WO2022230856A1 - 工作機械用装置および工作機械 - Google Patents

工作機械用装置および工作機械 Download PDF

Info

Publication number
WO2022230856A1
WO2022230856A1 PCT/JP2022/018833 JP2022018833W WO2022230856A1 WO 2022230856 A1 WO2022230856 A1 WO 2022230856A1 JP 2022018833 W JP2022018833 W JP 2022018833W WO 2022230856 A1 WO2022230856 A1 WO 2022230856A1
Authority
WO
WIPO (PCT)
Prior art keywords
machine tool
rotating
functional
connector
unit
Prior art date
Application number
PCT/JP2022/018833
Other languages
English (en)
French (fr)
Inventor
誠 藤嶋
悠太 渡邊
誠 石塚
一之 山本
絢一郎 奥野
隆志 井上
Original Assignee
Dmg森精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dmg森精機株式会社 filed Critical Dmg森精機株式会社
Publication of WO2022230856A1 publication Critical patent/WO2022230856A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/24Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q5/00Driving or feeding mechanisms; Control arrangements therefor
    • B23Q5/02Driving main working members
    • B23Q5/04Driving main working members rotary shafts, e.g. working-spindles

Definitions

  • the present invention relates to a device for a machine tool that can be attached to, detached from, and rotated by the machine tool.
  • Machine tools include a machine that processes a workpiece with a tool attached to its spindle, a machine that processes a workpiece by rotating a workpiece with multiple tools attached to a turret, and a machine that performs additional machining while melting the material with a laser.
  • multi-tasking machines equipped with
  • Patent Document 1 a device for machine tools that can be attached to and detached from a machine tool.
  • Patent Document 1 discloses a machine tool camera as a machine tool device that can be attached to and detached from a machine tool.
  • a machine tool camera since there is no power supply for supplying power to a mounting portion for mounting a tool of a machine tool, a battery is incorporated in the machine tool camera. Therefore, the machine tool camera tends to be large.
  • FIG. 1 is a perspective view of an example machine tool device that is attachable to and rotatable from a machine tool;
  • FIG. 4 is a cross-sectional view of a mounting portion, a mounting mechanism, and a rotating mechanism of the machine tool device; 1 is a cross-sectional view of wiring, electrical and optical components in a machine tool device;
  • FIG. FIG. 4 is a cross-sectional view of the cable housing portion and the winding portion at a rotation angle of 0 degrees; It is a cross-sectional view of the cable housing portion and the winding portion at a rotation angle of 360 degrees.
  • FIG. 3 is a configuration diagram of an electrical circuit included in the mounting portion and the machine tool device;
  • FIG. 10 is a diagram showing a replaceable functional part; 1 is an external view of a machine tool;
  • FIG. 3 is a configuration diagram of an integrated circuit in a functional section;
  • a machine tool device and a machine tool that are detachable and rotatable to and from a machine tool according to the embodiment will be described below with reference to the drawings.
  • the same components are denoted by the same reference numerals.
  • ⁇ Machine tools In this embodiment, in the process of machining based on an NC (Numerical Control) program, when changing tools based on the NC program, the tool to be used next is changed by a tool changer (ATC (Automatic Train Control)).
  • a machine tool capable of automatically attaching a tool to a mounting portion of the machine tool (for example, the tip of a spindle head or a turret) will be described.
  • a machine tool has a mounting portion to which a tool can be mounted to machine a work and to which a machine tool device can be detachably mounted.
  • FIG. 8 is an external view of the machine tool.
  • the illustrated machine tool example is a vertical machining center.
  • the machine tool has a bed 802 and a column 804 installed on the bed 802 .
  • a spindle head 806 is attached to the column 804 .
  • the spindle head 806 is movable in the Z-axis direction (vertical direction).
  • a mounting portion 100 is provided at the tip of the spindle head 806 .
  • Mounting portion 100 includes a main shaft 106 therein.
  • the main shaft 106 is rotatable around a rotation axis extending in the Z-axis direction.
  • a tool (not shown) is attached to the attachment portion 100 (spindle 106).
  • a machine tool device 600 can also be attached to the mounting portion 100 .
  • the bed 802 is equipped with a saddle 810 movable in the Y direction.
  • a table 814 movable in the X direction is installed on the saddle 810 .
  • a workpiece to be processed and measured is placed on the table 814 .
  • the machine tool moves the saddle 810 and the table 814 in the XY directions to change the relative positions of the workpiece and the machine tool device 600 .
  • the machine tool changes the distance between the workpiece and the machine tool device 600 by vertically moving the spindle head 806 .
  • the machine tool device 600 which is detachable and rotatable from the machine tool, can be automatically detached from the mounting portion of the machine tool by means of the tool changer.
  • the machine tool of this embodiment is an example, and is not limited to the configuration described above.
  • the machine tool device 600 that can be attached to and detached from the machine tool and that can be rotated includes, for example, an imaging device, a touch probe, a laser scanner, an angle head, a tool with an angle head, an electric tool, a tool with a function, an ultrasonic generator, and a laser oscillator. etc., and each performs its predetermined function.
  • Imaging devices include an imaging device for observation, an imaging device for measurement, and the like. Below, the imaging device for measurement is called "image probe.”
  • a general machine tool tool such as a drill can also be attached to the attachment portion of the machine tool in this embodiment.
  • the machine tool device 600 has an internal module driven by electric power.
  • intra-apparatus modules include electrical components such as image sensors (imaging devices), various sensors such as temperature sensors and piezoelectric sensors, and oscillators such as laser oscillators and millimeter wave oscillators.
  • Another example of intra-device modules is mechanical parts such as actuators and motors.
  • examples of intra-apparatus modules may be circuits such as LSI (Large Scale Integration) and CPU (Central Processing Unit). The intra-apparatus module is included in a functional unit, which will be described later.
  • the machine tool device 600 When using the machine tool device 600, it is necessary to supply power to the modules in the device that are driven by power.
  • the machine tool device 600 is an imaging device, it has an imaging unit including an image sensor (for example, CMOS (Complementary MOS)) and an electric circuit for controlling the image sensor as an internal module within the functional unit.
  • the image sensor and electric circuit in the imaging unit operate based on power supplied from the outside.
  • Power supplied from the outside is preferably supplied using a technology (PoE (Power Over Ethernet) technology) for transmitting data and power through a cable used in Ethernet wiring.
  • PoE Power Over Ethernet
  • the image pickup by the image pickup unit is performed by receiving an operation instruction for image pickup transmitted from the above-mentioned cable to the CPU, which is an electric circuit, and transmitting a charge transmission control signal from the CPU to the image sensor.
  • the captured image data is transmitted to the outside of the machine tool device 600 (for example, an NC device inside the machine tool or another device outside the machine tool) via the cable described above.
  • the device 600 can be made smaller than a machine tool device with a built-in battery or a machine tool device that uses wireless power supply. be possible. As the size of the machine tool device increases, the possibility of interference occurring in the machine tool increases.
  • Wi-Fi is an example of a wireless LAN.
  • Wi-Fi it takes time to establish a wireless communication channel between a machine tool machine and a device that communicates with it.
  • transmission and reception may be delayed due to congestion of radio waves, etc., and the real-time communication when operating the machine tool device from the outside is deteriorated.
  • the size of the machine tool device 600 can be reduced. Based on these, it is assumed below that the machine tool and the machine tool device 600 are connected using the PoE technology.
  • FIG. 1 is a perspective view of an example machine tool apparatus 600 that is attachable to and rotatable from a machine tool.
  • the machine tool device 600 is a device that is detachably and rotatably attached to a mounting portion of a machine tool and that performs a predetermined function as described above.
  • the machine tool device 600 in this example is an image probe that is attached to a machine tool and used to image a workpiece.
  • the machine tool device 600 is electrically connected to the machine tool by a connector, so that it is possible to supply power and communicate by wire.
  • the machine tool device 600 has a shank 202 on the base side.
  • the machine tool device 600 is attached to the attachment portion 100 by fitting the shank 202 onto the spindle 106 of the machining center.
  • a machining center will be described as an example of a machine tool.
  • the mounting method is the same as for the cutting tool.
  • a machine tool tool changer may grasp the gripper 204 to move the machine tool assembly 600 and attach it to the spindle 106 .
  • the mounting portion 100 is an example of a “machine tool mounting portion” that includes a spindle 106 and to which a machine tool device 600 is mounted. If the machine tool is a turning center, the turret corresponds to the "mounting part of the machine tool".
  • the machine tool device 600 may be attached to the turret to image the workpiece. Also, the machine tool device 600 may be attached to the multitasking machine. In either case, the machine tool device 600 is detachably and rotatably attached to the "mounting portion of the machine tool.”
  • the machine tool device 600 includes a functional section 400 on the front side.
  • the functional unit 400 incorporates an operating unit that allows the machine tool device 600 to perform a predetermined function.
  • an imaging unit, a lens unit, and lighting equipment are incorporated.
  • the machine tool device 600 has a connecting portion not shown in FIG. 1, but the connecting portion will be described later with reference to FIG.
  • the grip part 204 and the functional part 400 rotate together.
  • the functional unit 400 can change its orientation within a range of 0 degrees to 360 degrees around the optical axis. In other words, it is possible to pick up images while changing the orientation within the range of 0 to 360 degrees.
  • the rotation axis of the main shaft 106 is the center line of the cylindrical main shaft 106 .
  • the optical axis of functional unit 400 coincides with the extension of the rotation axis of main shaft 106 .
  • the machine tool device 600 includes a stationary part 500 .
  • the fixed part 500 is fixedly attached to the attachment part 100 . Therefore, when the main shaft 106 rotates, the stationary part 500 does not rotate together with the rotating part 601 .
  • the cylindrical portion 502 of the fixed portion 500 functions as a housing that supports the rotating portion 601 so that it can rotate.
  • the fixed portion 500 has an extension portion 508 protruding from the side surface of the cylindrical portion 502 .
  • the extension portion 508 is locked (engaged and locked) to the locking block 108 protruding from the front cover 102 of the mounting portion 100 .
  • Locking block 108 is a non-rotating member in mounting portion 100 .
  • Locking block 108 may be referred to as a fixed portion, a non-rotating portion, or a locking portion.
  • Extension 508 and locking block 108 prevent locking portion 500 from co-rotating. That is, the fixed part 500 is fixedly attached to the attachment part 100 . Means of locking are described in connection with FIG.
  • the locking block 108 and the extension 508 are provided with electrical contact means. Signal lines and power lines are secured by this contact means. Contact means are described in connection with FIG.
  • the communication and power supply in this example shall comply with the PoE (Power over Ethernet) standard. PoE is based on the Ethernet, and has specifications that allow power to be supplied. Ethernet is a kind of wired LAN (Local Area Network) standard.
  • the front cover 102, the housing 104 and the lock block 108 of the mounting portion 100 and the fixed portion 500 (cylindrical portion 502 and extension portion 508) of the machine tool device 600 do not rotate.
  • the rotation direction of the main shaft 106 (arrow 205) and the rotation direction of the functional unit 400 (arrow 401) are the same.
  • the rotating direction of the functional part 400 is the same as the rotating direction of the rotating part 601 (see FIG. 2) in the machine tool device 600 .
  • a first orthogonal direction and a second orthogonal direction that are orthogonal to the rotation axis direction are set.
  • the length of the electric circuit board 444 in the rotation axis direction is longer than the length of the electric circuit board 444 in the first orthogonal direction.
  • the longitudinal direction of the electric circuit board 444 corresponds to the rotating shaft direction, and the short direction of the electric circuit board 444 corresponds to the first orthogonal direction.
  • the second orthogonal direction corresponds to the thickness direction of the electric circuit board 444 .
  • FIG. 2 is a cross-sectional view of the mounting portion 100 and the mounting mechanism and rotation mechanism of the machine tool device 600 .
  • the attachment mechanism and rotation mechanism are mainly shown, and the electrical and optical configurations are omitted. Wiring, electrical and optical components, etc. within machine tool apparatus 600 are described below in connection with FIG.
  • the main shaft 106 is rotatably supported by the housing 104 and rotated by being driven by a servomotor.
  • a front cover 102 is provided at the front end of the mounting portion 100 and covers the housing 104 .
  • a front end of the main shaft 106 protrudes from a hole in the front cover 102 .
  • a machine tool device 600 includes a rotating portion 601 composed of a shank portion 200 and a connecting portion 300 .
  • the rotating part 601 is rotatably attached to the attachment part 100 .
  • the functional portion 400 is attached to the rotating portion 601 . Accordingly, the functional portion 400 rotates in the same direction as the rotating portion 601 as the rotating portion 601 rotates.
  • the shank portion 200 includes a shank 202 fixed to the spindle 106 and a grip portion 204 to be gripped by the tool changer.
  • the connecting portion 300 is fixed to the shank portion 200 with a tool holder mounting bolt 302 .
  • the connecting portion 300 is supported inside the fixed portion 500 so as to rotate.
  • the functional part 400 is fixed to the connecting part 300 with bolts 402 . Therefore, the functional section 400 is attachable to and detachable from the rotating section 601 .
  • the functional unit 400 may be detachable by a fitting mechanism of a mechanical mechanism.
  • the connecting portion 300 has a third connector 340 on a surface that contacts the functional portion 400
  • the functional portion 400 has a fourth connector 440 at a position facing the third connector 340 .
  • the third connector 340 and the fourth connector 440 are joined.
  • Both the third connector 340 and the fourth connector 440 are connectors for Ethernet.
  • Spring connectors may be used as the third connector 340 and the fourth connector 440 .
  • the contact parts are not limited to this example.
  • the machine tool device 600 comprises a fixed portion 500 consisting of a cylindrical portion 502 and an extension portion 508 .
  • Cylindrical portion 502 of fixed portion 500 rotatably supports coupling portion 300 by first bearing 504 and second bearing 506 .
  • the cylindrical portion 502 corresponds to a housing that accommodates the rotating connecting portion 300 as a mechanical element.
  • a cylindrical positioning portion 510 is provided on the extension portion 508 of the fixing portion 500 .
  • the positioning part 510 fits into the non-rotating part 110 formed on the locking block 108 of the mounting part 100, serves as a guide during mounting, and fixes the fixing part 500 so that it does not rotate.
  • locking block 108 has first connector 120 on the surface in contact with extension portion 508
  • extension portion 508 has second connector 520 at a position facing first connector 120
  • positioning portion 510 is non-removable. When inserted into the rotating portion 110, the first connector 120 and the second connector 520 are joined.
  • the second connector 520 included in the fixed part 500 is an example of "the first receiving part included in the fixed part 500".
  • a second connector 520 receives electricity from the mounting portion 100 .
  • Both the first connector 120 and the second connector 520 are connectors for Ethernet.
  • Spring connectors may be used as the first connector 120 and the second connector 520 .
  • the contact parts are not limited to this example. Details will be described later with reference to FIG.
  • FIG. 3 is a cross-sectional view of the wiring, electrical and optical components within machine tool apparatus 600 .
  • An Ethernet cable and an Ethernet connector are used as wiring for Ethernet communication and PoE power supply. Specifications of Ethernet cables and Ethernet connectors are defined as standards.
  • the first connector 120, the second connector 520, the third connector 340, and the fourth connector 440 are all Ethernet connectors and are connected to Ethernet cables.
  • Spring connectors may be used as the first connector 120 , the second connector 520 , the third connector 340 and the fourth connector 440 .
  • the contact parts are not limited to this example.
  • the second connector 520 of this embodiment is a male connector with eight contact pins.
  • the first connector 120 is a female connector with eight contact holes.
  • the second connector 520 and the first connector 120 are brought together so that each contact pin fits into each contact hole.
  • the second connector 520 and the first connector 120 are connected.
  • an example of an 8-pin connector is shown, but a connector with 9 or more pins may be used, or a connector with 7 or less pins may be used. Since Ethernet communication and PoE can be realized with at least four lines, connectors with four or more pins can be used. For example, a 4-pin connector may be used.
  • the first connector 120 on the machine tool side is a female connector, there is an aspect that foreign objects such as metal chips are less likely to get caught.
  • the relationship between males and females may be reversed. That is, the second connector 520 may be a female connector with eight contact holes and the first connector 120 may be a male connector with eight contact pins.
  • the contact pins and contact holes have the functions of power terminals and communication terminals.
  • Either of the third connector 340 and the fourth connector 440 can be male and which can be female.
  • the numbers of contact pins and contact holes are the same as those of the first connector 120 and the second connector 520 .
  • the contact pins and contact holes have the functions of power terminals and communication terminals.
  • PSE Power Sourcing equipment
  • PD Powered device
  • FIG. 1 A wiring electrically connects the PSE (Power Sourcing equipment) module on the mounting unit 100 side and the PD (Powered device) module on the functional unit 400 side.
  • PSE refers to power supply equipment in PoE.
  • mounting portion 100 is a PSE.
  • a PSE module is an electric circuit for realizing the power supply function and communication function of the PSE.
  • PD refers to a power receiving device in PoE.
  • machine tool device 600 is a PD.
  • a PD module is an electric circuit for realizing the power receiving function and communication function of the PD. The PSE module and PD module are described below in connection with FIG.
  • An Ethernet cable 122 connected to the PSE module is connected to the first connector 120 through the interior of the lock block 108 .
  • An Ethernet cable 522 connected to a second connector 520 connected to the first connector 120 is connected to the interior of the connecting portion 300 through a wiring path 524 and a cable accommodating portion 526 .
  • the fixed portion 500 includes a cable housing portion 526 .
  • the cable housing portion 526 is in the wiring path connecting the second connector 520 (an example of the “first receiving portion”) and the PD module.
  • the cable accommodating portion 526 forms an annular space around the rotation axis of the rotating portion 601 at the boundary of the fixed portion 500 and the rotating portion 601 (see FIGS. 4 and 5).
  • the cable accommodating portion 526 accommodates the Ethernet cable 522 wound multiple times.
  • the multiple turns of the Ethernet cable 522 are also provided with leeway, as will be described below in connection with FIG. That is, in the cable accommodating portion 526 , a gap is provided so that the shape of the cable 522 wound multiple times can be changed according to the rotation angle of the rotating portion 601 .
  • Coupling portion 300 comprises a winding portion 304 having a gripping portion 306 .
  • An intermediate portion of the Ethernet cable 522 leading from the cable accommodating portion 526 to the inside of the connecting portion 300 is gripped by the gripping portion 306 of the connecting portion 300 (held in a gripped state).
  • the gripping portion 306 is provided inside the winding portion 304 forming an annular space integral with the cable housing portion 526 and rotates as a part of the rotating portion 601 . Thereby, the gripping portion 306 acts to move the middle portion of the Ethernet cable 522 in a circular shape.
  • the end of the Ethernet cable 522 fixed to the grip portion 306 is connected to the third connector 340 provided on the end surface of the connecting portion 300 through the wiring path 324 leading forward from the winding portion 304 .
  • the cable housing portion 526, the gripping portion 306 and the wrapping portion 304 are described below in connection with FIGS.
  • An Ethernet cable 442 connected to a fourth connector 440 that joins with the third connector 340 is connected to an electric circuit board 444 through a wiring path 424 .
  • Each transmission line included in Ethernet cable 442 connects to a PD module in electrical circuit board 444 . Therefore, when the first connector 120 of the mounting portion 100 and the second connector 520 of the machine tool device 600 are joined together, the PD module and the PSE module are electrically connected. This allows the PSE module to detect the PD module, perform initialization operations in the PSE module and the PD module, and enable power supply and communication between the PSE module and the PD module.
  • the functional unit 400 has an imaging unit 446 and a lens unit 448 as optical components.
  • the imaging unit 446 includes an image sensor (eg, CMOS) that visualizes the received light.
  • Lens unit 448 is composed of a plurality of lenses. The lens unit 448 extends in the rotation axis direction. Lens unit 448 is, for example, a telecentric lens.
  • a lens cover 450 is attached to the tip of the functional portion 400 with a bolt 452 .
  • the functional unit 400 is further provided with a coaxial epi-illumination 454 and a ring illumination 456 . Either or both of the coaxial epi-illumination 454 and the ring illumination 456 emit light during imaging.
  • the electric circuit board 444, the imaging unit 446, the lens unit 448, the coaxial epi-illumination 454, and the ring illumination 456 are operated by power supplied by PoE.
  • an example of the functional unit 400 is an imaging unit including an imaging device (CMOS) and a lens unit 448, which is a so-called camera.
  • the electric circuit board 444 extends in the rotation axis direction along the shape of the lens unit 448 .
  • the lens unit 448 and the electric circuit board 444 are arranged side by side in the second orthogonal direction. That is, the electrical circuit board 444 is arranged alongside (besides) the lens unit 448 for placing the third integrated circuit (see FIG. 9).
  • FIG. 4 is a cross-sectional view of the cable housing portion 526 and the winding portion 304 at a rotation angle of 0 degrees.
  • FIG. 4 shows a cross section of the cable housing portion 526 and the winding portion 304 viewed from the mounting portion 100 side.
  • the cable accommodating portion 526 forms an annular space around the rotation axis of the rotating portion 601 at the boundary between the fixed portion 500 and the rotating portion 601 .
  • the cable accommodating portion 526 accommodates the Ethernet cable 522 wound multiple times (five times in this example).
  • the space of the cable accommodating portion 526 provided in the fixed portion 500 has a width sufficient to accommodate the Ethernet cable 522 about ten turns. In other words, the multiple turns of the Ethernet cable 522 are provided with a margin of space.
  • Winding portion 304 The winding portion 304 provided in the connecting portion 300 forms an annular space that is not separated from the space of the cable accommodating portion 526 .
  • the space of the winding portion 304 can accommodate the Ethernet cable 522 for one turn.
  • a gripping portion 306 provided on the winding portion 304 grips an intermediate portion of the Ethernet cable 522 .
  • Cable housing portion 526 does not rotate, but winding portion 304 rotates as part of rotating portion 601 . Therefore, when the rotating portion 601 and the functional portion 400 rotate 360 degrees, the gripping portion 306 makes a full circle.
  • the shape of the Ethernet cable 522 will be described along the flow from the wiring path 524 side of the fixing portion 500 to the wiring path 324 side of the connecting portion 300 .
  • the Ethernet cable 522 entering from the wiring path 524 goes around the inside of the cable accommodating portion 526 five times from the outside to the inside of the space.
  • the Ethernet cable 522 can be bent in the cable accommodating portion 526 with sufficient margin.
  • a portion that has been moved into the winding portion 304 after making five turns is gripped by the gripping portion 306 .
  • the other end changes direction, passes through the wiring path 324 , and is connected to the third connector 340 .
  • rotation angle 0 degrees As shown in FIG. 4, when the gripper 306 is closest to the entrance from the wiring path 524, the rotation angle is assumed to be 0 degrees. When the rotation angle is 0 degrees, the Ethernet cable 522 inside the cable accommodating portion 526 is located on the outside, and the Ethernet cable 522 is not wound inside the winding portion 304 .
  • FIG. 5 is a cross-sectional view of the cable housing portion 526 and the winding portion 304 at a rotation angle of 360 degrees.
  • the third connector 340, the fourth connector 440, the wiring path 424, the Ethernet cable 442 and the electric circuit board 444 return to the original left side as in FIG.
  • the Ethernet cable 522 is wound around the winding portion 304 once.
  • the Ethernet cable 522 in the cable accommodating portion 526 is moved inward. Since the Ethernet cable 522 is wound loosely, excessive tension is not applied to any part of the Ethernet cable 522 even when the rotating part 601 rotates.
  • the cable accommodating portion 526 has a gap in the cable 522 that is wound a plurality of times. Therefore, as shown in FIG.
  • the shape of the cable 522 can be changed. Therefore, it is possible to rotate the rotating portion 601 and the functional portion 400 within the range of 0 to 360 degrees without applying excessive force to the Ethernet cable 522 . Even if the rotating part 601 and the functional part 400 rotate, the Ethernet cable 522 in the wiring path 524, the Ethernet cable 522 in the wiring path 324, and the Ethernet cable 422 in the wiring path 424 do not change their shapes. Only the portion of the Ethernet cable 522 included in the cable housing portion 526 and the winding portion 304 changes its shape as it rotates.
  • FIG. 6 is a configuration diagram of an electric circuit included in the mounting portion 100 and the machine tool device 600.
  • mounting portion 100 is a PSE and has PSE module 760 .
  • the PSE module 760 is an electric circuit for realizing the PSE power supply function and communication function.
  • the machine tool device 600 is a PD and has a PD module 460 .
  • the PD module 460 is an electric circuit for realizing the power receiving function and communication function of the PD.
  • the PSE module 760 and PD module 460 are connected by the above wiring (Ethernet cable 122, first connector 120, second connector 520, Ethernet cable 522, third connector 340, fourth connector 440 and Ethernet cable 442).
  • Bidirectional communication between the PSE module 760 and the PD module 460 and power supply from the PSE module 760 to the PD module 460 are performed through this wiring.
  • the number of transmission lines of each Ethernet cable and the number of pins of each connector are the same.
  • the number of transmission lines and pins is eight, for example. However, it may be nine or more, or may be seven or less. According to Ethernet communication and PoE standards, four or more wires are sufficient.
  • FIG. 6 only two lines, that is, power lines indicated by thick lines and communication lines indicated by thin lines are drawn for convenience, but more transmission lines are included in the implementation.
  • PSE module 760 comprises communication circuitry 762 and power supply circuitry 764 .
  • the communication circuit 762 mainly controls communication according to the Ethernet communication standard.
  • the power supply circuit 764 mainly controls power supply according to the PoE standard.
  • PD module 460 includes communication circuitry 462 and power receiving circuitry 464 .
  • the communication circuit 462 mainly controls communication according to the Ethernet communication standard.
  • the power receiving circuit 464 controls power reception mainly in accordance with the PoE standard.
  • a PD module 460 is provided in the functional unit 400 .
  • the PSE module 760 of the attachment portion 100 detects the PD module 460 of the machine tool device 600, and the PSE module 760 and the PD module 460 perform predetermined initialization operations.
  • power supply from the PSE module 760 to the PD module 460 is started.
  • a power supply circuit 764 of the PSE module 760 obtains power from an external power supply or the like, and outputs DC power according to the PoE standard through the above wiring (transmission path).
  • the PD module 460 receives the DC power through the wiring.
  • the power supply circuit 480 receives DC power from the power receiving circuit 464 and distributes the DC power to the main circuit 470, the imaging unit 446, the lens unit 448, the coaxial epi-illumination 454, and the ring illumination 456, respectively. In other words, the power supply circuit 480 supplies necessary power to each internal module included in the functional unit 400 .
  • the main circuit 470 includes a CPU 472 and a memory 474, and performs control processing for realizing the functions of the functional unit 400 (for example, photographing of a workpiece according to remote control). Note that descriptions of regulators, transformers, and the like are omitted.
  • the machine tool device 600 receives an image pickup instruction signal from the machine tool side, and sends image data picked up in response to the signal to the machine tool side.
  • the communication circuit 762 of the PSE module 760 transmits an imaging instruction signal to the PD module 460 using the wiring (transmission path) described above.
  • the communication circuit 462 of the PD module 460 receives the imaging instruction signal, it transfers the imaging instruction signal to the CPU 472 of the main circuit 470 .
  • the main circuit 470 controls the imaging unit 446 , the lens unit 448 , the coaxial epi-illumination 454 and the ring illumination 456 in response to an imaging instruction from the machine tool side to perform an imaging operation, and obtains image data from the imaging unit 446 .
  • the operation of the main circuit 470 is realized by the CPU 472 sequentially executing programs stored in the memory 474 .
  • the main circuit 470 causes the image data to be transmitted from the PD module 460 to the machine tool side.
  • the PD module 460 communication circuit 462 transmits the image data to the PSE module 760 using the wiring described above.
  • a communication circuit 762 of the PSE module 760 receives the image data and acquires the image data on the machine tool side.
  • the imaging instruction is transmitted as an electrical signal from the mounting section 100 to the functional section 400 via the fixing section 500 via wiring.
  • a preferred form of the wiring in this embodiment is a LAN cable, a part of which is arranged in the fixing portion 500 .
  • the PSE module 760 described above is an example of a "sending part that sends electricity to the second receiving part".
  • “Electricity” here refers to electric power or signals.
  • the "transmitting part for transmitting electricity to the second receiving part” may transmit power and signals, or may transmit only power or only signals.
  • the second connector 520 is an example of "a first receiving portion that receives electricity from the mounting portion 100".
  • the fourth connector 440 is an example of "a second receiving part that receives electricity sent from a sending part (for example, the PSE module 760) of the mounting part 100 and passing through the first receiving part".
  • the communication circuit 462 is an example of an "electric circuit” when communicating
  • the power receiving circuit 464 is an example of an "electric circuit” when receiving power.
  • FIG. 7 is a diagram showing a replaceable functional unit 400.
  • the functional section 400a which is an imaging device having a lens unit 448 with a length of L1
  • the functional unit 400b which is an imaging device having a lens unit 448 with L2 longer than L1.
  • the functional part 400 b to be replaced can be fixed to the rotating part 601 with bolts 402 .
  • the functional portion 400b may be fixed to the rotating portion 601 by a fitting mechanism of a mechanical mechanism. In this way, different functional units 400 can be exchanged.
  • an image sensor such as a CMOS, a lens unit 448, an illumination device, and the like is shown as an example of the functional unit 400, but the functional unit 400 is not limited to this example.
  • the imaging unit that is the functional unit 400 may be an imaging unit for measurement (measurement probe) or an imaging unit for observation.
  • the functional unit 400 may be a laser scanner unit, a laser generator, an angle head, or the like.
  • functional part 400 may be a tool.
  • Wired communication may be performed by a method other than Ethernet.
  • Wired power supply may be performed by a method other than PoE.
  • wireless power supply or a battery may be used as power means, and only communication may be performed by wire.
  • a wireless medium such as Wi-Fi may be used as communication means, and only power may be supplied by wire.
  • the machine tool device 600 Since the machine tool device 600 is connected to the machine tool by wire, power supply from the outside (for example, 10 W or more) and stable high-speed communication with the outside (100 Mbps or higher) are possible. As a result, the machine tool device 600 can be used without interruption of communication or delay.
  • a larger lens unit 448 is used compared to an image probe for observation, which makes the image probe larger. It can contribute to miniaturization. If the imaging probe is large, the distance between the imaging probe and the work becomes short, which causes the problem of narrowing the imaging range.
  • a camera imaging unit
  • camera calibration it is necessary to calibrate the camera (camera calibration) in order to correct the positional deviation between the mounting unit 100 and the camera optical axis.
  • a calibration plate printed with a predetermined pattern is used. By obtaining the relative positional relationship between the calibration plate and the camera, the positional deviation between the mounting portion 100 and the camera optical axis is corrected.
  • a calibration plate is set at an arbitrary position within the processing chamber of the machine tool (the space containing the mounting portion 100 and the workpiece). However, it is assumed that the position and orientation of the calibration plate are specified. Then, a camera captures an image of the calibration plate set in this manner. A predetermined pattern of the calibration plate reflected in the resulting captured image is extracted, image analysis is performed on the extracted predetermined pattern, and the angle of the camera, that is, the camera, is determined based on the degree of deformation of the shape of the predetermined pattern. Identify the direction of the optical axis. Since the position of the mounting portion 100 at this time is known, the relative positional relationship between the mounting portion 100 and the camera can be calculated. Then, when the camera is actually used for measurement, the position of the camera and the direction of the camera optical axis are specified based on the position with respect to the mounting portion 100 at that time, and the posture of the camera at that time is considered. measurement value can be corrected.
  • a movement mechanism that carries the calibration plate to a predetermined position near the camera like a tool presetter arm is used.
  • a movement mechanism that carries the calibration plate to a predetermined position near the camera like a tool presetter arm.
  • an arm is fixed to a rotatable shaft, and a calibration plate is held at the tip of the arm in a predetermined posture. Then, by rotating the shaft, the calibration plate is moved to a predetermined position near the camera and rests facing a predetermined direction. Therefore, there is no need to move the camera. Since the position and orientation of the camera are known, the calibration plate facing a predetermined direction and standing still at a predetermined position is imaged, and the image analysis of the predetermined pattern reflected in the captured image is performed. , it is possible to identify the direction of the camera optical axis.
  • the machine tool, the machine tool device 600, and other devices of the present disclosure are realized not only by mechanical elements but also by cooperation with hardware resources such as processors, memories, and programs.
  • the functional section 400 is detachable from the rotating section 601, a plurality of functional sections 400 can be replaced with one rotating section 601 for use.
  • the functional part 400X or the functional part 400Y can be attached to the rotating part 601A suitable for a certain machine tool A. Therefore, normally, the frequently used functional unit 400X is attached to the rotating unit 601A and used, and when the rarely used functional unit 400Y is used, the functional unit 400X is replaced with the functional unit 400Y. can be considered. Since one rotating part 601A can be reused, the cost burden on the user is lower than when the machine tool device 600 (function X device for machine tool A, function Y device for machine tool A) is provided for each type of function. Few.
  • a rotating unit 601A suitable for the machine tool A and a rotating unit 601B suitable for the machine tool B are prepared.
  • the functional part 400X is used in the machine tool A
  • the functional part 400X is attached to the rotating part 601A.
  • the functional part 400X is attached to the rotating part 601B. Since one functional unit 400X can be used, the cost burden on the user is less than when the machine tool device 600 (function X device for machine tool A, function X device for machine tool B) is prepared for each machine tool. .
  • the rotating part 601A suitable for the machine tool A and the rotating part 601B suitable for the machine tool B are kept as inventories, and the functional parts 400X and 400Y are also kept as inventories. Then, when an order is received for a device of function X for machine tool A, the function part 400X is attached to the rotating part 601A and shipped. Also, when receiving an order for a device of function Y for machine tool B, the functional unit 400Y is attached to the rotating unit 601B and shipped. In addition, a device with function Y for machine tool A and a device with function X for machine tool B can also be used. In this way, it is possible to flexibly cope with, for example, high-mix low-volume production.
  • the combination of the functional units 400 to be exchanged is arbitrary.
  • the same functional unit 400 may be replaced as in the example of maintenance.
  • the imaging unit for measurement and the imaging unit for observation may be exchanged.
  • An imaging unit for one measurement may be replaced with an imaging unit for a different type of measurement.
  • One viewing imager may be exchanged for a different type of viewing imager.
  • the imaging unit may be replaced with a functional unit 400 other than the imaging unit.
  • the functional units 400 other than the imaging unit may be exchanged.
  • the cable accommodating portion is provided to accommodate the Ethernet cable wound multiple turns with a gap so that the shape of the Ethernet cable can be changed according to the rotation angle of the rotating portion 601, the Ethernet cable will not be damaged. function 400 can be rotated without giving
  • FIG. 9 is a configuration diagram of an integrated circuit in the functional unit 400.
  • FIG. In this example, three integrated circuits are included in functional unit 400 .
  • the imaging unit 446 has an imaging device 800 (for example, CMOS), a first integrated circuit 811 and a second integrated circuit 820 .
  • imaging device 800 for example, CMOS
  • first integrated circuit 811 for example, CMOS
  • second integrated circuit 820 for example, CMOS
  • the first integrated circuit 811 has a noise processing section 812 , a gain adjustment section 813 and an AD conversion section 816 .
  • the first integrated circuit 811 is a circuit for performing noise processing on the signal from the imaging device 800 .
  • a noise processing unit 812 removes noise included in the image obtained from the image sensor 800 .
  • a gain adjustment unit 813 adjusts an amplification factor (gain) relating to current converted from light exposed by the imaging element 800 .
  • the AD converter 816 converts the image data from analog to digital.
  • the noise processing section 812, the gain adjustment section 813, and the AD conversion section 816 may use known techniques.
  • the electrical signal processed by the noise processing section 812 , the gain adjustment section 813 and the AD conversion section 816 is passed to the second integrated circuit 820 .
  • the first integrated circuit 811 may have functional units other than the noise processing unit 812 , the gain adjustment unit 813 and the AD conversion unit 816 .
  • the second integrated circuit 820 includes a first corrector 834 and a second corrector 836 .
  • the first correction section 834 has a defect correction section 822, a shading correction section 824 and a white balance processing section 826
  • the second correction section 836 has an interpolation processing section 828, a color correction processing section 830 and a contour processing section 832.
  • the defect corrector 822 corrects black defects and white defects in the image.
  • the shading correction unit 824 corrects a phenomenon (shading) in which the signal output in the peripheral portion of the image is lowered.
  • a white balance processing unit 826 corrects the spectral characteristics of the image sensor 800 to match human visibility.
  • the defect corrector 822, the shading corrector 824, and the white balance processor 826 may use known techniques.
  • the electrical signal processed by the defect correction section 822 , shading correction section 824 and white balance processing section 826 is passed to the interpolation processing section 828 .
  • the interpolation processing unit 828 generates RGB output data (bitmap data), which is a general video signal, from RGB Bayer array signals from the color filters of the image sensor 800 .
  • the color correction processing unit 830 corrects the spectral characteristics of the color filters of the image sensor 800 to approximate ideal characteristics.
  • the contour processing unit 832 performs processing for sharpening the contour of the subject.
  • the interpolation processing unit 828, the color correction processing unit 830, and the contour processing unit 832 may use known techniques.
  • the electrical signal processed by the second integrated circuit 820 is output from the imaging unit 446 and input to the main circuit 470 of the electrical circuit board 444 .
  • the imaging element 800, the first integrated circuit 811 and the second integrated circuit 820 may be configured as an SoC (System on Chip).
  • the second integrated circuit 820 may have functional units other than the defect correction unit 822 , the shading correction unit 824 , the white balance processing unit 826 , the interpolation processing unit 828 , the color correction processing unit 830 and the contour
  • the main circuit 470 may have a third integrated circuit that is not included in the imaging unit 446.
  • the digital circuit shown in FIG. 9 is an example of the third integrated circuit.
  • the third integrated circuit is a circuit for analyzing image data processed by the imaging unit 446 .
  • the functional section 400 has a third integrated circuit that analyzes and processes image data separately from the general imaging unit 446 .
  • Functions equivalent to the functional units of the illustrated digital circuit may be realized by executing a program stored in memory 474 (FIG. 6) with CPU 472 .
  • FIG. 6 the processing in the third integrated circuit is arbitrary, here, it is assumed that a plurality of images are instantaneously acquired by one shutter operation, and digital processing is performed using the plurality of images.
  • noise reduction processing can be performed by averaging a plurality of images continuously shot at different ISO sensitivities.
  • processing for expanding the dynamic range can be performed using a plurality of consecutively shot images with different exposures.
  • the dynamic range is the ratio of the maximum value to the minimum value of the signal that can be processed, and here means the range of brightness that the imaging device 800 can tolerate.
  • the digital processing in the third integrated circuit makes it easier to see an image having a brightness difference wider than the range of brightness that the imaging device 800 originally allows.
  • the main circuit 470 has a first image memory 840 , a second image memory 842 , a difference analysis section 844 , a re-extraction section 846 and a superposition section 848 .
  • the first image memory 840 stores basic first image data.
  • the second image memory 842 stores second image data to be referred to.
  • the second image data is, for example, image data acquired a moment before the first image data.
  • the difference analysis unit 844 analyzes the difference (image movement) between the first image data and the second image data, and specifies an image area of the second image data to be superimposed on the first image data.
  • a re-extraction unit 846 extracts a partial image to be superimposed on the first image data from the second image data.
  • a superimposition unit 848 superimposes the partial image extracted from the second image data on the first image data. As a result, an image obtained with proper exposure in the second image data is superimposed on a portion (overexposure or underexposure portion) where the exposure was not proper in the first image data, and there is no problem in exposure as a whole. Images can be generated. Image data digitally processed by the main circuit 470 is transmitted from the communication circuit 462 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Machine Tool Units (AREA)

Abstract

工作機械用装置は、工作機械の取り付け部に着脱可能かつ回転可能に取り付けられ、(i)取り付け部に対して回転可能に取り付けられる回転部と、(ii)取り付け部から電気を受ける第1受け部を備え、取り付け部に対して固定して取り付けられる固定部と、(iii)取り付け部の送り部から送られる電気を受ける第2受け部を備え、回転部の回転とともに回転部の回転方向と同じ方向に回転する機能部と、を備える。機能部は、回転部に対して着脱可能である。

Description

工作機械用装置および工作機械
 この発明は、工作機械に着脱可能かつ回転可能な工作機械用装置等に関する。
 工作機械には、工具を主軸に取り付けワークを加工する機械、複数の工具をタレットに取り付けワークを回転させて加工する機械、材料をレーザで溶かしながら加工する付加加工の機械、これらを複合的に備えた複合加工機などがある。
 近年、加工だけではなく、工作機械にカメラを取り付け、ワークを観察するなど工作機械で実行できる機能が増えている。これらの機能を実現するために、工作機械に着脱可能な工作機械用装置の開発が行われている(特許文献1)。
特許第6656707号公報
 特許文献1では、工作機械に着脱可能な工作機械用装置として工作機械用カメラが開示されている。特許文献1においては、工作機械の工具を取り付ける取り付け部に、電力供給を行う電源がないため、工作機械用カメラ内にバッテリを内蔵している。そのため、工作機械用カメラが大型化しやすい。
 また、観察よりも緻密な計測を行うためには、1回の撮像データを大きくする対応や、撮像回数を増やす対応が考えられる。しかし、計測を行うための十分な撮像条件を満たすためには、カメラを長時間駆動する必要があり、そのために大容量のバッテリを搭載する必要がある。このような観点からも工作機械用カメラの小型化は難しい。
 さらに、バッテリ方式が適さない理由として、連続的な自動運転を想定すると、有限のバッテリの残量を管理しなければならないことがあげられる。時として使用したいタイミングでバッテリ切れが発生する可能性がある。
 そこで、工作機械と工作機械用カメラを有線で接続して電力供給を行うことが考えられる。一方、工作機械用カメラを回転させて、向きを変えて撮像したいという要求もある。有線で接続し、さらにこのような要求も取り入れる場合、内蔵させるケーブルが絡んだり、切れたりしないように工作機械用カメラを回転させることが難しくなる。このように、工作機械に着脱可能な工作機械用装置を工作機械と有線で接続し、さらに回転可能にしようとすると、工作機械用装置の機構や配線などが複雑になりやすく、製造、運用やメンテナンスなどの面での負荷が大きくなる。
  そこで、本発明は、請求項に記載の装置等を提供するものである。
 本発明によれば、大型バッテリを搭載する必要のない工作機械用装置の提供が可能になる。
工作機械に着脱可能かつ回転可能な工作機械用装置の一例の斜視図である。 取り付け部と工作機械用装置の取り付け機構および回転機構に関する断面図である。 工作機械用装置内の配線、電気部品および光学部品に関する断面図である。 回転角度0度におけるケーブル収容部と巻付部の断面図である。 回転角度360度におけるケーブル収容部と巻付部の断面図である。 取り付け部および工作機械用装置に含まれる電気回路の構成図である。 交換可能な機能部を示す図である。 工作機械の外観図である。 機能部における集積回路の構成図である。
 以下に、図面を参照して実施形態に係る工作機械に着脱可能かつ回転可能な工作機械用装置および工作機械について説明する。以下の説明では、同一の構成について、同一の符号を付して説明する。
≪工作機械≫
 本実施形態では、NC(Numerical Control)プログラムに基づいて加工を行う過程で、NCプログラムに基づいて工具を交換する際に、次に使う工具を工具交換装置(ATC(Automatic Train Control))によって、自動的に工作機械の取り付け部(例えば、主軸頭の先端部やタレットなど)に工具を取り付けできる工作機械を用いて説明する。工作機械は、工具を取り付けてワークを加工することができ、かつ工作機械用装置を着脱可能に取り付けられる取り付け部を備える。
 図8は、工作機械の外観図である。
 図示した工作機械の例は、立形マシニングセンタである。工作機械は、ベッド802と、ベッド802上に設置されるコラム804を有する。コラム804には主軸頭806が取り付けられる。主軸頭806は、Z軸方向(上下方向)に移動可能である。主軸頭806の先端部に取り付け部100が設けられる。取り付け部100は、その内方に主軸106を含む。主軸106は、Z軸方向に延びる回転軸を中心に回転可能である。取り付け部100(主軸106)に工具(図示せず)が取り付けられる。取り付け部100には工作機械用装置600を取り付けることもできる。
 ベッド802は、Y方向に移動可能なサドル810を搭載する。サドル810の上には、X方向に移動可能なテーブル814が設置される。テーブル814の上に、加工対象および計測対象となるワークが載せられる。工作機械は、サドル810およびテーブル814をXY方向に移動させることで、ワークと工作機械用装置600の相対位置を変化させる。同様にして、工作機械は、主軸頭806を上下動させることにより、ワークと工作機械用装置600との距離を変化させる。
 本実施形態では、工作機械に着脱可能かつ回転可能な工作機械用装置600を、工具交換装置によって自動的に工作機械の取り付け部に着脱できる構成となっている。本実施形態の工作機械は、一例であり、上述の構成に限定されるものではない。
≪工作機械用装置600≫
 工作機械に着脱可能かつ回転可能な工作機械用装置600は、例えば、撮像装置、タッチプローブ、レーザスキャナ、アングルヘッド、アングルヘッド付き工具、電動工具、機能付き工具、超音波発生装置、レーザ発振装置などがあって、それぞれの所定機能を発揮する。撮像装置としては、観察用の撮像装置や計測用の撮像装置などがある。以下では、計測用の撮像装置を「画像プローブ」という。
 もちろん、本実施形態における工作機械の取り付け部には、ドリルなどの一般的な工作機械用の工具も取り付け可能である。
 工作機械用装置600は、電力で駆動される装置内モジュールを有する。装置内モジュールとしては、例えば、イメージセンサ(撮像素子)、温度センサや圧電センサなど各種センサ、レーザ発振器やミリ波発振器のような発振器などの電気部品がある。また、装置内モジュールの別の例としては、アクチュエーターやモーターのような機械部品がある。さらに、装置内モジュールの例としては、LSI(Large Scale Integration)やCPU(Central Processing Unit)などの回路でもよい。装置内モジュールは、後述する機能部に含まれる。
 工作機械用装置600を使用する場合に、電力で駆動される装置内モジュールに電力を供給する必要がある。工作機械用装置600が撮像装置である場合、イメージセンサ(例えば、CMOS(Complementary MOS))とイメージセンサ制御用の電気回路などを含む撮像ユニットを、機能部内の装置内モジュールとして有する。つまり、撮像ユニット内のイメージセンサと電気回路とは、外部から供給される電力に基づいて動作する。外部から供給される電力は、イーサネットの配線で利用されるケーブルを通じてデータと電力とを伝送する技術(PoE(Power Over Ethernet)技術)を用いて供給されることが好ましい。撮像ユニットでの撮像は、前述のケーブルから伝送されてきた撮像の動作指示を電気回路であるCPUが受け、CPUからイメージセンサへ電荷伝送制御信号を送信することで行う。撮像された画像データは、前述のケーブルを介して工作機械用装置600の外部(例えば、工作機械内のNC装置や工作機械外の別の装置)に送信される。
 工作機械に着脱可能かつ回転可能な工作機械用装置600に上述のPoE技術を用いることにより、バッテリ内蔵型の工作機械用装置やワイヤレス給電方式の工作機械用装置よりも装置を小型化することが可能になる。工作機械用装置は、大きくなると、工作機械内で干渉が起きる可能性が高くなるため、小型化できるのであれば、小型化することが好ましい。
 また、工作機械に着脱可能かつ回転可能な工作機械用装置600に上述のPoE技術(有線であるケーブルを介してデータ通信を行う)を用いることにより、無線通信よりも通信が安定する。
(工作機械用装置の参考構成(バッテリ方式、ワイヤレス方式、無線通信方式))
 以下で、他の構成との違いについて述べる。
 まず、工作機械用装置の内部にバッテリを設けて、バッテリを蓄電しておくことによって電力を供給する方式について述べる。このようなバッテリ内蔵方式であれば、工作機械と工作機械用装置との間に電気的な接点を設ける必要がない。ただし、バッテリを内蔵するために、工作機械用装置自体が大型になる。また、バッテリが切れると動作しないため、工作機械用装置の運転時間に制限がある。バッテリ内蔵方式の場合、小型化と高性能化の両立は難しい。
 次に、電磁誘導を利用してワイヤレスで給電を行う方式について述べる。ワイヤレス給電方式であれば、工作機械と工作機械用装置との間に電力供給のための機械接点を設ける必要がない。ただし、工作機械と工作機械用装置との双方にコイルを設ける必要があり、十分な電力を得るためにはコイルの専有体積が大きくなり、工作機械用装置が大きくなる恐れがある。また電力伝送における損失により発熱が生じ、取り付け部100や工作機械用装置が熱変異する恐れがある。
 さらに、Wi-Fi(登録商標)による無線通信方式について述べる。Wi-Fiは、無線LANの例である。Wi-Fiでは、工作機械用機械と通信する装置との間で無線での通信路確立までの時間がかかってしまう。また、他のWi-Fi機器との混信を起こす恐れや障害物による電波への影響もある。更に、電波の混雑などで送受信が待たされることもあり、外部から工作機械用装置を操作する場合の通信のリアルタイム性が低下する。
 以上の説明のように、工作機械と工作機械用装置600とをPoE技術を用いて接続することにより、工作機械用装置600の小型化が可能になる。
 これらを踏まえ、以下では、工作機械と工作機械用装置600とをPoE技術を用いて接続することを想定とする。
[実施形態]
 図1は、工作機械に着脱可能かつ回転可能な工作機械用装置600の一例の斜視図である。
(工作機械用装置600の概要)
 工作機械用装置600は、工作機械の取り付け部に着脱可能かつ回転可能に取り付けられて、上述のように所定機能を発揮する装置である。この例における工作機械用装置600は、工作機械に装着されてワークの撮像に使用される画像プローブである。工作機械用装置600は、後述するように工作機械とコネクタで電気的に接続されるので、有線による給電および通信が可能である。
 工作機械用装置600は、元側にシャンク202を有する。シャンク202をマシニングセンタの主軸106に嵌めることによって、工作機械用装置600が取り付け部100に取り付けられる。本実施形態では、工作機械の例としてマシニングセンタについて説明する。取り付け方法は、刃物工具の場合と同様である。工作機械の工具交換装置が把持部204をつかんで、工作機械用装置600を移動させ、主軸106に取り付けることも可能である。
(取り付け部100の概要)
 取り付け部100は、主軸106を含み、工作機械用装置600が取り付けられる「工作機械の取り付け部」の例である。工作機械がターニングセンタの場合には、タレットが「工作機械の取り付け部」に相当する。タレットに工作機械用装置600を取り付けて、ワークを撮像するようにしてもよい。また、複合加工機において、工作機械用装置600を取り付けるようにしてもよい。いずれの場合も、工作機械用装置600は、「工作機械の取り付け部」に着脱可能かつ回転可能に取り付けられる。
(機能部400の概要)
 工作機械用装置600は、先側に機能部400を備える。機能部400には、工作機械用装置600の所定機能を発揮させる動作部が内蔵されている。この例における工作機械用装置600の場合には、撮像ユニット、レンズユニットや照明機器が内蔵されている。なお、工作機械用装置600は、図1で示されていない連結部を有するが、連結部については図2に関連して後述する。
 主軸106が回転軸を中心として0度から360度の範囲で回転すると、一緒に把持部204と機能部400が回転する。これにより、機能部400は、光軸を中心として0度から360度の範囲で向きを変えることができる。つまり、0度から360度の範囲で向きを変えて撮像できる。なお、主軸106の回転軸は、円柱形の主軸106における中心線である。機能部400の光軸は、主軸106の回転軸の延長線と一致する。
(固定部500の概要)
 工作機械用装置600は、固定部500を備える。固定部500は、取り付け部100に対して固定して取り付けられる。したがって、主軸106が回転したときに、固定部500は、回転部601と一緒には回転しない。固定部500の円筒部502は、回転部601が回転できるように支持するハウジングとして機能する。
(係止ブロック108の概要)
 固定部500は、円筒部502の側面から突き出た延長部508を有する。延長部508は、取り付け部100の前カバー102から突き出た係止ブロック108に係止される(係わり合わせて止められる)。係止ブロック108は、取り付け部100において回転しない部材である。係止ブロック108を、固定部、非回転部あるいは係止部と言ってもよい。延長部508と係止ブロック108によって、固定部500の共回りが阻止される。つまり、固定部500は、取り付け部100に対して固定して取り付けられる。係止の手段については、図2に関連して説明する。
 また、係止ブロック108と延長部508には、電気的な接点手段が設けられる。この接点手段によって、信号線および電力線が確保される。接点手段については、図2に関連して説明する。なお、この例における通信および電力供給は、PoE(Power over Ethernet)の規格に従うものとする。PoEには、Ethernetをベースとして、電力の供給を行える仕様が定められている。Ethernetとは、有線LAN(Local Area Network)の標準の一種である。
(回転部位と非回転部位)
 回転可能な部位と回転しない部位について整理しておく。主軸106の回転に伴って、工作機械用装置600のシャンク202と把持部204と機能部400は、回転する。また、後述する工作機械用装置600の連結部(図2の連結部300を参照)も回転する。シャンク202と把持部204と連結部と機能部400のそれぞれ回転軸は、主軸106の回転軸の延長線と一致する。一方、取り付け部100の前カバー102とハウジング104と係止ブロック108、工作機械用装置600の固定部500(円筒部502と延長部508)は、回転しない。主軸106の回転方向(矢印205)と、機能部400の回転方向(矢印401)とは同方向となる。機能部400の回転方向は、工作機械用装置600における回転部601(図2参照)の回転方向と同方向である。
 また、機能部400の内方には、後述の第3集積回路を含む電気回路基板444が設置されている。ここで図示のように、回転軸方向と直交する第1直交方向および第2直交方向を設定する。このとき、電気回路基板444の回転軸方向の長さは、電気回路基板444の第1直交方向の長さよりも長い。電気回路基板444の長手方向が回転軸方向に対応し、電気回路基板444の短手方向が第1直交方向に対応する。第2直交方向は、電気回路基板444の厚み方向に対応する。
 図2は、取り付け部100と工作機械用装置600の取り付け機構および回転機構に関する断面図である。
 主に、取り付け機構および回転機構を示し、電気的な構成および光学的な構成については省略している。工作機械用装置600内の配線、電気部品および光学部品などについては、図3に関連して後述する。
(取り付け部100の構成)
 主軸106は、ハウジング104によって回転可能に支持され、サーボモータの駆動によって回転する。前カバー102は、取り付け部100の前端部に設けられ、ハウジング104を覆っている。主軸106の前端は、前カバー102の穴から出ている。サーボモータで主軸106を所定の回転角度に回転させることによって、機能部400を所定の回転角度に合わせることができる。
(回転部601)
 工作機械用装置600は、シャンク部200と連結部300からなる回転部601を備える。回転部601は、取り付け部100に対して回転可能に取り付けられる。また、回転部601には、機能部400が取り付けられている。したがって、機能部400は、回転部601の回転とともに回転部601の回転方向と同じ方向に回転する。
 具体的には、シャンク部200は、主軸106に固定されるシャンク202と工具交換装置につかまれる把持部204を備えている。連結部300は、工具ホルダ取付ボルト302によってシャンク部200に固定されている。連結部300は、固定部500の内側で、回転するように支持されている。
 機能部400は、ボルト402によって連結部300に固定されている。したがって、機能部400は、回転部601に対して着脱可能である。ボルト402よる固定方法以外との方法として、メカ機構のはめ込み機構によって機能部400を着脱できるようにしてもよい。なお、連結部300は、機能部400と接する面に第3コネクタ340を有し、機能部400は、第3コネクタ340と対峙する位置に第4コネクタ440を有する。機能部400を連結部300に固定すると、第3コネクタ340と第4コネクタ440が接合する。第3コネクタ340と第4コネクタ440は、いずれもEthernet用のコネクタである。第3コネクタ340と第4コネクタ440として、スプリングコネクタを用いてもよい。但し、接点パーツは、この例に限定されない。
(固定部500)
 工作機械用装置600は、円筒部502と延長部508からなる固定部500を備える。固定部500の円筒部502は、第1ベアリング504と第2ベアリング506によって、連結部300を回転可能に支持する。つまり、円筒部502は、機械要素として、回転する連結部300を収容するハウジングに相当する。
 固定部500の延長部508には、円筒形の位置決め部510が設けられている。位置決め部510は、取り付け部100の係止ブロック108に形成されている非回転部位110にはまり、装着時のガイドの役割を果たすと共に、固定部500が回転しないように固定する。また、係止ブロック108は、延長部508と接する面に第1コネクタ120を有し、延長部508は、第1コネクタ120と対峙する位置に第2コネクタ520を有し、位置決め部510を非回転部位110に挿入すると、第1コネクタ120と第2コネクタ520が接合する。固定部500が備える第2コネクタ520は、「固定部500が備える第1受け部」の例である。第2コネクタ520(「第1受け部」の例)は、取り付け部100から電気を受ける。第1コネクタ120と第2コネクタ520は、いずれもEthernet用のコネクタである。第1コネクタ120と第2コネクタ520として、スプリングコネクタを用いてもよい。但し、接点パーツは、この例に限定されない。詳しくは、図6に関連して後述する。
 主軸106が回転すると、回転部601(シャンク部200と連結部300)と機能部400が一体として回転するが、係止ブロック108に係止されている固定部500は、回転しない。
 図3は、工作機械用装置600内の配線、電気部品および光学部品に関する断面図である。
(配線の概要)
 Ethernetによる通信およびPoEによる給電のための配線として、EthernetケーブルとEthernetコネクタが使用される。EthernetケーブルとEthernetコネクタの仕様は、規格として定められている。上述したように、第1コネクタ120、第2コネクタ520、第3コネクタ340および第4コネクタ440は、いずれもEthernet用のコネクタであって、Ethernetケーブルに接続している。1コネクタ120、第2コネクタ520、第3コネクタ340および第4コネクタ440として、スプリングコネクタを用いてもよい。但し、接点パーツは、この例に限定されない。
 本実施形態の第2コネクタ520は、8本の接点ピンを備えたオスのコネクタである。第1コネクタ120は、8個の接点穴を備えたメスのコネクタである。工作機械用装置600が工具交換装置によって取り付け部100に近づけられるとき、第2コネクタ520と第1コネクタ120は、各接点ピンが各接点穴にはまるように接近する。工作機械用装置600が取り付け部100に装着されると、第2コネクタ520と第1コネクタ120は連結する。ここでは、8ピンのコネクタの例を示すが、9以上のピン数のコネクタを用いてもよいし、7以下のピン数のコネクタを用いてもよい。Ethernet通信及びPoEは、最低限4線で実現可能であるので、4以上のピン数のコネクタを採用することができる。たとえば、4ピンのコネクタを用いてもよい。
 工作機械側の第1コネクタ120がメスのコネクタであれば、金屑などの異物が引っ掛かりにくいという面がある。ただし、オスとメスの関係が逆でもよい。つまり、第2コネクタ520が、8個の接点穴を備えたメスのコネクタであり、第1コネクタ120が、8本の接点ピンを備えたオスのコネクタであってもよい。接点ピンと接点穴は、電力端子と通信端子の機能を備える。
 第3コネクタ340と第4コネクタ440は、どちらがオスでどちらがメスでもよい。但し、接点ピンと接点穴の数は、第1コネクタ120および第2コネクタ520と同様である。また、接点ピンと接点穴は、電力端子と通信端子の機能を備える。
 この配線によって、取り付け部100側のPSE(Power sourcing equipment)モジュールと機能部400側のPD(Powered device)モジュールが電気的に接続することになる。PSEとは、PoEにおける給電機器を指す。この例では、取り付け部100がPSEである。PSEモジュールは、PSEの給電機能および通信機能を実現するための電気回路である。PDとは、PoEにおける受電機器を指す。この例では、工作機械用装置600がPDである。PDモジュールは、PDの受電機能および通信機能を実現するための電気回路である。PSEモジュールとPDモジュールについては、図6に関連して後述する。
 PSEモジュールとつながるEthernetケーブル122は、係止ブロック108の内部を通って第1コネクタ120に接続している。第1コネクタ120と接合する第2コネクタ520に接続するEthernetケーブル522は、配線路524、ケーブル収容部526を通って連結部300の内部へつながる。
(ケーブル収容部526)
 固定部500は、ケーブル収容部526を備える。ケーブル収容部526は、第2コネクタ520(「第1受け部」の例)とPDモジュールを結ぶ配線の経路中にある。ケーブル収容部526は、固定部500における回転部601との境に回転部601の回転軸を中心とする環状空間を形成する(図4、図5参照)。ケーブル収容部526は、複数周巻かれたEthernetケーブル522を収容する。図4に関連して後述するように、Ethernetケーブル522の複数の周回に、余裕も持たせている。つまり、ケーブル収容部526では、回転部601の回転角に応じて、複数周巻かれたケーブル522の形状を変えられるように、隙間が開けられている。
(巻付部304)
 連結部300は、掴持部306を有する巻付部304を備える。ケーブル収容部526から連結部300の内部へつながるEthernetケーブル522の途中箇所が、連結部300の掴持部306に掴持される(つかんだ状態で保持される)。掴持部306は、ケーブル収容部526と一体の環状空間を形成する巻付部304内に設けられており、回転部601の一部として回転する。これにより、掴持部306は、Ethernetケーブル522の途中箇所を円状に移動させるように働く。掴持部306に固定されているEthernetケーブル522の先は、巻付部304から前方向につながる配線路324を通って、連結部300の端面に設けられた第3コネクタ340に接続している。ケーブル収容部526、掴持部306および巻付部304の詳細については、図4及び図5に関連して後述する。
 第3コネクタ340と接合する第4コネクタ440に接続しているEthernetケーブル442は、配線路424を通って電気回路基板444につながる。Ethernetケーブル442に含まれる各伝送線は、電気回路基板444内のPDモジュールに接続する。したがって、取り付け部100の第1コネクタ120と工作機械用装置600の第2コネクタ520とが接合すると、PDモジュールとPSEモジュールが電気的に接続される。これにより、PSEモジュールはPDモジュールを検出し、PSEモジュールとPDモジュールにおける初期化動作が行われ、PSEモジュールとPDモジュールの間で電力供給と通信が可能になる。
(光学部品)
 機能部400は、光学部品として、撮像ユニット446とレンズユニット448を有する。撮像ユニット446は、受光を映像化するイメージセンサ(例えば、CMOS)を備える。レンズユニット448は、複数のレンズから構成される。レンズユニット448は、回転軸方向に伸びている。レンズユニット448は、たとえばテレセントリックレンズである。機能部400の先端には、ボルト452によってレンズカバー450が取り付けられている。機能部400には、さらに同軸落射照明454とリング照明456が設けられている。同軸落射照明454とリング照明456のいずれか一方または両方が撮像の際に発光する。電気回路基板444、撮像ユニット446、レンズユニット448、同軸落射照明454、リング照明456は、PoEで供給される電力によって動作する。このように、機能部400の一例としては、撮像素子(CMOS)とレンズユニット448とを含む撮像部であり、いわゆるカメラである。電気回路基板444は、レンズユニット448の形状に沿うように回転軸方向に伸びている。レンズユニット448と電気回路基板444とは、第2直交方向上に並んで配置されている。すなわち、電気回路基板444は、第3集積回路(図9参照)を配置するためにレンズユニット448の並びに(横に)配置されている。レンズユニット448と電気回路基板444とを電気回路基板444の厚み方向に配置することで省スペースを実現している。
 図4は、回転角度0度におけるケーブル収容部526と巻付部304の断面図である。 図4は、取り付け部100側から見たケーブル収容部526と巻付部304の断面を示している。
(ケーブル収容部526)
 ケーブル収容部526は、上述したように、固定部500における回転部601との境に回転部601の回転軸を中心とする環状空間を形成する。ケーブル収容部526は、複数周(この例では5周)巻かれたEthernetケーブル522を収容する。固定部500に設けられたケーブル収容部526の空間は、Ethernetケーブル522をおよそ10周程度収容できるだけの幅を有している。つまり、Ethernetケーブル522の複数の周回に、余裕の空間も持たせている。
(巻付部304)
 連結部300に設けられた巻付部304は、ケーブル収容部526の空間と隔ての無い環状の空間を形成している。巻付部304の空間には、Ethernetケーブル522を1周収容できる。巻付部304に設けられている掴持部306は、Ethernetケーブル522の途中箇所を掴持する。ケーブル収容部526は回転しないが、巻付部304は回転部601の一部として回転する。したがって、回転部601と機能部400が360度回転すると、掴持部306は円上を一周する。
(Ethernetケーブル522の形状)
 固定部500の配線路524側から連結部300の配線路324側への流れに沿って、Ethernetケーブル522の形状について説明する。配線路524から入ってきたEthernetケーブル522は、空間内の外側から内側に向かってケーブル収容部526内を5周めぐる。Ethernetケーブル522は、ケーブル収容部526内において余裕を持ってたわむことができる。5周まわって巻付部304内に移った箇所が、掴持部306で掴持される。その先は、向きを変えて配線路324の中を通って、第3コネクタ340につながる。
(回転角度0度)
 図4に示すように、掴持部306が配線路524からの入口に最も寄っているときに、回転角度は0度であるものとする。回転角度が0度の場合、ケーブル収容部526内のEthernetケーブル522が外寄りに位置しており、巻付部304内にEthernetケーブル522が巻き付けられていない。
(反時計方向の回転)
 回転部601と機能部400が取り付け部100側から見て反時計方向へ回ると、回転角度が増加するものとする。回転角度が増加すると、掴持部306が反時計方向に回り、ケーブル収容部526内のEthernetケーブル522を内側へ引っ張る。そして、引っ張られたEthernetケーブル522が巻付部304に巻き付けられる。その分、ケーブル収容部526内のEthernetケーブル522が短くなるので、全体として内側に引き寄せられる。
(回転角度180度)
 図示していないが、回転角度が180度になると、掴持部306は、0度の場合と反対の右側まで移動する。したがって、掴持部306に半周だけEthernetケーブル522が巻き付く。このとき、図3に示した第3コネクタ340、第4コネクタ440、配線路424、Ethernetケーブル442および電気回路基板444は、図3の右側に移る。
(回転角度360度)
 図5は、回転角度360度におけるケーブル収容部526と巻付部304の断面図である。
 回転角度が360度になると、第3コネクタ340、第4コネクタ440、配線路424、Ethernetケーブル442および電気回路基板444は、図3と同様に元の左側に戻る。このとき、巻付部304には、Ethernetケーブル522が1周巻き付けられている。また、ケーブル収容部526内のEthernetケーブル522は、内側に寄る。Ethernetケーブル522はゆとりを持って巻かれているので、回転部601が回転しても、Ethernetケーブル522のいずれの部位にも過度な張力は生じない。
(時計方向の回転)
 回転部601と機能部400を取り付け部100側から見て時計方向に回転させて、回転角度が減少する場合には、掴持部306が時計方向に回り、Ethernetケーブル522をケーブル収容部526内へ押し込む。そのため、巻付部304に巻き付く部分は短くなり、その分ケーブル収容部526に収容される部分が長くなる。その結果、ケーブル収容部526の中のEthernetケーブル522は、元のように外側へ寄る。このように、回転部601と機能部400を(取り付け部100側から見て)時計方向に回転させるときにも、Ethernetケーブル522に過度な負荷はかからない。回転部601が回転軸を中心に反時計方向に回転するとき(矢印215)、機能部400も反時計方向に回転する(矢印411)。回転部601が回転軸を中心に時計方向に回転するとき、機能部400も時計方向に回転する。すなわち、回転部601と機能部400とは同方向に回転する。
(ケーブル収容部526の働き)
 ケーブル収容部526は、図4に示したように、複数周巻かれたケーブル522に隙間を開けているので、図5に示したように、回転部601の回転角に応じて複数周巻かれたケーブル522の形状を変えられる。したがって、Ethernetケーブル522に無理な力を加えることなく、回転部601と機能部400を0度から360度の範囲で回転させることが可能となる。なお、回転部601と機能部400が回転しても、配線路524内のEthernetケーブル522と配線路324内のEthernetケーブル522と配線路424内のEthernetケーブル422は、形を変えない。回転に伴って形状が変わるのは、Ethernetケーブル522のうちケーブル収容部526と巻付部304に含まれる部分だけである。
 図6は、取り付け部100および工作機械用装置600に含まれる電気回路の構成図である。
(配線(伝送路))
 上述の通り、取り付け部100がPSEであり、PSEモジュール760を有する。PSEモジュール760は、PSEの給電機能および通信機能を実現するための電気回路である。また、工作機械用装置600がPDであり、PDモジュール460を有する。PDモジュール460は、PDの受電機能および通信機能を実現するための電気回路である。PSEモジュール760とPDモジュール460は、上述の配線(Ethernetケーブル122、第1コネクタ120、第2コネクタ520、Ethernetケーブル522、第3コネクタ340、第4コネクタ440およびEthernetケーブル442)によって接続する。この配線を通じて、PSEモジュール760とPDモジュール460の間の双方向の通信と、PSEモジュール760からPDモジュール460への電力供給が行われる。各Ethernetケーブルの伝送線数および各コネクタのピン数は、同一である。伝送線数およびピン数は、たとえば8本である。ただし、9本以上でもよいし、7本以下でもよい。Ethernet通信及びPoEの規格によれば、4本以上であればよい。なお、図6では、便宜的に太線で示した電力線と細線で示した通信線の2本のみを描いているが、実装としてはそれ以上の数の伝送線を有している。
(PSEモジュール760)
 PSEモジュール760は、通信回路762と給電回路764を備える。通信回路762は、主にEthernet通信の規格に従って通信の制御を行う。給電回路764は、主にPoEの規格に従って給電の制御を行う。
(PDモジュール460)
 PDモジュール460は、通信回路462と受電回路464を備える。通信回路462は、主にEthernet通信の規格に従って通信の制御を行う。受電回路464は、主にPoEの規格に従って受電の制御を行う。PDモジュール460は、機能部400に設けられている。
(電力の流れ)
 工作機械用装置600が取り付け部100に取り付けられると、取り付け部100のPSEモジュール760が工作機械用装置600のPDモジュール460を検出し、PSEモジュール760とPDモジュール460において所定の初期化動作が行われる。その後、PSEモジュール760からPDモジュール460への電力供給が開始される。PSEモジュール760の給電回路764は、外部の電源などから電力を得て、PoEの規格に従った直流電力を上記の配線(伝送路)を通じて出力する。PDモジュール460は、上記の配線を通じて、上記の直流電力を入力する。電源回路480は、受電回路464から直流電力を受けて、メイン回路470と撮像ユニット446とレンズユニット448と同軸落射照明454とリング照明456へそれぞれに適合した直流電力を分配する。つまり、電源回路480は、機能部400内に含まれる各装置内モジュールにおいて必要な電力を供給する。メイン回路470は、CPU472とメモリ474を備え、機能部400の機能(たとえば、リモートコントロールに応じたワークの撮影)を実現するための制御処理を行う。なお、レギュレータや変圧器(トランス)などについては、省略する。
(通信の流れ)
 工作機械用装置600は、工作機械側から撮像指示の信号を受けて、それに応じて撮像した画像データを工作機械側へ送る。具体的には、PSEモジュール760の通信回路762が、上記の配線(伝送路)を用いて撮像指示の信号をPDモジュール460へ送信する。PDモジュール460の通信回路462が撮像指示の信号を受信すると、撮像指示の信号をメイン回路470のCPU472へ渡す。メイン回路470は、工作機械側からの撮影指示に応じて、撮像ユニット446、レンズユニット448、同軸落射照明454およびリング照明456を制御して撮像動作を行い、撮像ユニット446から画像データを得る。メイン回路470の動作は、メモリ474に記憶されているプログラムをCPU472が逐次実行することによって実現される。メイン回路470は、画像データをPDモジュール460から工作機械側へ送信させる。このとき、PDモジュール460通信回路の462は、上記の配線を用いて画像データをPSEモジュール760へ送信する。PSEモジュール760の通信回路762は、画像データを受信して、工作機械側で画像データを取得する。このように、撮像指示は、電気信号として配線を介して、取り付け部100から固定部500を経由して機能部400に伝達される。本実施形態の配線として好ましい形態は、LANケーブルであり固定部500にその一部が配置されている。
 上述したPSEモジュール760は、「第2受け部へ電気を送る送り部」の例である。ここでいう「電気」は、電力あるいは信号を指す。「第2受け部へ電気を送る送り部」は、電力および信号をおくってもよいし、電力のみあるいは信号のみを送ってもよい。第2コネクタ520は、「取り付け部100から電気を受ける第1受け部」の例である。第4コネクタ440は、「取り付け部100の送り部(例えばPSEモジュール760)から送られ第1受け部を経由した電気を受ける第2受け部」の例である。通信する場合に通信回路462は「電気回路」の例であり、電力を受ける場合に受電回路464は「電気回路」の例である。
 図7は、交換可能な機能部400を示す図である。
 L1の長さのレンズユニット448を備える撮像装置である機能部400aは、ボルト402(図2参照)を外すことによって回転部601から分離可能である。また、L1よりも長いL2のレンズユニット448を備える撮像装置である機能部400bと交換可能である。交換される機能部400bは、ボルト402で回転部601に固定することができる。あるいは、メカ機構のはめ込み機構によって機能部400bを回転部601に固定してもよい。このように、異なる機能部400と交換ができる。
 本実施形態によれば、有線による電力供給路を設けたので、大型バッテリを搭載する必要のない工作機械用装置を提供できる。
[変形例]
 実施形態では、機能部400の例として、たとえばCMOSなどのイメージセンサ(撮像素子)、レンズユニット448および照明装置などを有する撮像部を示したが、機能部400は、この例に限定されない。機能部400である撮像部は、計測用の撮像部(計測用プローブ)でもよいし、観察用の撮像部でもよい。また、機能部400は、レーザスキャナ部、レーザ発生部、アングルヘッドなどでもよい。さらに、機能部400は、工具でもよい。
 Ethernet以外の方式によって有線通信を行ってもよい。PoE以外の方式によって有線の電力供給を行ってもよい。また、電力手段としてワイヤレス給電やバッテリを用いて、通信のみを有線で行ってもよい。あるいは、通信手段としてWi-Fiなどの無線媒体を用いて、電力供給のみを有線で行ってもよい。
 工作機械用装置600が工作機械と有線で接続されるので、外部からの給電(たとえば、10W以上)と、外部と安定的な高速通信(100Mbps~)が可能である。これにより、通信が途切れず、また遅延が生じることなく、工作機械用装置600を使用できる。
 特に、計測用の画像プローブの場合、観察用の画像プローブに比べて大きいレンズユニット448を使うことになり、画像プローブが大型化するが、有線接続によってバッテリを省くようにすれば、画像プローブの小型化に貢献できる。画像プローブが大きいと画像プローブとワークとの距離が短くなり、撮像範囲を狭めるという問題が生じるが、そのような不具合を阻止できる意義は大きい。
 機能部400としてカメラ(撮像部)を使用する場合、取り付け部100とカメラ光軸の位置ずれを補正するために、カメラのキャリブレーション(カメラ校正)を行う必要がある。一般的に、所定パターンが印刷されたキャリブレーションプレートが使用される。このキャリブレーションプレートとカメラの相対的な位置関係を求めることによって、取り付け部100とカメラ光軸の位置ずれを補正する。
 具体的には、工作機械の加工室(取り付け部100とワークを含む空間)内の任意の位置にキャリブレーションプレートを設定しておく。但し、キャリブレーションプレートの位置と向きは特定されているものとする。そして、カメラで、このように設定されているキャリブレーションプレートを撮像する。その結果得られる撮像画像に映りこんでいるキャリブレーションプレートの所定パターンを抽出し、抽出された所定パターンを映像解析して、所定パターンの形状の変形具合などに基づいて、カメラのアングル、つまりカメラ光軸の方向を特定する。このときの取り付け部100の位置がわかっているので、取り付け部100とカメラとの相対的な位置関係を割り出すことができる。そして、実際にカメラを測定に用いるときに、そのときの取り付け部100との位置に基づいて、カメラの位置やカメラ光軸の方向を特定して、その時々のカメラの姿勢を考慮した上での測定値の補正が可能になる。
 このようなキャリブレーションの動作において、従来のように取り付け部100をキャリブレーションプレートの位置まで移動させるのではなく、ツールプリセッタアームのようにキャリブレーションプレートをカメラの近くの所定位置まで運び出す移動機構を設けるようにしてもよい。たとえば、回転自在な軸にアームを固定し、アームの先に所定の姿勢でキャリブレーションプレートを保持させる。そして、軸を回転させることによって、キャリブレーションプレートをカメラの近くの所定の位置に移動させ、所定の方向を向くように静止させる。したがって、カメラを移動させる必要がない。カメラの位置と向きはわかっているので、所定の方向を向いて所定の位置にて静止しているキャリブレーションプレートを撮像し、その撮像画像に映りこんでいる所定パターンの映像解析を行うことによって、カメラ光軸の方向の特定が可能である。
 このようにすれば、移動機構の動作だけで済み、取り付け部100の移動に要する時間を省けるので、カメラのキャリブレーションの所要時間を短縮できる。
 以上のように、本出願において開示する技術の例示として、上記実施形態および上記変形例を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施形態にも適用可能である。
 本開示の工作機械、工作機械用装置600やその他の装置は、機械要素の他、ハードウェア資源、例えば、プロセッサ、メモリ、及びプログラムとの協働などによって、実現される。
 実施形態では、回転部601に対して機能部400を着脱可能としたので、1つの回転部601に対して複数の機能部400を取り換えて使用することができる。たとえば、ある工作機械Aに適合した回転部601Aに対して、機能部400Xを取り付けたり、機能部400Yを取り付けたりすることができる。したがって、通常は、頻繁に使う機能部400Xを回転部601Aに取り付けて使用し、稀にしか使わない機能部400Yを使う場合には、機能部400Xから機能部400Yへ取り換えて使用する運用形態などが考えられる。1つの回転部601Aを使いまわせるので、機能の種類毎に工作機械用装置600(工作機械A用の機能Xの装置、工作機械A用の機能Yの装置)を揃えるよりもユーザの費用負担が少ない。
 1つの機能部400を2つの工作機械で共用することもできる。たとえば、機能部400Xを工作機械Aと工作機械Bで共用するケースでは、機能部400Xの他に、工作機械Aに適合した回転部601Aと工作機械Bに適合した回転部601Bを用意しておく。工作機械Aで機能部400Xを使用する場合には、機能部400Xを回転部601Aに取り付ける。反対に、工作機械Bで機能部400Xを使用する場合には、機能部400Xを回転部601Bに取り付ける。1つの機能部400Xを使いまわせるので、工作機械毎に工作機械用装置600(工作機械A用の機能Xの装置、工作機械B用の機能Xの装置)を揃えるよりもユーザの費用負担が少ない。
 また、メンテナンス性も向上する。たとえば回転部601の耐久性が高く、機能部400の耐久性が低い場合、1つの回転部601に対して2つの機能部400を用意しておく。そして、機能部400の点検時期に、他方の機能部400に取り換えるようにすれば、工作機械用装置600を使い続けることができる。また、工作機械用装置600を2つ用意するよりも、安価に対応できる。
 また、部品を共通化できるので、製造現場における負担も減る。たとえば、工作機械Aに適合した回転部601Aと工作機械Bに適合した回転部601Bを在庫として確保し、さらに機能部400Xと機能部400Yも在庫として確保しておく。そして、工作機械A用の機能Xの装置を受注したときには、回転部601Aに機能部400Xを取り付けて出荷する。また、工作機械B用の機能Yの装置を受注したときには、回転部601Bに機能部400Yを取り付けて出荷する。他にも、工作機械A用の機能Yの装置や工作機械B用の機能Xの装置にも対応できる。このようにすれば、たとえば多品種少量生産にも柔軟に対応することができる。
 交換する機能部400の組み合わせは任意である。異なる機能部400と交換するだけでなく、メンテナンスの例のように同じ機能部400で交換してもよい。異なる機能部400と交換する例としては、計測用の撮像部と観測用の撮像部を交換してもよい。ある計測用の撮像部を、異なる型の計測用の撮像部と交換してもよい。ある観測用の撮像部を、異なる型の観測用の撮像部と交換してもよい。撮像部を、撮像部以外の機能部400と交換してもよい。撮像部以外の機能部400同士で交換してもよい。
 また、実施形態では、回転部601の回転角に応じてEthernetケーブルの形状を変えられるように隙間を開けて複数周巻かれたEthernetケーブルを収容するケーブル収容部を設けたので、Ethernetケーブルにダメージを与えることなく機能部400を回転させることができる。
 図9は、機能部400における集積回路の構成図である。この例では、3つの集積回路が機能部400に含まれる。
 撮像ユニット446は、撮像素子800(例えば、CMOS)、第1集積回路811および第2集積回路820を有する。
 第1集積回路811は、ノイズ処理部812、ゲイン調整部813およびA-D変換部816を有する。第1集積回路811は、撮像素子800からの信号のノイズ処理を行うための回路である。ノイズ処理部812は、撮像素子800から得られる画像に含まれるノイズを除去する。ゲイン調整部813は、撮像素子800で露光した光から変換される電流に関する増幅率(ゲイン)を調整する。A-D変換部816は、画像データをアナログからデジタルへ変換する。ノイズ処理部812、ゲイン調整部813およびA-D変換部816は、公知技術を用いてもよい。ノイズ処理部812、ゲイン調整部813およびA-D変換部816の処理が施された電気信号は、第2集積回路820へ渡される。第1集積回路811は、ノイズ処理部812、ゲイン調整部813およびA-D変換部816以外の機能部を有してもよい。
 第2集積回路820は、第1補正部834と第2補正部836を含む。第1補正部834は、欠陥補正部822、シェーディング補正部824およびホワイトバランス処理部826を有し、第2補正部836は、補間処理部828、色補正処理部830および輪郭処理部832を有する。欠陥補正部822は、画像における黒欠陥および白欠陥を補正する。シェーディング補正部824は、画像の周辺部の信号出力が低下する現象(シェーディング)に対する補正を行う。ホワイトバランス処理部826は、撮像素子800の分光特性を人間の視感度に合わせる補正を行う。欠陥補正部822、シェーディング補正部824およびホワイトバランス処理部826は、公知技術を用いてもよい。欠陥補正部822、シェーディング補正部824およびホワイトバランス処理部826の処理が施された電気信号は、補間処理部828へ渡される。
 補間処理部828は、撮像素子800のカラーフィルタによるRGBベイヤー配列の信号から、一般的な映像信号であるRGB出力データ(ビットマップデータ)を生成する。色補正処理部830は、撮像素子800のカラーフィルタが有する分光特性を理想特性に近づける補正を行う。輪郭処理部832は、被写体の輪郭をシャープにする処理を行う。補間処理部828、色補正処理部830および輪郭処理部832は、公知技術を用いてもよい。第2集積回路820で処理された電気信号は、撮像ユニット446から出力され、電気回路基板444のメイン回路470に入力される。撮像素子800、第1集積回路811および第2集積回路820は、SoC(System on Chip)として構成されてもよい。第2集積回路820は、欠陥補正部822、シェーディング補正部824、ホワイトバランス処理部826、補間処理部828、色補正処理部830および輪郭処理部832以外の機能部を有してもよい。
 メイン回路470は、撮像ユニット446に含まれない第3集積回路を有してもよい。図9に示したデジタル回路は、第3集積回路の例である。第3集積回路は、撮像ユニット446で処理された画像データの解析処理を行うための回路である。このように、機能部400は、一般的な撮像ユニット446とは別に画像データを解析処理する第3集積回路を有する。図示したデジタル回路の機能部と同等の機能を、メモリ474(図6)に記憶されたプログラムをCPU472で実行することによって実現してもよい。第3集積回路における処理は任意であるが、ここでは1回のシャッタ動作で瞬時に複数の画像を取得し、複数の画像を用いたデジタル処理を行うものとする。たとえば、異なるISO感度で連写された複数の画像を平均化することによってノイズを低減する処理を行える。あるいは、異なる露出で連写された複数の画像を用いて、ダイナミック・レンジを拡大する処理を行うこともできる。ダイナミック・レンジとは、処理可能な信号の最大値と最小値の比率であり、ここでは、撮像素子800が許容できる明るさの範囲を意味する。つまり、第3集積回路におけるデジタル処理によって、撮像素子800が本来許容する明るさの範囲よりも広い明度差を有する画像を見やすくする。
 以下では、メイン回路470においてダイナミック・レンジを拡大する処理を行う例について説明する。具体的には、連写された2つの画像データを部分的に重ね合わせることによって、露出過多あるいは露出不足をキャンセルする。メイン回路470は、第1画像メモリ840、第2画像メモリ842、差分解析部844、再抽出部846および重ね合わせ部848を有する。第1画像メモリ840は、基本となる第1画像データを記憶する。第2画像メモリ842は、参照する第2画像データを記憶する。第2画像データは、たとえば第1画像データよりも一瞬前に取得された画像データである。差分解析部844は、第1画像データと第2画像データの差分(画像の動き)を解析して、第2画像データのうち第1画像データに重ね合わせる画像領域を特定する。再抽出部846は、第2画像データから、第1画像データに重ね合わせる部分画像を抽出する。重ね合わせ部848は、第2画像データから抽出された部分画像を第1画像データに重ね合わせる。これにより、第1画像データにおいて露出が適正でなかった部分(露出過多あるいは露出不足の部分)に、第2画像データにおいて適正な露出で得られた画像を重ねて、全体として露出の不具合がない画像を生成することができる。そして、メイン回路470によってデジタル処理された画像データは、通信回路462から送信される。
 この特許出願は、日本の特願2021-73734号(2021年4月26日出願)の優先権を主張し、その全体が参照により本明細書に組み込まれるものとする。

Claims (5)

  1.  工作機械の取り付け部に着脱可能かつ回転可能に取り付けられる工作機械用装置であって、
     前記取り付け部に対して回転可能に取り付けられる回転部と、
     前記取り付け部に対して固定して取り付けられる固定部と、
     前記回転部の回転とともに前記回転部の回転方向と同じ方向に回転し、(i)撮像素子と前記撮像素子からの信号のノイズ処理を行うための第1集積回路とを備える撮像ユニットと、(ii)前記撮像ユニットで処理された画像データの解析処理を行うための第3集積回路と、を備える機能部と、を備え、
     前記機能部は、前記回転部に対して着脱可能である、工作機械用装置。
  2.  前記機能部は、複数のレンズを含み回転軸方向に伸びているレンズユニットと、前記第3集積回路を含み回転軸方向の長さが前記回転軸と直交する第1直交方向の長さよりも長い基板と、を備え、
     前記レンズユニットと前記基板とは、前記第1直交方向と前記回転軸とに直交する第2直交方向上に並んで配置されている請求項1に記載の工作機械用装置。
  3.  工作機械の取り付け部に着脱可能かつ回転可能に取り付けられる工作機械用装置であって、
     前記取り付け部に対して回転可能に取り付けられる回転部と、
     前記取り付け部から電気を受ける第1受け部を備え、前記取り付け部に対して固定して取り付けられる固定部と、
     前記取り付け部の送り部から送られる前記電気を受ける第2受け部を備え、前記回転部の回転とともに前記回転部の回転方向と同じ方向に回転する機能部と、を備え、
     前記機能部は、前記回転部に対して着脱可能である、工作機械用装置。
  4.  前記固定部は、前記第1受け部と前記第2受け部を結ぶ配線の経路中に、前記回転部との境に前記回転部の回転軸を中心とする環状空間を形成し、前記回転部の回転角に応じて形状を変えられるように隙間を開けて複数周巻かれたケーブルを収容するケーブル収容部を、備えることを特徴とする請求項3に記載の工作機械用装置。
  5.  工具を取り付けてワークを加工することができ、かつ請求項1に記載の工作機械用装置を着脱可能に取り付けられる取り付け部を備える工作機械。
PCT/JP2022/018833 2021-04-26 2022-04-26 工作機械用装置および工作機械 WO2022230856A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021073734A JP7126013B1 (ja) 2021-04-26 2021-04-26 工作機械用装置および工作機械
JP2021-073734 2021-04-26

Publications (1)

Publication Number Publication Date
WO2022230856A1 true WO2022230856A1 (ja) 2022-11-03

Family

ID=83005012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018833 WO2022230856A1 (ja) 2021-04-26 2022-04-26 工作機械用装置および工作機械

Country Status (2)

Country Link
JP (1) JP7126013B1 (ja)
WO (1) WO2022230856A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10509920A (ja) * 1995-06-06 1998-09-29 ケンナメタル インコーポレイテッド アングルスピンドルアタッチメント
JP2007256280A (ja) * 2006-03-20 2007-10-04 Yon Gi Che 物体認識システム及びそれを用いた物体の変位計測方法
DE102007024503B3 (de) * 2007-05-25 2008-08-21 MAPAL Fabrik für Präzisionswerkzeuge Dr. Kress KG Übertragungseinrichtung
US7423734B1 (en) * 2000-04-25 2008-09-09 Ilmar Luik Combined video camera and toolholder with triangulation sensing
JP2010054399A (ja) * 2008-08-29 2010-03-11 Mori Seiki Co Ltd 非接触測定装置及び機上計測システム
US20150073584A1 (en) * 2013-09-10 2015-03-12 Andrew Goodale Wireless vision systems and methods for use in harsh environments
JP2016524547A (ja) * 2013-05-31 2016-08-18 ザウアー ウルトラソニック ゲーエムベーハーSauer Ultrasonic Gmbh 工具、工作機械、及び工作物の機械加工方法
CN106355562A (zh) * 2016-08-30 2017-01-25 兰州交通大学 一种基于机器视觉的钢轨检测图像的去噪方法
JP2017056554A (ja) * 2015-09-18 2017-03-23 ザウアー ゲーエムベーハーSAUER GmbH 工作機械のスピンドル装置と共に使用する結合システム
JP2018062015A (ja) * 2016-10-11 2018-04-19 三菱重工工作機械株式会社 工作機械
JP2020003391A (ja) * 2018-06-29 2020-01-09 Dmg森精機株式会社 測定装置および測定システム
US20200406411A1 (en) * 2016-07-28 2020-12-31 Franz Kessler Gmbh Spindle arrangement for a machine tool comprising an optical element and optical element more particularly for a spindle arrangement of this type

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0368716U (ja) * 1989-11-06 1991-07-08
JP3515023B2 (ja) * 1999-08-25 2004-04-05 太 森山 測定方法および測定装置
JP5873670B2 (ja) * 2011-09-12 2016-03-01 株式会社Mstコーポレーション アングルヘッド型工具ホルダ
DE102012219254B4 (de) * 2012-10-22 2015-01-29 Sauer Ultrasonic Gmbh Versorgungsschaltung, Versorgungssystem, Werkzeugaktor, Werkzeug

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10509920A (ja) * 1995-06-06 1998-09-29 ケンナメタル インコーポレイテッド アングルスピンドルアタッチメント
US7423734B1 (en) * 2000-04-25 2008-09-09 Ilmar Luik Combined video camera and toolholder with triangulation sensing
JP2007256280A (ja) * 2006-03-20 2007-10-04 Yon Gi Che 物体認識システム及びそれを用いた物体の変位計測方法
DE102007024503B3 (de) * 2007-05-25 2008-08-21 MAPAL Fabrik für Präzisionswerkzeuge Dr. Kress KG Übertragungseinrichtung
JP2010054399A (ja) * 2008-08-29 2010-03-11 Mori Seiki Co Ltd 非接触測定装置及び機上計測システム
JP2016524547A (ja) * 2013-05-31 2016-08-18 ザウアー ウルトラソニック ゲーエムベーハーSauer Ultrasonic Gmbh 工具、工作機械、及び工作物の機械加工方法
US20150073584A1 (en) * 2013-09-10 2015-03-12 Andrew Goodale Wireless vision systems and methods for use in harsh environments
JP2017056554A (ja) * 2015-09-18 2017-03-23 ザウアー ゲーエムベーハーSAUER GmbH 工作機械のスピンドル装置と共に使用する結合システム
US20200406411A1 (en) * 2016-07-28 2020-12-31 Franz Kessler Gmbh Spindle arrangement for a machine tool comprising an optical element and optical element more particularly for a spindle arrangement of this type
CN106355562A (zh) * 2016-08-30 2017-01-25 兰州交通大学 一种基于机器视觉的钢轨检测图像的去噪方法
JP2018062015A (ja) * 2016-10-11 2018-04-19 三菱重工工作機械株式会社 工作機械
JP2020003391A (ja) * 2018-06-29 2020-01-09 Dmg森精機株式会社 測定装置および測定システム

Also Published As

Publication number Publication date
JP7126013B1 (ja) 2022-08-25
JP2022168357A (ja) 2022-11-08

Similar Documents

Publication Publication Date Title
JP6598925B2 (ja) 撮像装置、レンズ装置、中間アクセサリ装置
JP6548780B2 (ja) レンズ装置、撮像装置、中間アクセサリ装置
JP5654024B2 (ja) パンあおりカメラ
US20240238924A1 (en) Device for machine tool, and machine tool
EP3410193B1 (en) Imaging apparatus, lens apparatus, and intermediate accessory
US11064105B2 (en) Accessory and imaging apparatus
WO2022230856A1 (ja) 工作機械用装置および工作機械
WO2015040696A1 (ja) 部品実装機
WO2023053778A1 (ja) 工作機械用装置および工作機械
CN110737150B (zh) 物镜基体、物镜以及物镜系统
WO2023054614A1 (en) Attachable device for a machine tool
JP2022080460A (ja) マルチユニットシステム
US20210185219A1 (en) Imaging apparatus, lens apparatus, accessory, and camera system
JP2022129311A (ja) 画像プローブ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795769

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22795769

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP