acrylamide group, vinyl ether group, epoxy group, oxetane group, α,β-unsaturated carbonyl groups, mercapto groups, halogen groups, and the like. When the curable resin composition constituting the adhesive layer is active energy ray-curable, the reactive group contained in X is a vinyl group, a (meth)acryl group, a styryl group, a (meth)acrylamide group, a vinyl ether group, X is preferably at least one reactive group selected from the group consisting of an epoxy group, an oxetane group and a mercapto group, especially when the adhesive composition constituting the adhesive layer is radically polymerizable. The reactive group is preferably at least one reactive group selected from the group consisting of a (meth)acryl group, a styryl group and a (meth)acrylamide group, and the compound represented by the general formula (1) is When having a (meth)acrylamide group, the reactivity is high and the copolymerization rate with the active energy ray-curable resin composition is increased, which is more preferable. In addition, the (meth)acrylamide group has a high polarity and is excellent in adhesiveness, so that the effect of the present invention can be efficiently obtained. When the curable resin composition that constitutes the adhesive layer is cationic polymerizable, the reactive group contained in X is a hydroxyl group, an amino group, an aldehyde, a carboxyl group, a vinyl ether group, an epoxy group, an oxetane group, or a mercapto group. It is preferable to have at least one selected functional group, especially when it has an epoxy group, it is preferable for excellent adhesion between the resulting curable resin layer and the adherend, and when it has a vinyl ether group, the curable resin composition is preferred because of its excellent curability.
 本発明においては、一般式(3)で表される化合物が、反応性基とホウ素原子とが直接結合するものであっても良いが、前記具体例で示したように、一般式(3)で表される化合物が、反応性基とホウ素原子とが、有機基を介して結合したものであること、つまり、一般式(3’)で表される化合物であることが好ましい。一般式(3)で表される化合物が、例えばホウ素原子に結合した酸素原子を介して反応性基と結合したものである場合、偏光フィルムの接着耐水性が悪化する傾向がある。一方、一般式(3)で表される化合物が、ホウ素-酸素結合を有するものではなく、ホウ素原子と有機基とが結合することにより、ホウ素-炭素結合を有しつつ、反応性基を含むものである場合(一般式(3’)である場合)、偏光フィルムの接着耐水性が向上するため好ましい。前記有機基とは、具体的には、置換基を有してもよい、炭素数1~20の有機基を意味し、より具体的には例えば、炭素数1~20の置換基を有してもよい直鎖または分岐のアルキレン基、炭素数3~20の置換基を有してもよい環状アルキレン基、炭素数6~20の置換基を有してもよいフェニレン基、炭素数10~20の置換基を有してもよいナフチレン基などが挙げられる。 In the present invention, the compound represented by the general formula (3) may be one in which the reactive group and the boron atom are directly bonded. The compound represented by is preferably one in which a reactive group and a boron atom are bonded via an organic group, that is, a compound represented by general formula (3′). For example, when the compound represented by the general formula (3) is bonded to a reactive group via an oxygen atom bonded to a boron atom, the adhesive water resistance of the polarizing film tends to deteriorate. On the other hand, the compound represented by the general formula (3) does not have a boron-oxygen bond, but has a boron-carbon bond and contains a reactive group by bonding a boron atom and an organic group. When it is a compound (when represented by general formula (3′)), it is preferable because the adhesive water resistance of the polarizing film is improved. The organic group specifically means an organic group having 1 to 20 carbon atoms which may have a substituent, and more specifically, for example, having a substituent having 1 to 20 carbon atoms. A linear or branched alkylene group which may be optionally substituted, a cyclic alkylene group which may have a substituent of 3 to 20 carbon atoms, a phenylene group which may have a substituent of 6 to 20 carbon atoms, a phenylene group which may have a substituent of 10 to 10 carbon atoms. A naphthylene group which may have 20 substituents may be mentioned.
 一般式(3)で表される化合物としては、前記例示した化合物以外にも、ヒドロキシエチルアクリルアミドとホウ酸のエステル、メチロールアクリルアミドとホウ酸のエステル、ヒドロキシエチルアクリレートとホウ酸のエステル、およびヒドロキシブチルアクリレートとホウ酸のエステルなど、(メタ)アクリレートとホウ酸とのエステルを例示可能である。 As the compound represented by the general formula (3), in addition to the compounds exemplified above, esters of hydroxyethylacrylamide and boric acid, esters of methylolacrylamide and boric acid, esters of hydroxyethyl acrylate and boric acid, and hydroxybutyl Esters of (meth)acrylates and boric acid can be exemplified, such as esters of acrylate and boric acid.
 カチオン重合硬化性樹脂組成物に使用されるカチオン重合性化合物としては、分子内にカチオン重合性官能基を1つ有する単官能カチオン重合性化合物と、分子内にカチオン重合性官能基を2つ以上有する多官能カチオン重合性化合物とに分類される。単官能カチオン重合性化合物は比較的液粘度が低いため、カチオン重合硬化性樹脂組成物に含有させることで液粘度を低下させることができる。また、単官能カチオン重合性化合物は各種機能を発現させる官能基を有している場合が多く、カチオン重合硬化性樹脂組成物に含有させることで、カチオン重合硬化性樹脂組成物及び/又はカチオン重合硬化性樹脂組成物の硬化物に各種機能を発現させることができる。多官能カチオン重合性化合物は、カチオン重合硬化性樹脂組成物の硬化物を3次元架橋させることができるため、カチオン重合硬化性樹脂組成物に含有させることが好ましい。単官能カチオン重合性化合物と多官能カチオン重合性化合物の比は、単官能カチオン重合性化合物100重量部に対して、多官能カチオン重合性化合物を10重量部から1000重量部の範囲で混合することが好ましい。カチオン重合性官能基としては、エポキシ基やオキセタニル基、ビニルエーテル基が挙げられる。エポキシ基を有する化合物としては、脂肪族エポキシ化合物、脂環式エポキシ化合物、芳香族エポキシ化合物が挙げられ、本発明のカチオン重合性接着剤組成物としては、硬化性や接着性に優れることから、脂環式エポキシ化合物を含有することが特に好ましい。脂環式エポキシ化合物としては、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレートのカプロラクトン変性物やトリメチルカプロラクトン変性物やバレロラクトン変性物などが挙げられ、具体的には、セロキサイド2021、セロキサイド2021A、セロキサイド2021P、セロキサイド2081、セロキサイド2083、セロキサイド2085(以上、ダイセル化学工業(株製)、サイラキュアUVR-6105、サイラキュアUVR-6107、サイラキュア30、R-6110(以上、ダウ・ケミカル日本(株)製)などが挙げられる。オキセタニル基を有する化合物は、カチオン重合性接着剤組成物の硬化性を改善したり、該組成物の液粘度を低下させる効果があるため、含有させることが好ましい。オキセタニル基を有する化合物としては、3-エチル-3-ヒドロキシメチルオキセタン、1,4-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ベンゼン、3-エチル-3-(フェノキシメチル)オキセタン、ジ[(3-エチル-3-オキセタニル)メチル]エーテル、3-エチル-3-(2-エチルヘキシロキシメチル)オキセタン、フェノールノボラックオキセタンなどが挙げられ、アロンオキセタンOXT-101、アロンオキセタンOXT-121、アロンオキセタンOXT-211、アロンオキセタンOXT-221、アロンオキセタンOXT-212(以上、東亞合成社製)などが市販されている。ビニルエーテル基を有する化合物は、カチオン重合性接着剤組成物の硬化性を改善したり、該組成物の液粘度を低下させる効果があるため、含有させることが好ましい。ビニルエーテル基を有する化合物としては、2-ヒドロキシエチルビニルエーテル、ジエチレングリコールモノビニルエーテル、4-ヒドロキシブチルビニルエーテル、ジエチレングリコールものビニルエーテル、トリエチレングリコールジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、シクロヘキサンジメタノールモノビニルエーテル、トリシクロデカンビニルエーテル、シクロヘキシルビニルエーテル、メトキシエチルビニルエーテル、エトキシエチルビニルエーテル、ペンタエリスリトール型テトラビニルエーテルなどが挙げられる。 The cationically polymerizable compound used in the cationically polymerizable curable resin composition includes a monofunctional cationically polymerizable compound having one cationically polymerizable functional group in the molecule and two or more cationically polymerizable functional groups in the molecule. It is classified into polyfunctional cationic polymerizable compounds with Since the monofunctional cationically polymerizable compound has a relatively low liquid viscosity, the liquid viscosity can be reduced by including it in the cationically polymerizable curable resin composition. In addition, the monofunctional cationically polymerizable compound often has a functional group that exhibits various functions. Various functions can be expressed in the cured product of the curable resin composition. Since the polyfunctional cationically polymerizable compound can three-dimensionally crosslink the cured product of the cationically polymerizable curable resin composition, it is preferably contained in the cationically polymerizable curable resin composition. The ratio of the monofunctional cationically polymerizable compound and the polyfunctional cationically polymerizable compound is such that 100 parts by weight of the monofunctional cationically polymerizable compound is mixed with 10 parts by weight to 1000 parts by weight of the polyfunctional cationically polymerizable compound. is preferred. Examples of cationic polymerizable functional groups include epoxy groups, oxetanyl groups, and vinyl ether groups. Compounds having an epoxy group include aliphatic epoxy compounds, alicyclic epoxy compounds, and aromatic epoxy compounds. It is particularly preferred to contain an alicyclic epoxy compound. Alicyclic epoxy compounds include 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, caprolactone-modified products of 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, and trimethylcaprolactone-modified products. and modified valerolactone, and specifically, Celoxide 2021, Celoxide 2021A, Celoxide 2021P, Celoxide 2081, Celoxide 2083, Celoxide 2085 (manufactured by Daicel Chemical Industries, Ltd., Cyracure UVR-6105, Cyracure UVR -6107, Cyracure 30, R-6110 (manufactured by Dow Chemical Japan Co., Ltd.), etc. Compounds having an oxetanyl group improve the curability of the cationic polymerizable adhesive composition, Compounds having an oxetanyl group include 3-ethyl-3-hydroxymethyloxetane, 1,4-bis[(3-ethyl-3-oxetanyl ) methoxymethyl]benzene, 3-ethyl-3-(phenoxymethyl)oxetane, di[(3-ethyl-3-oxetanyl)methyl]ether, 3-ethyl-3-(2-ethylhexyloxymethyl)oxetane, phenol Aron oxetane OXT-101, Aron oxetane OXT-121, Aron oxetane OXT-211, Aron oxetane OXT-221, Aron oxetane OXT-212 (manufactured by Toagosei Co., Ltd.) and the like are commercially available. A compound having a vinyl ether group has the effect of improving the curability of the cationic polymerizable adhesive composition and lowering the liquid viscosity of the composition, and is therefore preferably contained. , 2-hydroxyethyl vinyl ether, diethylene glycol monovinyl ether, 4-hydroxybutyl vinyl ether, diethylene glycol monovinyl ether, triethylene glycol divinyl ether, cyclohexanedimethanol divinyl ether, cyclohexanedimethanol monovinyl ether, tricyclodecane vinyl ether, cyclohexyl vinyl ether, methoxyethyl vinyl ether , ethoxyethyl vinyl ether, pentaerythritol type tetravinyl ether, and the like.
 カチオン重合硬化性樹脂組成物は、硬化性成分として以上説明したエポキシ基を有する化合物、オキセタニル基を有する化合物、ビニルエーテル基を有する化合物から選ばれる少なくとも1つの化合物を含有し、これらはいずれもカチオン重合により硬化するものであることから、光カチオン重合開始剤が配合される。この光カチオン重合開始剤は、可視光線、紫外線、X線、電子線などの活性エネルギー線の照射によって、カチオン種又はルイス酸を発生し、エポキシ基やオキセタニル基の重合反応を開始する。光カチオン重合開始剤としては、後述の光酸発生剤が好適に使用される。またカチオン重合性接着剤組成物を可視光線硬化性で用いる場合には、特に380nm以上の光に対して高感度な光カチオン重合開始剤を用いることが好ましいが、光カチオン重合開始剤は一般に、300nm付近またはそれより短い波長域に極大吸収を示す化合物であるため、それより長い波長域、具体的には380nmより長い波長の光に極大吸収を示す光増感剤を配合することで、この付近の波長の光に感応し、光カチオン重合開始剤からのカチオン種または酸の発生を促進させることができる。光増感剤としては、例えば、アントラセン化合物、ピレン化合物、カルボニル化合物、有機硫黄化合物、過硫化物、レドックス系化合物、アゾおよびジアゾ化合物、ハロゲン化合物、光還元性色素などが挙げられ、これらは、2種類以上を混合して使用してもよい。特にアントラセン化合物は、光増感効果に優れるため好ましく、具体的にはアントラキュアUVS-1331、アントラキュアUVS-1221(川崎化成社製)が挙げられる。光増感剤の含有量は、0.1重量%~5重量%であることが好ましく、0.5重量%~3重量%であることがより好ましい。 The cationically polymerizable curable resin composition contains at least one compound selected from the epoxy group-containing compound, the oxetanyl group-containing compound, and the vinyl ether group-containing compound described above as a curable component. A photo cationic polymerization initiator is blended because it is cured by This cationic photopolymerization initiator generates cationic species or Lewis acid upon irradiation with active energy rays such as visible light, ultraviolet rays, X-rays and electron beams, and initiates the polymerization reaction of epoxy groups and oxetanyl groups. As the photocationic polymerization initiator, a photoacid generator described later is preferably used. Further, when the cationic polymerizable adhesive composition is used with visible light curing, it is preferable to use a cationic photopolymerization initiator that is particularly sensitive to light of 380 nm or more. Since it is a compound that exhibits maximum absorption in a wavelength region near or shorter than 300 nm, by blending a photosensitizer that exhibits maximum absorption in a wavelength region longer than that, specifically, light with a wavelength longer than 380 nm, this It can respond to light of a wavelength in the vicinity and promote the generation of cationic species or acid from the photocationic polymerization initiator. Examples of photosensitizers include anthracene compounds, pyrene compounds, carbonyl compounds, organic sulfur compounds, persulfides, redox compounds, azo and diazo compounds, halogen compounds, photoreducible dyes, and the like. You may use it in mixture of 2 or more types. Anthracene compounds are particularly preferable because of their excellent photosensitizing effect, and specific examples thereof include Anthracure UVS-1331 and Anthracure UVS-1221 (manufactured by Kawasaki Kasei Co., Ltd.). The content of the photosensitizer is preferably 0.1 wt % to 5 wt %, more preferably 0.5 wt % to 3 wt %.
 本発明に係る偏光フィルムは、例えば下記製造方法;
 偏光子の一方の面の所定の位置を処理液で処理することにより、片面に凹部を有する非偏光部が形成された偏光子を製造する偏光子製造工程と、前記偏光子の前記凹部を有する面に硬化性樹脂組成物を塗工する塗工工程と、前記偏光子の前記硬化性樹脂組成物を塗工した面に、透明保護フィルムを貼り合わせる貼合工程と、偏光子面側または透明保護フィルム面側から活性エネルギー線を照射して、前記硬化性樹脂組成物を硬化させることにより得られた接着剤層を介して、前記偏光子および前記透明保護フィルムを接着させる接着工程とを有する偏光フィルムの製造方法、により製造可能である。前記偏光子製造工程は、前記偏光子の一方の面に、貫通孔を有する表面保護フィルムを仮着して、偏光フィルム積層体を形成する第1工程と、前記表面保護フィルムの貫通孔を介して前記偏光子の一方の面の所定の位置を処理液で処理して、片面に凹部を有する非偏光部を形成する第2工程と、前記偏光子から前記表面保護フィルムを剥離除去する第3工程とを有するものであってもよい。
The polarizing film according to the present invention is produced by, for example, the following production method;
A polarizer manufacturing step of manufacturing a polarizer in which a non-polarizing portion having a concave portion on one side is formed by treating a predetermined position on one surface of the polarizer with a treatment liquid, and the polarizer has the concave portion. A coating step of applying a curable resin composition to the surface, a bonding step of bonding a transparent protective film to the surface of the polarizer coated with the curable resin composition, a polarizer surface side or a transparent and a bonding step of bonding the polarizer and the transparent protective film via an adhesive layer obtained by curing the curable resin composition by irradiating the active energy ray from the protective film surface side. It can be manufactured by a method for manufacturing a polarizing film. The polarizer manufacturing process includes a first step of temporarily attaching a surface protective film having through holes to one surface of the polarizer to form a polarizing film laminate, and through the through holes of the surface protective film. a second step of treating a predetermined position on one surface of the polarizer with a treatment liquid to form a non-polarizing portion having a recess on one surface; and a third step of peeling and removing the surface protective film from the polarizer. It may have a step.
 偏光子の凹部を有する面に硬化性樹脂組成物を塗工する方法としては、組成物の粘度や目的とする厚みによって適宜選択されるが、偏光子表面の異物除去や、塗工性の観点から、後計量塗工方式を用いることが好ましい。後計量塗工方式の具体例としては、グラビアロール塗工方式、フォワードロール塗工方式、エアナイフ塗工方式、ロッド/バー塗工方式などが挙げられる。これらの中でも、透明保護フィルム表面の異物除去や、塗工性の観点から、特にグラビアロール塗工方式が好ましい。 The method of applying the curable resin composition to the surface of the polarizer having recesses is appropriately selected depending on the viscosity of the composition and the desired thickness. Therefore, it is preferable to use the post-metering coating method. Specific examples of the post-metering coating method include gravure roll coating, forward roll coating, air knife coating, and rod/bar coating. Among these, the gravure roll coating method is particularly preferable from the viewpoint of the removal of foreign substances on the surface of the transparent protective film and the coatability.
 前記塗工工程の前に、偏光子の接着剤組成物の塗工面に易接着組成物を塗工してもよい。偏光子の貼合面に易接着組成物を塗工する方法としては、前記塗工工程と同様の効果を奏することから、後計量塗工方式を用いることが好ましい。易接着組成物が、前記一般式(3)に記載の化合物を含有する場合、偏光子と透明保護フィルムとの接着力が高まるため好ましい。 Before the coating step, an easy-adhesive composition may be coated on the adhesive composition-coated surface of the polarizer. As a method for applying the easy-adhesive composition to the bonding surface of the polarizer, it is preferable to use a post-metering coating method because the same effects as in the coating step are obtained. When the easy-adhesion composition contains the compound represented by the general formula (3), the adhesive strength between the polarizer and the transparent protective film is increased, which is preferable.
 グラビアロール塗工方式において、グラビアロールの表面には、種々のパターンを形成可能であり、例えば、ハニカムメッシュパターン、台形パターン、格子パターン、ピラミッドパターンまたは斜線パターンなどが形成可能である。最終的に得られる偏光フィルムの外観欠点の発生を効果的に防止するためには、前記グラビアロールの表面に形成されたパターンがハニカムメッシュパターンであることが好ましい。ハニカムメッシュパターンの場合、易接着組成物塗工後の塗工面の面精度を高めるために、セル容積は1~5cm/mであることが好ましく、2~3cm/mであることが好ましい。同様に、易接着組成物塗工後の塗工面の面精度を高めるために、ロール1inchあたりのセル線数は200~3000線/inchであることが好ましい。また、偏光子の進行速度に対する、前記グラビアロールの回転速度比が、100~300%であることが好ましい。 In the gravure roll coating method, various patterns can be formed on the surface of the gravure roll, such as a honeycomb mesh pattern, a trapezoidal pattern, a grid pattern, a pyramid pattern, or a diagonal line pattern. In order to effectively prevent appearance defects of the finally obtained polarizing film, the pattern formed on the surface of the gravure roll is preferably a honeycomb mesh pattern. In the case of a honeycomb mesh pattern, the cell volume is preferably 1 to 5 cm 3 /m 2 , more preferably 2 to 3 cm 3 /m 2 in order to increase the surface precision of the coated surface after the easy-adhesion composition is applied. is preferred. Similarly, the number of cell lines per inch of the roll is preferably 200 to 3000 lines/inch in order to improve the surface precision of the coated surface after coating with the easy-adhesive composition. Further, it is preferable that the rotation speed ratio of the gravure roll to the traveling speed of the polarizer is 100 to 300%.
 上記のように塗工した硬化性樹脂組成物を介して、偏光子と透明保護フィルムとを貼り合わせる。偏光子と透明保護フィルムとの貼り合わせは、ロールラミネーターなどにより行うことができる。 The polarizer and the transparent protective film are bonded together via the curable resin composition coated as described above. The bonding of the polarizer and the transparent protective film can be performed using a roll laminator or the like.
 偏光子と透明保護フィルムとを貼り合わせた後に、活性エネルギー線(電子線、紫外線、可視光線など)を照射し、硬化性樹脂組成物を硬化して接着剤層を形成する。活性エネルギー線(電子線、紫外線、可視光線など)の照射方向は、任意の適切な方向から照射することができる。好ましくは、透明保護フィルム側から照射する。偏光子側から照射すると、偏光子が活性エネルギー線(電子線、紫外線、可視光線など)によって劣化するおそれがある。 After bonding the polarizer and the transparent protective film together, they are irradiated with active energy rays (electron beams, ultraviolet rays, visible rays, etc.) to cure the curable resin composition and form an adhesive layer. The irradiation direction of the active energy rays (electron beam, ultraviolet rays, visible rays, etc.) can be any suitable direction. Preferably, irradiation is performed from the transparent protective film side. When irradiated from the polarizer side, the polarizer may be deteriorated by active energy rays (electron beams, ultraviolet rays, visible rays, etc.).
 電子線を照射する場合の照射条件は、上記硬化性樹脂組成物を硬化しうる条件であれば、任意の適切な条件を採用できる。例えば、電子線照射は、加速電圧が好ましくは5kV~300kVであり、さらに好ましくは10kV~250kVである。加速電圧が5kV未満の場合、電子線が接着剤まで届かず硬化不足となるおそれがあり、加速電圧が300kVを超えると、試料を通る浸透力が強すぎて、透明保護フィルムや偏光子にダメージを与えるおそれがある。照射線量としては、5~100kGy、さらに好ましくは10~75kGyである。照射線量が5kGy未満の場合は、接着剤が硬化不足となり、100kGyを超えると、透明保護フィルムや偏光子にダメージを与え、機械的強度の低下や黄変を生じ、所定の光学特性を得ることができない。 Any appropriate irradiation conditions can be adopted as long as the conditions are such that the curable resin composition can be cured when the electron beam is irradiated. For example, electron beam irradiation preferably has an acceleration voltage of 5 kV to 300 kV, more preferably 10 kV to 250 kV. If the acceleration voltage is less than 5 kV, the electron beam may not reach the adhesive, resulting in insufficient curing. may give The irradiation dose is 5 to 100 kGy, more preferably 10 to 75 kGy. If the irradiation dose is less than 5 kGy, the adhesive will be insufficiently cured, and if it exceeds 100 kGy, the transparent protective film and polarizer will be damaged, the mechanical strength will decrease and yellowing will occur, and the desired optical properties will not be obtained. can't
 電子線照射は、通常、不活性ガス中で照射を行うが、必要であれば大気中や酸素を少し導入した条件で行ってもよい。透明保護フィルムの材料によるが、酸素を適宜導入することによって、最初に電子線があたる透明保護フィルム面にあえて酸素阻害を生じさせ、透明保護フィルムへのダメージを防ぐことができ、接着剤にのみ効率的に電子線を照射させることができる。  Electron beam irradiation is usually carried out in an inert gas, but if necessary, it may be carried out in the air or with a small amount of oxygen introduced. Although it depends on the material of the transparent protective film, by appropriately introducing oxygen, the surface of the transparent protective film that is exposed to the electron beam first is intentionally inhibited by oxygen, and damage to the transparent protective film can be prevented. Efficient electron beam irradiation can be achieved.
 前記偏光フィルムの製造方法では、活性エネルギー線として、波長範囲380nm~450nmの可視光線を含むもの、特には波長範囲380nm~450nmの可視光線の照射量が最も多い活性エネルギー線を使用することが好ましい。紫外線、可視光線を使用する場合であって、紫外線吸収能を付与した透明保護フィルム(紫外線不透過型透明保護フィルム)を使用する場合、およそ380nmより短波長の光を吸収するため、380nmより短波長の光は接着剤組成物に到達せず、その重合反応に寄与しない。さらに、透明保護フィルムによって吸収された380nmより短波長の光は熱に変換され、透明保護フィルム自体が発熱し、偏光フィルムのカール・シワなど不良の原因となる。そのため、本発明において紫外線、可視光線を採用する場合、活性エネルギー線発生装置として380nmより短波長の光を発光しない装置を使用することが好ましく、より具体的には、波長範囲380~440nmの積算照度と波長範囲250~370nmの積算照度との比が100:0~100:50であることが好ましく、100:0~100:40であることがより好ましい。本発明に係る偏光フィルムの製造方法では、活性エネルギー線としては、ガリウム封入メタルハライドランプ、波長範囲380~440nmを発光するLED光源が好ましい。あるいは、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、白熱電球、キセノンランプ、ハロゲンランプ、カーボンアーク灯、メタルハライドランプ、蛍光灯、タングステンランプ、ガリウムランプ、エキシマレーザーまたは太陽光などの紫外線と可視光線を含む光源を使用することができ、バンドパスフィルターを用いて380nmより短波長の紫外線を遮断して用いることもできる。偏光子と透明保護フィルムとの間の接着剤層の接着性能を高めつつ、偏光フィルムのカールを防止するためには、ガリウム封入メタルハライドランプを使用し、かつ380nmより短波長の光を遮断可能なバンドパスフィルターを介して得られた活性エネルギー線、またはLED光源を使用して得られる波長405nmの活性エネルギー線を使用することが好ましい。 In the method for producing a polarizing film, it is preferable to use, as the active energy ray, an active energy ray containing visible light with a wavelength range of 380 nm to 450 nm, particularly an active energy ray with the highest irradiation amount of visible light with a wavelength range of 380 nm to 450 nm. . In the case of using ultraviolet rays and visible rays, when using a transparent protective film imparted with ultraviolet absorption ability (ultraviolet-impermeable transparent protective film), it absorbs light with a wavelength shorter than about 380 nm. Light of that wavelength does not reach the adhesive composition and does not contribute to its polymerization reaction. Furthermore, light with a wavelength shorter than 380 nm absorbed by the transparent protective film is converted into heat, and the transparent protective film itself generates heat, causing defects such as curling and wrinkling of the polarizing film. Therefore, when ultraviolet light and visible light are used in the present invention, it is preferable to use a device that does not emit light with a wavelength shorter than 380 nm as an active energy ray generator, and more specifically, an integrated wavelength range of 380 to 440 nm. The ratio of illuminance to integrated illuminance in the wavelength range of 250 to 370 nm is preferably 100:0 to 100:50, more preferably 100:0 to 100:40. In the method for producing a polarizing film according to the present invention, a gallium-encapsulated metal halide lamp and an LED light source emitting light in a wavelength range of 380 to 440 nm are preferable as active energy rays. Alternatively, ultraviolet rays from low pressure mercury lamps, medium pressure mercury lamps, high pressure mercury lamps, extra high pressure mercury lamps, incandescent lamps, xenon lamps, halogen lamps, carbon arc lamps, metal halide lamps, fluorescent lamps, tungsten lamps, gallium lamps, excimer lasers, or sunlight. A light source containing visible light can be used, and a band-pass filter can be used to cut off ultraviolet light with a wavelength shorter than 380 nm. In order to prevent the curling of the polarizing film while improving the adhesion performance of the adhesive layer between the polarizer and the transparent protective film, a gallium-filled metal halide lamp is used, and light with a wavelength shorter than 380 nm can be blocked. It is preferable to use an active energy ray obtained through a bandpass filter or an active energy ray with a wavelength of 405 nm obtained using an LED light source.
 紫外線または可視光線を照射する前に接着剤組成物を加温すること(照射前加温)が好ましく、その場合40℃以上に加温することが好ましく、50℃以上に加温することがより好ましい。また、紫外線または可視光線を照射後に活性エネルギー線硬化型接着剤組成物を加温すること(照射後加温)も好ましく、その場合40℃以上に加温することが好ましく、50℃以上に加温することがより好ましい。 It is preferable to heat the adhesive composition before irradiation with ultraviolet light or visible light (heating before irradiation), in which case the temperature is preferably 40°C or higher, more preferably 50°C or higher. preferable. It is also preferable to heat the active energy ray-curable adhesive composition after irradiation with ultraviolet light or visible light (post-irradiation heating). Warming is more preferred.
 本発明の偏光フィルムは、実用に際して他の光学層と積層した光学フィルムとして用いることができる。その光学層については特に限定はないが、例えば反射板や半透過板、位相差板(1/2や1/4などの波長板を含む)、視角補償フィルムなどの画像表示装置などの形成に用いられることのある光学層を1層または2層以上用いることができる。特に、本発明の偏光フィルムに更に反射板または半透過反射板が積層されてなる反射型偏光フィルムまたは半透過型偏光フィルム、偏光フィルムに更に位相差板が積層されてなる楕円偏光フィルムまたは円偏光フィルム、偏光フィルムに更に視角補償フィルムが積層されてなる広視野角偏光フィルム、あるいは偏光フィルムに更に輝度向上フィルムが積層されてなる偏光フィルムが好ましい。 The polarizing film of the present invention can be used as an optical film laminated with other optical layers in practical use. The optical layer is not particularly limited. One or more optical layers may be used. In particular, a reflective polarizing film or a semi-transmissive polarizing film obtained by further laminating a reflector or a semi-transmitting reflector on the polarizing film of the present invention, an elliptical polarizing film or circularly polarized light obtained by further laminating a retardation plate on the polarizing film A film, a wide viewing angle polarizing film obtained by further laminating a viewing angle compensation film on a polarizing film, or a polarizing film obtained by further laminating a brightness enhancement film on a polarizing film are preferable.
 偏光フィルムに上記光学層を積層した光学フィルムは、画像表示装置などの製造過程で順次別個に積層する方式にても形成することができるが、予め積層して光学フィルムとしたものは、品質の安定性や組立作業などに優れていて画像表示装置などの製造工程を向上させうる利点がある。積層には粘着層などの適宜な接着手段を用いうる。上記の偏光フィルムやその他の光学フィルムの接着に際し、それらの光学軸は目的とする位相差特性などに応じて適宜な配置角度とすることができる。 The optical film obtained by laminating the above optical layer on the polarizing film can be formed by a method of sequentially and separately laminating in the manufacturing process of an image display device or the like. It is excellent in stability and assembly work, and has the advantage of being able to improve the manufacturing process of image display devices and the like. Appropriate adhesive means such as an adhesive layer can be used for lamination. When the above polarizing film and other optical films are adhered, their optical axes can be arranged at an appropriate angle according to the desired retardation characteristics.
 前述した偏光フィルムや、偏光フィルムを少なくとも1層積層されている光学フィルムには、液晶セルなどの他部材と接着するための粘着層を設けることもできる。粘着層を形成する粘着剤は特に制限されないが、例えばアクリル系重合体、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリエーテル、フッ素系やゴム系などのポリマーをベースポリマーとするものを適宜に選択して用いることができる。特に、アクリル系粘着剤の如く光学的透明性に優れ、適度な濡れ性と凝集性と接着性の粘着特性を示して、耐候性や耐熱性などに優れるものが好ましく用いうる。 The above-mentioned polarizing film and optical film laminated with at least one layer of polarizing film can also be provided with an adhesive layer for adhering to other members such as liquid crystal cells. The pressure-sensitive adhesive that forms the pressure-sensitive adhesive layer is not particularly limited, but for example, an acrylic polymer, silicone-based polymer, polyester, polyurethane, polyamide, polyether, fluorine-based polymer, rubber-based polymer, or the like is appropriately selected. can be used as In particular, those having excellent optical transparency, suitable wettability, cohesiveness, and adhesive properties such as acrylic pressure-sensitive adhesives, and excellent weather resistance and heat resistance can be preferably used.
 粘着層は、異なる組成または種類などのものの重畳層として偏光フィルムや光学フィルムの片面または両面に設けることもできる。また両面に設ける場合に、偏光フィルムや光学フィルムの表裏において異なる組成や種類や厚みなどの粘着層とすることもできる。粘着層の厚みは、使用目的や接着力などに応じて適宜に決定でき、一般には1~100μmであり、5~30μmが好ましく、特に10~20μmが好ましい。 The adhesive layer can also be provided on one or both sides of the polarizing film or optical film as a superimposed layer of different compositions or types. Further, when the adhesive layer is provided on both sides, the front and back surfaces of the polarizing film or the optical film may have adhesive layers with different compositions, types, thicknesses, and the like. The thickness of the adhesive layer can be appropriately determined according to the purpose of use, adhesive strength, etc., and is generally 1 to 100 μm, preferably 5 to 30 μm, particularly preferably 10 to 20 μm.
 粘着層の露出面に対しては、実用に供するまでの間、その汚染防止などを目的にセパレータが仮着されてカバーされる。これにより、通例の取扱状態で粘着層に接触することを防止できる。セパレータとしては、上記厚み条件を除き、例えばプラスチックフィルム、ゴムシート、紙、布、不織布、ネット、発泡シートや金属箔、それらのラミネート体などの適宜な薄葉体を、必要に応じシリコーン系や長鎖アルキル系、フッ素系や硫化モリブデンなどの適宜な剥離剤でコート処理したものなどの、従来に準じた適宜なものを用いうる。 The exposed surface of the adhesive layer is temporarily covered with a separator for the purpose of preventing contamination until it is put into practical use. This prevents contact with the adhesive layer during normal handling conditions. As the separator, excluding the above thickness conditions, suitable thin sheets such as plastic films, rubber sheets, paper, cloth, non-woven fabrics, nets, foam sheets, metal foils, and laminates thereof may be used. An appropriate release agent according to the prior art, such as one coated with an appropriate release agent such as chain alkyl, fluorine, or molybdenum sulfide, can be used.
[画像表示装置]
 本発明の偏光フィルムは画像表示装置などの各種装置の形成などに好ましく用いることができる。画像表示装置の形成は、従来に準じて行いうる。すなわち画像表示装置は一般に、液晶セルと偏光フィルムまたは光学フィルム、および必要に応じての照明システムなどの構成部品を適宜に組立てて駆動回路を組込むことなどにより形成されるが、本発明においては本発明による偏光フィルムまたは光学フィルムを用いる点を除いて特に限定はなく、従来に準じうる。液晶セルについても、例えばTN型やSTN型、π型などの任意なタイプのものを用いうる。
[Image display device]
The polarizing film of the present invention can be preferably used for forming various devices such as image display devices. Formation of the image display device can be carried out according to the conventional method. That is, an image display device is generally formed by appropriately assembling components such as a liquid crystal cell, a polarizing film or an optical film, and an illumination system as necessary, and incorporating a driving circuit. There is no particular limitation except that the polarizing film or optical film according to the invention is used, and conventional methods can be applied. As for the liquid crystal cell, any type such as TN type, STN type, or π type can be used.
 液晶セルの片側または両側に偏光フィルムまたは光学フィルムを配置した画像表示装置や、照明システムにバックライトあるいは反射板を用いたものなどの適宜な画像表示装置を形成することができる。その場合、本発明による偏光フィルムまたは光学フィルムは液晶セルの片側または両側に設置することができる。両側に偏光フィルムまたは光学フィルムを設ける場合、それらは同じものであってもよいし、異なるものであってもよい。さらに、画像表示装置の形成に際しては、例えば拡散板、アンチグレア層、反射防止膜、保護板、プリズムアレイ、レンズアレイシート、光拡散板、バックライトなどの適宜な部品を適宜な位置に1層または2層以上配置することができる。さらに本発明の画像表示装置としては、例えば、有機EL(エレクトロルミネッセンス)表示装置、PDP(プラズマディスプレイパネル)、電子ペーパーなどが挙げられ、特に高透過率な偏光子が用いられる有機ELにおいて好ましく用いられる。また、画像表示装置の用途としては、フォルダブル表示装置や車載用の表示装置のように、高湿熱環境への耐久特性を必要とされる部材が求められる用途に好ましく適用できる。 Appropriate image display devices can be formed, such as an image display device in which a polarizing film or an optical film is arranged on one or both sides of a liquid crystal cell, or a device using a backlight or a reflector in an illumination system. In that case, the polarizing film or optical film according to the present invention can be placed on one side or both sides of the liquid crystal cell. When polarizing films or optical films are provided on both sides, they may be the same or different. Furthermore, when forming an image display device, for example, appropriate parts such as a diffusion plate, an anti-glare layer, an antireflection film, a protection plate, a prism array, a lens array sheet, a light diffusion plate, a backlight, etc. Two or more layers can be arranged. Furthermore, examples of the image display device of the present invention include an organic EL (electroluminescence) display device, a PDP (plasma display panel), an electronic paper, and the like. be done. In addition, as for the application of the image display device, it can be preferably applied to the application that requires a member that is required to have durability characteristics in a high humidity and heat environment, such as a foldable display device and a vehicle display device.
 本発明に係る偏光フィルムは、偏光子に非偏光部が形成されているため、特にセンサー機能を有する画像表示装置に好適に使用可能であり、その場合、偏光フィルムの非偏光部がカメラ部に対応する位置に配置される。 Since the polarizing film according to the present invention has a non-polarizing portion formed on the polarizer, it can be suitably used particularly for an image display device having a sensor function. placed in corresponding positions.
 以下に、本発明の実施例を記載するが、本発明の実施形態はこれらに限定されない。 Examples of the present invention are described below, but embodiments of the present invention are not limited to these.
<偏光フィルム製造>
 実施例1
 樹脂基材として、長尺状で、吸水率0.75%、Tg75℃の非晶質のイソフタル酸共重合ポリエチレンテレフタレート(IPA共重合PET)フィルム(厚み:100μm)を用いた。基材の片面に、コロナ処理を施し、このコロナ処理面に、ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性PVA(重合度1200、アセトアセチル変性度4.6%、ケン化度99.0モル%以上、日本合成化学工業社製、商品名「ゴーセファイマーZ200」)を9:1の比で含む水溶液を25℃で塗布および乾燥して、厚み13μmのPVA系樹脂層を形成し、積層体を作製した。
<Polarizing film manufacturing>
Example 1
As the resin substrate, a long amorphous isophthalic acid-copolymerized polyethylene terephthalate (IPA-copolymerized PET) film (thickness: 100 μm) with a water absorption of 0.75% and a Tg of 75° C. was used. One side of the substrate was subjected to corona treatment, and the corona-treated side was coated with polyvinyl alcohol (degree of polymerization: 4,200, degree of saponification: 99.2 mol%) and acetoacetyl-modified PVA (degree of polymerization: 1,200, degree of acetoacetyl modification: 4.6). %, degree of saponification 99.0 mol% or more, manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "GOSEFIMER Z200") at a ratio of 9:1. A PVA-based resin layer was formed to produce a laminate.
 得られた積層体を、120℃のオーブン内で周速の異なるロール間で縦方向(長手方向)に2.4倍に自由端一軸延伸した(空中補助延伸)。次いで、積層体を、液温30℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。次いで、液温30℃の染色浴に、偏光板が所定の透過率となるようにヨウ素濃度、浸漬時間を調整しながら浸漬させた。本実施例では、水100重量部に対して、ヨウ素を0.2重量部配合し、ヨウ化カリウムを1.5重量部配合して得られたヨウ素水溶液に60秒間浸漬させた(染色処理)。次いで、液温30℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を3重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。その後、積層体を、液温70℃のホウ酸水溶液(水100重量部に対して、ホウ酸を3重量部配合し、ヨウ化カリウムを5重量部配合して得られた水溶液)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸)。その後、積層体を液温30℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを4重量部配合して得られた水溶液)に浸漬させた(洗浄処理)。 The resulting laminate was uniaxially stretched 2.4 times at the free end in the machine direction (longitudinal direction) between rolls with different peripheral speeds in an oven at 120°C (in-air auxiliary stretching). Next, the laminate was immersed in an insolubilizing bath (an aqueous boric acid solution obtained by blending 4 parts by weight of boric acid with 100 parts by weight of water) at a liquid temperature of 30° C. for 30 seconds (insolubilizing treatment). Then, it was immersed in a dyeing bath at a liquid temperature of 30° C. while adjusting the iodine concentration and the immersion time so that the polarizing plate had a predetermined transmittance. In this example, 0.2 parts by weight of iodine was added to 100 parts by weight of water, and 1.5 parts by weight of potassium iodide was added to the resulting iodine aqueous solution for 60 seconds (dyeing treatment). . Next, it was immersed for 30 seconds in a cross-linking bath at a liquid temperature of 30°C (an aqueous boric acid solution obtained by blending 3 parts by weight of potassium iodide and 3 parts by weight of boric acid with respect to 100 parts by weight of water). (crosslinking treatment). After that, the laminate is immersed in an aqueous solution of boric acid having a liquid temperature of 70° C. (an aqueous solution obtained by blending 3 parts by weight of boric acid and 5 parts by weight of potassium iodide with respect to 100 parts by weight of water). Meanwhile, the film was uniaxially stretched in the machine direction (longitudinal direction) between rolls with different circumferential speeds so that the total draw ratio was 5.5 (underwater stretching). After that, the laminate was immersed in a cleaning bath having a liquid temperature of 30° C. (aqueous solution obtained by blending 4 parts by weight of potassium iodide with 100 parts by weight of water) (cleaning treatment).
 続いて、第2透明保護フィルムにラジカル重合硬化性樹脂組成物を塗工し、上記で得られた積層体のPVA系樹脂層表面と第2透明保護フィルムのラジカル重合硬化性樹脂組成物塗工面とを貼り合わせ、当該第2透明保護フィルム側から下記の紫外線を照射して接着剤を硬化させた。 Subsequently, a radically polymerizable curable resin composition is applied to the second transparent protective film, and the PVA-based resin layer surface of the laminate obtained above and the radically polymerizable curable resin composition coated surface of the second transparent protective film are were laminated together, and the following ultraviolet rays were irradiated from the second transparent protective film side to cure the adhesive.
 その後、基材をPVA系樹脂層から剥離し、幅約1300mmの長尺状の偏光フィルム(偏光子/第2透明保護フィルム)を得た。なお、偏光子の厚みは5μmであり、単体透過率は40.8%であった。 After that, the substrate was peeled off from the PVA-based resin layer to obtain a long polarizing film (polarizer/second transparent protective film) with a width of about 1300 mm. The polarizer had a thickness of 5 μm and a single transmittance of 40.8%.
(紫外線)
 活性エネルギー線として、紫外線(ガリウム封入メタルハライドランプ、照射装置:Fusion UV Systems,Inc社製のLight HAMMER10、バルブ:Vバルブ、ピーク照度:1600mW/cm、積算照射量1000/mJ/cm(波長380~440nm))を使用した。なお、紫外線の照度は、Solatell社製のSola-Checkシステムを使用して測定した。
(ultraviolet rays)
As an active energy ray, ultraviolet rays (gallium-filled metal halide lamp, irradiation device: Light HAMMER10 manufactured by Fusion UV Systems, Inc., bulb: V bulb, peak illuminance: 1600 mW/cm 2 , cumulative irradiation amount 1000/mJ/cm 2 (wavelength 380-440 nm)) was used. The UV illuminance was measured using a Sola-Check system manufactured by Solatell.
 幅約1300mmのエステル系樹脂フィルム(厚み38μm)の一方の面に粘着剤(アクリル系粘着剤)を厚みが5μmになるよう塗布した。この粘着剤付エステル系樹脂フィルムに、ピクナル刃を用いて直径3.0mmの貫通孔を長尺方向に250mmおきに、幅方向に400mmおきに形成した。 An adhesive (acrylic adhesive) was applied to one side of an ester resin film (thickness: 38 μm) with a width of about 1,300 mm so that the thickness would be 5 μm. Through-holes having a diameter of 3.0 mm were formed in this adhesive-attached ester resin film at intervals of 250 mm in the longitudinal direction and at intervals of 400 mm in the width direction using a Pycnal blade.
 上記で得られた偏光フィルムの偏光子側に、上記粘着剤付エステル系樹脂フィルムを、ロールトゥロールで貼り合わせ、これを1mol/L(1N)の水酸化ナトリウム水溶液に30秒浸漬し、次いで、1mol/L(1N)の塩酸に10秒浸漬した。その後、60℃で乾燥し、偏光子に非偏光部を形成した。非偏光部は、エステル系樹脂フィルム側に最大深さdhが0.5μmである凹部を有する薄肉部であった。 On the polarizer side of the polarizing film obtained above, the adhesive-attached ester resin film is laminated by roll-to-roll, and this is immersed in a 1 mol / L (1N) sodium hydroxide aqueous solution for 30 seconds, and then , and immersed in 1 mol/L (1N) hydrochloric acid for 10 seconds. Then, it dried at 60 degreeC and formed the non-polarization part in the polarizer. The non-polarizing portion was a thin portion having a concave portion with a maximum depth dh of 0.5 μm on the side of the ester resin film.
 上記で得られた積層体からエステル系樹脂フィルムを剥離除去した。続いて、積層体のエステル系樹脂フィルムの剥離面と第1透明保護フィルムとを貼り合わせる前に、グラビアロールを備えるグラビアロール塗工方式を使用して該剥離面に易接着組成1を塗工し(塗工厚み1μm)、25℃で1分間風乾燥させた(乾燥後厚み0.7μm)。続いて、第1透明保護フィルムとしてのアクリル系樹脂フィルム(厚み40μm)に接着剤組成1を塗工し、積層体のエステル系樹脂フィルムの剥離面(易接着組成1の塗工面)を貼り合わせ、当該アクリル系樹脂フィルム側から上記と同様の紫外線を照射して接着剤を硬化させた。接着剤組成1および易接着組成1の構成については表1に示す。また、硬化後の接着剤層の厚みを表2に記載した。 The ester-based resin film was peeled off from the laminate obtained above. Subsequently, before bonding the release surface of the ester resin film of the laminate to the first transparent protective film, the easy-adhesion composition 1 is applied to the release surface using a gravure roll coating method equipped with a gravure roll. (coating thickness: 1 μm), and air-dried at 25° C. for 1 minute (thickness after drying: 0.7 μm). Subsequently, adhesive composition 1 is applied to an acrylic resin film (thickness 40 μm) as a first transparent protective film, and the peeling surface (coated surface of easy-adhesion composition 1) of the ester resin film of the laminate is laminated. , UV rays similar to those described above were applied from the acrylic resin film side to cure the adhesive. Table 1 shows the configurations of Adhesive Composition 1 and Easy Adhesive Composition 1. Table 2 shows the thickness of the adhesive layer after curing.
Figure JPOXMLDOC01-appb-T000005
 表1に記載の各構成材料は以下のとおりである。
 ACMO(アクリロイルモルフォリン);商品名「ACMO」、KJケミカルズ社製
 1,9-NDA(1,9-ノナンジオールジアクリレート)、商品名「ライトアクリレート1、9ND-A」、共栄社化学社製
 P2H-A(フェノキシジエチレングリコールアクリレート);商品名「ライトアクリレートP2H-A」、共栄社化学社製
 HEAA(ヒドロキシエチルアクリルアミド);商品名「HEAA」、興人社製
 BYK UV3505(UV硬化型表面調整剤);商品名「BYK UV3505」、ビックケミージャパン社製
 Or907(2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン);商品名「Omnirad 907」、IGMresins社製
 DETX(ジエチルチオキサントン);商品名「KAYACURE DETX-S」、日本化薬社製
 UP-1190((メタ)アクリルモノマーを重合してなるアクリル系オリゴマー);商品名「ARUFON UP1190」、東亞合成社製
 Or819(ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド);商品名「Omnirad 819」、IGM
 VPBA(4-ビニルフェニルボロン酸);商品名「4-ビニルフェニルボロン酸」、東京化成工業社製
 HPAA(ヒドロキシピバリン酸ジジアクリレート);商品名「ライトアクリレートHPPA」、共栄社化学社製
 M5700(2-ヒドロキシ-3-フェノキシプロピルアクリレート);商品名「アロニックスM5700」、東亞合成社製
 DEAA(ジエチルアクリルアミド);商品名「DEAA」、KJケミカルズ社製
 EXP4200(レベリング剤);商品名「オルフィンEXP.4200」、日信化学工業社製
Figure JPOXMLDOC01-appb-T000005
Each constituent material described in Table 1 is as follows.
ACMO (acryloylmorpholine); trade name "ACMO", 1,9-NDA (1,9-nonanediol diacrylate) manufactured by KJ Chemicals, trade name "Light acrylate 1,9ND-A", P2H manufactured by Kyoeisha Chemical Co., Ltd. -A (phenoxydiethylene glycol acrylate); trade name "Light Acrylate P2H-A", Kyoeisha Chemical Co., Ltd. HEAA (hydroxyethyl acrylamide); trade name "HEAA", BYK UV3505 (UV curable surface conditioner) manufactured by Kojin Co., Ltd.; Trade name "BYK UV3505", manufactured by BYK Chemie Japan Or907 (2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one); trade name "Omnirad 907", manufactured by IGMresins DETX (diethylthioxanthone); trade name "KAYACURE DETX-S", manufactured by Nippon Kayaku Co., Ltd. UP-1190 (acrylic oligomer obtained by polymerizing (meth)acrylic monomer); trade name "ARUFON UP1190", manufactured by Toagosei Co., Ltd. Or819 (bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide); trade name "Omnirad 819", IGM
VPBA (4-vinylphenylboronic acid); trade name "4-vinylphenylboronic acid", manufactured by Tokyo Chemical Industry Co., Ltd. HPAA (hydroxypivalic acid diacrylate); trade name "light acrylate HPPA", manufactured by Kyoeisha Chemical Co., Ltd. M5700 (2 -hydroxy-3-phenoxypropyl acrylate); trade name "Aronix M5700", DEAA (diethylacrylamide) manufactured by Toagosei Co., Ltd.; trade name "DEAA", EXP4200 manufactured by KJ Chemicals (leveling agent); trade name "OLFINE EXP.4200 , manufactured by Nissin Chemical Industry Co., Ltd.
 以上のようにして、第1透明保護フィルム/偏光子の構成を有する偏光フィルムを作製した。なお、第1透明保護フィルムは、図1に示す偏光フィルム10を構成する透明保護フィルム3に対応し、偏光子は図1に示す偏光フィルム10を構成する偏光子1に対応し、第1透明保護フィルムと偏光子とを接着した接着剤層が、図1に示す偏光フィルム10を構成する接着剤層2に対応する。得られた偏光フィルムの厚みおよび各物性の測定結果を表2に示す。 A polarizing film having a configuration of the first transparent protective film/polarizer was produced as described above. The first transparent protective film corresponds to the transparent protective film 3 constituting the polarizing film 10 shown in FIG. 1, the polarizer corresponds to the polarizer 1 constituting the polarizing film 10 shown in FIG. The adhesive layer that adheres the protective film and the polarizer corresponds to the adhesive layer 2 that constitutes the polarizing film 10 shown in FIG. Table 2 shows the thickness of the obtained polarizing film and the measurement results of each physical property.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表2中、偏光子の非偏光部の厚みd1(μm)、および接着剤層の非偏光部に接する部分の厚みd2(μm)については、走査型電子顕微鏡(ZYGO社製、製品名「New View 7300」)を用いて測定した。また、第1透明保護フィルムの厚みd3(μm)はデジタルマイクロメーター(アンリツ社製、製品名「KC-351C」)を用いて測定した。 In Table 2, the thickness d1 (μm) of the non-polarizing portion of the polarizer and the thickness d2 (μm) of the portion of the adhesive layer in contact with the non-polarizing portion were measured using a scanning electron microscope (manufactured by ZYGO, product name “New View 7300"). The thickness d3 (μm) of the first transparent protective film was measured using a digital micrometer (manufactured by Anritsu Co., Ltd., product name "KC-351C").
 表2中、非偏光部の硬さH1(GPa)、接着剤層の非偏光部に接する部分の硬さH2(GPa)、および透明保護フィルムの硬さH3(GPa)は以下の方法により測定した。 In Table 2, the hardness H1 (GPa) of the non-polarized portion, the hardness H2 (GPa) of the portion of the adhesive layer in contact with the non-polarized portion, and the hardness H3 (GPa) of the transparent protective film were measured by the following methods. did.
 ナノインデンター(ブルカージャパン社製、Triboindenter TI-950)を使用し、偏光フィルムの測定したい各部分の中心部(例えば、非偏光部の硬さH1を測定する場合は非偏光部の中心部、透明保護フィルムの硬さH3を測定する場合は、透明保護フィルムの厚み方向での中心部)にバーコビッチ型圧子(ブルカージャパン社製、Triboindenter TI-950用の圧子(型番TI-0039; バーコビッチ型ダイヤモンド圧子、先端開き角142.3°)を50nm押込んだ際の最大荷重(Pmax)および圧子と測定部分とが接触する面積(接触投影面積)(A)を計測し、以下の式に基づき硬さ(GPa)を算出した。
 (硬さ(GPa))=(Pmax)/(A)
Using a nanoindenter (Triboindenter TI-950, manufactured by Bruker Japan), the center of each part of the polarizing film to be measured (for example, when measuring the hardness H1 of the non-polarized part, the center of the non-polarized part, When measuring the hardness H3 of the transparent protective film, a Berkovich type indenter (manufactured by Bruker Japan Co., Ltd., Triboindenter TI-950 indenter (model number TI-0039; Berkovich type diamond The maximum load (Pmax) and the area of contact between the indenter and the measurement part (contact projected area) (A) when the indenter and the tip opening angle of 142.3°) are pushed by 50 nm are measured. (GPa) was calculated.
(Hardness (GPa)) = (Pmax) / (A)
 表2中、非偏光部1Aを含む偏光フィルムの寸法収縮率X1は、以下の方法により測定した。
<寸法収縮率測定>
 実施例1の偏光フィルムの透明保護フィルム側に粘着剤層を設けて、粘着剤層付偏光フィルムを調製した。COレーザー(コムネット株式会社製、製品名:Laser Pro-SPIRIT)を用いて、中央端部から1cmの位置に非偏光部1A(非偏光部は直径3mmの円形状)が形成された粘着剤層付偏光フィルム(サンプルサイズは10cm×10cm)を切り出し、0.5mm厚の無アルカリガラスに貼り合せてサンプルを作製した。該サンプルの四隅の焦点距離(MD方向およびTD方向)を平面二軸測定器(株式会社ミツトヨ製、製品名:Quick Vision Apex)を用いて測定した。次いで、積層体を85℃-85%湿度環境下に72時間放置し、同様に光学積層体の四隅の焦点距離(MD方向およびTD方向)を測定した。放置前後の寸法に基づき、非偏光部1Aを含む偏光フィルムの寸法収縮率X1を算出した。表2には、寸法収縮率の大きいMD方向の寸法収縮率を記載した。COレーザーの照射条件は、以下のとおりである。
(照射条件)
 波長:10.6μm
 レーザー出力:30W
 発振モード:パルス発振
 レーザー光の直径:70μmレーザー照射面:保護フィルム側
In Table 2, the dimensional shrinkage rate X1 of the polarizing film containing the non-polarizing portion 1A was measured by the following method.
<Measurement of dimensional shrinkage>
An adhesive layer was provided on the transparent protective film side of the polarizing film of Example 1 to prepare a polarizing film with an adhesive layer. Using a CO 2 laser (manufactured by Comnet Co., Ltd., product name: Laser Pro-SPIRIT), the non-polarized portion 1A (the non-polarized portion has a circular shape with a diameter of 3 mm) is formed at a position of 1 cm from the center end. A polarizing film with an agent layer (sample size: 10 cm x 10 cm) was cut out and attached to non-alkaline glass having a thickness of 0.5 mm to prepare a sample. The focal lengths (MD direction and TD direction) of the four corners of the sample were measured using a plane biaxial measuring device (manufactured by Mitutoyo Corporation, product name: Quick Vision Apex). Then, the laminate was left in an environment of 85° C. and 85% humidity for 72 hours, and the focal lengths (MD direction and TD direction) of the four corners of the optical laminate were similarly measured. Based on the dimensions before and after the standing, the dimensional shrinkage rate X1 of the polarizing film including the non-polarizing portion 1A was calculated. Table 2 shows the dimensional shrinkage in the MD direction where the dimensional shrinkage is large. The irradiation conditions of the CO2 laser are as follows.
(Irradiation conditions)
Wavelength: 10.6 μm
Laser output: 30W
Oscillation mode: Pulse oscillation Diameter of laser beam: 70 μm Laser irradiation surface: Protective film side
 表2に記載のとおり、実施例1では非偏光部1Aを含む偏光フィルムの寸法収縮率X1が低く、非偏光部1Aの寸法安定性が高いため、高温高湿下でも光学機能に優れることがわかる。 As shown in Table 2, in Example 1, the dimensional shrinkage rate X1 of the polarizing film containing the non-polarizing portion 1A is low, and the dimensional stability of the non-polarizing portion 1A is high, so that the optical function is excellent even under high temperature and high humidity. Understand.
<偏光フィルム製造>
 実施例2-6
 樹脂基材として、長尺状で、吸水率0.75%、Tg75℃の非晶質のイソフタル酸共重合ポリエチレンテレフタレート(IPA共重合PET)フィルム(厚み:100μm)を用いた。基材の片面に、コロナ処理を施し、このコロナ処理面に、ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性PVA(重合度1200、アセトアセチル変性度4.6%、ケン化度99.0モル%以上、日本合成化学工業社製、商品名「ゴーセファイマーZ200」)を9:1の比で含む水溶液を25℃で塗布および乾燥して、厚み13μmのPVA系樹脂層を形成し、積層体を作製した。
<Polarizing film manufacturing>
Example 2-6
As the resin substrate, a long amorphous isophthalic acid-copolymerized polyethylene terephthalate (IPA-copolymerized PET) film (thickness: 100 μm) with a water absorption of 0.75% and a Tg of 75° C. was used. One side of the substrate was subjected to corona treatment, and the corona-treated side was coated with polyvinyl alcohol (degree of polymerization: 4,200, degree of saponification: 99.2 mol%) and acetoacetyl-modified PVA (degree of polymerization: 1,200, degree of acetoacetyl modification: 4.6). %, degree of saponification 99.0 mol% or more, manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "GOSEFIMER Z200") at a ratio of 9:1. A PVA-based resin layer was formed to produce a laminate.
 得られた積層体を、120℃のオーブン内で周速の異なるロール間で縦方向(長手方向)に2.4倍に自由端一軸延伸した(空中補助延伸)。次いで、積層体を、液温30℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。次いで、液温30℃の染色浴に、偏光板が所定の透過率となるようにヨウ素濃度、浸漬時間を調整しながら浸漬させた。本実施例では、水100重量部に対して、ヨウ素を0.2重量部配合し、ヨウ化カリウムを1.5重量部配合して得られたヨウ素水溶液に60秒間浸漬させた(染色処理)。次いで、液温30℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を3重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。その後、積層体を、液温70℃のホウ酸水溶液(水100重量部に対して、ホウ酸を3重量部配合し、ヨウ化カリウムを5重量部配合して得られた水溶液)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸)。その後、積層体を液温30℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを4重量部配合して得られた水溶液)に浸漬させた(洗浄処理)。 The resulting laminate was uniaxially stretched 2.4 times at the free end in the machine direction (longitudinal direction) between rolls with different peripheral speeds in an oven at 120°C (in-air auxiliary stretching). Next, the laminate was immersed in an insolubilizing bath (an aqueous boric acid solution obtained by blending 4 parts by weight of boric acid with 100 parts by weight of water) at a liquid temperature of 30° C. for 30 seconds (insolubilizing treatment). Then, it was immersed in a dyeing bath at a liquid temperature of 30° C. while adjusting the iodine concentration and the immersion time so that the polarizing plate had a predetermined transmittance. In this example, 0.2 parts by weight of iodine was added to 100 parts by weight of water, and 1.5 parts by weight of potassium iodide was added to the resulting iodine aqueous solution for 60 seconds (dyeing treatment). . Next, it was immersed for 30 seconds in a cross-linking bath at a liquid temperature of 30°C (an aqueous boric acid solution obtained by blending 3 parts by weight of potassium iodide and 3 parts by weight of boric acid with respect to 100 parts by weight of water). (crosslinking treatment). After that, the laminate is immersed in an aqueous solution of boric acid having a liquid temperature of 70° C. (an aqueous solution obtained by blending 3 parts by weight of boric acid and 5 parts by weight of potassium iodide with respect to 100 parts by weight of water). Meanwhile, the film was uniaxially stretched in the machine direction (longitudinal direction) between rolls with different circumferential speeds so that the total draw ratio was 5.5 (underwater stretching). After that, the laminate was immersed in a cleaning bath having a liquid temperature of 30° C. (aqueous solution obtained by blending 4 parts by weight of potassium iodide with 100 parts by weight of water) (cleaning treatment).
 続いて、第2透明保護フィルムにラジカル重合硬化性樹脂組成物を塗工し、上記で得られた積層体のPVA系樹脂層表面と第2透明保護フィルムのラジカル重合硬化性樹脂組成物塗工面とを貼り合わせ、当該第2透明保護フィルム側から下記の紫外線を照射して接着剤を硬化させた。 Subsequently, a radically polymerizable curable resin composition is applied to the second transparent protective film, and the PVA-based resin layer surface of the laminate obtained above and the radically polymerizable curable resin composition coated surface of the second transparent protective film are were laminated together, and the following ultraviolet rays were irradiated from the second transparent protective film side to cure the adhesive.
 その後、基材をPVA系樹脂層から剥離し、幅約1300mmの長尺状の偏光フィルム(偏光子/第2透明保護フィルム)を得た。なお、実施例2-6、比較例1については偏光子の厚みは5μmであり、単体透過率は40.8%であった。一方、比較例2については偏光子の厚みは4μmであり、単体透過率は40.8%であった。 After that, the substrate was peeled off from the PVA-based resin layer to obtain a long polarizing film (polarizer/second transparent protective film) with a width of about 1300 mm. In Examples 2-6 and Comparative Example 1, the thickness of the polarizer was 5 μm, and the single transmittance was 40.8%. On the other hand, in Comparative Example 2, the thickness of the polarizer was 4 μm, and the single transmittance was 40.8%.
 表3に記載の各構成材料のうち、表1に記載の構成材料以外の材料は以下のとおりである。
 VPBA(4-ビニルフェニルボロン酸);商品名「4-ビニルフェニルボロン酸」、東京化成工業社製
Among the constituent materials listed in Table 3, materials other than the constituent materials listed in Table 1 are as follows.
VPBA (4-vinylphenylboronic acid); trade name "4-vinylphenylboronic acid", manufactured by Tokyo Chemical Industry Co., Ltd.
 表3中、比較例1および比較例2では、第1接着剤層を構成する接着剤組成として水系接着剤(日本合成化学工業社製、商品名「ゴーセファイマーZ-200」、樹脂濃度5重量%および水分量95重量%のPVA系樹脂水溶液)を使用した。 In Table 3, in Comparative Examples 1 and 2, a water-based adhesive (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "GOSEFIMER Z-200", resin concentration 5) was used as the adhesive composition constituting the first adhesive layer. % and water content of 95% by weight).
(紫外線)
 活性エネルギー線として、紫外線(ガリウム封入メタルハライドランプ、照射装置:Fusion UV Systems,Inc社製のLight HAMMER10、バルブ:Vバルブ、ピーク照度:1600mW/cm、積算照射量1000/mJ/cm(波長380~440nm))を使用した。なお、紫外線の照度は、Solatell社製のSola-Checkシステムを使用して測定した。
(ultraviolet rays)
As an active energy ray, ultraviolet rays (gallium-filled metal halide lamp, irradiation device: Light HAMMER10 manufactured by Fusion UV Systems, Inc., bulb: V bulb, peak illuminance: 1600 mW/cm 2 , cumulative irradiation amount 1000/mJ/cm 2 (wavelength 380-440 nm)) was used. The UV illuminance was measured using a Sola-Check system manufactured by Solatell.
 幅約1300mmのエステル系樹脂フィルム(厚み38μm)の一方の面に粘着剤(アクリル系粘着剤)を厚みが5μmになるよう塗布した。この粘着剤付エステル系樹脂フィルムに、ピクナル刃を用いて直径3.0mmの貫通孔を長尺方向に250mmおきに、幅方向に400mmおきに形成した。 An adhesive (acrylic adhesive) was applied to one side of an ester resin film (thickness: 38 μm) with a width of about 1,300 mm so that the thickness would be 5 μm. Through-holes having a diameter of 3.0 mm were formed in this adhesive-attached ester resin film at intervals of 250 mm in the longitudinal direction and at intervals of 400 mm in the width direction using a Pycnal blade.
 上記で得られた偏光フィルムの偏光子側に、上記粘着剤付エステル系樹脂フィルムを、ロールトゥロールで貼り合わせた。得られた実施例2-6の偏光フィルムを、表3に記載の処理条件で処理することにより、厚みおよび硬さの異なる非偏光部が形成された偏光子を備える偏光フィルムを製造した。なお、表3に記載の処理条件に関し、「NaOH処理時間」は、1mol/L(1N)の水酸化ナトリウム水溶液中に偏光フィルムを浸漬させた時間(秒)、「HCl処理時間」は1mol/L(1N)の塩酸中に偏光フィルムを浸漬させた時間(秒)、「乾燥温度」はNaOH処理およびHCl処理後の乾燥温度(℃)を意味する。 On the polarizer side of the polarizing film obtained above, the adhesive-attached ester resin film was laminated by roll-to-roll. The obtained polarizing film of Examples 2-6 was treated under the treatment conditions shown in Table 3 to produce a polarizing film having a polarizer in which non-polarizing portions having different thicknesses and hardnesses were formed. Regarding the treatment conditions described in Table 3, "NaOH treatment time" is the time (seconds) during which the polarizing film was immersed in a 1 mol/L (1N) sodium hydroxide aqueous solution, and "HCl treatment time" is 1 mol/ The time (seconds) during which the polarizing film was immersed in L (1N) hydrochloric acid, and "drying temperature" means the drying temperature (°C) after NaOH treatment and HCl treatment.
 上記で得られた積層体からエステル系樹脂フィルムを剥離除去した。続いて、実施例6に関しては、積層体のエステル系樹脂フィルムの剥離面と第1透明保護フィルムとを貼り合わせる前に、グラビアロールを備えるグラビアロール塗工方式を使用して該剥離面に易接着組成1を塗工し(塗工厚み1μm)、25℃で1分間風乾燥させた(乾燥後厚み0.7μm)。続いて、表3に記載の第1透明保護フィルムに表3に記載の各接着剤組成を塗工し、実施例2-5に関しては透明保護フィルムの各接着剤組成の塗工面と積層体のエステル系樹脂フィルム剥離面、実施例6に関しては透明保護フィルムの各接着剤組成の塗工面と易接着組成1の塗工面とそれぞれ貼合わせ、透明保護フィルム側から上記と同様の紫外線を照射して接着剤を硬化させた。硬化後の接着剤層の厚みを表3に記載した。 The ester-based resin film was peeled off from the laminate obtained above. Subsequently, with regard to Example 6, before bonding the release surface of the ester resin film of the laminate to the first transparent protective film, the release surface was easily coated using a gravure roll coating method equipped with a gravure roll. The adhesive composition 1 was applied (coating thickness: 1 μm) and air-dried at 25° C. for 1 minute (thickness after drying: 0.7 μm). Subsequently, each adhesive composition shown in Table 3 was applied to the first transparent protective film shown in Table 3, and for Examples 2-5, the coated surface of each adhesive composition of the transparent protective film and the laminate The release surface of the ester resin film, and in Example 6, the coated surface of each adhesive composition of the transparent protective film and the coated surface of the easy-adhesion composition 1 were respectively laminated, and the same ultraviolet rays as described above were irradiated from the transparent protective film side. Allow the adhesive to cure. Table 3 shows the thickness of the adhesive layer after curing.
 表3に記載の第1透明保護フィルムを構成するフィルム(1)~(5)を以下に示す。
フィルム(1);東洋鋼鈑社製アクリル系樹脂フィルム(厚み20μm)
フィルム(2);東洋鋼鈑社製アクリル系樹脂フィルム(厚み30μm)
フィルム(3);ゼオン社製ゼオノア系樹脂フィルム(厚み17μm)
フィルム(4);東洋鋼鈑社製アクリル系樹脂フィルム(厚み40μm)
フィルム(5);コニカミノルタ社製トリアセチルセルロース系樹脂フィルム(厚み40μm)
Films (1) to (5) constituting the first transparent protective film shown in Table 3 are shown below.
Film (1); acrylic resin film manufactured by Toyo Kohan Co., Ltd. (thickness: 20 µm)
Film (2): Acrylic resin film manufactured by Toyo Kohan Co., Ltd. (thickness: 30 μm)
Film (3): Zeonor-based resin film manufactured by Zeon (thickness: 17 μm)
Film (4): Acrylic resin film manufactured by Toyo Kohan Co., Ltd. (thickness: 40 μm)
Film (5): Triacetyl cellulose resin film manufactured by Konica Minolta (thickness: 40 μm)
<偏光フィルム製造>
 比較例1-2
加熱後の接着剤層の厚みが0.1μmとなるように水系接着剤(日本合成化学工業社製、商品名「ゴーセファイマーZ-200」、樹脂濃度5重量%および水分量95重量%のPVA系樹脂水溶液)を表3に記載の第1透明保護フィルムに塗工し、エステル系樹脂フィルムの剥離面に貼り合わせ、80℃に維持したオーブンで5分間加熱した。なお、水系接着剤の硬化前の粘度は10mPa・sであった。
<Polarizing film manufacturing>
Comparative Example 1-2
A water-based adhesive (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name “GOSEFIMER Z-200”, resin concentration 5% by weight and water content 95% by weight) was used so that the thickness of the adhesive layer after heating was 0.1 μm. PVA-based resin aqueous solution) was applied to the first transparent protective film shown in Table 3, attached to the release surface of the ester-based resin film, and heated in an oven maintained at 80°C for 5 minutes. The viscosity of the water-based adhesive before curing was 10 mPa·s.
 以上のようにして、第1透明保護フィルム/偏光子の構成を有する偏光フィルムを作製した。なお、第1透明保護フィルムは、図1に示す偏光フィルム10を構成する透明保護フィルム3に対応し、偏光子は図1に示す偏光フィルム10を構成する偏光子1に対応し、第1透明保護フィルムと偏光子とを接着した接着剤層が、図1に示す偏光フィルム10を構成する接着剤層2に対応する。得られた偏光フィルムの厚みおよび各物性の測定結果を表3に示す。 A polarizing film having a configuration of the first transparent protective film/polarizer was produced as described above. The first transparent protective film corresponds to the transparent protective film 3 constituting the polarizing film 10 shown in FIG. 1, the polarizer corresponds to the polarizer 1 constituting the polarizing film 10 shown in FIG. The adhesive layer that adheres the protective film and the polarizer corresponds to the adhesive layer 2 that constitutes the polarizing film 10 shown in FIG. Table 3 shows the thickness of the obtained polarizing film and the measurement results of each physical property.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表3中、偏光子の非偏光部の厚みd1(μm)、および接着剤層の非偏光部に接する部分の厚みd2(μm)、第1透明保護フィルムの厚みd3(μm)、非偏光部の硬さH1(GPa)、接着剤層の非偏光部に接する部分の硬さH2(GPa)、および透明保護フィルムの硬さH3(GPa)、非偏光部1Aを含む偏光フィルムの寸法収縮率X1については、実施例1と同様の方法により測定および評価を実施した。の、表3中、比較例2の寸法収縮率がマイナスとなっているのは、85℃-85%湿度環境下に72時間放置後に偏光フィルムが膨張したことを意味する。 In Table 3, the thickness d1 (μm) of the non-polarizing portion of the polarizer, the thickness d2 (μm) of the portion in contact with the non-polarizing portion of the adhesive layer, the thickness d3 (μm) of the first transparent protective film, the non-polarizing portion hardness H1 (GPa) of the adhesive layer, hardness H2 (GPa) of the portion in contact with the non-polarizing portion of the adhesive layer, and hardness H3 (GPa) of the transparent protective film, dimensional shrinkage of the polarizing film containing the non-polarizing portion 1A X1 was measured and evaluated in the same manner as in Example 1. In Table 3, the fact that the dimensional shrinkage rate of Comparative Example 2 is negative means that the polarizing film expanded after being left in an environment of 85° C. and 85% humidity for 72 hours.
<撮影像のゆがみ評価>
 実施例1-6および比較例1-2の偏光フィルムを85℃-85%湿度環境下に72時間放置した。放置後、各偏光フィルムが備える非偏光部に対し、格子状の線を有する入力画像を投影させた際の透過した出力画像の、非偏光部中心部に対して周辺部の格子間ピッチの増減に起因したゆがみの有無を評価した。ゆがみが無いほど、偏光フィルムの光学機能が高温高湿下でも優れることを意味する。◎はゆがみが殆ど観察されなかった場合を示し、〇は透過画像の非偏光部の周辺部が幾分曲がって見えるが実用レベルであることを示し、×は周辺部が大きくゆがんで見えることを示す。
<Evaluation of image distortion>
The polarizing films of Example 1-6 and Comparative Example 1-2 were left in an environment of 85° C. and 85% humidity for 72 hours. After being left standing, the pitch between lattices in the periphery of the non-polarizing portion of the transmitted output image when projecting an input image having grid-like lines on the non-polarizing portion of each polarizing film is increased or decreased. The presence or absence of distortion caused by It means that the less distortion, the better the optical function of the polarizing film even under high temperature and high humidity. ◎ indicates the case where almost no distortion was observed, ○ indicates that the peripheral portion of the non-polarized portion of the transmitted image appears somewhat curved, but is of a practical level, and × indicates that the peripheral portion appears greatly distorted. show.
 表2および3に記載のとおり、実施例2-6では非偏光部1Aを含む偏光フィルムの寸法収縮率X1が低く、非偏光部1Aの寸法安定性が高いため、高温高湿下でも光学機能に優れることがわかる。
 
As shown in Tables 2 and 3, in Example 2-6, the dimensional shrinkage rate X1 of the polarizing film containing the non-polarizing portion 1A is low, and the dimensional stability of the non-polarizing portion 1A is high. It can be seen that it is superior to

Claims (6)

  1.  偏光子の少なくとも一方の面に接着剤層を介して透明保護フィルムが積層された偏光フィルムであって、
     前記偏光子は、少なくとも一部に非偏光部が形成されているものであり、
     85℃-85%湿度環境下に72時間放置した後の、前記非偏光部を含む偏光フィルムの寸法収縮率X1が1.0%以下であることを特徴とする偏光フィルム。
    A polarizing film in which a transparent protective film is laminated via an adhesive layer on at least one surface of a polarizer,
    The polarizer has a non-polarizing portion formed at least in part,
    A polarizing film, wherein the dimensional shrinkage rate X1 of the polarizing film containing the non-polarizing portion after being left in an environment of 85° C. and 85% humidity for 72 hours is 1.0% or less.
  2.  前記非偏光部の硬さをH1(GPa)、前記非偏光部の厚みをd1としたとき、
     H1×d1≧0.8
    である請求項1に記載の偏光フィルム。
    When the hardness of the non-polarizing portion is H1 (GPa) and the thickness of the non-polarizing portion is d1,
    H1×d1≧0.8
    The polarizing film according to claim 1.
  3.  前記透明保護フィルムの硬さをH3(GPa)、前記透明保護フィルムの透湿度をT3(g/m)としたとき、
     H3×T3<50
    である請求項1に記載の偏光フィルム。
    When the hardness of the transparent protective film is H3 (GPa) and the moisture permeability of the transparent protective film is T3 (g/m 2 ),
    H3×T3<50
    The polarizing film according to claim 1.
  4.  前記接着剤層の前記非偏光部に接する部分の硬さをH2(GPa)、厚みをd2(μm)としたとき、
     H2×d2≧0.20
    である請求項1に記載の偏光フィルム。
    When the hardness of the portion of the adhesive layer in contact with the non-polarizing portion is H2 (GPa) and the thickness is d2 (μm),
    H2×d2≧0.20
    The polarizing film according to claim 1.
  5.  前記偏光子の前記非偏光部以外の部分と前記透明保護フィルムとの間の接着剤層厚みが2μm以下である請求項1に記載の偏光フィルム。 The polarizing film according to claim 1, wherein the thickness of the adhesive layer between the portion of the polarizer other than the non-polarizing portion and the transparent protective film is 2 µm or less.
  6.  請求項1に記載の偏光フィルムを備え、前記偏光フィルムの前記非偏光部がセンサー部に対応する位置に配置されていることを特徴とする画像表示装置。
     
    An image display device comprising the polarizing film according to claim 1, wherein the non-polarizing portion of the polarizing film is arranged at a position corresponding to the sensor portion.
PCT/JP2022/025540 2021-06-30 2022-06-27 Polarizing film and image display device WO2023276936A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280032369.3A CN117321461A (en) 2021-06-30 2022-06-27 Polarizing film and image display device
JP2023531925A JPWO2023276936A1 (en) 2021-06-30 2022-06-27
KR1020237031772A KR20240025500A (en) 2021-06-30 2022-06-27 Polarizing film and image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021109075 2021-06-30
JP2021-109075 2021-06-30

Publications (1)

Publication Number Publication Date
WO2023276936A1 true WO2023276936A1 (en) 2023-01-05

Family

ID=84689895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025540 WO2023276936A1 (en) 2021-06-30 2022-06-27 Polarizing film and image display device

Country Status (5)

Country Link
JP (1) JPWO2023276936A1 (en)
KR (1) KR20240025500A (en)
CN (1) CN117321461A (en)
TW (1) TW202309564A (en)
WO (1) WO2023276936A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017194568A (en) * 2016-04-20 2017-10-26 日東電工株式会社 Polarizing plate and method for manufacturing the same, and image display device using the polarizing plate
JP2018028563A (en) * 2016-08-15 2018-02-22 日東電工株式会社 Polarizing plate, method of manufacturing the same, and image display device having the same
JP2018031954A (en) * 2016-08-26 2018-03-01 日東電工株式会社 Polarizing plate and method for manufacturing the same, and image display device using polarizing plate
JP2018072545A (en) * 2016-10-28 2018-05-10 日東電工株式会社 Polarizer and method for manufacturing the same
JP2018156010A (en) * 2017-03-21 2018-10-04 日東電工株式会社 Method for manufacturing polarizer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150086159A (en) 2014-01-17 2015-07-27 주식회사 엘지화학 Preparing method for polarizer having locally depolarizied area, polarizer and polarizing plate manufactured by using the same
JP6214594B2 (en) 2014-04-25 2017-10-18 日東電工株式会社 Polarizer, polarizing plate and image display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017194568A (en) * 2016-04-20 2017-10-26 日東電工株式会社 Polarizing plate and method for manufacturing the same, and image display device using the polarizing plate
JP2018028563A (en) * 2016-08-15 2018-02-22 日東電工株式会社 Polarizing plate, method of manufacturing the same, and image display device having the same
JP2018031954A (en) * 2016-08-26 2018-03-01 日東電工株式会社 Polarizing plate and method for manufacturing the same, and image display device using polarizing plate
JP2018072545A (en) * 2016-10-28 2018-05-10 日東電工株式会社 Polarizer and method for manufacturing the same
JP2018156010A (en) * 2017-03-21 2018-10-04 日東電工株式会社 Method for manufacturing polarizer

Also Published As

Publication number Publication date
KR20240025500A (en) 2024-02-27
JPWO2023276936A1 (en) 2023-01-05
CN117321461A (en) 2023-12-29
TW202309564A (en) 2023-03-01

Similar Documents

Publication Publication Date Title
JP6122337B2 (en) Polarizing film and method for manufacturing the same, optical film and image display device
WO2015030203A1 (en) Curable adhesive for polarizing films, polarizing film, optical film and image display device
KR101769221B1 (en) Actinic radiation curable adhesive composition, polarizing film and manufacturing process therefor, optical film and image display device
JP6481059B2 (en) Polarizing film and method for manufacturing the same, optical film and image display device
JP7214397B2 (en) Polarizers, polarizing films, optical films, and image display devices
CN109536046B (en) Curing adhesive for polarizing film, optical film, and image display device
WO2023276936A1 (en) Polarizing film and image display device
WO2023276931A1 (en) Polarizing film and image display device
WO2023276932A1 (en) Polarizing film and image display device
WO2021124905A1 (en) Composite polarization plate and liquid crystal display device
JP2018092187A (en) Polarizing film and production method of the same, optical film and image display device
JP2017134413A (en) Polarizing film and production method of the same, optical film, and image display device
JP7265882B2 (en) Method for producing polarizing film, polarizer with easy-adhesion layer, polarizing film, optical film, and image display device
CN114591706A (en) Adhesive composition for polarizing film, optical film, and image display device
WO2023157404A1 (en) Production method for polarizing film
CN112334800A (en) Polarizer, polarizing film, optical film, and image display device
JP7213037B2 (en) Polarizers, polarizing films, optical films, and image display devices
WO2022209042A1 (en) Curable water dispersion composition, optical film, and image display device
JP7179802B2 (en) Polarizing film, optical film, and image display device
JP7336319B2 (en) Method for manufacturing polarizing film
JP7297608B2 (en) Method for manufacturing polarizing film
JP6609075B2 (en) Polarizing film and method for manufacturing the same, optical film and image display device
JP7176829B2 (en) Polarizing film, optical film, and image display device
WO2022071387A1 (en) Polarizing film, optical film, and image display device
CN112440536A (en) Method for manufacturing laminated optical film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22833083

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023531925

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE