WO2022230694A1 - Phase shift mask blank, phase shift mask, light exposure method, and device manufacturing method - Google Patents

Phase shift mask blank, phase shift mask, light exposure method, and device manufacturing method Download PDF

Info

Publication number
WO2022230694A1
WO2022230694A1 PCT/JP2022/017946 JP2022017946W WO2022230694A1 WO 2022230694 A1 WO2022230694 A1 WO 2022230694A1 JP 2022017946 W JP2022017946 W JP 2022017946W WO 2022230694 A1 WO2022230694 A1 WO 2022230694A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase shift
layer
shift mask
shift layer
light
Prior art date
Application number
PCT/JP2022/017946
Other languages
French (fr)
Japanese (ja)
Inventor
賢利 林
茂彦 宮城
高史 八神
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to CN202280008221.6A priority Critical patent/CN116670583A/en
Priority to KR1020237027182A priority patent/KR20240003435A/en
Priority to JP2023517448A priority patent/JPWO2022230694A1/ja
Publication of WO2022230694A1 publication Critical patent/WO2022230694A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/32Attenuating PSM [att-PSM], e.g. halftone PSM or PSM having semi-transparent phase shift portion; Preparation thereof

Definitions

  • the present invention relates to phase shift mask blanks, phase shift masks, exposure methods, and device manufacturing methods.
  • phase shift mask in which a phase shift layer made of chromium oxynitride is formed on a transparent substrate (Patent Document 1). It has been desired to improve the quality of phase shift masks.
  • a phase shift mask blank comprising a substrate and a phase shift layer containing zirconium (Zr), silicon (Si) and nitrogen (N) formed on the substrate. and a nitrogen concentration of 51 atomic % or more in the phase shift layer.
  • phase shift mask in which a part of the phase shift layer of the phase shift mask blank of the first aspect is removed and a predetermined pattern is formed on the surface of the phase shift layer.
  • an exposure method for exposing a photosensitive substrate through the phase shift mask of the second aspect is provided.
  • a device manufacturing method including the exposure method of the third aspect.
  • FIG. 1 is a schematic cross-sectional view of a phase shift mask blank according to an embodiment.
  • FIG. 2 is a schematic cross-sectional view of a phase shift mask blank according to a modification.
  • FIG. 3 is a schematic cross-sectional view of the phase shift mask according to the embodiment.
  • 4A to 4E are diagrams for explaining the method of manufacturing the phase shift mask according to the embodiment.
  • FIG. 5 is a schematic diagram of an exposure apparatus used in the exposure method of the embodiment.
  • FIG. 6 is a graph showing the relationship between the nitrogen concentration in the phase shift layer and the refractive index and extinction coefficient of the phase shift layer for light with a wavelength of 365 nm in Examples.
  • FIG. 1 is a schematic cross-sectional view of a phase shift mask blank according to an embodiment.
  • FIG. 2 is a schematic cross-sectional view of a phase shift mask blank according to a modification.
  • FIG. 3 is a schematic cross-sectional view of the phase shift mask according to the embodiment.
  • FIG. 7 is a graph showing the relationship between the nitrogen concentration in the phase shift layer and the transmittance of the phase shift layer to light with a wavelength of 365 nm in Examples.
  • FIGS. 8A to 8J are SEM photographs of cross sections of phase shift layers in Examples.
  • FIG. 9 is a graph showing the relationship between the nitrogen concentration in the phase shift layer and the tilt angle of the cross section of the phase shift layer in Examples.
  • FIG. 10 is a graph showing the relationship between the introduction ratio of nitrogen in the sputtering gas and the refractive index and extinction coefficient of the phase shift layer for light with a wavelength of 365 nm in Examples.
  • FIG. 11 is a graph showing the relationship between the introduction ratio of nitrogen in the sputtering gas and the transmittance of the phase shift layer to light with a wavelength of 365 nm in Examples.
  • a phase shift mask blank 100 of this embodiment shown in FIG. 1 will be described.
  • a phase shift mask blank 100 includes a substrate 10 and a phase shift layer (semi-transmissive layer or phase shift film) 20 formed on a surface (substrate surface) 10a of the substrate 10 .
  • a phase shift mask 300 (see FIG. 3) can be manufactured from the phase shift mask blanks 100 by forming a predetermined pattern 50 on the phase shift layer 20 .
  • the phase shift mask 300 is used when manufacturing display devices such as FPDs (Flat Panel Displays) and semiconductor devices such as LSIs (Large Scale Integration).
  • Synthetic quartz glass for example, is used as the material of the base material 10 .
  • the material of the substrate 10 is not limited to synthetic quartz glass.
  • the substrate 10 may sufficiently transmit the exposure light of the exposure apparatus in which the phase shift mask 300 is used.
  • the phase shift layer 20 contains zirconium (Zr), silicon (Si) and nitrogen (N).
  • the nitrogen concentration in the phase shift layer 20 is 51 atomic % or higher, preferably 52 atomic % or higher, or 53 atomic % or higher.
  • a part of the phase shift layer 20 is removed from the substrate surface 10a by wet etching or the like, and the removed part forms a predetermined pattern 50 on the surface of the phase shift layer 20. do.
  • the pattern 50 (removed portion, concave portion) is defined by the side surface 21 of the phase shift layer 20 exposed by wet etching or the like and the exposed substrate surface 10a.
  • FIG. 3 shows a cross section of the phase shift layer 20 perpendicular to the substrate surface 10a.
  • the angle of inclination ⁇ is the angle formed between the substrate surface 10a and the side surface 21 defining the pattern 50 (recess) of the phase shift layer 20 in the cross section of the phase shift layer 20 perpendicular to the substrate surface 10a. is an angle containing Therefore, the closer the inclination angle ⁇ is to 90°, the better.
  • the inclination angle ⁇ is preferably 45° to 90°, and the lower limit is more preferably 60°, and still more preferably 70°.
  • the upper limit may be 85° or 75°.
  • the present inventors found that by setting the nitrogen concentration in the phase shift layer 20 to 51 atomic % or more, the tilt angle ⁇ in the phase shift mask 300 manufactured from the phase shift mask blank 100 increases (approaches 90° ), the pattern accuracy of the phase shift mask 300 is improved.
  • the upper limit of the nitrogen concentration in the phase shift layer 20 is more preferably 56 atomic % or less, and even more preferably 55 atomic % or less.
  • the zirconium concentration in the phase shift layer 20 is, for example, 20 atomic % to 27 atomic %, and the lower limit is preferably 21 atomic %, more preferably 22 atomic %.
  • the upper limit is preferably 25%, more preferably 24.5%.
  • the silicon concentration in the phase shift layer is, for example, 20 atomic % to 27 atomic %, and the lower limit is preferably 21 atomic %, more preferably 22 atomic %.
  • the upper limit is preferably 26%, more preferably 25%.
  • the phase shift layer 20 may contain no elements other than Zr, Si and N, or may contain a small amount of impurities that do not affect the effect.
  • the atomic concentration of the phase shift layer 20 can be measured using X-ray photoelectron spectroscopy (XPS), which will be described in Examples below.
  • the refractive index and extinction coefficient of the phase shift layer 20 are stabilized by setting the nitrogen concentration in the phase shift layer 20 to 51 atomic % or more.
  • the nitrogen concentration in the phase shift layer 20 is less than 51 atomic %, the refractive index and extinction coefficient of the phase shift layer 20 vary greatly depending on the nitrogen concentration in the phase shift layer 20 .
  • the refractive index tends to increase as the nitrogen concentration increases.
  • the extinction coefficient tends to decrease as the nitrogen concentration increases.
  • the nitrogen concentration is 51 atomic % or more, the refractive index is stable at a high value and the extinction coefficient is stable at a low value even if the nitrogen concentration is changed.
  • stable optical properties (refractive index and extinction coefficient) can be obtained.
  • the stable optical properties facilitate optical design based on this.
  • the optical properties including the values of the refractive index and the extinction coefficient are stabilized, so the film formation conditions can be easily controlled.
  • the refractive index becomes a high value and the extinction coefficient becomes a low value, resulting in the following advantages.
  • the formula to be described later: d ⁇ / (2 (n-1)) (d: thickness of phase shift layer 20, ⁇ : wavelength of exposure light, n: phase shift layer at wavelength ⁇ ).
  • the thickness of the phase shift layer 20 can be reduced, leading to a refractive index of 20). By reducing the thickness necessary for film formation, the film can be formed more uniformly on the substrate 10 .
  • the thickness of the phase shift layer 20 can be reduced, the amount of side etching, which will be described later, can be reduced, and the pattern 50 closer to the design dimension can be formed (pattern accuracy is improved).
  • the extinction coefficient is lowered, the absorption of light is reduced, and the transmittance of the phase shift layer 20 is increased.
  • the refractive index of the phase shift layer 20 of the present embodiment for light with a wavelength of 365 nm may be, for example, 2.60 to 2.85. .75.
  • the extinction coefficient of the phase shift layer 20 of the present embodiment for light with a wavelength of 365 nm may be, for example, 0.13 to 0.18, and a more preferable upper limit of the extinction coefficient is 0.17, It is more preferably 0.16, and still more preferably 0.15.
  • the phase shift layer 20 functions as a phase shifter that locally changes the phase of exposure light irradiated in the exposure process using the phase shift mask 300 . Therefore, the phase shift layer 20 needs to transmit the exposure light to some extent.
  • the transmittance of the phase shift layer 20 to exposure light (for example, light with a wavelength of 330 nm to 470 nm) is preferably 20% or more, or 30% to 40%.
  • the phase shift mask blank 100 of the present embodiment has a nitrogen concentration of 51 atomic % or more in the phase shift layer 20, so that the wavelength of the phase shift layer 20 in the above range is stable at 20% or more.
  • Typical exposure light used in the exposure process using the phase shift mask 300 includes, for example, deep ultraviolet rays (DUV, wavelength: 302 nm, 313 nm, 334 nm), i-line (wavelength: 365 nm), h-line (wavelength: 405 nm). ) and g-line (wavelength: 436 nm). These can be used as monochromatic light or as compound light.
  • DUV deep ultraviolet rays
  • the transmittance of light with a wavelength of 365 nm at the thickness of the phase shift layer 20 that gives a phase shift of 180° with light with a wavelength of 365 nm may be 30% to 40%, and the lower limit is preferably 33%. % is more preferred. Also, the upper limit is preferably 38%, more preferably 37%. In addition, the phase shift layer 20 may have a transmittance of 45% to 55% for light with a wavelength of 405 nm at a film thickness that provides a phase shift of 180° at a wavelength of 405 nm, and the lower limit is preferably 47%. % is more preferred. Furthermore, the upper limit is preferably 53%, more preferably 52%.
  • the phase shift layer 20 may have a transmittance of 55% to 75% for light with a wavelength of 436 nm at a film thickness that gives a phase shift of 180° with light with a wavelength of 436 nm, and the lower limit is 57%.
  • the upper limit is preferably 73%, more preferably 72%.
  • the phase shift layer 20 preferably changes (shifts) the phase of the exposure light emitted in the exposure process using the phase shift mask 300 by about 180° (phase shift amount: about 180°). That is, the phase shift layer 20 shifts the phase of exposure light (for example, light with a wavelength of 330 nm to 470 nm) transmitted through it to 160° to 200° (180° ⁇ 20°) or 170° to 190° (180° ⁇ 10°) is preferably changed.
  • phase shift amount about 180°. That is, the phase shift layer 20 shifts the phase of exposure light (for example, light with a wavelength of 330 nm to 470 nm) transmitted through it to 160° to 200° (180° ⁇ 20°) or 170° to 190° (180° ⁇ 10°) is preferably changed.
  • the phase shift amount can be adjusted by changing the refractive index, thickness (film thickness), etc. of the phase shift layer 20 according to the wavelength of the light (exposure light) that passes through the phase shift mask 300 .
  • the thickness of the phase shift layer 20 is preferably, for example, 90 nm to 125 nm, and the lower limit of the thickness of the phase shift layer 20 is more preferably 96 nm, still more preferably 102 nm. More preferably, the upper limit of the thickness of the phase shift layer 20 is 116 nm, more preferably 110 nm.
  • phase shift mask blanks 100 are not particularly limited, and a general-purpose method can be used.
  • the phase shift mask blanks 100 may be manufactured by depositing the phase shift layer 20 on the substrate 10 using reactive sputtering, which will be described later in Examples.
  • phase shift mask blank 200 includes a substrate 10, a phase shift layer 20 formed on the substrate surface 10a, and an etching mask layer (chromium compound layer) 30 containing a chromium compound formed on the phase shift layer 20.
  • the configuration of the phase shift mask blank 200 is the same as that of the phase shift mask blank 100 shown in FIG. 1 except for having the etching mask layer 30 .
  • the phase shift mask blank 200 of this modified example has the same effect as the phase shift mask blank 100, and further has the etching mask layer 30, so that it has the effect described below.
  • a phase shift mask 300 (see FIG. 3) can be manufactured from the phase shift mask blanks 200 by forming a predetermined pattern 50 on the phase shift layer 20 in the same manner as the phase shift mask blanks 100 .
  • a photoresist layer 40 is formed on the phase shift mask blanks 200 (see FIG. 4A).
  • the phase shift layer (ZrSiN-based layer) 20 of this modified example has low adhesion to the photoresist layer 40 . Therefore, if the photoresist layer 40 is formed directly on the phase shift layer 20, the photoresist layer 40 may peel off during wet etching. Therefore, in the phase shift mask blanks 200, by providing the etching mask layer 30 having adhesion to both the photoresist layer 40 and the phase shift layer 20, peeling of the photoresist layer 40 during wet etching can be suppressed.
  • the material of the etching mask layer 30 is not particularly limited, and any material that enhances the adhesion between the photoresist layer 40 and the phase shift layer 20 may be used.
  • chromium compounds such as chromium nitride and chromium oxide may be used.
  • the photoresist layer 40 is exposed to light with a wavelength of 350 nm to 450 nm.
  • the etching mask layer 30 provided under the photoresist layer 40 preferably has a low reflectance for light with a wavelength of 350 nm to 450 nm and also functions as an antireflection layer, and chromium oxide is more effective as an antireflection layer. preferable.
  • the reflectance of the etching mask layer 30 for light with a wavelength of 413 nm is preferably 15% or less.
  • the etching mask layer 30 may be a single layer or may be formed from multiple layers. When the etching mask layer 30 is formed of a plurality of layers, it is preferable that the layer immediately below the photoresist layer 40 has a low reflectance to the exposure light.
  • the etching mask layer 30 may consist of a chromium nitride layer 31 formed on the phase shift layer 20 and a chromium oxide layer 32 formed on the chromium nitride layer 31 .
  • the chromium oxide layer 32 can suppress the reflectance of light with a wavelength of 413 nm to about 11%, for example.
  • the thickness of the etching mask layer 30 is not particularly limited and can be adjusted as appropriate. For example, it may be 10 nm to 120 nm.
  • the thickness of the etching mask layer 30 is preferably 80 to 120 nm, the thickness of the chromium nitride layer 31 and the thickness of the chromium oxide layer 32. is preferably 6:4 (3:2) to 8:2 (4:1). If the etching mask layer 30 is too thin, the etching time will be shortened, making it difficult to control the CD (critical dimension) within the plane of the phase shift layer (that is, control the line width of the pattern 50).
  • the etching mask layer 30 is too thick, the amount of side etching increases, making it difficult to obtain pattern dimensions as designed.
  • the phase shift layer 20 is wet-etched based on the etching mask layer 30 (see FIG. 4D)
  • the phase shift layer 20 is isotropically etched by the etchant. Therefore, in addition to etching the phase shift layer 20 in the direction perpendicular to the substrate 10, the phase shift layer 20 is also etched in the lateral direction orthogonal to the vertical direction. This phenomenon in which etching progresses in the lateral direction is called side etching. Therefore, if the etching mask layer 30 is too thick, or if the phase shift layer 20 is too thick as described above, there is a risk that the pattern width will be wider than the desired pattern width.
  • phase shift mask blanks 200 are not particularly limited, and a general-purpose method can be used.
  • the phase shift mask blanks 200 may be manufactured by depositing the phase shift layer 20 and the etching mask layer 30 on the substrate 10 using reactive sputtering, which will be described later in Examples.
  • the phase shift mask 300 shown in FIG. 3 will be described.
  • the phase shift mask 300 has a substrate 10 and a phase shift layer 20 formed on the surface 10 a of the substrate 10 , and a predetermined pattern 50 is formed on the phase shift layer 20 .
  • the configuration of the phase shift mask 300 is the same as the phase shift mask blanks 100 shown in FIG. 1, except that the predetermined pattern 50 is formed on the phase shift layer 20 .
  • the inclination angle ⁇ of the side surface 21 of the phase shift layer 20 defining the pattern 50 from the substrate surface 10a is preferably 45° to 90°.
  • phase shift mask 300 is not particularly limited, and a general-purpose method can be used.
  • the phase shift mask 300 may be manufactured using reactive sputtering and wet etching (see FIG. 4), which will be described in Examples below.
  • the exposure method using the phase shift mask 300 can be implemented as a photolithography process using an exposure apparatus in the manufacture of devices such as semiconductors and liquid crystal panels.
  • an exposure apparatus 500 used in the exposure method includes a light source LS, an illumination optical system 5 02, a mask stage 503 that holds a phase shift mask 300, a projection optical system 504, a substrate stage 505 that holds a photosensitive substrate 515 that is an exposure target, and a driving mechanism 506 that moves the substrate stage 505 in a horizontal plane.
  • the phase shift mask 300 is placed on the mask stage 503 of the exposure apparatus 500 . Also, a photosensitive substrate 515 coated with a photoresist is placed on the substrate stage 505 . Then, exposure light is emitted from the light source LS. The emitted exposure light enters an illumination optical system 502 to be adjusted to a predetermined light flux, and is irradiated onto a phase shift mask 300 held on a mask stage 503 .
  • the light passing through the phase shift mask 300 has the same pattern as the device pattern 50 drawn on the phase shift mask 300 , and this pattern passes through the projection optical system 504 onto the photosensitive substrate held on the substrate stage 505 .
  • a predetermined position of 515 is irradiated. Thereby, the photosensitive substrate 515 is exposed at a predetermined magnification by the device pattern of the phase shift mask 300 .
  • the phase shift mask 300 produced from the phase shift mask blanks 100 and 200 has high pattern accuracy. Therefore, by performing exposure using the phase shift mask 300, circuit pattern defects in the exposure process can be reduced, and highly integrated devices can be efficiently manufactured.
  • phase shift mask blanks and the phase shift mask will be specifically described below using examples and comparative examples, but the present invention is not limited to these examples.
  • phase shift mask blanks 100 shown in FIG. 1 were prepared. Samples 6 to 10 correspond to Examples, and Samples 1 to 5 correspond to Comparative Examples.
  • Samples 2 to 10 were produced in the same manner as Sample 1, except that the N 2 introduction ratio in the mixed gas was changed as shown in Table 1.
  • composition analysis of the phase shift layers 20 of Samples 1 to 10 was performed by X-ray photoelectron spectroscopy (XPS). Table 1 shows the results.
  • XPS X-ray photoelectron spectroscopy
  • Table 1 shows the results.
  • the composition analysis was performed after the portion affected by the oxidation of the outermost surface was removed by sputtering.
  • QuanteraAXM manufactured by PHI was used as an analyzer. The analysis conditions were as follows.
  • X-ray source monochromatic Al (1486.6 eV), detection area: circular area with a diameter of 100 ⁇ m, detection depth: about 4 to 5 nm (takeoff angle 45°), measurement spectrum: Zr3d, Si2p, N1s and O1s, sputtering conditions : Ar+2.0 kV, sputtering rate: about 5 nm/min (converted to SiO 2 ).
  • phase shift layers 20 of Samples 1 to 10 the refractive index and extinction coefficient at the i-line (365 nm) were measured by ellipsometry. The results are shown in Table 1 and FIG. Further, with respect to the phase shift layers 20 of samples 1 to 10, the film thickness that gives a phase shift of 180° at each of the three wavelengths (365 nm, 405 nm, and 436 nm) was obtained from the results of refractive index measurement. The transmittance of the phase shift layer 20 was calculated by simulation. The results are shown in Table 1 and FIG. The simulation was performed using the simulation software "TFCalc".
  • the transmittance of the phase shift layer 20 was calculated using a film thickness that gives a phase shift of .degree.
  • the transmittance is the external transmittance in consideration of reflection.
  • Phase Shift Mask A pattern 50 was formed in the phase shift layer 20 of Sample 1 (phase shift mask blanks) to produce a phase shift mask 300 shown in FIG.
  • an etching mask 30 composed of a chromium nitride layer 31 and a chromium oxide layer 32 was formed on the phase shift mask blank 100 to produce a phase shift mask blank 200 (FIG. 2).
  • a positive ultraviolet resist (GRX-M237 manufactured by Nagase ChemteX) was applied onto the phase shift mask blank 200 by spin coating to form a photoresist layer 40 (FIG. 4(a)).
  • the thickness of the photoresist layer 40 was set to 660 nm.
  • the photoresist layer 40 was exposed using a light-shielding mask having openings corresponding to the pattern 50 . As a result, a portion of the photoresist layer 40 corresponding to the pattern 50 was exposed.
  • the exposed phase shift mask blanks 200 were immersed in an organic alkaline developer (1.83% tetramethylammonium hydroxide manufactured by Tama Kagaku Kogyo Co., Ltd.). As a result, the exposed portion of the photoresist layer 40 was dissolved and removed, and an opening corresponding to the pattern 50 was formed (FIG. 4(b)).
  • the etching mask layer 30 is etched with an etchant containing ceric ammonium nitrate and nitric acid (PureEtchCR101 manufactured by Hayashi Junyaku Kogyo Co., Ltd.). and wet etched.
  • the etching liquid temperature was 23 ⁇ 3° C., and the etching time was 100 sec. and As a result, the exposed portion of the etching mask layer 30 that was not covered with the photoresist layer 40 was removed (FIG. 4(c)).
  • the phase shift layer 20 is etched using an etchant containing ammonium fluoride (ADEKA's ADEKA CHEMICA WGM-155). was wet etched. The temperature of the etchant was set at 23 ⁇ 3° C., and 40% over-etching was performed in order to uniformly remove the exposed phase shift layer 20 without residue. Thereby, a pattern 50 was formed in the phase shift layer 20 (FIG. 4(d)).
  • ADEKA's ADEKA CHEMICA WGM-155 ammonium fluoride
  • phase shift mask 300 shown in FIG. 4E was obtained from the sample 1 (phase shift mask blanks).
  • a phase shift mask 300 shown in FIG. 3 was also manufactured from samples 2 to 10 (phase shift mask blanks) in the same manner as sample 1.
  • FIGS. 8 and 9 samples 6 to 10 in which the nitrogen concentration in the phase shift layer 20 is 51 atomic % or more have a pattern
  • the inclination angle ⁇ of the side surface 21 of the phase shift layer 20 that partitions 50 from the substrate surface 10a was 45° or more. From this, it can be seen that samples 6 to 10 (phase shift mask blanks) yielded phase shift masks 300 in which patterns were accurately formed (high pattern accuracy).
  • FIGS. 6 and 7 samples 6 to 10 in which the nitrogen concentration in the phase shift layer 20 is 51 atomic % or more have the optical properties of the phase shift layer 20 (refractive index, extinction coefficient and transmittance) did not differ greatly among the samples and were close values. That is, when the nitrogen concentration in the phase shift layer 20 was 51 atomic % or more, the optical properties (refractive index, extinction coefficient and transmittance) were stable even when the nitrogen concentration in the phase shift layer 20 changed. .
  • FIGS. 10 and 11 samples 6 to 10 have a nitrogen introduction ratio in the sputtering gas of 35% to 100% in the step of forming the phase shift layer 20 (film formation step). A wide range of variations was made. When the nitrogen introduction ratio is 35% or more (Samples 6 to 10), the optical properties of the phase shift layer 20 are stabilized, so the film forming conditions can be easily controlled.
  • FIGS. 8 and 9 samples 1 to 5 in which the nitrogen concentration in the phase shift layer 20 was less than 51 atomic % had an inclination angle ⁇ of less than 45°. From this, it can be seen that the pattern accuracy of the phase shift mask 300 produced from Samples 1 to 5 (phase shift mask blanks) is low. Further, as shown in Table 1, FIGS. 6 and 7, samples 1 to 5, in which the nitrogen concentration in the phase shift layer 20 is less than 51 atomic %, have optical properties (refractive index, extinction coefficient and transmittance) fluctuated greatly.
  • Samples 1 to 5 were produced by setting the introduction ratio of nitrogen in the sputtering gas to less than 35% in the step of forming the phase shift layer 20 (film formation step). As shown in FIGS. 10 and 11, when the nitrogen introduction ratio in the sputtering gas is less than 35% (Samples 1 to 5), the optical characteristics of the phase shift layer 20 change greatly depending on the nitrogen introduction ratio. Strict control of conditions is required.
  • phase shift mask with high pattern accuracy can be manufactured from the phase shift mask blanks of this embodiment.
  • Phase shift masks are used when manufacturing display devices such as FPDs and semiconductor devices such as LSIs.
  • phase shift layer 10 substrate 20 phase shift layer 30 etching mask layer 31 chromium nitride layer 32 chromium oxide layer 40 photoresist layer 50 patterns 100, 200 phase shift mask blanks 300 phase shift mask 500 exposure apparatus LS light source 502 illumination optical system 504 projection optical system 503 Mask stage 505 Substrate stage

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

Provided is a phase shift mask blank that allows for manufacture of a phase shift mask having a highly accurate pattern. A phase shift mask blank (100) comprises a base material (10) and a phase shift layer (20) formed on the base material (10) and containing zirconium (Zr), silicon (Si), and nitrogen (N). The phase shift layer (20) has a nitrogen concentration of greater than or equal to 51 atom%.

Description

位相シフトマスクブランクス、位相シフトマスク、露光方法、及びデバイスの製造方法PHASE SHIFT MASK BLANKS, PHASE SHIFT MASK, EXPOSURE METHOD, AND DEVICE MANUFACTURING METHOD
 本発明は、位相シフトマスクブランクス、位相シフトマスク、露光方法、及びデバイスの製造方法に関する。 The present invention relates to phase shift mask blanks, phase shift masks, exposure methods, and device manufacturing methods.
 透明基材上に、酸化窒化クロムからなる位相シフト層が形成された位相シフトマスクが知られている(特許文献1)。従来から位相シフトマスクの品質の向上が望まれている。 A phase shift mask is known in which a phase shift layer made of chromium oxynitride is formed on a transparent substrate (Patent Document 1). It has been desired to improve the quality of phase shift masks.
特開2011-013283号公報JP 2011-013283 A
 第1の態様に従えば、位相シフトマスクブランクスであって、基材と、前記基材上に形成された、ジルコニウム(Zr)、ケイ素(Si)及び窒素(N)を含む位相シフト層とを有し、前記位相シフト層に含まれる窒素濃度が、51原子%以上である位相シフトマスクブランクスが提供される。 According to a first aspect, a phase shift mask blank comprising a substrate and a phase shift layer containing zirconium (Zr), silicon (Si) and nitrogen (N) formed on the substrate. and a nitrogen concentration of 51 atomic % or more in the phase shift layer.
 第2の態様に従えば、第1の態様の位相シフトマスクブランクスの前記位相シフト層の一部が除去され、前記位相シフト層の表面に所定のパターンが形成されている位相シフトマスクが提供される。 According to a second aspect, there is provided a phase shift mask in which a part of the phase shift layer of the phase shift mask blank of the first aspect is removed and a predetermined pattern is formed on the surface of the phase shift layer. be.
 第3の態様に従えば、第2の態様の位相シフトマスクを介して感光性基板を露光する露光方法が提供される。 According to the third aspect, there is provided an exposure method for exposing a photosensitive substrate through the phase shift mask of the second aspect.
 第4の態様に従えば、第3の態様の露光方法を含むデバイスの製造方法が提供される。 According to a fourth aspect, there is provided a device manufacturing method including the exposure method of the third aspect.
図1は、実施形態に係る位相シフトマスクブランクスの概略断面図である。FIG. 1 is a schematic cross-sectional view of a phase shift mask blank according to an embodiment. 図2は、変形例に係る位相シフトマスクブランクスの概略断面図である。FIG. 2 is a schematic cross-sectional view of a phase shift mask blank according to a modification. 図3は、実施形態に係る位相シフトマスクの概略断面図である。FIG. 3 is a schematic cross-sectional view of the phase shift mask according to the embodiment. 図4(a)~(e)は、実施形態に係る位相シフトマスクの製造方法を説明する図である。4A to 4E are diagrams for explaining the method of manufacturing the phase shift mask according to the embodiment. 図5は、実施形態の露光方法に用いる露光装置の概略図である。FIG. 5 is a schematic diagram of an exposure apparatus used in the exposure method of the embodiment. 図6は、実施例における位相シフト層中の窒素濃度と、波長365nmの光に対する位相シフト層の屈折率及び消衰係数との関係を示すグラフである。FIG. 6 is a graph showing the relationship between the nitrogen concentration in the phase shift layer and the refractive index and extinction coefficient of the phase shift layer for light with a wavelength of 365 nm in Examples. 図7は、実施例における位相シフト層中の窒素濃度と、波長365nmの光に対する位相シフト層の透過率との関係を示すグラフである。FIG. 7 is a graph showing the relationship between the nitrogen concentration in the phase shift layer and the transmittance of the phase shift layer to light with a wavelength of 365 nm in Examples. 図8(a)~(j)は、実施例における位相シフト層断面のSEM写真である。FIGS. 8A to 8J are SEM photographs of cross sections of phase shift layers in Examples. 図9は、実施例における位相シフト層中の窒素濃度と位相シフト層断面の傾斜角度との関係を示すグラフである。FIG. 9 is a graph showing the relationship between the nitrogen concentration in the phase shift layer and the tilt angle of the cross section of the phase shift layer in Examples. 図10は、実施例におけるスパッタリングガス中の窒素導入比率と、波長365nmの光に対する位相シフト層の屈折率及び消衰係数との関係を示すグラフである。FIG. 10 is a graph showing the relationship between the introduction ratio of nitrogen in the sputtering gas and the refractive index and extinction coefficient of the phase shift layer for light with a wavelength of 365 nm in Examples. 図11は、実施例におけるスパッタリングガス中の窒素導入比率と、波長365nmの光に対する位相シフト層の透過率との関係を示すグラフである。FIG. 11 is a graph showing the relationship between the introduction ratio of nitrogen in the sputtering gas and the transmittance of the phase shift layer to light with a wavelength of 365 nm in Examples.
[位相シフトマスクブランクス]
 図1に示す、本実施形態の位相シフトマスクブランクス100について説明する。位相シフトマスクブランクス100は、基材10と、基材10の表面(基材表面)10a上に形成された位相シフト層(半透過層または位相シフト膜)20とを備える。位相シフトマスクブランクス100からは、位相シフト層20に所定のパターン50を形成することで位相シフトマスク300(図3参照)を作製できる。位相シフトマスク300は、FPD(Flat Panel Display)等の表示用デバイスやLSI(Large Scale Integration)等の半導体デバイスを製造する際に用いられる。
[Phase shift mask blanks]
A phase shift mask blank 100 of this embodiment shown in FIG. 1 will be described. A phase shift mask blank 100 includes a substrate 10 and a phase shift layer (semi-transmissive layer or phase shift film) 20 formed on a surface (substrate surface) 10a of the substrate 10 . A phase shift mask 300 (see FIG. 3) can be manufactured from the phase shift mask blanks 100 by forming a predetermined pattern 50 on the phase shift layer 20 . The phase shift mask 300 is used when manufacturing display devices such as FPDs (Flat Panel Displays) and semiconductor devices such as LSIs (Large Scale Integration).
 基材10の材料としては、例えば合成石英ガラスが用いられる。なお、基材10の材料は、合成石英ガラスに限定されない。基材10は、位相シフトマスク300が使用される露光装置の露光光を充分に透過するものであればよい。 Synthetic quartz glass, for example, is used as the material of the base material 10 . Note that the material of the substrate 10 is not limited to synthetic quartz glass. The substrate 10 may sufficiently transmit the exposure light of the exposure apparatus in which the phase shift mask 300 is used.
 位相シフト層20は、ジルコニウム(Zr)、ケイ素(Si)及び窒素(N)を含む。位相シフト層20中の窒素濃度は、51原子%以上であり、好ましくは、52原子%以上、又は53原子%以上である。図3に示すように、位相シフトマスク300では、位相シフト層20の一部がウェットエッチング等により基材表面10aから除去され、その除去部分が位相シフト層20の表面に所定のパターン50を形成する。パターン50(除去部分、凹部)は、ウェットエッチング等により露出した位相シフト層20の側面21と、露出した基材表面10aにより区画される。図3は、位相シフト層20の基材表面10aに直交する断面を示す。図3に示す断面において、パターン50を区画する位相シフト層20の側面21の、基材表面10aからの傾斜角度θが90°に近い程、位相シフトマスク300に形成されたパターン50の精度が高いと判断できる。傾斜角度θは、位相シフト層20の基材表面10aに直交する断面において、位相シフト層20のパターン50(凹部)を区画する側面21と基材表面10aとのなす角度のうち位相シフト層20を含む角度である。したがって、傾斜角度θは、90°に近いほど好ましい。具体的には、傾斜角度θは、45°~90°が好ましく、下限値は60°がより好ましく、70°が更に好ましい。上限値は85°、又は75°であってもよい。図3は、θ=90°の状態を示す。本発明者らは、位相シフト層20中の窒素濃度を51原子%以上とすることで、位相シフトマスクブランクス100から作製される位相シフトマスク300において、傾斜角度θが大きくなり(90°に近づき)、位相シフトマスク300のパターン精度が向上することを見出した。尚、位相シフト層20中の窒素濃度の上限値は、窒素導入効率の観点から、56原子%以下がより好ましく、55原子%以下が更に好ましい。 The phase shift layer 20 contains zirconium (Zr), silicon (Si) and nitrogen (N). The nitrogen concentration in the phase shift layer 20 is 51 atomic % or higher, preferably 52 atomic % or higher, or 53 atomic % or higher. As shown in FIG. 3, in the phase shift mask 300, a part of the phase shift layer 20 is removed from the substrate surface 10a by wet etching or the like, and the removed part forms a predetermined pattern 50 on the surface of the phase shift layer 20. do. The pattern 50 (removed portion, concave portion) is defined by the side surface 21 of the phase shift layer 20 exposed by wet etching or the like and the exposed substrate surface 10a. FIG. 3 shows a cross section of the phase shift layer 20 perpendicular to the substrate surface 10a. In the cross section shown in FIG. 3, the closer the inclination angle θ of the side surface 21 of the phase shift layer 20 that partitions the pattern 50 from the substrate surface 10a to 90°, the higher the accuracy of the pattern 50 formed on the phase shift mask 300. can be determined to be high. The angle of inclination θ is the angle formed between the substrate surface 10a and the side surface 21 defining the pattern 50 (recess) of the phase shift layer 20 in the cross section of the phase shift layer 20 perpendicular to the substrate surface 10a. is an angle containing Therefore, the closer the inclination angle θ is to 90°, the better. Specifically, the inclination angle θ is preferably 45° to 90°, and the lower limit is more preferably 60°, and still more preferably 70°. The upper limit may be 85° or 75°. FIG. 3 shows the state of θ=90°. The present inventors found that by setting the nitrogen concentration in the phase shift layer 20 to 51 atomic % or more, the tilt angle θ in the phase shift mask 300 manufactured from the phase shift mask blank 100 increases (approaches 90° ), the pattern accuracy of the phase shift mask 300 is improved. From the viewpoint of nitrogen introduction efficiency, the upper limit of the nitrogen concentration in the phase shift layer 20 is more preferably 56 atomic % or less, and even more preferably 55 atomic % or less.
 位相シフト層20中のジルコニウム濃度は、例えば、20原子%~27原子%であり、下限値は21原子%が好ましく、22原子%がより好ましい。上限値は、25%が好ましく、24.5%がより好ましい。位相シフト層中のケイ素濃度は、例えば、20原子%~27原子%であり、下限値は21原子%が好ましく、22原子%がより好ましい。上限値は、26%が好ましく、25%がより好ましい。 The zirconium concentration in the phase shift layer 20 is, for example, 20 atomic % to 27 atomic %, and the lower limit is preferably 21 atomic %, more preferably 22 atomic %. The upper limit is preferably 25%, more preferably 24.5%. The silicon concentration in the phase shift layer is, for example, 20 atomic % to 27 atomic %, and the lower limit is preferably 21 atomic %, more preferably 22 atomic %. The upper limit is preferably 26%, more preferably 25%.
 位相シフト層20は、Zr、Si及びN以外の元素を含まないか、又は効果に影響を与えない程度の少量の不純物として含んでもよい。また、本願明細書において、位相シフト層20の原子濃度は、後述する実施例で説明するX線光電子分光法(XPS)を用いて測定できる。 The phase shift layer 20 may contain no elements other than Zr, Si and N, or may contain a small amount of impurities that do not affect the effect. In addition, in the specification of the present application, the atomic concentration of the phase shift layer 20 can be measured using X-ray photoelectron spectroscopy (XPS), which will be described in Examples below.
 また、本実施形態の位相シフトマスクブランクスは、位相シフト層20中の窒素濃度を51原子%以上とすることで、位相シフト層20の屈折率及び消衰係数が安定する。位相シフト層20中の窒素濃度が51原子%未満の場合、位相シフト層20中の窒素濃度に応じて、位相シフト層20の屈折率及び消衰係数は大きく変動する。屈折率は、窒素濃度が高い程、高くなる傾向がある。消衰係数は、窒素濃度が高い程、低くなる傾向がある。一方、窒素濃度51原子%以上では、窒素濃度を変化させても屈折率は高い値に安定し、消衰係数は低い値に安定する。即ち、窒素濃度を51原子%以上とすることで、安定した光学特性(屈折率及び消衰係数)が得られる。光学特性が安定しているため、これに基づく光学設計が容易になる。また、位相シフト層20の形成工程(成膜工程)においても、屈折率及び消衰係数の値を含む光学特性が安定するため、成膜条件の制御が容易となる。 In addition, in the phase shift mask blanks of this embodiment, the refractive index and extinction coefficient of the phase shift layer 20 are stabilized by setting the nitrogen concentration in the phase shift layer 20 to 51 atomic % or more. When the nitrogen concentration in the phase shift layer 20 is less than 51 atomic %, the refractive index and extinction coefficient of the phase shift layer 20 vary greatly depending on the nitrogen concentration in the phase shift layer 20 . The refractive index tends to increase as the nitrogen concentration increases. The extinction coefficient tends to decrease as the nitrogen concentration increases. On the other hand, when the nitrogen concentration is 51 atomic % or more, the refractive index is stable at a high value and the extinction coefficient is stable at a low value even if the nitrogen concentration is changed. That is, by setting the nitrogen concentration to 51 atomic % or more, stable optical properties (refractive index and extinction coefficient) can be obtained. The stable optical properties facilitate optical design based on this. Also, in the process of forming the phase shift layer 20 (film formation process), the optical properties including the values of the refractive index and the extinction coefficient are stabilized, so the film formation conditions can be easily controlled.
 また、位相シフト層20中の窒素濃度が51原子%以上であると、屈折率が高い値になり、消衰係数が低い値になるため、以下の利点も生じる。屈折率が高くなることで、後述する式:d=λ/(2(n-1))(d:位相シフト層20の厚さ、λ:露光光の波長、n:波長λにおける位相シフト層20の屈折率)で導かれる、位相シフト層20の厚さを薄くできる。成膜に必要な厚さを薄くすることで、基材10により均一に膜を成膜できる。また、位相シフト層20の厚さを薄くできれば、後述するサイドエッチング量を低減でき、より設計寸法に近いパターン50を形成できる(パターン精度が向上する)。また、消衰係数が低くなることで光の吸収が小さくなり、位相シフト層20の透過率を高められる。 In addition, when the nitrogen concentration in the phase shift layer 20 is 51 atomic % or more, the refractive index becomes a high value and the extinction coefficient becomes a low value, resulting in the following advantages. As the refractive index increases, the formula to be described later: d = λ / (2 (n-1)) (d: thickness of phase shift layer 20, λ: wavelength of exposure light, n: phase shift layer at wavelength λ The thickness of the phase shift layer 20 can be reduced, leading to a refractive index of 20). By reducing the thickness necessary for film formation, the film can be formed more uniformly on the substrate 10 . Further, if the thickness of the phase shift layer 20 can be reduced, the amount of side etching, which will be described later, can be reduced, and the pattern 50 closer to the design dimension can be formed (pattern accuracy is improved). In addition, since the extinction coefficient is lowered, the absorption of light is reduced, and the transmittance of the phase shift layer 20 is increased.
 本実施形態の位相シフト層20の波長365nmの光に対する屈折率は、例えば、2.60~2.85であってよく、より好ましい屈折率の下限値は2.7であり、さらに好ましくは2.75である。 The refractive index of the phase shift layer 20 of the present embodiment for light with a wavelength of 365 nm may be, for example, 2.60 to 2.85. .75.
 本実施形態の位相シフト層20の波長365nmの光に対する消衰係数は、例えば、0.13~0.18であってよく、また、より好ましい消衰係数の上限値は0.17であり、より好ましくは0.16であり、さらに好ましくは0.15である。 The extinction coefficient of the phase shift layer 20 of the present embodiment for light with a wavelength of 365 nm may be, for example, 0.13 to 0.18, and a more preferable upper limit of the extinction coefficient is 0.17, It is more preferably 0.16, and still more preferably 0.15.
 位相シフト層20は、位相シフトマスク300を用いた露光工程において照射される露光光の位相を局所的に変化させる位相シフタとして機能する。このため、位相シフト層20は、露光光をある程度、透過させる必要がある。位相シフト層20の露光光(例えば、波長330nm~470nmの光)に対する透過率は、20%以上、又は30%~40%が好ましい。上述した屈折率及び消衰係数と同様に、本実施形態の位相シフトマスクブランクス100は、位相シフト層20中の窒素濃度を51原子%以上とすることで、位相シフト層20の上記範囲の波長を有する光の透過率が20%以上に安定する。位相シフトマスク300を用いた露光工程で用いられる代表的な露光光としては、例えば、深紫外線(DUV、波長:302nm、313nm、334nm)、i線(波長:365nm)、h線(波長:405nm)、g線(波長:436nm)が挙げられる。これらは、単色光として、又は複合光として用いられ得る。 The phase shift layer 20 functions as a phase shifter that locally changes the phase of exposure light irradiated in the exposure process using the phase shift mask 300 . Therefore, the phase shift layer 20 needs to transmit the exposure light to some extent. The transmittance of the phase shift layer 20 to exposure light (for example, light with a wavelength of 330 nm to 470 nm) is preferably 20% or more, or 30% to 40%. Similar to the refractive index and extinction coefficient described above, the phase shift mask blank 100 of the present embodiment has a nitrogen concentration of 51 atomic % or more in the phase shift layer 20, so that the wavelength of the phase shift layer 20 in the above range is stable at 20% or more. Typical exposure light used in the exposure process using the phase shift mask 300 includes, for example, deep ultraviolet rays (DUV, wavelength: 302 nm, 313 nm, 334 nm), i-line (wavelength: 365 nm), h-line (wavelength: 405 nm). ) and g-line (wavelength: 436 nm). These can be used as monochromatic light or as compound light.
 ここで、位相シフト層20波長365nm光で180°の位相シフトを与える膜厚での波長365nmの光の透過率が、30%~40%であってよく、下限値は33%が好ましく、34%がより好ましい。また、上限値は38%が好ましく、37%がより好ましい。また、位相シフト層20は、波長405nmで180°の位相シフトを与える膜厚での波長405nmの光の透過率が、45%~55%であってよく、下限値は47%が好ましく、48%がより好ましい。さらに、上限値は53%が好ましく、52%がより好ましい。また、位相シフト層20は、波長436nmの光で180°の位相シフトを与える膜厚での、波長436nmの光の透過率が、55%~75%であってよく、下限値は57%が好ましく、60%がより好ましい。また、上限値は73%が好ましく、72%がより好ましい。 Here, the transmittance of light with a wavelength of 365 nm at the thickness of the phase shift layer 20 that gives a phase shift of 180° with light with a wavelength of 365 nm may be 30% to 40%, and the lower limit is preferably 33%. % is more preferred. Also, the upper limit is preferably 38%, more preferably 37%. In addition, the phase shift layer 20 may have a transmittance of 45% to 55% for light with a wavelength of 405 nm at a film thickness that provides a phase shift of 180° at a wavelength of 405 nm, and the lower limit is preferably 47%. % is more preferred. Furthermore, the upper limit is preferably 53%, more preferably 52%. In addition, the phase shift layer 20 may have a transmittance of 55% to 75% for light with a wavelength of 436 nm at a film thickness that gives a phase shift of 180° with light with a wavelength of 436 nm, and the lower limit is 57%. Preferably, 60% is more preferred. Also, the upper limit is preferably 73%, more preferably 72%.
 位相シフト層20は、位相シフトマスク300を用いた露光工程において照射される露光光の位相を約180°変更する(シフトする)ことが好ましい(位相シフト量:約180°)。即ち、位相シフト層20は、それを透過する露光光(例えば、波長330nm~470nmの光)の位相を160°~200°(180°±20°)、又は、170°~190°(180°±10°)変化させることが好ましい。 The phase shift layer 20 preferably changes (shifts) the phase of the exposure light emitted in the exposure process using the phase shift mask 300 by about 180° (phase shift amount: about 180°). That is, the phase shift layer 20 shifts the phase of exposure light (for example, light with a wavelength of 330 nm to 470 nm) transmitted through it to 160° to 200° (180° ± 20°) or 170° to 190° (180° ±10°) is preferably changed.
 位相シフト量は、位相シフトマスク300を透過する光(露光光)の波長に合わせて、位相シフト層20の屈折率、厚さ(膜厚)等を変更することで調整できる。位相シフト層20の厚さは、位相シフト層20の屈折率等の特性、透過する光(露光光)の波長を勘案して、位相シフト量が約180°となるよう設計できる。即ち、位相シフト層20の厚さdは、式:d=λ/(2(n-1))に基づき、設計できる(d:位相シフト層20の厚さ、λ:露光光の波長、n:波長λにおける位相シフト層20の屈折率)。位相シフト層20の厚さは、例えば、90nm~125nmであることが好ましく、より好ましい位相シフト層20の厚さの下限値は96nmであり、さらに好ましくは102nmである。より好ましい位相シフト層20の厚さの上限値は116nmであり、更に好ましくは110nmである。 The phase shift amount can be adjusted by changing the refractive index, thickness (film thickness), etc. of the phase shift layer 20 according to the wavelength of the light (exposure light) that passes through the phase shift mask 300 . The thickness of the phase shift layer 20 can be designed so that the phase shift amount is approximately 180°, taking into account the characteristics of the phase shift layer 20 such as the refractive index and the wavelength of the light (exposure light) transmitted therethrough. That is, the thickness d of the phase shift layer 20 can be designed based on the formula: d=λ/(2(n−1)) (d: thickness of phase shift layer 20, λ: wavelength of exposure light, n : the refractive index of the phase shift layer 20 at the wavelength λ). The thickness of the phase shift layer 20 is preferably, for example, 90 nm to 125 nm, and the lower limit of the thickness of the phase shift layer 20 is more preferably 96 nm, still more preferably 102 nm. More preferably, the upper limit of the thickness of the phase shift layer 20 is 116 nm, more preferably 110 nm.
 位相シフトマスクブランクス100の製造方法は、特に限定されず、汎用の方法を用いることができる。例えば、位相シフトマスクブランクス100は、後述する実施例で説明する反応性スパッタリングを用いて、基材10上に位相シフト層20を成膜して製造してもよい。 A method for manufacturing the phase shift mask blanks 100 is not particularly limited, and a general-purpose method can be used. For example, the phase shift mask blanks 100 may be manufactured by depositing the phase shift layer 20 on the substrate 10 using reactive sputtering, which will be described later in Examples.
<変形例>
 本変形例では、図2に示す位相シフトマスクブランクス200について説明する。位相シフトマスクブランクス200は、基材10と、基材表面10aに形成された位相シフト層20と、位相シフト層20上に形成されたクロム化合物を含むエッチングマスク層(クロム化合物層)30とを備える。エッチングマスク層30を有すること以外の位相シフトマスクブランクス200の構成は、図1に示す位相シフトマスクブランクス100と同様である。本変形例の位相シフトマスクブランクス200は、位相シフトマスクブランクス100と同様の効果を奏し、更に、エッチングマスク層30を有することにより、以下に説明する効果を奏する。
<Modification>
In this modified example, the phase shift mask blanks 200 shown in FIG. 2 will be described. A phase shift mask blank 200 includes a substrate 10, a phase shift layer 20 formed on the substrate surface 10a, and an etching mask layer (chromium compound layer) 30 containing a chromium compound formed on the phase shift layer 20. Prepare. The configuration of the phase shift mask blank 200 is the same as that of the phase shift mask blank 100 shown in FIG. 1 except for having the etching mask layer 30 . The phase shift mask blank 200 of this modified example has the same effect as the phase shift mask blank 100, and further has the etching mask layer 30, so that it has the effect described below.
 位相シフトマスクブランクス100と同様に、位相シフト層20に所定のパターン50を形成することで、位相シフトマスクブランクス200から位相シフトマスク300(図3参照)を作製できる。ウェットエッチングにより位相シフト層20に所定のパターン50を形成する場合、位相シフトマスクブランクス200の上にフォトレジスト層40が形成される(図4(a)参照)。本変形例の位相シフト層(ZrSiN系層)20はフォトレジスト層40に対する密着性が低い。このため、位相シフト層20上に直接、フォトレジスト層40を形成すると、ウェットエッチング中にフォトレジスト層40が剥離する虞がある。そこで、位相シフトマスクブランクス200では、フォトレジスト層40と位相シフト層20との両方に密着性を有するエッチングマスク層30を設けることで、ウェットエッチング中のフォトレジスト層40の剥離を抑制できる。 A phase shift mask 300 (see FIG. 3) can be manufactured from the phase shift mask blanks 200 by forming a predetermined pattern 50 on the phase shift layer 20 in the same manner as the phase shift mask blanks 100 . When forming the predetermined pattern 50 on the phase shift layer 20 by wet etching, a photoresist layer 40 is formed on the phase shift mask blanks 200 (see FIG. 4A). The phase shift layer (ZrSiN-based layer) 20 of this modified example has low adhesion to the photoresist layer 40 . Therefore, if the photoresist layer 40 is formed directly on the phase shift layer 20, the photoresist layer 40 may peel off during wet etching. Therefore, in the phase shift mask blanks 200, by providing the etching mask layer 30 having adhesion to both the photoresist layer 40 and the phase shift layer 20, peeling of the photoresist layer 40 during wet etching can be suppressed.
 エッチングマスク層30の材料は、特に限定されず、フォトレジスト層40と位相シフト層20との密着性を高める材料であればよく、例えば、窒化クロム、酸化クロム等のクロム化合物を用いてよい。また、位相シフトマスク300の作製において、フォトレジスト層40は、波長350nm~450nmの光で露光される。このため、フォトレジスト層40の下に設けられるエッチングマスク層30は、波長350nm~450nmの光の反射率が低い方が好ましく、反射防止層としても機能し、酸化クロムが反射防止層としてはより好ましい。露光光の反射を抑えることで、フォトレジスト層40内での露光光の多重反射が抑えられ、位相シフトマスク300のパターン精度が向上する。例えば、エッチングマスク層30の波長413nmの光に対する反射率は、15%以下が好ましい。エッチングマスク層30は、単層でもよいし、複数の層から形成されていてもよい。エッチングマスク層30が複数の層から形成される場合、フォトレジスト層40の直下の層の露光光に対する反射率が低いことが好ましい。例えば、エッチングマスク層30は、位相シフト層20の上に形成された窒化クロム層31と、窒化クロム層31上に形成された酸化クロム層32とから構成されてもよい。酸化クロム層32は、例えば、波長413nmの光の反射率を11%程度に抑えることができる。 The material of the etching mask layer 30 is not particularly limited, and any material that enhances the adhesion between the photoresist layer 40 and the phase shift layer 20 may be used. For example, chromium compounds such as chromium nitride and chromium oxide may be used. In addition, in fabricating the phase shift mask 300, the photoresist layer 40 is exposed to light with a wavelength of 350 nm to 450 nm. For this reason, the etching mask layer 30 provided under the photoresist layer 40 preferably has a low reflectance for light with a wavelength of 350 nm to 450 nm and also functions as an antireflection layer, and chromium oxide is more effective as an antireflection layer. preferable. By suppressing the reflection of the exposure light, the multiple reflection of the exposure light in the photoresist layer 40 is suppressed, and the pattern accuracy of the phase shift mask 300 is improved. For example, the reflectance of the etching mask layer 30 for light with a wavelength of 413 nm is preferably 15% or less. The etching mask layer 30 may be a single layer or may be formed from multiple layers. When the etching mask layer 30 is formed of a plurality of layers, it is preferable that the layer immediately below the photoresist layer 40 has a low reflectance to the exposure light. For example, the etching mask layer 30 may consist of a chromium nitride layer 31 formed on the phase shift layer 20 and a chromium oxide layer 32 formed on the chromium nitride layer 31 . The chromium oxide layer 32 can suppress the reflectance of light with a wavelength of 413 nm to about 11%, for example.
 エッチングマスク層30の厚さは、特に限定されず、適宜調整でき、例えば、10nm~120nmとしてよい。エッチングマスク層30が窒化クロム層31と酸化クロム層32とから構成される場合、例えば、エッチングマスク層30の厚みは80~120nmが好ましく、窒化クロム層31の厚さと酸化クロム層32の厚さの比は、6:4(3:2)~8:2(4:1)の比率で成膜されていると好ましい。エッチングマスク層30が薄すぎると、エッチング時間が短くなり、位相シフト層面内のCD(Critical dimension)制御(即ち、パターン50の線幅制御)が困難になる。また、エッチングマスク層30が厚すぎるとサイドエッチング量が大きくなり、設計通りのパターン寸法を得ることが困難になる。エッチングマスク層30を基に位相シフト層20をウェットエッチングする際(図4(d)参照)、位相シフト層20はエッチング液により等方的にエッチングされる。そのため、基材10に対して垂直な方向に位相シフト層20がエッチングされる以外に、垂直方向に直交する横方向にも位相シフト層20がエッチングされる。この横方向にエッチングが進行する現象をサイドエッチングと呼ぶ。このため、エッチングマスク層30が厚すぎる場合や、上述したように位相シフト層20が厚すぎる場合は、所望のパターン幅よりも広い幅でエッチングされる虞がある。 The thickness of the etching mask layer 30 is not particularly limited and can be adjusted as appropriate. For example, it may be 10 nm to 120 nm. When the etching mask layer 30 is composed of the chromium nitride layer 31 and the chromium oxide layer 32, for example, the thickness of the etching mask layer 30 is preferably 80 to 120 nm, the thickness of the chromium nitride layer 31 and the thickness of the chromium oxide layer 32. is preferably 6:4 (3:2) to 8:2 (4:1). If the etching mask layer 30 is too thin, the etching time will be shortened, making it difficult to control the CD (critical dimension) within the plane of the phase shift layer (that is, control the line width of the pattern 50). Also, if the etching mask layer 30 is too thick, the amount of side etching increases, making it difficult to obtain pattern dimensions as designed. When the phase shift layer 20 is wet-etched based on the etching mask layer 30 (see FIG. 4D), the phase shift layer 20 is isotropically etched by the etchant. Therefore, in addition to etching the phase shift layer 20 in the direction perpendicular to the substrate 10, the phase shift layer 20 is also etched in the lateral direction orthogonal to the vertical direction. This phenomenon in which etching progresses in the lateral direction is called side etching. Therefore, if the etching mask layer 30 is too thick, or if the phase shift layer 20 is too thick as described above, there is a risk that the pattern width will be wider than the desired pattern width.
 位相シフトマスクブランクス200の製造方法は、特に限定されず、汎用の方法を用いることができる。例えば、位相シフトマスクブランクス200は、後述する実施例で説明する反応性スパッタリングを用いて、基材10上に位相シフト層20及びエッチングマスク層30を成膜して製造してもよい。 A method for manufacturing the phase shift mask blanks 200 is not particularly limited, and a general-purpose method can be used. For example, the phase shift mask blanks 200 may be manufactured by depositing the phase shift layer 20 and the etching mask layer 30 on the substrate 10 using reactive sputtering, which will be described later in Examples.
[位相シフトマスク]
 図3に示す、位相シフトマスク300について説明する。位相シフトマスク300は、基材10と、基材10の表面10aに形成された位相シフト層20を有し、位相シフト層20に所定のパターン50が形成されている。位相シフト層20に所定のパターン50が形成されていること以外の位相シフトマスク300の構成は、図1に示す位相シフトマスクブランクス100と同様である。位相シフト層20の基材表面10aに直交する断面において、パターン50を区画する位相シフト層20の側面21の、基材表面10aからの傾斜角度θは45°~90°が好ましい。
[Phase shift mask]
The phase shift mask 300 shown in FIG. 3 will be described. The phase shift mask 300 has a substrate 10 and a phase shift layer 20 formed on the surface 10 a of the substrate 10 , and a predetermined pattern 50 is formed on the phase shift layer 20 . The configuration of the phase shift mask 300 is the same as the phase shift mask blanks 100 shown in FIG. 1, except that the predetermined pattern 50 is formed on the phase shift layer 20 . In the cross section of the phase shift layer 20 orthogonal to the substrate surface 10a, the inclination angle θ of the side surface 21 of the phase shift layer 20 defining the pattern 50 from the substrate surface 10a is preferably 45° to 90°.
 位相シフトマスク300の製造方法は、特に限定されず、汎用の方法を用いることができる。例えば、位相シフトマスク300は、後述する実施例で説明する反応性スパッタリング、及びウェットエッチング(図4参照)を用いて製造してもよい。 A method for manufacturing the phase shift mask 300 is not particularly limited, and a general-purpose method can be used. For example, the phase shift mask 300 may be manufactured using reactive sputtering and wet etching (see FIG. 4), which will be described in Examples below.
[露光方法]
 次に、位相シフトマスクブランクス100、200から作製した位相シフトマスク300を用いた露光方法について説明する。位相シフトマスク300を用いた露光方法は、半導体や液晶パネル等のデバイス製造において、露光装置を用いたフォトリソグラフィ工程として実施できる。
[Exposure method]
Next, an exposure method using the phase shift mask 300 produced from the phase shift mask blanks 100 and 200 will be described. The exposure method using the phase shift mask 300 can be implemented as a photolithography process using an exposure apparatus in the manufacture of devices such as semiconductors and liquid crystal panels.
 図5に示すように、露光方法に使用する露光装置500は、光源LSと、照明光学系5
02と、位相シフトマスク300を保持するマスクステージ503と、投影光学系504と、露光対象物である感光性基板515を保持する基板ステージ505と、基板ステージ505を水平面内で移動させる駆動機構506とを備える。
As shown in FIG. 5, an exposure apparatus 500 used in the exposure method includes a light source LS, an illumination optical system 5
02, a mask stage 503 that holds a phase shift mask 300, a projection optical system 504, a substrate stage 505 that holds a photosensitive substrate 515 that is an exposure target, and a driving mechanism 506 that moves the substrate stage 505 in a horizontal plane. and
 まず、露光装置500のマスクステージ503に、位相シフトマスク300を配置する。また、基板ステージ505にフォトレジストが塗布された感光性基板515を配置する。そして、光源LSから露光光を出射する。出射された露光光は、照明光学系502に入射して所定光束に調整され、マスクステージ503に保持された位相シフトマスク300に照射される。位相シフトマスク300を通過した光は位相シフトマスク300に描かれたデバイスのパターン50と同じパターンを有しており、このパターンが投影光学系504を介して基板ステージ505に保持された感光性基板515の所定位置に照射される。これにより、感光性基板515は、位相シフトマスク300のデバイスパターンにより所定倍率で露光される。 First, the phase shift mask 300 is placed on the mask stage 503 of the exposure apparatus 500 . Also, a photosensitive substrate 515 coated with a photoresist is placed on the substrate stage 505 . Then, exposure light is emitted from the light source LS. The emitted exposure light enters an illumination optical system 502 to be adjusted to a predetermined light flux, and is irradiated onto a phase shift mask 300 held on a mask stage 503 . The light passing through the phase shift mask 300 has the same pattern as the device pattern 50 drawn on the phase shift mask 300 , and this pattern passes through the projection optical system 504 onto the photosensitive substrate held on the substrate stage 505 . A predetermined position of 515 is irradiated. Thereby, the photosensitive substrate 515 is exposed at a predetermined magnification by the device pattern of the phase shift mask 300 .
 位相シフトマスクブランクス100、200から作製した位相シフトマスク300は、パターン精度が高い。そのため、位相シフトマスク300を用いて露光を行うことにより、露光工程における回路パターン不良を低減でき、集積度の高いデバイスを効率よく製造できる。 The phase shift mask 300 produced from the phase shift mask blanks 100 and 200 has high pattern accuracy. Therefore, by performing exposure using the phase shift mask 300, circuit pattern defects in the exposure process can be reduced, and highly integrated devices can be efficiently manufactured.
 以下に、実施例及び比較例により位相シフトマスクブランクス、及び位相シフトマスクについて具体的に説明するが、本発明はこれらの実施例に限定されない。 The phase shift mask blanks and the phase shift mask will be specifically described below using examples and comparative examples, but the present invention is not limited to these examples.
試料の作製
 試料1~10として、図1に示す位相シフトマスクブランクス100を作製した。尚、試料6~10は実施例に相当し、試料1~5は比較例に相当する。
Preparation of Samples As samples 1 to 10, phase shift mask blanks 100 shown in FIG. 1 were prepared. Samples 6 to 10 correspond to Examples, and Samples 1 to 5 correspond to Comparative Examples.
[試料1]
 まず、基材10として石英ガラスの円形の平行平板を用意した(サイズ:直径3インチ、厚さ0.5ミリ)。DCマグネトロンスパッタ装置を使用し、スパッタリングターゲットとしてZrSi合金ターゲットを用い、Ar-N混合ガスを導入しながら反応性スパッタリングを行い、基材10上に厚さ101nmの位相シフト層20を形成して、試料1を作成した。ZrSi合金ターゲットの組成(原子比)は、Zr:Si=1:2とした。成膜条件は、混合ガス全圧0.32Pa、混合ガス(スパッタリングガス)中のN2導入比率:5.0%、DC出力1.5kwとした。
[Sample 1]
First, a circular parallel flat plate made of quartz glass was prepared as the substrate 10 (size: 3 inches in diameter, 0.5 mm in thickness). Using a DC magnetron sputtering apparatus and using a ZrSi alloy target as a sputtering target, reactive sputtering is performed while introducing an Ar—N 2 mixed gas to form a phase shift layer 20 having a thickness of 101 nm on the substrate 10. , Sample 1 was prepared. The composition (atomic ratio) of the ZrSi alloy target was Zr:Si=1:2. The film formation conditions were a mixed gas total pressure of 0.32 Pa, an introduction ratio of N2 in the mixed gas (sputtering gas): 5.0%, and a DC output of 1.5 kw.
[試料2~10]
 混合ガス中のN導入比率を表1に示すように変更した以外は、試料1と同様の方法により、試料2~10を作製した。
[Samples 2 to 10]
Samples 2 to 10 were produced in the same manner as Sample 1, except that the N 2 introduction ratio in the mixed gas was changed as shown in Table 1.
位相シフト層の物性評価
(1)組成分析
 試料1~10の位相シフト層20の組成分析をX線光電子分光法(XPS)により行った。結果を表1に示す。尚、位相シフト層の最表面は酸化されている虞があるため、組成分析はスパッタリングにより最表面の酸化の影響がある部分を削った後に行った。分析装置は、PHI社製、QuanteraAXMを用いた。分析条件は以下とした。X線源:単色化Al(1486.6eV)、検出領域:直径100μmの円形領域、検出深さ:約4~5nm(取出角45°)、測定スペクトル:Zr3d、Si2p、N1s及びO1s、スパッタ条件:Ar+2.0kV、スパッタ速度:約5nm/min(SiO換算)。
Evaluation of Physical Properties of Phase Shift Layer (1) Composition Analysis Composition analysis of the phase shift layers 20 of Samples 1 to 10 was performed by X-ray photoelectron spectroscopy (XPS). Table 1 shows the results. In addition, since the outermost surface of the phase shift layer may be oxidized, the composition analysis was performed after the portion affected by the oxidation of the outermost surface was removed by sputtering. QuanteraAXM manufactured by PHI was used as an analyzer. The analysis conditions were as follows. X-ray source: monochromatic Al (1486.6 eV), detection area: circular area with a diameter of 100 μm, detection depth: about 4 to 5 nm (takeoff angle 45°), measurement spectrum: Zr3d, Si2p, N1s and O1s, sputtering conditions : Ar+2.0 kV, sputtering rate: about 5 nm/min (converted to SiO 2 ).
(2)屈折率及び消衰係数の測定、並びに透過率のシミュレーション
 試料1~10の位相シフト層20に関して、エリプソメトリ法により、i線(365nm)における屈折率及び消衰係数を測定した。結果を表1及び図6に示す。また、試料1~10の位相シフト層20に関して、屈折率の測定結果から、3種類(365nm、405nm、436nm)の波長それぞれにおいて、180°の位相シフトを与える膜厚を求め、該膜厚における位相シフト層20の透過率をシミュレーションにより算出した。結果を表1及び図7に示す。シミュレーションはシミュレーションソフト「TFCalc」を用いて行い、エリプソメトリ法で得られたi線(365nm)における屈折率と消衰係数の測定結果から、3種類(365nm、405nm、436nm)の波長それぞれにおいて180°の位相シフトを与える膜厚を用いて該膜厚における位相シフト層20の透過率を算出した。ここで、透過率は反射も考慮した外部透過率のことである。
(2) Measurement of Refractive Index and Extinction Coefficient, and Transmittance Simulation For the phase shift layers 20 of Samples 1 to 10, the refractive index and extinction coefficient at the i-line (365 nm) were measured by ellipsometry. The results are shown in Table 1 and FIG. Further, with respect to the phase shift layers 20 of samples 1 to 10, the film thickness that gives a phase shift of 180° at each of the three wavelengths (365 nm, 405 nm, and 436 nm) was obtained from the results of refractive index measurement. The transmittance of the phase shift layer 20 was calculated by simulation. The results are shown in Table 1 and FIG. The simulation was performed using the simulation software "TFCalc". From the measurement results of the refractive index and extinction coefficient at the i-line (365 nm) obtained by the ellipsometry method, 180 The transmittance of the phase shift layer 20 was calculated using a film thickness that gives a phase shift of .degree. Here, the transmittance is the external transmittance in consideration of reflection.
位相シフトマスクの作製
 試料1(位相シフトマスクブランクス)の位相シフト層20にパターン50を形成して、図3に示す位相シフトマスク300を作製した。まず、DCマグネトロンスパッタ装置を使用し、スパッタリングターゲットとしてCrターゲットを用い、Ar-N2混合ガスを導入しながら反応性スパッタリングを行い、続いて、Ar-O混合ガスを導入しながら反応性スパッタを行った。これにより、位相シフトマスクブランクス100の上に、窒化クロム層31及び酸化クロム層32から構成されるエッチングマスク30を形成し、位相シフトマスクブランクス200を作製した(図2)。エッチングマスク30の厚さは、96nm(窒化クロム層31の厚さ:酸化クロム層32の厚さ=7:3)とした。次に、位相シフトマスクブランクス200上に、ポジ型紫外線レジスト(ナガセケムテックス製、GRX-M237)をスピンコートにより塗布し、フォトレジスト層40を形成した(図4(a))。フォトレジスト層40の厚さは、660nmとした。
Production of Phase Shift Mask A pattern 50 was formed in the phase shift layer 20 of Sample 1 (phase shift mask blanks) to produce a phase shift mask 300 shown in FIG. First, using a DC magnetron sputtering apparatus and using a Cr target as a sputtering target, reactive sputtering was performed while introducing an Ar—N mixed gas, followed by reactive sputtering while introducing an Ar O mixed gas. gone. As a result, an etching mask 30 composed of a chromium nitride layer 31 and a chromium oxide layer 32 was formed on the phase shift mask blank 100 to produce a phase shift mask blank 200 (FIG. 2). The thickness of the etching mask 30 was 96 nm (thickness of the chromium nitride layer 31:thickness of the chromium oxide layer 32=7:3). Next, a positive ultraviolet resist (GRX-M237 manufactured by Nagase ChemteX) was applied onto the phase shift mask blank 200 by spin coating to form a photoresist layer 40 (FIG. 4(a)). The thickness of the photoresist layer 40 was set to 660 nm.
 高圧水銀ランプを用いたマスクアライナー(キヤノン製、PLA-501)を使用し、パターン50に対応する開口が形成された遮光マスクを用いてフォトレジスト層40を露光した。これにより、フォトレジスト層40のパターン50に対応する部分が露光された。次に、露光した位相シフトマスクブランクス200を有機アルカリ系現像液(多摩化学工業製、1.83%水酸化テトラメチルアンモニウム)に浸漬した。これにより、フォトレジスト層40の感光部が溶解、除去され、パターン50に対応する開口が形成された(図4(b))。 Using a mask aligner (PLA-501, manufactured by Canon) using a high-pressure mercury lamp, the photoresist layer 40 was exposed using a light-shielding mask having openings corresponding to the pattern 50 . As a result, a portion of the photoresist layer 40 corresponding to the pattern 50 was exposed. Next, the exposed phase shift mask blanks 200 were immersed in an organic alkaline developer (1.83% tetramethylammonium hydroxide manufactured by Tama Kagaku Kogyo Co., Ltd.). As a result, the exposed portion of the photoresist layer 40 was dissolved and removed, and an opening corresponding to the pattern 50 was formed (FIG. 4(b)).
 次に、パターン50に対応する開口が形成されたフォトレジスト層40をマスクにして、エッチングマスク層30を硝酸第2セリウムアンモニウムと硝酸とを含むエッチング液(林純薬工業製、PureEtchCR101)を用いてウェットエッチングした。エッチング液温度は23±3℃、エッチング時間は100sec.とした。これにより、エッチングマスク層30の、フォトレジスト層40に覆われずに露出した部分が除去された(図4(c))。 Next, using the photoresist layer 40 having openings corresponding to the pattern 50 as a mask, the etching mask layer 30 is etched with an etchant containing ceric ammonium nitrate and nitric acid (PureEtchCR101 manufactured by Hayashi Junyaku Kogyo Co., Ltd.). and wet etched. The etching liquid temperature was 23±3° C., and the etching time was 100 sec. and As a result, the exposed portion of the etching mask layer 30 that was not covered with the photoresist layer 40 was removed (FIG. 4(c)).
 次に、パターン50に対応する開口が形成されたフォトレジスト層40及びエッチングマスク層30をマスクにして、フッ化アンモニウムを含むエッチング液(ADEKA製、アデカケルミカWGM-155)を用いて位相シフト層20をウェットエッチングした。エッチング液温度は23±3℃とし、露出した位相シフト層20を均一に残りなく除去するために、40%オーバーエッチングを行った。これにより、位相シフト層20にパターン50が形成された(図4(d))。 Next, using the photoresist layer 40 having openings corresponding to the pattern 50 and the etching mask layer 30 as masks, the phase shift layer 20 is etched using an etchant containing ammonium fluoride (ADEKA's ADEKA CHEMICA WGM-155). was wet etched. The temperature of the etchant was set at 23±3° C., and 40% over-etching was performed in order to uniformly remove the exposed phase shift layer 20 without residue. Thereby, a pattern 50 was formed in the phase shift layer 20 (FIG. 4(d)).
 最後に、フォトレジスト層40及びエッチングマスク層30の剥離処理を行った。以上の工程により、試料1(位相シフトマスクブランクス)から、図4(e)に示す位相シフトマスク300を得た。 Finally, the photoresist layer 40 and the etching mask layer 30 were removed. Through the above steps, the phase shift mask 300 shown in FIG. 4E was obtained from the sample 1 (phase shift mask blanks).
 試料2~10(位相シフトマスクブランクス)からも、試料1と同様の方法により図3に示す位相シフトマスク300を製造した。 A phase shift mask 300 shown in FIG. 3 was also manufactured from samples 2 to 10 (phase shift mask blanks) in the same manner as sample 1.
 位相シフトマスク300の作製の過程において、試料1~10に形成したパターン50の断面観察を行った。断面観察は、エッチングマスク層30及びフォトレジスト層40を除去する前の状態(図4(d)に示す状態)で行った。図8(a)~(j)に、試料1~10の基材表面10aに直交する断面のSEM写真を示す。図8(a)~(j)から、試料1~10において、位相シフト層20の側面21の、基材表面10aからの傾斜角度θを計測した。結果を表1及び図9に示す。尚、図8(a)には、θを示し、更に、位相シフト層20と窒化クロム層31との境界、及び窒化クロム層31と酸化クロム層32との境界を点線で示す。 In the process of manufacturing the phase shift mask 300, cross-sectional observation of the patterns 50 formed on the samples 1 to 10 was performed. The cross-sectional observation was performed in the state before removing the etching mask layer 30 and the photoresist layer 40 (the state shown in FIG. 4(d)). 8(a) to (j) show SEM photographs of cross sections perpendicular to the substrate surface 10a of samples 1 to 10. FIG. From FIGS. 8A to 8J, in samples 1 to 10, the inclination angle θ of the side surface 21 of the phase shift layer 20 from the substrate surface 10a was measured. The results are shown in Table 1 and FIG. In FIG. 8A, θ is shown, and the boundary between the phase shift layer 20 and the chromium nitride layer 31 and the boundary between the chromium nitride layer 31 and the chromium oxide layer 32 are shown by dotted lines.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1、図8及び図9に示すように、位相シフト層20中の窒素濃度が51原子%以上である試料6~10は、位相シフト層20の基材表面10aに直交する断面において、パターン50を区画する位相シフト層20の側面21の、基材表面10aからの傾斜角度θが45°以上であった。これから、試料6~10(位相シフトマスクブランクス)からは、パターンが精度よく形成された(パターン精度が高い)位相シフトマスク300が得られたことがわかる。 As shown in Table 1, FIGS. 8 and 9, samples 6 to 10 in which the nitrogen concentration in the phase shift layer 20 is 51 atomic % or more have a pattern The inclination angle θ of the side surface 21 of the phase shift layer 20 that partitions 50 from the substrate surface 10a was 45° or more. From this, it can be seen that samples 6 to 10 (phase shift mask blanks) yielded phase shift masks 300 in which patterns were accurately formed (high pattern accuracy).
 また、表1、図6及び図7に示すように、位相シフト層20中の窒素濃度が51原子%以上である試料6~10は、位相シフト層20の光学特性(屈折率、消衰係数及び透過率)が試料間で大きく異ならず、近い値であった。即ち、位相シフト層20中の窒素濃度が51原子%以上の場合、位相シフト層20中の窒素濃度が変化しても、光学特性(屈折率、消衰係数及び透過率)は安定していた。また、表1、図10及び図11に示すように、試料6~10は、位相シフト層20の形成工程(成膜工程)において、スパッタリングガス中の窒素導入比率を35%から100%までの広い範囲で変化させて作製した。窒素導入比率35%以上(試料6~10)では、位相シフト層20の光学特性が安定するため、成膜条件の制御が容易である。 Further, as shown in Table 1, FIGS. 6 and 7, samples 6 to 10 in which the nitrogen concentration in the phase shift layer 20 is 51 atomic % or more have the optical properties of the phase shift layer 20 (refractive index, extinction coefficient and transmittance) did not differ greatly among the samples and were close values. That is, when the nitrogen concentration in the phase shift layer 20 was 51 atomic % or more, the optical properties (refractive index, extinction coefficient and transmittance) were stable even when the nitrogen concentration in the phase shift layer 20 changed. . In addition, as shown in Table 1, FIGS. 10 and 11, samples 6 to 10 have a nitrogen introduction ratio in the sputtering gas of 35% to 100% in the step of forming the phase shift layer 20 (film formation step). A wide range of variations was made. When the nitrogen introduction ratio is 35% or more (Samples 6 to 10), the optical properties of the phase shift layer 20 are stabilized, so the film forming conditions can be easily controlled.
 一方、表1、図8及び図9に示すように、位相シフト層20中の窒素濃度が51原子%未満である試料1~5は、傾斜角度θが45°未満であった。これから、試料1~5(位相シフトマスクブランクス)から作製された位相シフトマスク300のパターン精度は低いことがわかる。また、表1、図6及び図7に示すように、位相シフト層20中の窒素濃度が51原子%未満である試料1~5は、窒素濃度により位相シフト層20の光学特性(屈折率、消衰係数及び透過率)が大きく変動していた。また、表1に示すように、試料1~5は、位相シフト層20の形成工程(成膜工程)において、スパッタリングガス中の窒素導入比率を35%未満として作製した。図10及び図11に示すように、スパッタリングガス中の窒素導入比率が35%未満(試料1~5)であると、窒素導入比率によって位相シフト層20の光学特性が大きく変化するため、成膜条件の厳密な制御が求められる。 On the other hand, as shown in Table 1, FIGS. 8 and 9, samples 1 to 5 in which the nitrogen concentration in the phase shift layer 20 was less than 51 atomic % had an inclination angle θ of less than 45°. From this, it can be seen that the pattern accuracy of the phase shift mask 300 produced from Samples 1 to 5 (phase shift mask blanks) is low. Further, as shown in Table 1, FIGS. 6 and 7, samples 1 to 5, in which the nitrogen concentration in the phase shift layer 20 is less than 51 atomic %, have optical properties (refractive index, extinction coefficient and transmittance) fluctuated greatly. Further, as shown in Table 1, Samples 1 to 5 were produced by setting the introduction ratio of nitrogen in the sputtering gas to less than 35% in the step of forming the phase shift layer 20 (film formation step). As shown in FIGS. 10 and 11, when the nitrogen introduction ratio in the sputtering gas is less than 35% (Samples 1 to 5), the optical characteristics of the phase shift layer 20 change greatly depending on the nitrogen introduction ratio. Strict control of conditions is required.
 本実施形態の位相シフトマスクブランクスからは、パターン精度の高い位相シフトマスクを製造できる。位相シフトマスクは、FPD等の表示用デバイスやLSI等の半導体デバイスを製造する際に用いられる。 A phase shift mask with high pattern accuracy can be manufactured from the phase shift mask blanks of this embodiment. Phase shift masks are used when manufacturing display devices such as FPDs and semiconductor devices such as LSIs.
10      基材
20      位相シフト層
30      エッチングマスク層
31      窒化クロム層
32      酸化クロム層
40      フォトレジスト層
50      パターン
100、200 位相シフトマスクブランクス
300     位相シフトマスク
500     露光装置
LS      光源
502     照明光学系
504     投影光学系
503     マスクステージ
505     基板ステージ

 
10 substrate 20 phase shift layer 30 etching mask layer 31 chromium nitride layer 32 chromium oxide layer 40 photoresist layer 50 patterns 100, 200 phase shift mask blanks 300 phase shift mask 500 exposure apparatus LS light source 502 illumination optical system 504 projection optical system 503 Mask stage 505 Substrate stage

Claims (20)

  1.  位相シフトマスクブランクスであって、
     基材と、
     前記基材上に形成された、ジルコニウム(Zr)、ケイ素(Si)及び窒素(N)を含む位相シフト層とを有し、
     前記位相シフト層に含まれる窒素濃度が、51原子%以上である位相シフトマスクブランクス。
    A phase shift mask blank,
    a substrate;
    a phase shift layer comprising zirconium (Zr), silicon (Si) and nitrogen (N) formed on the substrate;
    A phase shift mask blank, wherein the nitrogen concentration contained in the phase shift layer is 51 atomic % or more.
  2.  前記位相シフト層に含まれる窒素濃度が51原子%~56原子%である、請求項1に記載の位相シフトマスクブランクス。 The phase shift mask blank according to claim 1, wherein the nitrogen concentration contained in the phase shift layer is 51 atomic % to 56 atomic %.
  3.  前記位相シフト層に含まれるジルコニウム濃度が20原子%~27原子%である、請求項1又は2に記載の位相シフトマスクブランクス。 3. The phase shift mask blank according to claim 1, wherein the phase shift layer has a zirconium concentration of 20 atomic % to 27 atomic %.
  4.  前記位相シフト層中のケイ素濃度が20原子%~27原子%である、請求項1~3のいずれか一項に記載の位相シフトマスクブランクス。 The phase shift mask blanks according to any one of claims 1 to 3, wherein the silicon concentration in the phase shift layer is 20 atomic % to 27 atomic %.
  5.  前記位相シフト層の波長365nmの光に対する屈折率が2.60~2.85である、請求項1~4のいずれか一項に記載の位相シフトマスクブランクス。 The phase shift mask blanks according to any one of claims 1 to 4, wherein the phase shift layer has a refractive index of 2.60 to 2.85 for light with a wavelength of 365 nm.
  6.  前記位相シフト層の波長365nmの光に対する消衰係数が0.13~0.18である、請求項1~5のいずれか一項に記載の位相シフトマスクブランクス。 The phase shift mask blanks according to any one of claims 1 to 5, wherein the phase shift layer has an extinction coefficient of 0.13 to 0.18 for light with a wavelength of 365 nm.
  7.  前記位相シフト層の波長330nm~470nmの光の透過率が20%以上である、請求項1~6のいずれか一項に記載の位相シフトマスクブランクス。 The phase shift mask blanks according to any one of claims 1 to 6, wherein the phase shift layer has a transmittance of 20% or more for light with a wavelength of 330 nm to 470 nm.
  8.  波長365nmの光で180°の位相シフトを与える膜厚での前記位相シフト層の波長365nmの光の透過率が30%~40%である、請求項1~7のいずれか一項に記載の位相シフトマスクブランクス。 8. The phase shift layer according to any one of claims 1 to 7, wherein the phase shift layer has a transmittance of 30% to 40% for light with a wavelength of 365 nm in a film thickness that gives a phase shift of 180° with light with a wavelength of 365 nm. Phase shift mask blanks.
  9.  波長405nmの光で180°の位相シフトを与える膜厚での前記位相シフト層の波長405nmの光の透過率が45%~55%である、請求項1~7のいずれか一項に記載の位相シフトマスクブランクス。 8. The phase shift layer according to any one of claims 1 to 7, wherein the phase shift layer has a transmittance of 45% to 55% for light with a wavelength of 405 nm in a film thickness that gives a phase shift of 180° with light with a wavelength of 405 nm. Phase shift mask blanks.
  10.  波長436nmの光で180°の位相シフトを与える膜厚での前記位相シフト層の波長436nmの光の透過率が55%~75%である、請求項1~7のいずれか一項に記載の位相シフトマスクブランクス。 8. The phase shift layer according to any one of claims 1 to 7, wherein the phase shift layer has a transmittance of 55% to 75% for light with a wavelength of 436 nm in a film thickness that gives a phase shift of 180° with light with a wavelength of 436 nm. Phase shift mask blanks.
  11.  前記位相シフト層は、前記位相シフト層を透過する光の位相を160°~200°シフトさせる、請求項1~10のいずれか一項に記載の位相シフトマスクブランクス。 The phase shift mask blanks according to any one of claims 1 to 10, wherein the phase shift layer shifts the phase of light transmitted through the phase shift layer by 160° to 200°.
  12.  前記位相シフト層は、前記位相シフト層を透過する光の位相を170°~190°シフトさせる、請求項11に記載の位相シフトマスクブランクス。 The phase shift mask blanks according to claim 11, wherein the phase shift layer shifts the phase of light transmitted through the phase shift layer by 170° to 190°.
  13.  前記位相シフト層の上に形成されたクロム化合物層を更に有する、請求項1~12のいずれか一項に記載の位相シフトマスクブランクス。 The phase shift mask blanks according to any one of claims 1 to 12, further comprising a chromium compound layer formed on said phase shift layer.
  14.  前記クロム化合物層は、クロム(Cr)及び酸素(O)を含む、請求項13に記載の位相シフトマスクブランクス。 14. The phase shift mask blanks according to claim 13, wherein said chromium compound layer contains chromium (Cr) and oxygen (O).
  15.  前記クロム化合物層は、前記位相シフト層の上に形成された窒化クロム(CrN)層と、前記窒化クロム層上に形成された酸化クロム(CrO)層を含む、請求項13又は14に記載の位相シフトマスクブランクス。 15. The chromium compound layer of claim 13 or 14, wherein the chromium compound layer comprises a chromium nitride (CrN) layer formed on the phase shift layer and a chromium oxide (CrO) layer formed on the chromium nitride layer. Phase shift mask blanks.
  16.  請求項1~15のいずれか一項に記載の位相シフトマスクブランクスの前記位相シフト層の一部が除去され、前記位相シフト層の表面に所定のパターンが形成されている、位相シフトマスク。 A phase shift mask, wherein a part of the phase shift layer of the phase shift mask blanks according to any one of claims 1 to 15 is removed, and a predetermined pattern is formed on the surface of the phase shift layer.
  17.  前記位相シフト層の前記基材表面に直交する断面において、前記位相シフト層の前記パターンを区画する側面と前記基材表面とのなす角度のうち位相シフト層を含む角度である傾斜角度が、45°~90°である、請求項16に記載の位相シフトマスク。 In the cross section of the phase shift layer perpendicular to the substrate surface, the inclination angle, which is an angle including the phase shift layer among the angles formed between the side surface of the phase shift layer defining the pattern and the substrate surface, is 45. 17. The phase shift mask of claim 16, which is between degrees and 90 degrees.
  18.  前記傾斜角度が60°~90°である、請求項17に記載の位相シフトマスク。 The phase shift mask according to claim 17, wherein the tilt angle is 60° to 90°.
  19.  請求項16~18のいずれか一項に記載の位相シフトマスクを介して感光性基板を露光する露光方法。 An exposure method for exposing a photosensitive substrate through the phase shift mask according to any one of claims 16-18.
  20.  請求項19に記載の露光方法を含むデバイスの製造方法。

     
    A device manufacturing method comprising the exposure method according to claim 19 .

PCT/JP2022/017946 2021-04-30 2022-04-15 Phase shift mask blank, phase shift mask, light exposure method, and device manufacturing method WO2022230694A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280008221.6A CN116670583A (en) 2021-04-30 2022-04-15 Phase shift mask blank, phase shift mask, exposure method, and device manufacturing method
KR1020237027182A KR20240003435A (en) 2021-04-30 2022-04-15 Phase shift mask blank, phase shift mask, exposure method, and device manufacturing method
JP2023517448A JPWO2022230694A1 (en) 2021-04-30 2022-04-15

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021077848 2021-04-30
JP2021-077848 2021-04-30

Publications (1)

Publication Number Publication Date
WO2022230694A1 true WO2022230694A1 (en) 2022-11-03

Family

ID=83848108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017946 WO2022230694A1 (en) 2021-04-30 2022-04-15 Phase shift mask blank, phase shift mask, light exposure method, and device manufacturing method

Country Status (5)

Country Link
JP (1) JPWO2022230694A1 (en)
KR (1) KR20240003435A (en)
CN (1) CN116670583A (en)
TW (1) TW202303260A (en)
WO (1) WO2022230694A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08297357A (en) * 1995-04-25 1996-11-12 Toppan Printing Co Ltd Production of edge enhancement type phase shift mask
JPH11249283A (en) * 1997-12-19 1999-09-17 Hoya Corp Half-tone type phase shift mask and half-tone type phase shift mask blank
JP2005156709A (en) * 2003-11-21 2005-06-16 Shin Etsu Chem Co Ltd Phase shift mask blank, phase shift mask, method for manufacturing phase shift mask blank, and method for transferring pattern
JP2005284216A (en) * 2004-03-31 2005-10-13 Shin Etsu Chem Co Ltd Target for forming film and method for manufacturing phase shift mask blank
JP2018116263A (en) * 2017-01-16 2018-07-26 Hoya株式会社 Phase shift mask blank and method for manufacturing phase shift mask using the same, and method for manufacturing display device
JP2019148789A (en) * 2018-02-27 2019-09-05 Hoya株式会社 Phase shift mask blank, method for manufacturing phase shift mask, and method for manufacturing display device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5588633B2 (en) 2009-06-30 2014-09-10 アルバック成膜株式会社 Phase shift mask manufacturing method, flat panel display manufacturing method, and phase shift mask

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08297357A (en) * 1995-04-25 1996-11-12 Toppan Printing Co Ltd Production of edge enhancement type phase shift mask
JPH11249283A (en) * 1997-12-19 1999-09-17 Hoya Corp Half-tone type phase shift mask and half-tone type phase shift mask blank
JP2005156709A (en) * 2003-11-21 2005-06-16 Shin Etsu Chem Co Ltd Phase shift mask blank, phase shift mask, method for manufacturing phase shift mask blank, and method for transferring pattern
JP2005284216A (en) * 2004-03-31 2005-10-13 Shin Etsu Chem Co Ltd Target for forming film and method for manufacturing phase shift mask blank
JP2018116263A (en) * 2017-01-16 2018-07-26 Hoya株式会社 Phase shift mask blank and method for manufacturing phase shift mask using the same, and method for manufacturing display device
JP2019148789A (en) * 2018-02-27 2019-09-05 Hoya株式会社 Phase shift mask blank, method for manufacturing phase shift mask, and method for manufacturing display device

Also Published As

Publication number Publication date
JPWO2022230694A1 (en) 2022-11-03
TW202303260A (en) 2023-01-16
KR20240003435A (en) 2024-01-09
CN116670583A (en) 2023-08-29

Similar Documents

Publication Publication Date Title
JP7059234B2 (en) Photomask blank, photomask manufacturing method and display device manufacturing method
TWI813644B (en) Phase shift mask substrate, manufacturing method of phase shift mask, and manufacturing method of display device
TW202141168A (en) Photomask blank, method for manufacturing photomask blank, method for manufacturing photomask, and method for manufacturing display device
JP7073246B2 (en) Phase shift mask blank, manufacturing method of phase shift mask, and manufacturing method of display device
JP7154626B2 (en) MASK BLANK, TRANSFER MASK, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE
JP2008203373A (en) Halftone blank and method for manufacturing halftone blank
TWI828864B (en) Photomask blank, method for manufacturing photomask, and method for manufacturing display device
JP7371198B2 (en) Photomask blank, photomask manufacturing method, and display device manufacturing method
WO2022230694A1 (en) Phase shift mask blank, phase shift mask, light exposure method, and device manufacturing method
JP2023122806A (en) Mask blank, method for producing transfer mask and method for manufacturing display device
WO2023199668A1 (en) Phase shift mask blank, phase shift mask, and methods for manufacturing same
JP7254470B2 (en) Phase shift mask blank, phase shift mask manufacturing method, and display device manufacturing method
CN111624848B (en) Photomask blank, method for manufacturing photomask, and method for manufacturing display device
KR20240085859A (en) Mask blank, transfer mask, method for manufacturing transfer mask, and method for manufacturing display device
KR20240137470A (en) Mask blank, transfer mask, method for manufacturing transfer mask, and method for manufacturing display device
KR20240100256A (en) Mask blank, transfer mask, method for manufactuaring transfer mask, and method for manufacturing display device
JP2022083394A (en) Phase shift mask blank, method for manufacturing phase shift mask, and method for manufacturing display device
CN117311083A (en) Mask blank, transfer mask, method of manufacturing transfer mask, and method of manufacturing display device
JP2024127025A (en) Mask blank, transfer mask, method for manufacturing a transfer mask, and method for manufacturing a display device
JP2023108276A (en) Mask blank, mask for transfer, method for producing mask for transfer and method for producing display device
JP2023051759A (en) Photomask blank, photomask, manufacturing method of photomask, and manufacturing method of display device
JP2023077629A (en) Mask blank, transfer mask, method for manufacturing mask blank, method for manufacturing transfer mask, and method for manufacturing display device
KR20220071910A (en) Phase shift mask blank, method for manufacturing phase shift mask, and method for manufacturing display device
JP2022089903A (en) Photomask blank, method for manufacturing photomask, and method for manufacturing display device
KR20230114714A (en) Mask blank, transfer mask, method for manufacturing transfer mask, and method for manufacturing display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795607

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280008221.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023517448

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22795607

Country of ref document: EP

Kind code of ref document: A1