WO2022230772A1 - 位相シフトマスク、検出素子、デフォーカス量検出方法、フォーカス調整方法、及びデバイスの製造方法 - Google Patents

位相シフトマスク、検出素子、デフォーカス量検出方法、フォーカス調整方法、及びデバイスの製造方法 Download PDF

Info

Publication number
WO2022230772A1
WO2022230772A1 PCT/JP2022/018579 JP2022018579W WO2022230772A1 WO 2022230772 A1 WO2022230772 A1 WO 2022230772A1 JP 2022018579 W JP2022018579 W JP 2022018579W WO 2022230772 A1 WO2022230772 A1 WO 2022230772A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
phase shift
pattern
light
shift mask
Prior art date
Application number
PCT/JP2022/018579
Other languages
English (en)
French (fr)
Inventor
優介 瀧
海都 矢島
正男 牛田
貞祐 冨岡
篤史 原
一弘 鈴木
潔 樋口
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to KR1020237027459A priority Critical patent/KR20240000446A/ko
Priority to JP2023517488A priority patent/JPWO2022230772A1/ja
Priority to CN202280014132.2A priority patent/CN116830035A/zh
Publication of WO2022230772A1 publication Critical patent/WO2022230772A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/44Testing or measuring features, e.g. grid patterns, focus monitors, sawtooth scales or notched scales
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • G03F9/7026Focusing

Definitions

  • the present invention relates to a phase shift mask, a detection element, a defocus amount detection method, a focus adjustment method, and a device manufacturing method.
  • lithography process which is one of the manufacturing processes for devices such as semiconductor elements, liquid crystal display elements, imaging devices (such as CCDs), and thin-film magnetic heads
  • a reticle pattern as a mask is projected onto a photoresist through a projection optical system.
  • Projection exposure apparatus are used for transfer exposure onto coated wafers, glass plates or the like (hereinafter referred to as photosensitive substrates).
  • photosensitive substrates coated wafers, glass plates or the like
  • PSFM Phase Shift Focus Monitor
  • a projection exposure apparatus for example, Patent Document 1
  • PSFM Phase Shift Focus Monitor
  • the evaluation method described in Patent Document 1 first, exposure is performed using a phase shift mask on which measurement marks are formed. At this time, the image of the pattern formed when exposure is performed in a defocused state is laterally (optical axis of the projection optical system) with respect to the image of the pattern formed when exposure is performed in a focused state.
  • a phenomenon occurs in which the position shifts (moves) in the direction in the plane perpendicular to the plane. Using this phenomenon, the amount of positional deviation is converted into the amount of defocus, and the focus performance is evaluated.
  • the phase shift mask has a substrate, first and second semi-transmissive layers (first and second phase shift films), and a light shielding layer (light shielding film), A first region in which a first semi-transmissive layer (first phase shift film) is arranged along an arrangement direction parallel to the surface of the base material, and the surface of the base material are exposed on the surface of the base material. A second region, a third region where the light shielding layer (the light shielding film) is arranged, a fourth region where the second semi-transmissive layer (the second phase shift film) is arranged, and the substrate surface A phase shift mask is provided in which a metrology mark having a pattern of adjacent exposed fifth regions is formed.
  • a detection element for detecting a defocus amount of light of a predetermined wavelength that is transmitted through a projection optical system comprising a substrate, first and second semi-transmissive layers (first and second two phase shift films) and a light shielding layer (light shielding film), and a first semi-transmissive layer (first phase shift film) is formed on the surface of the substrate along an arrangement direction parallel to the surface.
  • the defocus amount of the projection optical system is detected by the defocus amount detection method of the third aspect, and the focus of the projection optical system is detected based on the detected defocus amount.
  • a method for adjusting the focus of a projection optical system is provided.
  • a device manufacturing method including exposing a photosensitive substrate in a predetermined pattern using the projection optical system adjusted by the focus adjustment method of the fourth aspect.
  • FIG. 1(a) is a schematic bottom view of a phase shift mask having measurement marks according to an embodiment (viewed from the surface on which the measurement marks are formed), and FIG. 1(b) is FIG. 1(a).
  • FIG. 2 is a schematic diagram of a section taken along line IB-IB;
  • FIG. 2(a) is an enlarged view of the IIA area of FIG. 1(a), and
  • FIG. 2(b) is a schematic view of a cross section taken along line IIB-IIB of FIG. 2(a).
  • FIG. 3A is a diagram showing a projected image of the measurement mark (box-in-box pattern) of the embodiment in a focused state (a defocus amount is 0 (zero)), and
  • FIG. 3(c) is a diagram showing the relationship between the defocus amount and the shift amount in the embodiment.
  • FIG. 4 is a flow chart showing a defocus amount detection method and a focus adjustment method according to the embodiment.
  • FIG. 5 is a schematic diagram of an exposure apparatus that performs defocus amount detection and focus adjustment according to the embodiment.
  • FIG. 6(a) is a schematic diagram of a phase shift mask provided with a plurality of measurement marks in a modification
  • FIG. 6(b) is a schematic diagram of a photosensitive substrate exposed to a plurality of measurement marks. be.
  • FIG. 6(c) is a diagram showing the defocus amount on the photosensitive substrate before focus adjustment in the modification
  • FIG. 6(d) shows the defocus amount on the photosensitive substrate after focus adjustment. It is a diagram.
  • FIG. 7 is a table showing gas flow rates and composition ratios during deposition of the phase shift films PS1 to PS14.
  • FIG. 8 is a table showing the film thicknesses of the phase shift films PS1 to PS14 and the optical characteristics for light with a wavelength of 302 nm.
  • FIG. 9 is a table showing film thicknesses of the phase shift films PS1 to PS14 and optical characteristics for light with a wavelength of 313 nm.
  • FIG. 10 is a table showing the film thicknesses of the phase shift films PS1 to PS14 and the optical characteristics for light with a wavelength of 334 nm.
  • FIG. 11 is a table showing film thicknesses of the phase shift films PS1 to PS14 and optical characteristics for light with a wavelength of 365 nm.
  • FIG. 12 is a table showing film thicknesses of the phase shift films PS1 to PS14 and optical characteristics for light with a wavelength of 405 nm.
  • FIG. 13 is a table showing film thicknesses of the phase shift films PS1 to PS14 and optical characteristics for light with a wavelength of 436 nm.
  • 14A to 14F are diagrams for explaining a method of manufacturing a phase shift mask having measurement marks according to the embodiment.
  • FIG. 15A to 15F are diagrams explaining a method of manufacturing a phase shift mask having measurement marks according to the embodiment.
  • FIG. 16 shows the simulation result of the relationship between the shift amount and the defocus amount performed in the example.
  • FIG. 17(a) is a view showing a cross pattern measurement mark
  • FIG. 17(b) shows a projected image of the measurement mark in focus (a defocus amount is 0 (zero)).
  • FIG. 17(c) is a diagram showing a projected image of the measurement mark in an out-of-focus state (a defocus amount is not 0 (zero)).
  • FIG. 18 is a phase shift mask with metrology marks without a phase shift film.
  • phase shift mask 100 A phase shift mask 100 having measurement marks 40 shown in FIG. 1 will be described.
  • the phase shift mask 100 is used, for example, as a detection element for detecting the defocus amount of light (exposure light) of a predetermined wavelength that passes through a projection optical system mounted in a projection exposure apparatus.
  • the phase shift mask 100 includes a substrate 10, a light shielding film (light shielding layer) 30 formed on the surface (substrate surface) 10a of the substrate 10, and a phase shift film (semi-transmissive film) formed on the substrate surface 10a. and a semi-transmissive layer) 20 .
  • the phase shift film 20 is formed near the light shielding film 30 .
  • the light shielding film 30 constitutes the measurement mark 40 .
  • a so-called box-in-box pattern consisting of a pair of concentric squares (or rectangles) is used as the measurement marks 40 .
  • the details of the measurement mark 40 used in this embodiment will be described later.
  • phase shift film 20 and the light shielding film 30 on the substrate surface 10a will be described.
  • a region A1, a region B1, a region C, a region A2 and a region B2 are adjacent to each other in this order on the substrate surface 10a. are placed.
  • a phase shift film 20 is arranged in the regions A1 and A2.
  • the phase shift film 20 does not exist in the regions B1 and B2, and the substrate surface 10a is exposed.
  • a light shielding film 30 is arranged in the region C.
  • the measurement mark 40 includes at least area C, and in addition to area C, may include area A1, area A2, area B1, and area B2.
  • the phase shift mask When the phase shift mask is irradiated with light of a predetermined wavelength (exposure light), the phases of light (first light) transmitted through the regions A1 and A2 are the same, and light transmitted through the regions B1 and B2 (second light) is the same. light) are the same.
  • the phase shift film 20 since the phase shift film 20 is formed, the phase of the light transmitted through the regions A1 and A2 is shifted and differs from the phase of the light transmitted through the regions B1 and B2.
  • the region A1, region B1, region C, region A2 and region B2 of the present embodiment are respectively the "first region", the "second region”, the "third region” and the "fourth region” of the present invention. and "fifth area".
  • the "X direction” in this embodiment corresponds to the "arrangement direction” in the present invention.
  • the phase shift film 20 arranged in the region A1 corresponds to the "first phase shift film", the "first semi-transmissive layer” or the “first semi-transmissive film”, and the phase shift film 20 arranged in the region A2.
  • the shift film 20 corresponds to a "second phase shift film”, a “second semi-transmissive layer” or a "second semi-transmissive film”.
  • the basic arrangement (areas A1, B1, C, A2, B2) of the phase shift film 20 and the light shielding film 30 of this embodiment corresponds to the "pattern" of the invention.
  • the phase shift mask 100 of the present embodiment the light shielding film 30 forming the measurement mark 40 and the phase shift film 20 have a unique basic arrangement (regions A1, B1, C, A2, B2) as described above. Due to this unique basic arrangement, the correlation between the defocus amount of the projected image of the measurement mark 40 and the positional deviation amount on the projection plane becomes strong, and the phase shift mask 100 can be used to easily and accurately detect the defocus amount. It becomes possible. As a result, focus adjustment becomes easier.
  • the phase shift mask When the phase shift mask is irradiated with light of a predetermined wavelength (exposure light), the first light transmitted through the regions A1 and A2 where the phase shift film is arranged and the regions B1 and B2 where the substrate surface 10a is exposed are exposed.
  • the phase difference with the transmitted second light is 90° ⁇ 50°, preferably 90° ⁇ 20°, more preferably 90° ⁇ 5°, still more preferably 90° ⁇ 3°. be. If the phase difference is within the above range, it becomes easier to detect the defocus amount and adjust the focus using the phase shift mask 100 .
  • the phase difference can be adjusted by changing the refractive index, film thickness, etc. of the phase shift film in accordance with the wavelength of light (exposure light) transmitted through the phase shift mask 100 . That is, the phase shift film 20 is preferably configured so that the phase difference is within the above range.
  • the width Wb1 of the region B1 and the width Wa2 of the region A2 in the X direction are smaller than the width Wc of the region C (Wc>Wb1, Wc>Wa2>).
  • the ratio of the width Wb1 to the width Wc (Wb1/Wc) is preferably 0.1 to 0.2, more preferably 0.1 to 0.15, and still more preferably 0 and 1 to 0.13.
  • the ratio (Wa2/Wc) of the width Wa2 to the width Wc is preferably 0.1 to 0.2, more preferably 0.1 to 0.15, and even more preferably 0.1 to 0.13.
  • the width Wb1 and the width Wa2 may be smaller than the width Wa1 of the region A1. Moreover, it is preferable that the width Wa1 is at least twice the width Wc. When the width Wa1, the width Wb1, the width Wc, and the width Wa2 have the above relationship, detection of the defocus amount and focus adjustment become easier.
  • width Wa1, width Wb1, width Wc, and width Wa2 can be appropriately designed in consideration of the wavelength of the exposure light of the projection exposure apparatus in which the phase shift mask 100 is used.
  • the shape of the measurement mark 40 of the present embodiment does not matter as long as it includes portions where straight lines face each other.
  • the measurement mark 40 (light shielding film 30) may include a straight portion, and the X direction crossing the pattern formed by the light shielding film 30 may be a direction perpendicular to the extending direction of the straight portion.
  • the width of each region is the width (length) in the direction orthogonal to the extending direction of the straight line portion.
  • the material of the base material 10 is not particularly limited as long as it sufficiently transmits the exposure light of the projection exposure apparatus in which the phase shift mask 100 is used.
  • quartz glass may be used.
  • the thickness of the substrate 10 may be, for example, 5 mm to 30 mm, or 7 mm to 20 mm.
  • the material of the light shielding film 30 is not particularly limited as long as it sufficiently shields the exposure light of the projection exposure apparatus in which the phase shift mask 100 is used.
  • metals such as chromium may be used.
  • Specific examples include chromium oxide (CrO) and chromium nitride (CrN).
  • the thickness of the light shielding film 30 is, for example, 50 nm to 300 nm, with a preferred lower limit of 80 nm, a more preferred lower limit of 100 nm, a preferred upper limit of 200 nm, and a more preferred upper limit of 150 nm.
  • the phase shift film 20 may be present under the light shielding film 30 .
  • the phase shift film 20 is formed continuously over the region C and the region A2 of the substrate surface 10a, and the light shielding film 30 is laminated on the phase shift film 20 in the region C. are arranged. That is, in the region C, a layered structure of the phase shift film 20 and the light shielding film 30 is formed. Even with the laminated structure, the region C is sufficiently shielded by the light shielding film 30 . Moreover, with such a laminated structure, the entire formation mark 40 can be easily formed by wet etching, which will be described later. In addition, the phase shift film 20 may not be formed in the region C, and only the light shielding film 30 may be formed.
  • the phase shift film 20 shifts (changes) the phase of light transmitted through it.
  • the phase shift film 20 may be, for example, a film containing zirconium (Zr), silicon (Si) and nitrogen (N).
  • Zr zirconium
  • Si silicon
  • N nitrogen
  • the phase shift film 20 containing Zr, Si and N sufficiently transmits light with a wavelength of 250 nm to 440 nm, for example.
  • the measurement mark 40 in which the phase shift film 20 containing Zr, Si and N is formed in the regions A1 and A2 exhibits a linear relationship between the defocus amount and the shift amount over a wide range ( See FIG. 3(c)). As a result, defocus amount detection and focus adjustment using the phase shift mask 100 can be performed more easily and accurately.
  • the phase shift film 20 may contain oxygen (O) in addition to zirconium (Zr), silicon (Si) and nitrogen (N).
  • oxygen (O) oxygen
  • the phase shift film 20 further increases the transmittance of light with a wavelength of 250 nm to 440 nm.
  • the defocus amount and the shift amount in the measurement mark 40 described later show a linear relationship over a wider range (see FIG. 3C). can be detected and focused more easily and accurately.
  • the preferred composition of the phase shift film 20 will be described for the following two cases (i) and (ii). do.
  • the atomic ratio (O/Zr) of the phase shift film 20 is less than 0.1, the atomic ratio (N/Zr) is preferably 2.0 or more.
  • the atomic ratio (N/Zr) is preferably in the range of 0 to 3.0.
  • the atomic ratio (Si/Zr) is preferably 0.5 to 2.0 or 0.8 to 1.2.
  • the phase shift film 20 may contain elements other than Zr, Si, N and O, or may be a film substantially containing only Zr, Si, N and O.
  • the phase shift film 20 does not contain elements other than Zr, Si, N and O, or may contain a small amount of impurities that do not affect the effect.
  • the atomic ratio of the phase shift film 20 can be measured using X-ray photoelectron spectroscopy (XPS), which will be described in Examples described later.
  • the thickness of the phase shift film 20 derived from the refractive index can be reduced. A film can be formed more uniformly on the substrate 10 by reducing the thickness required for film formation. Also, if the film thickness can be reduced, the so-called side etching amount can be reduced, and a pattern closer to the design dimension can be obtained.
  • the reason for this is that a lower extinction coefficient reduces light absorption and improves the transmittance of the phase shift film 20 .
  • the refractive index of the phase shift film 20 for light with a wavelength of 302 nm is 1.7 to 3.0, with a preferred lower limit of 1.75 and a preferred upper limit of 2.9.
  • the attenuation coefficient of the phase shift film 20 for light with a wavelength of 302 nm is 0.6 or less, with a preferable lower limit of 10 ⁇ 6 and a preferable upper limit of 0.55.
  • the transmittance of the portion where the phase shift film 20 is formed on the substrate 10 is referred to as "element transmittance”, and the “element transmittance” is also called external transmittance considering reflection.
  • “Element transmittance” is the transmittance of the substrate 10 and the phase shift film 20 .
  • the element transmittance for light with a wavelength of 302 nm is preferably 25% or more, preferably 40%, and preferably 60% or more. More preferred.
  • the refractive index of the phase shift film 20 for light with a wavelength of 313 nm is 1.7 to 3.0, with a preferred lower limit of 1.75 and a preferred upper limit of 2.9.
  • the attenuation coefficient of the phase shift film 20 for light with a wavelength of 313 nm is 0.5 or less, with a preferable lower limit of 10 ⁇ 6 and a preferable upper limit of 0.45.
  • the element transmittance for light with a wavelength of 313 nm is preferably 30% or more, preferably 40%, and 60%. The above is more preferable.
  • the refractive index of the phase shift film 20 for light with a wavelength of 334 nm is 1.7 to 3.0, with a preferred lower limit of 1.75 and a preferred upper limit of 2.9.
  • the attenuation coefficient of the phase shift film 20 for light with a wavelength of 334 nm is 0.4 or less, with a preferable lower limit of 10 ⁇ 6 and a preferable upper limit of 0.35.
  • the element transmittance for light with a wavelength of 334 nm is preferably 40% or more, preferably 50%, or 70%. The above is more preferable.
  • the refractive index of the phase shift film 20 for light with a wavelength of 365 nm is 1.7 to 3.0, with a preferred lower limit of 1.72 and a preferred upper limit of 2.85.
  • the attenuation coefficient of the phase shift film 20 for light with a wavelength of 365 nm is 0.2 or less, with a preferable lower limit of 10 ⁇ 6 and a preferable upper limit of 0.18.
  • the element transmittance for light with a wavelength of 365 nm is preferably 50% or more, preferably 60%, and 70%. The above is more preferable.
  • the phase shift film 20 preferably has a high transmittance for light with a wavelength of 250 nm to 440 nm, which is used as exposure light in a projection exposure apparatus as described above.
  • Typical exposure light includes, for example, deep ultraviolet rays (DUV, wavelength: 302 nm, 313 nm, 334 nm), i-line (wavelength: 365 nm), h-line (wavelength: 405 nm), g-line (wavelength: 436 nm), and the like. be done.
  • the transmittance of light with a wavelength of 250 nm to 440 nm in the first region and the fourth region where the phase shift film 20 is arranged is preferably 25% or more, more preferably 30% or more, and even more preferably 40% or more.
  • the transmittance of the first region and the fourth region correspond to the element transmittance described above.
  • the thickness of the phase shift film 20 is determined by taking into consideration the optical characteristics such as the refractive index of the phase shift film 20 and the wavelength of the light (exposure light) that is transmitted therethrough. It can be designed so that the phase difference with the transmitted light is in an appropriate range (for example, 90° ⁇ 50°).
  • the thickness of the phase shift film 20 may be 40 nm to 150 nm.
  • the steps provided on the substrate surface 10a are determined by the wavelength of the exposure light. For example, when using exposure light with a wavelength of 365 nm to obtain a phase difference of 90°, the step provided on the substrate surface 10a made of quartz glass (refractive index: 1.47) is 192 nm.
  • the steps on the substrate surface 10a are formed by etching, for example, but it is very difficult to uniformly etch the steps of 192 nm.
  • a decrease in the accuracy of step processing leads to a decrease in the accuracy of defocus detection of the phase shift mask.
  • the area to be etched increases, that is, as the phase shift mask has a larger area and the number of measurement marks 40 increases, this problem becomes more pronounced.
  • the phase shift film 20 is formed without forming steps on the substrate surface 10a. It is relatively easy to form the phase shift film 20 with a uniform film thickness over a large area. Therefore, even when the phase shift mask 100 has a large area and the number of measurement marks 40 increases, the accuracy of defocus detection can be improved. For example, the manufacture of large area devices such as flat panel displays (FPDs) requires large phase shift masks.
  • the phase shift mask 100 of this embodiment can be suitably used for manufacturing large-area devices such as FPDs.
  • phase shift mask 100 having the measurement marks 40 is not particularly limited, and a general-purpose method can be used.
  • phase shift mask 100 may be manufactured using reactive sputtering and wet etching (see FIGS. 14 and 15) to form metrology marks 40 .
  • phase shift mask blank 150 having a substrate 10 and a phase shift film 20 formed on the substrate surface 10a is prepared (FIG. 14(a)).
  • the phase shift mask blanks 150 may be produced, for example, by depositing the phase shift film 20 on the substrate surface 10a by reactive sputtering.
  • a measurement mark 40 is formed (patterned).
  • the measurement marks 40 may be formed using wet etching, for example.
  • a Cr film is formed as the light shielding film 30 on the phase shift film 20 by reactive sputtering.
  • the light shielding film 30 may be formed by laminating a chromium nitride layer 31 and a chromium oxide layer 32 (not shown).
  • a resist is applied onto the light shielding film 30 by spin coating to form a first photoresist layer 51 (FIG. 14(b)).
  • FIG. 14 shows an embodiment using a positive resist, a negative resist may be used.
  • the first photoresist layer 51 is exposed to light of a predetermined wavelength.
  • the light with a predetermined wavelength is not particularly limited, and any light with a wavelength to which the resist is sensitive may be used, for example, light with a wavelength of 365 nm.
  • a pattern is formed on the first light-shielding mask so that areas A1, A2, and C on the substrate surface 10a are covered and areas B1 and B2 are exposed. As a result, the first photoresist layer 51 on the regions B1 and B2 is exposed to form a first exposed portion 51E (FIG. 14(c)).
  • the exposed substrate 10 is immersed in a developer, thereby dissolving and removing the first photosensitive portions 51E (FIG. 14(d)).
  • the base material 10 is immersed in an etchant for the light shielding film 30 .
  • the light shielding film 30 on the regions B1 and B2 not covered with the first photoresist layer 51 is removed, and the phase shift film 20 is exposed (FIG. 14(e)).
  • the substrate 10 is immersed in the etchant for the phase shift film 20 .
  • the phase shift film 20 on the regions B1 and B2 not covered with the first photoresist layer 51 is removed to expose the substrate surface 10a (FIG. 14(f)).
  • the substrate 10 is immersed in a resist stripper. As a result, all the first photoresist layer 51 remaining on the substrate 10 is dissolved and removed (FIG. 15(a)). After removing the first photoresist layer 51, a second photoresist layer 52 is formed on the entire substrate surface 10a (FIG. 15(b)).
  • the second photoresist layer 52 may be formed by the same method using the same material as the first photoresist layer 51 and may have the same thickness.
  • a second light shielding mask is used to expose the second photoresist layer 52 to light of a predetermined wavelength.
  • a pattern is formed on the second light-shielding mask so that the regions A1 and A2 on the substrate surface 10a are exposed. Thereby, the second photoresist layer 52 on the regions A1 and A2 is exposed to form a second exposed portion 52E (FIG. 15(c)).
  • the exposed substrate 10 is immersed in the developer. As a result, the second exposed portion 52E is dissolved and removed (FIG. 15(d)).
  • the base material 10 is immersed in an etchant for the light shielding film 30 .
  • the light shielding film 30 on the regions A1 and A2 is removed and the phase shift film 20 is exposed (FIG. 15(e)).
  • the substrate 10 is immersed in a resist stripper. As a result, the second photoresist layer 52 remaining on the substrate 10 is completely dissolved and removed (FIG. 15(f)).
  • the phase shift mask 100 having the measurement marks 40 shown in FIG. 15(f) can be obtained.
  • wet etching shown in FIGS. 14 and 15 has been described as a patterning method for the measurement mark 40, the present embodiment is not limited to this, and the measurement mark 40 may be patterned using a known method.
  • the measurement mark 40 is a "box-in-box" pattern consisting of two substantially squares.
  • the measurement mark 40 is composed of an outer quadrangle (first mark) 41 and an inner quadrangle (second mark) 42 arranged in the outer quadrangle 41 and concentric with the outer quadrangle 41 .
  • the outer rectangle 41 is larger than the inner rectangle 42 .
  • the outer rectangle 41 has horizontal sides 411x and 412x extending in the X direction (an example of the “first arrangement direction”) parallel to the substrate surface 10a on the substrate surface 10a, and parallel to the substrate surface 10a and X It includes vertical sides 411y and 412y extending in the Y direction (an example of the “second arrangement direction”) perpendicular to the direction.
  • the horizontal sides 411x and 412x and the vertical sides 411y and 412y may be joined to form a complete quadrangle, or may be partly or wholly spaced apart to form an incomplete quadrangle.
  • the outer quadrilateral 41 is an imperfect quadrilateral.
  • the inner rectangle 42 includes horizontal sides 421x and 422x extending in the X direction and vertical sides 421y and 422y extending in the Y direction on the substrate surface 10a.
  • the horizontal sides 421x and 422x and the vertical sides 421y and 422y may be joined to form a complete quadrangle, or may be partly or wholly spaced apart to form an incomplete quadrangle.
  • the inner quadrilateral 42 is an incomplete quadrilateral.
  • the measurement mark 40 has the basic arrangement of the phase shift film 20 and the light shielding film 30 described above.
  • the direction of the basic arrangement is the same near the vertical side 411y and the direction of the basic arrangement near the vertical side 412y, and the direction of the basic arrangement is opposite between the vicinity of the vertical side 412y and the vicinity of the vertical side 422y.
  • the direction of the basic layout is opposite between the vicinity of the vertical side 411y and the vicinity of the vertical side 421y.
  • the vertical side 411y and the vertical side 412y (the outer rectangle 41)
  • area A1, area B1, and area C area A2 and area B2 are arranged adjacent to each other in this order.
  • the vertical side 421y and the vertical side 422y (the inner rectangle 42)
  • the area A1, area B1, Area C, area A2 and area B2 are arranged adjacent to each other in this order.
  • regions A1 , area B1, area C, area A2, and area B2 are arranged adjacent to each other in this order, but the directions of arrangement are opposite.
  • the area A1, the area B1, and the area C are arranged in the direction Y1 from one side to the other side in the Y direction (the direction from the bottom to the top in FIG. 1B).
  • area A2 and area B2 are arranged adjacent to each other in this order.
  • the area A1, the area B1, Area C, area A2 and area B2 are arranged adjacent to each other in this order.
  • the outer square 41 (vertical side 411y) and the inner square 42 (vertical side 421y) divide the area B2 existing between them into the B2 of each basic arrangement. shared as. Also, the outer square 41 (vertical side 412y) and the inner square 42 (vertical side 422y) share an area A1 existing therebetween as A1 of their respective basic layouts. As a result, the space for the mark 40 can be saved. Further, the width Wb2 of the region B2 existing between the outer quadrangle 41 and the inner quadrangle 42 is the region C included in the outer quadrangle 41 and the inner quadrangle 42 when the exposure light is projected onto the measurement mark 40 (phase shift mask 200).
  • the width Wb2 of the region B2 is at least twice the width Wc of the region C of the outer quadrangle 41 or at least twice the width Wc of the region C of the inner quadrangle 42 .
  • the vertical side 411y (first pattern), the vertical side 421y (second pattern), the vertical side 422y (third pattern), and the vertical side 412y (fourth pattern) are called a first portion, and the horizontal side 411x (fifth pattern) is called a first portion.
  • pattern), horizontal side 421x (sixth pattern), horizontal side 422x (seventh pattern), and horizontal side 412x (eighth pattern) are referred to as second portions.
  • the outer quadrangle 41 and the inner quadrangle 42 have regions A1, B1, C, A2, and B2 arranged in opposite directions in the X direction, and the directions of arrangement of the same regions in the Y direction. is also vice versa.
  • the projected images of the outer quadrangle 41 and the inner quadrangle 42 through the projection optical system are displaced in opposite directions on the same straight line in the projection plane according to the defocus amount.
  • the emission angle (emission angle) of the light rays emitted from the photomask is vertical
  • the pattern is formed on the substrate at the time of defocus.
  • the center position of the projected image of the pattern formed on the substrate is formed at substantially the same position as the center position of the projected image of the pattern formed on the substrate during focusing.
  • the emission angle of the light rays emitted from the photomask is an angle different from the vertical (90° ⁇ : ⁇ is arbitrary)
  • the center position of the projected image of the pattern formed on the substrate at the time of defocusing is the focus. It is formed at a position different from the central position of the projected image formed on the substrate at that time.
  • the emission angle corresponds to the incident angle of light incident on the substrate.
  • the light rays emitted from the photomask are emitted at an angle different from the vertical (90° ⁇ : ⁇ is an arbitrary ). More specifically, the phase difference between the areas A1 and B1 of the measurement mark 40 and the phase difference between the areas A2 and B2 allow the emission angle to be different from the vertical angle.
  • the pattern image of the vertical sides 411y and 421y formed on the substrate is a projected image of the vertical sides 411y and 421y at a position above the focus position in the Z-axis direction (the direction opposite to the direction of gravity).
  • the projected images of the vertical sides 411y and 421y approach each other, and the pattern of the vertical sides 411y and 421y is formed at a position below the focus position in the Z-axis direction.
  • defocused referred to as minus defocus
  • the projected images of the vertical side 412y and the vertical side 421y are separated.
  • the arrangement of the marks near the vertical side 412y and the vertical side 422y is different from that in the configuration 1.
  • the pattern images of the vertical side 412y and the vertical side 422y formed on the substrate behave in a manner opposite to that of Configuration 1.
  • FIG. That is, the projection images of the vertical sides 412y and 422y formed on the substrate are separated from each other when the vertical side 412y and the vertical side 422y are defocused, and when the defocus is negative, the vertical sides 412y and 422y are projected.
  • the projected image of the vertical side 422y approaches.
  • a projection image 40P of the outer quadrangle 41 and the inner quadrangle 42 is obtained using the principle described above.
  • the positional deviation amount of the center 42C with respect to the center 41C is defined as "shift amount”.
  • shift amount When the shift amount is "positive”, it indicates plus defocus, and when the shift amount is "negative”, it indicates minus defocus.
  • FIG. 3C shows the relationship between the defocus amount and the shift amount of the projection image 40P of the measurement mark 40.
  • a solid line indicates a straight line of linear approximation, and a dotted line indicates a value of simulation.
  • the shift amount can be measured, and the defocus amount can be detected and the focus can be adjusted easily and accurately from the shift amount.
  • the shift amount is 0 (zero).
  • the shift amount is "negative", indicating negative defocus.
  • the shift amount may be calculated from the shortest distance between the center 41C and the center 42C, or the shortest distance is resolved into two components (X component, Y component) in the two-dimensional directions (X direction, Y direction) of the substrate. You may
  • the measurement mark may be a measurement mark 80 having a substantially cross-shaped pattern.
  • the measurement mark 80 consists of four substantially L-shaped portions forming an outer cross (first mark) 81 and four substantially L-shaped portions forming an inner cross (second mark) 82 concentric with the outer cross 81. .
  • a region A1, a region B1, a region C, a region A2, and a region B2 are arranged adjacent to each other in this order.
  • the X direction may be the direction perpendicular to the straight portion of the measurement mark 80 .
  • projected images 81P and 82P of the outer cross 81 and the inner cross 82 through the projection optical system are aligned on the same straight line L80 in the projection plane according to the defocus amount. Positional deviations occur in opposite directions on the top.
  • the positional deviation amount of the center 82C with respect to the center 81C is defined as "shift amount”. Also in the projection image 80P, the defocus amount and the shift amount exhibit a linear relationship. Therefore, it is possible to measure the shift amount, detect the defocus amount and adjust the focus from the shift amount.
  • the measurement mark 40 may not only have a box-in-box structure as shown in FIG.
  • the outer structure may be a square (the corners may not be connected) and the inner structure may be a cross.
  • the position of the center 41C of the outer quadrangle is used as a reference
  • the position of the center 42C of the inner quadrangle is used as a reference
  • the distance between the two reference positions is measured to calculate the shift amount.
  • the shift amount can be calculated by determining a reference position on the outer graphic and a reference position on the inner graphic and measuring the distance between the two reference positions. Therefore, the shapes of the outer and inner measurement marks 40 can be appropriately designed.
  • the exposure apparatus 500 includes a light source LS, an illumination optical system 502, a projection optical system 504, a projection optical system controller 508, a mask stage 503 holding the phase shift mask 100, a mask stage drive mechanism 507, and an exposure target. and a substrate stage driving mechanism 506 for holding a photosensitive substrate 515 .
  • the exposure apparatus 500 includes a main controller 509 that controls the entire exposure apparatus 500 including the mask stage drive mechanism 507 , projection optical system controller 508 and substrate stage drive mechanism 506 .
  • a projection optical system controller 508 can control drive elements corresponding to the respective lens elements forming the projection optical system 504 to adjust the position and angle of each lens element.
  • a mask stage driving mechanism 507 can move the mask stage 503 in the horizontal plane and in the optical axis direction of the projection optical system 504 .
  • a substrate stage drive mechanism 506 can move the substrate stage 505 in the horizontal plane and in the optical axis direction.
  • the mask stage driving mechanism 507 and the substrate stage driving mechanism 506 are also capable of adjusting the tilts of the mask stage 503 and the substrate stage 505, respectively.
  • the mask stage driving mechanism 507 and/or the substrate stage driving mechanism 506 can finely adjust the distance between the phase shift mask 100 and the photosensitive substrate 515 in the optical axis direction, ie focus adjustment.
  • the projection optical system controller 508 can finely adjust the position and/or tilt of at least one of the lenses that make up the projection optical system 504 to adjust the focus.
  • the mask stage drive mechanism 507 , projection optical system controller 508 and substrate stage drive mechanism 506 are focus adjustment mechanisms in the exposure apparatus 500 .
  • the focus adjustment mechanism is controlled by main controller 509 .
  • phase shift mask 100 is placed on the mask stage 503 in the exposure apparatus 500 shown in FIG.
  • a photosensitive substrate 515 coated with a photoresist is placed on the substrate stage 505 .
  • the measurement marks 40 of the phase shift mask 100 are projected onto the photosensitive substrate 515 and exposed (step S1 in FIG. 4).
  • exposure light is emitted from the light source LS of the exposure device 500 .
  • illumination light for example, light such as deep ultraviolet rays (DUV, 302 nm, 313 nm, 334 nm), i-line (365 nm), h-line (405 nm), g-line (436 nm) is used.
  • the emitted exposure light enters an illumination optical system 502 to be adjusted to a predetermined light flux, and is irradiated onto the phase shift mask 100 held on the mask stage 503 .
  • the light passing through the phase shift mask 100 has a pattern of the measurement marks 40 drawn on the phase shift mask 100 , and this pattern is projected onto the photosensitive substrate 515 held on the substrate stage 505 via the projection optical system 504 .
  • a predetermined position on the surface (projection plane) is irradiated.
  • the measurement marks 40 of the phase shift mask 100 are imaged and exposed onto the photosensitive substrate 515 at a predetermined magnification.
  • the positional deviation (shift amount) of the center 42C from the center 41C is measured (see FIG. 3B) (step S2 in FIG. 4).
  • the shift amount can be measured, for example, by observing the projected image 40P of the measurement mark 40 with an optical microscope.
  • the defocus amount is calculated from the measured shift amount (step S3 in FIG. 4).
  • the defocus amount and the shift amount show a linear relationship (see FIG. 3C)
  • the defocus amount can be easily and accurately calculated from the measured shift amount.
  • the relationship between the defocus amount and the shift amount as shown in FIG. etc. to obtain data.
  • the focus adjustment method (steps S1 to S4 in FIG. 4) in the exposure apparatus 500 will be described.
  • the defocus amount is detected by the method described above (steps S1 to S3 in FIG. 4).
  • the focus adjustment mechanism (506, 507, 508) of the exposure device 500 performs focus adjustment so as to correct (cancel) the defocus amount (step S4 in FIG. 4).
  • the mask stage driving mechanism 507 and/or the substrate stage driving mechanism 506 finely adjust the tilt and the position of the mask stage 503 and/or the substrate stage 505 in the optical axis direction, and the phase shift mask 100 and the phase shift mask 100 are adjusted.
  • the focus may be adjusted by finely adjusting the distance in the optical axis direction from the photosensitive substrate 515 . Additionally or alternatively, the projection optical system controller 508 may finely adjust the position and/or tilt of at least one of the lenses that make up the projection optical system 504 for focus adjustment.
  • the detection of the defocus amount and the focus adjustment described above may be performed prior to the photolithography process using the exposure apparatus, for example, in the manufacture of devices such as semiconductors and liquid crystal panels. That is, exposure may be performed using the projection optical system adjusted by the focus adjustment method described above to manufacture the device. By using a projection optical system whose focus is adjusted, circuit pattern defects in the exposure process can be reduced, and devices can be manufactured efficiently.
  • the present embodiment is not limited to this.
  • the phase shift mask 100 of the present embodiment may be provided with only one measurement mark 40 or may be provided with a plurality of measurement marks 40 .
  • only one measurement mark 40 may be exposed on the photosensitive substrate 515, or a plurality of measurement marks 40 may be exposed.
  • the projection exposure apparatus 500 shown in FIG. 5, which mounts only one projection optical system is used, but the present embodiment is not limited to this.
  • a so-called multi-lens type exposure apparatus the phase shift mask 100 is used to reduce the defocus amount. Detection and focus adjustment can be performed similarly.
  • a plurality of measurement marks can be used to simultaneously detect the defocus amount of each projection optical system and adjust the focus.
  • the multi-lens exposure apparatus is suitable for large-area exposure, and is used, for example, for exposure of thin film transistor (TFT) circuit patterns in the manufacture of flat panel displays (FPDs) such as liquid crystal/organic EL displays.
  • TFT thin film transistor
  • FPDs flat panel displays
  • the multi-lens exposure apparatus used in this modified example has three projection optical systems PL1 to PL3.
  • the multi-lens system exposure apparatus used in this modified example is a scanning stepper (scanner). That is, by driving the phase shift mask 200 and the photosensitive substrate in the same direction (X direction) at the same speed with respect to the projection optical systems PL1 to PL3, the measurement marks 40 formed on the phase shift mask 200 are photosensitized. Exposure on the substrate.
  • Other basic structures are the same as those of the exposure apparatus 500 shown in FIG.
  • the phase shift mask 200 shown in FIG. 6A is arranged in a multi-lens exposure apparatus.
  • the phase shift mask 200 has a plurality of measurement marks 40 provided on the substrate surface 10 a of the substrate 10 .
  • Other structures are the same as the phase shift mask 100 shown in FIG.
  • On the substrate surface 10a of the phase shift mask 200 three rows M1, M2, and M3 each composed of a plurality of measurement marks 40 arranged in the X direction are arranged in the Y direction orthogonal to the X direction.
  • a photosensitive substrate 215 is also set in the multi-lens type exposure apparatus.
  • the measurement marks 40 of the phase shift mask 200 are projected onto the photosensitive substrate 215 and exposed (step S1 in FIG. 4).
  • the mask stage and the substrate stage are synchronously driven in the X direction according to instructions from the controller of the multi-lens exposure apparatus, and the first shot area 215A and the second shot area 215B on the photosensitive substrate 215 are scanned and exposed. I do.
  • three measurement mark image rows M1P, M2P, and M3P are formed on the substrate 215 as shown in FIG. 6B. Rows M1P, M2P, and M3P are composed of images 40P of a plurality of measurement marks 40 arranged in the X direction.
  • the controller moves (steps) the substrate stage 505 to the position corresponding to the third shot area 215C and the fourth shot area 215D. do. Then, scanning exposure is performed on the third shot area 215C and the fourth shot area 215D. As a result, three more measurement mark image rows M11P, M12P, and M13P are formed on the substrate 215. FIG. Thus, the photosensitive substrate 215 is exposed with the projection images 41P of the plurality of measurement marks 40. FIG.
  • the measurement mark image rows M1P and M11P are formed by the projection optical system PL1
  • the measurement mark image rows M2P and M12P are formed by the projection optical system PL2
  • the measurement mark image rows M3P and M13P are formed by the projection optical system PL3. It is formed.
  • the shift amount of the projected image 40P of the measurement mark 40 exposed on the photosensitive substrate 215 is detected (step S2 in FIG. 4), and the defocus amount is calculated based on the detected shift amount (step S2 in FIG. 4). S3).
  • the defocus amount can be detected for each projected image of a plurality of marks 40 formed on the photosensitive substrate 215 .
  • FIG. 6C three measurement mark image columns M1P, M2P, and M3P are projected on the photosensitive substrate 215 with the center of the graph set to the intersection of the X-axis center and the Y-axis center of the photosensitive substrate 215.
  • phase shift mask 200 may have one or more metrology marks 40 and patterns for manufacturing devices.
  • step S4 an example of the focus adjustment method (steps S1 to S4 in FIG. 4) will be described.
  • the defocus amount in the multi-lens system exposure apparatus is detected over the entire surface of the photosensitive substrate 215 by the method described above (steps S1 to S3 in FIG. 4).
  • focus adjustment of each projection optical system is performed based on the detected defocus amount (step S4 in FIG. 4).
  • the focus adjustment is performed so that the defocus amount is corrected (cancelled) independently by the focus adjustment mechanism of each projection optical system based on the detected defocus amount (FIG. 4). step S4).
  • FIG. 6(d) shows the result of detecting the defocus amount in the same manner (steps S1 to S3 in FIG. 4) again after focus adjustment. From FIGS. 6(c) and (d), it can be seen that the focus is optimized over a wide area of the photosensitive substrate 615 surface.
  • the method for detecting the defocus amount and the method for adjusting the focus according to this modified example are preferably used in the manufacture of FPDs in which large-area exposure is performed.
  • the manufacture of FPDs if defocus occurs in the exposure of the TFT circuit pattern, a line width error that affects the electrical characteristics of the TFT circuit pattern may occur, deteriorating the quality of the finished display. Since the defocus amount detection method and the focus adjustment method of this modification can easily and accurately optimize the focus over the entire photosensitive substrate, such quality deterioration of the finished product (display) can be suppressed.
  • a resolving power chart 45 can be provided together with the measurement mark 40 .
  • the resolution chart 45 may have only one line width, or may have two or more different line widths.
  • the resolving power chart may be arranged over the entire substrate in the same manner as the measurement marks 40 in FIG. This allows the projection exposure apparatus to confirm the line width that can be exposed at each position on the entire substrate.
  • the phase shift mask 100 for defocus inspection on which the measurement mark 40 is formed has been described as an example. patterns) and other patterns such as alignment marks required for alignment may be formed.
  • the phase shift film 20 may form both detection marks and device patterns.
  • the phase shift film 20 can be used as a phase shift mask having a device pattern without the detection mark 40 .
  • the phase shift film 20 may form a device pattern.
  • phase shift mask detection element
  • defocus amount detection method detection method
  • focus adjustment method focus adjustment method
  • Phase shift films PS2 to PS5 Phase shift films PS2 to PS5 were formed on the substrate 10 in the same manner as the phase shift film PS1 except that the ratio of the Ar flow rate and the N 2 flow rate of the Ar—N 2 mixed gas was changed as shown in FIG. formed.
  • phase shift film PS11 A phase shift film PS11 was formed on the substrate 10 in the same manner as the phase shift film PS1, except that an Ar—N 2 —O 2 mixed gas was used instead of the Ar—N 2 mixed gas.
  • the film formation conditions were a mixed gas total pressure of 0.3 Pa, an Ar flow rate of 30 sccm, an N2 flow rate of 19 sccm, an O2 flow rate of 1 sccm, and a DC output of 1.5 kw.
  • Phase shift films PS12 to PS14 Phase shift films PS12 to PS14 are formed on substrate 10 in the same manner as for phase shift film PS11, except that the ratio of Ar flow rate, N 2 flow rate, and O 2 flow rate of the mixed gas is changed as shown in FIG. did.
  • phase shift films PS1 to PS5 and PS11 to PS14 were subjected to composition analysis by X-ray photoelectron spectroscopy (XPS). The results are shown in FIG. XPS was measured after digging the surface of each phase shift film by about 10 nm by Ar + ion sputtering.
  • Phase shift films PS1 to PS5 and PS11 to PS14 were subjected to ellipsometry at six wavelengths (DUV (wavelength 302 nm, 313 nm, 334 nm), i (365 nm), h-line (405 nm), g-line (436 nm)) and the extinction coefficient were measured. From the refractive index measurement results, the film thicknesses of the phase shift films PS1 to PS5 and PS11 to PS14 that provide a phase shift of 90 degrees at each of the six wavelengths were calculated.
  • the transmittance (element transmittance) of the elements (substrate and phase shift film) on which the phase shift films PS1 to PS5 and PS11 to PS14 having the calculated film thickness were formed was calculated by simulation.
  • the simulation was performed using the simulation software "TFCalc", and from the measurement results of the refractive index and extinction coefficient at each of the six wavelengths obtained by the ellipsometry method, the film thickness that gives a phase shift of 90° at each wavelength was determined. was used to calculate the transmittance of the phase shift films PS1 to PS5 and PS11 to PS14 at the film thickness.
  • the transmittance is an external transmittance (element transmittance) in consideration of reflection. Measured refractive indices and attenuation coefficients, and calculated film thicknesses and element transmittances are shown in FIGS.
  • Phase Shift Mask Blanks 150 In order to simulate the box-in-box pattern measurement marks 40 provided on the phase shift mask 100 shown in FIG. Physical property values for the membrane 20 were obtained. The phase shift film PS4 described above was used for the phase shift mask blanks 150a. The phase shift film PS13 described above was used for the phase shift mask blanks 150b.
  • phase shift film PS4 having the composition shown in FIG. 7 was formed as the phase shift film 20 on the base material 10 by the reactive sputtering described above.
  • the thickness of the phase shift film PS4 was set to 51.6 nm, which exhibits a phase shift amount of 90° with respect to light with a wavelength of 365 nm shown in FIG. 11 (FIG. 14(a)).
  • phase shift mask 150b was fabricated in the same manner as the phase mask blanks 150a, except that the phase shift film PS13 was formed on the substrate 10 instead of the phase shift film PS4.
  • the film thickness was set to 120.7 nm, which exhibits a phase shift amount of 90° with respect to light with a wavelength of 365 nm shown in FIG.
  • Phase shift masks 100A and 100B were designed by providing the manufactured phase shift mask blanks 150a and 150b with the box-in-box pattern measurement marks 40 shown in FIG.
  • the sizes (design values) of the measurement marks 40 formed on the phase shift masks 100A and 100B are as follows.
  • Width in X direction and width in Y direction of outer rectangle 41 X: 90 ⁇ m
  • Y: 90 ⁇ m Width in the X direction and width in the Y direction of the inner square 42 X: 46 ⁇ m
  • the width of the outer quadrangle 41 in the X direction is the length from one end to the other end of the outer quadrangle 41 in the X direction
  • the width in the Y direction is the length of the outer quadrangle 41 in the Y
  • the width of the inner quadrangle 42 in the X direction is the length from one end of the inner quadrangle 42 to the other end in the X direction
  • the width in the Y direction is the length of the inner quadrangle 42 in the Y direction. is the length from one end to the other end of the
  • phase shift mask 100A is placed in a projection exposure apparatus and exposed to light with a wavelength of 365 nm.
  • the relationship between the shift amount and the defocus amount was simulated for the projection image 40P (see FIGS. 3A and 3B) projected through the projection optical system. The results are shown in FIG.
  • the relationship between the shift amount and the defocus amount was simulated for the phase shift mask 100B. The results are also shown in FIG.
  • the shift amount and the defocus amount exhibit a linear relationship over a wide range.
  • the shift amount of the measurement mark 40 is measured with an optical microscope, and the defocus amount can be easily and accurately calculated based on the measurement. Focus adjustment can be easily performed in the projection exposure apparatus so as to correct (cancel) this defocus amount.
  • the phase shift masks 100A and 100B function as detection elements for detecting the defocus amount of light that passes through the projection optical system.
  • the simulation results of the phase shift masks 100A and 100B are compared.
  • the phase shift mask 100B employing the phase shift film PS13 exhibits a linear relationship between the shift amount and the defocus amount over a wider range. Therefore, the shift mask 100B can detect a larger defocus amount.
  • the phase shift mask 100A can detect defocus amounts in the range of -30 ⁇ m to +15 ⁇ m
  • the phase shift mask 100B can detect defocus amounts in a wider range of -30 ⁇ m to +25 ⁇ m. As a cause of this, as shown in FIG.
  • the element transmittance (56.94%) of the phase shift film PS4 adopted in the phase shift mask 100A with respect to light of 365 nm is higher than that of the phase shift film PS13 adopted in the phase shift mask 100B. It is presumed that one of the reasons is that the device transmittance (94.08%) of .
  • the element transmittance corresponds to the transmittance in regions A1 and A2 of phase shift masks 100A and 100B.
  • the element transmittance of the phase shift film PS13 (94.08%) is higher than that of the phase shift film PS4 (56.94%). This is because the atomic ratio (O/Zr) of oxygen (O) to zirconium (Zr) is higher. As the atomic ratio (O/Zr) increases, the bandgap of the film material increases and the attenuation coefficient decreases. This increases the transmittance.
  • the phase shift films PS1 to PS5 do not introduce oxygen gas during film formation. Therefore, in the phase shift films PS1 to PS5, the atomic ratio (O/Zr) of oxygen (O) to zirconium (Zr) is less than 0.1. Oxygen contained in the phase shift films PS1 to PS5 is not actively introduced, but is oxygen taken in from the air by oxidation. On the other hand, the phase shift films PS11 to PS14 positively introduce oxygen gas during film formation. Therefore, in the phase shift films PS11 to PS14, the atomic ratio (O/Zr) of oxygen (O) to zirconium (Zr) is 0.1 or more.
  • phase shift films PS1 to PS5 and PS11 to PS14 shown in FIG. 11 are compared at 365 nm light (i-line).
  • the phase shift films PS11 to PS14 having an atomic ratio (O/Zr) of 0.1 or more have higher element transmittances than the phase shift films PS1 to PS5 having an atomic ratio (O/Zr) of less than 0.1. high.
  • the phase shift films PS11 to PS14 having an atomic ratio (O/Zr) of 0.1 or more exhibit sufficiently high transmittance to light (i-line) of 365 nm.
  • the phase shift mask 100 using the phase shift films PS11 to PS14 having an atomic ratio (O/Zr) of 0.1 or more is effective for the projection optical system when using 365 nm light (i-line). It is presumed to be excellent as a focus amount detection element.
  • the atomic ratio (Si/Zr) is 0.8 to 1.2
  • the atomic ratio (N/Zr) is 0.04 to 2.3
  • the atomic ratio (O/Zr) is was between 0.1 and 3.4.
  • phase shift films PS1 to PS5 whose atomic ratio (O/Zr) is less than 0.1
  • the atomic ratio (Si/Zr) is 1.00 to 1.20
  • the atomic ratio (N/ Zr) of 2.1 to 2.6 in the phase shift films PS3 to PS5 are compared with the phase shift films PS1 and PS2 in which the atomic ratio (Si/Zr) and the atomic ratio (N/Zr) are outside the above ranges. and high element transmittance.
  • phase shift mask 100 using the phase shift films PS3 to PS5 having an atomic ratio (Si/Zr) of 1.00 to 1.20 and an atomic ratio (N/Zr) of 2.1 to 2.6 can be sufficiently used as an element for detecting the defocus amount of the projection optical system when light (i-line) of 365 nm is used.
  • the phase shift films PS1 to PS5 and PS11 to PS14 show the same trend as the element transmittance for light of 365 nm shown in FIG. indicates Accordingly, the phase shift films PS3-PS5 and PS11-PS14 have wavelengths of 302 nm (DUV, FIG. 8), 313 nm (DUV, FIG. 9), 334 nm (DUV, FIG. 10), 405 nm (h-line, FIG. 12) and 436 nm ( It is presumed that it can be sufficiently used as an element for detecting the amount of defocus of the projection optical system when the light of the g-line (FIG. 13) is used.
  • phase shift films PS3 to PS5 and the phase shift films PS11 to PS14 used in this embodiment can be used for a phase shift mask having both detection marks and device patterns. Both can be formed. Moreover, the phase shift films PS3 to PS5 and the phase shift films PS11 to PS14 do not have detection marks and can also be used as a phase shift mask having a device pattern. In this case, the device pattern may be formed.
  • the phase shift mask 100 of this embodiment can be used as a defocus amount detection element of the projection optical system.
  • the phase shift mask 100 of this embodiment can be used not only in exposure apparatuses, but also as defocus amount detection elements in optical measuring machines, laser processing machines, and the like.
  • phase shift mask 500 exposure apparatus LS light source 502 illumination optical system 504 projection optical system 508 projection optical system controller 503 mask stage 507 mask stage drive mechanism 505 substrate stage 506 substrate Stage drive mechanism 509 Main controller A1 Substrate surface region (first region) A2 Substrate surface region (fourth region) B1 Substrate surface region (second region) B2 Substrate surface region (fifth region) C Substrate surface region (third region)

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Focusing (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

位相シフトマスク(100、200)であって、基材(10)と、第1半透過層(20)及び第2半透過層(20)と、遮光層(30)とを有し、前記基材の表面には、前記表面に平行な配列方向に沿って、第1半透過層が配置されている第1領域(A1)と、前記基材表面が露出している第2領域(B1)と、前記遮光層が配置されている第3領域(C)と、第2半透過層が配置されている第4領域(A2)と、前記基材表面が露出している第5領域(B2)とが、隣接して設けられているパターンを有する計測マークが形成されている。

Description

位相シフトマスク、検出素子、デフォーカス量検出方法、フォーカス調整方法、及びデバイスの製造方法
 本発明は、位相シフトマスク、検出素子、デフォーカス量検出方法、フォーカス調整方法、及びデバイスの製造方法に関する。
 半導体素子、液晶表示素子、撮像装置(CCD等)、薄膜磁気ヘッド等のデバイスの製造工程の1つであるリソグラフィ工程においては、マスクとしてのレチクルのパターンを、投影光学系を介してフォトレジストが塗布されたウエハ又はガラスプレート等(以下、感光性基板と称する)上に転写露光するために、投影露光装置が使用されている。デバイスの製造においては、デフォーカスによるパターンの像ぼけや色むらなどのない露光を行うことが重要である。
 投影露光装置におけるフォーカス性能を評価する手段として、PSFM(Phase Shift Focus Monitor)が知られている(例えば、特許文献1)。特許文献1に記載の評価方法では、まず、計測マークが形成された位相シフトマスクを用いて露光を行う。このとき、デフォーカス状態で露光を行った場合に形成されるパターンの像が、フォーカス状態で露光を行った場合に形成されるそのパターンの像に対して、横方向(投影光学系の光軸に垂直な面内の方向)に位置ずれ(移動)するという現象が生じる。この現象を利用し、その位置ずれ量をデフォーカス量に換算して、フォーカス性能を評価する。
米国特許第5300786号明細書
 第1の態様に従えば、位相シフトマスクであって、基材と、第1及び第2半透過層(第1及び第2位相シフト膜)と、遮光層(遮光膜)とを有し、前記基材の表面には、前記表面に平行な配列方向に沿って、第1半透過層(第1位相シフト膜)が配置されている第1領域と、前記基材表面が露出している第2領域と、前記遮光層(前記遮光膜)が配置されている第3領域と、第2半透過層(第2位相シフト膜)が配置されている第4領域と、前記基材表面が露出している第5領域とが、隣接して設けられているパターンを有する計測マークが形成されている、位相シフトマスクが提供される。
 第2の態様に従えば、投影光学系を透過する所定波長の光のデフォーカス量を検出するための検出素子であって、基材と、第1及び第2半透過層(第1及び第2位相シフト膜)と、遮光層(遮光膜)とを有し、前記基材の表面には、前記表面に平行な配列方向に沿って、第1半透過層(第1位相シフト膜)が配置されている第1領域と、前記基材表面が露出している第2領域と、前記遮光層(前記遮光膜)が配置されている第3領域と、第2半透過層(第2位相シフト膜)が配置されている第4領域と、前記基材表面が露出している第5領域とが、隣接して設けられているパターンを有する計測マークが形成されている、検出素子が提供される。
 第3の態様に従えば、第1の態様の前記位相シフトマスク、又は第2の態様の検出素子を用いて投影光学系のデフォーカス量を検出する方法であって、前記位相シフトマスク又は前記検出素子に所定波長の光を照射して前記投影光学系による前記計測マークの投影像を投影面上に形成することと、前記計測マークの投影像の前記投影面における所定位置からの位置ずれ量を計測することと、前記計測した前記位置ずれ量から前記デフォーカス量を算出することを含むデフォーカス量の検出方法が提供される。
 第4の態様に従えば、第3の態様のデフォーカス量の検出方法により、前記投影光学系のデフォーカス量を検出することと、検出したデフォーカス量に基づいて、前記投影光学系のフォーカスを調整することを含む投影光学系のフォーカス調整方法が提供される。
 第5の態様に従えば、第4の態様の前記フォーカス調整方法により調整した前記投影光学系を用いて所定パターンで感光性基板を露光することを含むデバイスの製造方法が提供される。
図1(a)は、実施形態の計測マークを有する位相シフトマスクの下面概略図(計測マークが形成されている面から見た図)であり、図1(b)は図1(a)のIB-IB線断面の概略図である。 図2(a)は図1(a)のIIAエリアの拡大図であり、図2(b)は図2(a)のIIB-IIB線断面の概略図である。 図3(a)は、フォーカスが合っている(デフォーカス量が0(ゼロ))の状態の実施形態の計測マーク(ボックスインボックスのパターン)の投影像を示す図であり、図3(b)は、フォーカスが合っていない(デフォーカス量が0(ゼロ)でない)の状態の計測マークの投影像を示す図である。図3(c)は、実施形態における、デフォーカス量とシフト量との関係を示す図である。 図4は、実施形態のデフォーカス量検出方法及びフォーカス調整方法を示すフローチャートである。 図5は、実施形態のデフォーカス量検出及びフォーカス調整を行う露光装置の概略図である。 図6(a)は、変形例における、複数の計測マークが設けられた位相シフトマスクの概略図であり、図6(b)は、複数の計測マークが露光された感光性基板の概略図である。図6(c)は、変形例における、フォーカス調整前の感光性基板上におけるデフォーカス量を示す図であり、図6(d)は、フォーカス調整後の感光性基板上におけるデフォーカス量を示す図である。 図7は、位相シフト膜PS1~PS14の成膜時のガス流量及び組成比を示す表である。 図8は、位相シフト膜PS1~PS14の膜厚及び波長302nmの光に対する光学特性を示す表である。 図9は、位相シフト膜PS1~PS14の膜厚及び波長313nmの光に対する光学特性を示す表である。 図10は、位相シフト膜PS1~PS14の膜厚及び波長334nmの光に対する光学特性を示す表である。 図11は、位相シフト膜PS1~PS14の膜厚及び波長365nmの光に対する光学特性を示す表である。 図12は、位相シフト膜PS1~PS14の膜厚及び波長405nmの光に対する光学特性を示す表である。 図13は、位相シフト膜PS1~PS14の膜厚及び波長436nmの光に対する光学特性を示す表である。 図14(a)~(f)は、実施形態における計測マークを有する位相シフトマスクの製造方法を説明する図である。 図15(a)~(f)は、実施形態における計測マークを有する位相シフトマスクの製造方法を説明する図である。 図16は、実施例で行ったシフト量とデフォーカス量との関係のシミュレーション結果である。 図17(a)は、十字パターンの計測マークを示す図であり、図17(b)は、フォーカスが合っている(デフォーカス量が0(ゼロ))の状態の計測マークの投影像を示す図であり、図17(c)は、フォーカスが合っていない(デフォーカス量が0(ゼロ)でない)の状態の計測マークの投影像を示す図である。 図18は、位相シフト膜を有さない、計測マーク付き位相シフトマスクである。
[位相シフトマスク]
 図1に示す、計測マーク40を有する位相シフトマスク100について説明する。位相シフトマスク100は、例えば、投影露光装置に搭載される投影光学系を透過する所定波長の光(露光光)のデフォーカス量を検出するための検出素子として用いる。位相シフトマスク100は、基材10と、基材10の表面(基材表面)10aに形成された遮光膜(遮光層)30と、基材表面10aに形成された位相シフト膜(半透過膜・半透過層)20とを有する。位相シフト膜20は、遮光膜30の近傍に形成されている。遮光膜30は、計測マーク40を構成する。本実施形態では、計測マーク40として、同心正方形(または長方形)のペアからなる、所謂、ボックスインボックスのパターンを用いる。本実施形態で用いた計測マーク40の詳細については後述する。
 基材表面10aにおける、位相シフト膜20と遮光膜30の基本配置について説明する。図2に示すように、位相シフト膜20と遮光膜30を横切るX方向に沿って、基材表面10aには、領域A1、領域B1、領域C、領域A2及び領域B2がこの順に隣接して配置されている。領域A1及びA2には、位相シフト膜20が配置されている。領域B1及びB2には、位相シフト膜20は存在せず、基材表面10aが露出している。領域Cには、遮光膜30が配置されている。計測マーク40は、少なくとも領域Cを含み、領域Cに加え領域A1、領域A2、領域B1、及び領域B2を含んでもよい。位相シフトマスクに所定波長の光(露光光)を照射したとき、領域A1及びA2を透過した光(第1光)の位相は同一であり、また、領域B1及びB2を透過した光(第2光)の位相は同一である。一方、位相シフト膜20が形成されているため、領域A1及びA2を透過した光の位相はシフトし、領域B1及びB2を透過した光の位相と異なる。尚、本実施形態の領域A1、領域B1、領域C、領域A2及び領域B2は、それぞれ、本発明の「第1領域」、「第2領域」、「第3領域」、「第4領域」及び「第5領域」に対応する。また、本実施形態の「X方向」は、本発明の「配列方向」に対応する。また、領域A1に配置されている位相シフト膜20は、「第1位相シフト膜」、「第1半透過層」もしくは「第1半透過膜」に対応し、領域A2に配置されている位相シフト膜20は、「第2位相シフト膜」、「第2半透過層」もしくは「第2半透過膜」に対応する。更に、本実施形態の位相シフト膜20と遮光膜30の基本配置(領域A1,B1,C,A2,B2)は、本発明の「パターン」に対応する。
 計測マークに位相変更物質を配置すると、投影光学系を介した投影面上の計測マークの投影像は、そのデフォーカス量に応じて、投影光学系の光軸に直交する投影面内で位置がずれる。本実施形態の位相シフトマスク100では、上述のように計測マーク40を形成する遮光膜30と、位相シフト膜20とが特有の基本配置(領域A1,B1,C,A2,B2)を取る。この特有の基本配置により、計測マーク40の投影像のデフォーカス量と、投影面上の位置ずれ量との相関が強くなり、位相シフトマスク100を用いて容易かつ正確なデフォーカス量の検出が可能となる。この結果、フォーカス調整が容易となる。この理由としてマークを形成する領域Cの一方側で生じる、領域A1を透過した光と領域B1を透過した光との干渉と、領域Cの他方側で生じる、領域A2を透過した光と領域B2を透過した光との干渉とが関連していると推測される。
 位相シフトマスクに所定波長の光(露光光)を照射したとき、位相シフト膜が配置される領域A1及びA2を透過した第1光と、基材表面10aが露出している領域B1とB2を透過した第2光との位相差は、90°±50°であり、好ましくは、90°±20°であり、より好ましくは90°±5°であり、更に好ましくは90°±3°である。位相差が上記範囲内であれば、位相シフトマスク100を用いたデフォーカス量の検出及びフォーカス調整がより容易となる。上記位相差は、位相シフトマスク100を透過する光(露光光)の波長に合わせて、位相シフト膜の屈折率、膜厚等を変更することで調整できる。即ち、位相シフト膜20は、位相差が上記範囲内となるように構成されることが好ましい。
 位相シフトマスク100において、X方向における領域B1の幅Wb1及び領域A2の幅Wa2は、領域Cの幅Wcより小さい(Wc>Wb1、Wc>Wa2>)。幅Wcに対する幅Wb1の比率(Wb1/Wc)は、0.1~0.2が好ましく、0.1~0.15がより好ましく、0、1~0.13が更に好ましい。幅Wcに対する幅Wa2の比率(Wa2/Wc)は、0.1~0.2が好ましく、0.1~0.15がより好ましく、0.1~0.13が更に好ましい。幅Wb1と幅Wa2は、略同一であってよい(Wb1=Wa2)。幅Wb1と幅Wa2は、領域A1の幅Wa1より小さくてよい。また、幅Wa1は幅Wcの2倍以上あれば好ましい。幅Wa1、幅Wb1、幅Wc、幅Wa2が上述の関係を有することで、デフォーカス量の検出及びフォーカス調整がより容易となる。
 幅Wa1、幅Wb1、幅Wc、幅Wa2は、位相シフトマスク100が使用される投影露光装置の露光光の波長等を勘案して適宜設計され得る。
 尚、本実施形態の計測マーク40は、直線が向かいあう部分を含むマークであれば形状は問わない。また、計測マーク40(遮光膜30)が直線部分を含み、遮光膜30が形成するパターンを横切るX方向は、直線部分の延在方向に直交する方向としてもよい。この場合、各領域の幅は直線部分の延在方向に直交する方向における幅(長さ)となる。
 基材10の材料としては、位相シフトマスク100が使用される投影露光装置の露光光を充分に透過するものであれば特に限定されない。例えば、石英ガラスを用いてよい。基材10の厚さは、例えば5mm~30mm、又は7mm~20mmとしてよい。
 遮光膜30の材料としては、位相シフトマスク100が使用される投影露光装置の露光光を充分に遮光するものであれば特に限定されない。例えば、クロム等の金属を用いてよい。具体的には酸化クロム(CrO)や窒化クロム(CrN)が挙げられる。遮光膜30の厚さは、例えば、50nm~300nmであり、好ましい下限値は80nm、より好ましい下限値は100nm、好ましい上限値は200nmであり、より好ましい上限値は150nmである。また、図2(b)に示すように、遮光膜30の下に位相シフト膜20が存在していてもよい。本実施形態では、位相シフト膜20が、基材表面10aの領域C及び領域A2に亘って、連続して形成されており、領域Cには、位相シフト膜20の上に遮光膜30が積層されて配置されている。即ち、領域Cに、位相シフト膜20と遮光膜30との積層構造が形成されている。積層構造であっても、遮光膜30により領域Cは十分に遮光される。また、このような積層構造であれば、後述する湿式エッチングを用いて形成マーク40全体を容易に形成できる。尚、領域Cには、位相シフト膜20が形成されておらず、遮光膜30のみが形成されていてもよい。
 位相シフト膜20は、それを透過した光の位相をシフト(変更)する。位相シフト膜20は、例えば、ジルコニウム(Zr)、ケイ素(Si)及び窒素(N)を含む膜であってよい。位相シフトマスク100では、領域A1、A2を透過した光と領域B1、B2を透過した光とが干渉する必要があるため、位相シフト膜20は露光光を透過させる必要がある。Zr、Si及びNを含む位相シフト膜20は、例えば、波長250nm~440nmの光を十分に透過する。また、Zr、Si及びNを含む位相シフト膜20が領域A1及びA2に形成された計測マーク40は、後述するように、デフォーカス量とシフト量とが広い範囲に亘って線形関係を示す(図3(c)参照)。この結果、位相シフトマスク100を用いたデフォーカス量の検出及びフォーカス調整が、より容易且つ正確に行える。
 また、位相シフト膜20は、ジルコニウム(Zr)、ケイ素(Si)及び窒素(N)に加えて、更に酸素(O)を含んでもよい。酸素(O)を含有することで、位相シフト膜20は、波長250nm~440nmの光の透過率が更に高まる。この結果、後述する計測マーク40における、デフォーカス量とシフト量とが更に広い範囲に亘って線形関係を示し(図3(c)参照)、この結果、位相シフトマスク100を用いたデフォーカス量の検出及びフォーカス調整が、更に、より容易且つ正確に行える。
 波長250nm~400nmの光に対して位相シフト膜20の透過率を25%以上とするために、以下の(i)(ii)の2つの場合に分けて、位相シフト膜20の好ましい組成について説明する。(i)位相シフト膜20の原子比(O/Zr)が0.1未満の場合、原子比(N/Zr)が2.0以上であることが好ましい。また、(ii)位相シフト膜の原子比(O/Zr)が0.1以上の場合、原子比(N/Zr)は0~3.0の範囲であることが好ましい。(i)及び(ii)のいずれの場合においても、原子比(Si/Zr)は0.5~2.0又は0.8~1.2とすることが好ましい。
 尚、位相シフト膜20は、Zr、Si、N及びO以外の元素を含んでもよいし、実質的にZr、Si、N及びOのみを含む膜であってもよい。位相シフト膜20は、Zr、Si、N及びO以外の元素を含まないか、又は効果に影響を与えない程度の少量の不純物として含んでもよい。また、本願明細書において、位相シフト膜20の原子比は、後述する実施例で説明するX線光電子分光法(XPS)を用いて測定できる。
 位相シフト膜20の屈折率は、高ければ高いほど好ましい。その理由として、以下のことが挙げられる。屈折率が高くなることで、式:d=λ/(2(n-1))(d:位相シフト膜20の厚さ、λ:露光光の波長、n:波長λにおける位相シフト膜20の屈折率)で導かれる位相シフト膜20の厚さを薄くできる。成膜に必要な厚みを減らすことで基材10に、より均一に膜を成膜可能になる。また、膜厚を薄くできれば、所謂、サイドエッチング量を低減でき、より設計寸法に近いパターンを得られる。
 位相シフト膜20の消衰係数(減衰係数)は、低ければ低いほど好ましい。その理由として、消衰係数が低くなることで光の吸収が小さくなり、位相シフト膜20の透過率が向上することが挙げられる。
 位相シフト膜20の波長302nmの光における屈折率は、1.7~3.0であり、好ましい下限値は1.75であり、好ましい上限値は2.9である。また、位相シフト膜20の波長302nmの光の減衰係数は0.6以下であり、好ましい下限値は10-6であり、好ましい上限値は、0.55である。ここで、位相シフトマスク100において、基材10に位相シフト膜20が形成されている部分の透過率を「素子透過率」とし、「素子透過率」は反射も考慮した外部透過率とも言う。「素子透過率」は、基材10及び位相シフト膜20の透過率である。位相シフト膜20が波長302nmの光に対して180°の位相シフトを与える膜厚を有するとき、波長302nmの光に対する素子透過率は、25%以上が好ましく、40%が好ましく、60%以上が更に好ましい。
 位相シフト膜20の波長313nmの光における屈折率は、1.7~3.0であり、好ましい下限値は1.75であり、好ましい上限値は2.9である。また、位相シフト膜20の波長313nmの光の減衰係数は0.5以下であり、好ましい下限値は10-6であり、好ましい上限値は、0.45である。更に、位相シフト膜20が波長313nmの光に対して180°の位相シフトを与える膜厚を有するとき、波長313nmの光に対する素子透過率は、30%以上が好ましく、40%が好ましく、60%以上が更に好ましい。
 位相シフト膜20の波長334nmの光における屈折率は、1.7~3.0であり、好ましい下限値は1.75であり、好ましい上限値は2.9である。また、位相シフト膜20の波長334nmの光の減衰係数は0.4以下であり、好ましい下限値は10-6であり、好ましい上限値は、0.35である。更に、位相シフト膜20が波長334nmの光に対して180°の位相シフトを与える膜厚を有するとき、波長334nmの光に対する素子透過率は、40%以上が好ましく、50%が好ましく、70%以上が更に好ましい。
 位相シフト膜20の波長365nmの光における屈折率は、1.7~3.0であり、好ましい下限値は1.72であり、好ましい上限値は2.85である。また、位相シフト膜20の波長365nmの光の減衰係数は0.2以下であり好ましい下限値は10-6であり、好ましい上限値は、0.18である。更に、位相シフト膜20が波長365nmの光に対して180°の位相シフトを与える膜厚を有するとき、波長365nmの光に対する素子透過率は、50%以上が好ましく、60%が好ましく、70%以上が更に好ましい。
 位相シフト膜20は、上述のように投影露光装置で露光光としての使用される波長250nm~440nmの光の透過率が高い方が好ましい。代表的な露光光としては、例えば、深紫外線(DUV、波長:302nm、313nm、334nm)、i線(波長:365nm)、h線(波長:405nm)、g線(波長:436nm)等が挙げられる。例えば、位相シフト膜20が配置されている第1領域及び第4領域における、波長250nm~440nmの光の透過率は、25%以上が好ましく、30%以上がより好ましく、40%以上が更に好ましい。尚、第1領域及び第4領域の透過率は、上述の素子透過率に対応する。
 位相シフト膜20の厚さは、位相シフト膜20の屈折率等の光学特性、透過する光(露光光)の波長を勘案して、領域A1及びA2を透過した光と、領域B1とB2を透過した光との位相差が適当な範囲(例えば、90°±50°)となるよう設計できる。例えば、位相シフト膜20の厚さは、40nm~150nmとしてよい。
 以上説明したように、本実施形態では、領域A1及びA2に位相シフト膜20を設けることで、領域A1及びA2を透過する第1光と、領域B1とB2を透過する第2光との間に位相差を生じさせる。これに対して、位相シフト膜20を設ける代わりに、図18に示すように、基材10の領域B1及びB2の厚さを薄くし、基材表面10aに高低差(段差)を設けることによっても、同様の位相差を生じさせることができる。しかし、基材表面10aに設ける段差は露光光の波長によって決定される。例えば、波長365nmの露光光を用いて、90°の位相差を得る場合、石英ガラス製(屈折率:1.47)の基材表面10aに設ける段差は192nmとなる。基材表面10aの段差は、例えば、エッチング加工によって形成されるが、均一に192nm段差をエッチング加工することは非常に難しい。段差加工の精度の低下は、位相シフトマスクのデフォーカス検出の精度低下に繋がる。特に、エッチングする面積が増える程、即ち、位相シフトマスクが大面積化して計測マーク40の数が増える程、この問題は顕著になる。
 本実施形態の位相シフトマスク100では、基材表面10aに段差を形成することなく、位相シフト膜20を形成する。位相シフト膜20は、大面積に均一な膜厚を形成することが比較的容易である。このため、位相シフトマスク100が大面積化して計測マーク40の数が増えた場合でも、デフォーカス検出の精度を高められる。例えば、フラットパネルディスプレイ(FPD)等の大面積デバイスの製造には、大型の位相シフトマスクが求められる。本実施形態の位相シフトマスク100は、FPD等の大面積デバイスの製造に好適に用いることができる。
[位相シフトマスクの製造方法]
 計測マーク40を有する位相シフトマスク100の製造方法は、特に限定されず、汎用の方法を用いることができる。例えば、位相シフトマスク100は、反応性スパッタリング、及びウェットエッチング(図14及び図15参照)を用いて計測マーク40を形成して製造してもよい。
 図14及び図15に示す位相シフトマスクの製造方法の一例について説明する。まず、基材10と、基材表面10a上に形成された位相シフト膜20とを有する位相シフトマスクブランクス150を用意する(図14(a))。位相シフトマスクブランクス150は、例えば、基材表面10aに反応性スパッタリングにより位相シフト膜20を成膜して作製してもよい。
 次に、計測マーク40を形成する(パターニングする)。計測マーク40の形成は、例えば、ウェットエッチングを用いて形成してよい。まず、位相シフト膜20上に、遮光膜30として、Cr膜を反応性スパッタリングにより形成する。ここで、遮光膜30は、窒化クロム層31と酸化クロム層32が積層されて形成されていてもよい(不図示)。遮光膜30上に、レジストをスピンコートにより塗布し、第1フォトレジスト層51を形成する(図14(b))。尚、図14には、ポジ型レジストを用いた実施形態を示すが、ネガ型レジストを用いてもよい。
 第1遮光マスクを用いて、第1フォトレジスト層51を所定の波長の光で露光する。所定の波長の光は特に限られず、レジストが感光する波長の光であればよく、例えば365nmの光が挙げられる。第1遮光マスクには、基材表面10a上の領域A1,A2,Cが覆われ、領域B1,B2が露出するようなパターンが形成される。これにより、領域B1,B2上の第1フォトレジスト層51が露光され、第1露光部51Eが形成される(図14(c))。
 露光した基材10を現像液に浸漬させ、これにより、第1感光部51Eが溶解、除去される(図14(d))。次に、基材10を遮光膜30用エッチング液に浸漬する。これにより、第1フォトレジスト層51で覆われていない領域B1,B2上の遮光膜30が除去され、位相シフト膜20が露出する(図14(e))。
 基材10を位相シフト膜20用エッチング液に浸漬する。これにより、第1フォトレジスト層51で覆われていない領域B1,B2上の位相シフト膜20が除去され、基材表面10aが露出する(図14(f))。
 次に、基材10をレジスト剥離液に浸漬する。これにより、基材10上に残存していた全ての第1フォトレジスト層51を溶解・除去する(図15(a))。第1フォトレジスト層51を除去した後、基材表面10a全体に第2フォトレジスト層52を形成する(図15(b))。第2フォトレジスト層52は、第1フォトレジスト層51と同じ材料を用いて同じ方法で形成し、同じ厚さとしてもよい。
 第2遮光マスクを用いて、第2フォトレジスト層52を所定の波長の光で露光する。第2遮光マスクには、基材表面10a上の領域A1,A2が露出するようなパターンが形成されている。これにより、領域A1,A2上の第2フォトレジスト層52が露光され、第2露光部52Eが形成される(図15(c))。
 露光した基材10を現像液に浸漬する。これにより、第2露光部52Eが溶解、除去される(図15(d))。次に、基材10を遮光膜30用エッチング液に浸漬する。これにより、領域A1,A2上の遮光膜30が除去され、位相シフト膜20が露出する(図15(e))。次に、基材10をレジスト剥離液に浸漬する。これにより、基材10上に残存した第2フォトレジスト層52が全て溶解・除去される(図15(f))。以上の工程により、図15(f)に示す計測マーク40が形成された位相シフトマスク100を得ることができる。尚、計測マーク40のパターニング法として、図14及び図15に示すウェットエッチングを説明したが、本実施形態はこれに限定されず、計測マーク40は、公知の方法を用いてパターニングしてよい。
[計測マークの構造及び動作原理]
 図1に示す、本実施形態で用いた計測マーク40の構造について説明する。図1(a)に示すように、計測マーク40は、2つの略四角形から構成される「ボックスインボックス」パターンである。計測マーク40は、外四角形(第1マーク)41と、外四角形41の中に配置された、外四角形41と同心の内四角形(第2マーク)42とから構成される。外四角形41は、内四角形42よりも大きい。外四角形41は、基材表面10a上において、基材表面10aと平行なX方向(「第1配列方向」の一例)に延びる横辺411xと412xと、基材表面10aと平行で、且つX方向に直交するY方向(「第2配列方向」の一例)に延びる縦辺411yと412yとを含む。横辺411xと412xと、縦辺411yと412yは、結合して完全な四角形を形成してもよいし、一部又は全部が離間して配置されて不完全な四角形を形成してもよい。本実施形態では、図1(a)に示すように、外四角形41は不完全な四角形である。
 内四角形42は、基材表面10a上において、X方向に延びる横辺421xと422xと、Y方向に延びる縦辺421yと422yとを含む。横辺421xと422xと縦辺421yと422yとは、結合して完全な四角形を形成してもよいし、一部又は全部が離間して配置されて不完全な四角形を形成してもよい。本実施形態では、図1(a)に示すように、内四角形42は、不完全な四角形である。
 図1(b)に示すように、外四角形41の縦辺411yと412yと、内四角形42の縦辺421yと422yの近傍には、共に、位相シフト膜20及び遮光膜30を横切るX方向に沿って、領域A1、領域B1、領域C、領域A2及び領域B2がこの順に隣接して配置されている。即ち、計測マーク40は、上述した位相シフト膜20と遮光膜30との基本配置を有する。但し、縦辺411y近傍と、縦辺412y近傍とでは、基本配置の向きが同じであり、縦辺412y近傍と、縦辺422y近傍とでは、基本配置の向きが逆である。縦辺411y近傍と、縦辺421y近傍とでは、基本配置の向きが逆である。縦辺411y、縦辺412y(外四角形41)では、X方向の一方側から他方側への向きX1(図1(b)の左から右に向かう向き)に、領域A1、領域B1、領域C、領域A2及び領域B2がこの順に隣接して配置されている。一方、縦辺421y、縦辺422y(内四角形42)では、X方向の他方側から一方側への向きX2(図1(b)の右から左に向かう向き)に、領域A1、領域B1、領域C、領域A2及び領域B2がこの順に隣接して配置されている。
 外四角形41の横辺411x及び横辺412xと、内四角形42の横辺421x及び横辺422xとの近傍には、共に、位相シフト膜20及び遮光膜30を横切る方向Yに沿って、領域A1、領域B1、領域C、領域A2及び領域B2がこの順に隣接して配置されているが、配置の向きが逆である。横辺411x、横辺412x(外四角形41)では、Y方向の一方側から他方側への向きY1(図1(b)の下から上に向かう向き)に、領域A1、領域B1、領域C、領域A2及び領域B2がこの順に隣接して配置されている。一方、横辺421x、横辺422x(内四角形42)では、Y方向の他方側から一方側への向きY2(図1(b)の上から下に向かう向き)に、領域A1、領域B1、領域C、領域A2及び領域B2がこの順に隣接して配置されている。
 また、本実施形態では、図1(b)に示すように、外四角41(縦辺411y)と内四角42(縦辺421y)は、その間に存在する領域B2を、それぞれの基本配置のB2として共有している。また、外四角41(縦辺412y)と内四角42(縦辺422y)は、その間に存在する領域A1を、それぞれの基本配置のA1として共有している。これにより、マーク40の省スペース化が図れる。また、外四角形41と内四角形42の間に存在する領域B2の幅Wb2は計測マーク40(位相シフトマスク200)に露光光を投影する時に、外四角形41と内四角形42にそれぞれ含まれる領域Cの空間像を分解できるだけの幅が必要である。したがって、領域B2の幅Wb2は、外四角形41の領域Cの幅Wcの2倍以上、又は内四角形42の領域Cの幅Wcの2倍以上であると好ましい。尚、縦辺411y(第1パターン)、縦辺421y(第2パターン)、縦辺422y(第3パターン)、縦辺412y(第4パターン)を第1部分と呼び、横辺411x(第5パターン)、横辺421x(第6パターン)、横辺422x(第7パターン)、横辺412x(第8パターン)を第2部分と呼ぶ。
 このように、外四角形41と内四角形42とは、X方向における領域A1、領域B1、領域C、領域A2及び領域B2の配置の向きが逆であり、且つY方向における同領域の配置の向きも逆である。このような外四角形41と、内四角形42の投影光学系を介した投影像は、デフォーカス量に応じて、投影面内の同一直線上において互いに反対方向に位置ずれを生じる。
 例えば、図3(a)に示すように、投影光学系のフォーカスが合っている場合、即ち、デフォーカス量が0(ゼロ)の場合、投影光学系を介した計測マーク40の投影面上の投影像40Pにおいて、外四角形41の投影像41Pの中心41Cと、内四角形42の投影像42Pの中心42Cとは一致している。一方、図3(b)に示すように、投影光学系のフォーカスが合っていない場合、即ち、デフォーカスが生じている場合、投影像40Pにおいて、中心41C及び42Cで位置ずれが生じる。
 位置ずれが生じる理由の前提として、フォトマスクを介して基板に任意のパターンを露光する際、フォトマスクから出射した光線の出射角度(射出角度)が垂直な場合、デフォーカス時における基板に形成されるパターンの投影像の中心位置は、フォーカス時における基板に形成されるパターンの投影像の中心位置とほぼ同じ位置に形成される。一方、フォトマスクから出射した光線の出射角度が垂直とは異なる角度(90°±α:αは任意)である場合、デフォーカス時における基板に形成されるパターンの投影像の中心位置は、フォーカス時の基板に形成される投影像の中心位置とは異なる位置に形成される。また、射出角度は基板に入射される光の入射角度に相当する。
 上述した計測マーク40を形成し、領域A1及び領域B1、領域A2及び領域B2を形成することにより、フォトマスクから出射した光線の出射角度を垂直とは異なる角度(90°±α:αは任意)とすることができる。より具体的には、計測マーク40の領域A1と領域B1の位相差、領域A2と領域B2の位相差によって射出角度を垂直とは異なる角度にすることができる。
 また、縦辺411y近傍及び縦辺421y近傍から構成される構成1では、縦辺411y近傍と縦辺421y近傍のマークの配置が反対であるため、縦辺411y近傍の領域A1と領域B1、領域A2と領域B2を通過した出射光と、縦辺421y近傍の領域A1と領域B1、領域A2と領域B2を通過した射出光の出射角度は、反対向きになる。これにより、基板に形成された縦辺411yと縦辺421yのパターン像は、フォーカス位置よりもZ軸方向(重力方向とは反対方向)が上の位置で縦辺411yと縦辺421yの投影像が形成されたとき(プラスデフォーカスと呼ぶ)は、縦辺411yと縦辺421yの投影像が近づき、フォーカス位置よりもZ軸方向が下の位置で縦辺411yと縦辺421yのパターンが形成されたとき(マイナスデフォーカスと呼ぶ)では、縦辺412yと縦辺421yの投影像が離れる。
 また、縦辺412y近傍及び縦辺422y近傍から構成される構成2では、縦辺412y近傍と縦辺422y近傍のマークの配置が構成1とは異なる。それにより、基板に形成された縦辺412yと縦辺422yのパターン像は構成1とは反対の挙動を示す。すなわち、基板に形成された縦辺412yと縦辺422yの投影像は、プラスデフォーカスのときは、縦辺412yと縦辺422yの投影像が離れ、マイナスデフォーカスのときは、縦辺412yと縦辺422yの投影像が近づく。
 以上で述べた原理を用いて、外四角形41及び内四角形42の投影像40Pを得る。投影像40Pの対角線L上において、中心41Cに対する中心42Cの位置ずれ量を「シフト量」と定義する。シフト量が「正」の時は、プラスデフォーカスを指し、シフト量「負」の時は、マイナスデフォーカスを指す。図3(c)には、計測マーク40の投影像40Pのデフォーカス量とシフト量の関係を示す。実線は線形近似の直線を示し、点線はシミュレーションの値を示す。これより、計測マーク40の投影像40Pにおいて、デフォーカス量とシフト量は強い相関があり、広い範囲に亘って線形関係を示すことがわかる。このため、シフト量を測定し、そのシフト量からデフォーカス量の検出及びフォーカス調整が容易且つ正確に行える。具体的には、図3(a)に示されるように中心41Cと中心42Cとが一致している場合、シフト量は0(ゼロ)である。例えば、図3(b)のように中心41Cを基準にして中心42Cが右上方向にずれるときは、シフト量は「負」であり、マイナスデフォーカスであることが分かる。また、シフト量は、中心41C及び中心42C間の最短距離で算出してもよいし、最短距離を基板の二次元方向(X方向、Y方向)の2成分(X成分、Y成分)に分解してもよい。
 また、例えば、図17(a)に示すように、計測マークは、略十字形パターンの計測マーク80としてもよい。計測マーク80は、外十字(第1マーク)81を構成する4つの略L字部分と、外十字81と同心の内十字(第2マーク)82を構成する4つの略L字部分とからなる。外十字81と、内十字82の近傍には、共に、遮光膜30を横切るX方向に沿って、領域A1、領域B1、領域C、領域A2及び領域B2がこの順に隣接して配置されている。例えば、X方向は、計測マーク80の直線部分に直交する方向であってよい。図17(b)及び(c)に示すように、外十字81と、内十字82の投影光学系を介した投影像81P,82Pは、デフォーカス量に応じて、投影面内の同一直線L80上において互いに反対方向に位置ずれを生じる。ここで、計測マーク80の投影像80Pにおいて、中心81Cに対する中心82Cの位置ずれ量を「シフト量」と定義する。投影像80Pにおいても、デフォーカス量とシフト量は線形関係を示す。このため、シフト量を測定し、そのシフト量からデフォーカス量の検出及びフォーカス調整が可能である。
 また、計測マーク40は、図1のようなボックスインボックス構造だけではなくてもよい。例えば、外側の構造が四角形(角がつながっていなくてもよい)であり、内側の構造が十字でもよい。これは、図3では、外側の四角形の中心41Cの位置を基準とし、内側の四角形の中心42Cの位置を基準として、2つの基準位置間の距離を計測してシフト量を算出している。これと同様に外側の図形で基準となる位置と内側の図形で基準となる位置をそれぞれ定め、2つの基準位置間の距離を計測することによってシフト量を算出することができる。そのため、外側・内側の計測マーク40の形状は、適宜設計され得る。
[デフォーカス量検出方法、及びフォーカス調整方法]
 計測マーク40を有する位相シフトマスク100を用いた、投影露光装置におけるデフォーカス量の検出方法及びフォーカス調整方法について、図4に示すフローチャートに従って説明する。
 まず、デフォーカス量検出及びフォーカス調整を行う、図5に示す露光装置500について説明する。露光装置500は、光源LSと、照明光学系502と、投影光学系504と、投影光学系コントローラ508と、位相シフトマスク100を保持するマスクステージ503と、マスクステージ駆動機構507と、露光対象物である感光性基板515を保持する基板ステージ505と、基板ステージ駆動機構506とを備える。更に、露光装置500は、マスクステージ駆動機構507、投影光学系コントローラ508及び基板ステージ駆動機構506を含む露光装置500全体を制御する主コントローラ509を備える。投影光学系コントローラ508は、投影光学系504を構成する各レンズエレメントに対応する駆動素子を制御し、各レンズエレメントの位置及び角度を調整可能である。マスクステージ駆動機構507は、マスクステージ503を水平面内及び投影光学系504の光軸方向に移動可能である。基板ステージ駆動機構506は、基板ステージ505を水平面内及び光軸方向に移動可能である。
 マスクステージ駆動機構507及び基板ステージ駆動機構506は、それぞれ、マスクステージ503及び基板ステージ505の傾きの調整も可能である。マスクステージ駆動機構507及び/又は基板ステージ駆動機構506により、位相シフトマスク100と感光性基板515との光軸方向の間隔の微調整、即ち、フォーカス調整が可能である。また、投影光学系コントローラ508は、投影光学系504を構成するレンズの少なくとも1つの位置及び/又は傾きを微調整することで、フォーカス調整が可能である。このように、マスクステージ駆動機構507、投影光学系コントローラ508及び基板ステージ駆動機構506は、露光装置500におけるフォーカス調整機構である。フォーカス調整機構は、主コントローラ509により制御される。
 露光装置500におけるデフォーカス量の検出方法(図4のステップS1~S3)について説明する。まず、図5に示す露光装置500において、マスクステージ503に位相シフトマスク100を配置する。また、基板ステージ505にフォトレジストが塗布された感光性基板515を配置する。
 次に、位相シフトマスク100の計測マーク40を感光性基板515に投影し、露光する(図4のステップS1)。まず、露光装置500の光源LSから露光光を出射する。照明光としては、例えば、深紫外線(DUV、302nm、313nm、334nm)、i線(365nm)、h線(405nm)、g線(436nm)等の光が用いられる。出射した露光光は、照明光学系502に入射して所定光束に調整され、マスクステージ503に保持された位相シフトマスク100に照射される。位相シフトマスク100を通過した光は位相シフトマスク100に描かれた計測マーク40のパターンを有しており、このパターンが投影光学系504を介して基板ステージ505に保持された感光性基板515の表面(投影面)の所定位置に照射される。これにより、位相シフトマスク100の計測マーク40が、感光性基板515に所定倍率で結像露光される。
 次に、感光性基板515に露光された計測マーク40の投影像40Pにおいて、中心41Cに対する中心42Cの位置ずれ量(シフト量)を測定する(図3(b)参照)(図4のステップS2)。シフト量は、例えば、計測マーク40の投影像40Pを光学顕微鏡で観察して計測できる。
 次に、測定したシフト量からデフォーカス量を算出する(図4のステップS3)。上述のように、デフォーカス量とシフト量とは線形関係を示すため(図3(c)参照)、測定したシフト量から容易且つ正確にデフォーカス量を算出できる。尚、図3(c)に示すようなデフォーカス量とシフト量との関係性については、例えば、以上説明したデフォーカス量の検出(図4のステップS1~S3)に先立って、シミュレーション、実験等を行い、データを得ていてもよい。
 次に、露光装置500におけるフォーカス調整方法(図4のステップS1~S4)について説明する。まず、上述した方法により、デフォーカス量を検出する(図4のステップS1~S3)。次に、検出したデフォーカス量に基づき、露光装置500のフォーカス調整機構(506,507,508)により、デフォーカス量を正す(キャンセルする)ようにフォーカス調整を行う(図4のステップS4)。具体的には、例えば、マスクステージ駆動機構507及び/又は基板ステージ駆動機構506により、マスクステージ503及び/又は基板ステージ505の傾き及び光軸方向の位置の微調整を行い、位相シフトマスク100と感光性基板515との光軸方向の間隔の微調整を行って、フォーカスを調整してもよい。これに加えて、又はこれに代えて、投影光学系コントローラ508により、投影光学系504を構成するレンズの少なくとも1つの位置及び/又は傾きを微調整することで、フォーカス調整をおこなってもよい。
 以上説明したデフォーカス量の検出、フォーカス調整は、例えば、半導体や液晶パネル等のデバイス製造において、露光装置を用いたフォトリソグラフィ工程に先立って実施してよい。即ち、上述したフォーカス調整方法により調整した投影光学系を用いて露光を行い、デバイスを製造してよい。フォーカスを調整した投影光学系を用いることで、露光工程における回路パターン不良を低減でき、デバイスを効率よく製造できる。
[変形例]
 上記実施形態では、1つの計測マーク40を用いたデフォーカス量検出方法、及びフォーカス調整について説明したが、本実施形態はこれに限定されない。例えば、本実施形態の位相シフトマスク100は、計測マーク40が1つのみ設けられていてもよいし、計測マーク40が複数設けられていてもよい。また、感光性基板515には、1つの計測マーク40のみを露光してもよいし、複数の計測マーク40を露光してもよい。
 また、上記実施形態では、投影光学系を1個のみ搭載する図5に示す投影露光装置500を用いたが、本実施形態はこれに限定されない。例えば、特開2018-54847号公報に開示されるような複数の投影光学系を搭載する投影露光装置、所謂、マルチレンズ方式の露光装置においても、位相シフトマスク100を用いて、デフォーカス量の検出及びフォーカス調整を同様に行うことができる。この場合には、以下に説明するように、複数の計測マークを用いて、それぞれの投影光学系のデフォーカス量の検出及びフォーカス調整を同時に行うことができる。なお、マルチレンズ方式露光装置は、大面積の露光に適しており、例えば、液晶/有機ELディスプレイ等のフラットパネルディスプレイ(FPD)の製造において、薄膜トランジスタ(TFT)回路パターンの露光に使用される。
 本変形例では、図6(a)に示す複数の計測マーク40が設けられた位相シフトマスク200を用いた、マルチレンズ方式露光装置におけるデフォーカス量の検出方法及びフォーカス調整方法の一例について説明する。本変形例で用いるマルチレンズ方式露光装置は、3個の投影光学系PL1~PL3を有する。また、本変形例で用いるマルチレンズ方式露光装置は、スキャニング・ステッパ(スキャナ)である。即ち、位相シフトマスク200と感光性基板とを投影光学系PL1~PL3に対して同一方向(X方向)に同一速度で駆動することで、位相シフトマスク200に形成された計測マーク40を感光性基板上に露光する。その他の基本的な構造は、図5に示す露光装置500と同様である。
 デフォーカス量の検出方法(図4のステップS1~S3)の一例について説明する。まず、マルチレンズ方式露光装置に、図6(a)に示す位相シフトマスク200を配置する。位相シフトマスク200は、基材10の基材表面10aに複数の計測マーク40が設けられている。それ以外の構造は、図1に示す位相シフトマスク100と同様である。位相シフトマスク200の基材表面10aには、X方向に並んだ複数の計測マーク40で構成される3つの列M1,M2,M3が、X方向に直交するY方向に並んでいる。また、マルチレンズ方式露光装置には、感光性基板215もセットする。
 次に、位相シフトマスク200の計測マーク40を感光性基板215に投影し、露光する(図4のステップS1)。まず、マルチレンズ方式露光装置の制御装置の指示に従い、マスクステージ及び基板ステージをX方向に同期駆動し、感光性基板215上の1つめのショット領域215A及び2つめのショット領域215Bへの走査露光を行う。これにより、図6(b)に示す、3つの計測マーク像の列M1P,M2P,M3Pが基板215上に形成される。列M1P,M2P,M3Pは、X方向に並ぶ複数の計測マーク40の像40Pから構成される。1つめのショット領域215A及び2つめのショット領域215Bに対する走査露光が終了すると、制御装置は、基板ステージ505を3つめのショット領域215C及び4つめのショット領域215Dに対応する位置へ移動(ステッピング)する。そして、3つめのショット領域215C及び4つめのショット領域215Dに対する走査露光を行う。これにより、更に3つの計測マーク像の列M11P,M12P,M13Pが基板215上に形成される。こうして、感光性基板215を、複数の計測マーク40の投影像41Pで露光する。尚、計測マーク像の列M1P,M11Pは投影光学系PL1により形成され、計測マーク像の列M2P,M12Pは投影光学系PL2により形成され、計測マーク像の列M3P,M13Pは投影光学系PL3により形成される。
 次に、感光性基板215に露光された計測マーク40の投影像40Pのシフト量を検出し(図4のステップS2)、検出したシフト量に基づいてデフォーカス量を算出する(図4のステップS3)。本変形例では、感光性基板215に形成した複数のマーク40の投影像ごとにデフォーカス量が検出できる。図6(c)に、3つの計測マーク像の列M1P,M2P,M3Pについて、グラフの中心を感光性基板215のX軸の中心とY軸の中心の交点とし、感光性基板215上における投影像40Pの位置(X方向における位置)と、その位置におけるデフォーカス量(Z方向)との関係を示す。このように、本変形例では、感光性基板215全面に亘るデフォーカス量を同時に検出できる。尚、位相シフトマスク200は、1つ以上の計測マーク40とデバイスを製造するためのパターンを有していてもよい。
 次に、フォーカス調整方法(図4のステップS1~S4)の一例について説明する。まず、上述した方法により、マルチレンズ方式露光装置おけるデフォーカス量を感光性基板215の全面に亘って検出する(図4のステップS1~S3)。次に、検出したデフォーカス量に基づき、各投影光学系のフォーカス調整を行う(図4のステップS4)。フォーカス調整は、投影露光装置500と同様に、検出したデフォーカス量に基づき、各投影光学系のフォーカス調整機構により独立してデフォーカス量を正す(キャンセルする)ようにフォーカス調整を行う(図4のステップS4)。
 本変形例では、感光性基板215の全面に亘るデフォーカス量を同時に検出できるため、フォーカス調整を効率的に行うことができる。図6(d)に、フォーカス調整後に、再度、同様のデフォーカス量の検出(図4のステップS1~S3)を行った検出結果を示す。図6(c)及び(d)から、感光性基板615表面の広い範囲に亘って、フォーカスが最適化されていることがわかる。
 本変形例のデフォーカス量の検出方法、及びフォーカス調整方法によれば、感光性基板215表面の広い範囲に亘って、効率よくデフォーカス量の検出及びフォーカス調整が可能である。したがって、大面積の露光が行われるFPDの製造において、本変形例のデフォーカス量の検出方法、及びフォーカス調整方法は好適に用いられる。FPDの製造において、TFT回路パターンの露光にデフォーカスが生じると、TFT回路パターンの電気特性を左右する線幅誤差を発生させ、完成品であるディスプレイの品質を悪化させる虞がある。本変形例のデフォーカス量の検出方法、及びフォーカス調整方法は、感光性基板全体に亘るフォーカスを容易かつ正確に最適化できるため、このような完成品(ディスプレイ)の品質悪化を抑制できる。
また、計測マーク40と共に解像力チャート45を設けることもできる。解像力チャート45を設けることで、投影露光装置で露光できる線幅を確認することができる。解像力チャート45は、1つの線幅だけ有していてもよいし、2以上の異なる線幅を有していてもよい。また、解像力チャートは、図6の計測マーク40と同様に基板全体に配置されてもよい。これにより、投影露光装置が基板全体の各位置における露光可能な線幅を確認することができる。
 尚、上記実施形態及び変形例では、計測マーク40が形成されたデフォーカス検査用の位相シフトマスク100を例に挙げて説明したが、マスクには感光性基板を露光するための回路パターン(デバイスパターン)やアライメントに必要なアライメントマークなどの他のパターンが形成されていてもよい。この場合、位相シフト膜20は、検出マーク及びデバイスパターンの両方を形成してよい。また、位相シフト膜20は、検出マーク40を有さず、デバイスパターンを有する位相シフトマスクに用いることもできる。この場合、位相シフト膜20は、デバイスパターンを形成してよい。
 以下に、実施例及び比較例により、位相シフトマスク(検出素子)、デフォーカス量検出方法、及びフォーカス調整方法について具体的に説明するが、本発明はこれらの実施例及び比較例に限定されない。
位相シフト膜の形成
[位相シフト膜PS1]
 位相シフト膜PS1は、反応性スパッタリングにより形成した。まず、基材10として石英ガラスの円形の平行平板を用意した(サイズ:直径3インチ、厚さ0.5ミリ)。DCマグネトロンスパッタ装置を使用し、スパッタリングターゲットとしてZrSi合金ターゲットを用い、Ar-N混合ガスを導入しながら、容量結合型マグネトロン直流プラズマ方式の反応性スパッタリングを行い、厚さ100nmの位相シフト膜PS1を形成した。ZrSi合金ターゲットの組成(原子比)は、Zr:Si=1:2とした。成膜条件は、混合ガス全圧0.3Pa、Ar流量47.5sccm、N流量2.5sccm、DC出力1.5kwとした。
[位相シフト膜PS2~PS5]
 Ar-N混合ガスのAr流量とN流量との比率を図7のように変更したこと以外は、位相シフト膜PS1と同様の方法で、基材10上に位相シフト膜PS2~PS5を形成した。
[位相シフト膜PS11]
 Ar-N混合ガスに代えて、Ar-N-O混合ガスを用いたこと以外は、位相シフト膜PS1と同様の方法で、基材10の上に位相シフト膜PS11を形成した。成膜条件は、混合ガス全圧0.3Pa、Ar流量30sccm、N流量19sccm、O流量1sccm、DC出力1.5kwとした。
[位相シフト膜PS12~PS14]
 混合ガスのAr流量、N流量、O流量の比率を図7のように変更したこと以外は、位相シフト膜PS11と同様の方法で基材10の上に位相シフト膜PS12~PS14を形成した。
位相シフト膜の物性評価
(1)組成分析
 位相シフト膜PS1~PS5及びPS11~PS14に関して、X線光電子分光法(XPS)により組成分析を行った。結果を図7に示す。XPSは、Arイオンスパッタリングにより、各位相シフト膜の表面を約10nm掘った後に測定した。
(2)屈折率、減衰係数、膜厚及び素子透過率のシミュレーション
 位相シフト膜PS1~PS5及びPS11~PS14に関して、エリプソメトリ法により、6種の波長(DUV(波長302nm、313nm、334nm)、i線(365nm)、h線(405nm)、g線(436nm))における屈折率及び減衰係数を測定した。屈折率の測定結果から、6種類の波長それぞれにおいて、90度の位相シフトを与える位相シフト膜PS1~PS5及びPS11~PS14の膜厚を算出した。更に、算出した膜厚の位相シフト膜PS1~PS5及びPS11~PS14が形成された素子(基材及び位相シフト膜)の透過率(素子透過率)をシミュレーションにより算出した。シミュレーションはシミュレーションソフト「TFCalc」を用いて行い、エリプソメトリ法で得られた6種類の各波長における屈折率と消衰係数の測定結果から、各波長それぞれにおいて90°の位相シフトを与える膜厚を用いて該膜厚における位相シフト膜PS1~PS5及びPS11~PS14の透過率を算出した。ここで、透過率は反射も考慮した外部透過率(素子透過率)のことである。測定した屈折率及び減衰係数、並びに算出した膜厚及び素子透過率を図8~13に示す。
位相シフトマスクブランクス150の作製
 図1に示す位相シフトマスク100上に設けられるボックスインボックスのパターンの計測マーク40をシミュレーションするために、2種類の位相シフトマスクブランクス150a及び150bを作製し、位相シフト膜20の物性値を得た。位相シフトマスクブランクス150aには、上述した位相シフト膜PS4を用いた。位相シフトマスクブランクス150bには、上述した位相シフト膜PS13を用いた。
<位相シフトマスクブランクス150aの作製>
 まず、基材10として石英ガラスの正方形の平行平板を用意した(サイズ:一辺6インチ、厚さ0.25インチ)。基材10の上に、位相シフト膜20として、図7に示す組成を有する位相シフト膜PS4を上述した反応性スパッタリングにより形成した。位相シフト膜PS4の膜厚は、図11に示す波長365nmの光に対して位相シフト量が90°を示す膜厚51.6nmとした(図14(a))。
<位相シフトマスクブランクス150bの作製>
 基材10の上に、位相シフト膜PS4に代えて位相シフト膜PS13を形成したこと以外は、位相マスクブランクス150aと同様の方法により、位相シフトマスク150bを作製した。膜厚は、図11に示す波長365nmの光に対して位相シフト量が90°を示す膜厚120.7nmとした。
<位相シフトマスク100A及び100Bの設計>
 作製した位相シフトマスクブランクス150a及び150bに、図1に示すボックスインボックスのパターンの計測マーク40を設けた位相シフトマスク100A及び100Bを設計した。位相シフトマスク100A及び100Bに形成する計測マーク40のサイズ(設計値)は下記の通りである。
外四角形41のX方向の幅及びY方向の幅:X:90μm、Y:90μm
内四角形42のX方向の幅及びY方向の幅:X:46μm、Y:46μm
横辺411x,412x,421x,422x及び縦辺411y,412y,421y,422yの幅(Wc):8μm
領域A1の幅(Wa1):16μm
領域A2の幅(Wa2):1μm
領域B1の幅(Wb1):1μm
外四角形41と内四角形42との間に存在する領域B2の幅(Wb2):16μm
 尚、ここで、外四角形41のX方向の幅とは、X方向における外四角形41の一方の端部から他方の端部までの長さであり、Y方向の幅とは、Y方向における外四角形41の一方の端部から他方の端部までの長さである。同様に、内四角形42のX方向の幅とは、X方向における内四角形42の一方の端部から他方の端部までの長さであり、Y方向の幅とは、Y方向における内四角形42の一方の端部から他方の端部までの長さである。
<シフト量とデフォーカス量との関係に関するシミュレーション>
 作製した位相シフトマスクブランクス150aから計測した屈折率、減衰係数、膜厚及び素子透過率と、計測マークの設計値を用いて、位相シフトマスク100Aを投影露光装置に配置し、波長365nmの光で投影光学系を介して投影した投影像40P(図3(a)及び(b)参照)に関して、シフト量とデフォーカス量との関係をシミュレーションした。結果を図16に示す。同様に、位相シフトマスク100Bに関してもシフト量とデフォーカス量との関係をシミュレーションした。結果を併せて図16に示す。
 図16に示すように、位相シフトマスク100A及び100Bの計測マーク40において、シフト量とデフォーカス量とは、広い範囲に亘り線形関係を示す。シフト量とデフォーカス量とが線形関係を示す領域においては、例えば、計測マーク40のシフト量を光学顕微鏡で測定し、それに基づき容易且つ正確にデフォーカス量を算出できる。そして、このデフォーカス量を正す(キャンセルする)ように、投影露光装置においてフォーカス調整を容易に行うことができる。このように、位相シフトマスク100A及び100Bは、投影光学系を透過する光のデフォーカス量を検出するための検出素子として機能する。
 図16において、位相シフトマスク100A,100Bのシミュレーション結果を比較する。位相シフト膜PS4を採用した位相シフトマスク100Aと比較して、位相シフト膜PS13を採用した位相シフトマスク100Bは、より広い範囲においてシフト量とデフォーカス量が線形関係を示す。このため、シフトマスク100Bの方がより大きいデフォーカス量まで検出できる。位相シフトマスク100Aが-30μm~+15μmの範囲のデフォーカス量を検出できるのに対し、位相シフトマスク100Bは、より広い-30μm~+25μmの範囲のデフォーカス量を検出できる。この原因として図11に示すように、365nmの光に対する、位相シフトマスク100Aに採用した位相シフト膜PS4の素子透過率(56.94%)よりも、位相シフトマスク100Bに採用した位相シフト膜PS13の素子透過率(94.08%)の方が高いことが一因だと推測される。素子透過率は、位相シフトマスク100A,100Bの領域A1及びA2における透過率に相当する。位相シフト膜PS4の素子透過率(56.94%)と比較して位相シフト膜PS13の素子透過率(94.08%)の方が高い原因は、位相シフト膜PS4よりも位相シフト膜PS13の方が、ジルコニウム(Zr)に対する酸素(O)の原子比(O/Zr)が高いためである。原子比(O/Zr)が高くなると、膜材料のバンドギャップが大きくなり、減衰係数が減少する。これにより、透過率が高くなる。
 図7に示すように、位相シフト膜PS1~PS5は、成膜時に酸素ガスを導入しない。このため、位相シフト膜PS1~PS5において、ジルコニウム(Zr)に対する酸素(O)の原子比(O/Zr)は、0.1未満である。位相シフト膜PS1~PS5に含まれる酸素は、積極的に導入したものではなく、酸化により空気中の酸素が取り込まれたものである。一方で、位相シフト膜PS11~14は、成膜時に積極的に酸素ガスを導入する。このため、位相シフト膜PS11~PS14において、ジルコニウム(Zr)に対する酸素(O)の原子比(O/Zr)は、0.1以上である。
 図11に示す、位相シフト膜PS1~PS5及びPS11~PS14の365nmの光(i線)における物性を比較する。原子比(O/Zr)が0.1以上である位相シフト膜PS11~PS14は、原子比(O/Zr)が0.1未満である位相シフト膜PS1~PS5と比較して素子透過率が高い。原子比(O/Zr)が0.1以上である位相シフト膜PS11~PS14は、365nmの光(i線)に対して十分に高い透過率を示す。この結果から、原子比(O/Zr)が0.1以上である位相シフト膜PS11~PS14を用いた位相シフトマスク100は、365nmの光(i線)を用いた場合の投影光学系のデフォーカス量の検出素子として優れると推測される。尚、位相シフト膜PS11~PS14においては、原子比(Si/Zr)は0.8~1.2、原子比(N/Zr)は0.04~2.3、原子比(O/Zr)は0.1~3.4であった。
 また、原子比(O/Zr)が0.1未満である位相シフト膜PS1~PS5においても、例えば、原子比(Si/Zr)が1.00~1.20であり、原子比(N/Zr)が2.1~2.6である位相シフト膜PS3~PS5は、原子比(Si/Zr)及び原子比(N/Zr)が上記範囲外である位相シフト膜PS1及びPS2と比較して素子透過率が高い。この結果から、原子比(Si/Zr)が1.00~1.20、原子比(N/Zr)が2.1~2.6である位相シフト膜PS3~PS5を用いた位相シフトマスク100は、365nmの光(i線)を用いた場合の投影光学系のデフォーカス量の検出素子として十分に使用可能だと推測される。
 図8~10及び図12~13に示す、365nm以外の波長の光に対しても、位相シフト膜PS1~PS5及びPS11~PS14は、図11に示す365nmの光に対する素子透過率と同様の傾向を示す。したがって、位相シフト膜PS3~PS5及びPS11~PS14は、波長302nm(DUV、図8)、313nm(DUV、図9)、334nm(DUV、図10)、405nm(h線、図12)及び436nm(g線、図13)の光を用いた場合の投影光学系のデフォーカス量の検出素子に十分に使用可能だと推測される。
 尚、本実施例で用いた位相シフト膜PS3~PS5及び位相シフト膜PS11~PS14は、検出マークとデバイスパターンの両方を有する位相シフトマスクに用いることができ、この場合、検出マーク及びデバイスパターンの両方を形成してよい。また、位相シフト膜PS3~PS5及び位相シフト膜PS11~PS14は、検出マークを有さず、デバイスパターンを有する位相シフトマスクにも用いることができ、この場合、デバイスパターンを形成してよい。
 本実施形態の位相シフトマスク100は、投影光学系のデフォーカス量の検出素子として利用可能である。本実施形態の位相シフトマスク100は、露光装置に留まらず、光学計測機、レーザ加工機の等のデフォーカス量の検出素子としても利用可能である。
10      基材
20      位相シフト膜
30      遮光膜
40      計測マーク
100,200 位相シフトマスク
500     露光装置
LS      光源
502     照明光学系
504     投影光学系
508     投影光学系コントローラ
503     マスクステージ
507     マスクステージ駆動機構
505     基板ステージ
506     基板ステージ駆動機構
509     主コントローラ
A1      基材表面の領域(第1領域)
A2      基材表面の領域(第4領域)
B1      基材表面の領域(第2領域)
B2      基材表面の領域(第5領域)
C       基材表面の領域(第3領域)

Claims (39)

  1.  位相シフトマスクであって、
     基材と、
     第1半透過層及び第2半透過層と、
     遮光層とを有し、
     前記基材の表面には、前記表面に平行な配列方向に沿って、
     第1半透過層が配置されている第1領域と、
     前記基材表面が露出している第2領域と、
     前記遮光層が配置されている第3領域と、
     第2半透過層が配置されている第4領域と、
     前記基材表面が露出している第5領域とが、隣接して設けられているパターンを有する計測マークが形成されている、位相シフトマスク。
  2.  前記計測マークは、第1の前記配列方向に沿って、第1の前記パターンと、第2の前記パターンと、第3の前記パターンと、第4の前記パターンの順で配置される、第1部分を有し、
     前記第1の前記パターンと前記第4の前記パターンにおいて、第1の前記配列方向の一方側から他方側に向かって、第1領域、第2領域、第3領域、第4領域、及び第5領域がこの順に配置され、
     前記第2の前記パターンと前記第3の前記パターンにおいて、第1の前記配列方向の他方側から一方側に向かって、第1領域、第2領域、第3領域、第4領域、及び第5領域がこの順に配置されている、請求項1に記載の位相シフトマスク。
  3.  前記計測マークは、第1の前記配列方向とは異なる第2の前記配列方向に沿って、第5の前記パターンと第6の前記パターンと、第7の前記パターンと、第8の前記パターンの順で配置される、第2部分を有し、
     前記第5の前記パターンと前記第8の前記パターンにおいて、第2の前記配列方向の一方側から他方側に向かって、第1領域、第2領域、第3領域、第4領域、及び第5領域がこの順に配置され、
     前記第6の前記パターンと前記第7の前記パターンにおいて、第2の前記配列方向の他方側から一方側に向かって、第1領域、第2領域、第3領域、第4領域、及び第5領域がこの順に配置されている、請求項2に記載の位相シフトマスク。
  4.  前記計測マークは、前記第1部分と前記第2部分を有する、請求項3に記載の位相シフトマスク。
  5.  前記第2領域の幅及び前記第4領域の幅は、前記配列方向において前記第3領域の幅より小さい、請求項1~4のいずれかに記載の位相シフトマスク。
  6.  前記計測マークは前記パターンで形成された第1マークと、前記パターンで形成された前記第2マークとを有し、
     前記第1マークは、前記第2マークよりも大きい、請求項1~5のいずれか一項に記載の位相シフトマスク。
  7.  前記第1マーク又は前記第2マークは、略四角形である、請求項6に記載の位相シフトマスク。
  8.  前記第1マーク又は前記第2マークは、略十字形である、請求項6又は7に記載の位相シフトマスク。
  9.  前記計測マークに所定波長の光を照射したとき、第1領域及び第4領域を透過した第1光と、第2領域及び第5領域を透過した第2光との位相差が90°±50°である、請求項1~8のいずれか一項に記載の位相シフトマスク。
  10.  前記第1光と前記第2光との位相差は、90°±20°である、請求項9に記載の位相シフトマスク。
  11.  前記第1光と前記第2光との位相差は、90°±5°である、請求項10に記載の位相シフトマスク。
  12.  前記第1半透過層及び前記第2半透過層は、ジルコニウム(Zr)、ケイ素(Si)及び窒素(N)を含む、請求項1~11のいずれか一項に記載の位相シフトマスク。
  13.  前記第1半透過層及び前記第2半透過層は、更に酸素(O)を含む、請求項12に記載の位相シフトマスク。
  14.  前記第1半透過層及び前記第2半透過層において、前記ジルコニウムに対する前記酸素の原子比(O/Zr)が0.1以上である請求項13に記載の位相シフトマスク。
  15.  前記第1半透過層及び前記第2半透過層において、
     前記ジルコニウムに対する前記ケイ素の原子比(Si/Zr)が0.8~1.2であり、
     前記ジルコニウムに対する前記窒素の原子比(N/Zr)が0.04~2.3であり、
     前記ジルコニウムに対する前記酸素の原子比(O/Zr)が0.1~3.4である請求項14に記載の位相シフトマスク。
  16.  前記第1半透過層及び前記第2半透過層において、
     前記ジルコニウムに対する前記ケイ素の原子比(Si/Zr)が1.00~1.20であり、
     前記ジルコニウムに対する前記窒素の原子比(N/Zr)が2.1~2.6である請求項12に記載の位相シフトマスク。
  17.  前記第1半透過層及び前記第2半透過層において、
     前記ジルコニウムに対する酸素の原子比(O/Zr)が0.1未満である、請求項16に記載の位相シフトマスク。
  18.  前記第1半透過層及び前記第2半透過層の波長365nmの光における屈折率が1.7~3.0である請求項1~17のいずれか一項に記載の位相シフトマスク。
  19.  前記第1半透過層及び第2半透過層の波長365nmの光における減衰係数が0.2以下である請求項1~18のいずれか一項に記載の位相シフトマスク。
  20.  前記位相シフトマスクは、解像力チャートを有する、請求項1~19のいずれか一項に記載の位相シフトマスク。
  21.  前記計測マークを複数有する、請求項1~20のいずれか一項に記載の位相シフトマスク。
  22.  前記第1領域及び前記第4領域は、波長250nm~440nmの光に対する透過率が25%以上である、請求項1~21のいずれか一項に記載の位相シフトマスク。
  23.  前記第2半透過層が、前記基材の表面の第3領域及び第4領域に亘って、連続して形成されており、
     第3領域には、前記第2半透過層の上に、前記遮光層が積層されて配置されている請求項1~22のいずれか一項に記載の位相シフトマスク。
  24.  投影光学系を透過する所定波長の光のデフォーカス量を検出するための検出素子であって、
     基材と、
     第1半透過層及び第2半透過層と、
     遮光層とを有し、
     前記基材の表面には、前記表面に平行な配列方向に沿って、
     第1半透過層が配置されている第1領域と、
     前記基材表面が露出している第2領域と、
     前記遮光層が配置されている第3領域と、
     第2半透過層が配置されている第4領域と、
     前記基材表面が露出している第5領域とが、隣接して設けられているパターンを有する計測マークが形成されている、検出素子。
  25.  前記計測マークは、第1の前記配列方向に沿って、第1の前記パターンと、第2の前記パターンと、第3の前記パターンと、第4の前記パターンの順で配置される、第1部分を有し、
     前記第1の前記パターンと前記第4の前記パターンにおいて、第1の前記配列方向の一方側から他方側に向かって、第1領域、第2領域、第3領域、第4領域、及び第5領域がこの順に配置され、
     前記第2の前記パターンと前記第3の前記パターンにおいて、第1の前記配列方向の他方側から一方側に向かって、第1領域、第2領域、第3領域、第4領域、及び第5領域がこの順に配置されている、請求項24に記載の検出素子。
  26.  前記計測マークは、第1の前記配列方向とは異なる第2の前記配列方向に沿って、第5の前記パターンと第6の前記パターンと、第7の前記パターンと、第8の前記パターンの順で配置される、第2部分を有し、
     前記第5の前記パターンと前記第8の前記パターンにおいて、第2の前記配列方向の一方側から他方側に向かって、第1領域、第2領域、第3領域、第4領域、及び第5領域がこの順に配置され、
     前記第6の前記パターンと前記第7の前記パターンにおいて、第2の前記配列方向の他方側から一方側に向かって、第1領域、第2領域、第3領域、第4領域、及び第5領域がこの順に配置されている、請求項25に記載の検出素子。
  27.  前記計測マークは、前記第1部分と前記第2部分を有する、請求項26に記載の検出素子。
  28.  前記第2領域の幅及び前記第4領域の幅は、前記配列方向において前記第3領域の幅より小さい、請求項24~27のいずれか一項に記載の検出素子。
  29.  前記計測マークは前記パターンで形成された第1マークと、前記パターンで形成された前記第2マークとを有し、
     前記第1マークは、前記第2マークよりも大きい、請求項24~28のいずれか一項に記載の検出素子。
  30.  前記第1マーク又は前記第2マークは、略四角形である、請求項29に記載の検出素子。
  31.  前記第1マーク又は前記第2マークは、略十字形である、請求項29又は30に記載の検出素子。
  32.  前記計測マークに所定波長の光を照射したとき、第1領域及び第4領域を透過した第1光と、第2領域及び第5領域を透過した第2光との位相差が90°±50°である、請求項24~31のいずれか一項に記載の検出素子。
  33.  前記第1光と前記第2光との位相差は90°±20°である、請求項32に記載の検出素子。
  34.  前記第1光と前記第2光との位相差は90°±5°である、請求項33に記載の検出素子。
  35.  前記第1領域及び前記第4領域は、波長250nm~440nmの光に対する透過率が25%以上である、請求項24~34のいずれか一項に記載の検出素子。
  36.  請求項1~23のいずれか一項に記載の前記位相シフトマスク、又は請求項24~35のいずれか一項に記載の検出素子を用いて投影光学系のデフォーカス量を検出する方法であって、
     前記位相シフトマスク又は前記検出素子に所定波長の光を照射して前記投影光学系による前記計測マークの投影像を投影面上に形成することと、
     前記計測マークの投影像の前記投影面における所定位置からの位置ずれ量を計測することと、
     前記計測した前記位置ずれ量から前記デフォーカス量を算出することを含むデフォーカス量の検出方法。
  37.  前記投影面に感光性基板を設置し、前記計測マークのパターンで前記感光性基板を露光する請求項36に記載のデフォーカス量の検出方法。
  38.  請求項36又は37に記載のデフォーカス量の検出方法により、前記投影光学系のデフォーカス量を検出することと、
     検出したデフォーカス量に基づいて、前記投影光学系のフォーカスを調整することを含む投影光学系のフォーカス調整方法。
  39.  請求項38に記載の前記フォーカス調整方法により調整した前記投影光学系を用いて所定パターンで感光性基板を露光することを含むデバイスの製造方法。
PCT/JP2022/018579 2021-04-30 2022-04-22 位相シフトマスク、検出素子、デフォーカス量検出方法、フォーカス調整方法、及びデバイスの製造方法 WO2022230772A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237027459A KR20240000446A (ko) 2021-04-30 2022-04-22 위상 시프트 마스크, 검출 소자, 디포커스량 검출 방법,포커스 조정 방법, 및 디바이스의 제조 방법
JP2023517488A JPWO2022230772A1 (ja) 2021-04-30 2022-04-22
CN202280014132.2A CN116830035A (zh) 2021-04-30 2022-04-22 相移掩模、检测元件、散焦量检测方法、焦点调整方法以及器件的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-077849 2021-04-30
JP2021077849 2021-04-30

Publications (1)

Publication Number Publication Date
WO2022230772A1 true WO2022230772A1 (ja) 2022-11-03

Family

ID=83847178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018579 WO2022230772A1 (ja) 2021-04-30 2022-04-22 位相シフトマスク、検出素子、デフォーカス量検出方法、フォーカス調整方法、及びデバイスの製造方法

Country Status (5)

Country Link
JP (1) JPWO2022230772A1 (ja)
KR (1) KR20240000446A (ja)
CN (1) CN116830035A (ja)
TW (1) TW202246884A (ja)
WO (1) WO2022230772A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02214860A (ja) * 1989-02-16 1990-08-27 Fujitsu Ltd フォーカスチェック用レチクル
US20040241558A1 (en) * 2003-06-02 2004-12-02 Intel Corporation Focus detection structure
JP2011221312A (ja) * 2010-04-09 2011-11-04 Nikon Corp フォーカステストマスク、フォーカス計測方法、及び露光装置
JP2014130364A (ja) * 2014-02-12 2014-07-10 Hoya Corp 光学素子の製造方法、光学素子
JP2018116269A (ja) * 2017-01-18 2018-07-26 Hoya株式会社 表示装置製造用の位相シフトマスクブランク、表示装置製造用の位相シフトマスクの製造方法、並びに表示装置の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5300786A (en) 1992-10-28 1994-04-05 International Business Machines Corporation Optical focus phase shift test pattern, monitoring system and process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02214860A (ja) * 1989-02-16 1990-08-27 Fujitsu Ltd フォーカスチェック用レチクル
US20040241558A1 (en) * 2003-06-02 2004-12-02 Intel Corporation Focus detection structure
JP2011221312A (ja) * 2010-04-09 2011-11-04 Nikon Corp フォーカステストマスク、フォーカス計測方法、及び露光装置
JP2014130364A (ja) * 2014-02-12 2014-07-10 Hoya Corp 光学素子の製造方法、光学素子
JP2018116269A (ja) * 2017-01-18 2018-07-26 Hoya株式会社 表示装置製造用の位相シフトマスクブランク、表示装置製造用の位相シフトマスクの製造方法、並びに表示装置の製造方法

Also Published As

Publication number Publication date
CN116830035A (zh) 2023-09-29
JPWO2022230772A1 (ja) 2022-11-03
KR20240000446A (ko) 2024-01-02
TW202246884A (zh) 2022-12-01

Similar Documents

Publication Publication Date Title
JP3120474B2 (ja) 半導体集積回路装置の製造方法
US7592107B2 (en) Polarized reticle, photolithography system, and method of fabricating a polarized reticle
KR100714480B1 (ko) 포토마스크의 테스트 패턴 이미지로부터 인쇄된 테스트피쳐들을 이용하는 포토리소그래피 공정에 있어서 초점변화를 측정하는 시스템 및 방법
US11372323B2 (en) Phase-shift mask for extreme ultraviolet lithography
CN102308256B (zh) 光掩模、光掩模的制造方法及修正方法
US20050208427A1 (en) Semiconductor device manufacturing method
TW201405240A (zh) 微影製程及使用於一微影系統之微影製程
US9235114B2 (en) Reflective mask and method for manufacturing the same
US7666576B2 (en) Exposure scan and step direction optimization
JP2013222811A (ja) Euvマスクブランクス、マスクの製造方法、及びアライメント方法
TWI704641B (zh) 半導體裝置、製造方法及測量方法
US8323859B2 (en) Optical compensation devices, systems, and methods
TW202129397A (zh) 極紫外光罩與其製造方法
WO2022230772A1 (ja) 位相シフトマスク、検出素子、デフォーカス量検出方法、フォーカス調整方法、及びデバイスの製造方法
JP5724509B2 (ja) フォトマスクおよびフォトマスクブランクス
KR20100050547A (ko) 포토마스크 블랭크 및 포토마스크의 제조방법
US7803502B2 (en) Photomask and method of manufacturing semiconductor device using the photomask
KR20230158096A (ko) 개선된 오버레이를 위한 클램프 전극 변경
TW201837553A (zh) 顯示裝置製造用光罩、及顯示裝置之製造方法
US20080057410A1 (en) Method of repairing a photolithographic mask
JP5937873B2 (ja) フォトマスク用基板セット、フォトマスクセット、及びパターン転写方法
JPH08306621A (ja) 露光方法、露光装置および半導体集積回路装置の製造方法
JP2016085466A (ja) フォトマスクおよびフォトマスクブランクス
TW202201110A (zh) 極紫外光微影相移光罩
JP2004029372A (ja) マスク、結像特性計測方法、露光方法、及びデバイス製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795685

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280014132.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023517488

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22795685

Country of ref document: EP

Kind code of ref document: A1