WO2022230696A1 - Vehicular air conditioner - Google Patents

Vehicular air conditioner Download PDF

Info

Publication number
WO2022230696A1
WO2022230696A1 PCT/JP2022/017979 JP2022017979W WO2022230696A1 WO 2022230696 A1 WO2022230696 A1 WO 2022230696A1 JP 2022017979 W JP2022017979 W JP 2022017979W WO 2022230696 A1 WO2022230696 A1 WO 2022230696A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
passage
heat
outside
refrigerant
Prior art date
Application number
PCT/JP2022/017979
Other languages
French (fr)
Japanese (ja)
Inventor
伸 西田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022036081A external-priority patent/JP2022170679A/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN202280030952.0A priority Critical patent/CN117203071A/en
Publication of WO2022230696A1 publication Critical patent/WO2022230696A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant

Definitions

  • the present disclosure relates to a vehicle air conditioner with a heat pump cycle.
  • Patent Literature 1 discloses a vehicle air conditioner with two layers of inside and outside air.
  • an upper layer side air passage and a lower layer side air passage are formed in an air conditioning unit, which is an air passage forming portion.
  • the outside air that flows into the upper air passage is heated and blown out toward the vehicle window glass, and the inside air that flows into the lower air passage is heated to warm the occupants. It is blowing out towards the foot side.
  • Patent Document 2 discloses a vehicle air conditioner that includes a heat pump cycle.
  • the heat pump cycle of Patent Document 2 has a first heat exchanger and a second heat exchanger that function as evaporators that evaporate a refrigerant in a heating mode.
  • a first air passage in which the first heat exchanger is arranged and a second air passage in which the second heat exchanger is arranged are formed. .
  • the inside air in the heating mode, the inside air is allowed to flow into the first air passage, and the heat of the inside air is absorbed by the refrigerant in the first heat exchanger. Furthermore, outside air is caused to flow into the second air passage, and the heat of the outside air is absorbed by the refrigerant in the second heat exchanger.
  • the heat absorbed by the refrigerant is used to heat the air blown into the passenger compartment. That is, it is used for heating the passenger compartment.
  • JP-A-9-24722 Japanese Patent Application Laid-Open No. 2020-185961
  • the heat of the inside air exhausted to the outside of the vehicle is absorbed by the refrigerant, like the vehicle air conditioner of Patent Document 2.
  • Means used for heating the interior of the vehicle can be considered.
  • the refrigerant evaporation temperature in the first heat exchanger, the refrigerant evaporation temperature in the second heat exchanger, the air volume of the inside air flowing into the first heat exchanger, the air volume of outside air flowing into the second heat exchanger, etc. are set as operating conditions. must be adjusted accordingly.
  • the present disclosure provides a vehicle air conditioner that utilizes at least the heat absorbed from the inside air to heat the vehicle interior, improving the anti-fogging performance of the vehicle window glass and reducing the energy consumed for heating.
  • a vehicle air conditioner capable of achieving both reduction.
  • the vehicle air conditioner of the first aspect of the present disclosure includes an air passage forming portion and a heat pump cycle.
  • the air passage forming portion forms an air passage for circulating air.
  • the heat pump cycle regulates the temperature of the air blown into the passenger compartment.
  • the heat pump cycle has a compressor, a heating section, a first pressure reduction section, a first heat exchange section, a second pressure reduction section, and a second heat exchange section.
  • the compressor compresses and discharges the refrigerant.
  • the heating unit heats the air blown into the vehicle interior using the refrigerant discharged from the compressor as a heat source.
  • the first decompression section decompresses the refrigerant flowing out from the heating section.
  • the first heat exchange section heat-exchanges the refrigerant flowing out of the first decompression section and the air.
  • the second pressure reducing section reduces the pressure of the refrigerant flowing out of the first heat exchanging section.
  • the second heat exchange section heat-exchanges the refrigerant flowing out of the second pressure reduction section and the air.
  • a first air passage, a second air passage, an upper layer side air passage, a lower layer side air passage, an outside air bypass passage, and an inside air bypass passage are formed in the air passage forming portion.
  • the first air passage is an air passage in which the first heat exchange section is arranged.
  • the second air passage is an air passage in which the second heat exchange section is arranged.
  • the upper air passageway is an air passageway that guides the air heated by the heating unit to the vehicle window glass side in the passenger compartment.
  • the lower air passageway is an air passageway that guides the air heated by the heating portion toward the occupant in the passenger compartment.
  • the outside air bypass passage is an air passage that bypasses the first heat exchange section and the second heat exchange section and guides the outside air, which is the air outside the vehicle compartment, to the inlet side of the upper layer side air passage.
  • the internal air bypass passage is an air passage that bypasses the first heat exchange section and the second heat exchange section and guides the internal air, which is the air in the vehicle compartment, to the inlet side of the lower layer side air passage.
  • the inside air is allowed to flow into the first air passage, and the interior air that has passed through the first heat exchange portion is discharged from the first air passage to the outside of the vehicle.
  • Outside air is caused to flow into the second air passage, and the outside air that has passed through the second heat exchange portion is caused to flow out of the vehicle compartment through the second air passage.
  • Outside air is allowed to flow into the outside air bypass passage, and inside air is allowed to flow into the inside air bypass passage.
  • inside air is caused to flow into the first air passage in the heating mode, so that the heat of the inside air can be absorbed by the refrigerant of the heat pump cycle in the first heat exchange section. Furthermore, in the heating mode, the outside air is allowed to flow into the second air passage, so that the heat of the outside air can be absorbed by the refrigerant in the second heat exchange section.
  • the air blown into the vehicle interior can be heated by using the heat absorbed by the refrigerant from the inside air and the outside air as a heat source. That is, the heat absorbed by the refrigerant from the inside air and the outside air can be used for heating the vehicle interior. As a result, the energy consumed for heating the vehicle interior can be reduced as compared with the case where the refrigerant absorbs heat only from the outside air and uses it to heat the vehicle interior.
  • the outside air can be flowed into the outside air bypass passage and guided to the upper air passage. Then, the outside air having a lower humidity than the inside air can be heated by the heating unit and led to the vehicle window glass side. Therefore, the antifogging performance of the vehicle window glass can be improved.
  • the inside/outside air ratio is set so as to achieve both an improvement in the anti-fogging performance of the vehicle window glass and a reduction in the energy consumed for heating, the amount of heat absorbed by the refrigerant in the first heat exchange section and the (2) The amount of heat absorbed by the refrigerant in the heat exchange section is less likely to be affected. That is, the amount of heat that can be used for heating the vehicle interior is less likely to be affected.
  • the vehicle air conditioner of the first aspect even if the vehicle air conditioner uses at least the heat absorbed from the inside air for heating the vehicle interior, the anti-fogging performance of the vehicle window glass is improved and the heating is performed. It is possible to achieve both reduction of energy consumed for
  • a vehicle air conditioner includes an air passage forming portion and a heat pump cycle.
  • the air passage forming portion forms an air passage for circulating air.
  • the heat pump cycle regulates the temperature of the air blown into the passenger compartment.
  • the heat pump cycle has a compressor, a heating section, a first pressure reduction section, a first heat exchange section, a second pressure reduction section, and a second heat exchange section.
  • the compressor compresses and discharges the refrigerant.
  • the heating unit heats the air blown into the vehicle interior using the refrigerant discharged from the compressor as a heat source.
  • the first decompression section decompresses the refrigerant flowing out from the heating section.
  • the first heat exchange section heat-exchanges the refrigerant flowing out of the first decompression section and the air.
  • the second pressure reducing section reduces the pressure of the refrigerant flowing out of the first heat exchanging section.
  • the second heat exchange section heat-exchanges the refrigerant flowing out of the second pressure reduction section and the air.
  • a first air passage, a second air passage, an upper layer side air passage, a lower layer side air passage, and an outside air bypass passage are formed in the air passage forming portion.
  • the first air passage is an air passage in which the first heat exchange section is arranged.
  • the second air passage is an air passage in which the second heat exchange section is arranged.
  • the upper air passageway is an air passageway that guides the air heated by the heating unit to the vehicle window glass side in the passenger compartment.
  • the lower air passageway is an air passageway that guides the air heated by the heating portion toward the occupant in the passenger compartment.
  • the outside air bypass passage is an air passage that bypasses the first heat exchange section and the second heat exchange section and guides the outside air, which is the air outside the vehicle compartment, to the inlet side of the upper layer side air passage.
  • the inside air is allowed to flow into the first air passage, and the inside air that has passed through the first heat exchange portion is sent from the first air passage to both the outside of the passenger compartment and the inlet side of the lower air passage.
  • drain to Outside air is caused to flow into the second air passage, and the outside air that has passed through the second heat exchange portion is caused to flow out of the vehicle compartment through the second air passage.
  • Outside air is allowed to flow into the outside air bypass passage.
  • the heating unit utilizes the heat absorbed by the refrigerant from the inside air and the outside air to heat the air blown into the vehicle compartment. be able to. That is, the heat absorbed by the refrigerant from the inside air and the outside air can be used for heating the vehicle interior. As a result, the energy consumed for heating the vehicle interior can be reduced as compared with the case where the refrigerant absorbs heat only from the outside air and uses it to heat the vehicle interior.
  • the outside air can be flowed into the outside air bypass passage and guided to the upper air passage. Then, the outside air having a lower humidity than the inside air can be heated by the heating unit and led to the vehicle window glass side. Therefore, the antifogging performance of the vehicle window glass can be improved.
  • the inside/outside air ratio is set so as to achieve both an improvement in the anti-fogging performance of the vehicle window glass and a reduction in the energy consumed for heating, the amount of heat absorbed by the refrigerant in the first heat exchange section and the (2) The amount of heat absorbed by the refrigerant in the heat exchange section is less likely to be affected. That is, the amount of heat that can be used for heating the vehicle interior is less likely to be affected.
  • the vehicle air conditioner of the second aspect even if the vehicle air conditioner uses the heat absorbed from the inside air and the outside air for heating the vehicle interior, the anti-fogging performance of the vehicle window glass is improved. It is possible to achieve both reduction of energy consumed for heating.
  • a vehicle air conditioner includes an air passage forming portion and a heat pump cycle.
  • the air passage forming portion forms an air passage for circulating air.
  • the heat pump cycle regulates the temperature of the air blown into the passenger compartment.
  • a heat pump cycle has a compressor, a heating section, a first heat exchange section, a second pressure reduction section, and a second heat exchange section.
  • the compressor compresses and discharges the refrigerant.
  • the heating unit heats the air blown into the vehicle interior using the refrigerant discharged from the compressor as a heat source.
  • the first heat exchange section heat-exchanges the refrigerant flowing out from the heating section and the air.
  • the second pressure reducing section reduces the pressure of the refrigerant flowing out of the first heat exchanging section.
  • the second heat exchange section heat-exchanges the refrigerant flowing out of the second pressure reduction section and the air.
  • a first air passage and a second air passage are formed in the air passage forming portion.
  • the first air passage is an air passage in which the first heat exchange section is arranged.
  • the second air passage is an air passage in which the second heat exchange section is arranged.
  • outside air which is the air outside the vehicle
  • the outside air that has passed through the first heat exchange unit is heated by the heating unit, so that at least the interior of the vehicle is heated.
  • at least one of the outside air and the inside air is allowed to flow into the second air passage, and the air that has passed through the second heat exchange portion is allowed to flow out of the vehicle compartment through the second air passage.
  • the heat absorbed by the refrigerant from at least one of the outside air and the inside air can be used to heat the air blown into the vehicle interior. That is, the heat absorbed by the refrigerant from at least one of the inside air and the outside air can be used for heating the vehicle interior. As the ratio of the internal air in the air flowing into the second air passage is increased, the energy consumed for heating the vehicle interior can be reduced.
  • outside air is allowed to flow into the first air passage. Then, the outside air having a lower humidity than the inside air is heated by the first heat exchanging part and the heating part, and is led to the vehicle window glass side in the vehicle compartment. Therefore, the antifogging performance of the vehicle window glass can be improved.
  • the amount of heat absorbed by the refrigerant in the second heat exchange section is less likely to be affected. That is, the amount of heat that can be used for heating the vehicle interior is less likely to be affected.
  • the vehicle air conditioner of the third aspect even if the vehicle air conditioner uses the heat absorbed from the inside air and the outside air for heating the vehicle interior, the anti-fogging performance of the vehicle window glass is improved. It is possible to achieve both reduction of energy consumed for heating.
  • At least guiding the air to the vehicle window glass side in the vehicle interior is not limited to actively blowing air toward the vehicle window glass. It also includes blowing air into the passenger compartment to the extent that the anti-fogging effect of the vehicle window glass can be obtained.
  • FIG. 1 is a schematic overall configuration diagram of a vehicle air conditioner of a first embodiment
  • FIG. It is a typical sectional view of an air-conditioning unit of a 1st embodiment.
  • 3 is a cross-sectional view taken along line III-III of FIG. 2
  • FIG. 2 is a schematic cross-sectional view of the internal passage switching device of the first embodiment
  • It is a block diagram showing an electric control part of the vehicle air conditioner of the first embodiment.
  • FIG. 4 is a schematic cross-sectional view showing the flow of air in the cooling mode and the dehumidifying heating mode of the air conditioning unit of the first embodiment;
  • FIG. 1 is a schematic overall configuration diagram of a vehicle air conditioner of a first embodiment
  • FIG. It is a typical sectional view of an air-conditioning unit of a 1st embodiment.
  • 3 is a cross-sectional view taken along line III-III of FIG. 2
  • FIG. 2 is a schematic cross-sectional view of the internal passage switching device of the first embodiment
  • FIG. 4 is a schematic cross-sectional view showing the flow of air in the heating mode of the air conditioning unit of the first embodiment
  • FIG. 4 is a schematic cross-sectional view showing the flow of air in the defrosting mode of the air conditioning unit of the first embodiment
  • FIG. 11 is a schematic cross-sectional view showing the flow of air in the cooling mode and the dehumidifying heating mode of the air conditioning unit of the second embodiment
  • FIG. 11 is a schematic cross-sectional view showing the air flow in the heating mode of the air conditioning unit of the second embodiment
  • FIG. 11 is a schematic cross-sectional view showing the flow of air in the defrosting mode of the air conditioning unit of the second embodiment
  • FIG. 11 is a schematic cross-sectional view of an air conditioning unit according to a third embodiment
  • FIG. 11 is a schematic cross-sectional view showing the flow of air in the cooling mode and the dehumidifying heating mode of the air conditioning unit of the third embodiment;
  • FIG. 11 is a schematic cross-sectional view showing the flow of air in the heating mode of the air conditioning unit of the third embodiment;
  • FIG. 11 is a schematic cross-sectional view showing the air flow in the defrosting mode of the air conditioning unit of the third embodiment;
  • FIG. 11 is a schematic cross-sectional view showing the flow of air in a cooling mode and a dehumidifying and heating mode of the air conditioning unit of the fourth embodiment;
  • FIG. 11 is a schematic cross-sectional view showing the flow of air in the heating mode of the air conditioning unit of the fourth embodiment;
  • FIG. 11 is a schematic cross-sectional view showing the flow of air in the heating mode of the air conditioning unit of the fourth embodiment;
  • FIG. 11 is a schematic cross-sectional view showing the flow of air in the defrosting mode of the air conditioning unit of the fourth embodiment; It is a typical whole block diagram of the vehicle air conditioner of 5th Embodiment.
  • FIG. 11 is a schematic cross-sectional view showing the flow of air in the cooling mode and the dehumidifying heating mode of the air conditioning unit of the fifth embodiment;
  • FIG. 11 is a schematic cross-sectional view showing the flow of air in the heating mode of the air conditioning unit of the fifth embodiment;
  • FIG. 11 is a schematic cross-sectional view showing the flow of air in the defrosting mode of the air conditioning unit of the fifth embodiment;
  • FIG. 11 is a graph showing changes in heating capacity with respect to changes in temperature of air flowing into a second heat exchanger of the air conditioning unit of the fifth embodiment;
  • FIG. It is a typical whole block diagram of the vehicle air conditioner of other embodiment.
  • FIG. A vehicle air conditioner 1 of this embodiment is applied to an electric vehicle.
  • An electric vehicle is a vehicle that obtains driving force for running from an electric motor.
  • the vehicle air conditioner 1 air-conditions the interior of the vehicle in which the passengers board.
  • the vehicle air conditioner 1 includes a heat pump cycle 10, a heat medium circuit 20, an air conditioning unit 30, a control device 60, and the like.
  • the heat pump cycle 10 adjusts the temperature of the air blown into the vehicle interior, which is the space to be air-conditioned, and the temperature of the heat medium circulating in the heat medium circuit 20 .
  • the heat pump cycle 10 has a compressor 11, a water-refrigerant heat exchanger 12, a receiver 13, a first expansion valve 14a, a second expansion valve 14b, a first heat exchanger 15a, a second heat exchanger 15b, and the like. .
  • the heat pump cycle 10 employs an HFO-based refrigerant (specifically, R1234yf) as the refrigerant.
  • the heat pump cycle 10 constitutes a vapor compression subcritical refrigeration cycle in which the pressure of the high-pressure refrigerant does not exceed the critical pressure of the refrigerant.
  • Refrigerant oil (specifically, PAG oil) for lubricating the compressor 11 is mixed in the refrigerant.
  • Part of the refrigerating machine oil circulates through the heat pump cycle 10 together with the refrigerant.
  • the compressor 11 sucks, compresses, and discharges the refrigerant.
  • the compressor 11 is arranged in the drive unit room on the front side of the passenger compartment.
  • the drive device chamber forms a space in which at least part of a drive device (for example, an electric motor for travel) for outputting driving force for travel is arranged.
  • the compressor 11 is an electric compressor in which an electric motor rotates a fixed displacement compression mechanism with a fixed displacement.
  • the compressor 11 has its rotation speed (that is, refrigerant discharge capacity) controlled by a control signal output from a control device 60, which will be described later.
  • the inlet side of the refrigerant passage of the water-refrigerant heat exchanger 12 is connected to the discharge port of the compressor 11 .
  • the water-refrigerant heat exchanger 12 has a refrigerant passage through which the high-pressure refrigerant discharged from the compressor 11 flows, and a heat medium passage through which a heat medium circulating in a heat medium circuit 20, which will be described later.
  • the water-refrigerant heat exchanger 12 exchanges heat between the high-pressure refrigerant flowing through the refrigerant passage and the heat medium flowing through the heat medium passage. In the water-refrigerant heat exchanger 12, the heat of the high-pressure refrigerant is radiated to the heat medium to heat the heat medium.
  • the inlet side of the receiver 13 is connected to the outlet of the refrigerant passage of the water-refrigerant heat exchanger 12 .
  • the receiver 13 is a high-pressure side gas-liquid separator that separates the gas-liquid of the high-pressure refrigerant flowing out of the refrigerant passage of the water-refrigerant heat exchanger 12 and stores a part of the separated liquid-phase refrigerant as a surplus refrigerant in the cycle. is.
  • the refrigerant outlet of the receiver 13 is connected to the inlet side of the first expansion valve 14a.
  • the first expansion valve 14 a is a first pressure reducing section that reduces the pressure of the refrigerant flowing out of the refrigerant passage of the water-refrigerant heat exchanger 12 . Further, the first expansion valve 14a is a first flow rate adjusting section that adjusts the flow rate of the refrigerant flowing out downstream.
  • the first expansion valve 14a is an electric variable throttle mechanism having a valve body that changes the throttle opening and an electric actuator (specifically, a stepping motor) that displaces the valve body.
  • the operation of the first expansion valve 14 a is controlled by control pulses output from the control device 60 .
  • the first expansion valve 14a has a fully open function of functioning as a mere refrigerant passage without exhibiting a refrigerant decompression action and a flow rate adjustment action by fully opening the valve opening degree.
  • the refrigerant inlet side of the first heat exchanger 15a is connected to the outlet of the first expansion valve 14a.
  • the first heat exchanger 15a is arranged in a first air passage 31a formed in an air conditioning case 31 of the air conditioning unit 30, which will be described later.
  • the first heat exchanger 15a is a first heat exchange section that exchanges heat between the refrigerant flowing out of the first expansion valve 14a and the air flowing through the first air passage 31a.
  • the inlet side of the second expansion valve 14b is connected to the refrigerant outlet of the first heat exchanger 15a.
  • the second expansion valve 14b is a second pressure reducing section that reduces the pressure of the refrigerant flowing out of the refrigerant passage of the first heat exchanger 15a. Further, the second expansion valve 14b is a second flow rate adjusting section that adjusts the flow rate of the refrigerant flowing out downstream.
  • the basic configuration of the second expansion valve 14b is similar to that of the first expansion valve 14a.
  • the second expansion valve 14b is arranged inside the second air passage 31b for clarity of illustration, but the actual second expansion valve 14b is arranged outside the air passage of the air conditioning case 31. It is
  • the refrigerant inlet side of the second heat exchanger 15b is connected to the outlet of the second expansion valve 14b.
  • the second heat exchanger 15 b is arranged inside a second air passage 31 b formed inside the air conditioning case 31 of the air conditioning unit 30 .
  • the second heat exchanger 15b is a second heat exchange section that exchanges heat between the refrigerant flowing out of the second expansion valve 14b and the air flowing through the second air passage 31b.
  • the basic configuration of the second heat exchanger 15b is similar to that of the first heat exchanger 15a.
  • the suction port side of the compressor 11 is connected to the refrigerant outlet of the second heat exchanger 15b.
  • the heat medium circuit 20 is a circuit that circulates the heat medium.
  • the heat medium circuit 20 employs an ethylene glycol aqueous solution as a heat medium.
  • the heat medium circuit 20 includes a heat medium pump 21, a heater core 22, a heat medium radiator 23, a first flow control valve 24a, a second flow control valve 24b, and the like.
  • a heat medium passage of the water-refrigerant heat exchanger 12 is connected to the heat medium circuit 20 .
  • the heat medium pump 21 pumps the heat medium in the heat medium circuit 20 .
  • the heat medium pump 21 is an electric water pump whose rotational speed (that is, pumping capacity) is controlled by a control voltage output from the control device 60 .
  • the heat medium inlet side of the heater core 22 is connected to the discharge port of the heat medium pump 21 .
  • the heater core 22 exchanges heat between the heat medium pressure-fed from the heat medium pump 21 and the air blown into the vehicle interior.
  • the heater core 22 can heat the air by dissipating the heat of the heat medium to the air.
  • the heater core 22 is arranged across both the upper air passage 31 c and the lower air passage 31 d formed in the air conditioning case 31 of the air conditioning unit 30 . Therefore, the heater core 22 can heat both the air flowing through the upper air passage 31c and the air flowing through the lower air passage 31d.
  • a heat medium outlet of the heater core 22 is connected to one inlet of the first flow control valve 24a. Further, in the heat medium circuit 20, a first heat medium bypass passage 25a that bypasses the heater core 22 and guides the heat medium pressure-fed from the heat medium pump 21 to the other inlet side of the first flow control valve 24a. It is connected. The inlet side of the heat medium passage of the water-refrigerant heat exchanger 12 is connected to the outflow port of the first flow control valve 24a.
  • the first flow regulating valve 24a adjusts the flow rate ratio of the heat medium pumped from the heat medium pump 21 to flow into the heater core 22 and the heat medium flow into the first heat medium bypass passage 25a. adjust.
  • the first flow control valve 24 a is an electric three-way flow control valve whose operation is controlled by a control signal output from the control device 60 .
  • the heat medium inlet side of the heat medium radiator 23 is connected to the outlet of the heat medium passage of the water-refrigerant heat exchanger 12 .
  • the heat medium radiator 23 exchanges heat between the heat medium flowing out from the heat medium passage of the water-refrigerant heat exchanger 12 and outside air blown by an outside air blower (not shown).
  • the heat medium radiator 23 can cool the heat medium by dissipating the heat of the heat medium to the outside air.
  • the heat medium radiator 23 is arranged on the front side in the driving device room. Therefore, when the vehicle is running, the heat medium radiator 23 can be exposed to the running wind that has flowed into the drive unit room through the grill.
  • a heat medium outlet of the heat medium radiator 23 is connected to one inlet of the second flow control valve 24b. Furthermore, in the heat medium circuit 20, the heat medium that has flowed out of the heat medium passage of the water-refrigerant heat exchanger 12 bypasses the heat medium radiator 23 and is guided to the other inlet side of the second flow control valve 24b. 2 heat medium detour passages 25b are connected. The suction port side of the heat medium pump 21 is connected to the outflow port of the second flow control valve 24b.
  • the second flow regulating valve 24b adjusts the flow rate of the heat medium that flows into the heat medium radiator 23 and the heat medium that flows into the second heat medium bypass passage 25b, among the heat medium that has flowed out of the heat medium passage of the water-refrigerant heat exchanger 12. Adjust the flow rate to the flow rate of The basic configuration of the second flow control valve 24b is similar to that of the first flow control valve 24a.
  • the water-refrigerant heat exchanger 12 heat-exchanges the heat medium and the high-pressure refrigerant to heat the heat medium. Furthermore, the heater core can heat the air by exchanging heat between the heat medium and the air that flows through the upper-layer side air passage 31c and the lower-layer side air passage 31d and is blown into the vehicle interior. That is, the water-refrigerant heat exchanger 12 and the heat medium circuit 20 are heating units that heat air using the refrigerant discharged from the compressor 11 as a heat source.
  • the air-conditioning unit 30 is a unit in which a plurality of components are integrated in the vehicle air-conditioning system 1 in order to blow air adjusted to an appropriate temperature toward an appropriate location in the vehicle compartment.
  • the air conditioning unit 30 is an air passage forming portion that forms a plurality of air passages for circulating air therein.
  • the air conditioning unit 30 has an air conditioning case 31 .
  • the air-conditioning case 31 forms an outer shell of the air-conditioning unit, and forms an air passage and a housing space for components of the air-conditioning unit 30 inside.
  • the air-conditioning case 31 is molded from a resin (specifically, polypropylene) having a certain degree of elasticity and excellent strength.
  • a first air passage 31a, a second air passage 31b, an upper air passage 31c, a lower air passage 31d, an outside air bypass passage 31e, and an inside air bypass passage 31f are formed inside the air conditioning case 31, a first air passage 31a, a second air passage 31b, an upper air passage 31c, a lower air passage 31d, an outside air bypass passage 31e, and an inside air bypass passage 31f are formed.
  • At least part of the parts of the air conditioning case 31 that form the first air passage 31a, the second air passage 31b, the outside air bypass passage 31e, and the inside air bypass passage 31f are arranged on the drive device chamber side. At least a portion of the air conditioning case 31 forming the upper air passage 31c and the lower air passage 31d is arranged on the passenger compartment side.
  • a partition wall 50 separates the vehicle compartment (that is, the inside of the vehicle) and the driving device compartment (that is, the outside of the vehicle).
  • the bulkhead 50 corresponds to a soundproof and fireproof bulkhead member called a dash panel or firewall in a normal engine vehicle that obtains a driving force for running the vehicle from an internal combustion engine (engine).
  • the first air passage 31a is an air passage through which inside air, which is the air inside the vehicle interior, or outside air, which is the air outside the vehicle interior, flows into the air conditioning case 31.
  • a first heat exchanger 15a is arranged in the first air passage 31a.
  • the first air passage 31a allows the air that has passed through the first heat exchanger 15a to flow out to at least one of the vehicle interior and the vehicle exterior.
  • a first inlet side inside/outside air switching device 32a is arranged on the most upstream side of the air flow of the portion forming the first air passage 31a of the air conditioning case 31 .
  • the first inlet side inside/outside air switching device 32a is a first inlet side inside/outside air adjusting section that can continuously adjust the ratio of the inside air to the outside air in the air flowing into the first air passage 31a.
  • the first inlet-side inside/outside air switching device 32a includes a case portion in which an inside air introduction opening and an outside air introduction opening are formed, and a door portion that changes the opening areas of both openings. have.
  • the first inlet-side inside/outside air switching device 32a allows the door portion to close one of the openings so that the total amount of air flowing into the first air passage 31a is either inside air or outside air. can be done.
  • the operation of the first inlet side inside/outside air switching device 32 a is controlled by a control signal output from the control device 60 .
  • a first outlet side inside/outside air switching device 33a is arranged on the most downstream side of the air flow of the portion forming the first air passage 31a of the air conditioning case 31 .
  • the first exit-side inside/outside air switching device 33a is a first exit-side air switching device that can continuously adjust the ratio of the air that flows out to the outside of the passenger compartment and the air that flows out to the inside of the passenger compartment, out of the air that flows out from the first air passage 31a. This is the outlet side inside/outside air adjustment section.
  • the first exit-side inside/outside air switching device 33a includes a case portion in which an opening for outflow from the passenger compartment and an opening for outflow to the outside of the passenger compartment are formed, and a door that changes the opening areas of both openings. has a part.
  • the first outlet side inside/outside air switching device 33a switches the total amount of air flowing out of the first air passage 31a to either the inside of the vehicle interior or the outside of the vehicle interior by closing one of the openings of the door section. can be drained to
  • the operation of the first outlet side inside/outside air switching device 33 a is controlled by a control signal output from the control device 60 .
  • the second air passage 31b is an air passage through which inside air or outside air flows into the air conditioning case 31.
  • the second air passage 31b is arranged below the first air passage 31a in the vertical direction.
  • a second heat exchanger 15b is arranged in the second air passage 31b.
  • the second air passage 31b allows the air that has passed through the second heat exchanger 15b to flow out to at least one side of the vehicle interior and the vehicle exterior.
  • a second inlet-side inside/outside air switching device 32b is arranged on the most upstream side of the air flow of the portion forming the second air passage 31b of the air conditioning case 31 .
  • the second inlet side inside/outside air switching device 32b is a second inlet side inside/outside air adjustment section that can continuously adjust the ratio of the inside air to the outside air in the air flowing into the second air passage 31b.
  • the basic configuration of the second inlet side inside/outside air switching device 32b is the same as that of the first inlet side inside/outside air switching device 32a.
  • the second inlet side inside/outside air switching device 32b can set the total amount of air flowing into the second air passage 31b to either inside air or outside air.
  • a second outlet side inside/outside air switching device 33b is arranged on the most downstream side of the air flow of the portion forming the second air passage 31b of the air conditioning case 31 .
  • the second exit-side inside/outside air switching device 33b can continuously adjust the ratio of the air flowing out to the inside of the vehicle interior and the air flowing out to the outside of the vehicle out of the air flowing out from the second air passage 31b. This is the outlet side inside/outside air adjustment section.
  • the basic configuration of the second outlet side inside/outside air switching device 33b is the same as that of the first outlet side inside/outside air switching device 33a.
  • the second exit side inside/outside air switching device 33b can cause the total amount of air flowing out from the second air passage 31b to flow out to either the vehicle interior side or the vehicle exterior side.
  • the outside air bypass passage 31 e is an air passage for introducing outside air into the air conditioning case 31 .
  • the outside air bypass passage 31e causes the introduced outside air to bypass the first heat exchanger 15a and the second heat exchanger 15b and flow out into the vehicle interior. More specifically, the outside air bypass passage 31e causes the introduced outside air to flow out to the inlet side of the upper layer side air passage 31c.
  • an outside air passage door 34a is arranged inside the outside air bypass passage 31e.
  • the outside air passage door 34a is an outside air volume adjustment unit that continuously adjusts the volume of outside air flowing into the outside air bypass passage 31e.
  • the outside air passage door 34a can block the outside air bypass passage 31e.
  • the operation of the actuator for driving the outside air passage door 34a is controlled by a control signal output from the control device 60. As shown in FIG.
  • the inside air bypass passage 31f is an air passage for introducing inside air into the air conditioning case 31.
  • the inside air bypass passage 31f causes the introduced inside air to bypass the first heat exchanger 15a and the second heat exchanger 15b and flow out to the vehicle interior side. More specifically, the inside air bypass passage 31f causes the introduced inside air to flow out to the inlet side of the lower layer side air passage 31d.
  • an inside air passage door 34b is arranged inside the inside air bypass passage 31f.
  • the inside air passage door 34b is an inside air volume adjustment unit that continuously adjusts the air volume of the inside air flowing into the inside air bypass passage 31f.
  • the inside air passage door 34b can block the inside air bypass passage 31f.
  • the operation of the drive actuator for the inside air passage door 34b is controlled by a control signal output from the control device 60. As shown in FIG.
  • the outside air bypass passage 31e and the inside air bypass passage 31f are arranged below the first air passage 31a and above the second air passage 31b.
  • the outside air bypass passage 31e and the inside air bypass passage 31f are arranged so as to be sandwiched between the first air passage 31a and the second air passage 31b from above and below.
  • the outside air bypass passage 31e and the inside air bypass passage 31f are arranged side by side in a substantially horizontal direction.
  • the opening area of the outside air bypass passage 31e and the opening area of the inside air bypass passage 31f are assumed to be approximately the same, but the actual opening areas are different from each other. Specifically, it is determined so that the sum of the pressure losses generated in the air flowing through the respective air passages approaches the minimum value during the heating mode, which will be described later.
  • first exit side inside/outside air switching device 33a for outflow of the vehicle interior
  • second outlet side inside/outside air switching device 33b for outflow into the vehicle interior
  • the exit of the outside air bypass passage 31e the exit of the outside air bypass passage 31e
  • the inside air The outlets of the bypass passage 31f are connected to various inlets of the ventilation path switching device 35, respectively.
  • the ventilation path switching device 35 is a sub-unit that integrates a ventilation path switching unit that switches the connection mode of the air path formed in the air conditioning unit 30 and a vehicle interior blower that blows air into the interior of the vehicle. A detailed configuration of the ventilation path switching device 35 will be described with reference to FIG.
  • the ventilation path switching device 35 has a switching device case 36 and an indoor fan 37 .
  • the switching device case 36 can be made of the same material as the air conditioning case 31 .
  • the switching device case 36 may be formed integrally with the air conditioning case 31 .
  • the switching device case 36 is formed with a first inlet portion 36a, a second inlet portion 36b, an upper layer side outlet portion 36c, a lower layer side outlet portion 36d, an outside air inlet portion 36e, and an inside air inlet portion 36f.
  • ventilation passages communicating with the respective inlets are formed inside the switching device case 36.
  • the first inlet portion 36a is connected to the opening portion of the first outlet-side inside/outside air switching device 33a for the vehicle interior to flow out.
  • the second inlet portion 36b is connected to an opening portion of the second outlet side inside/outside air switching device 33b for outflow from the passenger compartment.
  • the outlet portion of the outside air bypass passage 31e is connected to the outside air inlet portion 36e.
  • the outlet portion of the inside air bypass passage 31f is connected to the inside air inlet portion 36f.
  • the inlet portion of the upper layer side air passage 31c is connected to the upper layer side outlet portion 36c.
  • the inlet portion of the lower layer side air passage 31d is connected to the lower layer side outlet portion 36d.
  • the indoor blower 37 is an indoor blower that blows air (that is, inside air or outside air) into the vehicle interior.
  • the indoor fan 37 has a first fan 37a, a second fan 37b, and an electric motor 37c.
  • the first fan 37a blows the sucked air from the upper layer side outlet portion 36c to the upper layer side air passage 31c.
  • the second fan 37b blows the sucked air from the lower layer side outlet portion 36d to the lower layer side air passage 31d.
  • the electric motor 37c is a drive unit that rotates both the first fan 37a and the second fan 37b in conjunction with each other. Therefore, the indoor blower 37 is a so-called double blower in which the first fan 37a and the second fan 37b are rotationally driven in conjunction with a common electric motor 37c.
  • the electric motor 37c has its rotational speed (ie, air blowing capacity) controlled by a control voltage output from the control device 60 .
  • Both the first fan 37a and the second fan 37b are centrifugal multi-blade fans.
  • the dimensions of the first fan 37a and the dimensions of the second fan 37b are different from each other.
  • the axial blade height of the first fan 37a and the axial blade height of the second fan 37b are different from each other. Therefore, the air volume of the first fan 37a and the air volume of the second fan 37b at the same rotational speed are different from each other.
  • the axial blade height of the first fan 37a and the axial blade height of the second fan 37b are set so that the inside/outside air ratio becomes an appropriate value during the heating mode.
  • the inside/outside air ratio is the ratio between the volume of air flowing through the upper air passage 31c and the volume of air flowing through the lower air passage 31d.
  • the first fan 37a and the second fan 37b are accommodated in a first scroll casing 37d and a second scroll casing 37e formed in the switching device case 36, respectively.
  • the first scroll casing 37 d and the second scroll casing 37 e are formed so that the air sucked by the first fan 37 a and the air sucked by the second fan 37 b do not mix inside the switching device case 36 .
  • switching doors 35a and 35b for switching the ventilation paths formed inside are arranged inside the switching device case 36.
  • the air that has flowed into the inside from the first inlet portion 36a can be guided to at least one of the inlet side of the first fan 37a and the inlet side of the second fan 37b. Further, in the ventilation path switching device 35, the air that has flowed into the inside from the second inlet portion 36b can be guided to at least one of the suction port side of the first fan 37a and the suction port side of the second fan 37b.
  • the outside air that has flowed inside from the outside air inlet portion 36e can be guided to the suction port side of the first fan 37a without being affected by the displacement of the switching doors 35a and 35b.
  • the inside air that has flowed into the inside from the inside air inlet portion 36f can be guided to the suction port side of the second fan 37b without being affected by the displacement of the switching doors 35a and 35b.
  • the upper air passage 31c is an air passage through which the air blown from the first fan 37a is circulated.
  • the lower layer side air passage 31d is an air passage through which the air blown from the second fan 37b is circulated.
  • the lower air passage 31d is arranged below the upper air passage 31c.
  • the upper layer side air passage 31c and the lower layer side air passage 31d are vertically partitioned by a partition plate 39 disposed inside the air conditioning case 31. As shown in FIG.
  • a heater core 22 forming a heating portion is arranged in the upper layer side air passage 31c and the lower layer side air passage 31d. More specifically, the heater core 22 passes through a mounting hole formed in the partition plate 39, and is disposed across both the upper air passage 31c and the lower air passage 31d.
  • a communication port 39a is formed in a portion of the partition plate 39 positioned on the downstream side of the air flow of the heater core 22 to communicate the upper layer side air passage 31c and the lower layer side air passage 31d.
  • a communication port opening/closing door 39b for opening and closing the communication port 39a is arranged inside the air conditioning case 31 .
  • the communication port opening/closing door 39b is driven by a communication port opening/closing door electric actuator.
  • the operation of the electric actuator for opening and closing the communication port is controlled by a control signal output from the control device 60 .
  • a plurality of openings are arranged at the most downstream part of the air flow of the air conditioning case 31 for blowing out the conditioned air, which is air whose temperature has been adjusted by passing through the heater core 22, into the vehicle compartment.
  • a defroster opening hole 43a and a face opening hole 43b are arranged as opening holes for blowing the conditioned air into the vehicle interior from the upper air passage 31c side.
  • a foot opening hole 43c is arranged as an opening hole for blowing air into the vehicle interior from the side of the lower air passage 31d.
  • the defroster opening hole 43a is an opening hole for blowing air-conditioned air toward the inner surface of the vehicle window glass 51.
  • the face opening hole 43b is an opening hole for blowing the conditioned air toward the upper body of the passenger in the vehicle compartment.
  • the foot opening hole 43c is an opening hole for blowing the conditioned air toward the passenger's feet.
  • the defroster opening hole 43a is connected via a duct (not shown) to a defroster outlet provided in the vehicle interior.
  • the face opening hole 43b is connected via a duct (not shown) to a face outlet provided in the vehicle interior.
  • the foot opening hole 43c is connected via a duct (not shown) to a foot outlet provided in the vehicle interior.
  • a defroster door 44a, a face door 44b, and a foot door 44c are arranged upstream of the defroster opening hole 43a, the face opening hole 43b, and the foot opening hole 43c, respectively.
  • the defroster door 44a adjusts the opening area of the defroster opening hole 43a.
  • the face door 44b adjusts the opening area of the face opening hole 43b.
  • the foot door 44c adjusts the opening area of the foot opening hole 43c.
  • the defroster door 44a, the face door 44b, and the foot door 44c are outlet mode switching units that switch the outlet mode.
  • the defroster door 44a, the face door 44b, and the foot door 44c are rotated in conjunction with each other by an electric actuator for the outlet mode door via a link mechanism or the like.
  • the operation of the electric actuator for the outlet mode door is controlled by a control signal output from the control device 60 .
  • the outlet modes switched by the outlet mode switching unit specifically include face mode, bi-level mode, foot mode, and the like.
  • the face mode is an outlet mode in which the face opening hole 43b is fully opened and conditioned air is blown out from the face outlet.
  • the bi-level mode is an air outlet mode in which both the face opening 43b and the foot opening 43c are opened to blow the air-conditioned air from the face air outlet and the air-conditioned air from the foot air outlet.
  • the foot mode is an outlet mode in which both the defroster opening hole 43a and the foot opening hole 43c are opened to blow out the conditioned air from the defroster outlet and the conditioned air from the foot outlet.
  • the passenger can manually operate the outlet mode switch provided on the operation panel 62 to switch to the defroster mode.
  • the defroster mode is an air outlet mode in which the defroster opening hole 43a is fully opened and conditioned air is blown out from the defroster outlet.
  • an exhaust air blower 45 is arranged on the lowermost side of the air conditioning case 31 .
  • the exhaust air blower 45 is an exhaust air blower that draws in the air in the air conditioning case 31 and exhausts it from the air outlet 45a to the outside of the vehicle.
  • the exhaust blower 45 is a centrifugal blower that rotates a centrifugal multi-blade fan arranged in a scroll casing by an electric motor.
  • the number of revolutions (that is, the blowing capacity) of the exhaust air blower 45 is controlled by a control voltage output from the control device 60 to the electric motor.
  • the intake port of the exhaust air blower 45 is connected to the outflow opening of the first outlet side inside/outside air switching device 33a through the exhaust bypass passage 31g. Further, the suction port of the exhaust air blower 45 is connected to the opening of the second outlet side inside/outside air switching device 33b for outflow to the outside of the passenger compartment.
  • the control device 60 is composed of a well-known microcomputer including CPU, ROM, RAM, etc. and its peripheral circuits.
  • the control device 60 performs various calculations and processes based on the air conditioning control program stored in the ROM, and controls various control target devices 11, 14a, 14b, 21, 24a, 24b, 32a, 32b, It controls the operation of 33a, 33b, 34a, 34b, 35, 37, 45, etc.
  • the control sensors include an inside air temperature sensor 61a, an outside air temperature sensor 61b, and a solar radiation amount sensor 61c.
  • the inside air temperature sensor 61a is an inside air temperature detection unit that detects the inside air temperature Tr, which is the temperature inside the vehicle compartment.
  • the outside air temperature sensor 61b is an outside air temperature detection unit that detects the outside air temperature Tam, which is the temperature outside the vehicle compartment.
  • the solar radiation amount sensor 61c is a solar radiation amount detection unit that detects the amount of solar radiation As irradiated into the vehicle interior.
  • control sensors include a high-pressure refrigerant temperature sensor 61d, a first refrigerant temperature sensor 61e, and a second refrigerant temperature sensor 61f.
  • the high-pressure refrigerant temperature sensor 61 d is a high-pressure refrigerant temperature detection unit that detects the high-pressure refrigerant temperature Td of the high-pressure refrigerant discharged from the compressor 11 .
  • the first refrigerant temperature sensor 61e is a first refrigerant temperature detection unit that detects the first refrigerant temperature Tr1 in the first heat exchanger 15a (that is, the temperature of the first heat exchanger 15a).
  • the second refrigerant temperature sensor 61f is a second refrigerant temperature detector that detects a second refrigerant temperature Tr2 in the second heat exchanger 15b (that is, the temperature of the second heat exchanger 15b).
  • control sensors include a high-pressure refrigerant pressure sensor 61g and an intake refrigerant pressure sensor 61h.
  • the high-pressure refrigerant pressure sensor 61g is a high-pressure refrigerant pressure detector that detects the high-pressure refrigerant pressure Pd of the high-pressure refrigerant discharged from the compressor 11 .
  • the refrigerant suction pressure sensor 61h is a refrigerant suction pressure detection unit that detects a refrigerant suction pressure Ps of the refrigerant suctioned into the compressor 11 after flowing out of the second heat exchanger 15b.
  • control sensors include the heat medium temperature sensor 61i.
  • the heat medium temperature sensor 61 i is a heat medium temperature detection unit that detects a heat medium temperature Tw, which is the temperature of the heat medium flowing into the heater core 22 .
  • control sensors include a humidity sensor 61j.
  • the humidity sensor 61j detects the inside air humidity Rh (relative humidity) in the vicinity of the vehicle window glass 51 in the vehicle compartment.
  • the inside air humidity Rh in the vicinity of the vehicle window glass 51 is a physical quantity that correlates with how easily the vehicle window glass 51 fogs.
  • the inside air humidity Rh can be used to determine whether or not the vehicle window glass 51 needs to be defogged. Therefore, the humidity sensor 61j is a window fog detector.
  • an operation panel 62 is connected to the input side of the control device 60 .
  • the operation panel 62 is arranged near the instrument panel in the front part of the passenger compartment.
  • the operation panel 62 is provided with various operation switches that are operated by the passenger. Operation signals of various operation switches are input to the control device 60 . Examples of various operation switches include an auto switch, an air conditioner switch, an air volume setting switch, a temperature setting switch, and the like.
  • the auto switch is an operation switch for the passenger to set or cancel the automatic control operation of the vehicle air conditioner 1 .
  • the air conditioner switch is an operation switch for the passenger to request that the air be cooled by the first heat exchanger 15a or the second heat exchanger 15b.
  • the air volume setting switch is an operation switch for manually setting the air volume of the indoor fan 37 by the passenger.
  • the temperature setting switch is an operation switch for setting a preset temperature Tset in the passenger compartment by the occupant.
  • control device 60 of the present embodiment is integrally configured with a control unit that controls various controlled devices connected to the output side thereof. Therefore, the configuration (that is, hardware and software) that controls the operation of each controlled device constitutes a control unit that controls the operation of each controlled device.
  • the configuration for controlling the refrigerant discharge capacity of the compressor 11 configures the compressor control section 60a.
  • the vehicle air conditioner 1 switches between operation modes such as a cooling mode, a dehumidifying heating mode, a heating mode, and a defrosting mode.
  • the cooling mode is an operating mode that blows out cooled air into the vehicle interior.
  • the dehumidification/heating mode is an operation mode in which cooled and dehumidified air is reheated and blown into the passenger compartment.
  • the heating mode is an operation mode in which heated air is blown into the vehicle interior.
  • the defrost mode is an operation mode for defrosting a frosted heat exchanger.
  • the operation mode is switched by executing an air conditioning control program stored in the control device 60 in advance.
  • the air-conditioning control program is executed when the auto switch of the operation panel 62 is turned on (ON) and automatic control operation of the vehicle interior air-conditioning is set.
  • the detection signals of the various control sensors described above are read at predetermined intervals.
  • a target outlet temperature TAO which is the target temperature of the conditioned air blown into the vehicle compartment, is calculated based on the values of the read detection signal and operation signal. Then, the operating mode is switched using the calculated target air temperature TAO and the like.
  • TAO The target blowing temperature TAO is calculated using the following formula F1.
  • TAO Kset ⁇ Tset ⁇ Kr ⁇ Tr ⁇ Kam ⁇ Tam ⁇ Ks ⁇ As+C (F1)
  • Tr is the internal temperature detected by the internal temperature sensor 61a.
  • Tam is the outside temperature detected by the outside temperature sensor 61b.
  • Kset, Kr, Kam, and Ks are control gains, and C is a correction constant.
  • the mode is switched to the cooling mode. Further, when the target blowout temperature TAO is equal to or higher than the reference cooling temperature TAO1 and the air conditioner switch is turned on, the mode is switched to the dehumidifying heating mode. Also, when the air conditioner switch is not turned on, it is switched to the heating mode.
  • the cooling mode is likely to be executed mainly when the outside temperature is relatively high, such as in summer.
  • the dehumidifying heating mode is likely to be executed mainly in spring or autumn.
  • the heating mode is likely to be executed mainly in winter when the outside temperature is low. The detailed operation of each operation mode will be described below.
  • the controller 60 operates the compressor 11 of the heat pump cycle 10 . More specifically, the controller 60 controls the refrigerant discharge capacity of the compressor 11 so that the second refrigerant temperature Tr2 detected by the second refrigerant temperature sensor 61f approaches the target evaporator temperature TEO.
  • the target evaporator temperature TEO is determined based on the target outlet temperature TAO with reference to a cooling mode control map stored in the controller 60 in advance.
  • the control map for the cooling mode is determined so that the target evaporator temperature TEO is increased as the target outlet temperature TAO increases.
  • the target evaporator temperature TEO is determined to a value (at least 1° C. or higher in the present embodiment) that can suppress frost formation on the second heat exchanger 15b.
  • control device 60 fully opens the first expansion valve 14a.
  • control device 60 puts the second expansion valve 14b into a throttled state that exerts a refrigerant decompression action.
  • the controller 60 controls the second expansion so that the degree of superheat SH of the refrigerant on the outlet side of the second heat exchanger 15b approaches a predetermined reference degree of heating KSH (5° C. in this embodiment). It controls the actuation of valve 14b.
  • the degree of superheat SH of the refrigerant on the outlet side of the second heat exchanger 15b can be determined from the second refrigerant temperature Tr2 and the suction refrigerant pressure Ps detected by the suction refrigerant pressure sensor 61h.
  • control device 60 operates the heat medium pump 21 of the heat medium circuit 20 so as to exhibit a predetermined reference pumping capability.
  • control device 60 controls the operation of the first flow control valve 24 a so that the entire flow rate of the heat medium discharged from the heat medium pump 21 flows into the heat medium passage of the water-refrigerant heat exchanger 12 . Further, the control device 60 controls the operation of the second flow control valve 24b so that the entire flow rate of the heat medium flowing out from the heat medium passage of the water-refrigerant heat exchanger 12 flows into the heat medium radiator 23.
  • the control device 60 also controls the operation of the first inlet side inside/outside air switching device 32a so that the outside air flows into the first air passage 31a of the air conditioning unit 30. Further, the control device 60 controls the operation of the first outlet side inside/outside air switching device 33a so that the entire amount of air that has passed through the first heat exchanger 15a flows out from the opening for outflow to the outside of the passenger compartment.
  • the control device 60 also controls the operation of the second inlet side inside/outside air switching device 32b so that the outside air flows into the second air passage 31b.
  • the control device 60 controls the operation of the second outlet side inside/outside air switching device 33b so that the entire amount of air that has passed through the second heat exchanger 15b flows out from the vehicle interior outflow opening.
  • the control device 60 also determines a control signal to be output to the actuator for driving the outside air passage door 34a so that the outside air passage door 34a closes the outside air bypass passage 31e.
  • the control device 60 also determines a control signal to be output to the driving actuator of the inside air passage door 34b so that the inside air passage door 34b closes the inside air bypass passage 31f.
  • control device 60 causes both the first fan 37a and the second fan 37b of the indoor blower 37 to suck in the air that has flowed out from the opening of the second outlet side inside/outside air switching device 33b for outflow into the vehicle interior. , to switch the ventilation paths in the ventilation path switching device 35 .
  • control device 60 operates the indoor fan 37 so as to exhibit the target air blowing capacity.
  • the target air blowing capacity of the indoor fan 37 is determined by referring to a control map stored in advance in the control device 60 based on the target air temperature TAO.
  • the blowing capacity of the indoor fan 37 is maximized in the extremely low temperature range (maximum cooling range) and the extremely high temperature range (maximum heating range) of the target air temperature TAO.
  • the blowing capacity is reduced in accordance with the increase in the target blowing temperature TAO. Further, as the target blowing temperature TAO decreases from the extremely high temperature range toward the intermediate temperature range, the air blowing capacity is reduced in accordance with the decrease in the target blowing temperature TAO. Further, when the target blowing temperature TAO falls within a predetermined intermediate temperature range, the blowing capacity is minimized.
  • control device 60 operates the exhaust air blower 45 so as to exhibit a predetermined reference air blowing capacity.
  • the control device 60 also determines a control signal to be output to the electric actuator for the communication port opening/closing door so that the communication port opening/closing door 39b fully opens the communication port 39a.
  • control device 60 Based on the target outlet temperature TAO, the control device 60 also refers to a control map stored in advance in the control device 60 to determine the control signal to be output to the electric actuator for the outlet mode door.
  • the face mode, bilevel mode, and foot mode are switched in order. Further, as the target blowing temperature TAO decreases from the high temperature range to the low temperature range, the foot mode, bi-level mode, and face mode are switched in order. Therefore, the face mode is likely to be selected in the cooling mode.
  • the high-pressure refrigerant discharged from the compressor 11 flows into the refrigerant passage of the water-refrigerant heat exchanger 12 .
  • the refrigerant flowing into the refrigerant passage of the water-refrigerant heat exchanger 12 exchanges heat with the heat medium flowing through the heat medium passage.
  • the refrigerant radiates heat to the heat medium and condenses.
  • the liquid-phase refrigerant that has flowed into the first heat exchanger 15a exchanges heat with air that has flowed into the first air passage 31a of the air conditioning unit 30 (outside air in this embodiment).
  • the liquid-phase refrigerant exchanges heat with air and is subcooled.
  • the refrigerant that has flowed out of the first heat exchanger 15a flows into the second expansion valve 14b and is decompressed.
  • the low-pressure refrigerant decompressed by the second expansion valve 14b flows into the second heat exchanger 15b.
  • the refrigerant that has flowed into the second heat exchanger 15b exchanges heat with the air that has flowed into the second air passage 31b of the air conditioning unit 30 (outside air in this embodiment).
  • the refrigerant absorbs heat from the air and evaporates. This cools the air flowing through the second air passage 31b.
  • the refrigerant that has flowed out of the second heat exchanger 15b is sucked into the compressor 11 and compressed again.
  • the entire flow of the heat medium pressure-fed from the heat medium pump 21 passes through the first heat medium bypass passage 25a and the first flow rate adjustment valve 24a to the water-refrigerant heat exchanger 12.
  • flow into the heat medium passage of The heat medium flowing into the heat medium passage of the water-refrigerant heat exchanger 12 is heated by exchanging heat with the refrigerant flowing through the refrigerant passage.
  • the heat medium heated by the water-refrigerant heat exchanger 12 flows into the heat medium radiator 23 .
  • the heat medium that has flowed into the heat medium radiator 23 is cooled by radiating heat to the outside air.
  • the heat medium flowing out of the heat medium radiator 23 is sucked into the heat medium pump 21 through the second flow control valve 24b and pumped again.
  • the air (outside air in this embodiment) flowing from the first inlet side inside/outside air switching device 32a into the first air passage 31a exchanges heat with the refrigerant when passing through the first heat exchanger 15a. is heated.
  • the air heated by the first heat exchanger 15a is sucked into the exhaust blower 45 via the first outlet side inside/outside air switching device 33a and the exhaust bypass passage 31g.
  • the air sucked into the exhaust air blower 45 is exhausted to the outside of the passenger compartment.
  • the air sucked into the first fan 37a is blown to the inlet side of the upper air passage 31c.
  • the air blown to the upper air passage 31 c passes through the heater core 22 .
  • the air sucked into the second fan 37b is sent to the inlet side of the lower air passage 31d.
  • the air blown to the lower air passage 31 d passes through the heater core 22 .
  • the heat medium does not flow into the heater core 22, so the air passing through the heater core 22 is not heated.
  • the communication opening/closing door 39b fully opens the communication opening 39a. Therefore, both the air that has flowed through the upper air passage 31c and the air that has flowed through the lower air passage 31d are blown out into the passenger compartment from the opening that is open according to the blower port mode. Thereby, cooling of the passenger compartment is achieved.
  • the water-refrigerant heat exchanger 12 functions as a condenser that condenses the refrigerant
  • the first heat exchanger 15a functions as a supercooling unit that supercools the liquid-phase refrigerant that flows out from the receiver 13. make it work. Therefore, in the cooling mode heat pump cycle 10, the water-refrigerant heat exchanger 12, the receiver 13, and the first heat exchanger 15a can form a so-called subcool type condenser.
  • the enthalpy difference obtained by subtracting the enthalpy of the inlet-side refrigerant of the second heat exchanger 15b from the enthalpy of the outlet-side refrigerant of the second heat exchanger 15b is increased to increase the air cooling capacity of the second heat exchanger 15b. can be improved.
  • the controller 60 operates the compressor 11 of the heat pump cycle 10 in the same manner as in the cooling mode.
  • control device 60 puts the first expansion valve 14a and the second expansion valve 14b into the throttle state. More specifically, the control device 60 controls the first expansion valve 14a and the It controls the operation of the second expansion valve 14b.
  • a control map stored in advance in the control device 60 is referenced to determine the ratio between the throttle opening degree of the first expansion valve 14a and the throttle opening degree of the second expansion valve 14b. do.
  • the throttle opening of the first expansion valve 14a is decreased and the throttle opening of the second expansion valve 14b is increased as the target blowout temperature TAO rises.
  • control device 60 operates the heat medium pump 21 of the heat medium circuit 20 as in the cooling mode.
  • control device 60 controls the operation of the first flow control valve 24 a so that the entire flow rate of the heat medium discharged from the heat medium pump 21 flows into the heater core 22 . Further, the control device 60 controls the operation of the second flow control valve 24b so that the heat medium temperature Tw detected by the heat medium temperature sensor 61i approaches the target heat medium temperature TWO.
  • the target heat medium temperature TWO is determined based on the target outlet temperature TAO by referring to a control map for the dehumidifying heating mode stored in advance in the control device 60 .
  • control device 60 controls the operations of the other components of the air conditioning unit 30 in the same manner as in the cooling mode.
  • the controller 60 determines the control signals that are output to the electric actuators for the outlet mode doors, as well as for the cooling mode. Therefore, in the dehumidifying and heating mode, the face mode or the bi-level mode is likely to be selected as the outlet mode.
  • the high-pressure refrigerant discharged from the compressor 11 flows into the refrigerant passage of the water-refrigerant heat exchanger 12 .
  • the refrigerant flowing into the refrigerant passage of the water-refrigerant heat exchanger 12 exchanges heat with the heat medium flowing through the heat medium passage.
  • the refrigerant radiates heat to the heat medium and condenses.
  • the refrigerant that has flowed into the first heat exchanger 15a exchanges heat with the air that has flowed into the first air passage 31a of the air conditioning unit 30 (outside air in this embodiment).
  • the first heat exchanger 15a functions as a supercooling heat exchanger that supercools the refrigerant.
  • the saturation temperature of the refrigerant in the first heat exchanger 15a is lower than the outside air temperature Tam, the first heat exchanger 15a functions as an evaporator that evaporates the refrigerant.
  • the refrigerant that has flowed out of the first heat exchanger 15a flows into the second expansion valve 14b and is decompressed.
  • the refrigerant decompressed by the second expansion valve 14b flows into the second heat exchanger 15b.
  • the refrigerant that has flowed into the second heat exchanger 15b exchanges heat with the air that has flowed into the second air passage 31b of the air conditioning unit 30 (outside air in this embodiment).
  • the refrigerant absorbs heat from the air and evaporates.
  • the air flowing through the second air passage 31b is cooled and dehumidified.
  • the refrigerant that has flowed out of the second heat exchanger 15b is sucked into the compressor 11 and compressed again.
  • the heat medium pumped from the heat medium pump 21 flows into the heater core 22 at the full flow rate.
  • the heat medium flowing into the heater core 22 exchanges heat with air flowing through the upper air passage 31c and air flowing through the lower air passage 31d, and releases heat to the air.
  • the air flowing through the upper air passage 31c and the air flowing through the lower air passage 31d are heated.
  • the heat medium flowing out of the heater core 22 flows into the heat medium passage of the water-refrigerant heat exchanger 12 .
  • the heat medium that has flowed into the heat medium passage of the water-refrigerant heat exchanger 12 is heated by exchanging heat with the high-pressure refrigerant.
  • the heat medium flowing into the heat medium radiator 23 from the heat medium passage of the water-refrigerant heat exchanger 12 releases heat to the outside air and is cooled.
  • the heat medium flowing out of the heat medium radiator 23 flows into one inlet of the second flow control valve 24b. Further, the heat medium flowing out from the heat medium passage of the water-refrigerant heat exchanger 12 toward the second heat medium bypass passage 25b flows into the other inlet of the second flow control valve 24b.
  • the second flow control valve 24b adjusts the flow rate of the heat medium flowing into the heat medium radiator 23 and the heat medium flowing into the second heat medium bypass passage 25b so that the heat medium temperature Tw approaches the target heat medium temperature TWO. Adjust the flow rate to the flow rate of The heat medium that has flowed out of the second flow control valve 24b is sucked into the heat medium pump 21 and pressure-fed to the heater core 22 side again.
  • the air conditioning unit 30 in the dehumidification and heating mode air flows through each air passage in the same manner as in the cooling mode, as indicated by the thick arrows in FIG.
  • the air cooled and dehumidified by the second heat exchanger 15b passes through the second outlet-side inside/outside air switching device 33b and the ventilation path in the ventilation path switching device 35, and the second air of the indoor fan 37. The air is sucked into the first fan 37a and the second fan 37b.
  • the air sucked into the first fan 37a is blown to the inlet side of the upper air passage 31c.
  • the air blown into the upper air passage 31c exchanges heat with the heat medium when passing through the heater core 22 and is reheated.
  • the air sucked into the second fan 37b is sent to the inlet side of the lower air passage 31d.
  • the air blown into the lower air passage 31d exchanges heat with the heat medium when passing through the heater core 22 and is reheated.
  • the communication opening/closing door 39b fully opens the communication opening 39a. Therefore, both the air that has been reheated through the upper air passage 31c and the air that has been reheated through the lower air passage 31d are discharged into the passenger compartment from the opening that is open according to the blowout port mode. is blown out. As a result, dehumidification and heating of the passenger compartment are achieved.
  • the throttle opening degree of the first expansion valve 14a is decreased and the throttle opening degree of the second expansion valve 14b is increased as the target blowout temperature TAO rises. According to this, the heating capacity of the heater core 22 for the blown air can be improved as the target blowing temperature TAO increases.
  • the saturation temperature of the refrigerant in the first heat exchanger 15a is higher than the outside air temperature Tam
  • the saturation temperature of the refrigerant in the first heat exchanger 15a increases as the target outlet temperature TAO rises.
  • a temperature difference obtained by subtracting the outside air temperature Tam from the temperature can be reduced. Therefore, as the target outlet temperature TAO rises, the amount of heat released from the refrigerant to the outside air in the first heat exchanger 15a is reduced, and the amount of heat released from the refrigerant to the heat medium in the water-refrigerant heat exchanger 12 is increased. can be done.
  • the saturation temperature of the refrigerant in the first heat exchanger 15a is lower than the outside air temperature Tam
  • the amount of refrigerant in the first heat exchanger 15a increases from the outside air temperature Tam as the target outlet temperature TAO rises.
  • the temperature difference with the saturation temperature subtracted can be magnified.
  • the target outlet temperature TAO increases, the amount of heat absorbed by the refrigerant from the outside air in the first heat exchanger 15a is increased, and the amount of heat released from the refrigerant to the heat medium in the water-refrigerant heat exchanger 12 is increased. can be done.
  • the heating capacity of the heater core 22 for the blown air can be improved as the target blowout temperature TAO rises.
  • the controller 60 operates the compressor 11 of the heat pump cycle 10 . More specifically, the control device 60 controls the refrigerant discharge capacity of the compressor 11 so that the high pressure refrigerant pressure Pd detected by the high pressure refrigerant pressure sensor 61g approaches the target high pressure PDO.
  • the target high pressure PDO is determined by referring to a heating mode control map stored in advance in the controller 60 based on the target outlet temperature TAO.
  • the control map for the heating mode is determined so that the target high pressure PDO is increased as the target outlet temperature TAO increases.
  • control device 60 puts the first expansion valve 14a in the throttle state. More specifically, the control device 60 controls the operation of the first expansion valve 14a so that the first refrigerant temperature Tr1 detected by the first refrigerant temperature sensor 61e approaches the target first refrigerant temperature KTr1.
  • the target first refrigerant temperature KTr1 is determined based on the inside air temperature Tr with reference to a heating mode control map stored in the control device 60 in advance. In the control map for the heating mode, the target first refrigerant temperature KTr1 is set to a value lower than the inside air temperature Tr and capable of suppressing frost formation on the first heat exchanger 15a (at least 1° C. or higher in the present embodiment). to decide.
  • control device 60 puts the second expansion valve 14b in the throttle state. More specifically, the control device 60 controls the operation of the second expansion valve 14b so that the degree of superheat SH of the refrigerant on the outlet side of the second heat exchanger 15b approaches the reference degree of heating KSH. In the heating mode, the refrigerant evaporation temperature in the second heat exchanger 15b is lower than the outside air temperature Tam.
  • control device 60 operates the heat medium pump 21 of the heat medium circuit 20 as in the cooling mode.
  • control device 60 controls the operation of the first flow control valve 24a and the second flow control valve 24b, similarly to the dehumidification heating mode.
  • control device 60 controls the operation of the first inlet side inside/outside air switching device 32a so that the inside air flows into the first air passage 31a of the air conditioning unit 30. Further, the control device 60 controls the operation of the first outlet side inside/outside air switching device 33a so that the entire amount of air that has passed through the first heat exchanger 15a flows out from the opening for outflow to the outside of the passenger compartment.
  • the control device 60 also controls the operation of the second inlet side inside/outside air switching device 32b so that the outside air flows into the second air passage 31b.
  • the control device 60 controls the operation of the second outlet side inside/outside air switching device 33b so that the entire amount of air that has passed through the second heat exchanger 15b flows out from the opening for outflow to the outside of the passenger compartment.
  • the control device 60 also determines a control signal to be output to the drive actuator of the outside air passage door 34a so that the outside air passage door 34a fully opens the outside air bypass passage 31e.
  • the control device 60 also determines a control signal to be output to the driving actuator of the inside air passage door 34b so that the inside air passage door 34b fully opens the inside air bypass passage 31f.
  • control device 60 switches the ventilation path in the ventilation path switching device 35 so that the air flowing out from the outside air bypass passage 31e is drawn into the first fan 37a of the indoor blower 37. Further, the ventilation path in the ventilation path switching device 35 is switched so that the air flowing out from the inside air bypass passage 31f is drawn into the second fan 37b of the indoor blower 37 .
  • the control device 60 also determines a control signal to be output to the electric actuator for the communication port opening/closing door so that the communication port opening/closing door 39b closes the communication port 39a. Further, the control device 60 determines the control signal to be output to the electric actuator for the outlet mode door so that the outlet mode is the foot mode.
  • control device 60 controls the operations of the other components of the air conditioning unit 30 in the same manner as in the cooling mode.
  • the high-pressure refrigerant discharged from the compressor 11 flows into the refrigerant passage of the water-refrigerant heat exchanger 12 .
  • the refrigerant flowing into the refrigerant passage of the water-refrigerant heat exchanger 12 exchanges heat with the heat medium flowing through the heat medium passage.
  • the refrigerant radiates heat to the heat medium and condenses.
  • the refrigerant that has flowed into the first heat exchanger 15a exchanges heat with the air that has flowed into the first air passage 31a of the air conditioning unit 30 (the inside air in this embodiment).
  • the refrigerant absorbs heat from the air and evaporates.
  • the refrigerant that has flowed out of the first heat exchanger 15a flows into the second expansion valve 14b and is decompressed.
  • the refrigerant decompressed by the second expansion valve 14b flows into the second heat exchanger 15b.
  • the refrigerant that has flowed into the second heat exchanger 15b exchanges heat with the air that has flowed into the second air passage 31b of the air conditioning unit 30 (outside air in this embodiment).
  • the refrigerant absorbs heat from the air and further evaporates.
  • the refrigerant that has flowed out of the second heat exchanger 15b is sucked into the compressor 11 and compressed again.
  • the heat medium circuit 20 in the heating mode the heat medium whose temperature has been adjusted to approach the target heat medium temperature TWO flows into the heater core 22, as in the dehumidifying and heating mode.
  • the air cooled by the first heat exchanger 15a is sucked into the exhaust blower 45 via the first outlet side inside/outside air switching device 33a and the exhaust bypass passage 31g.
  • the air sucked into the exhaust air blower 45 is exhausted to the outside of the vehicle.
  • the air cooled by the second heat exchanger 15b is sucked into the exhaust air blower 45 via the second outlet side inside/outside air switching device 33b.
  • the air sucked into the exhaust air blower 45 is exhausted to the outside of the vehicle.
  • the outside air that has flowed into the outside air bypass passage 31e is sucked into the first fan 37a through the ventilation passage in the ventilation passage switching device 35.
  • the outside air sucked into the first fan 37a is blown to the inlet side of the upper air passage 31c.
  • the outside air blown into the upper air passage 31 c flows into the heater core 22 .
  • the outside air flowing into the heater core 22 exchanges heat with the heat medium circulating in the heat medium circuit 20 and is heated.
  • the inside air that has flowed into the inside air bypass passage 31f is sucked into the second fan 37b through the ventilation passage in the ventilation passage switching device 35.
  • the outside air sucked into the second fan 37b is blown to the inlet side of the lower air passage 31d.
  • the outside air blown into the lower air passage 31 d flows into the heater core 22 .
  • the outside air flowing into the heater core 22 exchanges heat with the heat medium circulating in the heat medium circuit 20 and is heated.
  • the communication port opening/closing door 39b closes the communication port 39a, and the air outlet mode is the foot mode.
  • the outside air heated by the heater core 22 in the upper air passage 31c is blown toward the inner surface of the vehicle window glass 51 through the defroster opening hole 43a.
  • the inside air heated by the heater core 22 in the lower air passage 31d is blown out toward the passenger (more specifically, toward the passenger's feet) through the foot opening hole 43c. Thereby, the heating of the passenger compartment is achieved.
  • the outside air which has a lower humidity than the inside air, is heated and blown out toward the inner surface of the vehicle window glass 51, so that the anti-fogging performance of the vehicle window glass can be improved.
  • the inside air having a higher temperature than the outside air is heated and blown toward the feet of the occupants, the energy consumed for heating can be reduced as compared with the case of heating the outside air having a low temperature. Furthermore, it is possible to realize comfortable heating of the cold-head-heat-foot type.
  • the defrost mode is an operation mode that is executed when it is determined that frost has formed on the second heat exchanger 15b during execution of the heating mode.
  • the air conditioning control program determines that frost has formed on the second heat exchanger 15b when a predetermined frost formation condition is satisfied. Specifically, after the heating mode is started, the time during which the second refrigerant temperature Tr2 is equal to or lower than the reference frosting temperature ( ⁇ 5° C. in this embodiment) is the reference frosting time (5° C. in this embodiment). minutes), it is determined that the frost formation condition is established.
  • a predetermined defrosting time (about 1 to 2 minutes in the present embodiment) elapses.
  • the controller 60 stops the compressor 11 of the heat pump cycle 10.
  • the control device 60 operates the heat medium pump 21 of the heat medium circuit 20 as in the cooling mode.
  • the control device 60 controls the operation of the first flow control valve 24a and the second flow control valve 24b, similarly to the dehumidification heating mode.
  • the control device 60 also controls the operation of the first inlet side inside/outside air switching device 32a so that the outside air flows into the first air passage 31a of the air conditioning unit 30.
  • the control device 60 controls the operation of the first outlet side inside/outside air switching device 33a so that the entire amount of air that has passed through the first heat exchanger 15a flows out from the vehicle interior outflow opening.
  • the control device 60 also controls the operation of the second inlet side inside/outside air switching device 32b so that the inside air flows into the second air passage 31b.
  • the control device 60 controls the operation of the second outlet side inside/outside air switching device 33b so that the entire amount of air that has passed through the second heat exchanger 15b flows out from the opening for outflow to the outside of the passenger compartment.
  • the control device 60 also determines a control signal to be output to the drive actuator of the outside air passage door 34a so that the outside air passage door 34a fully opens the outside air bypass passage 31e.
  • the control device 60 also determines a control signal to be output to the driving actuator of the inside air passage door 34b so that the inside air passage door 34b fully opens the inside air bypass passage 31f.
  • control device 60 causes both the first fan 37a and the second fan 37b of the indoor blower 37 to suck in the air that has flowed out from the vehicle interior outflow opening of the first outlet side inside/outside air switching device 33a. , to switch the ventilation paths in the ventilation path switching device 35 .
  • control device 60 controls the operations of the other components of the air conditioning unit 30 in the same manner as in the heating mode.
  • the heat medium circuit 20 in the defrosting mode the heat medium circulates in the same way as in the heating mode.
  • the compressor 11 of the heat pump cycle 10 is stopped, so the water-refrigerant heat exchanger 12 does not heat the heat medium.
  • the air (outside air in this embodiment) that has flowed into the first air passage 31a from the first inlet side inside/outside air switching device 32a passes through the first heat exchanger 15a.
  • the air that has passed through the first heat exchanger 15a is sucked into the first fan 37a and the second fan 37b of the indoor blower 37 via the first outlet side inside/outside air switching device 33a and the ventilation passage in the ventilation passage switching device 35. be done.
  • the outside air that has flowed into the outside air bypass passage 31e is sucked into the first fan 37a through the ventilation passage in the ventilation passage switching device 35.
  • the inside air that has flowed into the inside air bypass passage 31f is sucked into the second fan 37b through the ventilation passage in the ventilation passage switching device 35 .
  • the air sucked into the first fan 37a is sent to the upper air passage 31c.
  • the air blown into the upper air passage 31 c flows into the heater core 22 .
  • the air sucked into the second fan 37b is sent to the lower air passage 31d.
  • the air blown into the lower air passage 31 d flows into the heater core 22 .
  • the outside air heated by the heater core 22 in the upper air passage 31c is blown out toward the inner surface of the vehicle window glass 51 mainly through the defroster opening hole 43a. Also, the inside air heated by the heater core 22 of the lower air passage 31d is blown out toward the feet of the occupant mainly through the foot opening holes 43c. Thereby, the heating of the passenger compartment is continued.
  • frost formed on the second heat exchanger 15b is melted, and defrosting of the second heat exchanger 15b is achieved.
  • the air that has radiated heat to the second heat exchanger 15b is sucked into the exhaust air blower 45 via the second outlet side inside/outside air switching device 33b.
  • the air sucked into the exhaust air blower 45 is exhausted to the outside of the vehicle.
  • the inside air is used as a heat source to defrost the second heat exchanger 15b. Energy consumed for frost can be reduced.
  • comfortable air conditioning in the vehicle interior can be achieved by switching the operation mode. Furthermore, when frost forms on the second heat exchanger 15b, it can be removed.
  • the first inlet side inside/outside air switching device 32a causes the inside air to flow into the first air passage 31a in the heating mode.
  • the first outlet side inside/outside air switching device 33a causes the inside air that has passed through the first heat exchanger 15a to flow out to the outside of the vehicle. Therefore, the heat of the inside air can be absorbed by the refrigerant in the first heat exchanger 15a.
  • the second inlet side inside/outside air switching device 32b allows outside air to flow into the second air passage 31b.
  • the second outlet side inside/outside air switching device 33b causes the outside air that has passed through the second heat exchanger 15b to flow out to the outside of the passenger compartment. Therefore, the heat of the outside air can be absorbed by the refrigerant in the second heat exchanger 15b.
  • the heat medium can be heated by using the heat absorbed by the refrigerant from the inside air and the outside air as a heat source. Furthermore, in the heater core 22 forming the heating portion, heat is exchanged between the heated heat medium and the air blown into the vehicle interior, so that the air blown into the vehicle interior can be heated.
  • the heat absorbed by the refrigerant from the inside and outside air can be used to heat the vehicle interior.
  • the energy consumed for heating the vehicle interior can be reduced as compared with the case where the refrigerant absorbs heat only from the outside air and uses it to heat the vehicle interior.
  • the refrigerant evaporation temperature in the first heat exchanger 15a and the refrigerant evaporation temperature in the second heat exchanger 15b are appropriately adjusted according to the operating conditions. Further, in the air conditioning unit 30, the operation of the exhaust fan 45 is controlled so that a sufficient amount of inside air flows into the first heat exchanger 15a and a sufficient amount of outside air flows into the second heat exchanger 15b. ing.
  • the outside air passage door 34a opens the outside air bypass passage 31e in the heating mode, so that the outside air bypasses the first heat exchanger 15a and the second heat exchanger 15b, and the upper layer is cooled. It can be led to the side air passage 31c.
  • the heater core 22 of the upper air passage 31 c heats outside air having a lower humidity than the inside air, and blows the heated outside air toward the inner surface of the vehicle window glass 51 . Therefore, the anti-fog performance of the vehicle window glass 51 can be improved.
  • the internal air passage door 34b opens the internal air bypass passage 31f, the internal air can bypass the first heat exchanger 15a and the second heat exchanger 15b and be led to the lower air passage 31d. Then, the heater core 22 of the lower air passage 31d heats the inside air, which has a higher temperature than the outside air, and blows it toward the feet of the occupant. Therefore, it is possible to perform comfortable heating of a cold-head/hot-foot type.
  • the inside/outside air ratio is adjusted so as to improve the anti-fogging performance of the vehicle window glass 51 and reduce the energy consumed for heating, the amount of heat absorbed by the refrigerant in the first heat exchanger 15a , and the amount of heat absorbed by the refrigerant in the second heat exchanger 15b. That is, the amount of heat that can be used for heating the vehicle interior is less likely to be affected.
  • the vehicle air conditioner 1 of the present embodiment even though the vehicle air conditioner uses the heat absorbed from the inside air and the outside air for heating the vehicle interior, the anti-fogging performance of the vehicle window glass 51 is improved and the heating is improved. It is possible to achieve both reduction of energy consumed for
  • a dual electric blower is used as the indoor blower 37 of the air conditioning unit 30 . According to this, by adjusting the dimensions of the first fan 37a and the second fan 37b in advance, it is easy to set the inside/outside air ratio to an appropriate value.
  • the exhaust air blower 45 of the air conditioning unit 30 is arranged downstream of the first air passage 31a and the second air passage 31b. That is, the exhaust blower 45 draws in at least one of the air flowing out from the first air passage 31a and the air flowing out from the second air passage 31b and blows the air out of the passenger compartment. According to this, the air discharged from the first air passage 31a to the outside of the vehicle and the air discharged from the second air passage 31b to the outside of the vehicle can be discharged by a common blower.
  • the outside air passage door 34a opens the outside air bypass passage 31e
  • the inside air passage door 34b opens the inside air bypass passage 31f during the defrosting mode. According to this, it is possible to prevent air with relatively high humidity or air containing odor from being blown into the vehicle interior.
  • the first heat exchanger 15a of the heat pump cycle 10 functions as an evaporator during the heating mode. Therefore, when the defrosting mode is started, condensed water may be attached to the first heat exchanger 15a. Therefore, if air is allowed to flow into the first air passage 31a in the defrosting mode, the condensed water may evaporate, and air with relatively high humidity or odor may be blown into the vehicle interior.
  • the outside air passage door 34a opens the outside air bypass passage 31e, so outside air with relatively low humidity and no odor can be led to the upper air passage 31c. can. Furthermore, since the inside air passage door 34b opens the inside air bypass passage 31f, the inside air containing no odor can be led to the lower air passage 31d.
  • the air passing through the first heat exchange unit 15a contains humidity and odor in the defrosting mode, it can be diluted with outside air and inside air that have relatively low humidity and do not contain odor. As a result, it is possible to prevent air with high humidity or air containing odor from being blown into the passenger compartment, which causes fogging of the window glass of the vehicle.
  • the present embodiment eliminates the indoor fan 37 and the exhaust fan 45 of the air conditioning unit 30 in contrast to the vehicle air conditioner 1 of the first embodiment.
  • An example in which the internal air blower 46b and the upstream ventilation passage switching device 47 are added will be described.
  • the outside air blower 46 a is an outside air blower that draws in outside air and blows it to the outside air inlet of the upstream side ventilation path switching device 47 .
  • the inside air blower 46 b is an inside air blower that sucks inside air and blows the inside air to the inside air inlet of the upstream ventilation path switching device 47 .
  • the basic configurations of the outside air blower 46 a and the inside air blower 46 b are similar to that of the exhaust air blower 45 .
  • the upstream ventilation path switching device 47 switches the connection mode between the outlet of the outside air blower 46 a and the air passage formed in the air conditioning unit 30 , and also switches the connection between the outlet of the inside air blower 46 b and the air passage formed in the air conditioning unit 30 . It is an upstream side ventilation path switching unit that switches the connection mode.
  • the basic configuration of the upstream side ventilation path switching device 47 is the same as the ventilation path switching section of the ventilation path switching device 35 described in the first embodiment.
  • the ventilation passage switching device 35 is described as the downstream ventilation passage switching device 35 for clarity of explanation.
  • the upstream ventilation passage switching device 47 directs the outside air blown from the outside air blower 46a to the inlet side of the first air passage 31a, the inlet side of the second air passage 31b, and the inlet side of the outside air bypass passage 31e. can lead to at least one of the sides. Also, the inside air blown from the inside air blower 46b can be guided to at least one of the inlet side of the first air passage 31a, the inlet side of the second air passage 31b, and the inlet side of the inside air bypass passage 31f.
  • the first inlet side inside/outside air switching device 32a and the second inlet side inside/outside air switching device 32b described in the first embodiment are integrated as components of the upstream ventilation path switching device 47.
  • the first inlet side inside/outside air switching device 32a and the second inlet side inside/outside air switching device 32b switch the ventilation passages formed inside the upstream side ventilation passage switching device 47. It has a configuration corresponding to a switching door.
  • the downstream side ventilation path switching device 35 directs the air flowed into the inside from the first inlet portion 36a to the inlet side and the lower layer side of the upper layer side air passage 31c. It leads to at least one of the inlet sides of the air passage 31d.
  • the downstream ventilation passage switching device 35 guides the air that has flowed into the inside from the second inlet portion 36b to at least one of the inlet side of the upper layer side air passage 31c and the inlet side of the lower layer side air passage 31d.
  • the rest of the configuration of the air conditioning unit 30 and the configuration of the vehicle air conditioner 1 are the same as in the first embodiment.
  • Cooling Mode In the cooling mode, the control device 60 controls the operation of each component of the heat pump cycle 10 and each component of the heat medium circuit 20, as in the cooling mode of the first embodiment.
  • control device 60 operates the outside air blower 46a so as to exhibit the target air blowing capacity.
  • the target air blowing capacity of the outside air blower 46a in the cooling mode is determined by referring to a control map stored in advance in the control device 60 based on the target air temperature TAO, as in the first embodiment. It is determined so that the amount of air flowing through is equal to that in the first embodiment.
  • control device 60 switches the ventilation passages in the upstream ventilation passage switching device 47 so that the outside air blown from the outside air blower 46a flows into both the first air passage 31a and the second air passage 31b.
  • control device 60 controls the operation of other components of the air conditioning unit 30, as in the cooling mode of the first embodiment.
  • the heat pump cycle 10 and heat medium circuit 20 in the cooling mode operate in the same manner as in the cooling mode of the first embodiment. Further, in the air-conditioning unit 30 in the cooling mode, as indicated by the thick line arrows in FIG. flowing. Therefore, cooling of the passenger compartment is achieved as in the first embodiment.
  • the control device 60 controls the operation of each component of the heat pump cycle 10 and each component of the heat medium circuit 20, as in the dehumidifying heating mode of the first embodiment. . In addition, the control device 60 controls the operations of the other components of the air conditioning unit 30 in the same manner as in the cooling mode.
  • the heat pump cycle 10 and heat medium circuit 20 in the dehumidifying and heating mode operate in the same manner as in the dehumidifying and heating mode of the first embodiment.
  • the air conditioning unit 30 in the dehumidifying and heating mode as indicated by the thick line arrows in FIG. flow through the air passages. Therefore, dehumidification and heating of the passenger compartment are achieved in the same manner as in the first embodiment.
  • control device 60 controls the operation of each component of the heat pump cycle 10 and each component of the heat medium circuit 20, as in the heating mode of the first embodiment.
  • control device 60 operates the outside air blower 46a and the inside air blower 46b so as to exhibit the target air blowing capacity.
  • the target blowing capacities of the outside air blower 46a and the inside air blower 46b in the heating mode are each determined based on the target blowing temperature TAO with reference to a control map stored in advance in the controller 60. FIG.
  • the target blowing capacity of the outside air blower 46a and the inside air blower 46b is determined so that the amount of air blown into the vehicle interior is the same as in the first embodiment.
  • the control device 60 also refers to a control map stored in advance in the control device 60 based on the target blowout temperature TAO to determine the opening degrees of the outside air passage door 34a and the inside air passage door 34b.
  • the opening degrees of the outside air passage door 34a and the inside air passage door 34b are adjusted so as to obtain an appropriate inside/outside air ratio that can obtain both the effect of improving the anti-fogging performance of the vehicle window glass and the effect of reducing the energy consumption. is determined.
  • control device 60 switches the ventilation passages in the upstream ventilation passage switching device 47 so that the outside air blown from the outside air blower 46a flows into both the second air passage 31b and the outside air bypass passage 31e. Further, the control device 60 switches the air passages in the upstream side air passage switching device 47 so that the inside air blown from the inside air blower 46b flows into both the first air passage 31a and the inside air bypass passage 31f.
  • control device 60 controls the operation of other components of the air conditioning unit 30, as in the heating mode of the first embodiment.
  • the heat pump cycle 10 and heat medium circuit 20 in the heating mode operate in the same manner as in the heating mode of the first embodiment.
  • the control device 60 stops the compressor 11 of the heat pump cycle 10 as in the defrost mode of the first embodiment. In addition, the control device 60 controls the operation of each component of the heat medium circuit 20 in the same manner as in the defrosting mode of the first embodiment.
  • control device 60 determines the air blowing capacity of the outside air blower 46a and the air blowing capacity of the inside air blower 46b, similarly to the heating mode.
  • control device 60 adjusts the ventilation path in the upstream side ventilation path switching device 47 so that the outside air blown from the outside air blower 46a flows into both the inlet sides of the first air path 31a and the outside air bypass path 31e. switch.
  • control device 60 adjusts the air passage in the upstream side air passage switching device 47 so that the inside air blown from the inside air blower 46b flows into both the inlet sides of the second air passage 31b and the inside air bypass passage 31f. switch.
  • control device 60 controls the operation of other components of the air conditioning unit 30, as in the defrosting mode of the first embodiment.
  • the refrigerant does not circulate in the heat pump cycle 10 in defrosting mode.
  • the heat medium circuit 20 in the defrost mode operates in the same manner as in the defrost mode of the first embodiment.
  • the air conditioning unit 30 in the defrosting mode as indicated by thick line arrows in FIG. It flows through each air passage similarly to the defrosting mode of the embodiment. Therefore, similarly to the defrosting mode of the first embodiment, the second heat exchanger 15b is defrosted and the heating of the passenger compartment is continued.
  • comfortable air conditioning in the vehicle interior can be achieved by switching the operation mode. Furthermore, when frost forms on the second heat exchanger 15b, it can be removed.
  • the heat absorbed by the refrigerant from the inside air and the outside air can be used to heat the vehicle interior. can. Therefore, the energy consumed for heating the vehicle interior can be reduced as compared with the case where the refrigerant absorbs heat only from the outside air and uses it to heat the vehicle interior.
  • the outside air passage door 34a opens the outside air bypass passage 31e, so that the outside air can be guided to the upper air passage 31c by bypassing the first heat exchanger 15a and the second heat exchanger 15b. Therefore, as in the first embodiment, the anti-fogging performance of the vehicle window glass 51 can be improved.
  • the internal air passage door 34b opens the internal air bypass passage 31f, the internal air can bypass the first heat exchanger 15a and the second heat exchanger 15b and be led to the lower air passage 31d. Therefore, as in the first embodiment, it is possible to realize comfortable heating of a cold-head/hot-foot type.
  • the inside/outside air ratio is set so as to improve the antifogging performance of the vehicle window glass 51 and reduce the energy consumed for heating, the amount of heat absorbed by the refrigerant in the first heat exchanger 15a , and the amount of heat absorbed by the refrigerant in the second heat exchanger 15b. That is, the amount of heat that can be used for heating the vehicle interior is less likely to be affected.
  • the same effects as those of the first embodiment can be obtained. That is, even in a vehicle air conditioner that utilizes heat absorbed from the inside air and the outside air for heating the vehicle interior, it is necessary to improve the anti-fogging performance of the vehicle window glass 51 and reduce the energy consumed for heating. can be planned. Also, in the defrosting mode, it is possible to prevent the air containing humidity and odor from being blown into the passenger compartment.
  • the vehicle air conditioner 1 of the present embodiment includes an outside air passage door 34a, an inside air passage door 34b, and an upstream side ventilation passage switching device 47. Therefore, the outside air blower 46a can blow the outside air to at least one of the entrance side of the second air passage 31b and the entrance side of the outside air bypass passage 31e. Also, the inside air blower 46b can blow inside air to at least one of the inlet side of the first air passage 31a and the inlet side of the inside air bypass passage 31f. According to this, the inside/outside air ratio can be easily adjusted to an appropriate value.
  • FIG. 12 is a drawing corresponding to FIG. 3 described in the first embodiment.
  • Other configurations of the air conditioning unit 30 and the configuration of the vehicle air conditioner 1 are the same as those of the first embodiment.
  • the control device 60 controls the heat pump cycle 10, the heat medium circuit 20, and the It controls the operation of each component of the air conditioning unit 30 . Therefore, the control device 60 determines a control signal to be output to the actuator for driving the outside air passage door 34a so that the outside air passage door 34a closes the outside air bypass passage 31e.
  • the heat pump cycle 10 and heat medium circuit 20 in the cooling mode and the dehumidifying/heating mode operate in the same manner as in the first embodiment.
  • the air conditioning unit 30 in the cooling mode and the dehumidifying and heating mode the air that has flowed into the first air passage 31a and the second air passage 31b flows through each air passage, as indicated by the thick line arrows in FIG. Therefore, cooling and dehumidifying/heating of the passenger compartment are achieved in the same manner as in the first embodiment.
  • control device 60 controls the operation of each component of the heat pump cycle 10 and each component of the heat medium circuit 20, as in the heating mode of the first embodiment.
  • control device 60 controls the inside and outside of the first outlet side of the air conditioning unit 30 so that the air that has passed through the first heat exchanger 15a is allowed to flow out from both the vehicle exterior outflow opening and the vehicle interior outflow opening. It controls the operation of the air switching device 33a.
  • control device 60 switches the ventilation path in the ventilation path switching device 35 so that the air flowing out from the outside air bypass passage 31e is drawn into the first fan 37a of the indoor blower 37. Further, the ventilation path in the ventilation path switching device 35 is switched so that the second fan 37b takes in the air that has flowed out from the vehicle interior outflow opening of the first outlet side inside/outside air switching device 33a.
  • control device 60 controls the operation of other components of the air conditioning unit 30, as in the heating mode of the first embodiment.
  • the heat pump cycle 10 and heat medium circuit 20 in the heating mode operate in the same manner as in the heating mode of the first embodiment.
  • the air (inside air in this embodiment) that has flowed into the first air passage 31a from the first inlet side inside/outside air switching device 32a exchanges heat with the refrigerant and absorbs heat when passing through the first heat exchanger 15a.
  • a portion of the air cooled by the first heat exchanger 15a is sucked into the exhaust blower 45 via the first outlet side inside/outside air switching device 33a and the exhaust bypass passage 31g.
  • the remaining air cooled by the first heat exchanger 15 a is sucked into the second fan 37 b through the ventilation passage in the ventilation passage switching device 35 .
  • the outside air that has flowed into the outside air bypass passage 31e is sucked into the first fan 37a through the ventilation passage in the ventilation passage switching device 35.
  • the outside air blown from the first fan 37a is blown toward the inner surface of the vehicle window glass 51 through the upper layer side air passage 31c, as in the heating mode of the first embodiment.
  • the inside air blown from the second fan 37b is blown toward the feet of the occupant via the lower layer side air passage 31d and the foot opening hole 43c, as in the heating mode of the first embodiment. Thereby, the heating of the passenger compartment is realized.
  • the control device 60 stops the compressor 11 of the heat pump cycle 10 as in the defrost mode of the first embodiment.
  • the control device 60 controls the operation of each component of the heat medium circuit 20 and the air conditioning unit 30 in the same manner as in the defrosting mode of the first embodiment.
  • the refrigerant does not circulate in the heat pump cycle 10 in defrosting mode.
  • the heat medium circuit 20 in the defrost mode operates in the same manner as in the defrost mode of the first embodiment.
  • Air (outside air in this embodiment) that has flowed from the first inlet side inside/outside air switching device 32a into the first air passage 31a flows into the first fan 37a of the indoor blower 37 and The air is sucked into the second fan 37b.
  • the outside air that has flowed into the outside air bypass passage 31e is sucked into the first fan 37a as in the defrosting mode of the first embodiment.
  • the air blown from the first fan 37a to the upper air passage 31c and the air blown from the second fan 37b to the lower air passage 31d are blown by the heater core 22 as in the defrosting mode of the first embodiment. It is heated by the heat stored in the heat medium and blown out into the passenger compartment. Thereby, the heating of the passenger compartment is continued.
  • comfortable air conditioning in the vehicle interior can be achieved by switching the operation mode. Furthermore, when frost forms on the second heat exchanger 15b, it can be removed.
  • the heat absorbed by the refrigerant from the inside air and the outside air can be used to heat the vehicle interior. can. Therefore, the energy consumed for heating the vehicle interior can be reduced as compared with the case where the refrigerant absorbs heat only from the outside air and uses it to heat the vehicle interior.
  • the outside air passage door 34a opens the outside air bypass passage 31e, so that the outside air can be guided to the upper air passage 31c by bypassing the first heat exchanger 15a and the second heat exchanger 15b. Therefore, as in the first embodiment, the anti-fogging performance of the vehicle window glass 51 can be improved.
  • part of the inside air that has passed through the first heat exchanger 15a can be guided to the lower layer side air passage 31d. Therefore, as in the first embodiment, it is possible to realize comfortable heating of a cold-head/hot-foot type.
  • the outside air flowing into the outside air bypass passage 31e By adjusting the air volume, the amount of heat absorbed by the refrigerant in the first heat exchanger 15a and the amount of heat absorbed by the refrigerant in the second heat exchanger 15b are less likely to be affected. That is, the amount of heat that can be used for heating the vehicle interior is less likely to be affected.
  • the vehicle air conditioner 1 of the present embodiment even though the vehicle air conditioner uses the heat absorbed from the inside air and the outside air for heating the vehicle interior, the anti-fogging performance of the vehicle window glass 51 is improved and the heating is improved. It is easy to achieve both reduction of energy consumed for Also, in the defrosting mode, it is possible to prevent the air containing humidity and odor from being blown into the passenger compartment.
  • the control device 60 controls each component of the heat pump cycle 10 and the heat as in the cooling mode and the dehumidifying heating mode of the third embodiment. It controls the operation of each component of the media circuit 20 .
  • control device 60 switches the ventilation passages in the upstream ventilation passage switching device 47 so that the outside air blown from the outside air blower 46a flows into both the first air passage 31a and the second air passage 31b.
  • control device 60 controls the operation of other constituent devices of the air conditioning unit 30 in the same manner as in the cooling mode and the dehumidifying and heating mode of the third embodiment.
  • the heat pump cycle 10 and heat medium circuit 20 in the cooling mode and the dehumidifying/heating mode operate in the same manner as in the third embodiment.
  • the air conditioning unit 30 in the cooling mode and the dehumidifying/heating mode the air that has flowed into the first air passage 31a and the second air passage 31b flows through each air passage, as indicated by the thick line arrows in FIG. Therefore, cooling and dehumidifying/heating of the passenger compartment are achieved in the same manner as in the third embodiment.
  • control device 60 controls the operation of each component of the heat pump cycle 10 and each component of the heat medium circuit 20, as in the heating mode of the third embodiment.
  • control device 60 switches the ventilation passages in the upstream ventilation passage switching device 47 so that the outside air blown from the outside air blower 46a flows into both the second air passage 31b and the outside air bypass passage 31e.
  • control device 60 switches the air passage in the upstream side air passage switching device 47 so that the inside air blown from the inside air blower 46b flows into the first air passage 31a.
  • control device 60 controls the operation of other components of the air conditioning unit 30, as in the heating mode of the third embodiment.
  • the heat pump cycle 10 and heat medium circuit 20 in heating mode operate in the same manner as in the third embodiment.
  • the air conditioning unit 30 in the heating mode as indicated by thick line arrows in FIG. 17, the air flowing into the first air passage 31a, the second air passage 31b, and the outside air bypass passage 31e flows through each air passage. Therefore, heating of the passenger compartment is achieved as in the third embodiment.
  • the control device 60 controls the operation of each component of the heat pump cycle 10 and each component of the heat medium circuit 20, as in the heating mode of the third embodiment.
  • control device 60 switches the ventilation passages in the upstream ventilation passage switching device 47 so that the outside air blown from the outside air blower 46a flows into both the first air passage 31a and the outside air bypass passage 31e. Further, the control device 60 switches the air passage in the upstream side air passage switching device 47 so that the inside air blown from the inside air blower 46b flows into the second air passage 31b.
  • control device 60 controls the operation of other components of the air conditioning unit 30, as in the heating mode of the third embodiment.
  • the heat pump cycle 10 and heat medium circuit 20 in the cooling mode and the dehumidifying/heating mode operate in the same manner as in the third embodiment. Also, in the air conditioning unit 30 in the cooling mode and the dehumidifying and heating mode, as indicated by the thick line arrows in FIG. flow. Therefore, heating of the passenger compartment is achieved as in the third embodiment.
  • the refrigerant does not circulate in the heat pump cycle 10 in defrost mode.
  • the heat medium circuit 20 in the defrost mode operates in the same manner as in the defrost mode of the third embodiment.
  • comfortable air conditioning in the vehicle interior can be achieved by switching the operation mode. Furthermore, when frost forms on the second heat exchanger 15b, it can be removed.
  • the same effects as those of the third embodiment can be obtained. That is, in the heating mode, it is easy to achieve both an improvement in the anti-fogging performance of the vehicle window glass 51 and a reduction in the energy consumed for heating. Also, in the defrosting mode, it is possible to prevent the air containing humidity and odor from being blown into the passenger compartment.
  • FIGS. 19 to 22 In the present embodiment, as shown in FIGS. 19 to 22, in contrast to the vehicle air conditioner 1 of the first embodiment, an outside air bypass passage 31e, an inside air bypass passage 31f, an outside air passage door 34a, and an inside air passage of the air conditioning unit 30 are provided. An example in which the door 34b and the partition plate 39 are eliminated will be described. 19 and 20 to 22 are drawings corresponding to FIGS. 1 and 6 to 8 described in the first embodiment, respectively.
  • the partition plate 39 is eliminated, so the upper layer side air passage 31c and the lower layer side air passage 31d described in the first embodiment form one room side air passage 31h.
  • Other configurations of the air conditioning unit 30 and the configuration of the vehicle air conditioner 1 are the same as those of the first embodiment.
  • the control device 60 controls each component of the heat pump cycle 10, the heat medium, as in the cooling mode and the dehumidifying and heating mode of the first embodiment. It controls the operation of each component of circuit 20 and air conditioning unit 30 .
  • the outside air bypass passage 31e and the inside air bypass passage 31f are eliminated. Therefore, in the air conditioning unit 30 of the present embodiment, the outside air passage door 34a closes the outside air bypass passage 31e and the inside air passage door 34b closes the inside air bypass passage 31f in the air conditioning unit 30 of the first embodiment. Air flows in the same way.
  • the heat pump cycle 10 and heat medium circuit 20 in the cooling mode and the dehumidifying/heating mode operate in the same manner as in the first embodiment.
  • the air conditioning unit 30 in the cooling mode and the dehumidifying/heating mode the air that has flowed into the first air passage 31a and the second air passage 31b flows through each air passage as indicated by the thick line arrows in FIG. Therefore, cooling and dehumidifying/heating of the passenger compartment are achieved in the same manner as in the first embodiment.
  • control device 60 controls the operation of the first inlet side inside/outside air switching device 32a so that the inside air flows into the first air passage 31a of the air conditioning unit 30.
  • control device 60 controls the operation of the first outlet side inside/outside air switching device 33a so that the entire amount of air that has passed through the first heat exchanger 15a flows out from the vehicle interior outflow opening.
  • control device 60 controls the operation of the second inlet side inside/outside air switching device 32b so that at least one of outside air and inside air flows into the second air passage 31b. More specifically, the controller 60 of the present embodiment increases the proportion of the inside air that flows into the second air passage 31b as the inside temperature Tr rises.
  • control device 60 controls the operation of the second outlet side inside/outside air switching device 33b so that the entire amount of air that has passed through the second heat exchanger 15b flows out from the opening for outflow to the outside of the vehicle compartment.
  • control device 60 controls the operation of each component of the heat pump cycle 10, the heat medium circuit 20, and the air conditioning unit 30, as in the heating mode of the first embodiment.
  • the high-pressure refrigerant discharged from the compressor 11 flows into the refrigerant passage of the water-refrigerant heat exchanger 12 .
  • the refrigerant flowing into the refrigerant passage of the water-refrigerant heat exchanger 12 exchanges heat with the heat medium flowing through the heat medium passage.
  • the refrigerant radiates heat to the heat medium and condenses.
  • the liquid-phase refrigerant that has flowed into the first heat exchanger 15a exchanges heat with air that has flowed into the first air passage 31a of the air conditioning unit 30 (outside air in this embodiment).
  • the liquid-phase refrigerant exchanges heat with air and is subcooled.
  • the refrigerant that has flowed out of the first heat exchanger 15a flows into the second expansion valve 14b and is decompressed.
  • the low-pressure refrigerant decompressed by the second expansion valve 14b flows into the second heat exchanger 15b.
  • the refrigerant that has flowed into the second heat exchanger 15b exchanges heat with the air that has flowed into the second air passage 31b of the air conditioning unit 30 (in this embodiment, at least one of the outside air and the inside air).
  • the refrigerant absorbs heat from the air and evaporates. This cools the air flowing through the second air passage 31b.
  • the refrigerant that has flowed out of the second heat exchanger 15b is sucked into the compressor 11 and compressed again.
  • the heat medium circuit 20 in the heating mode the heat medium whose temperature is adjusted to approach the target heat medium temperature TWO flows into the heater core 22, as in the first embodiment.
  • the air (outside air in this embodiment) flowing from the first inlet side inside/outside air switching device 32a into the first air passage 31a exchanges heat with the refrigerant when passing through the first heat exchanger 15a. is heated.
  • the air heated by the first heat exchanger 15a passes through the first outlet side inside/outside air switching device 33a and the ventilation passage in the ventilation passage switching device 35, and flows into the first fan 37a and the second fan 37b of the indoor blower 37. inhaled into.
  • the air sucked into the first fan 37a and the second fan 37b is sent to the indoor air passage 31h.
  • the air blown into the indoor air passage 31 h flows into the heater core 22 .
  • the air that has flowed into the heater core 22 exchanges heat with the heat medium circulating in the heat medium circuit 20 and is further heated.
  • a portion of the air heated by the heater core 22 is blown toward the inner surface of the vehicle window glass 51 through the defroster opening hole 43a. Further, the remaining air heated by the heater core 22 is blown out toward the feet of the occupant through the foot opening holes 43c. Thereby, the heating of the passenger compartment is realized.
  • the air cooled by the second heat exchanger 15b is sucked into the exhaust air blower 45 via the second outlet side inside/outside air switching device 33b.
  • the air sucked into the exhaust air blower 45 is exhausted to the outside of the vehicle.
  • the control device 60 stops the compressor 11 of the heat pump cycle 10 as in the defrost mode of the first embodiment. Further, the control device 60 controls the operation of the second inlet side inside/outside air switching device 32b so as to allow the inside air to flow into the second air passage 31b. Further, the control device 60 controls the operation of each component of the heat medium circuit 20 and the air conditioning unit 30 in the same manner as in the heating mode.
  • the refrigerant does not circulate in the heat pump cycle 10 in defrosting mode.
  • the heat medium circuit 20 in the defrost mode operates in the same manner as in the defrost mode of the first embodiment.
  • the air (outside air in this embodiment) that has flowed into the first air passage 31a from the first inlet side inside/outside air switching device 32a is sent to the indoor side air passage 31h in the same manner as in the heating mode.
  • the air blown into the indoor-side air passage 31h is heated by the heater core 22 by the heat stored in the heat medium, and is blown out into the passenger compartment. Thereby, the heating of the passenger compartment is continued.
  • the heating mode of the present embodiment the ratio of the inside air flowing into the second heat exchanger 15b is increased as the inside temperature Tr rises. Therefore, when the inside air temperature Tr rises to some extent, the possibility of frost formation on the second heat exchanger 15b is low. Therefore, the defrosting mode of the present embodiment is executed when frost forms on the second heat exchanger 15b in the process of increasing the internal temperature Tr, such as immediately after starting the heating mode.
  • comfortable air conditioning in the vehicle interior can be achieved by switching the operation mode. Furthermore, when frost forms on the second heat exchanger 15b, it can be removed.
  • the second inlet side inside/outside air switching device 32b allows at least one of outside air and inside air to flow into the second air passage 31b in the heating mode.
  • the second outlet side inside/outside air switching device 33b causes at least one of the outside air and inside air that have passed through the second heat exchanger 15b to flow out of the vehicle compartment.
  • the second heat exchanger 15b heat of at least one of the outside air and the inside air can be absorbed by the refrigerant. Then, as in the first embodiment, the heat absorbed by the refrigerant from at least one of the outside air and the inside air can be used for heating the vehicle interior. As the ratio of the inside air flowing into the second air passage 31b is increased, the energy consumed for heating the vehicle interior can be reduced.
  • both the first heat exchanger 15a and the heater core 20 can heat outside air having a lower humidity than inside air and blow it out into the passenger compartment. Therefore, the anti-fog performance of the vehicle window glass 51 can be improved.
  • the amount of heat absorbed by the refrigerant in the second heat exchanger 15b is less likely to be affected. That is, the amount of heat that can be used for heating the vehicle interior is less likely to be affected.
  • the vehicle air conditioner 1 of the present embodiment even though the vehicle air conditioner uses the heat absorbed from the inside air and the outside air for heating the vehicle interior, the anti-fogging performance of the vehicle window glass 51 is improved and the heating is improved. It is possible to achieve both reduction of energy consumed for
  • the outside air is heated by the first heat exchanger 15a
  • the outside air heated by the first heat exchanger 15a is further heated by the heater core 20, and the inside of the vehicle is heated. is blowing out to
  • the first heat exchanger 15a and the heater core 20 can heat the air blown into the vehicle compartment in stages. Therefore, it is possible to efficiently heat the air blown into the passenger compartment.
  • the ratio of the inside air flowing into the second air passage 31b is increased as the inside temperature Tr rises. According to this, when the inside air temperature Tr is close to the outside air temperature Tam, such as at the start of heating, it is possible to suppress the inside air from excessively flowing into the second air passage 31b. Therefore, it is possible to prevent the inside air temperature Tr from being hindered, and to realize heating with high immediate effect.
  • FIG. 23 shows changes in heating capacity with respect to the temperature of air for heat absorption, which is the temperature of the air flowing into the second heat exchanger 15b.
  • a vehicle air conditioner capable of executing various operation modes has been described, but the present invention is not limited to this. If at least the heating mode can be implemented, it is possible to improve the anti-fogging performance of the vehicle window glass and reduce the energy consumed for heating. Furthermore, you may add another driving mode.
  • the present invention is not limited to this.
  • the target blowout temperature TAO is in an extremely suitable temperature range and high cooling performance or dehumidifying and heating performance is desired, the inside air may flow into the second air passage 31b.
  • the inside air blower 46b may be operated.
  • the present invention is not limited to this.
  • Inside air may flow into the first air passage 31a during the defrosting mode.
  • the foot opening hole 43c may be opened and the defroster opening hole 43a may be closed.
  • outside air bypass passage 31e and the inside air bypass passage 31f are fully opened during the defrosting mode, but the present invention is not limited to this.
  • the outside air bypass passage 31e and the inside air bypass passage 31f may be fully closed unless air with relatively high humidity or air containing odor is blown into the vehicle interior.
  • at least one of the external air bypass passage 31e and the internal air bypass passage 31f may be adjusted according to the air volume of relatively humid air or odorous air blown into the vehicle interior.
  • the frost formation conditions are not limited to the conditions disclosed in the above-described embodiments.
  • the time during which the outside air temperature Tam is continuously below the reference frosting outside temperature ( ⁇ 5° C. in this embodiment) is longer than the reference frosting time (5 minutes in this embodiment).
  • the reference frosting time 5 minutes in this embodiment.
  • the control device 60 controls the first exit side inside/outside air switching device so that the detection value of the humidity sensor 61j is within a range in which the vehicle window glass 51 does not fog up. At least one of the actuators for driving 33a and outside air passage door 34a may be controlled.
  • the configuration of the heat pump cycle 10 is not limited to that disclosed in the above embodiments.
  • an accumulator may be used.
  • the accumulator separates the gas-liquid of the low-pressure refrigerant flowing out from 15b, stores the separated liquid-phase refrigerant as a surplus refrigerant in the cycle, and sucks the separated gas-phase refrigerant into the compressor 11. Separator.
  • the operation of the first expansion valve 14a and the second expansion valve 14b should be controlled so that the coefficient of performance (ie, COP) of the heat pump cycle 10 approaches the maximum value in each operation mode.
  • R1234yf is used as the refrigerant
  • the refrigerant is not limited to this.
  • R134a, R600a, R410A, R404A, R32, R407C, etc. may be employed.
  • a mixed refrigerant or the like in which a plurality of these refrigerants are mixed may be adopted.
  • the heat medium circuit 20 is not limited to those disclosed in the above embodiments.
  • the heat medium pump 21 may be arranged in the flow path from the first flow control valve 24 a to the heat medium passage of the water-refrigerant heat exchanger 12 .
  • an electric three-way valve may be employed instead of the first flow control valve 24a.
  • an auxiliary heating unit for heating the heat medium may be arranged in the heat medium circuit 20 .
  • An electric heater that generates heat by being supplied with power from the control device 60 can be used as the auxiliary heating unit. Then, when the water-refrigerant heat exchanger 12 cannot sufficiently heat the heat medium, the control device 60 operates the electric heater so that the heat medium temperature Tw approaches the target heat medium temperature TWO. Just do it.
  • an example in which an ethylene glycol aqueous solution is used as a heat medium has been described, but the heat medium is not limited to this.
  • a solution containing dimethylpolysiloxane or a nanofluid, an antifreeze solution, a water-based liquid refrigerant containing alcohol, or a liquid medium containing oil can be used.
  • the air conditioning unit 30 is not limited to those disclosed in the above embodiments.
  • an air bypass passage for bypassing the heater core 22 and allowing air to flow may be provided in each of the upper layer side air passage 31c and the lower layer side air passage 31d of the air conditioning unit 30 .
  • an air mix door may be arranged in each air passage for adjusting the ratio of the air volume flowing through the heater core 22 and the air volume flowing through the air bypass passage. According to this, it is also possible to adjust the temperature of the air blown into the passenger compartment by adjusting the air volume ratio of the air mix door.
  • each blower is not limited to that disclosed in the above-described embodiments.
  • centrifugal blowers are employed as the exhaust air blower 45, the outside air blower 46a, and the inside air blower 46b has been described, but an axial flow blower or the like may also be employed.
  • the present invention is not limited to this.
  • a normal blower with one fan may be employed.
  • the passage configuration of the ventilation passage switching device 35 may be simplified.
  • the partition plate 39 is eliminated, but the present invention is not limited to this.
  • the air-conditioning unit 30 having the same partition plate 39 as in the first embodiment may be employed for commonality of parts.
  • the control device 60 may control the operation of the electric actuator for the communication port opening/closing door so that the communication port opening/closing door 39b fully opens the communication port 39a.
  • the heating unit is formed by the components of the water-refrigerant heat exchanger 12 and the heat medium circuit 20 of the heat pump cycle 10
  • the present invention is not limited to this.
  • an indoor condenser that condenses the high-pressure refrigerant by exchanging heat between the high-pressure refrigerant discharged from the compressor 11 of the heat pump cycle 10 and the air blown into the vehicle interior may be used as the heating unit.
  • the air-conditioning unit 30 may be provided with an air bypass passage and an air mix door.
  • the ratio of the inside air flowing into the second air passage 31b is increased as the inside temperature Tr rises during the heating mode, but the present invention is not limited to this.
  • the ratio of the inside air flowing into the second air passage 31b may be increased as the inside/outside air temperature difference ⁇ T1 obtained by changing the inside temperature Tr to the outside temperature Tam increases.
  • the ratio of the inside air flowing into the second air passage 31b may be increased as the target temperature difference ⁇ T2 obtained by subtracting the inside air temperature Tr from the target blowout temperature TAO decreases.
  • both the inside air and the outside air may be allowed to flow in immediately after the heating is started, and the ratio of the inside air flowing into the second air passage 31b may be increased as the inside temperature Tr rises. Then, only the inside air may be allowed to flow into the second air passage 31b when the inside air temperature Tr reaches or exceeds a predetermined reference inside air temperature.
  • outside air is allowed to flow into the first air passage
  • the outside air that has passed through the first heat exchange section is led to the inside of the passenger compartment via the heating section
  • at least the inside air is allowed to flow into the second air passage
  • the second air passage is introduced.
  • the air that has passed through the heat exchange portion may flow out of the vehicle compartment through the second air passage.
  • the indoor fan 37 and the exhaust fan 45 of the air conditioning unit 30 are eliminated, and the outside air fan 46a, an internal air blower 46b, and an upstream ventilation passage switching device 47 may be added.
  • the operations of the outside air blower 46a, the inside air blower 46b, the upstream side ventilation passage switching device 47, and the downstream side ventilation passage switching device 35 are controlled, and outside air and The shy air should be circulated.

Abstract

This vehicular air conditioner has an air-passageway formation part (30) that comprises: a first air passageway (31a) which has a first heat exchange unit (15a) disposed therein; a second air passageway (31b) which has a second heat exchange unit (15b) disposed therein; an upper tier-side air passageway (31c) which guides heated air toward a vehicle window glass (51) ; a lower tier-side air passageway (31d) which guides heated air toward an occupant within a vehicle interior; an external air bypass passageway (31e) which guides external air to the upper tier-side air passageway (31c); and an internal air bypass passageway (31f) which guides internal air to the lower tier-side air passageway (31d). During a heating mode, internal air is caused to flow into the first air passageway (31a) and to be discharged out of the vehicle interior. External air is caused to flow into the second air passageway (31a) and to be discharged out of the vehicle interior. Further, external air is caused to flow into the external air bypass passageway (31e), while internal air is caused to flow into the internal air bypass passageway (31f).

Description

車両用空調装置vehicle air conditioner 関連出願の相互参照Cross-reference to related applications
 本出願は、2021年4月28日に出願された日本特許出願2021-75547号、および2022年3月9日に出願された日本特許出願2022-36081号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2021-75547 filed on April 28, 2021 and Japanese Patent Application No. 2022-36081 filed on March 9, 2022. to invoke.
 本開示は、ヒートポンプサイクルを備える車両用空調装置に関する。 The present disclosure relates to a vehicle air conditioner with a heat pump cycle.
 従来、特許文献1に、内外気二層式の車両用空調装置が開示されている。この種の内外気二層式の車両用空調装置では、空気通路形成部である空調ユニット内に、上層側空気通路および下層側空気通路が形成されている。そして、車室内の暖房を行う暖房モード時に、上層側空気通路へ流入させた外気を加熱して車両窓ガラス側へ向けて吹き出すとともに、下層側空気通路へ流入させた内気を加熱して乗員の足元側へ向けて吹き出している。 Conventionally, Patent Literature 1 discloses a vehicle air conditioner with two layers of inside and outside air. In this type of vehicle air conditioner with two layers of inside and outside air, an upper layer side air passage and a lower layer side air passage are formed in an air conditioning unit, which is an air passage forming portion. In the heating mode for heating the vehicle interior, the outside air that flows into the upper air passage is heated and blown out toward the vehicle window glass, and the inside air that flows into the lower air passage is heated to warm the occupants. It is blowing out towards the foot side.
 これにより、内外気二層式の車両用空調装置では、車両窓ガラスの防曇性能を向上させるとともに、車室内の暖房のために消費されるエネルギを低減させようとしている。 As a result, in vehicle air conditioners with two layers of inside and outside air, the anti-fogging performance of the vehicle window glass is improved and the energy consumed for heating the vehicle interior is reduced.
 さらに、特許文献1の車両用空調装置では、車室内へ空気を送風する室内送風機として、上層側空気通路側へ空気を送風する送風ファンと下層側空気通路側へ空気を送風する送風ファンとを共通する電動モータで駆動する二連式の送風機を採用している。これにより、特許文献1の車両用空調装置では、上層側空気通路を流通する外気の風量と下層側空気通路を流通する内気の風量との比率である内外気比率を適切な値に維持している。 Further, in the vehicle air conditioner of Patent Document 1, as indoor fans for blowing air into the passenger compartment, a blower fan for blowing air to the upper air passage side and a blower fan for blowing air to the lower air passage side are used. A dual blower driven by a common electric motor is used. As a result, in the vehicle air conditioner disclosed in Patent Document 1, the inside/outside air ratio, which is the ratio between the volume of outside air flowing through the upper air passage and the volume of inside air flowing through the lower air passage, is maintained at an appropriate value. there is
 また、特許文献2には、ヒートポンプサイクルを備える車両用空調装置が開示されている。特許文献2のヒートポンプサイクルは、暖房モード時に、冷媒を蒸発させる蒸発器として機能する第1熱交換器および第2熱交換器を有している。さらに、特許文献2の車両用空調装置の空調ケース内には、第1熱交換器が配置される第1空気通路、および第2熱交換器が配置される第2空気通路が形成されている。 In addition, Patent Document 2 discloses a vehicle air conditioner that includes a heat pump cycle. The heat pump cycle of Patent Document 2 has a first heat exchanger and a second heat exchanger that function as evaporators that evaporate a refrigerant in a heating mode. Furthermore, in the air conditioning case of the vehicle air conditioner of Patent Document 2, a first air passage in which the first heat exchanger is arranged and a second air passage in which the second heat exchanger is arranged are formed. .
 特許文献2の車両用空調装置では、暖房モード時に、第1空気通路へ内気を流入させて、第1熱交換器にて内気の有する熱を冷媒に吸熱させる。さらに、第2空気通路へ外気を流入させて、第2熱交換器にて外気の有する熱を冷媒に吸熱させる。そして、冷媒に吸熱させた熱を、車室内へ送風される空気を加熱するために利用している。すなわち、車室内の暖房のために利用している。 In the vehicle air conditioner of Patent Document 2, in the heating mode, the inside air is allowed to flow into the first air passage, and the heat of the inside air is absorbed by the refrigerant in the first heat exchanger. Furthermore, outside air is caused to flow into the second air passage, and the heat of the outside air is absorbed by the refrigerant in the second heat exchanger. The heat absorbed by the refrigerant is used to heat the air blown into the passenger compartment. That is, it is used for heating the passenger compartment.
特開平9-24722号公報JP-A-9-24722 特開2020-185961号公報Japanese Patent Application Laid-Open No. 2020-185961
 ところで、特許文献1の内外気二層式の車両用空調装置のように、車室内へ外気を導入する際には、導入した外気と同量の内気を車室外へ排気する必要がある。このため、車室内へ外気を導入すると、内気よりも温度の低い外気を加熱するために消費されるエネルギ損失(いわゆる、換気ロス)が生じてしまう。 By the way, like the two-layer inside/outside air type vehicle air conditioner of Patent Document 1, when outside air is introduced into the vehicle interior, it is necessary to exhaust the same amount of inside air as the introduced outside air to the outside of the vehicle interior. Therefore, when outside air is introduced into the passenger compartment, there is an energy loss (so-called ventilation loss) that is consumed for heating the outside air whose temperature is lower than that of the inside air.
 これに対して、特許文献1の内外気二層式の車両用空調装置において、特許文献2の車両用空調装置のように、車室外へ排気される内気の有する熱を冷媒に吸熱させて、車室内の暖房のために利用する手段が考えられる。 On the other hand, in the two-layer inside/outside air type vehicle air conditioner of Patent Document 1, the heat of the inside air exhausted to the outside of the vehicle is absorbed by the refrigerant, like the vehicle air conditioner of Patent Document 2. Means used for heating the interior of the vehicle can be considered.
 ところが、外気および内気から吸熱した熱を暖房に利用するためには、車室内の適切な暖房を実現できる程度に、外気および内気から冷媒に充分な熱を吸熱させる必要がある。そのため、第1熱交換器における冷媒蒸発温度、第2熱交換器における冷媒蒸発温度、第1熱交換器へ流入させる内気の風量、第2熱交換器へ流入させる外気の風量等を、運転条件に応じて適切に調整しなければならない。 However, in order to use the heat absorbed from the outside air and inside air for heating, it is necessary to allow the refrigerant to absorb sufficient heat from the outside air and inside air to the extent that appropriate heating of the vehicle interior can be achieved. Therefore, the refrigerant evaporation temperature in the first heat exchanger, the refrigerant evaporation temperature in the second heat exchanger, the air volume of the inside air flowing into the first heat exchanger, the air volume of outside air flowing into the second heat exchanger, etc. are set as operating conditions. must be adjusted accordingly.
 従って、仮に、特許文献2の車両用空調装置の空調ケース内に、上層側空気通路および下層側空気通路を形成して、第1熱交換器を通過した内気を下層側空気通路へ導くとともに、第2熱交換器を通過した外気を下層側空気通路へ導くことができたとしても、運転条件が変化すると、内外気比率が変化してしまう可能性がある。 Therefore, if an upper layer side air passage and a lower layer side air passage are formed in the air conditioning case of the vehicle air conditioner of Patent Document 2, the inside air that has passed through the first heat exchanger is guided to the lower layer side air passage, Even if the outside air that has passed through the second heat exchanger can be guided to the lower air passage, there is a possibility that the inside/outside air ratio will change if the operating conditions change.
 そして、内外気比率が変化して、上層側空気通路を流通する外気の風量が減少してしまうと、車両窓ガラスの防曇性能の向上効果を得にくくなってしまう。また、内外気比率が変化して、上層側空気通路を流通する外気の風量が増加してしまうと、暖房のために消費されるエネルギの低減効果を得にくくなってしまう。 If the inside/outside air ratio changes and the amount of outside air flowing through the upper air passage decreases, it becomes difficult to improve the anti-fogging performance of the vehicle window glass. Further, if the inside/outside air ratio changes and the amount of outside air flowing through the upper air passage increases, it becomes difficult to obtain the effect of reducing the energy consumed for heating.
 本開示は、上記点に鑑み、少なくとも内気から吸熱した熱を車室内の暖房に利用する車両用空調装置であって、車両窓ガラスの防曇性能の向上および暖房のために消費されるエネルギの低減の両立を可能とする車両用空調装置を提供する。 In view of the above points, the present disclosure provides a vehicle air conditioner that utilizes at least the heat absorbed from the inside air to heat the vehicle interior, improving the anti-fogging performance of the vehicle window glass and reducing the energy consumed for heating. Provided is a vehicle air conditioner capable of achieving both reduction.
 上記目的を達成するため、本開示の第1の態様の車両用空調装置は、空気通路形成部と、ヒートポンプサイクルと、を備える。空気通路形成部は、空気を流通させる空気通路を形成する。ヒートポンプサイクルは、車室内へ送風される空気の温度を調整する。 In order to achieve the above object, the vehicle air conditioner of the first aspect of the present disclosure includes an air passage forming portion and a heat pump cycle. The air passage forming portion forms an air passage for circulating air. The heat pump cycle regulates the temperature of the air blown into the passenger compartment.
 ヒートポンプサイクルは、圧縮機、加熱部、第1減圧部、第1熱交換部、第2減圧部、および第2熱交換部を有している。 The heat pump cycle has a compressor, a heating section, a first pressure reduction section, a first heat exchange section, a second pressure reduction section, and a second heat exchange section.
 圧縮機は、冷媒を圧縮して吐出する。加熱部は、圧縮機から吐出された冷媒を熱源として車室内へ送風される空気を加熱する。第1減圧部は、加熱部から流出した冷媒を減圧させる。第1熱交換部は、第1減圧部から流出した冷媒と空気とを熱交換させる。第2減圧部は、第1熱交換部から流出した冷媒を減圧させる。第2熱交換部は、第2減圧部から流出した冷媒と空気とを熱交換させる。 The compressor compresses and discharges the refrigerant. The heating unit heats the air blown into the vehicle interior using the refrigerant discharged from the compressor as a heat source. The first decompression section decompresses the refrigerant flowing out from the heating section. The first heat exchange section heat-exchanges the refrigerant flowing out of the first decompression section and the air. The second pressure reducing section reduces the pressure of the refrigerant flowing out of the first heat exchanging section. The second heat exchange section heat-exchanges the refrigerant flowing out of the second pressure reduction section and the air.
 空気通路形成部には、第1空気通路、第2空気通路、上層側空気通路、下層側空気通路、外気バイパス通路、並びに、内気バイパス通路が形成されている。 A first air passage, a second air passage, an upper layer side air passage, a lower layer side air passage, an outside air bypass passage, and an inside air bypass passage are formed in the air passage forming portion.
 第1空気通路は、第1熱交換部が配置された空気通路である。第2空気通路は、第2熱交換部が配置された空気通路である。上層側空気通路は、加熱部にて加熱された空気を車室内の車両窓ガラス側へ導く空気通路である。下層側空気通路は、加熱部にて加熱された空気を車室内の乗員側へ導く空気通路である。外気バイパス通路は、第1熱交換部および第2熱交換部を迂回させて車室外の空気である外気を上層側空気通路の入口側へ導く空気通路である。内気バイパス通路は、第1熱交換部および第2熱交換部を迂回させて車室内の空気である内気を下層側空気通路の入口側へ導く空気通路である。 The first air passage is an air passage in which the first heat exchange section is arranged. The second air passage is an air passage in which the second heat exchange section is arranged. The upper air passageway is an air passageway that guides the air heated by the heating unit to the vehicle window glass side in the passenger compartment. The lower air passageway is an air passageway that guides the air heated by the heating portion toward the occupant in the passenger compartment. The outside air bypass passage is an air passage that bypasses the first heat exchange section and the second heat exchange section and guides the outside air, which is the air outside the vehicle compartment, to the inlet side of the upper layer side air passage. The internal air bypass passage is an air passage that bypasses the first heat exchange section and the second heat exchange section and guides the internal air, which is the air in the vehicle compartment, to the inlet side of the lower layer side air passage.
 そして、車室内の暖房を行う暖房モード時に、内気を第1空気通路へ流入させて、第1熱交換部を通過した内気を第1空気通路から車室外へ流出させる。外気を第2空気通路へ流入させて、第2熱交換部を通過した外気を第2空気通路から車室外へ流出させる。外気を外気バイパス通路へ流入させ、内気を内気バイパス通路へ流入させる。 Then, in the heating mode for heating the interior of the vehicle, the inside air is allowed to flow into the first air passage, and the interior air that has passed through the first heat exchange portion is discharged from the first air passage to the outside of the vehicle. Outside air is caused to flow into the second air passage, and the outside air that has passed through the second heat exchange portion is caused to flow out of the vehicle compartment through the second air passage. Outside air is allowed to flow into the outside air bypass passage, and inside air is allowed to flow into the inside air bypass passage.
 これによれば、暖房モード時に、内気を第1空気通路へ流入させるので、第1熱交換部にて、内気の有する熱をヒートポンプサイクルの冷媒に吸熱させることができる。さらに、暖房モード時に、外気を第2空気通路へ流入させるので、第2熱交換部にて、外気の有する熱を冷媒に吸熱させることができる。 According to this, inside air is caused to flow into the first air passage in the heating mode, so that the heat of the inside air can be absorbed by the refrigerant of the heat pump cycle in the first heat exchange section. Furthermore, in the heating mode, the outside air is allowed to flow into the second air passage, so that the heat of the outside air can be absorbed by the refrigerant in the second heat exchange section.
 従って、加熱部では、冷媒が内気および外気から吸熱した熱を熱源として、車室内へ送風される空気を加熱することができる。つまり、冷媒が内気および外気から吸熱した熱を車室内の暖房に利用することができる。その結果、冷媒が外気のみから吸熱した熱を車室内の暖房に利用する場合よりも、車室内の暖房のために消費されるエネルギを低減させることができる。 Therefore, in the heating part, the air blown into the vehicle interior can be heated by using the heat absorbed by the refrigerant from the inside air and the outside air as a heat source. That is, the heat absorbed by the refrigerant from the inside air and the outside air can be used for heating the vehicle interior. As a result, the energy consumed for heating the vehicle interior can be reduced as compared with the case where the refrigerant absorbs heat only from the outside air and uses it to heat the vehicle interior.
 また、暖房モード時に、外気を外気バイパス通路へ流入させて、上層側空気通路へ導くことができる。そして、加熱部にて、内気よりも湿度の低い外気を加熱して、車両窓ガラス側へ導くことができる。従って、車両窓ガラスの防曇性能を向上させることができる。 Also, in the heating mode, the outside air can be flowed into the outside air bypass passage and guided to the upper air passage. Then, the outside air having a lower humidity than the inside air can be heated by the heating unit and led to the vehicle window glass side. Therefore, the antifogging performance of the vehicle window glass can be improved.
 この際、車両窓ガラスの防曇性能の向上および暖房のために消費されるエネルギの低減を両立させるように内外気比率を設定しても、第1熱交換部における冷媒の吸熱量、および第2熱交換部における冷媒の吸熱量に影響を与えにくい。すなわち、車室内の暖房に利用可能な熱量に影響を与えにくい。 At this time, even if the inside/outside air ratio is set so as to achieve both an improvement in the anti-fogging performance of the vehicle window glass and a reduction in the energy consumed for heating, the amount of heat absorbed by the refrigerant in the first heat exchange section and the (2) The amount of heat absorbed by the refrigerant in the heat exchange section is less likely to be affected. That is, the amount of heat that can be used for heating the vehicle interior is less likely to be affected.
 その結果、第1の態様の車両用空調装置によれば、少なくとも内気から吸熱した熱を車室内の暖房に利用する車両用空調装置であっても、車両窓ガラスの防曇性能の向上および暖房のために消費されるエネルギの低減の両立を図ることができる。 As a result, according to the vehicle air conditioner of the first aspect, even if the vehicle air conditioner uses at least the heat absorbed from the inside air for heating the vehicle interior, the anti-fogging performance of the vehicle window glass is improved and the heating is performed. It is possible to achieve both reduction of energy consumed for
 また、本開示の第2の態様の車両用空調装置は、空気通路形成部と、ヒートポンプサイクルと、を備える。空気通路形成部は、空気を流通させる空気通路を形成する。ヒートポンプサイクルは、車室内へ送風される空気の温度を調整する。 A vehicle air conditioner according to a second aspect of the present disclosure includes an air passage forming portion and a heat pump cycle. The air passage forming portion forms an air passage for circulating air. The heat pump cycle regulates the temperature of the air blown into the passenger compartment.
 ヒートポンプサイクルは、圧縮機、加熱部、第1減圧部、第1熱交換部、第2減圧部、および第2熱交換部を有している。 The heat pump cycle has a compressor, a heating section, a first pressure reduction section, a first heat exchange section, a second pressure reduction section, and a second heat exchange section.
 圧縮機は、冷媒を圧縮して吐出する。加熱部は、圧縮機から吐出された冷媒を熱源として車室内へ送風される空気を加熱する。第1減圧部は、加熱部から流出した冷媒を減圧させる。第1熱交換部は、第1減圧部から流出した冷媒と空気とを熱交換させる。第2減圧部は、第1熱交換部から流出した冷媒を減圧させる。第2熱交換部は、第2減圧部から流出した冷媒と空気とを熱交換させる。 The compressor compresses and discharges the refrigerant. The heating unit heats the air blown into the vehicle interior using the refrigerant discharged from the compressor as a heat source. The first decompression section decompresses the refrigerant flowing out from the heating section. The first heat exchange section heat-exchanges the refrigerant flowing out of the first decompression section and the air. The second pressure reducing section reduces the pressure of the refrigerant flowing out of the first heat exchanging section. The second heat exchange section heat-exchanges the refrigerant flowing out of the second pressure reduction section and the air.
 空気通路形成部には、第1空気通路、第2空気通路、上層側空気通路、下層側空気通路、並びに、外気バイパス通路が形成されている。 A first air passage, a second air passage, an upper layer side air passage, a lower layer side air passage, and an outside air bypass passage are formed in the air passage forming portion.
 第1空気通路は、第1熱交換部が配置された空気通路である。第2空気通路は、第2熱交換部が配置された空気通路である。上層側空気通路は、加熱部にて加熱された空気を車室内の車両窓ガラス側へ導く空気通路である。下層側空気通路は、加熱部にて加熱された空気を車室内の乗員側へ導く空気通路である。外気バイパス通路は、第1熱交換部および第2熱交換部を迂回させて車室外の空気である外気を上層側空気通路の入口側へ導く空気通路である。 The first air passage is an air passage in which the first heat exchange section is arranged. The second air passage is an air passage in which the second heat exchange section is arranged. The upper air passageway is an air passageway that guides the air heated by the heating unit to the vehicle window glass side in the passenger compartment. The lower air passageway is an air passageway that guides the air heated by the heating portion toward the occupant in the passenger compartment. The outside air bypass passage is an air passage that bypasses the first heat exchange section and the second heat exchange section and guides the outside air, which is the air outside the vehicle compartment, to the inlet side of the upper layer side air passage.
 そして、車室内の暖房を行う暖房モード時に、内気を第1空気通路へ流入させて、第1熱交換部を通過した内気を第1空気通路から車室外および下層側空気通路の入口側の双方へ流出させる。外気を第2空気通路へ流入させて、第2熱交換部を通過した外気を第2空気通路から車室外へ流出させる。外気を外気バイパス通路へ流入させる。 Then, in a heating mode for heating the interior of the passenger compartment, the inside air is allowed to flow into the first air passage, and the inside air that has passed through the first heat exchange portion is sent from the first air passage to both the outside of the passenger compartment and the inlet side of the lower air passage. drain to Outside air is caused to flow into the second air passage, and the outside air that has passed through the second heat exchange portion is caused to flow out of the vehicle compartment through the second air passage. Outside air is allowed to flow into the outside air bypass passage.
 これによれば、第1の態様の車両用空調装置と同様に、暖房モード時に、加熱部では、冷媒が内気および外気から吸熱した熱を利用して、車室内へ送風される空気を加熱することができる。すなわち、冷媒が内気および外気から吸熱した熱を車室内の暖房に利用することができる。その結果、冷媒が外気のみから吸熱した熱を車室内の暖房に利用する場合よりも、車室内の暖房のために消費されるエネルギを低減させることができる。 According to this, similarly to the vehicle air conditioner of the first aspect, in the heating mode, the heating unit utilizes the heat absorbed by the refrigerant from the inside air and the outside air to heat the air blown into the vehicle compartment. be able to. That is, the heat absorbed by the refrigerant from the inside air and the outside air can be used for heating the vehicle interior. As a result, the energy consumed for heating the vehicle interior can be reduced as compared with the case where the refrigerant absorbs heat only from the outside air and uses it to heat the vehicle interior.
 また、暖房モード時に、外気を外気バイパス通路へ流入させて、上層側空気通路へ導くことができる。そして、加熱部にて、内気よりも湿度の低い外気を加熱して、車両窓ガラス側へ導くことができる。従って、車両窓ガラスの防曇性能を向上させることができる。 Also, in the heating mode, the outside air can be flowed into the outside air bypass passage and guided to the upper air passage. Then, the outside air having a lower humidity than the inside air can be heated by the heating unit and led to the vehicle window glass side. Therefore, the antifogging performance of the vehicle window glass can be improved.
 この際、車両窓ガラスの防曇性能の向上および暖房のために消費されるエネルギの低減を両立させるように内外気比率を設定しても、第1熱交換部における冷媒の吸熱量、および第2熱交換部における冷媒の吸熱量に影響を与えにくい。すなわち、車室内の暖房に利用可能な熱量に影響を与えにくい。 At this time, even if the inside/outside air ratio is set so as to achieve both an improvement in the anti-fogging performance of the vehicle window glass and a reduction in the energy consumed for heating, the amount of heat absorbed by the refrigerant in the first heat exchange section and the (2) The amount of heat absorbed by the refrigerant in the heat exchange section is less likely to be affected. That is, the amount of heat that can be used for heating the vehicle interior is less likely to be affected.
 その結果、第2の態様の車両用空調装置によれば、内気および外気から吸熱した熱を車室内の暖房に利用する車両用空調装置であっても、車両窓ガラスの防曇性能の向上および暖房のために消費されるエネルギの低減の両立を図ることができる。 As a result, according to the vehicle air conditioner of the second aspect, even if the vehicle air conditioner uses the heat absorbed from the inside air and the outside air for heating the vehicle interior, the anti-fogging performance of the vehicle window glass is improved. It is possible to achieve both reduction of energy consumed for heating.
 また、本開示の第3の態様の車両用空調装置は、空気通路形成部と、ヒートポンプサイクルと、を備える。空気通路形成部は、空気を流通させる空気通路を形成する。ヒートポンプサイクルは、車室内へ送風される空気の温度を調整する。 A vehicle air conditioner according to a third aspect of the present disclosure includes an air passage forming portion and a heat pump cycle. The air passage forming portion forms an air passage for circulating air. The heat pump cycle regulates the temperature of the air blown into the passenger compartment.
 ヒートポンプサイクルは、圧縮機、加熱部、第1熱交換部、第2減圧部、および第2熱交換部を有している。 A heat pump cycle has a compressor, a heating section, a first heat exchange section, a second pressure reduction section, and a second heat exchange section.
 圧縮機は、冷媒を圧縮して吐出する。加熱部は、圧縮機から吐出された冷媒を熱源として車室内へ送風される空気を加熱する。第1熱交換部は、加熱部から流出した冷媒と空気とを熱交換させる。第2減圧部は、第1熱交換部から流出した冷媒を減圧させる。第2熱交換部は、第2減圧部から流出した冷媒と空気とを熱交換させる。 The compressor compresses and discharges the refrigerant. The heating unit heats the air blown into the vehicle interior using the refrigerant discharged from the compressor as a heat source. The first heat exchange section heat-exchanges the refrigerant flowing out from the heating section and the air. The second pressure reducing section reduces the pressure of the refrigerant flowing out of the first heat exchanging section. The second heat exchange section heat-exchanges the refrigerant flowing out of the second pressure reduction section and the air.
 空気通路形成部には、第1空気通路、および第2空気通路が形成されている。 A first air passage and a second air passage are formed in the air passage forming portion.
 第1空気通路は、第1熱交換部が配置された空気通路である。第2空気通路は、第2熱交換部が配置された空気通路である。 The first air passage is an air passage in which the first heat exchange section is arranged. The second air passage is an air passage in which the second heat exchange section is arranged.
 そして、車室内の暖房を行う暖房モード時に、車室外の空気である外気を第1空気通路へ流入させ、第1熱交換部を通過した外気を加熱部にて加熱して、少なくとも車室内の車両窓ガラス側へ導く。さらに、外気および内気の少なくとも一方を第2空気通路へ流入させ、第2熱交換部を通過した空気を第2空気通路から車室外へ流出させる。 Then, in a heating mode for heating the interior of the vehicle, outside air, which is the air outside the vehicle, is allowed to flow into the first air passage, and the outside air that has passed through the first heat exchange unit is heated by the heating unit, so that at least the interior of the vehicle is heated. Lead to the vehicle window glass side. Furthermore, at least one of the outside air and the inside air is allowed to flow into the second air passage, and the air that has passed through the second heat exchange portion is allowed to flow out of the vehicle compartment through the second air passage.
 これによれば、暖房モード時に、外気および内気の少なくとも一方を第2空気通路へ流入させるので、第2熱交換部にて、外気および内気の少なくとも一方の有する熱をヒートポンプサイクルの冷媒に吸熱させることができる。 According to this, since at least one of the outside air and the inside air is caused to flow into the second air passage in the heating mode, the heat of at least one of the outside air and the inside air is absorbed by the refrigerant of the heat pump cycle in the second heat exchange section. be able to.
 従って、加熱部では、冷媒が外気および内気の少なくとも一方から吸熱した熱を利用して、車室内へ送風される空気を加熱することができる。つまり、冷媒が内気および外気の少なくとも一方から吸熱した熱を、車室内の暖房に利用することができる。そして、第2空気通路へ流入させる空気における内気の割合を増加させるに伴って、車室内の暖房のために消費されるエネルギを低減させることができる。 Therefore, in the heating unit, the heat absorbed by the refrigerant from at least one of the outside air and the inside air can be used to heat the air blown into the vehicle interior. That is, the heat absorbed by the refrigerant from at least one of the inside air and the outside air can be used for heating the vehicle interior. As the ratio of the internal air in the air flowing into the second air passage is increased, the energy consumed for heating the vehicle interior can be reduced.
 また、暖房モード時に、外気を第1空気通路へ流入させる。そして、第1熱交換部および加熱部にて、内気よりも湿度の低い外気を加熱して、車室内の車両窓ガラス側へ導いている。従って、車両窓ガラスの防曇性能を向上させることができる。 Also, in the heating mode, outside air is allowed to flow into the first air passage. Then, the outside air having a lower humidity than the inside air is heated by the first heat exchanging part and the heating part, and is led to the vehicle window glass side in the vehicle compartment. Therefore, the antifogging performance of the vehicle window glass can be improved.
 この際、車室内の適切な暖房を行うために、第1空気通路へ流入させる外気の風量を調整しても、第2熱交換部における冷媒の吸熱量に影響を与えにくい。すなわち、車室内の暖房に利用可能な熱量に影響を与えにくい。 At this time, even if the amount of outside air flowing into the first air passage is adjusted in order to appropriately heat the vehicle interior, the amount of heat absorbed by the refrigerant in the second heat exchange section is less likely to be affected. That is, the amount of heat that can be used for heating the vehicle interior is less likely to be affected.
 その結果、第3の態様の車両用空調装置によれば、内気および外気から吸熱した熱を車室内の暖房に利用する車両用空調装置であっても、車両窓ガラスの防曇性能の向上および暖房のために消費されるエネルギの低減の両立を図ることができる。 As a result, according to the vehicle air conditioner of the third aspect, even if the vehicle air conditioner uses the heat absorbed from the inside air and the outside air for heating the vehicle interior, the anti-fogging performance of the vehicle window glass is improved. It is possible to achieve both reduction of energy consumed for heating.
 ここで、少なくとも車室内の車両窓ガラス側へ導くとは、空気を積極的に車両窓ガラスへ向って吹き出すことに限定されない。車両窓ガラスの防曇効果を得られる程度に空気を車室内へ吹き出すことも含まれる。 Here, at least guiding the air to the vehicle window glass side in the vehicle interior is not limited to actively blowing air toward the vehicle window glass. It also includes blowing air into the passenger compartment to the extent that the anti-fogging effect of the vehicle window glass can be obtained.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確となる。
第1実施形態の車両用空調装置の模式的な全体構成図である。 第1実施形態の空調ユニットの模式的な断面図である。 図2のIII-III断面図である。 第1実施形態の内部通路切替装置の模式的な断面図である。 第1実施形態の車両用空調装置の電気制御部を示すブロック図である。 第1実施形態の空調ユニットの冷房モード時および除湿暖房モード時における空気の流れを示す模式的な断面図である。 第1実施形態の空調ユニットの暖房モード時における空気の流れを示す模式的な断面図である。 第1実施形態の空調ユニットの除霜モード時における空気の流れを示す模式的な断面図である。 第2実施形態の空調ユニットの冷房モード時および除湿暖房モード時における空気の流れを示す模式的な断面図である。 第2実施形態の空調ユニットの暖房モード時における空気の流れを示す模式的な断面図である。 第2実施形態の空調ユニットの除霜モード時における空気の流れを示す模式的な断面図である。 第3実施形態の空調ユニットの模式的な断面図である。 第3実施形態の空調ユニットの冷房モード時および除湿暖房モード時における空気の流れを示す模式的な断面図である。 第3実施形態の空調ユニットの暖房モード時における空気の流れを示す模式的な断面図である。 第3実施形態の空調ユニットの除霜モード時における空気の流れを示す模式的な断面図である。 第4実施形態の空調ユニットの冷房モード時および除湿暖房モード時における空気の流れを示す模式的な断面図である。 第4実施形態の空調ユニットの暖房モード時における空気の流れを示す模式的な断面図である。 第4実施形態の空調ユニットの除霜モード時における空気の流れを示す模式的な断面図である。 第5実施形態の車両用空調装置の模式的な全体構成図である。 第5実施形態の空調ユニットの冷房モード時および除湿暖房モード時における空気の流れを示す模式的な断面図である。 第5実施形態の空調ユニットの暖房モード時における空気の流れを示す模式的な断面図である。 第5実施形態の空調ユニットの除霜モード時における空気の流れを示す模式的な断面図である。 第5実施形態の空調ユニットの第2熱交換器へ流入させる空気の温度の変化に対する暖房能力の変化を示すグラフである。 他の実施形態の車両用空調装置の模式的な全体構成図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings.
1 is a schematic overall configuration diagram of a vehicle air conditioner of a first embodiment; FIG. It is a typical sectional view of an air-conditioning unit of a 1st embodiment. 3 is a cross-sectional view taken along line III-III of FIG. 2; FIG. FIG. 2 is a schematic cross-sectional view of the internal passage switching device of the first embodiment; It is a block diagram showing an electric control part of the vehicle air conditioner of the first embodiment. FIG. 4 is a schematic cross-sectional view showing the flow of air in the cooling mode and the dehumidifying heating mode of the air conditioning unit of the first embodiment; FIG. 4 is a schematic cross-sectional view showing the flow of air in the heating mode of the air conditioning unit of the first embodiment; FIG. 4 is a schematic cross-sectional view showing the flow of air in the defrosting mode of the air conditioning unit of the first embodiment; FIG. 11 is a schematic cross-sectional view showing the flow of air in the cooling mode and the dehumidifying heating mode of the air conditioning unit of the second embodiment; FIG. 11 is a schematic cross-sectional view showing the air flow in the heating mode of the air conditioning unit of the second embodiment; FIG. 11 is a schematic cross-sectional view showing the flow of air in the defrosting mode of the air conditioning unit of the second embodiment; FIG. 11 is a schematic cross-sectional view of an air conditioning unit according to a third embodiment; FIG. 11 is a schematic cross-sectional view showing the flow of air in the cooling mode and the dehumidifying heating mode of the air conditioning unit of the third embodiment; FIG. 11 is a schematic cross-sectional view showing the flow of air in the heating mode of the air conditioning unit of the third embodiment; FIG. 11 is a schematic cross-sectional view showing the air flow in the defrosting mode of the air conditioning unit of the third embodiment; FIG. 11 is a schematic cross-sectional view showing the flow of air in a cooling mode and a dehumidifying and heating mode of the air conditioning unit of the fourth embodiment; FIG. 11 is a schematic cross-sectional view showing the flow of air in the heating mode of the air conditioning unit of the fourth embodiment; FIG. 11 is a schematic cross-sectional view showing the flow of air in the defrosting mode of the air conditioning unit of the fourth embodiment; It is a typical whole block diagram of the vehicle air conditioner of 5th Embodiment. FIG. 11 is a schematic cross-sectional view showing the flow of air in the cooling mode and the dehumidifying heating mode of the air conditioning unit of the fifth embodiment; FIG. 11 is a schematic cross-sectional view showing the flow of air in the heating mode of the air conditioning unit of the fifth embodiment; FIG. 11 is a schematic cross-sectional view showing the flow of air in the defrosting mode of the air conditioning unit of the fifth embodiment; FIG. 11 is a graph showing changes in heating capacity with respect to changes in temperature of air flowing into a second heat exchanger of the air conditioning unit of the fifth embodiment; FIG. It is a typical whole block diagram of the vehicle air conditioner of other embodiment.
 以下に、図面を参照しながら本開示を実施するための複数の実施形態を説明する。各実施形態において先行する実施形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各実施形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の実施形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示していなくとも実施形態同士を部分的に組み合せることも可能である。 A plurality of embodiments for carrying out the present disclosure will be described below with reference to the drawings. In each embodiment, portions corresponding to items described in the preceding embodiment may be denoted by the same reference numerals, and redundant description may be omitted. When only part of the configuration is described in each embodiment, the other embodiments previously described can be applied to other portions of the configuration. Not only combinations of parts that are explicitly stated that combinations are possible in each embodiment, but also partial combinations of embodiments even if they are not explicitly stated unless there is a particular problem with the combination. is also possible.
 (第1実施形態)
 図1~図8を用いて、本開示に係る車両用空調装置の第1実施形態を説明する。本実施形態の車両用空調装置1は、電気自動車に適用されている。電気自動車は、走行用の駆動力を電動モータから得る車両である。車両用空調装置1は、乗員が搭乗する車室内の空調を行う。車両用空調装置1は、ヒートポンプサイクル10、熱媒体回路20、空調ユニット30、制御装置60等を備えている。
(First embodiment)
A first embodiment of a vehicle air conditioner according to the present disclosure will be described with reference to FIGS. 1 to 8. FIG. A vehicle air conditioner 1 of this embodiment is applied to an electric vehicle. An electric vehicle is a vehicle that obtains driving force for running from an electric motor. The vehicle air conditioner 1 air-conditions the interior of the vehicle in which the passengers board. The vehicle air conditioner 1 includes a heat pump cycle 10, a heat medium circuit 20, an air conditioning unit 30, a control device 60, and the like.
 まず、図1を用いて、ヒートポンプサイクル10について説明する。ヒートポンプサイクル10は、車両用空調装置1において、空調対象空間である車室内へ送風される空気の温度および熱媒体回路20を循環する熱媒体の温度を調整する。ヒートポンプサイクル10は、圧縮機11、水冷媒熱交換器12、レシーバ13、第1膨張弁14a、第2膨張弁14b、第1熱交換器15a、第2熱交換器15b等を有している。 First, the heat pump cycle 10 will be described using FIG. In the vehicle air conditioner 1 , the heat pump cycle 10 adjusts the temperature of the air blown into the vehicle interior, which is the space to be air-conditioned, and the temperature of the heat medium circulating in the heat medium circuit 20 . The heat pump cycle 10 has a compressor 11, a water-refrigerant heat exchanger 12, a receiver 13, a first expansion valve 14a, a second expansion valve 14b, a first heat exchanger 15a, a second heat exchanger 15b, and the like. .
 ヒートポンプサイクル10では、冷媒としてHFO系冷媒(具体的には、R1234yf)を採用している。ヒートポンプサイクル10は、高圧冷媒圧力が冷媒の臨界圧力を超えない蒸気圧縮式の亜臨界冷凍サイクルを構成する。冷媒には圧縮機11を潤滑するための冷凍機油(具体的には、PAGオイル)が混入されている。冷凍機油の一部は、冷媒とともにヒートポンプサイクル10を循環している。 The heat pump cycle 10 employs an HFO-based refrigerant (specifically, R1234yf) as the refrigerant. The heat pump cycle 10 constitutes a vapor compression subcritical refrigeration cycle in which the pressure of the high-pressure refrigerant does not exceed the critical pressure of the refrigerant. Refrigerant oil (specifically, PAG oil) for lubricating the compressor 11 is mixed in the refrigerant. Part of the refrigerating machine oil circulates through the heat pump cycle 10 together with the refrigerant.
 圧縮機11は、ヒートポンプサイクル10において、冷媒を吸入し、圧縮して吐出する。圧縮機11は、車室の前方側の駆動装置室内に配置されている。駆動装置室は、走行用の駆動力を出力するための駆動用装置(例えば、走行用の電動モータ)の少なくとも一部が配置される空間を形成している。 In the heat pump cycle 10, the compressor 11 sucks, compresses, and discharges the refrigerant. The compressor 11 is arranged in the drive unit room on the front side of the passenger compartment. The drive device chamber forms a space in which at least part of a drive device (for example, an electric motor for travel) for outputting driving force for travel is arranged.
 圧縮機11は、吐出容量が固定された固定容量型の圧縮機構を電動モータで回転駆動する電動圧縮機である。圧縮機11は、後述する制御装置60から出力される制御信号によって、回転数(すなわち、冷媒吐出能力)が制御される。 The compressor 11 is an electric compressor in which an electric motor rotates a fixed displacement compression mechanism with a fixed displacement. The compressor 11 has its rotation speed (that is, refrigerant discharge capacity) controlled by a control signal output from a control device 60, which will be described later.
 圧縮機11の吐出口には、水冷媒熱交換器12の冷媒通路の入口側が接続されている。水冷媒熱交換器12は、圧縮機11から吐出された高圧冷媒を流通させる冷媒通路、および後述する熱媒体回路20を循環する熱媒体を流通させる熱媒体通路を有している。水冷媒熱交換器12は、冷媒通路を流通する高圧冷媒と熱媒体通路を流通する熱媒体とを熱交換させる。水冷媒熱交換器12では、高圧冷媒の有する熱を熱媒体に放熱させて熱媒体を加熱する。 The inlet side of the refrigerant passage of the water-refrigerant heat exchanger 12 is connected to the discharge port of the compressor 11 . The water-refrigerant heat exchanger 12 has a refrigerant passage through which the high-pressure refrigerant discharged from the compressor 11 flows, and a heat medium passage through which a heat medium circulating in a heat medium circuit 20, which will be described later. The water-refrigerant heat exchanger 12 exchanges heat between the high-pressure refrigerant flowing through the refrigerant passage and the heat medium flowing through the heat medium passage. In the water-refrigerant heat exchanger 12, the heat of the high-pressure refrigerant is radiated to the heat medium to heat the heat medium.
 水冷媒熱交換器12の冷媒通路の出口には、レシーバ13の入口側が接続されている。レシーバ13は、水冷媒熱交換器12の冷媒通路から流出した高圧冷媒の気液を分離して、分離された液相冷媒の一部をサイクル内の余剰冷媒として蓄える高圧側の気液分離器である。 The inlet side of the receiver 13 is connected to the outlet of the refrigerant passage of the water-refrigerant heat exchanger 12 . The receiver 13 is a high-pressure side gas-liquid separator that separates the gas-liquid of the high-pressure refrigerant flowing out of the refrigerant passage of the water-refrigerant heat exchanger 12 and stores a part of the separated liquid-phase refrigerant as a surplus refrigerant in the cycle. is.
 レシーバ13の冷媒出口には、第1膨張弁14aの入口側が接続されている。第1膨張弁14aは、水冷媒熱交換器12の冷媒通路から流出した冷媒を減圧させる第1減圧部である。さらに、第1膨張弁14aは、下流側へ流出させる冷媒の流量を調整する第1流量調整部である。 The refrigerant outlet of the receiver 13 is connected to the inlet side of the first expansion valve 14a. The first expansion valve 14 a is a first pressure reducing section that reduces the pressure of the refrigerant flowing out of the refrigerant passage of the water-refrigerant heat exchanger 12 . Further, the first expansion valve 14a is a first flow rate adjusting section that adjusts the flow rate of the refrigerant flowing out downstream.
 第1膨張弁14aは、絞り開度を変化させる弁体、および弁体を変位させる電動アクチュエータ(具体的には、ステッピングモータ)を有する電気式の可変絞り機構である。第1膨張弁14aは、制御装置60から出力される制御パルスによって、その作動が制御される。第1膨張弁14aは、弁開度を全開にすることで冷媒減圧作用および流量調整作用を殆ど発揮することなく単なる冷媒通路として機能する全開機能を有している。 The first expansion valve 14a is an electric variable throttle mechanism having a valve body that changes the throttle opening and an electric actuator (specifically, a stepping motor) that displaces the valve body. The operation of the first expansion valve 14 a is controlled by control pulses output from the control device 60 . The first expansion valve 14a has a fully open function of functioning as a mere refrigerant passage without exhibiting a refrigerant decompression action and a flow rate adjustment action by fully opening the valve opening degree.
 第1膨張弁14aの出口には、第1熱交換器15aの冷媒入口側が接続されている。第1熱交換器15aは、後述する空調ユニット30の空調ケース31内に形成された第1空気通路31a内に配置されている。第1熱交換器15aは、第1膨張弁14aから流出した冷媒と第1空気通路31aを流通する空気とを熱交換させる第1熱交換部である。 The refrigerant inlet side of the first heat exchanger 15a is connected to the outlet of the first expansion valve 14a. The first heat exchanger 15a is arranged in a first air passage 31a formed in an air conditioning case 31 of the air conditioning unit 30, which will be described later. The first heat exchanger 15a is a first heat exchange section that exchanges heat between the refrigerant flowing out of the first expansion valve 14a and the air flowing through the first air passage 31a.
 第1熱交換器15aの冷媒出口には、第2膨張弁14bの入口側が接続されている。第2膨張弁14bは、第1熱交換器15aの冷媒通路から流出した冷媒を減圧させる第2減圧部である。さらに、第2膨張弁14bは、下流側へ流出させる冷媒の流量を調整する第2流量調整部である。第2膨張弁14bの基本的構成は、第1膨張弁14aと同様である。 The inlet side of the second expansion valve 14b is connected to the refrigerant outlet of the first heat exchanger 15a. The second expansion valve 14b is a second pressure reducing section that reduces the pressure of the refrigerant flowing out of the refrigerant passage of the first heat exchanger 15a. Further, the second expansion valve 14b is a second flow rate adjusting section that adjusts the flow rate of the refrigerant flowing out downstream. The basic configuration of the second expansion valve 14b is similar to that of the first expansion valve 14a.
 なお、図1では、図示の明確化のため、第2膨張弁14bを第2空気通路31b内に配置しているが、実際の第2膨張弁14bは、空調ケース31の空気通路外に配置されている。 In FIG. 1, the second expansion valve 14b is arranged inside the second air passage 31b for clarity of illustration, but the actual second expansion valve 14b is arranged outside the air passage of the air conditioning case 31. It is
 第2膨張弁14bの出口には、第2熱交換器15bの冷媒入口側が接続されている。第2熱交換器15bは、空調ユニット30の空調ケース31内に形成された第2空気通路31b内に配置されている。第2熱交換器15bは、第2膨張弁14bから流出した冷媒と第2空気通路31bを流通する空気とを熱交換させる第2熱交換部である。第2熱交換器15bの基本的構成は、第1熱交換器15aと同様である。第2熱交換器15bの冷媒出口には、圧縮機11の吸入口側が接続されている。 The refrigerant inlet side of the second heat exchanger 15b is connected to the outlet of the second expansion valve 14b. The second heat exchanger 15 b is arranged inside a second air passage 31 b formed inside the air conditioning case 31 of the air conditioning unit 30 . The second heat exchanger 15b is a second heat exchange section that exchanges heat between the refrigerant flowing out of the second expansion valve 14b and the air flowing through the second air passage 31b. The basic configuration of the second heat exchanger 15b is similar to that of the first heat exchanger 15a. The suction port side of the compressor 11 is connected to the refrigerant outlet of the second heat exchanger 15b.
 次に、熱媒体回路20について説明する。熱媒体回路20は、熱媒体を循環させる回路である。熱媒体回路20では、熱媒体としてエチレングリコール水溶液を採用している。熱媒体回路20は、熱媒体ポンプ21、ヒータコア22、熱媒体ラジエータ23、第1流量調整弁24a、第2流量調整弁24b等を有している。また、熱媒体回路20には、水冷媒熱交換器12の熱媒体通路が接続されている。 Next, the heat medium circuit 20 will be explained. The heat medium circuit 20 is a circuit that circulates the heat medium. The heat medium circuit 20 employs an ethylene glycol aqueous solution as a heat medium. The heat medium circuit 20 includes a heat medium pump 21, a heater core 22, a heat medium radiator 23, a first flow control valve 24a, a second flow control valve 24b, and the like. A heat medium passage of the water-refrigerant heat exchanger 12 is connected to the heat medium circuit 20 .
 熱媒体ポンプ21は、熱媒体回路20において、熱媒体を圧送する。熱媒体ポンプ21は、制御装置60から出力される制御電圧によって、回転数(すなわち、圧送能力)が制御される電動式の水ポンプである。 The heat medium pump 21 pumps the heat medium in the heat medium circuit 20 . The heat medium pump 21 is an electric water pump whose rotational speed (that is, pumping capacity) is controlled by a control voltage output from the control device 60 .
 熱媒体ポンプ21の吐出口には、ヒータコア22の熱媒体入口側が接続されている。ヒータコア22は、熱媒体ポンプ21から圧送された熱媒体と車室内へ送風される空気とを熱交換させる。ヒータコア22では、熱媒体の有する熱を空気に放熱させて空気を加熱することができる。 The heat medium inlet side of the heater core 22 is connected to the discharge port of the heat medium pump 21 . The heater core 22 exchanges heat between the heat medium pressure-fed from the heat medium pump 21 and the air blown into the vehicle interior. The heater core 22 can heat the air by dissipating the heat of the heat medium to the air.
 ヒータコア22は、空調ユニット30の空調ケース31内に形成された上層側空気通路31cおよび下層側空気通路31dの双方に跨がって配置されている。従って、ヒータコア22は、上層側空気通路31cを流通する空気と下層側空気通路31dを流通する空気との双方を加熱することができる。 The heater core 22 is arranged across both the upper air passage 31 c and the lower air passage 31 d formed in the air conditioning case 31 of the air conditioning unit 30 . Therefore, the heater core 22 can heat both the air flowing through the upper air passage 31c and the air flowing through the lower air passage 31d.
 ヒータコア22の熱媒体出口には、第1流量調整弁24aの一方の流入口が接続されている。さらに、熱媒体回路20には、熱媒体ポンプ21から圧送された熱媒体を、ヒータコア22を迂回させて、第1流量調整弁24aの他方の流入口側へ導く第1熱媒体迂回通路25aが接続されている。第1流量調整弁24aの流出口には、水冷媒熱交換器12の熱媒体通路の入口側が接続されている。 A heat medium outlet of the heater core 22 is connected to one inlet of the first flow control valve 24a. Further, in the heat medium circuit 20, a first heat medium bypass passage 25a that bypasses the heater core 22 and guides the heat medium pressure-fed from the heat medium pump 21 to the other inlet side of the first flow control valve 24a. It is connected. The inlet side of the heat medium passage of the water-refrigerant heat exchanger 12 is connected to the outflow port of the first flow control valve 24a.
 第1流量調整弁24aは、熱媒体ポンプ21から圧送された熱媒体のうち、ヒータコア22へ流入させる熱媒体の流量と第1熱媒体迂回通路25aへ流入させる熱媒体の流量との流量比を調整する。第1流量調整弁24aは、制御装置60から出力される制御信号によって、その作動が制御される電動式の三方流量調整弁である。 The first flow regulating valve 24a adjusts the flow rate ratio of the heat medium pumped from the heat medium pump 21 to flow into the heater core 22 and the heat medium flow into the first heat medium bypass passage 25a. adjust. The first flow control valve 24 a is an electric three-way flow control valve whose operation is controlled by a control signal output from the control device 60 .
 水冷媒熱交換器12の熱媒体通路の出口には、熱媒体ラジエータ23の熱媒体入口側が接続されている。熱媒体ラジエータ23は、水冷媒熱交換器12の熱媒体通路から流出した熱媒体と図示しない外気送風機によって送風された外気とを熱交換させる。熱媒体ラジエータ23では、熱媒体の有する熱を外気に放熱させて熱媒体を冷却することができる。 The heat medium inlet side of the heat medium radiator 23 is connected to the outlet of the heat medium passage of the water-refrigerant heat exchanger 12 . The heat medium radiator 23 exchanges heat between the heat medium flowing out from the heat medium passage of the water-refrigerant heat exchanger 12 and outside air blown by an outside air blower (not shown). The heat medium radiator 23 can cool the heat medium by dissipating the heat of the heat medium to the outside air.
 熱媒体ラジエータ23は、駆動装置室内の前方側に配置されている。このため、車両走行時には、熱媒体ラジエータ23に、グリルを介して駆動装置室内へ流入した走行風を当てることができる。 The heat medium radiator 23 is arranged on the front side in the driving device room. Therefore, when the vehicle is running, the heat medium radiator 23 can be exposed to the running wind that has flowed into the drive unit room through the grill.
 熱媒体ラジエータ23の熱媒体出口には、第2流量調整弁24bの一方の流入口が接続されている。さらに、熱媒体回路20には、水冷媒熱交換器12の熱媒体通路を流出した熱媒体を、熱媒体ラジエータ23を迂回させて、第2流量調整弁24bの他方の流入口側へ導く第2熱媒体迂回通路25bが接続されている。第2流量調整弁24bの流出口には、熱媒体ポンプ21の吸入口側が接続されている。 A heat medium outlet of the heat medium radiator 23 is connected to one inlet of the second flow control valve 24b. Furthermore, in the heat medium circuit 20, the heat medium that has flowed out of the heat medium passage of the water-refrigerant heat exchanger 12 bypasses the heat medium radiator 23 and is guided to the other inlet side of the second flow control valve 24b. 2 heat medium detour passages 25b are connected. The suction port side of the heat medium pump 21 is connected to the outflow port of the second flow control valve 24b.
 第2流量調整弁24bは、水冷媒熱交換器12の熱媒体通路を流出した熱媒体のうち、熱媒体ラジエータ23へ流入させる熱媒体の流量と第2熱媒体迂回通路25bへ流入させる熱媒体の流量との流量比を調整する。第2流量調整弁24bの基本的構成は、第1流量調整弁24aと同様である。 The second flow regulating valve 24b adjusts the flow rate of the heat medium that flows into the heat medium radiator 23 and the heat medium that flows into the second heat medium bypass passage 25b, among the heat medium that has flowed out of the heat medium passage of the water-refrigerant heat exchanger 12. Adjust the flow rate to the flow rate of The basic configuration of the second flow control valve 24b is similar to that of the first flow control valve 24a.
 従って、熱媒体回路20では、水冷媒熱交換器12にて熱媒体と高圧冷媒とを熱交換させて、熱媒体を加熱することができる。さらに、ヒータコアにて熱媒体と上層側空気通路31cおよび下層側空気通路31dを流通して車室内へ送風される空気とを熱交換させて、空気を加熱することができる。つまり、水冷媒熱交換器12および熱媒体回路20は、圧縮機11から吐出された冷媒を熱源として空気を加熱する加熱部である。 Therefore, in the heat medium circuit 20, the water-refrigerant heat exchanger 12 heat-exchanges the heat medium and the high-pressure refrigerant to heat the heat medium. Furthermore, the heater core can heat the air by exchanging heat between the heat medium and the air that flows through the upper-layer side air passage 31c and the lower-layer side air passage 31d and is blown into the vehicle interior. That is, the water-refrigerant heat exchanger 12 and the heat medium circuit 20 are heating units that heat air using the refrigerant discharged from the compressor 11 as a heat source.
 次に、図2~図4を用いて、空調ユニット30について説明する。空調ユニット30は、車両用空調装置1において、適切な温度に調整された空気を車室内の適切な箇所へ向けて吹き出すために複数の構成機器を一体化させたユニットである。空調ユニット30は、内部に空気を流通させる複数の空気通路を形成する空気通路形成部である。 Next, the air conditioning unit 30 will be explained using FIGS. 2 to 4. FIG. The air-conditioning unit 30 is a unit in which a plurality of components are integrated in the vehicle air-conditioning system 1 in order to blow air adjusted to an appropriate temperature toward an appropriate location in the vehicle compartment. The air conditioning unit 30 is an air passage forming portion that forms a plurality of air passages for circulating air therein.
 より具体的には、空調ユニット30は、空調ケース31を有している。空調ケース31は、空調ユニットの外殻を形成するとともに、内部に空気通路、および空調ユニット30の構成機器の収容空間を形成する。空調ケース31は、ある程度の弾性を有し、強度的にも優れた樹脂(具体的には、ポリプロピレン)にて成形されている。 More specifically, the air conditioning unit 30 has an air conditioning case 31 . The air-conditioning case 31 forms an outer shell of the air-conditioning unit, and forms an air passage and a housing space for components of the air-conditioning unit 30 inside. The air-conditioning case 31 is molded from a resin (specifically, polypropylene) having a certain degree of elasticity and excellent strength.
 空調ケース31の内部には、第1空気通路31a、第2空気通路31b、上層側空気通路31c、下層側空気通路31d、外気バイパス通路31e、および内気バイパス通路31fが形成されている。 Inside the air conditioning case 31, a first air passage 31a, a second air passage 31b, an upper air passage 31c, a lower air passage 31d, an outside air bypass passage 31e, and an inside air bypass passage 31f are formed.
 空調ケース31のうち、第1空気通路31a、第2空気通路31b、外気バイパス通路31e、および内気バイパス通路31fを形成する部位の少なくとも一部は、駆動装置室側に配置されている。また、空調ケース31のうち、上層側空気通路31cおよび下層側空気通路31dを形成する部位の少なくとも一部は、車室側に配置されている。 At least part of the parts of the air conditioning case 31 that form the first air passage 31a, the second air passage 31b, the outside air bypass passage 31e, and the inside air bypass passage 31f are arranged on the drive device chamber side. At least a portion of the air conditioning case 31 forming the upper air passage 31c and the lower air passage 31d is arranged on the passenger compartment side.
 車室(すなわち、車室内側)と駆動装置室(すなわち、車室外側)は、隔壁50によって仕切られている。隔壁50は、内燃機関(エンジン)から車両走行用の駆動力を得る通常のエンジン車両において、ダッシュパネルあるいはファイアウォールと呼ばれる防音防火用の隔壁部材に対応する。 A partition wall 50 separates the vehicle compartment (that is, the inside of the vehicle) and the driving device compartment (that is, the outside of the vehicle). The bulkhead 50 corresponds to a soundproof and fireproof bulkhead member called a dash panel or firewall in a normal engine vehicle that obtains a driving force for running the vehicle from an internal combustion engine (engine).
 第1空気通路31aは、空調ケース31内へ車室内の空気である内気、あるいは、車室外の空気である外気を流入させる空気通路である。第1空気通路31aには、第1熱交換器15aが配置されている。第1空気通路31aは、第1熱交換器15aを通過した空気を、車室内および車室外の少なくとも一方側へ流出させる。 The first air passage 31a is an air passage through which inside air, which is the air inside the vehicle interior, or outside air, which is the air outside the vehicle interior, flows into the air conditioning case 31. A first heat exchanger 15a is arranged in the first air passage 31a. The first air passage 31a allows the air that has passed through the first heat exchanger 15a to flow out to at least one of the vehicle interior and the vehicle exterior.
 空調ケース31の第1空気通路31aを形成する部位の空気流れ最上流側には、第1入口側内外気切替装置32aが配置されている。第1入口側内外気切替装置32aは、第1空気通路31aへ流入する空気における内気と外気との比率を連続的に調整可能な第1入口側内外気調整部である。 A first inlet side inside/outside air switching device 32a is arranged on the most upstream side of the air flow of the portion forming the first air passage 31a of the air conditioning case 31 . The first inlet side inside/outside air switching device 32a is a first inlet side inside/outside air adjusting section that can continuously adjust the ratio of the inside air to the outside air in the air flowing into the first air passage 31a.
 具体的には、第1入口側内外気切替装置32aは、内気導入用の開口部と外気導入用の開口部が形成されたケース部、および双方の開口部の開口面積を変化させるドア部を有している。第1入口側内外気切替装置32aは、ドア部がいずれか一方の開口部を閉塞することによって、第1空気通路31aへ流入する空気の全風量を、内気および外気のいずれか一方とすることができる。第1入口側内外気切替装置32aは、制御装置60から出力される制御信号によって、その作動が制御される。 Specifically, the first inlet-side inside/outside air switching device 32a includes a case portion in which an inside air introduction opening and an outside air introduction opening are formed, and a door portion that changes the opening areas of both openings. have. The first inlet-side inside/outside air switching device 32a allows the door portion to close one of the openings so that the total amount of air flowing into the first air passage 31a is either inside air or outside air. can be done. The operation of the first inlet side inside/outside air switching device 32 a is controlled by a control signal output from the control device 60 .
 また、空調ケース31の第1空気通路31aを形成する部位の空気流れ最下流側には、第1出口側内外気切替装置33aが配置されている。第1出口側内外気切替装置33aは、第1空気通路31aから流出する空気のうち、車室外側へ流出する空気と車室内側へ流出する空気との比率を連続的に調整可能な第1出口側内外気調整部である。 In addition, a first outlet side inside/outside air switching device 33a is arranged on the most downstream side of the air flow of the portion forming the first air passage 31a of the air conditioning case 31 . The first exit-side inside/outside air switching device 33a is a first exit-side air switching device that can continuously adjust the ratio of the air that flows out to the outside of the passenger compartment and the air that flows out to the inside of the passenger compartment, out of the air that flows out from the first air passage 31a. This is the outlet side inside/outside air adjustment section.
 具体的には、第1出口側内外気切替装置33aは、車室内流出用の開口部と車室外流出用の開口部が形成されたケース部、および双方の開口部の開口面積を変化させるドア部を有している。第1出口側内外気切替装置33aは、ドア部がいずれか一方の開口部を閉塞することによって、第1空気通路31aから流出する空気の全風量を車室内側および車室外側のいずれか一方へ流出させることができる。第1出口側内外気切替装置33aは、制御装置60から出力される制御信号によって、その作動が制御される。 Specifically, the first exit-side inside/outside air switching device 33a includes a case portion in which an opening for outflow from the passenger compartment and an opening for outflow to the outside of the passenger compartment are formed, and a door that changes the opening areas of both openings. has a part. The first outlet side inside/outside air switching device 33a switches the total amount of air flowing out of the first air passage 31a to either the inside of the vehicle interior or the outside of the vehicle interior by closing one of the openings of the door section. can be drained to The operation of the first outlet side inside/outside air switching device 33 a is controlled by a control signal output from the control device 60 .
 第2空気通路31bは、空調ケース31内へ内気あるいは外気を流入させる空気通路である。第2空気通路31bは、第1空気通路31aよりも鉛直方向下方側に配置されている。第2空気通路31bには、第2熱交換器15bが配置されている。第2空気通路31bは、第2熱交換器15bを通過した空気を、車室内および車室外の少なくとも一方側へ流出させる。 The second air passage 31b is an air passage through which inside air or outside air flows into the air conditioning case 31. The second air passage 31b is arranged below the first air passage 31a in the vertical direction. A second heat exchanger 15b is arranged in the second air passage 31b. The second air passage 31b allows the air that has passed through the second heat exchanger 15b to flow out to at least one side of the vehicle interior and the vehicle exterior.
 空調ケース31の第2空気通路31bを形成する部位の空気流れ最上流側には、第2入口側内外気切替装置32bが配置されている。第2入口側内外気切替装置32bは、第2空気通路31bへ流入する空気における内気と外気との比率を連続的に調整可能な第2入口側内外気調整部である。 A second inlet-side inside/outside air switching device 32b is arranged on the most upstream side of the air flow of the portion forming the second air passage 31b of the air conditioning case 31 . The second inlet side inside/outside air switching device 32b is a second inlet side inside/outside air adjustment section that can continuously adjust the ratio of the inside air to the outside air in the air flowing into the second air passage 31b.
 第2入口側内外気切替装置32bの基本的構成は、第1入口側内外気切替装置32aと同様である。第2入口側内外気切替装置32bは、第2空気通路31bへ流入する空気の全風量を、内気および外気のいずれか一方とすることができる。 The basic configuration of the second inlet side inside/outside air switching device 32b is the same as that of the first inlet side inside/outside air switching device 32a. The second inlet side inside/outside air switching device 32b can set the total amount of air flowing into the second air passage 31b to either inside air or outside air.
 また、空調ケース31の第2空気通路31bを形成する部位の空気流れ最下流側には、第2出口側内外気切替装置33bが配置されている。第2出口側内外気切替装置33bは、第2空気通路31bから流出する空気のうち、車室内側へ流出する空気と車室外側へ流出する空気との比率を連続的に調整可能な第2出口側内外気調整部である。 In addition, a second outlet side inside/outside air switching device 33b is arranged on the most downstream side of the air flow of the portion forming the second air passage 31b of the air conditioning case 31 . The second exit-side inside/outside air switching device 33b can continuously adjust the ratio of the air flowing out to the inside of the vehicle interior and the air flowing out to the outside of the vehicle out of the air flowing out from the second air passage 31b. This is the outlet side inside/outside air adjustment section.
 第2出口側内外気切替装置33bの基本的構成は、第1出口側内外気切替装置33aと同様である。第2出口側内外気切替装置33bは、第2空気通路31bから流出する空気の全風量を車室内側および車室外側のいずれか一方へ流出させることができる。 The basic configuration of the second outlet side inside/outside air switching device 33b is the same as that of the first outlet side inside/outside air switching device 33a. The second exit side inside/outside air switching device 33b can cause the total amount of air flowing out from the second air passage 31b to flow out to either the vehicle interior side or the vehicle exterior side.
 外気バイパス通路31eは、空調ケース31内へ外気を導入させる空気通路である。外気バイパス通路31eは、導入させた外気を、第1熱交換器15aおよび第2熱交換器15bを迂回させて車室内側へ流出させる。より具体的には、外気バイパス通路31eは、導入させた外気を、上層側空気通路31cの入口側へ流出させる。 The outside air bypass passage 31 e is an air passage for introducing outside air into the air conditioning case 31 . The outside air bypass passage 31e causes the introduced outside air to bypass the first heat exchanger 15a and the second heat exchanger 15b and flow out into the vehicle interior. More specifically, the outside air bypass passage 31e causes the introduced outside air to flow out to the inlet side of the upper layer side air passage 31c.
 外気バイパス通路31eの内部には、図3に示すように、外気通路ドア34aが配置されている。外気通路ドア34aは、外気バイパス通路31eへ流入する外気の風量を連続的に調整する外気風量調整部である。外気通路ドア34aは、外気バイパス通路31eを閉塞することができる。外気通路ドア34aの駆動用アクチュエータは、制御装置60から出力される制御信号によって、その作動が制御される。 Inside the outside air bypass passage 31e, as shown in FIG. 3, an outside air passage door 34a is arranged. The outside air passage door 34a is an outside air volume adjustment unit that continuously adjusts the volume of outside air flowing into the outside air bypass passage 31e. The outside air passage door 34a can block the outside air bypass passage 31e. The operation of the actuator for driving the outside air passage door 34a is controlled by a control signal output from the control device 60. As shown in FIG.
 内気バイパス通路31fは、空調ケース31内へ内気を導入させる空気通路である。内気バイパス通路31fは、導入させた内気を、第1熱交換器15aおよび第2熱交換器15bを迂回させて車室内側へ流出させる。より具体的には、内気バイパス通路31fは、導入させた内気を、下層側空気通路31dの入口側へ流出させる。 The inside air bypass passage 31f is an air passage for introducing inside air into the air conditioning case 31. The inside air bypass passage 31f causes the introduced inside air to bypass the first heat exchanger 15a and the second heat exchanger 15b and flow out to the vehicle interior side. More specifically, the inside air bypass passage 31f causes the introduced inside air to flow out to the inlet side of the lower layer side air passage 31d.
 内気バイパス通路31fの内部には、図2、図3に示すように、内気通路ドア34bが配置されている。内気通路ドア34bは、内気バイパス通路31fへ流入する内気の風量を連続的に調整する内気風量調整部である。内気通路ドア34bは、内気バイパス通路31fを閉塞することができる。内気通路ドア34bの駆動用アクチュエータは、制御装置60から出力される制御信号によって、その作動が制御される。 Inside the inside air bypass passage 31f, as shown in FIGS. 2 and 3, an inside air passage door 34b is arranged. The inside air passage door 34b is an inside air volume adjustment unit that continuously adjusts the air volume of the inside air flowing into the inside air bypass passage 31f. The inside air passage door 34b can block the inside air bypass passage 31f. The operation of the drive actuator for the inside air passage door 34b is controlled by a control signal output from the control device 60. As shown in FIG.
 また、外気バイパス通路31eおよび内気バイパス通路31fは、第1空気通路31aよりも下方側であって、第2空気通路31bよりも上方側に配置されている。つまり、外気バイパス通路31eおよび内気バイパス通路31fは、上下方向から第1空気通路31aおよび第2空気通路31bに挟まれるように配置されている。さらに、外気バイパス通路31eおよび内気バイパス通路31fは、略水平方向に並んで配置されている。 The outside air bypass passage 31e and the inside air bypass passage 31f are arranged below the first air passage 31a and above the second air passage 31b. In other words, the outside air bypass passage 31e and the inside air bypass passage 31f are arranged so as to be sandwiched between the first air passage 31a and the second air passage 31b from above and below. Furthermore, the outside air bypass passage 31e and the inside air bypass passage 31f are arranged side by side in a substantially horizontal direction.
 また、図3では、図示の明確化のため、外気バイパス通路31eの開口面積および内気バイパス通路31fの開口面積を略同等としているが、実際の開口面積は互いに異なっている。具体的には、後述する暖房モード時に、それぞれの空気通路を流通する空気に生じる圧力損失の合計が最小値に近づくように決定されている。 In addition, in FIG. 3, for clarity of illustration, the opening area of the outside air bypass passage 31e and the opening area of the inside air bypass passage 31f are assumed to be approximately the same, but the actual opening areas are different from each other. Specifically, it is determined so that the sum of the pressure losses generated in the air flowing through the respective air passages approaches the minimum value during the heating mode, which will be described later.
 また、上述した第1出口側内外気切替装置33aの車室内流出用の開口部、第2出口側内外気切替装置33bの車室内流出用の開口部、外気バイパス通路31eの出口部、および内気バイパス通路31fの出口部は、それぞれ通風路切替装置35の各種入口部に接続されている。 In addition, the above-described first exit side inside/outside air switching device 33a for outflow of the vehicle interior, the second outlet side inside/outside air switching device 33b for outflow into the vehicle interior, the exit of the outside air bypass passage 31e, and the inside air The outlets of the bypass passage 31f are connected to various inlets of the ventilation path switching device 35, respectively.
 通風路切替装置35は、空調ユニット30内に形成された空気通路の接続態様を切り替える通風路切替部、および車室内側へ空気を送風する車室内送風部を一体化させたサブユニットである。通風路切替装置35の詳細構成については、図4を用いて説明する。通風路切替装置35は、切替装置ケース36および室内送風機37を有している。 The ventilation path switching device 35 is a sub-unit that integrates a ventilation path switching unit that switches the connection mode of the air path formed in the air conditioning unit 30 and a vehicle interior blower that blows air into the interior of the vehicle. A detailed configuration of the ventilation path switching device 35 will be described with reference to FIG. The ventilation path switching device 35 has a switching device case 36 and an indoor fan 37 .
 切替装置ケース36は、空調ケース31と同一の材料で形成することができる。切替装置ケース36は、空調ケース31と一体的に形成されていてもよい。切替装置ケース36には、第1入口部36a、第2入口部36b、上層側出口部36c、下層側出口部36d、外気入口部36e、および内気入口部36fが形成されている。切替装置ケース36の内部には、それぞれの入口部に連通する通風路が形成されている。 The switching device case 36 can be made of the same material as the air conditioning case 31 . The switching device case 36 may be formed integrally with the air conditioning case 31 . The switching device case 36 is formed with a first inlet portion 36a, a second inlet portion 36b, an upper layer side outlet portion 36c, a lower layer side outlet portion 36d, an outside air inlet portion 36e, and an inside air inlet portion 36f. Inside the switching device case 36, ventilation passages communicating with the respective inlets are formed.
 第1入口部36aには、第1出口側内外気切替装置33aの車室内流出用の開口部が接続される。第2入口部36bには、第2出口側内外気切替装置33bの車室内流出用の開口部が接続される。外気入口部36eには、外気バイパス通路31eの出口部が接続される。内気入口部36fには、内気バイパス通路31fの出口部が接続される。上層側出口部36cには、上層側空気通路31cの入口部が接続される。下層側出口部36dには、下層側空気通路31dの入口部が接続される。 The first inlet portion 36a is connected to the opening portion of the first outlet-side inside/outside air switching device 33a for the vehicle interior to flow out. The second inlet portion 36b is connected to an opening portion of the second outlet side inside/outside air switching device 33b for outflow from the passenger compartment. The outlet portion of the outside air bypass passage 31e is connected to the outside air inlet portion 36e. The outlet portion of the inside air bypass passage 31f is connected to the inside air inlet portion 36f. The inlet portion of the upper layer side air passage 31c is connected to the upper layer side outlet portion 36c. The inlet portion of the lower layer side air passage 31d is connected to the lower layer side outlet portion 36d.
 室内送風機37は、車室内へ空気(すなわち、内気あるいは外気)を送風する室内送風部である。室内送風機37は、第1ファン37a、第2ファン37b、および電動モータ37cを有している。第1ファン37aは、吸入した空気を上層側出口部36cから上層側空気通路31cへ送風する。第2ファン37bは、吸入した空気を下層側出口部36dから下層側空気通路31dへ送風する。 The indoor blower 37 is an indoor blower that blows air (that is, inside air or outside air) into the vehicle interior. The indoor fan 37 has a first fan 37a, a second fan 37b, and an electric motor 37c. The first fan 37a blows the sucked air from the upper layer side outlet portion 36c to the upper layer side air passage 31c. The second fan 37b blows the sucked air from the lower layer side outlet portion 36d to the lower layer side air passage 31d.
 電動モータ37cは、第1ファン37aおよび第2ファン37bの双方を連動して回転駆動する駆動部である。従って、室内送風機37は、第1ファン37aおよび第2ファン37bを共通する電動モータ37cで連動して回転駆動する、いわゆる二連式の送風機である。電動モータ37cは、制御装置60から出力される制御電圧によって、回転数(すなわち、送風能力)が制御される。 The electric motor 37c is a drive unit that rotates both the first fan 37a and the second fan 37b in conjunction with each other. Therefore, the indoor blower 37 is a so-called double blower in which the first fan 37a and the second fan 37b are rotationally driven in conjunction with a common electric motor 37c. The electric motor 37c has its rotational speed (ie, air blowing capacity) controlled by a control voltage output from the control device 60 .
 第1ファン37aおよび第2ファン37bは、いずれも遠心多翼ファンである。第1ファン37aの寸法諸元と第2ファン37bの寸法諸元は、互いに異なっている。本実施形態では、第1ファン37aの軸方向羽根高さと第2ファン37bの軸方向羽根高さが、互いに異なっている。このため、同一回転数における第1ファン37aの風量と第2ファン37bの風量は、互いに異なっている。 Both the first fan 37a and the second fan 37b are centrifugal multi-blade fans. The dimensions of the first fan 37a and the dimensions of the second fan 37b are different from each other. In this embodiment, the axial blade height of the first fan 37a and the axial blade height of the second fan 37b are different from each other. Therefore, the air volume of the first fan 37a and the air volume of the second fan 37b at the same rotational speed are different from each other.
 本実施形態では、暖房モード時に、内外気比率が適切な値となるように、第1ファン37aの軸方向羽根高さと第2ファン37bの軸方向羽根高さが設定されている。内外気比率は、上層側空気通路31cを流通する空気の風量と下層側空気通路31dを流通する空気の風量との比率である。 In this embodiment, the axial blade height of the first fan 37a and the axial blade height of the second fan 37b are set so that the inside/outside air ratio becomes an appropriate value during the heating mode. The inside/outside air ratio is the ratio between the volume of air flowing through the upper air passage 31c and the volume of air flowing through the lower air passage 31d.
 第1ファン37aおよび第2ファン37bは、それぞれ切替装置ケース36に形成された第1スクロールケーシング37dおよび第2スクロールケーシング37eに収容されている。第1スクロールケーシング37dおよび第2スクロールケーシング37eは、第1ファン37aに吸入された空気と第2ファン37bに吸入された空気が、切替装置ケース36内で混合しないように形成されている。 The first fan 37a and the second fan 37b are accommodated in a first scroll casing 37d and a second scroll casing 37e formed in the switching device case 36, respectively. The first scroll casing 37 d and the second scroll casing 37 e are formed so that the air sucked by the first fan 37 a and the air sucked by the second fan 37 b do not mix inside the switching device case 36 .
 さらに、切替装置ケース36の内部には、内部に形成された通風路を切り替える切替ドア35a、35bが配置されている。 Further, inside the switching device case 36, switching doors 35a and 35b for switching the ventilation paths formed inside are arranged.
 これにより、通風路切替装置35では、第1入口部36aから内部へ流入させた空気を第1ファン37aの吸入口側および第2ファン37bの吸入口側の少なくとも一方へ導くことができる。また、通風路切替装置35では、第2入口部36bから内部へ流入させた空気を第1ファン37aの吸入口側および第2ファン37bの吸入口側の少なくとも一方へ導くことができる。 Thus, in the ventilation path switching device 35, the air that has flowed into the inside from the first inlet portion 36a can be guided to at least one of the inlet side of the first fan 37a and the inlet side of the second fan 37b. Further, in the ventilation path switching device 35, the air that has flowed into the inside from the second inlet portion 36b can be guided to at least one of the suction port side of the first fan 37a and the suction port side of the second fan 37b.
 また、通風路切替装置35では、切替ドア35a、35bの変位の影響を受けることなく、外気入口部36eから内部へ流入させた外気を第1ファン37aの吸入口側へ導くことができる。また、通風路切替装置35では、切替ドア35a、35bの変位の影響を受けることなく、内気入口部36fから内部へ流入させた内気を第2ファン37bの吸入口側へ導くことができる。 In addition, in the ventilation path switching device 35, the outside air that has flowed inside from the outside air inlet portion 36e can be guided to the suction port side of the first fan 37a without being affected by the displacement of the switching doors 35a and 35b. Further, in the ventilation path switching device 35, the inside air that has flowed into the inside from the inside air inlet portion 36f can be guided to the suction port side of the second fan 37b without being affected by the displacement of the switching doors 35a and 35b.
 次に、上層側空気通路31cは、第1ファン37aから送風された空気を流通させる空気通路である。下層側空気通路31dは、第2ファン37bから送風された空気を流通させる空気通路である。図2に示すように、下層側空気通路31dは、上層側空気通路31cの下方側に配置されている。上層側空気通路31cおよび下層側空気通路31dは、空調ケース31の内部に配置された仕切板39によって上下に仕切られている。 Next, the upper air passage 31c is an air passage through which the air blown from the first fan 37a is circulated. The lower layer side air passage 31d is an air passage through which the air blown from the second fan 37b is circulated. As shown in FIG. 2, the lower air passage 31d is arranged below the upper air passage 31c. The upper layer side air passage 31c and the lower layer side air passage 31d are vertically partitioned by a partition plate 39 disposed inside the air conditioning case 31. As shown in FIG.
 上層側空気通路31cおよび下層側空気通路31dには、加熱部を形成するヒータコア22が配置されている。より具体的には、ヒータコア22は、仕切板39に形成された取付穴を貫通して、上層側空気通路31cおよび下層側空気通路31dの双方に跨がって配置されている。 A heater core 22 forming a heating portion is arranged in the upper layer side air passage 31c and the lower layer side air passage 31d. More specifically, the heater core 22 passes through a mounting hole formed in the partition plate 39, and is disposed across both the upper air passage 31c and the lower air passage 31d.
 また、仕切板39のうち、ヒータコア22の空気流れ下流側に位置付けられる部位には、上層側空気通路31cと下層側空気通路31dとを連通させる連通口39aが形成されている。 A communication port 39a is formed in a portion of the partition plate 39 positioned on the downstream side of the air flow of the heater core 22 to communicate the upper layer side air passage 31c and the lower layer side air passage 31d.
 さらに、空調ケース31の内部には、連通口39aを開閉する連通口開閉ドア39bが配置されている。連通口開閉ドア39bは、連通口開閉ドア用の電動アクチュエータによって駆動される。連通口開閉ドア用の電動アクチュエータは、制御装置60から出力される制御信号によって、その作動が制御される。 Further, inside the air conditioning case 31, a communication port opening/closing door 39b for opening and closing the communication port 39a is arranged. The communication port opening/closing door 39b is driven by a communication port opening/closing door electric actuator. The operation of the electric actuator for opening and closing the communication port is controlled by a control signal output from the control device 60 .
 空調ケース31の空気流れ最下流部には、ヒータコア22を通過して温度調整された空気である空調風を車室内へ吹き出すための複数の開口穴が配置されている。 A plurality of openings are arranged at the most downstream part of the air flow of the air conditioning case 31 for blowing out the conditioned air, which is air whose temperature has been adjusted by passing through the heater core 22, into the vehicle compartment.
 具体的には、上層側空気通路31c側から空調風を車室内へ吹き出すための開口穴として、デフロスタ開口穴43aおよびフェイス開口穴43bが配置されている。また、下層側空気通路31d側から空気を車室内へ吹き出すための開口穴として、フット開口穴43cが配置されている。 Specifically, a defroster opening hole 43a and a face opening hole 43b are arranged as opening holes for blowing the conditioned air into the vehicle interior from the upper air passage 31c side. Further, a foot opening hole 43c is arranged as an opening hole for blowing air into the vehicle interior from the side of the lower air passage 31d.
 デフロスタ開口穴43aは、車両窓ガラス51の内側面へ向けて空調風を吹き出すための開口穴である。フェイス開口穴43bは、車室内の乗員の上半身へ向けて空調風を吹き出すための開口穴である。フット開口穴43cは、乗員の足元へ向けて空調風を吹き出すための開口穴である。 The defroster opening hole 43a is an opening hole for blowing air-conditioned air toward the inner surface of the vehicle window glass 51. The face opening hole 43b is an opening hole for blowing the conditioned air toward the upper body of the passenger in the vehicle compartment. The foot opening hole 43c is an opening hole for blowing the conditioned air toward the passenger's feet.
 デフロスタ開口穴43aは、図示しないダクトを介して、車室内に設けられたデフロスタ吹出口に接続されている。フェイス開口穴43bは、図示しないダクトを介して、車室内に設けられたフェイス吹出口に接続されている。フット開口穴43cは、図示しないダクトを介して、車室内に設けられたフット吹出口に接続されている。 The defroster opening hole 43a is connected via a duct (not shown) to a defroster outlet provided in the vehicle interior. The face opening hole 43b is connected via a duct (not shown) to a face outlet provided in the vehicle interior. The foot opening hole 43c is connected via a duct (not shown) to a foot outlet provided in the vehicle interior.
 デフロスタ開口穴43a、フェイス開口穴43b、およびフット開口穴43cの送風空気流れ上流側には、それぞれデフロスタドア44a、フェイスドア44b、およびフットドア44cが配置されている。デフロスタドア44aは、デフロスタ開口穴43aの開口面積を調整する。フェイスドア44bは、フェイス開口穴43bの開口面積を調整する。フットドア44cは、フット開口穴43cの開口面積を調整する。 A defroster door 44a, a face door 44b, and a foot door 44c are arranged upstream of the defroster opening hole 43a, the face opening hole 43b, and the foot opening hole 43c, respectively. The defroster door 44a adjusts the opening area of the defroster opening hole 43a. The face door 44b adjusts the opening area of the face opening hole 43b. The foot door 44c adjusts the opening area of the foot opening hole 43c.
 デフロスタドア44a、フェイスドア44b、およびフットドア44cは、吹出口モードを切り替える吹出口モード切替部である。デフロスタドア44a、フェイスドア44b、およびフットドア44cは、リンク機構等を介して、吹出口モードドア用の電動アクチュエータによって連動して回転操作される。吹出口モードドア用の電動アクチュエータは、制御装置60から出力される制御信号によって、その作動が制御される。 The defroster door 44a, the face door 44b, and the foot door 44c are outlet mode switching units that switch the outlet mode. The defroster door 44a, the face door 44b, and the foot door 44c are rotated in conjunction with each other by an electric actuator for the outlet mode door via a link mechanism or the like. The operation of the electric actuator for the outlet mode door is controlled by a control signal output from the control device 60 .
 吹出口モード切替部によって切り替えられる吹出口モードとしては、具体的に、フェイスモード、バイレベルモード、フットモード等がある。 The outlet modes switched by the outlet mode switching unit specifically include face mode, bi-level mode, foot mode, and the like.
 フェイスモードは、フェイス開口穴43bを全開としてフェイス吹出口から空調風を吹き出す吹出口モードである。バイレベルモードは、フェイス開口穴43bおよびフット開口穴43cの両方を開口させて、フェイス吹出口から空調風を吹き出すとともに、フット吹出口から空調風を吹き出す吹出口モードである。 The face mode is an outlet mode in which the face opening hole 43b is fully opened and conditioned air is blown out from the face outlet. The bi-level mode is an air outlet mode in which both the face opening 43b and the foot opening 43c are opened to blow the air-conditioned air from the face air outlet and the air-conditioned air from the foot air outlet.
 フットモードは、デフロスタ開口穴43aおよびフット開口穴43cの双方を開口させて、デフロスタ吹出口から空調風を吹き出すとともに、フット吹出口から空調風を吹き出す吹出口モードである。 The foot mode is an outlet mode in which both the defroster opening hole 43a and the foot opening hole 43c are opened to blow out the conditioned air from the defroster outlet and the conditioned air from the foot outlet.
 さらに、乗員が操作パネル62に設けられた吹出口モード切替スイッチをマニュアル操作することによって、デフロスタモードに切り替えることもできる。デフロスタモードは、デフロスタ開口穴43aを全開としてデフロスタ吹出口から空調風を吹き出す吹出口モードである。 Further, the passenger can manually operate the outlet mode switch provided on the operation panel 62 to switch to the defroster mode. The defroster mode is an air outlet mode in which the defroster opening hole 43a is fully opened and conditioned air is blown out from the defroster outlet.
 また、図2に示すように、空調ケース31の最下方側には、排気送風機45が配置されている。 In addition, as shown in FIG. 2, an exhaust air blower 45 is arranged on the lowermost side of the air conditioning case 31 .
 排気送風機45は、空調ケース31内の空気を吸入して排気口45aから車室外へ排気する排気送風部である。排気送風機45は、スクロールケーシング内に配置された遠心多翼ファンを電動モータで回転駆動する遠心式送風機である。排気送風機45は、制御装置60から電動モータへ出力される制御電圧によって、回転数(すなわち、送風能力)が制御される。 The exhaust air blower 45 is an exhaust air blower that draws in the air in the air conditioning case 31 and exhausts it from the air outlet 45a to the outside of the vehicle. The exhaust blower 45 is a centrifugal blower that rotates a centrifugal multi-blade fan arranged in a scroll casing by an electric motor. The number of revolutions (that is, the blowing capacity) of the exhaust air blower 45 is controlled by a control voltage output from the control device 60 to the electric motor.
 排気送風機45の吸入口には、排気バイパス通路31gを介して、第1出口側内外気切替装置33aの車室外流出用の開口部が接続されている。さらに、排気送風機45の吸入口には、第2出口側内外気切替装置33bの車室外流出用の開口部が接続されている。 The intake port of the exhaust air blower 45 is connected to the outflow opening of the first outlet side inside/outside air switching device 33a through the exhaust bypass passage 31g. Further, the suction port of the exhaust air blower 45 is connected to the opening of the second outlet side inside/outside air switching device 33b for outflow to the outside of the passenger compartment.
 次に、図5を用いて、車両用空調装置1の電気制御部の概要について説明する。制御装置60は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。 Next, the outline of the electric control unit of the vehicle air conditioner 1 will be described using FIG. The control device 60 is composed of a well-known microcomputer including CPU, ROM, RAM, etc. and its peripheral circuits.
 制御装置60は、ROM内に記憶された空調制御プログラムに基づいて各種演算、処理を行い、出力側に接続された各種制御対象機器11、14a、14b、21、24a、24b、32a、32b、33a、33b、34a、34b、35、37、45等の作動を制御する。 The control device 60 performs various calculations and processes based on the air conditioning control program stored in the ROM, and controls various control target devices 11, 14a, 14b, 21, 24a, 24b, 32a, 32b, It controls the operation of 33a, 33b, 34a, 34b, 35, 37, 45, etc.
 制御装置60の入力側には、図5に示すように、各種の制御用センサが接続されている。制御用センサには、内気温センサ61a、外気温センサ61b、日射量センサ61cが含まれる。内気温センサ61aは、車室内の温度である内気温Trを検出する内気温検出部である。外気温センサ61bは、車室外の温度である外気温Tamを検出する外気温検出部である。日射量センサ61cは、車室内へ照射される日射量Asを検出する日射量検出部である。 Various control sensors are connected to the input side of the control device 60, as shown in FIG. The control sensors include an inside air temperature sensor 61a, an outside air temperature sensor 61b, and a solar radiation amount sensor 61c. The inside air temperature sensor 61a is an inside air temperature detection unit that detects the inside air temperature Tr, which is the temperature inside the vehicle compartment. The outside air temperature sensor 61b is an outside air temperature detection unit that detects the outside air temperature Tam, which is the temperature outside the vehicle compartment. The solar radiation amount sensor 61c is a solar radiation amount detection unit that detects the amount of solar radiation As irradiated into the vehicle interior.
 また、制御用センサには、高圧冷媒温度センサ61d、第1冷媒温度センサ61e、第2冷媒温度センサ61fが含まれる。高圧冷媒温度センサ61dは、圧縮機11から吐出された高圧冷媒の高圧冷媒温度Tdを検出する高圧冷媒温度検出部である。第1冷媒温度センサ61eは、第1熱交換器15aにおける第1冷媒温度Tr1(すなわち、第1熱交換器15aの温度)を検出する第1冷媒温度検出部である。第2冷媒温度センサ61fは、第2熱交換器15bにおける第2冷媒温度Tr2(すなわち、第2熱交換器15bの温度)を検出する第2冷媒温度検出部である。 Also, the control sensors include a high-pressure refrigerant temperature sensor 61d, a first refrigerant temperature sensor 61e, and a second refrigerant temperature sensor 61f. The high-pressure refrigerant temperature sensor 61 d is a high-pressure refrigerant temperature detection unit that detects the high-pressure refrigerant temperature Td of the high-pressure refrigerant discharged from the compressor 11 . The first refrigerant temperature sensor 61e is a first refrigerant temperature detection unit that detects the first refrigerant temperature Tr1 in the first heat exchanger 15a (that is, the temperature of the first heat exchanger 15a). The second refrigerant temperature sensor 61f is a second refrigerant temperature detector that detects a second refrigerant temperature Tr2 in the second heat exchanger 15b (that is, the temperature of the second heat exchanger 15b).
 また、制御用センサには、高圧冷媒圧力センサ61g、吸入冷媒圧力センサ61hが含まれる。高圧冷媒圧力センサ61gは、圧縮機11から吐出された高圧冷媒の高圧冷媒圧力Pdを検出する高圧冷媒圧力検出部である。吸入冷媒圧力センサ61hは、第2熱交換器15bから流出して圧縮機11へ吸入される吸入冷媒の吸入冷媒圧力Psを検出する吸入冷媒圧力検出部である。 Also, the control sensors include a high-pressure refrigerant pressure sensor 61g and an intake refrigerant pressure sensor 61h. The high-pressure refrigerant pressure sensor 61g is a high-pressure refrigerant pressure detector that detects the high-pressure refrigerant pressure Pd of the high-pressure refrigerant discharged from the compressor 11 . The refrigerant suction pressure sensor 61h is a refrigerant suction pressure detection unit that detects a refrigerant suction pressure Ps of the refrigerant suctioned into the compressor 11 after flowing out of the second heat exchanger 15b.
 また、制御用センサには、熱媒体温度センサ61iが含まれる。熱媒体温度センサ61iは、ヒータコア22へ流入する熱媒体の温度である熱媒体温度Twを検出する熱媒体温度検出部である。 Also, the control sensors include the heat medium temperature sensor 61i. The heat medium temperature sensor 61 i is a heat medium temperature detection unit that detects a heat medium temperature Tw, which is the temperature of the heat medium flowing into the heater core 22 .
 また、制御用センサには、湿度センサ61jが含まれる。湿度センサ61jは、車室内の車両窓ガラス51近傍の内気湿度Rh(相対湿度)を検出する。車両窓ガラス51近傍の内気湿度Rhは、車両窓ガラス51の曇り易さに相関する物理量である。内気湿度Rhは、車両窓ガラス51の防曇が必要であるか否かを判定するために利用することができる。従って、湿度センサ61jは、窓曇り検知部である。 Also, the control sensors include a humidity sensor 61j. The humidity sensor 61j detects the inside air humidity Rh (relative humidity) in the vicinity of the vehicle window glass 51 in the vehicle compartment. The inside air humidity Rh in the vicinity of the vehicle window glass 51 is a physical quantity that correlates with how easily the vehicle window glass 51 fogs. The inside air humidity Rh can be used to determine whether or not the vehicle window glass 51 needs to be defogged. Therefore, the humidity sensor 61j is a window fog detector.
 さらに、制御装置60の入力側には、操作パネル62が接続されている。操作パネル62は、車室内前部の計器盤付近に配置されている。操作パネル62には、乗員によって操作される各種操作スイッチが設けられている。制御装置60には、各種操作スイッチの操作信号が入力される。各種操作スイッチとしては、具体的に、オートスイッチ、エアコンスイッチ、風量設定スイッチ、温度設定スイッチ等がある。 Furthermore, an operation panel 62 is connected to the input side of the control device 60 . The operation panel 62 is arranged near the instrument panel in the front part of the passenger compartment. The operation panel 62 is provided with various operation switches that are operated by the passenger. Operation signals of various operation switches are input to the control device 60 . Examples of various operation switches include an auto switch, an air conditioner switch, an air volume setting switch, a temperature setting switch, and the like.
 オートスイッチは、乗員が車両用空調装置1の自動制御運転を設定あるいは解除する操作スイッチである。エアコンスイッチは、乗員が第1熱交換器15aあるいは第2熱交換器15bにて空気を冷却することを要求するための操作スイッチである。風量設定スイッチは、乗員が室内送風機37の風量をマニュアル設定する操作スイッチである。温度設定スイッチは、乗員が車室内の設定温度Tsetを設定する操作スイッチである。 The auto switch is an operation switch for the passenger to set or cancel the automatic control operation of the vehicle air conditioner 1 . The air conditioner switch is an operation switch for the passenger to request that the air be cooled by the first heat exchanger 15a or the second heat exchanger 15b. The air volume setting switch is an operation switch for manually setting the air volume of the indoor fan 37 by the passenger. The temperature setting switch is an operation switch for setting a preset temperature Tset in the passenger compartment by the occupant.
 また、本実施形態の制御装置60は、その出力側に接続された各種制御対象機器を制御する制御部が一体に構成されたものである。従って、それぞれの制御対象機器の作動を制御する構成(すなわち、ハードウェアおよびソフトウェア)が、それぞれの制御対象機器の作動を制御する制御部を構成している。例えば、圧縮機11の冷媒吐出能力を制御する構成が圧縮機制御部60aを構成している。 In addition, the control device 60 of the present embodiment is integrally configured with a control unit that controls various controlled devices connected to the output side thereof. Therefore, the configuration (that is, hardware and software) that controls the operation of each controlled device constitutes a control unit that controls the operation of each controlled device. For example, the configuration for controlling the refrigerant discharge capacity of the compressor 11 configures the compressor control section 60a.
 次に、上記構成の本実施形態の車両用空調装置1の作動について説明する。車両用空調装置1では、冷房モード、除湿暖房モード、暖房モード、除霜モードといった運転モードを切り替える。 Next, the operation of the vehicle air conditioner 1 of this embodiment having the above configuration will be described. The vehicle air conditioner 1 switches between operation modes such as a cooling mode, a dehumidifying heating mode, a heating mode, and a defrosting mode.
 冷房モードは、冷却された空気を車室内へ吹き出す運転モードである。除湿暖房モードは、冷却されて除湿された空気を再加熱して車室内へ吹き出す運転モードである。暖房モードは、加熱された空気を車室内へ吹き出す運転モードである。除霜モードは、着霜の生じた熱交換器の霜を取り除く運転モードである。 The cooling mode is an operating mode that blows out cooled air into the vehicle interior. The dehumidification/heating mode is an operation mode in which cooled and dehumidified air is reheated and blown into the passenger compartment. The heating mode is an operation mode in which heated air is blown into the vehicle interior. The defrost mode is an operation mode for defrosting a frosted heat exchanger.
 運転モードの切り替えは、予め制御装置60に記憶されている空調制御プログラムが実行されることによって行われる。空調制御プログラムは、操作パネル62のオートスイッチが投入(ON)されて、車室内空調の自動制御運転が設定された際に実行される。 The operation mode is switched by executing an air conditioning control program stored in the control device 60 in advance. The air-conditioning control program is executed when the auto switch of the operation panel 62 is turned on (ON) and automatic control operation of the vehicle interior air-conditioning is set.
 空調制御プログラムのメインルーチンでは、所定の周期毎に上述した各種の制御用センサの検出信号を読み込む。読み込んだ検出信号および操作信号の値に基づいて、車室内へ送風される空調風の目標温度である目標吹出温度TAOを算出する。そして、算出された目標吹出温度TAO等を用いて、運転モードを切り替える。  In the main routine of the air conditioning control program, the detection signals of the various control sensors described above are read at predetermined intervals. A target outlet temperature TAO, which is the target temperature of the conditioned air blown into the vehicle compartment, is calculated based on the values of the read detection signal and operation signal. Then, the operating mode is switched using the calculated target air temperature TAO and the like.
 目標吹出温度TAOは、以下数式F1を用いて算出される。
TAO=Kset×Tset-Kr×Tr-Kam×Tam-Ks×As+C…(F1)
 なお、Tsetは、操作パネル62の温度設定スイッチによって設定された車室内の設定温度である。Trは、内気温センサ61aによって検出された内気温である。Tamは、外気温センサ61bによって検出された外気温である。Asは、日射量センサ61cによって検出された日射量である。Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
The target blowing temperature TAO is calculated using the following formula F1.
TAO=Kset×Tset−Kr×Tr−Kam×Tam−Ks×As+C (F1)
It should be noted that Tset is the set temperature in the passenger compartment set by the temperature setting switch on the operation panel 62 . Tr is the internal temperature detected by the internal temperature sensor 61a. Tam is the outside temperature detected by the outside temperature sensor 61b. As is the amount of solar radiation detected by the solar radiation sensor 61c. Kset, Kr, Kam, and Ks are control gains, and C is a correction constant.
 そして、空調制御プログラムでは、目標吹出温度TAOが予め定めた基準冷房温度TAO1よりも低くなっており、かつ、操作パネル62のエアコンスイッチが投入されている際には、冷房モードに切り替えられる。また、目標吹出温度TAOが基準冷房温度TAO1以上になっており、かつ、エアコンスイッチが投入されている際には、除湿暖房モードに切り替えられる。また、エアコンスイッチが投入されていない場合には、暖房モードに切り替えられる。 Then, in the air conditioning control program, when the target blowout temperature TAO is lower than the predetermined reference cooling temperature TAO1 and the air conditioner switch on the operation panel 62 is turned on, the mode is switched to the cooling mode. Further, when the target blowout temperature TAO is equal to or higher than the reference cooling temperature TAO1 and the air conditioner switch is turned on, the mode is switched to the dehumidifying heating mode. Also, when the air conditioner switch is not turned on, it is switched to the heating mode.
 このため、冷房モードは、主に夏季のように比較的外気温が高い場合に実行されやすい。除湿暖房モードは、主に春季あるいは秋季に実行されやすい。暖房モードは、主に冬季の低外気温時に実行されやすい。以下に、各運転モードの詳細作動について説明する。 Therefore, the cooling mode is likely to be executed mainly when the outside temperature is relatively high, such as in summer. The dehumidifying heating mode is likely to be executed mainly in spring or autumn. The heating mode is likely to be executed mainly in winter when the outside temperature is low. The detailed operation of each operation mode will be described below.
 (1)冷房モード
 冷房モードでは、制御装置60が、ヒートポンプサイクル10の圧縮機11を作動させる。より具体的には、制御装置60は、第2冷媒温度センサ61fによって検出された第2冷媒温度Tr2が目標蒸発器温度TEOに近づくように、圧縮機11の冷媒吐出能力を制御する。
(1) Cooling Mode In the cooling mode, the controller 60 operates the compressor 11 of the heat pump cycle 10 . More specifically, the controller 60 controls the refrigerant discharge capacity of the compressor 11 so that the second refrigerant temperature Tr2 detected by the second refrigerant temperature sensor 61f approaches the target evaporator temperature TEO.
 目標蒸発器温度TEOは、目標吹出温度TAOに基づいて、予め制御装置60に記憶されている冷房モード用の制御マップを参照して決定される。冷房モード用の制御マップでは、目標吹出温度TAOの上昇に伴って、目標蒸発器温度TEOを上昇させるように決定する。また、目標蒸発器温度TEOは、第2熱交換器15bの着霜を抑制可能な値(本実施形態では、少なくとも1℃以上)に決定される。 The target evaporator temperature TEO is determined based on the target outlet temperature TAO with reference to a cooling mode control map stored in the controller 60 in advance. The control map for the cooling mode is determined so that the target evaporator temperature TEO is increased as the target outlet temperature TAO increases. Also, the target evaporator temperature TEO is determined to a value (at least 1° C. or higher in the present embodiment) that can suppress frost formation on the second heat exchanger 15b.
 また、制御装置60は、第1膨張弁14aを全開状態とする。また、制御装置60は、第2膨張弁14bを冷媒減圧作用を発揮する絞り状態とする。より具体的には、制御装置60は、第2熱交換器15bの出口側の冷媒の過熱度SHが予め定めた基準加熱度KSH(本実施形態では、5℃)に近づくように第2膨張弁14bの作動を制御する。第2熱交換器15bの出口側の冷媒の過熱度SHは、第2冷媒温度Tr2および吸入冷媒圧力センサ61hによって検出された吸入冷媒圧力Psから決定することができる。 Also, the control device 60 fully opens the first expansion valve 14a. In addition, the control device 60 puts the second expansion valve 14b into a throttled state that exerts a refrigerant decompression action. More specifically, the controller 60 controls the second expansion so that the degree of superheat SH of the refrigerant on the outlet side of the second heat exchanger 15b approaches a predetermined reference degree of heating KSH (5° C. in this embodiment). It controls the actuation of valve 14b. The degree of superheat SH of the refrigerant on the outlet side of the second heat exchanger 15b can be determined from the second refrigerant temperature Tr2 and the suction refrigerant pressure Ps detected by the suction refrigerant pressure sensor 61h.
 また、制御装置60は、予め定めた基準圧送能力を発揮するように、熱媒体回路20の熱媒体ポンプ21を作動させる。 In addition, the control device 60 operates the heat medium pump 21 of the heat medium circuit 20 so as to exhibit a predetermined reference pumping capability.
 また、制御装置60は、熱媒体ポンプ21から吐出された熱媒体の全流量が、水冷媒熱交換器12の熱媒体通路へ流入するように第1流量調整弁24aの作動を制御する。また、制御装置60は、水冷媒熱交換器12の熱媒体通路から流出した熱媒体の全流量が、熱媒体ラジエータ23へ流入するように、第2流量調整弁24bの作動を制御する。 Also, the control device 60 controls the operation of the first flow control valve 24 a so that the entire flow rate of the heat medium discharged from the heat medium pump 21 flows into the heat medium passage of the water-refrigerant heat exchanger 12 . Further, the control device 60 controls the operation of the second flow control valve 24b so that the entire flow rate of the heat medium flowing out from the heat medium passage of the water-refrigerant heat exchanger 12 flows into the heat medium radiator 23.
 また、制御装置60は、空調ユニット30の第1空気通路31aへ外気を流入させるように、第1入口側内外気切替装置32aの作動を制御する。また、制御装置60は、第1熱交換器15aを通過した全流量の空気を車室外流出用の開口部から流出させるように、第1出口側内外気切替装置33aの作動を制御する。 The control device 60 also controls the operation of the first inlet side inside/outside air switching device 32a so that the outside air flows into the first air passage 31a of the air conditioning unit 30. Further, the control device 60 controls the operation of the first outlet side inside/outside air switching device 33a so that the entire amount of air that has passed through the first heat exchanger 15a flows out from the opening for outflow to the outside of the passenger compartment.
 また、制御装置60は、第2空気通路31bへ外気を流入させるように、第2入口側内外気切替装置32bの作動を制御する。また、制御装置60は、第2熱交換器15bを通過した全流量の空気を車室内流出用の開口部から流出させるように、第2出口側内外気切替装置33bの作動を制御する。 The control device 60 also controls the operation of the second inlet side inside/outside air switching device 32b so that the outside air flows into the second air passage 31b. In addition, the control device 60 controls the operation of the second outlet side inside/outside air switching device 33b so that the entire amount of air that has passed through the second heat exchanger 15b flows out from the vehicle interior outflow opening.
 また、制御装置60は、外気通路ドア34aが外気バイパス通路31eを閉塞するように、外気通路ドア34aの駆動用アクチュエータへ出力される制御信号を決定する。また、制御装置60は、内気通路ドア34bが内気バイパス通路31fを閉塞するように、内気通路ドア34bの駆動用アクチュエータへ出力される制御信号を決定する。 The control device 60 also determines a control signal to be output to the actuator for driving the outside air passage door 34a so that the outside air passage door 34a closes the outside air bypass passage 31e. The control device 60 also determines a control signal to be output to the driving actuator of the inside air passage door 34b so that the inside air passage door 34b closes the inside air bypass passage 31f.
 また、制御装置60は、第2出口側内外気切替装置33bの車室内流出用の開口部から流出した空気を、室内送風機37の第1ファン37aおよび第2ファン37bの双方へ吸入させるように、通風路切替装置35内の通風路を切り替える。 In addition, the control device 60 causes both the first fan 37a and the second fan 37b of the indoor blower 37 to suck in the air that has flowed out from the opening of the second outlet side inside/outside air switching device 33b for outflow into the vehicle interior. , to switch the ventilation paths in the ventilation path switching device 35 .
 また、制御装置60は、目標送風能力を発揮するように室内送風機37を作動させる。室内送風機37の目標送風能力は、目標吹出温度TAOに基づいて、予め制御装置60に記憶されている制御マップを参照して決定される。室内送風機37用の制御マップでは、目標吹出温度TAOの極低温域(最大冷房域)および極高温域(最大暖房域)で室内送風機37の送風能力を最大とする。 In addition, the control device 60 operates the indoor fan 37 so as to exhibit the target air blowing capacity. The target air blowing capacity of the indoor fan 37 is determined by referring to a control map stored in advance in the control device 60 based on the target air temperature TAO. In the control map for the indoor fan 37, the blowing capacity of the indoor fan 37 is maximized in the extremely low temperature range (maximum cooling range) and the extremely high temperature range (maximum heating range) of the target air temperature TAO.
 さらに、目標吹出温度TAOが極低温域から中間温度域に向かって上昇するに伴って、目標吹出温度TAOの上昇に応じて送風能力を減少させる。また、目標吹出温度TAOが極高温域から中間温度域に向かって低下するに伴って、目標吹出温度TAOの低下に応じて送風能力を減少させる。また、目標吹出温度TAOが所定の中間温度域内に入ると、送風能力を最小とする。 Furthermore, as the target blowing temperature TAO rises from the cryogenic temperature range toward the intermediate temperature range, the blowing capacity is reduced in accordance with the increase in the target blowing temperature TAO. Further, as the target blowing temperature TAO decreases from the extremely high temperature range toward the intermediate temperature range, the air blowing capacity is reduced in accordance with the decrease in the target blowing temperature TAO. Further, when the target blowing temperature TAO falls within a predetermined intermediate temperature range, the blowing capacity is minimized.
 また、制御装置60は、予め定めた基準送風能力を発揮するように排気送風機45を作動させる。 In addition, the control device 60 operates the exhaust air blower 45 so as to exhibit a predetermined reference air blowing capacity.
 また、制御装置60は、連通口開閉ドア39bが連通口39aを全開させるように、連通口開閉ドア用の電動アクチュエータへ出力される制御信号を決定する。 The control device 60 also determines a control signal to be output to the electric actuator for the communication port opening/closing door so that the communication port opening/closing door 39b fully opens the communication port 39a.
 また、制御装置60は、目標吹出温度TAOに基づいて、予め制御装置60に記憶された制御マップを参照して、吹出口モードドア用の電動アクチュエータへ出力される制御信号を決定する。 Based on the target outlet temperature TAO, the control device 60 also refers to a control map stored in advance in the control device 60 to determine the control signal to be output to the electric actuator for the outlet mode door.
 吹出口モードドア用の制御マップでは、目標吹出温度TAOが低温域から高温域へと上昇するに伴って、フェイスモード、バイレベルモード、フットモードの順に切り替える。また、目標吹出温度TAOが高温域から低温域へと下降するに伴って、フットモード、バイレベルモード、フェイスモードの順に切り替える。このため、冷房モードでは、フェイスモードが選択されやすい。 In the control map for the outlet mode door, as the target outlet temperature TAO rises from the low temperature range to the high temperature range, the face mode, bilevel mode, and foot mode are switched in order. Further, as the target blowing temperature TAO decreases from the high temperature range to the low temperature range, the foot mode, bi-level mode, and face mode are switched in order. Therefore, the face mode is likely to be selected in the cooling mode.
 従って、冷房モードのヒートポンプサイクル10では、圧縮機11から吐出された高圧冷媒が、水冷媒熱交換器12の冷媒通路へ流入する。水冷媒熱交換器12の冷媒通路へ流入した冷媒は、熱媒体通路を流通する熱媒体と熱交換する。水冷媒熱交換器12では、冷媒が熱媒体に放熱して凝縮する。 Therefore, in the heat pump cycle 10 in cooling mode, the high-pressure refrigerant discharged from the compressor 11 flows into the refrigerant passage of the water-refrigerant heat exchanger 12 . The refrigerant flowing into the refrigerant passage of the water-refrigerant heat exchanger 12 exchanges heat with the heat medium flowing through the heat medium passage. In the water-refrigerant heat exchanger 12, the refrigerant radiates heat to the heat medium and condenses.
 水冷媒熱交換器12の冷媒通路から流出した冷媒は、レシーバ13へ流入して気液分離される。レシーバ13にて分離された液相冷媒は、全開となっている第1膨張弁14aを介して、第1熱交換器15aへ流入する。 The refrigerant flowing out from the refrigerant passage of the water-refrigerant heat exchanger 12 flows into the receiver 13 and is separated into gas and liquid. The liquid-phase refrigerant separated by the receiver 13 flows into the first heat exchanger 15a via the fully opened first expansion valve 14a.
 第1熱交換器15aへ流入した液相冷媒は、空調ユニット30の第1空気通路31aへ流入した空気(本実施形態では、外気)と熱交換する。第1熱交換器15aでは、液相冷媒が空気と熱交換して過冷却される。第1熱交換器15aから流出した冷媒は、第2膨張弁14bへ流入して減圧される。第2膨張弁14bにて減圧された低圧冷媒は、第2熱交換器15bへ流入する。 The liquid-phase refrigerant that has flowed into the first heat exchanger 15a exchanges heat with air that has flowed into the first air passage 31a of the air conditioning unit 30 (outside air in this embodiment). In the first heat exchanger 15a, the liquid-phase refrigerant exchanges heat with air and is subcooled. The refrigerant that has flowed out of the first heat exchanger 15a flows into the second expansion valve 14b and is decompressed. The low-pressure refrigerant decompressed by the second expansion valve 14b flows into the second heat exchanger 15b.
 第2熱交換器15bへ流入した冷媒は、空調ユニット30の第2空気通路31bへ流入した空気(本実施形態では、外気)と熱交換する。第2熱交換器15bでは、冷媒が空気から吸熱して蒸発する。これにより、第2空気通路31bを流通する空気が冷却される。第2熱交換器15bから流出した冷媒は、圧縮機11に吸入されて再び圧縮される。 The refrigerant that has flowed into the second heat exchanger 15b exchanges heat with the air that has flowed into the second air passage 31b of the air conditioning unit 30 (outside air in this embodiment). In the second heat exchanger 15b, the refrigerant absorbs heat from the air and evaporates. This cools the air flowing through the second air passage 31b. The refrigerant that has flowed out of the second heat exchanger 15b is sucked into the compressor 11 and compressed again.
 また、冷房モードの熱媒体回路20では、熱媒体ポンプ21から圧送された全流量の熱媒体が、第1熱媒体迂回通路25aおよび第1流量調整弁24aを介して、水冷媒熱交換器12の熱媒体通路へ流入する。水冷媒熱交換器12の熱媒体通路へ流入した熱媒体は、冷媒通路を流通する冷媒と熱交換して加熱される。 In addition, in the heat medium circuit 20 in the cooling mode, the entire flow of the heat medium pressure-fed from the heat medium pump 21 passes through the first heat medium bypass passage 25a and the first flow rate adjustment valve 24a to the water-refrigerant heat exchanger 12. flow into the heat medium passage of The heat medium flowing into the heat medium passage of the water-refrigerant heat exchanger 12 is heated by exchanging heat with the refrigerant flowing through the refrigerant passage.
 水冷媒熱交換器12にて加熱された熱媒体は、熱媒体ラジエータ23へ流入する。熱媒体ラジエータ23へ流入した熱媒体は、外気に放熱して冷却される。熱媒体ラジエータ23から流出した熱媒体は、第2流量調整弁24bを介して、熱媒体ポンプ21に吸入されて再び圧送される。 The heat medium heated by the water-refrigerant heat exchanger 12 flows into the heat medium radiator 23 . The heat medium that has flowed into the heat medium radiator 23 is cooled by radiating heat to the outside air. The heat medium flowing out of the heat medium radiator 23 is sucked into the heat medium pump 21 through the second flow control valve 24b and pumped again.
 また、冷房モードの空調ユニット30では、図6の太線矢印で示すように、空気が各空気通路を流れる。 Also, in the air conditioning unit 30 in the cooling mode, air flows through each air passage as indicated by the thick line arrows in FIG.
 具体的には、第1入口側内外気切替装置32aから第1空気通路31aへ流入した空気(本実施形態では、外気)は、第1熱交換器15aを通過する際に冷媒と熱交換して加熱される。第1熱交換器15aにて加熱された空気は、第1出口側内外気切替装置33aおよび排気バイパス通路31gを介して、排気送風機45へ吸入される。排気送風機45へ吸入された空気は、車室外へ排気される。 Specifically, the air (outside air in this embodiment) flowing from the first inlet side inside/outside air switching device 32a into the first air passage 31a exchanges heat with the refrigerant when passing through the first heat exchanger 15a. is heated. The air heated by the first heat exchanger 15a is sucked into the exhaust blower 45 via the first outlet side inside/outside air switching device 33a and the exhaust bypass passage 31g. The air sucked into the exhaust air blower 45 is exhausted to the outside of the passenger compartment.
 第2入口側内外気切替装置32bから第2空気通路31bへ流入した空気(本実施形態では、外気)は、第2熱交換器15bを通過する際に冷媒に吸熱されて冷却される。第2熱交換器15bにて冷却された空気は、第2出口側内外気切替装置33bおよび通風路切替装置35内の通風路を介して、室内送風機37の第1ファン37aおよび第2ファン37bへ吸入される。 The air (outside air in this embodiment) that has flowed into the second air passage 31b from the second inlet side inside/outside air switching device 32b absorbs heat by the refrigerant and is cooled when passing through the second heat exchanger 15b. The air cooled by the second heat exchanger 15b passes through the second outlet-side inside/outside air switching device 33b and the ventilation path in the ventilation path switching device 35, the first fan 37a and the second fan 37b of the indoor blower 37. inhaled into.
 第1ファン37aへ吸入された空気は、上層側空気通路31cの入口側へ送風される。上層側空気通路31cへ送風された空気は、ヒータコア22へ通過する。第2ファン37bへ吸入された空気は、下層側空気通路31dの入口側へ送風される。下層側空気通路31dへ送風された空気は、ヒータコア22を通過する。冷房モードでは、ヒータコア22へ熱媒体を流入させないので、ヒータコア22を通過する空気が加熱されることはない。 The air sucked into the first fan 37a is blown to the inlet side of the upper air passage 31c. The air blown to the upper air passage 31 c passes through the heater core 22 . The air sucked into the second fan 37b is sent to the inlet side of the lower air passage 31d. The air blown to the lower air passage 31 d passes through the heater core 22 . In the cooling mode, the heat medium does not flow into the heater core 22, so the air passing through the heater core 22 is not heated.
 また、冷房モードでは、連通口開閉ドア39bが連通口39aを全開としている。従って、上層側空気通路31cを流通した空気および下層側空気通路31dを流通した空気の双方が、吹出口モードに応じて開口している開口部から車室内へ吹き出される。これにより、車室内の冷房が実現される。 Also, in the cooling mode, the communication opening/closing door 39b fully opens the communication opening 39a. Therefore, both the air that has flowed through the upper air passage 31c and the air that has flowed through the lower air passage 31d are blown out into the passenger compartment from the opening that is open according to the blower port mode. Thereby, cooling of the passenger compartment is achieved.
 さらに、冷房モードのヒートポンプサイクル10では、水冷媒熱交換器12を冷媒を凝縮させる凝縮器として機能させ、第1熱交換器15aをレシーバ13から流出した液相冷媒を過冷却する過冷却部として機能させる。従って、冷房モードのヒートポンプサイクル10では、水冷媒熱交換器12、レシーバ13および第1熱交換器15aによって、いわゆるサブクール型の凝縮器を形成することができる。 Furthermore, in the heat pump cycle 10 in the cooling mode, the water-refrigerant heat exchanger 12 functions as a condenser that condenses the refrigerant, and the first heat exchanger 15a functions as a supercooling unit that supercools the liquid-phase refrigerant that flows out from the receiver 13. make it work. Therefore, in the cooling mode heat pump cycle 10, the water-refrigerant heat exchanger 12, the receiver 13, and the first heat exchanger 15a can form a so-called subcool type condenser.
 その結果、第2熱交換器15bの出口側冷媒のエンタルピから第2熱交換器15bの入口側冷媒のエンタルピを減算したエンタルピ差を拡大させて、第2熱交換器15bにおける空気の冷却能力を向上させることができる。 As a result, the enthalpy difference obtained by subtracting the enthalpy of the inlet-side refrigerant of the second heat exchanger 15b from the enthalpy of the outlet-side refrigerant of the second heat exchanger 15b is increased to increase the air cooling capacity of the second heat exchanger 15b. can be improved.
 (2)除湿暖房モード
 除湿暖房モードでは、制御装置60が、冷房モードと同様に、ヒートポンプサイクル10の圧縮機11を作動させる。
(2) Dehumidifying Heating Mode In the dehumidifying heating mode, the controller 60 operates the compressor 11 of the heat pump cycle 10 in the same manner as in the cooling mode.
 また、制御装置60は、第1膨張弁14aおよび第2膨張弁14bを絞り状態とする。より具体的には、制御装置60は、第2熱交換器15bの出口側の冷媒の過熱度SHが基準加熱度KSH(本実施形態では、5℃)に近づくように第1膨張弁14aおよび第2膨張弁14bの作動を制御する。 In addition, the control device 60 puts the first expansion valve 14a and the second expansion valve 14b into the throttle state. More specifically, the control device 60 controls the first expansion valve 14a and the It controls the operation of the second expansion valve 14b.
 さらに、目標吹出温度TAOに基づいて、予め制御装置60に記憶されている制御マップを参照して、第1膨張弁14aの絞り開度と第2膨張弁14bの絞り開度との比を決定する。除湿暖房モード用の制御マップでは、目標吹出温度TAOの上昇に伴って、第1膨張弁14aの絞り開度を減少させ、第2膨張弁14bの絞り開度を増加させるように決定する。 Further, based on the target blowout temperature TAO, a control map stored in advance in the control device 60 is referenced to determine the ratio between the throttle opening degree of the first expansion valve 14a and the throttle opening degree of the second expansion valve 14b. do. In the control map for the dehumidifying heating mode, the throttle opening of the first expansion valve 14a is decreased and the throttle opening of the second expansion valve 14b is increased as the target blowout temperature TAO rises.
 また、制御装置60は、冷房モードと同様に、熱媒体回路20の熱媒体ポンプ21を作動させる。 Also, the control device 60 operates the heat medium pump 21 of the heat medium circuit 20 as in the cooling mode.
 また、制御装置60は、熱媒体ポンプ21から吐出された熱媒体の全流量が、ヒータコア22へ流入するように、第1流量調整弁24aの作動を制御する。また、制御装置60は、熱媒体温度センサ61iによって検出された熱媒体温度Twが、目標熱媒体温度TWOに近づくように、第2流量調整弁24bの作動を制御する。 Also, the control device 60 controls the operation of the first flow control valve 24 a so that the entire flow rate of the heat medium discharged from the heat medium pump 21 flows into the heater core 22 . Further, the control device 60 controls the operation of the second flow control valve 24b so that the heat medium temperature Tw detected by the heat medium temperature sensor 61i approaches the target heat medium temperature TWO.
 目標熱媒体温度TWOは、目標吹出温度TAOに基づいて、予め制御装置60に記憶されている除湿暖房モード用の制御マップを参照して決定される。 The target heat medium temperature TWO is determined based on the target outlet temperature TAO by referring to a control map for the dehumidifying heating mode stored in advance in the control device 60 .
 また、制御装置60は、冷房モードと同様に、その他の空調ユニット30の構成機器の作動を制御する。例えば、制御装置60は、冷房モードと同様に、吹出口モードドア用の電動アクチュエータへ出力される制御信号を決定する。このため、除湿暖房モードでは、吹出口モードとして、フェイスモードまたはバイレベルモードが選択されやすい。 In addition, the control device 60 controls the operations of the other components of the air conditioning unit 30 in the same manner as in the cooling mode. For example, the controller 60 determines the control signals that are output to the electric actuators for the outlet mode doors, as well as for the cooling mode. Therefore, in the dehumidifying and heating mode, the face mode or the bi-level mode is likely to be selected as the outlet mode.
 従って、除湿暖房モードのヒートポンプサイクル10では、圧縮機11から吐出された高圧冷媒が、水冷媒熱交換器12の冷媒通路へ流入する。水冷媒熱交換器12の冷媒通路へ流入した冷媒は、熱媒体通路を流通する熱媒体と熱交換する。水冷媒熱交換器12では、冷媒が熱媒体に放熱して凝縮する。 Therefore, in the heat pump cycle 10 in the dehumidifying and heating mode, the high-pressure refrigerant discharged from the compressor 11 flows into the refrigerant passage of the water-refrigerant heat exchanger 12 . The refrigerant flowing into the refrigerant passage of the water-refrigerant heat exchanger 12 exchanges heat with the heat medium flowing through the heat medium passage. In the water-refrigerant heat exchanger 12, the refrigerant radiates heat to the heat medium and condenses.
 水冷媒熱交換器12の冷媒通路から流出した冷媒は、レシーバ13へ流入して気液分離される。レシーバ13にて分離された液相冷媒は、第1膨張弁14aへ流入して減圧される。第1膨張弁14aにて減圧された冷媒は、第1熱交換器15aへ流入する。 The refrigerant flowing out from the refrigerant passage of the water-refrigerant heat exchanger 12 flows into the receiver 13 and is separated into gas and liquid. The liquid-phase refrigerant separated by the receiver 13 flows into the first expansion valve 14a and is decompressed. The refrigerant decompressed by the first expansion valve 14a flows into the first heat exchanger 15a.
 第1熱交換器15aへ流入した冷媒は、空調ユニット30の第1空気通路31aへ流入した空気(本実施形態では、外気)と熱交換する。この際、第1熱交換器15aにおける冷媒の飽和温度が外気温Tamよりも高い場合には、第1熱交換器15aは冷媒を過冷却する過冷却用の熱交換器として機能する。また、第1熱交換器15aにおける冷媒の飽和温度が外気温Tamよりも低い場合には、第1熱交換器15aは冷媒を蒸発させる蒸発器として機能する。 The refrigerant that has flowed into the first heat exchanger 15a exchanges heat with the air that has flowed into the first air passage 31a of the air conditioning unit 30 (outside air in this embodiment). At this time, when the saturation temperature of the refrigerant in the first heat exchanger 15a is higher than the outside air temperature Tam, the first heat exchanger 15a functions as a supercooling heat exchanger that supercools the refrigerant. Further, when the saturation temperature of the refrigerant in the first heat exchanger 15a is lower than the outside air temperature Tam, the first heat exchanger 15a functions as an evaporator that evaporates the refrigerant.
 第1熱交換器15aから流出した冷媒は、第2膨張弁14bへ流入して減圧される。第2膨張弁14bにて減圧された冷媒は、第2熱交換器15bへ流入する。 The refrigerant that has flowed out of the first heat exchanger 15a flows into the second expansion valve 14b and is decompressed. The refrigerant decompressed by the second expansion valve 14b flows into the second heat exchanger 15b.
 第2熱交換器15bへ流入した冷媒は、空調ユニット30の第2空気通路31bへ流入した空気(本実施形態では、外気)と熱交換する。第2熱交換器15bでは、冷媒が空気から吸熱して蒸発する。これにより、第2空気通路31bを流通する空気が冷却されて除湿される。第2熱交換器15bから流出した冷媒は、圧縮機11に吸入されて再び圧縮される。 The refrigerant that has flowed into the second heat exchanger 15b exchanges heat with the air that has flowed into the second air passage 31b of the air conditioning unit 30 (outside air in this embodiment). In the second heat exchanger 15b, the refrigerant absorbs heat from the air and evaporates. As a result, the air flowing through the second air passage 31b is cooled and dehumidified. The refrigerant that has flowed out of the second heat exchanger 15b is sucked into the compressor 11 and compressed again.
 また、除湿暖房モードの熱媒体回路20では、熱媒体ポンプ21から圧送された全流量の熱媒体が、ヒータコア22へ流入する。ヒータコア22へ流入した熱媒体は、上層側空気通路31cを流通する空気および下層側空気通路31dを流通する空気と熱交換して、空気へ放熱する。これにより、上層側空気通路31cを流通する空気および下層側空気通路31dを流通する空気が加熱される。 In addition, in the heat medium circuit 20 in the dehumidifying and heating mode, the heat medium pumped from the heat medium pump 21 flows into the heater core 22 at the full flow rate. The heat medium flowing into the heater core 22 exchanges heat with air flowing through the upper air passage 31c and air flowing through the lower air passage 31d, and releases heat to the air. As a result, the air flowing through the upper air passage 31c and the air flowing through the lower air passage 31d are heated.
 ヒータコア22から流出した熱媒体は、水冷媒熱交換器12の熱媒体通路へ流入する。水冷媒熱交換器12の熱媒体通路へ流入した熱媒体は、高圧冷媒と熱交換して加熱される。水冷媒熱交換器12の熱媒体通路から熱媒体ラジエータ23へ流入した熱媒体は、外気に放熱して冷却される。 The heat medium flowing out of the heater core 22 flows into the heat medium passage of the water-refrigerant heat exchanger 12 . The heat medium that has flowed into the heat medium passage of the water-refrigerant heat exchanger 12 is heated by exchanging heat with the high-pressure refrigerant. The heat medium flowing into the heat medium radiator 23 from the heat medium passage of the water-refrigerant heat exchanger 12 releases heat to the outside air and is cooled.
 熱媒体ラジエータ23から流出した熱媒体は、第2流量調整弁24bの一方の流入口へ流入する。また、水冷媒熱交換器12の熱媒体通路から第2熱媒体迂回通路25b側へ流出した熱媒体は、第2流量調整弁24bの他方の流入口へ流入する。 The heat medium flowing out of the heat medium radiator 23 flows into one inlet of the second flow control valve 24b. Further, the heat medium flowing out from the heat medium passage of the water-refrigerant heat exchanger 12 toward the second heat medium bypass passage 25b flows into the other inlet of the second flow control valve 24b.
 この際、第2流量調整弁24bは、熱媒体温度Twが目標熱媒体温度TWOに近づくように、熱媒体ラジエータ23へ流入させる熱媒体の流量と第2熱媒体迂回通路25bへ流入させる熱媒体の流量との流量比を調整する。第2流量調整弁24bから流出した熱媒体は、熱媒体ポンプ21に吸入されて再びヒータコア22側へ圧送される。 At this time, the second flow control valve 24b adjusts the flow rate of the heat medium flowing into the heat medium radiator 23 and the heat medium flowing into the second heat medium bypass passage 25b so that the heat medium temperature Tw approaches the target heat medium temperature TWO. Adjust the flow rate to the flow rate of The heat medium that has flowed out of the second flow control valve 24b is sucked into the heat medium pump 21 and pressure-fed to the heater core 22 side again.
 また、除湿暖房モードの空調ユニット30では、図6の太線矢印で示すように、冷房モードと同様に空気が各空気通路を流れる。除湿暖房モードでは、第2熱交換器15bにて冷却されて除湿された空気が、第2出口側内外気切替装置33bおよび通風路切替装置35内の通風路を介して、室内送風機37の第1ファン37aおよび第2ファン37bへ吸入される。 In addition, in the air conditioning unit 30 in the dehumidification and heating mode, air flows through each air passage in the same manner as in the cooling mode, as indicated by the thick arrows in FIG. In the dehumidifying heating mode, the air cooled and dehumidified by the second heat exchanger 15b passes through the second outlet-side inside/outside air switching device 33b and the ventilation path in the ventilation path switching device 35, and the second air of the indoor fan 37. The air is sucked into the first fan 37a and the second fan 37b.
 第1ファン37aへ吸入された空気は、上層側空気通路31cの入口側へ送風される。上層側空気通路31cへ送風された空気は、ヒータコア22を通過する際に熱媒体と熱交換して再加熱される。第2ファン37bへ吸入された空気は、下層側空気通路31dの入口側へ送風される。下層側空気通路31dへ送風された空気は、ヒータコア22を通過する際に熱媒体と熱交換して再加熱される。 The air sucked into the first fan 37a is blown to the inlet side of the upper air passage 31c. The air blown into the upper air passage 31c exchanges heat with the heat medium when passing through the heater core 22 and is reheated. The air sucked into the second fan 37b is sent to the inlet side of the lower air passage 31d. The air blown into the lower air passage 31d exchanges heat with the heat medium when passing through the heater core 22 and is reheated.
 また、除湿暖房モードでは、連通口開閉ドア39bが連通口39aを全開としている。従って、上層側空気通路31cを流通して再加熱された空気および下層側空気通路31dを流通して再加熱された空気の双方が、吹出口モードに応じて開口している開口部から車室内へ吹き出される。これにより、車室内の除湿暖房が実現される。 Also, in the dehumidification and heating mode, the communication opening/closing door 39b fully opens the communication opening 39a. Therefore, both the air that has been reheated through the upper air passage 31c and the air that has been reheated through the lower air passage 31d are discharged into the passenger compartment from the opening that is open according to the blowout port mode. is blown out. As a result, dehumidification and heating of the passenger compartment are achieved.
 さらに、直列除湿暖房モードのヒートポンプサイクル10では、目標吹出温度TAOの上昇に伴って、第1膨張弁14aの絞り開度を減少させ、第2膨張弁14bの絞り開度を増加させている。これによれば、目標吹出温度TAOの上昇に伴って、ヒータコア22における送風空気の加熱能力を向上させることができる。 Furthermore, in the heat pump cycle 10 in series dehumidification heating mode, the throttle opening degree of the first expansion valve 14a is decreased and the throttle opening degree of the second expansion valve 14b is increased as the target blowout temperature TAO rises. According to this, the heating capacity of the heater core 22 for the blown air can be improved as the target blowing temperature TAO increases.
 より詳細には、第1熱交換器15aにおける冷媒の飽和温度が外気温Tamよりも高くなっている際には、目標吹出温度TAOの上昇に伴って、第1熱交換器15aにおける冷媒の飽和温度から外気温Tamを減算した温度差を縮小させることができる。従って、目標吹出温度TAOの上昇に伴って、第1熱交換器15aにおける冷媒から外気への放熱量を減少させて、水冷媒熱交換器12における冷媒から熱媒体への放熱量を増加させることができる。 More specifically, when the saturation temperature of the refrigerant in the first heat exchanger 15a is higher than the outside air temperature Tam, the saturation temperature of the refrigerant in the first heat exchanger 15a increases as the target outlet temperature TAO rises. A temperature difference obtained by subtracting the outside air temperature Tam from the temperature can be reduced. Therefore, as the target outlet temperature TAO rises, the amount of heat released from the refrigerant to the outside air in the first heat exchanger 15a is reduced, and the amount of heat released from the refrigerant to the heat medium in the water-refrigerant heat exchanger 12 is increased. can be done.
 また、第1熱交換器15aにおける冷媒の飽和温度が外気温Tamよりも低くなっている際には、目標吹出温度TAOの上昇に伴って、外気温Tamから第1熱交換器15aにおける冷媒の飽和温度を減算した温度差を拡大させることができる。目標吹出温度TAOの上昇に伴って、第1熱交換器15aにて冷媒が外気から吸熱する吸熱量を増加させて、水冷媒熱交換器12における冷媒から熱媒体への放熱量を増加させることができる。 Further, when the saturation temperature of the refrigerant in the first heat exchanger 15a is lower than the outside air temperature Tam, the amount of refrigerant in the first heat exchanger 15a increases from the outside air temperature Tam as the target outlet temperature TAO rises. The temperature difference with the saturation temperature subtracted can be magnified. As the target outlet temperature TAO increases, the amount of heat absorbed by the refrigerant from the outside air in the first heat exchanger 15a is increased, and the amount of heat released from the refrigerant to the heat medium in the water-refrigerant heat exchanger 12 is increased. can be done.
 その結果、除湿暖房モードでは、目標吹出温度TAOの上昇に伴って、ヒータコア22における送風空気の加熱能力を向上させることができる。 As a result, in the dehumidification heating mode, the heating capacity of the heater core 22 for the blown air can be improved as the target blowout temperature TAO rises.
 (3)暖房モード
 暖房モードでは、制御装置60が、ヒートポンプサイクル10の圧縮機11を作動させる。より具体的には、制御装置60は、高圧冷媒圧力センサ61gによって検出された高圧冷媒圧力Pdが、目標高圧PDOに近づくように、圧縮機11の冷媒吐出能力を制御する。
(3) Heating Mode In the heating mode, the controller 60 operates the compressor 11 of the heat pump cycle 10 . More specifically, the control device 60 controls the refrigerant discharge capacity of the compressor 11 so that the high pressure refrigerant pressure Pd detected by the high pressure refrigerant pressure sensor 61g approaches the target high pressure PDO.
 目標高圧PDOは、目標吹出温度TAOに基づいて、予め制御装置60に記憶されている暖房モード用の制御マップを参照して決定される。暖房モード用の制御マップでは、目標吹出温度TAOの上昇に伴って、目標高圧PDOを上昇させるように決定する。 The target high pressure PDO is determined by referring to a heating mode control map stored in advance in the controller 60 based on the target outlet temperature TAO. The control map for the heating mode is determined so that the target high pressure PDO is increased as the target outlet temperature TAO increases.
 また、制御装置60は、第1膨張弁14aを絞り状態とする。より具体的には、制御装置60は、第1冷媒温度センサ61eによって検出された第1冷媒温度Tr1が目標第1冷媒温度KTr1に近づくように、第1膨張弁14aの作動を制御する。 In addition, the control device 60 puts the first expansion valve 14a in the throttle state. More specifically, the control device 60 controls the operation of the first expansion valve 14a so that the first refrigerant temperature Tr1 detected by the first refrigerant temperature sensor 61e approaches the target first refrigerant temperature KTr1.
 目標第1冷媒温度KTr1は、内気温Trに基づいて、予め制御装置60に記憶されている暖房モード用の制御マップを参照して決定される。暖房モード用の制御マップでは、内気温Trよりも低い値で、第1熱交換器15aの着霜を抑制可能な値(本実施形態では、少なくとも1℃以上)に、目標第1冷媒温度KTr1を決定する。 The target first refrigerant temperature KTr1 is determined based on the inside air temperature Tr with reference to a heating mode control map stored in the control device 60 in advance. In the control map for the heating mode, the target first refrigerant temperature KTr1 is set to a value lower than the inside air temperature Tr and capable of suppressing frost formation on the first heat exchanger 15a (at least 1° C. or higher in the present embodiment). to decide.
 また、制御装置60は、第2膨張弁14bを絞り状態とする。より具体的には、制御装置60は、第2熱交換器15bの出口側の冷媒の過熱度SHが基準加熱度KSHに近づくように第2膨張弁14bの作動を制御する。暖房モードでは、第2熱交換器15bにおける冷媒蒸発温度が外気温Tamよりも低くなる。 Also, the control device 60 puts the second expansion valve 14b in the throttle state. More specifically, the control device 60 controls the operation of the second expansion valve 14b so that the degree of superheat SH of the refrigerant on the outlet side of the second heat exchanger 15b approaches the reference degree of heating KSH. In the heating mode, the refrigerant evaporation temperature in the second heat exchanger 15b is lower than the outside air temperature Tam.
 また、制御装置60は、冷房モードと同様に、熱媒体回路20の熱媒体ポンプ21を作動させる。また、制御装置60は、除湿暖房モードと同様に、第1流量調整弁24aおよび第2流量調整弁24bの作動を制御する。 Also, the control device 60 operates the heat medium pump 21 of the heat medium circuit 20 as in the cooling mode. In addition, the control device 60 controls the operation of the first flow control valve 24a and the second flow control valve 24b, similarly to the dehumidification heating mode.
 また、制御装置60は、空調ユニット30の第1空気通路31aへ内気を流入させるように、第1入口側内外気切替装置32aの作動を制御する。また、制御装置60は、第1熱交換器15aを通過した全流量の空気を車室外流出用の開口部から流出させるように、第1出口側内外気切替装置33aの作動を制御する。 In addition, the control device 60 controls the operation of the first inlet side inside/outside air switching device 32a so that the inside air flows into the first air passage 31a of the air conditioning unit 30. Further, the control device 60 controls the operation of the first outlet side inside/outside air switching device 33a so that the entire amount of air that has passed through the first heat exchanger 15a flows out from the opening for outflow to the outside of the passenger compartment.
 また、制御装置60は、第2空気通路31bへ外気を流入させるように、第2入口側内外気切替装置32bの作動を制御する。また、制御装置60は、第2熱交換器15bを通過した全流量の空気を車室外流出用の開口部から流出させるように、第2出口側内外気切替装置33bの作動を制御する。 The control device 60 also controls the operation of the second inlet side inside/outside air switching device 32b so that the outside air flows into the second air passage 31b. In addition, the control device 60 controls the operation of the second outlet side inside/outside air switching device 33b so that the entire amount of air that has passed through the second heat exchanger 15b flows out from the opening for outflow to the outside of the passenger compartment.
 また、制御装置60は、外気通路ドア34aが外気バイパス通路31eを全開させるように、外気通路ドア34aの駆動用アクチュエータへ出力される制御信号を決定する。また、制御装置60は、内気通路ドア34bが内気バイパス通路31fを全開させるように、内気通路ドア34bの駆動用アクチュエータへ出力される制御信号を決定する。 The control device 60 also determines a control signal to be output to the drive actuator of the outside air passage door 34a so that the outside air passage door 34a fully opens the outside air bypass passage 31e. The control device 60 also determines a control signal to be output to the driving actuator of the inside air passage door 34b so that the inside air passage door 34b fully opens the inside air bypass passage 31f.
 また、制御装置60は、外気バイパス通路31eから流出した空気を、室内送風機37の第1ファン37aへ吸入させるように、通風路切替装置35内の通風路を切り替える。さらに、内気バイパス通路31fから流出した空気を、室内送風機37の第2ファン37bへ吸入させるように、通風路切替装置35内の通風路を切り替える。 In addition, the control device 60 switches the ventilation path in the ventilation path switching device 35 so that the air flowing out from the outside air bypass passage 31e is drawn into the first fan 37a of the indoor blower 37. Further, the ventilation path in the ventilation path switching device 35 is switched so that the air flowing out from the inside air bypass passage 31f is drawn into the second fan 37b of the indoor blower 37 .
 また、制御装置60は、連通口開閉ドア39bが連通口39aを閉塞させるように、連通口開閉ドア用の電動アクチュエータへ出力される制御信号を決定する。また、制御装置60は、吹出口モードがフットモードとなるように、吹出口モードドア用の電動アクチュエータへ出力される制御信号を決定する。 The control device 60 also determines a control signal to be output to the electric actuator for the communication port opening/closing door so that the communication port opening/closing door 39b closes the communication port 39a. Further, the control device 60 determines the control signal to be output to the electric actuator for the outlet mode door so that the outlet mode is the foot mode.
 また、制御装置60は、冷房モードと同様に、その他の空調ユニット30の構成機器の作動を制御する。 In addition, the control device 60 controls the operations of the other components of the air conditioning unit 30 in the same manner as in the cooling mode.
 従って、暖房モードのヒートポンプサイクル10では、圧縮機11から吐出された高圧冷媒が、水冷媒熱交換器12の冷媒通路へ流入する。水冷媒熱交換器12の冷媒通路へ流入した冷媒は、熱媒体通路を流通する熱媒体と熱交換する。水冷媒熱交換器12では、冷媒が熱媒体に放熱して凝縮する。 Therefore, in the heat pump cycle 10 in heating mode, the high-pressure refrigerant discharged from the compressor 11 flows into the refrigerant passage of the water-refrigerant heat exchanger 12 . The refrigerant flowing into the refrigerant passage of the water-refrigerant heat exchanger 12 exchanges heat with the heat medium flowing through the heat medium passage. In the water-refrigerant heat exchanger 12, the refrigerant radiates heat to the heat medium and condenses.
 水冷媒熱交換器12の冷媒通路から流出した冷媒は、レシーバ13へ流入して気液分離される。レシーバ13にて分離された液相冷媒は、第1膨張弁14aへ流入して減圧される。第1膨張弁14aにて減圧された冷媒は、第1熱交換器15aへ流入する。 The refrigerant flowing out from the refrigerant passage of the water-refrigerant heat exchanger 12 flows into the receiver 13 and is separated into gas and liquid. The liquid-phase refrigerant separated by the receiver 13 flows into the first expansion valve 14a and is decompressed. The refrigerant decompressed by the first expansion valve 14a flows into the first heat exchanger 15a.
 第1熱交換器15aへ流入した冷媒は、空調ユニット30の第1空気通路31aへ流入した空気(本実施形態では、内気)と熱交換する。第1熱交換器15aでは、冷媒が空気から吸熱して蒸発する。第1熱交換器15aから流出した冷媒は、第2膨張弁14bへ流入して減圧される。第2膨張弁14bにて減圧された冷媒は、第2熱交換器15bへ流入する。 The refrigerant that has flowed into the first heat exchanger 15a exchanges heat with the air that has flowed into the first air passage 31a of the air conditioning unit 30 (the inside air in this embodiment). In the first heat exchanger 15a, the refrigerant absorbs heat from the air and evaporates. The refrigerant that has flowed out of the first heat exchanger 15a flows into the second expansion valve 14b and is decompressed. The refrigerant decompressed by the second expansion valve 14b flows into the second heat exchanger 15b.
 第2熱交換器15bへ流入した冷媒は、空調ユニット30の第2空気通路31bへ流入した空気(本実施形態では、外気)と熱交換する。第2熱交換器15bでは、冷媒が空気から吸熱してさらに蒸発する。第2熱交換器15bから流出した冷媒は、圧縮機11に吸入されて再び圧縮される。 The refrigerant that has flowed into the second heat exchanger 15b exchanges heat with the air that has flowed into the second air passage 31b of the air conditioning unit 30 (outside air in this embodiment). In the second heat exchanger 15b, the refrigerant absorbs heat from the air and further evaporates. The refrigerant that has flowed out of the second heat exchanger 15b is sucked into the compressor 11 and compressed again.
 また、暖房モードの熱媒体回路20では、除湿暖房モードと同様に、目標熱媒体温度TWOに近づくように温度調整された熱媒体が、ヒータコア22へ流入する。 Also, in the heat medium circuit 20 in the heating mode, the heat medium whose temperature has been adjusted to approach the target heat medium temperature TWO flows into the heater core 22, as in the dehumidifying and heating mode.
 また、暖房モードの空調ユニット30では、図7の太線矢印で示すように、空気が各空気通路を流れる。 Also, in the air conditioning unit 30 in the heating mode, air flows through each air passage as indicated by the thick line arrows in FIG.
 第1入口側内外気切替装置32aから第1空気通路31aへ流入した空気(本実施形態では、内気)は、第1熱交換器15aを通過する際に冷媒と熱交換して吸熱される。第1熱交換器15aにて冷却された空気は、第1出口側内外気切替装置33aおよび排気バイパス通路31gを介して、排気送風機45へ吸入される。排気送風機45へ吸入された空気は、車室外側へ排気される。 The air (inside air in this embodiment) that has flowed into the first air passage 31a from the first inlet side inside/outside air switching device 32a exchanges heat with the refrigerant and absorbs heat when passing through the first heat exchanger 15a. The air cooled by the first heat exchanger 15a is sucked into the exhaust blower 45 via the first outlet side inside/outside air switching device 33a and the exhaust bypass passage 31g. The air sucked into the exhaust air blower 45 is exhausted to the outside of the vehicle.
 第2入口側内外気切替装置32bから第2空気通路31bへ流入した空気(本実施形態では、外気)は、第2熱交換器15bを通過する際に冷媒と熱交換して吸熱される。第2熱交換器15bにて冷却された空気は、第2出口側内外気切替装置33bを介して、排気送風機45へ吸入される。排気送風機45へ吸入された空気は、車室外側へ排気される。 The air (outside air in this embodiment) flowing from the second inlet side inside/outside air switching device 32b into the second air passage 31b exchanges heat with the refrigerant and absorbs heat when passing through the second heat exchanger 15b. The air cooled by the second heat exchanger 15b is sucked into the exhaust air blower 45 via the second outlet side inside/outside air switching device 33b. The air sucked into the exhaust air blower 45 is exhausted to the outside of the vehicle.
 外気バイパス通路31eへ流入した外気は、通風路切替装置35内の通風路を介して、第1ファン37aへ吸入される。第1ファン37aへ吸入された外気は、上層側空気通路31cの入口側へ送風される。上層側空気通路31cへ送風された外気は、ヒータコア22へ流入する。ヒータコア22へ流入した外気は熱媒体回路20を循環する熱媒体と熱交換して加熱される。 The outside air that has flowed into the outside air bypass passage 31e is sucked into the first fan 37a through the ventilation passage in the ventilation passage switching device 35. The outside air sucked into the first fan 37a is blown to the inlet side of the upper air passage 31c. The outside air blown into the upper air passage 31 c flows into the heater core 22 . The outside air flowing into the heater core 22 exchanges heat with the heat medium circulating in the heat medium circuit 20 and is heated.
 内気バイパス通路31fへ流入した内気は、通風路切替装置35内の通風路を介して、第2ファン37bへ吸入される。第2ファン37bへ吸入された外気は、下層側空気通路31dの入口側へ送風される。下層側空気通路31dへ送風された外気は、ヒータコア22へ流入する。ヒータコア22へ流入した外気は熱媒体回路20を循環する熱媒体と熱交換して加熱される。 The inside air that has flowed into the inside air bypass passage 31f is sucked into the second fan 37b through the ventilation passage in the ventilation passage switching device 35. The outside air sucked into the second fan 37b is blown to the inlet side of the lower air passage 31d. The outside air blown into the lower air passage 31 d flows into the heater core 22 . The outside air flowing into the heater core 22 exchanges heat with the heat medium circulating in the heat medium circuit 20 and is heated.
 暖房モードでは、連通口開閉ドア39bが連通口39aを閉じており、吹出口モードがフットモードとなっている。 In the heating mode, the communication port opening/closing door 39b closes the communication port 39a, and the air outlet mode is the foot mode.
 従って、上層側空気通路31cのヒータコア22にて加熱された外気は、デフロスタ開口穴43aを介して、車両窓ガラス51の内側面へ向けて吹き出される。また、下層側空気通路31dのヒータコア22にて加熱された内気は、フット開口穴43cを介して、乗員側(より詳細には、乗員の足下側)へ向けて吹き出される。これにより、車室内の暖房が実現される。 Therefore, the outside air heated by the heater core 22 in the upper air passage 31c is blown toward the inner surface of the vehicle window glass 51 through the defroster opening hole 43a. Also, the inside air heated by the heater core 22 in the lower air passage 31d is blown out toward the passenger (more specifically, toward the passenger's feet) through the foot opening hole 43c. Thereby, the heating of the passenger compartment is achieved.
 この際、暖房モードでは、内気よりも湿度の低い外気を加熱して車両窓ガラス51の内側面へ向けて吹き出しているので、車両窓ガラスの防曇性能を向上させることができる。また、外気よりも温度の高い内気を加熱して乗員の足元へ向けて吹き出しているので、低温の外気を加熱する場合よりも、暖房のために消費されるエネルギを低減させることができる。さらに、頭寒足熱型の快適な暖房を実現することができる。 At this time, in the heating mode, the outside air, which has a lower humidity than the inside air, is heated and blown out toward the inner surface of the vehicle window glass 51, so that the anti-fogging performance of the vehicle window glass can be improved. In addition, since the inside air having a higher temperature than the outside air is heated and blown toward the feet of the occupants, the energy consumed for heating can be reduced as compared with the case of heating the outside air having a low temperature. Furthermore, it is possible to realize comfortable heating of the cold-head-heat-foot type.
 (4)除霜モード
 除霜モードは、暖房モードの実行中に、第2熱交換器15bに着霜が生じたと判定された際に実行される運転モードである。
(4) Defrost Mode The defrost mode is an operation mode that is executed when it is determined that frost has formed on the second heat exchanger 15b during execution of the heating mode.
 空調制御プログラムでは、予め定めた着霜条件が成立した際に、第2熱交換器15bに着霜が生じたと判定している。具体的には、暖房モードの開始後、第2冷媒温度Tr2が基準着霜温度(本実施形態では、-5℃)以下となっている時間が、基準着霜時間(本実施形態では、5分)以上となった際に、着霜条件が成立したと判定している。 The air conditioning control program determines that frost has formed on the second heat exchanger 15b when a predetermined frost formation condition is satisfied. Specifically, after the heating mode is started, the time during which the second refrigerant temperature Tr2 is equal to or lower than the reference frosting temperature (−5° C. in this embodiment) is the reference frosting time (5° C. in this embodiment). minutes), it is determined that the frost formation condition is established.
 また、除霜モードの運転は、予め定めた除霜時間(本実施形態では、1分~2分程度)が経過するまで継続される。 Further, operation in the defrosting mode continues until a predetermined defrosting time (about 1 to 2 minutes in the present embodiment) elapses.
 除霜モードでは、制御装置60が、ヒートポンプサイクル10の圧縮機11を停止させる。また、制御装置60は、冷房モードと同様に、熱媒体回路20の熱媒体ポンプ21を作動させる。また、制御装置60は、除湿暖房モードと同様に、第1流量調整弁24aおよび第2流量調整弁24bの作動を制御する。 In the defrost mode, the controller 60 stops the compressor 11 of the heat pump cycle 10. In addition, the control device 60 operates the heat medium pump 21 of the heat medium circuit 20 as in the cooling mode. In addition, the control device 60 controls the operation of the first flow control valve 24a and the second flow control valve 24b, similarly to the dehumidification heating mode.
 また、制御装置60は、空調ユニット30の第1空気通路31aへ外気を流入させるように、第1入口側内外気切替装置32aの作動を制御する。また、制御装置60は、第1熱交換器15aを通過した全流量の空気を車室内流出用の開口部から流出させるように、第1出口側内外気切替装置33aの作動を制御する。 The control device 60 also controls the operation of the first inlet side inside/outside air switching device 32a so that the outside air flows into the first air passage 31a of the air conditioning unit 30. In addition, the control device 60 controls the operation of the first outlet side inside/outside air switching device 33a so that the entire amount of air that has passed through the first heat exchanger 15a flows out from the vehicle interior outflow opening.
 また、制御装置60は、第2空気通路31bへ内気を流入させるように、第2入口側内外気切替装置32bの作動を制御する。また、制御装置60は、第2熱交換器15bを通過した全流量の空気を車室外流出用の開口部から流出させるように、第2出口側内外気切替装置33bの作動を制御する。 The control device 60 also controls the operation of the second inlet side inside/outside air switching device 32b so that the inside air flows into the second air passage 31b. In addition, the control device 60 controls the operation of the second outlet side inside/outside air switching device 33b so that the entire amount of air that has passed through the second heat exchanger 15b flows out from the opening for outflow to the outside of the passenger compartment.
 また、制御装置60は、外気通路ドア34aが外気バイパス通路31eを全開させるように、外気通路ドア34aの駆動用アクチュエータへ出力される制御信号を決定する。また、制御装置60は、内気通路ドア34bが内気バイパス通路31fを全開させるように、内気通路ドア34bの駆動用アクチュエータへ出力される制御信号を決定する。 The control device 60 also determines a control signal to be output to the drive actuator of the outside air passage door 34a so that the outside air passage door 34a fully opens the outside air bypass passage 31e. The control device 60 also determines a control signal to be output to the driving actuator of the inside air passage door 34b so that the inside air passage door 34b fully opens the inside air bypass passage 31f.
 また、制御装置60は、第1出口側内外気切替装置33aの車室内流出用の開口部から流出した空気を、室内送風機37の第1ファン37aおよび第2ファン37bの双方へ吸入させるように、通風路切替装置35内の通風路を切り替える。 In addition, the control device 60 causes both the first fan 37a and the second fan 37b of the indoor blower 37 to suck in the air that has flowed out from the vehicle interior outflow opening of the first outlet side inside/outside air switching device 33a. , to switch the ventilation paths in the ventilation path switching device 35 .
 また、制御装置60は、暖房モードと同様に、その他の空調ユニット30の構成機器の作動を制御する。 In addition, the control device 60 controls the operations of the other components of the air conditioning unit 30 in the same manner as in the heating mode.
 従って、除霜モードのヒートポンプサイクル10では、圧縮機11が停止しているので、冷媒は循環しない。 Therefore, in the heat pump cycle 10 in defrost mode, the refrigerant does not circulate because the compressor 11 is stopped.
 また、除霜モードの熱媒体回路20では、暖房モードと同様に、熱媒体が循環する。ところが、除霜モードでは、ヒートポンプサイクル10の圧縮機11を停止させているので、水冷媒熱交換器12にて、熱媒体が加熱されることはない。 Also, in the heat medium circuit 20 in the defrosting mode, the heat medium circulates in the same way as in the heating mode. However, in the defrost mode, the compressor 11 of the heat pump cycle 10 is stopped, so the water-refrigerant heat exchanger 12 does not heat the heat medium.
 また、除霜モードの空調ユニット30では、図8の太線矢印で示すように、空気が各空気通路を流れる。 Also, in the air conditioning unit 30 in the defrosting mode, air flows through each air passage as indicated by the thick line arrows in FIG.
 第1入口側内外気切替装置32aから第1空気通路31aへ流入した空気(本実施形態では、外気)は、第1熱交換器15aを通過する。第1熱交換器15aを通過した空気は、第1出口側内外気切替装置33aおよび通風路切替装置35内の通風路を介して、室内送風機37の第1ファン37aおよび第2ファン37bへ吸入される。 The air (outside air in this embodiment) that has flowed into the first air passage 31a from the first inlet side inside/outside air switching device 32a passes through the first heat exchanger 15a. The air that has passed through the first heat exchanger 15a is sucked into the first fan 37a and the second fan 37b of the indoor blower 37 via the first outlet side inside/outside air switching device 33a and the ventilation passage in the ventilation passage switching device 35. be done.
 外気バイパス通路31eへ流入した外気は、通風路切替装置35内の通風路を介して、第1ファン37aへ吸入される。内気バイパス通路31fへ流入した内気は、通風路切替装置35内の通風路を介して、第2ファン37bへ吸入される。 The outside air that has flowed into the outside air bypass passage 31e is sucked into the first fan 37a through the ventilation passage in the ventilation passage switching device 35. The inside air that has flowed into the inside air bypass passage 31f is sucked into the second fan 37b through the ventilation passage in the ventilation passage switching device 35 .
 第1ファン37aへ吸入された空気は、上層側空気通路31cへ送風される。上層側空気通路31cへ送風された空気は、ヒータコア22へ流入する。第2ファン37bへ吸入された空気は、下層側空気通路31dへ送風される。下層側空気通路31dへ送風された空気は、ヒータコア22へ流入する。 The air sucked into the first fan 37a is sent to the upper air passage 31c. The air blown into the upper air passage 31 c flows into the heater core 22 . The air sucked into the second fan 37b is sent to the lower air passage 31d. The air blown into the lower air passage 31 d flows into the heater core 22 .
 除霜モードでは、ヒートポンプサイクル10の圧縮機11を停止させているものの、比較的熱容量の大きい熱媒体に蓄えられた熱によって、ヒータコア22へ流入した空気が加熱される。 In the defrosting mode, although the compressor 11 of the heat pump cycle 10 is stopped, the air flowing into the heater core 22 is heated by the heat stored in the heat medium having a relatively large heat capacity.
 そして、上層側空気通路31cのヒータコア22にて加熱された外気は、主にデフロスタ開口穴43aを介して、車両窓ガラス51の内側面へ向けて吹き出される。また、下層側空気通路31dのヒータコア22にて加熱された内気は、主にフット開口穴43cを介して、乗員の足下へ向けて吹き出される。これにより、車室内の暖房が継続される。 The outside air heated by the heater core 22 in the upper air passage 31c is blown out toward the inner surface of the vehicle window glass 51 mainly through the defroster opening hole 43a. Also, the inside air heated by the heater core 22 of the lower air passage 31d is blown out toward the feet of the occupant mainly through the foot opening holes 43c. Thereby, the heating of the passenger compartment is continued.
 第2入口側内外気切替装置32bから第2空気通路31bへ流入した内気は、第2熱交換器15bに放熱する。これにより、第2熱交換器15bに生じた霜が融解されて、第2熱交換器15bの除霜が実現される。第2熱交換器15bに放熱した空気は、第2出口側内外気切替装置33bを介して、排気送風機45へ吸入される。排気送風機45へ吸入された空気は、車室外側へ排気される。 The inside air that has flowed into the second air passage 31b from the second inlet-side inside/outside air switching device 32b releases heat to the second heat exchanger 15b. As a result, frost formed on the second heat exchanger 15b is melted, and defrosting of the second heat exchanger 15b is achieved. The air that has radiated heat to the second heat exchanger 15b is sucked into the exhaust air blower 45 via the second outlet side inside/outside air switching device 33b. The air sucked into the exhaust air blower 45 is exhausted to the outside of the vehicle.
 除霜モードでは、内気を熱源として第2熱交換器15bの除霜を行っているので、ヒートポンプサイクル10の圧縮機11を作動させて除霜のための熱を創出する構成に対して、除霜のために消費されるエネルギを低減することができる。 In the defrosting mode, the inside air is used as a heat source to defrost the second heat exchanger 15b. Energy consumed for frost can be reduced.
 以上の如く、本実施形態の車両用空調装置1によれば、運転モードを切り替えることによって、車室内の快適な空調を実現することができる。さらに、第2熱交換器15bに着霜が生じた際には、これを取り除くこともできる。 As described above, according to the vehicle air conditioner 1 of the present embodiment, comfortable air conditioning in the vehicle interior can be achieved by switching the operation mode. Furthermore, when frost forms on the second heat exchanger 15b, it can be removed.
 これに加えて、本実施形態の車両用空調装置1によれば、暖房モード時に、第1入口側内外気切替装置32aが、内気を第1空気通路31aへ流入させる。第1出口側内外気切替装置33aが、第1熱交換器15aを通過した内気を車室外側へ流出させる。従って、第1熱交換器15aにて、内気の有する熱を冷媒に吸熱させることができる。 In addition to this, according to the vehicle air conditioner 1 of the present embodiment, the first inlet side inside/outside air switching device 32a causes the inside air to flow into the first air passage 31a in the heating mode. The first outlet side inside/outside air switching device 33a causes the inside air that has passed through the first heat exchanger 15a to flow out to the outside of the vehicle. Therefore, the heat of the inside air can be absorbed by the refrigerant in the first heat exchanger 15a.
 さらに、暖房モード時に、第2入口側内外気切替装置32bが、外気を第2空気通路31bへ流入させる。第2出口側内外気切替装置33bが、第2熱交換器15bを通過した外気を車室外側へ流出させる。従って、第2熱交換器15bにて、外気の有する熱を冷媒に吸熱させることができる。 Furthermore, in the heating mode, the second inlet side inside/outside air switching device 32b allows outside air to flow into the second air passage 31b. The second outlet side inside/outside air switching device 33b causes the outside air that has passed through the second heat exchanger 15b to flow out to the outside of the passenger compartment. Therefore, the heat of the outside air can be absorbed by the refrigerant in the second heat exchanger 15b.
 従って、水冷媒熱交換器12では、冷媒が内気および外気から吸熱した熱を熱源として、熱媒体を加熱することができる。さらに、加熱部を形成するヒータコア22では、加熱された熱媒体と車室内へ送風される空気とを熱交換させて、車室内へ送風される空気を加熱することができる。 Therefore, in the water-refrigerant heat exchanger 12, the heat medium can be heated by using the heat absorbed by the refrigerant from the inside air and the outside air as a heat source. Furthermore, in the heater core 22 forming the heating portion, heat is exchanged between the heated heat medium and the air blown into the vehicle interior, so that the air blown into the vehicle interior can be heated.
 つまり、冷媒が内気および外気から吸熱した熱を、車室内の暖房に利用することができる。その結果、冷媒が外気のみから吸熱した熱を車室内の暖房に利用する場合よりも、車室内の暖房のために消費されるエネルギを低減させることができる。 In other words, the heat absorbed by the refrigerant from the inside and outside air can be used to heat the vehicle interior. As a result, the energy consumed for heating the vehicle interior can be reduced as compared with the case where the refrigerant absorbs heat only from the outside air and uses it to heat the vehicle interior.
 ここで、本実施形態の車両用空調装置1のように、外気および内気から吸熱した熱を暖房に利用するためには、車室内の適切な暖房を実現できるように、外気および内気から冷媒に充分な熱を吸熱させる必要がある。 Here, in order to use the heat absorbed from the outside air and the inside air for heating as in the vehicle air conditioner 1 of the present embodiment, it is necessary to convert the outside air and the inside air into the refrigerant so as to realize appropriate heating of the vehicle interior. Sufficient heat must be absorbed.
 そのため、ヒートポンプサイクル10では、第1熱交換器15aにおける冷媒蒸発温度、および第2熱交換器15bにおける冷媒蒸発温度を、運転条件に応じて適切に調整している。さらに、空調ユニット30では、充分な風量の内気を第1熱交換器15aへ流入させるとともに、充分な風量の外気を第2熱交換器15bへ流入させるように、排気送風機45の作動を制御している。 Therefore, in the heat pump cycle 10, the refrigerant evaporation temperature in the first heat exchanger 15a and the refrigerant evaporation temperature in the second heat exchanger 15b are appropriately adjusted according to the operating conditions. Further, in the air conditioning unit 30, the operation of the exhaust fan 45 is controlled so that a sufficient amount of inside air flows into the first heat exchanger 15a and a sufficient amount of outside air flows into the second heat exchanger 15b. ing.
 また、本実施形態の車両用空調装置1では、暖房モード時に、外気通路ドア34aが外気バイパス通路31eを開くので、外気を第1熱交換器15aおよび第2熱交換器15bを迂回させて上層側空気通路31cへ導くことができる。そして、上層側空気通路31cのヒータコア22にて、内気よりも湿度の低い外気を加熱して、車両窓ガラス51の内側面へ向けて吹き出すことができる。従って、車両窓ガラス51の防曇性能を向上させることができる。 In addition, in the vehicle air conditioner 1 of the present embodiment, the outside air passage door 34a opens the outside air bypass passage 31e in the heating mode, so that the outside air bypasses the first heat exchanger 15a and the second heat exchanger 15b, and the upper layer is cooled. It can be led to the side air passage 31c. The heater core 22 of the upper air passage 31 c heats outside air having a lower humidity than the inside air, and blows the heated outside air toward the inner surface of the vehicle window glass 51 . Therefore, the anti-fog performance of the vehicle window glass 51 can be improved.
 さらに、内気通路ドア34bが内気バイパス通路31fを開くので、内気を第1熱交換器15aおよび第2熱交換器15bを迂回させて下層側空気通路31dへ導くことができる。そして、下層側空気通路31dのヒータコア22にて、外気よりも温度の高い内気を加熱して、乗員の足下へ向けて吹き出すことができる。従って、頭寒足熱型の快適な暖房を行うことができる。 Furthermore, since the internal air passage door 34b opens the internal air bypass passage 31f, the internal air can bypass the first heat exchanger 15a and the second heat exchanger 15b and be led to the lower air passage 31d. Then, the heater core 22 of the lower air passage 31d heats the inside air, which has a higher temperature than the outside air, and blows it toward the feet of the occupant. Therefore, it is possible to perform comfortable heating of a cold-head/hot-foot type.
 この際、車両窓ガラス51の防曇性能の向上および暖房のために消費されるエネルギの低減を両立させるように内外気比率が調整されていても、第1熱交換器15aにおける冷媒の吸熱量、および第2熱交換器15bにおける冷媒の吸熱量に影響を与えにくい。すなわち、車室内の暖房に利用可能な熱量に影響を与えにくい。 At this time, even if the inside/outside air ratio is adjusted so as to improve the anti-fogging performance of the vehicle window glass 51 and reduce the energy consumed for heating, the amount of heat absorbed by the refrigerant in the first heat exchanger 15a , and the amount of heat absorbed by the refrigerant in the second heat exchanger 15b. That is, the amount of heat that can be used for heating the vehicle interior is less likely to be affected.
 その結果、本実施形態の車両用空調装置1では、内気および外気から吸熱した熱を車室内の暖房に利用する車両用空調装置であっても、車両窓ガラス51の防曇性能の向上および暖房のために消費されるエネルギの低減の両立を図ることができる。 As a result, in the vehicle air conditioner 1 of the present embodiment, even though the vehicle air conditioner uses the heat absorbed from the inside air and the outside air for heating the vehicle interior, the anti-fogging performance of the vehicle window glass 51 is improved and the heating is improved. It is possible to achieve both reduction of energy consumed for
 また、本実施形態の車両用空調装置1では、空調ユニット30の室内送風機37として、二連式の電動送風機を採用している。これによれば、予め第1ファン37aおよび第2ファン37bの寸法諸元を調整しておくことによって、内外気比率を適切な値に設定しやすい。 In addition, in the vehicle air conditioner 1 of the present embodiment, a dual electric blower is used as the indoor blower 37 of the air conditioning unit 30 . According to this, by adjusting the dimensions of the first fan 37a and the second fan 37b in advance, it is easy to set the inside/outside air ratio to an appropriate value.
 また、本実施形態の車両用空調装置1では、空調ユニット30の排気送風機45が、第1空気通路31aおよび第2空気通路31bの空気流れ下流側に配置されている。すなわち、排気送風機45は、第1空気通路31aから流出した空気および第2空気通路31bから流出した空気の少なくとも一方を吸い込んで車室外へ送風する。これによれば、第1空気通路31aから車室外側へ排気される空気および第2空気通路31bから車室外側へ排気させる空気を共通する送風機で排気することができる。 Further, in the vehicle air conditioner 1 of the present embodiment, the exhaust air blower 45 of the air conditioning unit 30 is arranged downstream of the first air passage 31a and the second air passage 31b. That is, the exhaust blower 45 draws in at least one of the air flowing out from the first air passage 31a and the air flowing out from the second air passage 31b and blows the air out of the passenger compartment. According to this, the air discharged from the first air passage 31a to the outside of the vehicle and the air discharged from the second air passage 31b to the outside of the vehicle can be discharged by a common blower.
 また、本実施形態の車両用空調装置1では、除霜モード時に、外気通路ドア34aが外気バイパス通路31eを開き、内気通路ドア34bが内気バイパス通路31fを開く。これによれば、比較的湿度の高い空気や臭気を含む空気が車室内へ送風されてしまうことを抑制することができる。 Further, in the vehicle air conditioner 1 of the present embodiment, the outside air passage door 34a opens the outside air bypass passage 31e, and the inside air passage door 34b opens the inside air bypass passage 31f during the defrosting mode. According to this, it is possible to prevent air with relatively high humidity or air containing odor from being blown into the vehicle interior.
 より詳細には、本実施形態の車両用空調装置1では、暖房モード時に、ヒートポンプサイクル10の第1熱交換器15aを蒸発器として機能させる。このため、除霜モードの開始時には、第1熱交換器15aに凝縮水が付着している可能性がある。従って、除霜モード時に、第1空気通路31aへ空気を流入させると、凝縮水が蒸発して、比較的湿度の高い空気や臭気を含む空気が車室内へ送風されてしまう可能性がある。 More specifically, in the vehicle air conditioner 1 of the present embodiment, the first heat exchanger 15a of the heat pump cycle 10 functions as an evaporator during the heating mode. Therefore, when the defrosting mode is started, condensed water may be attached to the first heat exchanger 15a. Therefore, if air is allowed to flow into the first air passage 31a in the defrosting mode, the condensed water may evaporate, and air with relatively high humidity or odor may be blown into the vehicle interior.
 これに対して、本実施形態の車両用空調装置1では、外気通路ドア34aが外気バイパス通路31eを開くので、比較的湿度が低く臭気を含んでいない外気を上層側空気通路31cへ導くことができる。さらに、内気通路ドア34bが内気バイパス通路31fを開くので、臭気を含んでいない内気を下層側空気通路31dへ導くことができる。 On the other hand, in the vehicle air conditioner 1 of the present embodiment, the outside air passage door 34a opens the outside air bypass passage 31e, so outside air with relatively low humidity and no odor can be led to the upper air passage 31c. can. Furthermore, since the inside air passage door 34b opens the inside air bypass passage 31f, the inside air containing no odor can be led to the lower air passage 31d.
 従って、除霜モード時に、第1熱交換部15aを通過した空気が湿度や臭気を含んでしまっても、比較的湿度が低く臭気を含んでいない外気および内気によって希釈することができる。その結果、車両窓ガラスの曇りの原因となる湿度の高い空気や、臭気を含む空気が車室内へ送風されてしまうことを抑制することができる。 Therefore, even if the air passing through the first heat exchange unit 15a contains humidity and odor in the defrosting mode, it can be diluted with outside air and inside air that have relatively low humidity and do not contain odor. As a result, it is possible to prevent air with high humidity or air containing odor from being blown into the passenger compartment, which causes fogging of the window glass of the vehicle.
 (第2実施形態)
 本実施形態では、第1実施形態の車両用空調装置1に対して、図9~図11に示すように、空調ユニット30の室内送風機37および排気送風機45等を廃止して、外気送風機46a、内気送風機46b、および上流側通風路切替装置47を追加した例を説明する。
(Second embodiment)
9 to 11, the present embodiment eliminates the indoor fan 37 and the exhaust fan 45 of the air conditioning unit 30 in contrast to the vehicle air conditioner 1 of the first embodiment. An example in which the internal air blower 46b and the upstream ventilation passage switching device 47 are added will be described.
 より具体的には、外気送風機46aは、外気を吸入して上流側通風路切替装置47の外気入口へ送風する外気送風部である。内気送風機46bは、内気を吸入して上流側通風路切替装置47の内気入口へ送風する内気送風部である。外気送風機46aおよび内気送風機46bの基本的構成は、排気送風機45と同様である。 More specifically, the outside air blower 46 a is an outside air blower that draws in outside air and blows it to the outside air inlet of the upstream side ventilation path switching device 47 . The inside air blower 46 b is an inside air blower that sucks inside air and blows the inside air to the inside air inlet of the upstream ventilation path switching device 47 . The basic configurations of the outside air blower 46 a and the inside air blower 46 b are similar to that of the exhaust air blower 45 .
 上流側通風路切替装置47は、外気送風機46aの吹出口と空調ユニット30内に形成された空気通路の接続態様を切り替えるとともに、内気送風機46b吹出口と空調ユニット30内に形成された空気通路の接続態様を切り替える上流側通風路切替部である。上流側通風路切替装置47の基本的構成は、第1実施形態で説明した通風路切替装置35の通風路切替部と同様である。 The upstream ventilation path switching device 47 switches the connection mode between the outlet of the outside air blower 46 a and the air passage formed in the air conditioning unit 30 , and also switches the connection between the outlet of the inside air blower 46 b and the air passage formed in the air conditioning unit 30 . It is an upstream side ventilation path switching unit that switches the connection mode. The basic configuration of the upstream side ventilation path switching device 47 is the same as the ventilation path switching section of the ventilation path switching device 35 described in the first embodiment.
 なお、本実施形態では、説明の明確化のため、通風路切替装置35を下流側通風路切替装置35と記載する。 In addition, in the present embodiment, the ventilation passage switching device 35 is described as the downstream ventilation passage switching device 35 for clarity of explanation.
 より具体的には、上流側通風路切替装置47は、外気送風機46aから送風された外気を、第1空気通路31aの入口側、第2空気通路31bの入口側、および外気バイパス通路31eの入口側の少なくとも1つへ導くことができる。また、内気送風機46bから送風された内気を、第1空気通路31aの入口側、第2空気通路31bの入口側、および内気バイパス通路31fの入口側の少なくとも1つへ導くことができる。 More specifically, the upstream ventilation passage switching device 47 directs the outside air blown from the outside air blower 46a to the inlet side of the first air passage 31a, the inlet side of the second air passage 31b, and the inlet side of the outside air bypass passage 31e. can lead to at least one of the sides. Also, the inside air blown from the inside air blower 46b can be guided to at least one of the inlet side of the first air passage 31a, the inlet side of the second air passage 31b, and the inlet side of the inside air bypass passage 31f.
 従って、本実施形態の空調ユニット30では、第1実施形態で説明した第1入口側内外気切替装置32aおよび第2入口側内外気切替装置32bが上流側通風路切替装置47の構成機器として一体化されている。換言すると、上流側通風路切替装置47では、第1入口側内外気切替装置32aおよび第2入口側内外気切替装置32bが、上流側通風路切替装置47の内部に形成された通風路を切り替える切替ドアに対応する構成となっている。 Therefore, in the air conditioning unit 30 of the present embodiment, the first inlet side inside/outside air switching device 32a and the second inlet side inside/outside air switching device 32b described in the first embodiment are integrated as components of the upstream ventilation path switching device 47. has been made In other words, in the upstream ventilation passage switching device 47, the first inlet side inside/outside air switching device 32a and the second inlet side inside/outside air switching device 32b switch the ventilation passages formed inside the upstream side ventilation passage switching device 47. It has a configuration corresponding to a switching door.
 また、本実施形態では、室内送風機37が廃止されているので、下流側通風路切替装置35は、第1入口部36aから内部へ流入させた空気を上層側空気通路31cの入口側および下層側空気通路31dの入口側の少なくとも一方へ導く。また、下流側通風路切替装置35は、第2入口部36bから内部へ流入させた空気を上層側空気通路31cの入口側および下層側空気通路31dの入口側の少なくとも一方へ導く。 Further, in this embodiment, since the indoor blower 37 is abolished, the downstream side ventilation path switching device 35 directs the air flowed into the inside from the first inlet portion 36a to the inlet side and the lower layer side of the upper layer side air passage 31c. It leads to at least one of the inlet sides of the air passage 31d. In addition, the downstream ventilation passage switching device 35 guides the air that has flowed into the inside from the second inlet portion 36b to at least one of the inlet side of the upper layer side air passage 31c and the inlet side of the lower layer side air passage 31d.
 その他の空調ユニット30の構成および車両用空調装置1の構成は、第1実施形態と同様である。 The rest of the configuration of the air conditioning unit 30 and the configuration of the vehicle air conditioner 1 are the same as in the first embodiment.
 次に、上記構成における本実施形態の車両用空調装置1の作動を説明する。本実施形態の車両用空調装置1においても、第1実施形態と同様に、運転モードが切り替えられる。以下に、各運転モードの詳細作動について説明する。 Next, the operation of the vehicle air conditioner 1 of this embodiment with the above configuration will be described. Also in the vehicle air conditioner 1 of this embodiment, the operation mode is switched in the same manner as in the first embodiment. The detailed operation of each operation mode will be described below.
 (1)冷房モード
 冷房モードでは、制御装置60が、第1実施形態の冷房モードと同様に、ヒートポンプサイクル10の各構成機器、および熱媒体回路20の各構成機器の作動を制御する。
(1) Cooling Mode In the cooling mode, the control device 60 controls the operation of each component of the heat pump cycle 10 and each component of the heat medium circuit 20, as in the cooling mode of the first embodiment.
 また、制御装置60は、目標送風能力を発揮するように外気送風機46aを作動させる。冷房モード時の外気送風機46aの目標送風能力は、第1実施形態と同様に、目標吹出温度TAOに基づいて、予め制御装置60に記憶されている制御マップを参照して、車室内へ送風される空気の風量が第1実施形態と同等となるように決定される。 In addition, the control device 60 operates the outside air blower 46a so as to exhibit the target air blowing capacity. The target air blowing capacity of the outside air blower 46a in the cooling mode is determined by referring to a control map stored in advance in the control device 60 based on the target air temperature TAO, as in the first embodiment. It is determined so that the amount of air flowing through is equal to that in the first embodiment.
 また、制御装置60は、外気送風機46aから送風された外気を、第1空気通路31aおよび第2空気通路31bの双方へ流入させるように、上流側通風路切替装置47内の通風路を切り替える。また、制御装置60は、第1実施形態の冷房モードと同様に、その他の空調ユニット30の各構成機器の作動を制御する。 In addition, the control device 60 switches the ventilation passages in the upstream ventilation passage switching device 47 so that the outside air blown from the outside air blower 46a flows into both the first air passage 31a and the second air passage 31b. In addition, the control device 60 controls the operation of other components of the air conditioning unit 30, as in the cooling mode of the first embodiment.
 従って、冷房モードのヒートポンプサイクル10および熱媒体回路20は、第1実施形態の冷房モードと同様に作動する。また、冷房モードの空調ユニット30では、図9の太線矢印で示すように、第1空気通路31aおよび第2空気通路31bへ流入した空気が、第1実施形態の冷房モードと同様に各空気通路を流れる。従って、第1実施形態と同様に、車室内の冷房が実現される。 Therefore, the heat pump cycle 10 and heat medium circuit 20 in the cooling mode operate in the same manner as in the cooling mode of the first embodiment. Further, in the air-conditioning unit 30 in the cooling mode, as indicated by the thick line arrows in FIG. flowing. Therefore, cooling of the passenger compartment is achieved as in the first embodiment.
 (2)除湿暖房モード
 除湿暖房モードでは、制御装置60が、第1実施形態の除湿暖房モードと同様に、ヒートポンプサイクル10の各構成機器、および熱媒体回路20の各構成機器の作動を制御する。また、制御装置60は、冷房モードと同様に、その他の空調ユニット30の構成機器の作動を制御する。
(2) Dehumidifying Heating Mode In the dehumidifying heating mode, the control device 60 controls the operation of each component of the heat pump cycle 10 and each component of the heat medium circuit 20, as in the dehumidifying heating mode of the first embodiment. . In addition, the control device 60 controls the operations of the other components of the air conditioning unit 30 in the same manner as in the cooling mode.
 従って、除湿暖房モードのヒートポンプサイクル10および熱媒体回路20は、第1実施形態の除湿暖房モードと同様に作動する。また、除湿暖房モードの空調ユニット30では、図9の太線矢印で示すように、第1空気通路31aおよび第2空気通路31bへ流入した空気が、第1実施形態の除湿暖房モードと同様に各空気通路を流れる。従って、第1実施形態と同様に、車室内の除湿暖房が実現される。 Therefore, the heat pump cycle 10 and heat medium circuit 20 in the dehumidifying and heating mode operate in the same manner as in the dehumidifying and heating mode of the first embodiment. In addition, in the air conditioning unit 30 in the dehumidifying and heating mode, as indicated by the thick line arrows in FIG. flow through the air passages. Therefore, dehumidification and heating of the passenger compartment are achieved in the same manner as in the first embodiment.
 (3)暖房モード
 暖房モードでは、制御装置60が、第1実施形態の暖房モードと同様に、ヒートポンプサイクル10の各構成機器、および熱媒体回路20の各構成機器の作動を制御する。
(3) Heating Mode In the heating mode, the control device 60 controls the operation of each component of the heat pump cycle 10 and each component of the heat medium circuit 20, as in the heating mode of the first embodiment.
 また、制御装置60は、目標送風能力を発揮するように外気送風機46aおよび内気送風機46bを作動させる。暖房モード時の外気送風機46aおよび内気送風機46bの目標送風能力は、それぞれ目標吹出温度TAOに基づいて、予め制御装置60に記憶されている制御マップを参照して決定される。 In addition, the control device 60 operates the outside air blower 46a and the inside air blower 46b so as to exhibit the target air blowing capacity. The target blowing capacities of the outside air blower 46a and the inside air blower 46b in the heating mode are each determined based on the target blowing temperature TAO with reference to a control map stored in advance in the controller 60. FIG.
 暖房モードの制御マップでは、車室内へ送風される空気の風量が第1実施形態と同等となるように、外気送風機46aおよび内気送風機46bの目標送風能力が決定される。 In the heating mode control map, the target blowing capacity of the outside air blower 46a and the inside air blower 46b is determined so that the amount of air blown into the vehicle interior is the same as in the first embodiment.
 また、制御装置60は、目標吹出温度TAOに基づいて、予め制御装置60に記憶されている制御マップを参照して、外気通路ドア34aおよび内気通路ドア34bの開度を決定する。暖房モードの制御マップでは、車両窓ガラスの防曇性能の向上効果および消費エネルギの低減効果の双方を得られる適切な内外気比率となるように、外気通路ドア34aおよび内気通路ドア34bの開度が決定される。 The control device 60 also refers to a control map stored in advance in the control device 60 based on the target blowout temperature TAO to determine the opening degrees of the outside air passage door 34a and the inside air passage door 34b. In the control map for the heating mode, the opening degrees of the outside air passage door 34a and the inside air passage door 34b are adjusted so as to obtain an appropriate inside/outside air ratio that can obtain both the effect of improving the anti-fogging performance of the vehicle window glass and the effect of reducing the energy consumption. is determined.
 また、制御装置60は、外気送風機46aから送風された外気を、第2空気通路31bおよび外気バイパス通路31eの双方へ流入させるように、上流側通風路切替装置47内の通風路を切り替える。また、制御装置60は、内気送風機46bから送風された内気を、第1空気通路31aおよび内気バイパス通路31fの双方へ流入させるように、上流側通風路切替装置47内の通風路を切り替える。 Further, the control device 60 switches the ventilation passages in the upstream ventilation passage switching device 47 so that the outside air blown from the outside air blower 46a flows into both the second air passage 31b and the outside air bypass passage 31e. Further, the control device 60 switches the air passages in the upstream side air passage switching device 47 so that the inside air blown from the inside air blower 46b flows into both the first air passage 31a and the inside air bypass passage 31f.
 また、制御装置60は、第1実施形態の暖房モードと同様に、その他の空調ユニット30の各構成機器の作動を制御する。 In addition, the control device 60 controls the operation of other components of the air conditioning unit 30, as in the heating mode of the first embodiment.
 従って、暖房モードのヒートポンプサイクル10および熱媒体回路20は、第1実施形態の暖房モードと同様に作動する。 Therefore, the heat pump cycle 10 and heat medium circuit 20 in the heating mode operate in the same manner as in the heating mode of the first embodiment.
 また、暖房モードの空調ユニット30では、図10の太線矢印で示すように、第1空気通路31a、第2空気通路31b、外気バイパス通路31eおよび内気バイパス通路31fへ流入した空気が、第1実施形態の暖房モードと同様に各空気通路を流れる。従って、第1実施形態の暖房モードと同様に、車室内の暖房が実現される。 In addition, in the air conditioning unit 30 in the heating mode, as indicated by the thick line arrows in FIG. Flows through each air passage in the same way as in form heating mode. Therefore, heating of the passenger compartment is achieved in the same manner as in the heating mode of the first embodiment.
 (4)除霜モード
 除霜モードでは、制御装置60が、第1実施形態の除霜モードと同様に、ヒートポンプサイクル10の圧縮機11を停止させる。また、制御装置60は、第1実施形態の除霜モードと同様に、熱媒体回路20の各構成機器の作動を制御する。
(4) Defrost Mode In the defrost mode, the control device 60 stops the compressor 11 of the heat pump cycle 10 as in the defrost mode of the first embodiment. In addition, the control device 60 controls the operation of each component of the heat medium circuit 20 in the same manner as in the defrosting mode of the first embodiment.
 また、制御装置60は、暖房モードと同様に、外気送風機46aの送風能力および内気送風機46bの送風能力を決定する。 In addition, the control device 60 determines the air blowing capacity of the outside air blower 46a and the air blowing capacity of the inside air blower 46b, similarly to the heating mode.
 また、制御装置60は、外気送風機46aから送風された外気を、第1空気通路31aおよび外気バイパス通路31eの双方の入口側へ流入させるように、上流側通風路切替装置47内の通風路を切り替える。また、制御装置60は、内気送風機46bから送風された内気を、第2空気通路31bおよび内気バイパス通路31fの双方の入口側へ流入させるように、上流側通風路切替装置47内の通風路を切り替える。 In addition, the control device 60 adjusts the ventilation path in the upstream side ventilation path switching device 47 so that the outside air blown from the outside air blower 46a flows into both the inlet sides of the first air path 31a and the outside air bypass path 31e. switch. In addition, the control device 60 adjusts the air passage in the upstream side air passage switching device 47 so that the inside air blown from the inside air blower 46b flows into both the inlet sides of the second air passage 31b and the inside air bypass passage 31f. switch.
 また、制御装置60は、第1実施形態の除霜モードと同様に、その他の空調ユニット30の各構成機器の作動を制御する。 In addition, the control device 60 controls the operation of other components of the air conditioning unit 30, as in the defrosting mode of the first embodiment.
 従って、除霜モードのヒートポンプサイクル10では、冷媒は循環しない。また、除霜モードの熱媒体回路20では、第1実施形態の除霜モードと同様に作動する。 Therefore, the refrigerant does not circulate in the heat pump cycle 10 in defrosting mode. Moreover, the heat medium circuit 20 in the defrost mode operates in the same manner as in the defrost mode of the first embodiment.
 また、除霜モードの空調ユニット30では、図11の太線矢印で示すように、第1空気通路31a、第2空気通路31b、外気バイパス通路31eおよび内気バイパス通路31fへ流入した外気が、第1実施形態の除霜モードと同様に各空気通路を流れる。従って、第1実施形態の除霜モードと同様に、第2熱交換器15bの除霜がなされるとともに、車室内の暖房が継続される。 In addition, in the air conditioning unit 30 in the defrosting mode, as indicated by thick line arrows in FIG. It flows through each air passage similarly to the defrosting mode of the embodiment. Therefore, similarly to the defrosting mode of the first embodiment, the second heat exchanger 15b is defrosted and the heating of the passenger compartment is continued.
 以上の如く、本実施形態の車両用空調装置1によれば、運転モードを切り替えることによって、車室内の快適な空調を実現することができる。さらに、第2熱交換器15bに着霜が生じた際には、これを取り除くこともできる。 As described above, according to the vehicle air conditioner 1 of the present embodiment, comfortable air conditioning in the vehicle interior can be achieved by switching the operation mode. Furthermore, when frost forms on the second heat exchanger 15b, it can be removed.
 これに加えて、本実施形態の車両用空調装置1では、暖房モード時に、第1実施形態と同様に、冷媒が内気および外気から吸熱した熱を利用して、車室内の暖房を行うことができる。従って、冷媒が外気のみから吸熱した熱を車室内の暖房に利用する場合よりも、車室内の暖房のために消費されるエネルギを低減させることができる。 In addition, in the vehicle air conditioner 1 of the present embodiment, in the heating mode, as in the first embodiment, the heat absorbed by the refrigerant from the inside air and the outside air can be used to heat the vehicle interior. can. Therefore, the energy consumed for heating the vehicle interior can be reduced as compared with the case where the refrigerant absorbs heat only from the outside air and uses it to heat the vehicle interior.
 また、暖房モード時に、外気通路ドア34aが外気バイパス通路31eを開くので、外気を第1熱交換器15aおよび第2熱交換器15bを迂回させて上層側空気通路31cへ導くことができる。従って、第1実施形態と同様に、車両窓ガラス51の防曇性能を向上させることができる。 Also, in the heating mode, the outside air passage door 34a opens the outside air bypass passage 31e, so that the outside air can be guided to the upper air passage 31c by bypassing the first heat exchanger 15a and the second heat exchanger 15b. Therefore, as in the first embodiment, the anti-fogging performance of the vehicle window glass 51 can be improved.
 さらに、内気通路ドア34bが内気バイパス通路31fを開くので、内気を第1熱交換器15aおよび第2熱交換器15bを迂回させて下層側空気通路31dへ導くことができる。従って、第1実施形態と同様に、頭寒足熱型の快適な暖房を実現することができる。 Furthermore, since the internal air passage door 34b opens the internal air bypass passage 31f, the internal air can bypass the first heat exchanger 15a and the second heat exchanger 15b and be led to the lower air passage 31d. Therefore, as in the first embodiment, it is possible to realize comfortable heating of a cold-head/hot-foot type.
 この際、車両窓ガラス51の防曇性能の向上および暖房のために消費されるエネルギの低減を両立させるように内外気比率が設定されていても、第1熱交換器15aにおける冷媒の吸熱量、および第2熱交換器15bにおける冷媒の吸熱量に影響を与えにくい。すなわち、車室内の暖房に利用可能な熱量に影響を与えにくい。 At this time, even if the inside/outside air ratio is set so as to improve the antifogging performance of the vehicle window glass 51 and reduce the energy consumed for heating, the amount of heat absorbed by the refrigerant in the first heat exchanger 15a , and the amount of heat absorbed by the refrigerant in the second heat exchanger 15b. That is, the amount of heat that can be used for heating the vehicle interior is less likely to be affected.
 その結果、本実施形態の車両用空調装置1では、第1実施形態と同様の効果を得ることができる。すなわち、内気および外気から吸熱した熱を車室内の暖房に利用する車両用空調装置であっても、車両窓ガラス51の防曇性能の向上および暖房のために消費されるエネルギの低減の両立を図ることができる。また、除霜モード時には、湿度や臭気を含む空気が車室内へ送風されてしまうことを抑制することができる。 As a result, in the vehicle air conditioner 1 of this embodiment, the same effects as those of the first embodiment can be obtained. That is, even in a vehicle air conditioner that utilizes heat absorbed from the inside air and the outside air for heating the vehicle interior, it is necessary to improve the anti-fogging performance of the vehicle window glass 51 and reduce the energy consumed for heating. can be planned. Also, in the defrosting mode, it is possible to prevent the air containing humidity and odor from being blown into the passenger compartment.
 また、本実施形態の車両用空調装置1では、外気通路ドア34a、内気通路ドア34b、および上流側通風路切替装置47を備えている。このため、外気送風機46aは、第2空気通路31bの入口側および外気バイパス通路31eの入口側の少なくとも一方へ外気を送風可能となっている。また、内気送風機46bは、第1空気通路31aの入口側および内気バイパス通路31fの入口側の少なくとも一方へ内気を送風可能となっている。これによれば、内外気比率を容易に適切な値に調整することができる。 In addition, the vehicle air conditioner 1 of the present embodiment includes an outside air passage door 34a, an inside air passage door 34b, and an upstream side ventilation passage switching device 47. Therefore, the outside air blower 46a can blow the outside air to at least one of the entrance side of the second air passage 31b and the entrance side of the outside air bypass passage 31e. Also, the inside air blower 46b can blow inside air to at least one of the inlet side of the first air passage 31a and the inlet side of the inside air bypass passage 31f. According to this, the inside/outside air ratio can be easily adjusted to an appropriate value.
 (第3実施形態)
 本実施形態では、第1実施形態の車両用空調装置1に対して、図12に示すように、空調ユニット30の内気バイパス通路31fおよび内気通路ドア34bを廃止した例を説明する。なお、図12は、第1実施形態で説明した図3に対応する図面である。その他の空調ユニット30の構成および車両用空調装置1の構成は、第1実施形態と同様である。
(Third embodiment)
In the present embodiment, as shown in FIG. 12, the inside air bypass passage 31f and the inside air passage door 34b of the air conditioning unit 30 are eliminated from the vehicle air conditioner 1 of the first embodiment. Note that FIG. 12 is a drawing corresponding to FIG. 3 described in the first embodiment. Other configurations of the air conditioning unit 30 and the configuration of the vehicle air conditioner 1 are the same as those of the first embodiment.
 次に、上記構成における本実施形態の車両用空調装置1の作動を説明する。本実施形態の車両用空調装置1においても、第1実施形態と同様に、運転モードが切り替えられる。以下に、各運転モードの詳細作動について説明する。 Next, the operation of the vehicle air conditioner 1 of this embodiment with the above configuration will be described. Also in the vehicle air conditioner 1 of this embodiment, the operation mode is switched in the same manner as in the first embodiment. The detailed operation of each operation mode will be described below.
 (1)冷房モードおよび(2)除湿暖房モード
 冷房モードおよび除湿暖房モードでは、制御装置60が、第1実施形態の冷房モードおよび除湿暖房モードと同様に、ヒートポンプサイクル10、熱媒体回路20、および空調ユニット30の各構成機器の作動を制御する。このため、制御装置60は、外気通路ドア34aが外気バイパス通路31eを閉塞するように、外気通路ドア34aの駆動用アクチュエータへ出力される制御信号を決定する。
(1) Cooling Mode and (2) Dehumidifying Heating Mode In the cooling mode and the dehumidifying heating mode, the control device 60 controls the heat pump cycle 10, the heat medium circuit 20, and the It controls the operation of each component of the air conditioning unit 30 . Therefore, the control device 60 determines a control signal to be output to the actuator for driving the outside air passage door 34a so that the outside air passage door 34a closes the outside air bypass passage 31e.
 従って、冷房モードおよび除湿暖房モードのヒートポンプサイクル10および熱媒体回路20は、第1実施形態と同様に作動する。また、冷房モードおよび除湿暖房モードの空調ユニット30では、図13の太線矢印で示すように、第1空気通路31aおよび第2空気通路31bへ流入した空気が各空気通路を流れる。従って、第1実施形態と同様に、車室内の冷房および除湿暖房が実現される。 Therefore, the heat pump cycle 10 and heat medium circuit 20 in the cooling mode and the dehumidifying/heating mode operate in the same manner as in the first embodiment. In addition, in the air conditioning unit 30 in the cooling mode and the dehumidifying and heating mode, the air that has flowed into the first air passage 31a and the second air passage 31b flows through each air passage, as indicated by the thick line arrows in FIG. Therefore, cooling and dehumidifying/heating of the passenger compartment are achieved in the same manner as in the first embodiment.
 (3)暖房モード
 暖房モードでは、制御装置60が、第1実施形態の暖房モードと同様に、ヒートポンプサイクル10の各構成機器、および熱媒体回路20の各構成機器の作動を制御する。
(3) Heating Mode In the heating mode, the control device 60 controls the operation of each component of the heat pump cycle 10 and each component of the heat medium circuit 20, as in the heating mode of the first embodiment.
 また、制御装置60は、第1熱交換器15aを通過した空気を車室外流出用の開口部および車室内流出用の開口部の双方から流出させるように、空調ユニット30の第1出口側内外気切替装置33aの作動を制御する。 In addition, the control device 60 controls the inside and outside of the first outlet side of the air conditioning unit 30 so that the air that has passed through the first heat exchanger 15a is allowed to flow out from both the vehicle exterior outflow opening and the vehicle interior outflow opening. It controls the operation of the air switching device 33a.
 また、制御装置60は、外気バイパス通路31eから流出した空気を、室内送風機37の第1ファン37aへ吸入させるように通風路切替装置35内の通風路を切り替える。さらに、第1出口側内外気切替装置33aの車室内流出用の開口部から流出した空気を第2ファン37bへ吸入させるように、通風路切替装置35内の通風路を切り替える。 In addition, the control device 60 switches the ventilation path in the ventilation path switching device 35 so that the air flowing out from the outside air bypass passage 31e is drawn into the first fan 37a of the indoor blower 37. Further, the ventilation path in the ventilation path switching device 35 is switched so that the second fan 37b takes in the air that has flowed out from the vehicle interior outflow opening of the first outlet side inside/outside air switching device 33a.
 また、制御装置60は、第1実施形態の暖房モードと同様に、その他の空調ユニット30の構成機器の作動を制御する。 In addition, the control device 60 controls the operation of other components of the air conditioning unit 30, as in the heating mode of the first embodiment.
 従って、暖房モードのヒートポンプサイクル10および熱媒体回路20は、第1実施形態の暖房モードと同様に作動する。 Therefore, the heat pump cycle 10 and heat medium circuit 20 in the heating mode operate in the same manner as in the heating mode of the first embodiment.
 また、暖房モードの空調ユニット30では、図14の太線矢印で示すように、第1空気通路31a、第2空気通路31b、および外気バイパス通路31eへ流入した空気が各空気通路を流れる。 Also, in the air conditioning unit 30 in the heating mode, as indicated by the thick arrows in FIG. 14, the air that has flowed into the first air passage 31a, the second air passage 31b, and the outside air bypass passage 31e flows through each air passage.
 第1入口側内外気切替装置32aから第1空気通路31aへ流入した空気(本実施形態では、内気)は、第1熱交換器15aを通過する際に冷媒と熱交換して吸熱される。 The air (inside air in this embodiment) that has flowed into the first air passage 31a from the first inlet side inside/outside air switching device 32a exchanges heat with the refrigerant and absorbs heat when passing through the first heat exchanger 15a.
 第1熱交換器15aにて冷却された一部の空気は、第1出口側内外気切替装置33aおよび排気バイパス通路31gを介して、排気送風機45へ吸入される。第1熱交換器15aにて冷却された残余の空気は、通風路切替装置35内の通風路を介して、第2ファン37bへ吸入される。 A portion of the air cooled by the first heat exchanger 15a is sucked into the exhaust blower 45 via the first outlet side inside/outside air switching device 33a and the exhaust bypass passage 31g. The remaining air cooled by the first heat exchanger 15 a is sucked into the second fan 37 b through the ventilation passage in the ventilation passage switching device 35 .
 第2入口側内外気切替装置32bから第2空気通路31bへ流入した空気(本実施形態では、外気)は、第1実施形態の暖房モードと同様に、第2熱交換器15bを通過する際に冷媒と熱交換して吸熱される。第2熱交換器15bにて冷却された空気は、排気送風機45へ吸入されて、車室外側へ排気される。 When the air (outside air in this embodiment) that has flowed into the second air passage 31b from the second inlet side inside/outside air switching device 32b passes through the second heat exchanger 15b, as in the heating mode of the first embodiment, heat is absorbed by exchanging heat with the refrigerant. The air cooled by the second heat exchanger 15b is sucked into the exhaust air blower 45 and discharged to the outside of the vehicle.
 外気バイパス通路31eへ流入した外気は、通風路切替装置35内の通風路を介して、第1ファン37aへ吸入される。 The outside air that has flowed into the outside air bypass passage 31e is sucked into the first fan 37a through the ventilation passage in the ventilation passage switching device 35.
 第1ファン37aから送風された外気は、第1実施形態の暖房モードと同様に、上層側空気通路31cを介して、車両窓ガラス51の内側面へ向けて吹き出される。また、第2ファン37bから送風された内気は、第1実施形態の暖房モードと同様に、下層側空気通路31dおよびフット開口穴43cを介して、乗員の足下へ向けて吹き出される。これにより、車室内の暖房が実現される。 The outside air blown from the first fan 37a is blown toward the inner surface of the vehicle window glass 51 through the upper layer side air passage 31c, as in the heating mode of the first embodiment. Also, the inside air blown from the second fan 37b is blown toward the feet of the occupant via the lower layer side air passage 31d and the foot opening hole 43c, as in the heating mode of the first embodiment. Thereby, the heating of the passenger compartment is realized.
 (4)除霜モード
 除霜モードでは、制御装置60が、第1実施形態の除霜モードと同様に、ヒートポンプサイクル10の圧縮機11を停止させる。また、制御装置60は、第1実施形態の除霜モードと同様に、熱媒体回路20および空調ユニット30の各構成機器の作動を制御する。
(4) Defrost Mode In the defrost mode, the control device 60 stops the compressor 11 of the heat pump cycle 10 as in the defrost mode of the first embodiment. In addition, the control device 60 controls the operation of each component of the heat medium circuit 20 and the air conditioning unit 30 in the same manner as in the defrosting mode of the first embodiment.
 従って、除霜モードのヒートポンプサイクル10では、冷媒は循環しない。また、除霜モードの熱媒体回路20では、第1実施形態の除霜モードと同様に作動する。 Therefore, the refrigerant does not circulate in the heat pump cycle 10 in defrosting mode. Moreover, the heat medium circuit 20 in the defrost mode operates in the same manner as in the defrost mode of the first embodiment.
 また、除霜モードの空調ユニット30では、図15の太線矢印で示すように、第1空気通路31a、第2空気通路31b、および外気バイパス通路31eへ流入した空気が各空気通路を流れる。 In addition, in the air conditioning unit 30 in the defrosting mode, as indicated by thick line arrows in FIG. 15, the air that has flowed into the first air passage 31a, the second air passage 31b, and the outside air bypass passage 31e flows through each air passage.
 第1入口側内外気切替装置32aから第1空気通路31aへ流入した空気(本実施形態では、外気)は、第1実施形態の除霜モードと同様に、室内送風機37の第1ファン37aおよび第2ファン37bへ吸入される。外気バイパス通路31eへ流入した外気は、第1実施形態の除霜モードと同様に、第1ファン37aへ吸入される。 Air (outside air in this embodiment) that has flowed from the first inlet side inside/outside air switching device 32a into the first air passage 31a flows into the first fan 37a of the indoor blower 37 and The air is sucked into the second fan 37b. The outside air that has flowed into the outside air bypass passage 31e is sucked into the first fan 37a as in the defrosting mode of the first embodiment.
 第1ファン37aから上層側空気通路31cへ送風された空気および第2ファン37bから下層側空気通路31dへ送風された空気は、第1実施形態の除霜モードと同様に、ヒータコア22にて、熱媒体に蓄えらえた熱によって加熱されて、車室内へ吹き出される。これにより、車室内の暖房が継続される。 The air blown from the first fan 37a to the upper air passage 31c and the air blown from the second fan 37b to the lower air passage 31d are blown by the heater core 22 as in the defrosting mode of the first embodiment. It is heated by the heat stored in the heat medium and blown out into the passenger compartment. Thereby, the heating of the passenger compartment is continued.
 第2入口側内外気切替装置32bから第2空気通路31bへ流入した内気は、第1実施形態の除霜モードと同様に、第2空気通路31bを流れる。従って、第1実施形態と同様に、車室内の冷房および除湿暖房が実現される。従って、第1実施形態の除霜モードと同様に、第2熱交換器15bの除霜がなされる。 The inside air that has flowed into the second air passage 31b from the second inlet side inside/outside air switching device 32b flows through the second air passage 31b in the same manner as in the defrosting mode of the first embodiment. Therefore, cooling and dehumidifying/heating of the passenger compartment are achieved in the same manner as in the first embodiment. Therefore, the second heat exchanger 15b is defrosted in the same manner as in the defrosting mode of the first embodiment.
 以上の如く、本実施形態の車両用空調装置1によれば、運転モードを切り替えることによって、車室内の快適な空調を実現することができる。さらに、第2熱交換器15bに着霜が生じた際には、これを取り除くこともできる。 As described above, according to the vehicle air conditioner 1 of the present embodiment, comfortable air conditioning in the vehicle interior can be achieved by switching the operation mode. Furthermore, when frost forms on the second heat exchanger 15b, it can be removed.
 これに加えて、本実施形態の車両用空調装置1では、暖房モード時に、第1実施形態と同様に、冷媒が内気および外気から吸熱した熱を利用して、車室内の暖房を行うことができる。従って、冷媒が外気のみから吸熱した熱を車室内の暖房に利用する場合よりも、車室内の暖房のために消費されるエネルギを低減させることができる。 In addition, in the vehicle air conditioner 1 of the present embodiment, in the heating mode, as in the first embodiment, the heat absorbed by the refrigerant from the inside air and the outside air can be used to heat the vehicle interior. can. Therefore, the energy consumed for heating the vehicle interior can be reduced as compared with the case where the refrigerant absorbs heat only from the outside air and uses it to heat the vehicle interior.
 また、暖房モード時に、外気通路ドア34aが外気バイパス通路31eを開くので、外気を第1熱交換器15aおよび第2熱交換器15bを迂回させて上層側空気通路31cへ導くことができる。従って、第1実施形態と同様に、車両窓ガラス51の防曇性能を向上させることができる。 Also, in the heating mode, the outside air passage door 34a opens the outside air bypass passage 31e, so that the outside air can be guided to the upper air passage 31c by bypassing the first heat exchanger 15a and the second heat exchanger 15b. Therefore, as in the first embodiment, the anti-fogging performance of the vehicle window glass 51 can be improved.
 さらに、第1熱交換器15aを通過した内気の一部を下層側空気通路31dへ導くことができる。従って、第1実施形態と同様に、頭寒足熱型の快適な暖房を実現することができる。 Furthermore, part of the inside air that has passed through the first heat exchanger 15a can be guided to the lower layer side air passage 31d. Therefore, as in the first embodiment, it is possible to realize comfortable heating of a cold-head/hot-foot type.
 この際、車両窓ガラス51の防曇性能の向上、および暖房のために消費されるエネルギの低減を両立させるように内外気比率が設定あるいは調整されていても、外気バイパス通路31eへ流入する外気の風量を調整することで、第1熱交換器15aにおける冷媒の吸熱量、および第2熱交換器15bにおける冷媒の吸熱量に影響を与えにくい。すなわち、車室内の暖房に利用可能な熱量に影響を与えにくい。 At this time, even if the inside/outside air ratio is set or adjusted so as to improve the antifogging performance of the vehicle window glass 51 and reduce the energy consumed for heating, the outside air flowing into the outside air bypass passage 31e By adjusting the air volume, the amount of heat absorbed by the refrigerant in the first heat exchanger 15a and the amount of heat absorbed by the refrigerant in the second heat exchanger 15b are less likely to be affected. That is, the amount of heat that can be used for heating the vehicle interior is less likely to be affected.
 その結果、本実施形態の車両用空調装置1では、内気および外気から吸熱した熱を車室内の暖房に利用する車両用空調装置であっても、車両窓ガラス51の防曇性能の向上および暖房のために消費されるエネルギの低減の両立を図りやすい。また、除霜モード時には、湿度や臭気を含む空気が車室内へ送風されてしまうことを抑制することができる。 As a result, in the vehicle air conditioner 1 of the present embodiment, even though the vehicle air conditioner uses the heat absorbed from the inside air and the outside air for heating the vehicle interior, the anti-fogging performance of the vehicle window glass 51 is improved and the heating is improved. It is easy to achieve both reduction of energy consumed for Also, in the defrosting mode, it is possible to prevent the air containing humidity and odor from being blown into the passenger compartment.
 (第4実施形態)
 本実施形態では、第3実施形態の車両用空調装置1に対して、図16~図18に示すように、第2実施形態と同様に、空調ユニット30の室内送風機37および排気送風機45等を廃止している。そして、外気送風機46a、内気送風機46b、および上流側通風路切替装置47を追加した例を説明する。その他の空調ユニット30の構成および車両用空調装置1の構成は、第1実施形態と同様である。
(Fourth embodiment)
In this embodiment, as shown in FIGS. 16 to 18, in contrast to the vehicle air conditioner 1 of the third embodiment, the indoor blower 37 and the exhaust blower 45 of the air conditioning unit 30, etc. are added as in the second embodiment. abolished. Then, an example in which an outside air blower 46a, an inside air blower 46b, and an upstream side ventilation path switching device 47 are added will be described. Other configurations of the air conditioning unit 30 and the configuration of the vehicle air conditioner 1 are the same as those of the first embodiment.
 次に、上記構成における本実施形態の車両用空調装置1の作動を説明する。本実施形態の車両用空調装置1においても、第1実施形態と同様に、運転モードが切り替えられる。以下に、各運転モードの詳細作動について説明する。 Next, the operation of the vehicle air conditioner 1 of this embodiment with the above configuration will be described. Also in the vehicle air conditioner 1 of this embodiment, the operation mode is switched in the same manner as in the first embodiment. The detailed operation of each operation mode will be described below.
 (1)冷房モードおよび(2)除湿暖房モード
 冷房モードおよび除湿暖房モードでは、制御装置60が、第3実施形態の冷房モードおよび除湿暖房モードと同様に、ヒートポンプサイクル10の各構成機器、および熱媒体回路20の各構成機器の作動を制御する。
(1) Cooling Mode and (2) Dehumidifying Heating Mode In the cooling mode and the dehumidifying heating mode, the control device 60 controls each component of the heat pump cycle 10 and the heat as in the cooling mode and the dehumidifying heating mode of the third embodiment. It controls the operation of each component of the media circuit 20 .
 また、制御装置60は、外気送風機46aから送風された外気を、第1空気通路31aおよび第2空気通路31bの双方へ流入させるように、上流側通風路切替装置47内の通風路を切り替える。また、制御装置60は、第3実施形態の冷房モードおよび除湿暖房モードと同様に、その他の空調ユニット30の各構成機器の作動を制御する。 In addition, the control device 60 switches the ventilation passages in the upstream ventilation passage switching device 47 so that the outside air blown from the outside air blower 46a flows into both the first air passage 31a and the second air passage 31b. In addition, the control device 60 controls the operation of other constituent devices of the air conditioning unit 30 in the same manner as in the cooling mode and the dehumidifying and heating mode of the third embodiment.
 従って、冷房モードおよび除湿暖房モードのヒートポンプサイクル10および熱媒体回路20は、第3実施形態と同様に作動する。また、冷房モードおよび除湿暖房モードの空調ユニット30では、図16の太線矢印で示すように、第1空気通路31aおよび第2空気通路31bへ流入した空気が各空気通路を流れる。従って、第3実施形態と同様に、車室内の冷房および除湿暖房が実現される。 Therefore, the heat pump cycle 10 and heat medium circuit 20 in the cooling mode and the dehumidifying/heating mode operate in the same manner as in the third embodiment. In addition, in the air conditioning unit 30 in the cooling mode and the dehumidifying/heating mode, the air that has flowed into the first air passage 31a and the second air passage 31b flows through each air passage, as indicated by the thick line arrows in FIG. Therefore, cooling and dehumidifying/heating of the passenger compartment are achieved in the same manner as in the third embodiment.
 (3)暖房モード
 暖房モードでは、制御装置60が、第3実施形態の暖房モードと同様に、ヒートポンプサイクル10の各構成機器、および熱媒体回路20の各構成機器の作動を制御する。
(3) Heating Mode In the heating mode, the control device 60 controls the operation of each component of the heat pump cycle 10 and each component of the heat medium circuit 20, as in the heating mode of the third embodiment.
 また、制御装置60は、外気送風機46aから送風された外気を、第2空気通路31bおよび外気バイパス通路31eの双方へ流入させるように、上流側通風路切替装置47内の通風路を切り替える。また、制御装置60は、内気送風機46bから送風された内気を、第1空気通路31aへ流入させるように、上流側通風路切替装置47内の通風路を切り替える。 Further, the control device 60 switches the ventilation passages in the upstream ventilation passage switching device 47 so that the outside air blown from the outside air blower 46a flows into both the second air passage 31b and the outside air bypass passage 31e. In addition, the control device 60 switches the air passage in the upstream side air passage switching device 47 so that the inside air blown from the inside air blower 46b flows into the first air passage 31a.
 また、制御装置60は、第3実施形態の暖房モードと同様に、その他の空調ユニット30の各構成機器の作動を制御する。 In addition, the control device 60 controls the operation of other components of the air conditioning unit 30, as in the heating mode of the third embodiment.
 従って、暖房モードのヒートポンプサイクル10および熱媒体回路20は、第3実施形態と同様に作動する。また、暖房モードの空調ユニット30では、図17の太線矢印で示すように、第1空気通路31a、第2空気通路31b、および外気バイパス通路31eへ流入した空気が各空気通路を流れる。従って、第3実施形態と同様に、車室内の暖房が実現される。 Therefore, the heat pump cycle 10 and heat medium circuit 20 in heating mode operate in the same manner as in the third embodiment. In addition, in the air conditioning unit 30 in the heating mode, as indicated by thick line arrows in FIG. 17, the air flowing into the first air passage 31a, the second air passage 31b, and the outside air bypass passage 31e flows through each air passage. Therefore, heating of the passenger compartment is achieved as in the third embodiment.
 (4)除霜モード
 除霜モードでは、制御装置60が、第3実施形態の暖房モードと同様に、ヒートポンプサイクル10の各構成機器、および熱媒体回路20の各構成機器の作動を制御する。
(4) Defrost Mode In the defrost mode, the control device 60 controls the operation of each component of the heat pump cycle 10 and each component of the heat medium circuit 20, as in the heating mode of the third embodiment.
 また、制御装置60は、外気送風機46aから送風された外気を、第1空気通路31aおよび外気バイパス通路31eの双方へ流入させるように、上流側通風路切替装置47内の通風路を切り替える。また、制御装置60は、内気送風機46bから送風された内気を、第2空気通路31bへ流入させるように、上流側通風路切替装置47内の通風路を切り替える。 In addition, the control device 60 switches the ventilation passages in the upstream ventilation passage switching device 47 so that the outside air blown from the outside air blower 46a flows into both the first air passage 31a and the outside air bypass passage 31e. Further, the control device 60 switches the air passage in the upstream side air passage switching device 47 so that the inside air blown from the inside air blower 46b flows into the second air passage 31b.
 また、制御装置60は、第3実施形態の暖房モードと同様に、その他の空調ユニット30の各構成機器の作動を制御する。 In addition, the control device 60 controls the operation of other components of the air conditioning unit 30, as in the heating mode of the third embodiment.
 従って、冷房モードおよび除湿暖房モードのヒートポンプサイクル10および熱媒体回路20は、第3実施形態と同様に作動する。また、冷房モードおよび除湿暖房モードの空調ユニット30では、図17の太線矢印で示すように、第1空気通路31a、第2空気通路31b、および外気バイパス通路31eへ流入した空気が各空気通路を流れる。従って、第3実施形態と同様に、車室内の暖房が実現される。 Therefore, the heat pump cycle 10 and heat medium circuit 20 in the cooling mode and the dehumidifying/heating mode operate in the same manner as in the third embodiment. Also, in the air conditioning unit 30 in the cooling mode and the dehumidifying and heating mode, as indicated by the thick line arrows in FIG. flow. Therefore, heating of the passenger compartment is achieved as in the third embodiment.
 従って、除霜モードのヒートポンプサイクル10では、冷媒は循環しない。また、除霜モードの熱媒体回路20では、第3実施形態の除霜モードと同様に作動する。 Therefore, the refrigerant does not circulate in the heat pump cycle 10 in defrost mode. Moreover, the heat medium circuit 20 in the defrost mode operates in the same manner as in the defrost mode of the third embodiment.
 また、除霜モードの空調ユニット30では、図18の太線矢印で示すように、第1空気通路31a、第2空気通路31b、および外気バイパス通路31eへ流入した空気が各空気通路を流れる。従って、第3実施形態と同様に、第2熱交換器15bの除霜がなされるとともに、車室内の暖房が継続される。 In addition, in the air conditioning unit 30 in the defrost mode, as indicated by thick line arrows in FIG. 18, the air that has flowed into the first air passage 31a, the second air passage 31b, and the outside air bypass passage 31e flows through each air passage. Therefore, similarly to the third embodiment, the second heat exchanger 15b is defrosted and the heating of the passenger compartment is continued.
 以上の如く、本実施形態の車両用空調装置1によれば、運転モードを切り替えることによって、車室内の快適な空調を実現することができる。さらに、第2熱交換器15bに着霜が生じた際には、これを取り除くこともできる。 As described above, according to the vehicle air conditioner 1 of the present embodiment, comfortable air conditioning in the vehicle interior can be achieved by switching the operation mode. Furthermore, when frost forms on the second heat exchanger 15b, it can be removed.
 さらに、本実施形態の車両用空調装置1では、第3実施形態と同様の効果を得ることができる。すなわち、暖房モード時には、車両窓ガラス51の防曇性能の向上および暖房のために消費されるエネルギの低減の両立を図りやすい。また、除霜モード時には、湿度や臭気を含む空気が車室内へ送風されてしまうことを抑制することができる。 Furthermore, with the vehicle air conditioner 1 of this embodiment, the same effects as those of the third embodiment can be obtained. That is, in the heating mode, it is easy to achieve both an improvement in the anti-fogging performance of the vehicle window glass 51 and a reduction in the energy consumed for heating. Also, in the defrosting mode, it is possible to prevent the air containing humidity and odor from being blown into the passenger compartment.
 (第5実施形態)
 本実施形態では、第1実施形態の車両用空調装置1に対して、図19~図22に示すように、空調ユニット30の外気バイパス通路31e、内気バイパス通路31f、外気通路ドア34a、内気通路ドア34b、および仕切板39を廃止した例を説明する。なお、図19、図20~図22は、それぞれ第1実施形態で説明した図1、図6~図8に対応する図面である。
(Fifth embodiment)
In the present embodiment, as shown in FIGS. 19 to 22, in contrast to the vehicle air conditioner 1 of the first embodiment, an outside air bypass passage 31e, an inside air bypass passage 31f, an outside air passage door 34a, and an inside air passage of the air conditioning unit 30 are provided. An example in which the door 34b and the partition plate 39 are eliminated will be described. 19 and 20 to 22 are drawings corresponding to FIGS. 1 and 6 to 8 described in the first embodiment, respectively.
 本実施形態の空調ユニット30では、仕切板39が廃止されているので、第1実施形態で説明した上層側空気通路31cおよび下層側空気通路31dが、1つの室内側空気通路31hとなっている。その他の空調ユニット30の構成および車両用空調装置1の構成は、第1実施形態と同様である。 In the air conditioning unit 30 of this embodiment, the partition plate 39 is eliminated, so the upper layer side air passage 31c and the lower layer side air passage 31d described in the first embodiment form one room side air passage 31h. . Other configurations of the air conditioning unit 30 and the configuration of the vehicle air conditioner 1 are the same as those of the first embodiment.
 次に、上記構成における本実施形態の車両用空調装置1の作動を説明する。本実施形態の車両用空調装置1においても、第1実施形態と同様に、運転モードが切り替えられる。以下に、各運転モードの詳細作動について説明する。 Next, the operation of the vehicle air conditioner 1 of this embodiment with the above configuration will be described. Also in the vehicle air conditioner 1 of this embodiment, the operation mode is switched in the same manner as in the first embodiment. The detailed operation of each operation mode will be described below.
 (1)冷房モードおよび(2)除湿暖房モード
 冷房モードおよび除湿暖房モードでは、制御装置60が、第1実施形態の冷房モードおよび除湿暖房モードと同様に、ヒートポンプサイクル10の各構成機器、熱媒体回路20、および空調ユニット30の各構成機器の作動を制御する。
(1) Cooling Mode and (2) Dehumidifying and Heating Mode In the cooling mode and the dehumidifying and heating mode, the control device 60 controls each component of the heat pump cycle 10, the heat medium, as in the cooling mode and the dehumidifying and heating mode of the first embodiment. It controls the operation of each component of circuit 20 and air conditioning unit 30 .
 ここで、本実施形態の空調ユニット30では、外気バイパス通路31eおよび内気バイパス通路31fが廃止されている。このため、本実施形態の空調ユニット30では、第1実施形態の空調ユニット30において、外気通路ドア34aが外気バイパス通路31eを閉塞させ、内気通路ドア34bが内気バイパス通路31fを閉塞させた状態と同様に空気が流れる。 Here, in the air conditioning unit 30 of the present embodiment, the outside air bypass passage 31e and the inside air bypass passage 31f are eliminated. Therefore, in the air conditioning unit 30 of the present embodiment, the outside air passage door 34a closes the outside air bypass passage 31e and the inside air passage door 34b closes the inside air bypass passage 31f in the air conditioning unit 30 of the first embodiment. Air flows in the same way.
 従って、冷房モードおよび除湿暖房モードのヒートポンプサイクル10および熱媒体回路20は、第1実施形態と同様に作動する。また、冷房モードおよび除湿暖房モードの空調ユニット30では、図20の太線矢印で示すように、第1空気通路31aおよび第2空気通路31bへ流入した空気が各空気通路を流れる。従って、第1実施形態と同様に、車室内の冷房および除湿暖房が実現される。 Therefore, the heat pump cycle 10 and heat medium circuit 20 in the cooling mode and the dehumidifying/heating mode operate in the same manner as in the first embodiment. In addition, in the air conditioning unit 30 in the cooling mode and the dehumidifying/heating mode, the air that has flowed into the first air passage 31a and the second air passage 31b flows through each air passage as indicated by the thick line arrows in FIG. Therefore, cooling and dehumidifying/heating of the passenger compartment are achieved in the same manner as in the first embodiment.
 (3)暖房モード
 暖房モードでは、制御装置60が、ヒートポンプサイクル10の第1膨張弁14aを全開状態とする。
(3) Heating Mode In the heating mode, the controller 60 fully opens the first expansion valve 14a of the heat pump cycle 10 .
 また、制御装置60は、空調ユニット30の第1空気通路31aへ内気を流入させるように、第1入口側内外気切替装置32aの作動を制御する。また、制御装置60は、第1熱交換器15aを通過した全流量の空気を車室内流出用の開口部から流出させるように、第1出口側内外気切替装置33aの作動を制御する。 In addition, the control device 60 controls the operation of the first inlet side inside/outside air switching device 32a so that the inside air flows into the first air passage 31a of the air conditioning unit 30. In addition, the control device 60 controls the operation of the first outlet side inside/outside air switching device 33a so that the entire amount of air that has passed through the first heat exchanger 15a flows out from the vehicle interior outflow opening.
 また、制御装置60は、第2空気通路31bへ外気および内気の少なくとも一方を流入させるように、第2入口側内外気切替装置32bの作動を制御する。より詳細には、本実施形態の制御装置60は、内気温Trの上昇に伴って、第2空気通路31bへ流入させる内気の割合を増加させる。 In addition, the control device 60 controls the operation of the second inlet side inside/outside air switching device 32b so that at least one of outside air and inside air flows into the second air passage 31b. More specifically, the controller 60 of the present embodiment increases the proportion of the inside air that flows into the second air passage 31b as the inside temperature Tr rises.
 また、制御装置60は、第2熱交換器15bを通過した全流量の空気を車室外流出用の開口部から流出させるように、第2出口側内外気切替装置33bの作動を制御する。また、制御装置60は、第1実施形態の暖房モードと同様に、その他のヒートポンプサイクル10、熱媒体回路20、および空調ユニット30の各構成機器の作動を制御する。 In addition, the control device 60 controls the operation of the second outlet side inside/outside air switching device 33b so that the entire amount of air that has passed through the second heat exchanger 15b flows out from the opening for outflow to the outside of the vehicle compartment. In addition, the control device 60 controls the operation of each component of the heat pump cycle 10, the heat medium circuit 20, and the air conditioning unit 30, as in the heating mode of the first embodiment.
 従って、暖房モードのヒートポンプサイクル10では、圧縮機11から吐出された高圧冷媒が、水冷媒熱交換器12の冷媒通路へ流入する。水冷媒熱交換器12の冷媒通路へ流入した冷媒は、熱媒体通路を流通する熱媒体と熱交換する。水冷媒熱交換器12では、冷媒が熱媒体に放熱して凝縮する。 Therefore, in the heat pump cycle 10 in heating mode, the high-pressure refrigerant discharged from the compressor 11 flows into the refrigerant passage of the water-refrigerant heat exchanger 12 . The refrigerant flowing into the refrigerant passage of the water-refrigerant heat exchanger 12 exchanges heat with the heat medium flowing through the heat medium passage. In the water-refrigerant heat exchanger 12, the refrigerant radiates heat to the heat medium and condenses.
 水冷媒熱交換器12の冷媒通路から流出した冷媒は、レシーバ13へ流入して気液分離される。レシーバ13にて分離された液相冷媒は、全開となっている第1膨張弁14aを介して、第1熱交換器15aへ流入する。 The refrigerant flowing out from the refrigerant passage of the water-refrigerant heat exchanger 12 flows into the receiver 13 and is separated into gas and liquid. The liquid-phase refrigerant separated by the receiver 13 flows into the first heat exchanger 15a via the fully opened first expansion valve 14a.
 第1熱交換器15aへ流入した液相冷媒は、空調ユニット30の第1空気通路31aへ流入した空気(本実施形態では、外気)と熱交換する。第1熱交換器15aでは、液相冷媒が空気と熱交換して過冷却される。第1熱交換器15aから流出した冷媒は、第2膨張弁14bへ流入して減圧される。第2膨張弁14bにて減圧された低圧冷媒は、第2熱交換器15bへ流入する。 The liquid-phase refrigerant that has flowed into the first heat exchanger 15a exchanges heat with air that has flowed into the first air passage 31a of the air conditioning unit 30 (outside air in this embodiment). In the first heat exchanger 15a, the liquid-phase refrigerant exchanges heat with air and is subcooled. The refrigerant that has flowed out of the first heat exchanger 15a flows into the second expansion valve 14b and is decompressed. The low-pressure refrigerant decompressed by the second expansion valve 14b flows into the second heat exchanger 15b.
 第2熱交換器15bへ流入した冷媒は、空調ユニット30の第2空気通路31bへ流入した空気(本実施形態では、外気および内気の少なくとも一方)と熱交換する。第2熱交換器15bでは、冷媒が空気から吸熱して蒸発する。これにより、第2空気通路31bを流通する空気が冷却される。第2熱交換器15bから流出した冷媒は、圧縮機11に吸入されて再び圧縮される。 The refrigerant that has flowed into the second heat exchanger 15b exchanges heat with the air that has flowed into the second air passage 31b of the air conditioning unit 30 (in this embodiment, at least one of the outside air and the inside air). In the second heat exchanger 15b, the refrigerant absorbs heat from the air and evaporates. This cools the air flowing through the second air passage 31b. The refrigerant that has flowed out of the second heat exchanger 15b is sucked into the compressor 11 and compressed again.
 また、暖房モードの熱媒体回路20では、第1実施形態と同様に、目標熱媒体温度TWOに近づくように温度調整された熱媒体が、ヒータコア22へ流入する。 Also, in the heat medium circuit 20 in the heating mode, the heat medium whose temperature is adjusted to approach the target heat medium temperature TWO flows into the heater core 22, as in the first embodiment.
 また、暖房モードの室内空調ユニット30では、図21の太線矢印で示すように、空気が各空気通路を流れる。 Also, in the indoor air conditioning unit 30 in the heating mode, air flows through each air passage as indicated by the thick line arrows in FIG.
 具体的には、第1入口側内外気切替装置32aから第1空気通路31aへ流入した空気(本実施形態では、外気)は、第1熱交換器15aを通過する際に冷媒と熱交換して加熱される。第1熱交換器15aにて加熱された空気は、第1出口側内外気切替装置33aおよび通風路切替装置35内の通風路を介して、室内送風機37の第1ファン37aおよび第2ファン37bへ吸入される。 Specifically, the air (outside air in this embodiment) flowing from the first inlet side inside/outside air switching device 32a into the first air passage 31a exchanges heat with the refrigerant when passing through the first heat exchanger 15a. is heated. The air heated by the first heat exchanger 15a passes through the first outlet side inside/outside air switching device 33a and the ventilation passage in the ventilation passage switching device 35, and flows into the first fan 37a and the second fan 37b of the indoor blower 37. inhaled into.
 第1ファン37aおよび第2ファン37bへ吸入された空気は、室内側空気通路31hへ送風される。室内側空気通路31hへ送風された空気は、ヒータコア22へ流入する。ヒータコア22へ流入した空気は熱媒体回路20を循環する熱媒体と熱交換して、さらに加熱される。 The air sucked into the first fan 37a and the second fan 37b is sent to the indoor air passage 31h. The air blown into the indoor air passage 31 h flows into the heater core 22 . The air that has flowed into the heater core 22 exchanges heat with the heat medium circulating in the heat medium circuit 20 and is further heated.
 ヒータコア22にて加熱された空気の一部は、デフロスタ開口穴43aを介して、車両窓ガラス51の内側面へ向けて吹き出される。さらに、ヒータコア22にて加熱された残余の空気は、フット開口穴43cを介して、乗員の足下へ向けて吹き出される。これにより、車室内の暖房が実現される。 A portion of the air heated by the heater core 22 is blown toward the inner surface of the vehicle window glass 51 through the defroster opening hole 43a. Further, the remaining air heated by the heater core 22 is blown out toward the feet of the occupant through the foot opening holes 43c. Thereby, the heating of the passenger compartment is realized.
 第2入口側内外気切替装置32bから第2空気通路31bへ流入した空気(本実施形態では、外気または内気の少なくとも一方)は、第2熱交換器15bを通過する際に冷媒と熱交換して吸熱される。第2熱交換器15bにて冷却された空気は、第2出口側内外気切替装置33bを介して、排気送風機45へ吸入される。排気送風機45へ吸入された空気は、車室外側へ排気される。 The air (in this embodiment, at least one of the outside air and the inside air) flowing from the second inlet side inside/outside air switching device 32b into the second air passage 31b exchanges heat with the refrigerant when passing through the second heat exchanger 15b. endothermic. The air cooled by the second heat exchanger 15b is sucked into the exhaust air blower 45 via the second outlet side inside/outside air switching device 33b. The air sucked into the exhaust air blower 45 is exhausted to the outside of the vehicle.
 (4)除霜モード
 除霜モードでは、制御装置60が、第1実施形態の除霜モードと同様に、ヒートポンプサイクル10の圧縮機11を停止させる。また、制御装置60は、第2空気通路31bへ内気を流入させるように、第2入口側内外気切替装置32bの作動を制御する。また、制御装置60は、暖房モードと同様に、熱媒体回路20および空調ユニット30の各構成機器の作動を制御する。
(4) Defrost Mode In the defrost mode, the control device 60 stops the compressor 11 of the heat pump cycle 10 as in the defrost mode of the first embodiment. Further, the control device 60 controls the operation of the second inlet side inside/outside air switching device 32b so as to allow the inside air to flow into the second air passage 31b. Further, the control device 60 controls the operation of each component of the heat medium circuit 20 and the air conditioning unit 30 in the same manner as in the heating mode.
 従って、除霜モードのヒートポンプサイクル10では、冷媒は循環しない。また、除霜モードの熱媒体回路20では、第1実施形態の除霜モードと同様に作動する。 Therefore, the refrigerant does not circulate in the heat pump cycle 10 in defrosting mode. Moreover, the heat medium circuit 20 in the defrost mode operates in the same manner as in the defrost mode of the first embodiment.
 また、除霜モードの空調ユニット30では、図22の太線矢印で示すように、第1空気通路31a、および第2空気通路31bへ流入した空気が各空気通路を流れる。 In addition, in the air conditioning unit 30 in the defrosting mode, as indicated by thick line arrows in FIG. 22, the air that has flowed into the first air passage 31a and the second air passage 31b flows through each air passage.
 第1入口側内外気切替装置32aから第1空気通路31aへ流入した空気(本実施形態では、外気)は、暖房モードと同様に、室内側空気通路31hへ送風される。室内側空気通路31hへ送風された空気は、ヒータコア22にて、熱媒体に蓄えらえた熱によって加熱されて、車室内へ吹き出される。これにより、車室内の暖房が継続される。 The air (outside air in this embodiment) that has flowed into the first air passage 31a from the first inlet side inside/outside air switching device 32a is sent to the indoor side air passage 31h in the same manner as in the heating mode. The air blown into the indoor-side air passage 31h is heated by the heater core 22 by the heat stored in the heat medium, and is blown out into the passenger compartment. Thereby, the heating of the passenger compartment is continued.
 第2入口側内外気切替装置32bから第2空気通路31bへ流入した内気は、第1実施形態の除霜モードと同様に、第2空気通路31bを流れる。従って、第1実施形態と同様に、車室内の冷房および除湿暖房が実現される。従って、第1実施形態の除霜モードと同様に、第2熱交換器15bの除霜がなされる。 The inside air that has flowed into the second air passage 31b from the second inlet side inside/outside air switching device 32b flows through the second air passage 31b in the same manner as in the defrosting mode of the first embodiment. Therefore, cooling and dehumidifying/heating of the passenger compartment are achieved in the same manner as in the first embodiment. Therefore, the second heat exchanger 15b is defrosted in the same manner as in the defrosting mode of the first embodiment.
 ここで、本実施形態の暖房モードでは、内気温Trの上昇に伴って、第2熱交換器15bへ流入させる内気の割合を増加させる。このため、内気温Trがある程度上昇してしまうと、第2熱交換器15bに着霜が生じる可能性は低い。従って、本実施形態の除霜モードは、暖房モードの開始直後のような、内気温Trの上昇過程で、第2熱交換器15bに着霜が生じた場合に実行される。 Here, in the heating mode of the present embodiment, the ratio of the inside air flowing into the second heat exchanger 15b is increased as the inside temperature Tr rises. Therefore, when the inside air temperature Tr rises to some extent, the possibility of frost formation on the second heat exchanger 15b is low. Therefore, the defrosting mode of the present embodiment is executed when frost forms on the second heat exchanger 15b in the process of increasing the internal temperature Tr, such as immediately after starting the heating mode.
 以上の如く、本実施形態の車両用空調装置1によれば、運転モードを切り替えることによって、車室内の快適な空調を実現することができる。さらに、第2熱交換器15bに着霜が生じた際には、これを取り除くこともできる。 As described above, according to the vehicle air conditioner 1 of the present embodiment, comfortable air conditioning in the vehicle interior can be achieved by switching the operation mode. Furthermore, when frost forms on the second heat exchanger 15b, it can be removed.
 これに加えて、本実施形態の車両用空調装置1によれば、暖房モード時に、第2入口側内外気切替装置32bが、外気および内気の少なくとも一方を第2空気通路31bへ流入させる。第2出口側内外気切替装置33bが、第2熱交換器15bを通過した外気および内気の少なくとも一方を車室外へ流出させる。 In addition, according to the vehicle air conditioner 1 of the present embodiment, the second inlet side inside/outside air switching device 32b allows at least one of outside air and inside air to flow into the second air passage 31b in the heating mode. The second outlet side inside/outside air switching device 33b causes at least one of the outside air and inside air that have passed through the second heat exchanger 15b to flow out of the vehicle compartment.
 従って、第2熱交換器15bにて、外気および内気の少なくとも一方が有する熱を冷媒に吸熱させることができる。そして、第1実施形態と同様に、冷媒が外気および内気の少なくとも一方から吸熱した熱を、車室内の暖房に利用することができる。そして、第2空気通路31bへ流入させる内気の割合を増加させるに伴って、車室内の暖房のために消費されるエネルギを低減させることができる。 Therefore, in the second heat exchanger 15b, heat of at least one of the outside air and the inside air can be absorbed by the refrigerant. Then, as in the first embodiment, the heat absorbed by the refrigerant from at least one of the outside air and the inside air can be used for heating the vehicle interior. As the ratio of the inside air flowing into the second air passage 31b is increased, the energy consumed for heating the vehicle interior can be reduced.
 また、暖房モード時に、外気を第1空気通路31aへ流入させて、室内側空気通路31hを介して、車室内側へ導いている。これによれば、第1熱交換器15aおよびヒータコア20の双方にて、内気よりも湿度の低い外気を加熱して、車室内へ吹き出すことができる。従って、車両窓ガラス51の防曇性能を向上させることができる。 Also, in the heating mode, the outside air is introduced into the first air passage 31a and led into the vehicle interior through the indoor air passage 31h. According to this, both the first heat exchanger 15a and the heater core 20 can heat outside air having a lower humidity than inside air and blow it out into the passenger compartment. Therefore, the anti-fog performance of the vehicle window glass 51 can be improved.
 この際、車室内の適切な暖房を行うために、第1空気通路31aへ流入させる外気の風量を調整しても、第2熱交換器15bにおける冷媒の吸熱量に影響を与えにくい。すなわち、車室内の暖房に利用可能な熱量に影響を与えにくい。 At this time, even if the amount of outside air flowing into the first air passage 31a is adjusted in order to appropriately heat the vehicle interior, the amount of heat absorbed by the refrigerant in the second heat exchanger 15b is less likely to be affected. That is, the amount of heat that can be used for heating the vehicle interior is less likely to be affected.
 その結果、本実施形態の車両用空調装置1では、内気および外気から吸熱した熱を車室内の暖房に利用する車両用空調装置であっても、車両窓ガラス51の防曇性能の向上および暖房のために消費されるエネルギの低減の両立を図ることができる。 As a result, in the vehicle air conditioner 1 of the present embodiment, even though the vehicle air conditioner uses the heat absorbed from the inside air and the outside air for heating the vehicle interior, the anti-fogging performance of the vehicle window glass 51 is improved and the heating is improved. It is possible to achieve both reduction of energy consumed for
 また、本実施形態の車両用空調装置1では、第1熱交換器15aにて外気を加熱し、第1熱交換器15aにて加熱された外気をヒータコア20にてさらに加熱して、車室内へ吹き出している。換言すると、本実施形態の車両用空調装置1では、車室内へ送風される送風空気を第1熱交換器15aおよびヒータコア20にて、段階的に加熱することができる。従って、車室内へ送風される送風空気を効率的に加熱することができる。 Further, in the vehicle air conditioner 1 of the present embodiment, the outside air is heated by the first heat exchanger 15a, the outside air heated by the first heat exchanger 15a is further heated by the heater core 20, and the inside of the vehicle is heated. is blowing out to In other words, in the vehicle air conditioner 1 of the present embodiment, the first heat exchanger 15a and the heater core 20 can heat the air blown into the vehicle compartment in stages. Therefore, it is possible to efficiently heat the air blown into the passenger compartment.
 また、本実施形態の暖房モードでは、内気温Trの上昇に伴って、第2空気通路31bへ流入させる内気の割合を増加させる。これによれば、暖房開始時のように、内気温Trが外気温Tamに近くなっている際には、内気が過度に第2空気通路31bへ流入してしまうことを抑制することができる。従って、内気温Trの上昇を妨げてしまうことを抑制して、即効性の高い暖房を実現することができる。 Also, in the heating mode of the present embodiment, the ratio of the inside air flowing into the second air passage 31b is increased as the inside temperature Tr rises. According to this, when the inside air temperature Tr is close to the outside air temperature Tam, such as at the start of heating, it is possible to suppress the inside air from excessively flowing into the second air passage 31b. Therefore, it is possible to prevent the inside air temperature Tr from being hindered, and to realize heating with high immediate effect.
 さらに、内気温Trが上昇した際には、第2空気通路31bへ流入させる内気の割合を増加させることによって、第2熱交換器15bにおける冷媒の吸熱量を増加させることができる。その結果、図23に示すように、車室内の暖房のために消費されるエネルギを低減させるとともに、暖房能力を向上させることができる。図23は、第2熱交換器15bへ流入する空気の温度である吸熱用空気温度に対する暖房能力の変化を示している。 Furthermore, when the inside air temperature Tr rises, the amount of heat absorbed by the refrigerant in the second heat exchanger 15b can be increased by increasing the ratio of the inside air that flows into the second air passage 31b. As a result, as shown in FIG. 23, the energy consumed for heating the vehicle interior can be reduced, and the heating capacity can be improved. FIG. 23 shows changes in heating capacity with respect to the temperature of air for heat absorption, which is the temperature of the air flowing into the second heat exchanger 15b.
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。 The present disclosure is not limited to the above-described embodiments, and can be variously modified as follows without departing from the scope of the present disclosure.
 上述の実施形態では、種々の運転モードを実行可能な車両用空調装置について説明したが、これに限定されない。少なくとも暖房モードを実施することができれば、車両窓ガラスの防曇性能の向上および暖房のために消費されるエネルギの低減の両立を図ることができる。さらに、その他の運転モードを追加してもよい。 In the above-described embodiment, a vehicle air conditioner capable of executing various operation modes has been described, but the present invention is not limited to this. If at least the heating mode can be implemented, it is possible to improve the anti-fogging performance of the vehicle window glass and reduce the energy consumed for heating. Furthermore, you may add another driving mode.
 また、上述の実施形態では、冷房モード時および除湿暖房モード時に、第2空気通路31bへ外気を流入させる例を説明したが、これに限定されない。例えば、目標吹出温度TAOが極適温域になっており、高い冷房性能や除湿暖房性能を得たい場合等には、第2空気通路31bへ内気を流入させてもよい。この場合、第2実施形態および第4実施形態の車両用空調装置1では、内気送風機46bを作動させればよい。 Also, in the above-described embodiment, an example in which outside air is allowed to flow into the second air passage 31b during the cooling mode and the dehumidifying heating mode has been described, but the present invention is not limited to this. For example, if the target blowout temperature TAO is in an extremely suitable temperature range and high cooling performance or dehumidifying and heating performance is desired, the inside air may flow into the second air passage 31b. In this case, in the vehicle air conditioners 1 of the second embodiment and the fourth embodiment, the inside air blower 46b may be operated.
 また、上述の実施形態では、除霜モード時に、第1空気通路31aへ外気を流入させる例を説明したが、これに限定されない。除霜モード時に、第1空気通路31aへ内気を流入させてもよい。また、除霜モードでは、フット開口穴43cを開口させて、デフロスタ開口穴43aを閉塞させてもよい。 Also, in the above-described embodiment, the example in which outside air is allowed to flow into the first air passage 31a during the defrosting mode has been described, but the present invention is not limited to this. Inside air may flow into the first air passage 31a during the defrosting mode. Further, in the defrosting mode, the foot opening hole 43c may be opened and the defroster opening hole 43a may be closed.
 また、上述の実施形態では、除霜モード時に、外気バイパス通路31eおよび内気バイパス通路31fを全開とした例を説明したが、これに限定されない。比較的湿度の高い空気や臭気を含む空気が車室内へ送風されてしまうことがなければ、外気バイパス通路31eおよび内気バイパス通路31fを全閉としてもよい。さらに、車室内へ送風されてしまう比較的湿度の高い空気や臭気を含む空気の風量に応じて、外気バイパス通路31eおよび内気バイパス通路31fの少なくとも一方を調整するようにしてもよい。 Further, in the above-described embodiment, an example in which the outside air bypass passage 31e and the inside air bypass passage 31f are fully opened during the defrosting mode has been described, but the present invention is not limited to this. The outside air bypass passage 31e and the inside air bypass passage 31f may be fully closed unless air with relatively high humidity or air containing odor is blown into the vehicle interior. Furthermore, at least one of the external air bypass passage 31e and the internal air bypass passage 31f may be adjusted according to the air volume of relatively humid air or odorous air blown into the vehicle interior.
 また、着霜条件は、上述の実施形態に開示された条件に限定されない。例えば、暖房モード時に、外気温Tamが連続して基準着霜外気温(本実施形態では、-5℃)以下となっている時間が、基準着霜時間(本実施形態では、5分)以上となった際に、着霜条件が成立したと判定してもよい。 Also, the frost formation conditions are not limited to the conditions disclosed in the above-described embodiments. For example, during the heating mode, the time during which the outside air temperature Tam is continuously below the reference frosting outside temperature (−5° C. in this embodiment) is longer than the reference frosting time (5 minutes in this embodiment). When it becomes, it may be determined that the frost formation condition is established.
 また、第4実施形態では、暖房モード時に、制御装置60が、湿度センサ61jの検出値が車両窓ガラス51に窓曇りが発生しない範囲の値となるように、第1出口側内外気切替装置33aおよび外気通路ドア34aの駆動用アクチュエータの少なくとも一方の作動を制御してもよい。 Further, in the fourth embodiment, in the heating mode, the control device 60 controls the first exit side inside/outside air switching device so that the detection value of the humidity sensor 61j is within a range in which the vehicle window glass 51 does not fog up. At least one of the actuators for driving 33a and outside air passage door 34a may be controlled.
 ヒートポンプサイクル10の構成は、上述の実施形態に開示されたものに限定されない。 The configuration of the heat pump cycle 10 is not limited to that disclosed in the above embodiments.
 例えば、第1~第4実施形態では、レシーバ13を採用した例を説明したが、レシーバ13に代えて、アキュムレータを採用してもよい。アキュムレータは、15bから流出した低圧冷媒の気液を分離して、分離された液相冷媒をサイクル内の余剰冷媒として蓄え、分離された気相冷媒を圧縮機11へ吸入させる高圧側の気液分離器である。 For example, in the first to fourth embodiments, an example in which the receiver 13 is used has been described, but instead of the receiver 13, an accumulator may be used. The accumulator separates the gas-liquid of the low-pressure refrigerant flowing out from 15b, stores the separated liquid-phase refrigerant as a surplus refrigerant in the cycle, and sucks the separated gas-phase refrigerant into the compressor 11. Separator.
 この場合は、各運転モード時に、ヒートポンプサイクル10の成績係数(すなわち、COP)が極大値に近づくように、第1膨張弁14aおよび第2膨張弁14bの作動を制御すればよい。 In this case, the operation of the first expansion valve 14a and the second expansion valve 14b should be controlled so that the coefficient of performance (ie, COP) of the heat pump cycle 10 approaches the maximum value in each operation mode.
 また、上述の実施形態では、冷媒としてR1234yfを採用した例を説明したが、冷媒はこれに限定されない。例えば、R134a、R600a、R410A、R404A、R32、R407C等を採用してもよい。または、これらのうち複数の冷媒を混合させた混合冷媒等を採用してもよい。 Also, in the above-described embodiment, an example in which R1234yf is used as the refrigerant has been described, but the refrigerant is not limited to this. For example, R134a, R600a, R410A, R404A, R32, R407C, etc. may be employed. Alternatively, a mixed refrigerant or the like in which a plurality of these refrigerants are mixed may be adopted.
 熱媒体回路20は、上述の実施形態に開示されたものに限定されない。 The heat medium circuit 20 is not limited to those disclosed in the above embodiments.
 例えば、熱媒体ポンプ21を第1流量調整弁24aから水冷媒熱交換器12の熱媒体通路へ至る流路に配置してもよい。また、第1流量調整弁24aに代えて、電気式の三方弁を採用してもよい。 For example, the heat medium pump 21 may be arranged in the flow path from the first flow control valve 24 a to the heat medium passage of the water-refrigerant heat exchanger 12 . Also, an electric three-way valve may be employed instead of the first flow control valve 24a.
 また、熱媒体回路20に、熱媒体を加熱する補助加熱部を配置してもよい。補助加熱部として、制御装置60から電力を供給されることによって発熱する電気ヒータを採用することができる。そして、制御装置60は、水冷媒熱交換器12にて熱媒体を充分に加熱することができない場合に、熱媒体温度Twが、目標熱媒体温度TWOに近づくように、電気ヒータを作動させればよい。 Also, an auxiliary heating unit for heating the heat medium may be arranged in the heat medium circuit 20 . An electric heater that generates heat by being supplied with power from the control device 60 can be used as the auxiliary heating unit. Then, when the water-refrigerant heat exchanger 12 cannot sufficiently heat the heat medium, the control device 60 operates the electric heater so that the heat medium temperature Tw approaches the target heat medium temperature TWO. Just do it.
 また、上述の実施形態では、熱媒体としてエチレングリコール水溶液を採用した例を説明したが、熱媒体はこれに限定されない。例えば、ジメチルポリシロキサン、あるいはナノ流体等を含む溶液、不凍液、アルコール等を含む水系の液冷媒、オイル等を含む液媒体等を採用することができる。 Also, in the above-described embodiment, an example in which an ethylene glycol aqueous solution is used as a heat medium has been described, but the heat medium is not limited to this. For example, a solution containing dimethylpolysiloxane or a nanofluid, an antifreeze solution, a water-based liquid refrigerant containing alcohol, or a liquid medium containing oil can be used.
 空調ユニット30は、上述の実施形態に開示されたものに限定されない。 The air conditioning unit 30 is not limited to those disclosed in the above embodiments.
 例えば、空調ユニット30の上層側空気通路31c内および下層側空気通路31d内のそれぞれに、ヒータコア22を迂回させて空気を流す空気バイパス通路を設けてもよい。さらに、それぞれの空気通路にヒータコア22を流通する風量と空気バイパス通路を流通する風量割合を調整するエアミックスドアを配置してもよい。これによれば、エアミックスドアの風量割合調整によって、車室内へ吹き出す空気の温度を調整することもできる。 For example, in each of the upper layer side air passage 31c and the lower layer side air passage 31d of the air conditioning unit 30, an air bypass passage for bypassing the heater core 22 and allowing air to flow may be provided. Furthermore, an air mix door may be arranged in each air passage for adjusting the ratio of the air volume flowing through the heater core 22 and the air volume flowing through the air bypass passage. According to this, it is also possible to adjust the temperature of the air blown into the passenger compartment by adjusting the air volume ratio of the air mix door.
 また、各送風機の構成は、上述の実施形態に開示されたものに限定されない。例えば、排気送風機45、外気送風機46a、内気送風機46bとして、遠心送風機を採用した例を説明したが、軸流送風機等を採用してもよい。 Also, the configuration of each blower is not limited to that disclosed in the above-described embodiments. For example, an example in which centrifugal blowers are employed as the exhaust air blower 45, the outside air blower 46a, and the inside air blower 46b has been described, but an axial flow blower or the like may also be employed.
 また、第5実施形態の空調ユニット30では、室内送風機37として、二連式の送風機を採用した例を説明したが、これに限定されない。1つのファンを有する通常の送風機を採用してもよい。さらに、図20~図22の太線矢印に示すように空気を流すことができれば、通風路切替装置35の通路構成を簡素化してもよい。 Also, in the air conditioning unit 30 of the fifth embodiment, an example in which a double fan is used as the indoor fan 37 has been described, but the present invention is not limited to this. A normal blower with one fan may be employed. Furthermore, if the air can flow as indicated by the thick arrows in FIGS. 20 to 22, the passage configuration of the ventilation passage switching device 35 may be simplified.
 また、第5実施形態の空調ユニット30では、仕切板39を廃止しているが、これに限定されない。部品の共通化等のために第1実施形態と同様の仕切板39を有する空調ユニット30を採用してもよい。この場合は、各運転モード時に、制御装置60が、連通口開閉ドア39bが連通口39aを全開させるように、連通口開閉ドア用の電動アクチュエータの作動を制御すればよい。 Also, in the air conditioning unit 30 of the fifth embodiment, the partition plate 39 is eliminated, but the present invention is not limited to this. The air-conditioning unit 30 having the same partition plate 39 as in the first embodiment may be employed for commonality of parts. In this case, in each operation mode, the control device 60 may control the operation of the electric actuator for the communication port opening/closing door so that the communication port opening/closing door 39b fully opens the communication port 39a.
 上述の実施形態では、ヒートポンプサイクル10の水冷媒熱交換器12および熱媒体回路20の各構成機器によって加熱部を形成した例を説明したが、これに限定されない。例えば、ヒートポンプサイクル10の圧縮機11から吐出された高圧冷媒と車室内へ送風される空気とを熱交換させて、高圧冷媒を凝縮させる室内凝縮器を加熱部としてもよい。室内凝縮器を加熱部とする場合は、空調ユニット30に、空気バイパス通路およびエアミックスドアを採用すればよい。 In the above-described embodiment, an example in which the heating unit is formed by the components of the water-refrigerant heat exchanger 12 and the heat medium circuit 20 of the heat pump cycle 10 has been described, but the present invention is not limited to this. For example, an indoor condenser that condenses the high-pressure refrigerant by exchanging heat between the high-pressure refrigerant discharged from the compressor 11 of the heat pump cycle 10 and the air blown into the vehicle interior may be used as the heating unit. When the indoor condenser is used as the heating unit, the air-conditioning unit 30 may be provided with an air bypass passage and an air mix door.
 上述の第5実施形態では、暖房モード時に、内気温Trの上昇に伴って、第2空気通路31bへ流入させる内気の割合を増加させた例を説明したが、これに限定されない。例えば、内気温Trから外気温Tamを現在した内外気温度差ΔT1の拡大に伴って、第2空気通路31bへ流入させる内気の割合を増加させてもよい。また、例えば、目標吹出温度TAOから内気温Trを減算した目標温度差ΔT2の縮小に伴って、第2空気通路31bへ流入させる内気の割合を増加させてもよい。 In the fifth embodiment described above, an example has been described in which the ratio of the inside air flowing into the second air passage 31b is increased as the inside temperature Tr rises during the heating mode, but the present invention is not limited to this. For example, the ratio of the inside air flowing into the second air passage 31b may be increased as the inside/outside air temperature difference ΔT1 obtained by changing the inside temperature Tr to the outside temperature Tam increases. Further, for example, the ratio of the inside air flowing into the second air passage 31b may be increased as the target temperature difference ΔT2 obtained by subtracting the inside air temperature Tr from the target blowout temperature TAO decreases.
 また、上述の第5実施形態では、第2空気通路31bへ流入させる内気および外気の具体的な流入割合について言及していないが、暖房開始時に、第2空気通路31bへ外気のみを流入させるようにしてもよい。また、暖房開始直後から、内気および外気の双方を流入させ、内気温Trの上昇に伴って、第2空気通路31bへ流入させる内気の割合を増加させるようにしてもよい。そして、内気温Trが予め定めた基準内気温以上となった際に、第2空気通路31bへ内気のみを流入させるようにしてもよい。 In addition, in the above-described fifth embodiment, no reference is made to the specific inflow ratio of the inside air and the outside air that flow into the second air passage 31b. can be Alternatively, both the inside air and the outside air may be allowed to flow in immediately after the heating is started, and the ratio of the inside air flowing into the second air passage 31b may be increased as the inside temperature Tr rises. Then, only the inside air may be allowed to flow into the second air passage 31b when the inside air temperature Tr reaches or exceeds a predetermined reference inside air temperature.
 つまり、暖房モード時に、外気を第1空気通路へ流入させ、第1熱交換部を通過した外気を加熱部を介して車室内側へ導き、少なくとも内気を第2空気通路へ流入させ、第2熱交換部を通過した空気を第2空気通路から車室外へ流出させてもよい。 That is, in the heating mode, outside air is allowed to flow into the first air passage, the outside air that has passed through the first heat exchange section is led to the inside of the passenger compartment via the heating section, at least the inside air is allowed to flow into the second air passage, and the second air passage is introduced. The air that has passed through the heat exchange portion may flow out of the vehicle compartment through the second air passage.
 上述の各実施形態に開示された手段は、実施可能な範囲で適宜組み合わせてもよい。 The means disclosed in each of the above embodiments may be combined as appropriate within the practicable range.
 例えば、図24に示すように、第5実施形態の車両用空調装置1に対して、第2実施形態と同様に、空調ユニット30の室内送風機37および排気送風機45等を廃止して、外気送風機46a、内気送風機46b、および上流側通風路切替装置47を追加してもよい。この場合は、外気送風機46a、内気送風機46b、上流側通風路切替装置47、および下流側通風路切替装置35の作動を制御して、第5実施形態と同様に、空調ユニット30内に外気および内気を流通させるようにすればよい。 For example, as shown in FIG. 24, in the vehicle air conditioner 1 of the fifth embodiment, as in the second embodiment, the indoor fan 37 and the exhaust fan 45 of the air conditioning unit 30 are eliminated, and the outside air fan 46a, an internal air blower 46b, and an upstream ventilation passage switching device 47 may be added. In this case, the operations of the outside air blower 46a, the inside air blower 46b, the upstream side ventilation passage switching device 47, and the downstream side ventilation passage switching device 35 are controlled, and outside air and The shy air should be circulated.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described with reference to examples, it is understood that the present disclosure is not limited to those examples or structures. The present disclosure also includes various modifications and modifications within the equivalent range. In addition, various combinations and configurations, as well as other combinations and configurations, including single elements, more, or less, are within the scope and spirit of this disclosure.

Claims (9)

  1.  空気を流通させる空気通路を形成する空気通路形成部(30)と、
     車室内へ送風される前記空気の温度を調整するヒートポンプサイクル(10)と、を備え、
     前記ヒートポンプサイクルは、冷媒を圧縮して吐出する圧縮機(11)、前記圧縮機から吐出された前記冷媒を熱源として前記車室内へ送風される前記空気を加熱する加熱部(12、20)、前記加熱部から流出した前記冷媒を減圧させる第1減圧部(14a)、前記第1減圧部から流出した前記冷媒と前記空気とを熱交換させる第1熱交換部(15a)、前記第1熱交換部から流出した前記冷媒を減圧させる第2減圧部(14b)、および前記第2減圧部から流出した前記冷媒と前記空気とを熱交換させる第2熱交換部(15b)を有し、
     前記空気通路形成部には、前記第1熱交換部が配置された第1空気通路(31a)、前記第2熱交換部が配置された第2空気通路(31b)、前記加熱部にて加熱された前記空気を前記車室内の車両窓ガラス(51)側へ導く上層側空気通路(31c)、前記加熱部にて加熱された前記空気を前記車室内の乗員側へ導く下層側空気通路(31d)、前記第1熱交換部および前記第2熱交換部を迂回させて車室外の前記空気である外気を前記上層側空気通路の入口側へ導く外気バイパス通路(31e)、並びに、前記第1熱交換部および前記第2熱交換部を迂回させて前記車室内の前記空気である内気を前記下層側空気通路の入口側へ導く内気バイパス通路(31f)が形成されており、
     前記車室内の暖房を行う暖房モード時に、
     前記内気を前記第1空気通路へ流入させ、前記第1熱交換部を通過した前記内気を前記第1空気通路から前記車室外へ流出させ、前記外気を前記第2空気通路へ流入させ、前記第2熱交換部を通過した前記外気を前記第2空気通路から前記車室外へ流出させ、前記外気を前記外気バイパス通路へ流入させ、前記内気を前記内気バイパス通路へ流入させる車両用空調装置。
    an air passage forming portion (30) forming an air passage for circulating air;
    A heat pump cycle (10) that adjusts the temperature of the air blown into the vehicle interior,
    The heat pump cycle includes a compressor (11) that compresses and discharges a refrigerant, heating units (12, 20) that heat the air blown into the vehicle interior using the refrigerant discharged from the compressor as a heat source, A first decompression section (14a) for decompressing the refrigerant flowing out of the heating section, a first heat exchange section (15a) for exchanging heat between the refrigerant flowing out of the first decompression section and the air, and the first heat. a second decompression section (14b) for decompressing the refrigerant flowing out of the exchange section, and a second heat exchange section (15b) for exchanging heat between the refrigerant flowing out of the second decompression section and the air;
    The air passage forming portion includes a first air passage (31a) in which the first heat exchanging portion is arranged, a second air passage (31b) in which the second heat exchanging portion is arranged, and heating by the heating portion. an upper air passageway (31c) that guides the heated air toward the vehicle window glass (51) in the vehicle interior, and a lower air passageway ( 31d), an outside air bypass passage (31e) that bypasses the first heat exchange section and the second heat exchange section and guides the outside air, which is the air outside the vehicle compartment, to the inlet side of the upper air passage; An inside air bypass passage (31f) is formed to bypass the first heat exchange portion and the second heat exchange portion and guide the inside air, which is the air in the vehicle interior, to the inlet side of the lower air passage,
    In the heating mode for heating the vehicle interior,
    causing the inside air to flow into the first air passage, causing the inside air that has passed through the first heat exchange portion to flow out of the vehicle interior through the first air passage, causing the outside air to flow into the second air passage, and A vehicular air conditioner that causes the outside air that has passed through the second heat exchange portion to flow out of the vehicle compartment through the second air passage, flows the outside air into the outside air bypass passage, and causes the inside air to flow into the inside air bypass passage.
  2.  前記空気通路形成部は、前記車室内へ前記空気を送風する室内送風部(37)を有し、
     前記室内送風部は、前記外気バイパス通路を流通した前記外気を吸い込んで前記上層側空気通路の入口側へ送風する第1ファン(37a)、前記内気バイパス通路を流通した前記内気を吸い込んで前記下層側空気通路の入口側へ送風する第2ファン(37b)、および前記第1ファンと前記第2ファンとの双方を連動して駆動する駆動部(37c)を有している請求項1に記載の車両用空調装置。
    The air passage forming portion has an indoor air blowing portion (37) for blowing the air into the vehicle interior,
    The indoor air blowing unit includes a first fan (37a) that draws in the outside air that has flowed through the outside air bypass passage and blows the air to the inlet side of the upper layer side air passage, and sucks the inside air that has flowed through the inside air bypass passage and blows the inside air that has flowed through the inside air bypass passage to the lower layer. 2. The apparatus according to claim 1, further comprising a second fan (37b) that blows air to the inlet side of the side air passage, and a drive section (37c) that drives both the first fan and the second fan in conjunction with each other. air conditioner for vehicles.
  3.  前記空気通路形成部は、前記第2空気通路の入口側および前記外気バイパス通路の入口側の少なくとも一方へ前記外気を送風する外気送風部(46a)、並びに、前記第1空気通路の入口側および前記内気バイパス通路の入口側の少なくとも一方へ前記内気を送風する内気送風部(46b)、を有している請求項1に記載の車両用空調装置。 The air passage forming portion includes an outside air blowing portion (46a) that blows the outside air to at least one of the inlet side of the second air passage and the inlet side of the outside air bypass passage, and the inlet side and the inlet side of the first air passage. 2. The vehicle air conditioner according to claim 1, further comprising an inside air blowing section (46b) for blowing the inside air to at least one of inlet sides of the inside air bypass passage.
  4.  空気を流通させる空気通路を形成する空気通路形成部(30)と、
     車室内へ送風される前記空気の温度を調整するヒートポンプサイクル(10)と、を備え、
     前記ヒートポンプサイクルは、冷媒を圧縮して吐出する圧縮機(11)、前記圧縮機から吐出された前記冷媒を熱源として前記車室内へ送風される前記空気を加熱する加熱部(12、20)、前記加熱部から流出した前記冷媒を減圧させる第1減圧部(14a)、前記第1減圧部から流出した前記冷媒と前記空気とを熱交換させる第1熱交換部(15a)、前記第1熱交換部から流出した前記冷媒を減圧させる第2減圧部(14b)、および前記第2減圧部から流出した前記冷媒と前記空気とを熱交換させる第2熱交換部(15b)を有し、
     前記空気通路形成部には、前記第1熱交換部が配置された第1空気通路(31a)、前記第2熱交換部が配置された第2空気通路(31b)、前記加熱部にて加熱された前記空気を前記車室内の車両窓ガラス(51)側へ導く上層側空気通路(31c)、前記加熱部にて加熱された前記空気を前記車室内の乗員側へ導く下層側空気通路(31d)、並びに、前記第1熱交換部および前記第2熱交換部を迂回させて車室外の前記空気である外気を前記上層側空気通路の入口側へ導く外気バイパス通路(31e)が形成されており、
     前記車室内の暖房を行う暖房モードでは、
     前記車室内の前記空気である内気を前記第1空気通路へ流入させ、前記第1熱交換部を通過した前記内気を前記車室外および前記下層側空気通路の入口側の双方へ流出させ、前記外気を前記第2空気通路へ流入させ、前記第2熱交換部を通過した前記外気を前記車室外へ流出させ、前記外気を前記外気バイパス通路へ流入させる車両用空調装置。
    an air passage forming portion (30) forming an air passage for circulating air;
    A heat pump cycle (10) that adjusts the temperature of the air blown into the vehicle interior,
    The heat pump cycle includes a compressor (11) that compresses and discharges a refrigerant, heating units (12, 20) that heat the air blown into the vehicle interior using the refrigerant discharged from the compressor as a heat source, A first decompression section (14a) for decompressing the refrigerant flowing out of the heating section, a first heat exchange section (15a) for exchanging heat between the refrigerant flowing out of the first decompression section and the air, and the first heat. a second decompression section (14b) for decompressing the refrigerant flowing out of the exchange section, and a second heat exchange section (15b) for exchanging heat between the refrigerant flowing out of the second decompression section and the air;
    The air passage forming portion includes a first air passage (31a) in which the first heat exchanging portion is arranged, a second air passage (31b) in which the second heat exchanging portion is arranged, and heating by the heating portion. an upper air passageway (31c) that guides the heated air toward the vehicle window glass (51) in the vehicle interior, and a lower air passageway ( 31d), and an outside air bypass passage (31e) that bypasses the first heat exchange section and the second heat exchange section and guides the outside air, which is the air outside the vehicle compartment, to the inlet side of the upper air passage. and
    In the heating mode for heating the vehicle interior,
    The inside air, which is the air in the vehicle interior, is allowed to flow into the first air passage, the inside air that has passed through the first heat exchange portion is allowed to flow out to both the outside of the vehicle interior and the inlet side of the lower air passage, and A vehicular air-conditioning system that allows outside air to flow into the second air passage, causes the outside air that has passed through the second heat exchange portion to flow out of the vehicle interior, and causes the outside air to flow into the outside air bypass passage.
  5.  前記空気通路形成部は、前記車室内へ前記空気を送風する室内送風部(37)を有し、
     前記室内送風部は、前記外気バイパス通路を流通した前記外気を吸い込んで前記上層側空気通路の入口側へ送風する第1ファン(37a)、前記第1空気通路を流通した前記内気を吸い込んで前記下層側空気通路の入口側へ送風する第2ファン(37b)、および前記第1ファンと前記第2ファンとの双方を連動して駆動する駆動部(37c)を有している請求項4に記載の車両用空調装置。
    The air passage forming portion has an indoor air blowing portion (37) for blowing the air into the vehicle interior,
    The indoor blower section includes a first fan (37a) that draws in the outside air that has circulated through the outside air bypass passage and blows the air to the inlet side of the upper layer side air passage, and draws in the inside air that has circulated through the first air passage to blow the air into the air passage. Claim 4, further comprising a second fan (37b) that blows air to the inlet side of the lower air passage, and a drive section (37c) that drives both the first fan and the second fan in conjunction with each other. A vehicle air conditioner as described.
  6.  前記空気通路形成部は、前記第2空気通路の入口側および前記外気バイパス通路の入口側の少なくとも一方へ前記外気を送風する外気送風部(46a)、および少なくとも前記第1空気通路の入口側へ前記内気を送風する内気送風部(46b)、を有している請求項4に記載の車両用空調装置。 The air passage forming portion includes an outside air blowing portion (46a) for blowing the outside air to at least one of the inlet side of the second air passage and the inlet side of the outside air bypass passage, and at least to the inlet side of the first air passage. The vehicle air conditioner according to claim 4, further comprising an inside air blowing section (46b) for blowing the inside air.
  7.  前記空気通路形成部は、前記車室外へ前記空気を送風する排気送風部(45)を有し、
     前記排気送風部は、前記第1空気通路から流出した前記空気および前記第2空気通路から流出した前記空気の少なくとも一方を吸い込んで前記車室外へ送風する請求項1ないし6のいずれか1つに記載の車両用空調装置。
    The air passage forming part has an exhaust air blowing part (45) for blowing the air outside the vehicle compartment,
    7. The exhaust blower according to any one of claims 1 to 6, wherein the exhaust blower sucks in at least one of the air flowing out from the first air passage and the air flowing out from the second air passage and blows the air out of the passenger compartment. A vehicle air conditioner as described.
  8.  空気を流通させる空気通路を形成する空気通路形成部(30)と、
     車室内へ送風される前記空気の温度を調整するヒートポンプサイクル(10)と、を備え、
     前記ヒートポンプサイクルは、冷媒を圧縮して吐出する圧縮機(11)、前記圧縮機から吐出された前記冷媒を熱源として前記車室内へ送風される前記空気を加熱する加熱部(12、20)、前記加熱部から流出した前記冷媒と前記空気とを熱交換させる第1熱交換部(15a)、前記第1熱交換部から流出した前記冷媒を減圧させる第2減圧部(14b)、および前記第2減圧部から流出した前記冷媒と前記空気とを熱交換させる第2熱交換部(15b)を有し、
     前記空気通路形成部には、前記第1熱交換部が配置された第1空気通路(31a)、および前記第2熱交換部が配置された第2空気通路(31b)が形成されており、
     前記車室内の暖房を行う暖房モード時に、
     車室外の前記空気である外気を前記第1空気通路へ流入させ、前記第1熱交換部を通過した前記外気を前記加熱部にて加熱して、少なくとも前記車室内の車両窓ガラス(51)側へ導き、前記外気および前記車室内の前記空気である内気の少なくとも一方を前記第2空気通路へ流入させ、前記第2熱交換部を通過した前記空気を前記第2空気通路から前記車室外へ流出させる車両用空調装置。
    an air passage forming portion (30) forming an air passage for circulating air;
    A heat pump cycle (10) that adjusts the temperature of the air blown into the vehicle interior,
    The heat pump cycle includes a compressor (11) that compresses and discharges a refrigerant, heating units (12, 20) that heat the air blown into the vehicle interior using the refrigerant discharged from the compressor as a heat source, A first heat exchange section (15a) for exchanging heat between the refrigerant flowing out of the heating section and the air, a second pressure reducing section (14b) for reducing the pressure of the refrigerant flowing out of the first heat exchange section, and the 2 has a second heat exchange section (15b) for exchanging heat between the refrigerant flowing out of the decompression section and the air;
    The air passage forming portion is formed with a first air passage (31a) in which the first heat exchanging portion is arranged and a second air passage (31b) in which the second heat exchanging portion is arranged,
    In the heating mode for heating the vehicle interior,
    The outside air, which is the air outside the vehicle compartment, is caused to flow into the first air passage, and the outside air that has passed through the first heat exchange part is heated by the heating part to obtain a vehicle window glass (51) at least inside the vehicle compartment. at least one of the outside air and the inside air, which is the air in the vehicle interior, is introduced into the second air passage, and the air that has passed through the second heat exchange portion is directed from the second air passage to the outside of the vehicle interior. A vehicle air conditioner that drains to
  9.  前記暖房モードでは、前記車室内の前記空気の温度である内気温(Tr)の上昇に伴って、前記第2空気通路へ流入させる前記空気における前記内気の割合を増加させる請求項8に記載の車両用空調装置。 9. The heating mode according to claim 8, wherein in the heating mode, the proportion of the inside air in the air flowing into the second air passage is increased as the inside temperature (Tr), which is the temperature of the air inside the vehicle compartment, increases. Vehicle air conditioner.
PCT/JP2022/017979 2021-04-28 2022-04-18 Vehicular air conditioner WO2022230696A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280030952.0A CN117203071A (en) 2021-04-28 2022-04-18 Air conditioner for vehicle

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021075547 2021-04-28
JP2021-075547 2021-04-28
JP2022036081A JP2022170679A (en) 2021-04-28 2022-03-09 Vehicular air conditioner
JP2022-036081 2022-03-09

Publications (1)

Publication Number Publication Date
WO2022230696A1 true WO2022230696A1 (en) 2022-11-03

Family

ID=83847031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017979 WO2022230696A1 (en) 2021-04-28 2022-04-18 Vehicular air conditioner

Country Status (1)

Country Link
WO (1) WO2022230696A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1067224A (en) * 1996-08-28 1998-03-10 Denso Corp Air-conditioning device for vehicle
JP2016104588A (en) * 2014-12-01 2016-06-09 株式会社デンソー Air conditioner for vehicle
JP2020185961A (en) * 2019-05-17 2020-11-19 株式会社デンソー Air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1067224A (en) * 1996-08-28 1998-03-10 Denso Corp Air-conditioning device for vehicle
JP2016104588A (en) * 2014-12-01 2016-06-09 株式会社デンソー Air conditioner for vehicle
JP2020185961A (en) * 2019-05-17 2020-11-19 株式会社デンソー Air conditioner

Similar Documents

Publication Publication Date Title
US10889163B2 (en) Heat pump system
JP6794964B2 (en) Refrigeration cycle equipment
US10661631B2 (en) Heat pump cycle
JP6361830B2 (en) Heat pump cycle
CN107848374B (en) Air conditioner for vehicle
JP2000161809A (en) Refrigerating cycle apparatus
JP2011140291A (en) Air conditioner for vehicle
JP2018091536A (en) Refrigeration cycle device
US11117445B2 (en) Vehicle air conditioning device
WO2013145537A1 (en) Air conditioner device for vehicle
US11774149B2 (en) Air conditioner
JP2019217947A (en) Air conditioner
WO2016208330A1 (en) Air-conditioning control device
JP6390431B2 (en) Refrigeration cycle equipment
JP7159712B2 (en) refrigeration cycle equipment
WO2022230696A1 (en) Vehicular air conditioner
WO2021157286A1 (en) Refrigeration cycle device
JP2022170679A (en) Vehicular air conditioner
WO2020095638A1 (en) Refrigeration cycle device
JP2001322421A (en) Refrigerating cycle device
JP7302394B2 (en) vehicle air conditioner
CN117203071A (en) Air conditioner for vehicle
WO2018088033A1 (en) Refrigeration cycle device
WO2023106020A1 (en) Heat pump cycle device
WO2023047981A1 (en) Heat pump cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE