WO2022230614A1 - 抗ウィルス材料及びその製造方法 - Google Patents

抗ウィルス材料及びその製造方法 Download PDF

Info

Publication number
WO2022230614A1
WO2022230614A1 PCT/JP2022/016776 JP2022016776W WO2022230614A1 WO 2022230614 A1 WO2022230614 A1 WO 2022230614A1 JP 2022016776 W JP2022016776 W JP 2022016776W WO 2022230614 A1 WO2022230614 A1 WO 2022230614A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
quantum dot
water
dot carbon
quantum
Prior art date
Application number
PCT/JP2022/016776
Other languages
English (en)
French (fr)
Inventor
邦道 佐藤
Original Assignee
メモリアルネットワーク有限会社
ケミテラス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by メモリアルネットワーク有限会社, ケミテラス株式会社 filed Critical メモリアルネットワーク有限会社
Priority to JP2023517223A priority Critical patent/JPWO2022230614A1/ja
Publication of WO2022230614A1 publication Critical patent/WO2022230614A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N65/00Biocides, pest repellants or attractants, or plant growth regulators containing material from algae, lichens, bryophyta, multi-cellular fungi or plants, or extracts thereof
    • A01N65/08Magnoliopsida [dicotyledons]
    • A01N65/20Fabaceae or Leguminosae [Pea or Legume family], e.g. pea, lentil, soybean, clover, acacia, honey locust, derris or millettia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/44Elemental carbon, e.g. charcoal, carbon black
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/48Fabaceae or Leguminosae (Pea or Legume family); Caesalpiniaceae; Mimosaceae; Papilionaceae
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to an antiviral material and a method for producing the same, in particular, an antiviral material that has high alkalinity, is capable of entering viruses, and can decompose or degrade viruses to render them harmless. It relates to a manufacturing method.
  • viruses various chemically synthesized drugs and vaccines have been developed and used to exterminate the bacteria, viruses, malignant substances and malignant cells (hereinafter referred to as viruses) that are the source of disease. ing. These chemosynthetic drugs and the like have the medicinal effect of killing or neutralizing the corresponding viruses depending on their chemical properties (toxicity).
  • the present invention has been made in view of the above-mentioned circumstances, and its purpose is to make it possible to enter the inside of viruses and to decompose or degrade viruses to render them harmless, thereby preventing various types of viral diseases.
  • An object of the present invention is to provide an antiviral material which can be applied to suppress the onset of viral infections and to treat them, and to provide a method for producing the same.
  • a second object of the present invention is to provide a virus that does not require heat energy for production, can be produced under natural temperature conditions, and can completely decompose or denature viruses at human body temperature. is enzymatically rendered harmless or useful, and to provide an antiviral material and a method for producing the same.
  • the first invention disperses quantum dot carbon in water, allows the quantum dot carbon to permeate inside the virus, and acts on the virus to decompose the virus.
  • the gist of the present invention is antiviral materials that change their properties.
  • quantum dot carbon means an atom composed of ultrafine nanoparticles of one carbon atom or ultrafine nanoparticles in which two to three carbon atoms are bonded in a chain. is defined as carbon in the form of Quantum dot carbon used in the antiviral material of the present invention is, as described above, a combination of one carbon atom or two to three carbon atoms, and is extremely fine.
  • the specific size of the quantum dot carbon is, for example, 1 ⁇ to 20 nm or less in diameter.
  • the quantum dot carbon is made from living organisms, preferably plants, and the negative ions generated by dispersing the quantum dot carbon in water are retained in water, resulting in a pH value of 8. or more may be maintained.
  • the second invention of the present invention is a method for producing an antiviral material, in which an organic substance containing no elemental carbon is heated at a predetermined temperature in an oxygen-free atmosphere, and the initial components other than carbon in the atmosphere and the organic substance are reduced to 500° C. or less.
  • Quantum dot carbon produced by thermally decomposing in order from the lowest decomposition temperature to dissociate individually in water is dispersed in water, and negative ions generated by dispersing the quantum dot carbon in water are generated.
  • the gist of the invention is that the quantum dot carbon can permeate into the virus by allowing it to remain in water.
  • a plant may be used as the organic material that does not contain elemental carbon, and the quantum dot carbon may be pulverized to a particle size of 1 ⁇ to 20 nm or less at 500° C. or less.
  • quantum dot carbon which is composed of ultrafine nanoparticles in which 2 to 3 carbon atoms are bonded in a chain, is dispersed in water, and is dispersed inside viruses. Since it permeates and acts on viruses to decompose or denature the viruses, it is possible to exhibit antiviral performance without toxicity.
  • the antiviral material can be produced at a temperature in the low range as the heating temperature of the raw biological material, so the heat treatment operation can be simplified and the cost can be reduced. There is a special effect that it is possible to plan.
  • FIG. 1 is a cross-sectional view showing an embodiment of a quantum dot carbon manufacturing apparatus used for an antiviral material in the present invention; FIG. It is a process drawing showing the manufacturing process by the quantum dot carbon manufacturing apparatus which concerns on the said embodiment.
  • 1 is an ultra-high-resolution scanning transmission electron micrograph at a magnification of 2,000,000 times of quantum dot carbon according to the present invention.
  • 1 is an ultra-high-resolution transmission electron micrograph at a magnification of 2,000,000 times of quantum dot carbon according to the present invention.
  • 5 is an ultra-high-resolution transmission electron microscope photograph showing the imaging target of FIG. 4 magnified to 4,000,000 times.
  • FIG. 1 is a diagram schematically showing quantum dot carbon according to the present invention with an element symbol.
  • FIG. 10 is a diagram showing an example of observing the progress of healing when the antiviral material obtained from the quantum dot carbon according to the embodiment is applied to a person infected with a virus.
  • FIG. 10 is a diagram showing an example of observing the progress of healing when the antiviral material obtained from the quantum dot carbon according to the embodiment is applied to a person infected with influenza.
  • Quantum dot carbon and its manufacture First, the quantum dot carbon used as a raw material for the antiviral material of the present invention and its production will be described.
  • Fig. 1 is a cross-sectional view showing an example of an apparatus for manufacturing the quantum dot carbon.
  • the quantum dot carbon manufacturing apparatus comprises an airtight chamber 1, a cartridge 5 detachably attached to the airtight chamber 1 for taking out the quantum dot carbon, and a cartridge 5 installed inside the airtight chamber 1. It is composed of a base 6 and a base 6.
  • the airtight chamber 1 is kept in a nitrogen atmosphere during the manufacture of the quantum dot carbon.
  • the inside of the cartridge 5 is kept in the same atmosphere (nitrogen atmosphere) as the airtight chamber 1 .
  • An organic material, which is a raw material for quantum dot carbon, is placed on the base 6 .
  • the airtight chamber 1 is provided with a gas injection line 9 having a gas injection opening/closing valve 2 and a pyrolysis gas discharge line 10 having a gas discharge opening/closing valve 3 for discharging pyrolyzed gas.
  • a heater 4 is incorporated in the airtight chamber 1 to raise the temperature to a predetermined temperature.
  • the heater 4 a far-infrared carbon ceramic heater, a carbon filament, or the like, which is installed on the inner peripheral wall of the airtight chamber 1 and can be energized from the outside of the airtight chamber 1 by appropriate means, is used.
  • the heater 4 may be provided not only on the inner peripheral wall of the airtight chamber 1 but also on the bottom. In FIG.
  • reference numeral 8 denotes a lid or opening/closing door provided on the cartridge 5, and when closed, keeps the cartridge 5 airtight or in a nitrogen atmosphere.
  • reference numeral 11 denotes a roller, which is used for conveying the finished quantum dot carbon from the airtight chamber 1 to the cartridge 5 and for conveying the raw material from the cartridge 5 to the airtight chamber 1. A roller 11 is also installed at the bottom of the cartridge 5 .
  • the manufacturing process by the quantum dot carbon manufacturing apparatus shown in FIG. A first step of replacing the air in the airtight chamber 1 with an inert gas to create an oxygen-free atmosphere; and heating the raw material M in the airtight chamber 1 at a predetermined temperature higher than the temperature of the second step to thermally decompose the initial components other than carbon in the organic matter in order from the lowest decomposition temperature.
  • Quantum-dot carbon is produced by a third step of separating and discharging from the airtight chamber 1, and a fourth step of stopping the heating of the raw material M and recovering the quantum-dot carbon remaining in the airtight chamber 1. manufactured.
  • the raw material for the quantum dot carbon used in the first step for example, organic substances that normally exist such as macromolecular substances and living organisms can be used. It is not preferable as a raw material because it crystallizes and presents a molecular state, and the produced carbon is mixed with molecular carbon.
  • Biological materials and materials used in the agricultural field are more preferable as raw materials for quantum dot carbon. Specific examples of preferable materials include wood chips, bamboo chips, grains (adzuki beans, soybeans, etc.) and other plants. is.
  • the present inventor conducted experiments on various materials and conducted various studies on materials suitable as raw materials for quantum dot carbon used in antiviral materials, and found that adzuki beans are suitable. Therefore, in the present embodiment, adzuki beans are used as the raw material for quantum dot carbon.
  • Fig. 2 is a process diagram showing the manufacturing process by the quantum dot carbon manufacturing equipment. Based on this process diagram, the above-described processing steps will be described in more detail.
  • the raw material M made of adzuki beans, which is an organic substance is loaded on the table 6 in the airtight chamber 1, the shutter 7 is closed, and the pyrolysis gas discharge pipe 10 is opened.
  • the airtight chamber 1 is initially heated. The operation takes about 30 minutes from the introduction of the raw material to the initial stage of the heating operation, and the temperature rise in the pyrolysis chamber during this period is 100° C. or less.
  • Nitrogen gas is represented here
  • the air 14 oxygen, carbon dioxide, etc.
  • the gas injection opening/closing valve 2 and the gas discharge opening/closing valve 3 of the pyrolysis gas discharge line 10 are once closed. This gas replacement process is an operation for about 50 minutes, and almost 100% of the gas in the pyrolysis chamber is replaced with inert gas by this process operation.
  • the heater 4 is energized to first heat the airtight chamber 1 and the raw material M loaded therein to 100° C. to 150° C., which is a temperature at which moisture evaporates, and the surface of the raw material M is heated.
  • the moisture (H 2 O) adhering to the material M, the moisture leached from the tissue of the raw material M, and the moisture in the nitrogen atmosphere are sufficiently evaporated.
  • the gas discharge opening/closing valve 3 of the gas discharge line 10 is opened, and a gas containing water vapor 15, oxygen, and nitrogen is discharged from the pyrolysis gas discharge line 10 to the outside of the airtight chamber 1 while nitrogen is being introduced from the gas injection line 9.
  • This water evaporation operation may take about 120 minutes, but in order to evaporate the water more completely, it takes a sufficiently long time of about 300 minutes or longer. is good.
  • This moisture evaporation operation is an important operation for manufacturing quantum dot carbon for the present invention. Oxygen is thereby almost completely removed from the airtight chamber 1 . During that time, the temperature is kept at 100-150°C. It is preferable to evaporate the water content of the raw material M until the water content of the raw material M is about 15% (about 10 to 25%) or less in weight percent.
  • the heater 4 is energized again to heat the raw material M to 200° C. to 350° C. while maintaining the nitrogen atmosphere in the airtight chamber 1, thereby liberating the chlorine compound in the raw material M.
  • Chlorine compounds in the raw material M are discharged from the airtight chamber 1 in the same manner as in the case of discharging the moisture and the like. This heating/extraction operation takes about 100 to 120 minutes.
  • the heater 4 is further energized to keep the raw material M at 350 to 450° C., and the chlorine compound is discharged in the same manner.
  • the remaining polymer components in the raw material M are liberated and discharged from the airtight chamber 1 to complete the third step.
  • carbon that does not vaporize at 450° C., that is, a carbon material remains in the airtight chamber 1 . This heating/extraction operation takes about 50 to 100 minutes.
  • the electricity to the heater 4 is stopped, low temperature nitrogen is introduced from the gas injection pipe 9, and high temperature nitrogen is discharged from the pyrolysis gas discharge pipe 10, and the inside of the airtight chamber 1 is discharged.
  • the temperature is cooled to about 20 to 50° C., and the fourth step is completed. This cooling operation takes about 120 minutes, and is performed until the temperature in the airtight chamber 1 reaches almost normal temperature.
  • the shutter 7 is opened, the carbon material remaining in the airtight chamber 1 is transferred to the cartridge 5, and the quantum dot carbon is taken out.
  • the lumps of quantum dot carbon according to the present invention are produced with the shape of the raw material M partially left.
  • Fig. 3 is a photograph of the quantum dot carbon according to the present invention taken at 2,000,000 times with an ultra-high resolution scanning transmission electron microscope.
  • the quantum dot carbon is surrounded by a large number of metal ions derived from organic substances to form an annular or spherical structure with a diameter of about 20 nm.
  • the above-mentioned "organic-derived metal ions” refer to ions of trace metals (Ca, Zn, Mg, Mn, etc.) inherently present in organic substances (plants).
  • the quantum dot carbon represented in FIG. 3 is composed of amorphous ultrafine nanoparticles of one carbon atom, or chains of up to two to three carbon atoms, as described above.
  • the quantum dot carbon of the present invention is composed of this energy body and is unalloyed.
  • the quantum dot carbon of the present invention can exert various physical, chemical, or biological effects on living organisms or substances by being composed of energy bodies.
  • FIG. 4 is a photograph of the quantum dot carbon according to the present invention taken at 2,000,000 times with an ultra-high resolution transmission electron microscope.
  • FIG. 5 is an electron microscope photograph showing the photographed object of FIG. 4 magnified 4,000,000 times.
  • the part surrounded by a square frame in FIG. 5 is an observation image of a sample with a side of 10 nm or less and a thickness of 0.2 to 2 ⁇ (angstrom).
  • Carbon of about 1 ⁇ to 2 nm at most is aggregated in 10 nm, and the average size is 1.66 ⁇ .
  • 1 ⁇ is one carbon C.
  • the rod-shaped object of 2 nm is composed of 2 to 3 carbon atoms bonded in a chain and is in an organic state that does not constitute a graphite carbon hexahedron.
  • the image in FIG. 5 is considered to be the world's smallest photographed image of carbon within the scope of the inventor's research.
  • FIG. 6 is a schematic representation of the quantum dot carbon according to the present invention with element symbols based on the SP orbital of carbon based on the photograph of FIG.
  • carbon has four electrons, and it is known that the combination necessary for life activities and the composition of matter can be made innumerably, and the activity of electrons produces various energies. However, electrons are lost or reduced in number when substances crystallize, making them unable to bond with various other substances.
  • the quantum dot carbon of the present invention if C is 1, each carbon atom exists individually in each of the four hands without being bonded to any atom or ion, so there are four electrons. It can act individually and has a high ion adsorption capacity. Also, if C is two, six electrons can be activated, and the ion adsorption capacity reaches 3 to 20 times or more that of ordinary graphite carbon. In addition, when the quantum dot carbon of the present invention exists with C being 1, the particle size is 0.5 nm or less (theoretically 1.66 ⁇ ) and is in a state close to an atom, as shown in FIG. It has the ability to adsorb 4 ions per carbon atom. Thus, the quantum dot carbon of the present invention has an ion adsorption capacity of 240, which is four times the ion adsorption capacity of 60 of fullerenes composed of 60 carbon atoms.
  • the quantum dot carbon of the present invention has an ion adsorption capacity of 4000, which is four times the ion adsorption capacity of 1000 carbon nanotubes composed of 1000 carbon atoms, that is, it has an ion adsorption capacity of 4000. It can be used for various purposes.
  • the quantum dot carbon of the present invention is not only finer than conventional carbon that is graphitized, but it is also possible to make various substances and compounds. It has the property of being highly capable of
  • the bulk quantum dot carbon obtained by the above method does not come into contact with oxygen during the process of thermally decomposing and liberating other combined components, so it is used like coal, coke, activated carbon, etc. It is not oxidized in the production stage, and the heating temperature is set to 500° C. or less (preferably 450° C. or less), which is the decomposition temperature of other components, so that the excitation energy sufficient to generate an allotropic bond in carbon itself is obtained. In addition, other components that are simply combined are released, and are fixed in the state of being bonded to the raw material M as a compound, that is, in the atomic state. The quantum dot carbon shown is obtained.
  • the main component of the quantum dot carbon obtained in this embodiment is 97.4% by weight of carbon, and the remaining 2.6% by weight is mineral content.
  • the spectral radiant output of the quantum dot carbon in the present embodiment is very close to the spectral radiant output of a black body, 100 times that of bincho charcoal, and 400 times that of activated carbon. It can be seen that the output of It can also be seen that this quantum dot carbon, when heated to around 100° C., emits significantly radiation with wavelengths between 6 and 14 ⁇ m, ie mid-infrared.
  • middle-infrared rays with a wavelength of 6 to 14 ⁇ m have strong heat penetration and thermal vibration reaction.
  • the vibrational energy decomposes water molecules to generate a large amount of hydrogen ions and hydroxide ions, so that high ion conversion efficiency can be obtained.
  • an inert gas may be used, and although the cartridge take-out type shown in FIG. 1 was used as the manufacturing apparatus, other types of manufacturing apparatus can also be used.
  • the massive quantum dot carbon obtained as described above is pulverized to a particle size of 1 ⁇ to 20 nm or less using, for example, a mill to obtain a powder.
  • the quantum dot carbon must be pulverized in a cooled atmosphere at a temperature well below 500°C (preferably 450°C), usually between 20°C and 60°C. By doing so, it is possible to prevent graphitization during the pulverization process.
  • Powdered quantum dot carbon is thrown into water.
  • an aqueous solution in which the quantum-dot carbon is dispersed is produced, which serves as a decomposing solution for viruses.
  • This is the antiviral material of the present invention.
  • water molecules undergo strong and continuous vibration due to the excellent far-infrared emitting ability of quantum dot carbon.
  • water molecules are decomposed and ionized into hydrogen ions H + and hydroxide ions OH - .
  • quantum dot carbon adsorbs hydrogen ions (H + ) in the quantum dot carbon aqueous solution to generate hydrogen ions.
  • H + and hydroxyl ions (OH ⁇ ), and the ionized hydrogen ions (H + ) are adsorbed on the quantum dot carbon (C).
  • the decomposed solution of viruses has a large proportion of hydroxyl ions (OH ⁇ ) (that is, negative ions), becomes negative ion water, exhibits strong alkalinity, and can be used as an antiviral material.
  • the antiviral material made of quantum dot carbon binds to hydrogen ions due to its strong ion adsorption power. Therefore, the antiviral material of the present invention becomes water containing a large amount of negative ions inside, and has a good property of decomposing or altering viruses.
  • the water into which the quantum dot carbon is injected is not particularly limited, and may be tap water, well water, or other natural water.
  • the Quantum Dot Carbon of the present invention is added to tap water, residual chlorine compounds in the tap water are significantly reduced, and by the action of negative ions, a liquid with a pH of 8 to 14 is created in which negative ions are maintained.
  • the quantum dot carbon contained in the antiviral material of the present invention is about the same size or smaller than water molecules (1 ⁇ to 20 nm or less), it is negative not only for human cells but also for viruses and the like. Permeates while retaining ions.
  • the size of the coronavirus is about 100 nm in diameter, whereas the quantum dot carbon of the present invention is ultrafine, and its size is Since the diameter is about 1 ⁇ to 20 nm, the quantum dot carbon of the present invention easily penetrates inside the coronavirus.
  • Quantum dot carbon which has permeated the inside of viruses, etc., decomposes or degrades viruses such as coronaviruses by its own activation activity and the action of negative ions, and turns them into enzymes. Viruses that have been enzymatically treated by negative ions are converted into amino acids, proteins, polysaccharides, and the like, and become nutrients for the body, thereby achieving decomposition or detoxification of viruses. As described above, in the present embodiment, the use of adzuki beans as a raw material for quantum dot carbon has been described.
  • Quantum dot carbon made from this red bean has a strong ability to polysaccharide, and has a strong effect on changing or transforming viruses into amino acids, proteins, polysaccharides, etc., and is more effective than other raw materials. big. Since the antiviral material of the present invention has a pH of 8 to 14 as described above, it exhibits strong alkalinity. The crystal contained in is not mixed.
  • a pH value of 8 or more is sufficient for the antiviral material of the present invention to obtain the effect of decomposing or detoxifying viruses. Since the antiviral material of the present invention is obtained by adding quantum dot carbon to water, it becomes negatively ionized water with mineral ions in the organic state. Therefore, since the ions in the same organic state as in the living body are used, they have affinity with the living body and do not adversely affect the human body. On the other hand, with negative ion water produced using fine particles of metals such as titanium oxide and platinum, or crystals such as vanadium, fine metal particles and crystals remain in the water and accumulate in the body. However, it is not completely safe because it may have adverse effects on the human body after a long period of time.
  • the quantum dot carbon used in the present invention has properties different from those of ordinary activated carbon, charcoal, or carbon nanotubes. It is a condition to use a structure that is connected in a chain to some extent, and the quantum dot carbon that meets this condition is produced by the above-described production method.
  • “carbon” is generally recognized as a crystalline substance having 6 or more carbon atoms forming a benzene ring, as confirmed by an electron microscope or the like.
  • the quantum dot carbon used in the present invention has a size of 1 ⁇ to 20 nm and is in an organic state, whereas normal carbon is in a crystalline form whose size cannot be smaller than 300 nm. Therefore, the antiviral material of the present invention is a liquid substance that has only negative ions, and even if it is ingested by humans, it does no harm and works beneficially.
  • FIG. 7 is a diagram showing an example of observing the process of applying a virus decomposition liquid obtained by dispersing quantum dot carbon in water, that is, an antiviral material, to the human body.
  • an antiviral material (referred to as No. 1) made of a decomposed solution of viruses exhibiting strong alkalinity of pH 13-14 was prepared.
  • This antiviral material No. 1 was manufactured to be applied to relatively strong viruses in society.
  • This antiviral material No. 1 was administered to a virus-affected patient in two divided doses, and the passage of time was observed. The time when the antiviral material No. 1 was taken for the first time was around 9:36 pm on April 10, 2020, and the patient's body temperature at that time was 38°C.
  • FIG. 8 is a diagram showing another example of observing the process of applying the virus decomposition liquid obtained by dispersing quantum dot carbon in water, that is, the antiviral material to the human body.
  • an antiviral material (referred to as No. 2) consisting of a decomposed solution of viruses exhibiting slightly strong alkalinity of pH9 to PH11 was prepared.
  • This antiviral material No. 2 was manufactured for use against influenza.
  • This antiviral material No. 2 was given to a patient diagnosed as having influenza A virus (without influenza vaccination) in several divided doses (several days), and the passage of time was observed. Patient temperature readings were performed twice daily, in the morning and in the evening.
  • the solid polygonal line is a graph showing the results of temperature measurement in the morning every day
  • the dotted line is a graph showing the results of temperature measurement in the evening every day.
  • the patient's body temperature was 36.7°C in the morning and 36.5°C in the evening on the day he was diagnosed with the above influenza A virus (day 1).
  • the date and time when the antiviral material No. 2 was administered for the first time was the second day following the day when the patient was diagnosed with the influenza A virus, and the patient's body temperature at that time was 36.0 in the morning. 4°C and 36.4°C in the evening.
  • the date and time when the antiviral material No. 2 was taken for the second time was 3 days after being diagnosed with the above influenza A virus, and the patient's body temperature at that time was 36.4°C in the morning. , at 36.5°C in the evening. The patient's body temperature rose slightly from the first dose to the second dose.
  • the date and time when the antiviral material No. 2 was taken for the third time was 4 days after being diagnosed with the influenza A virus, and the patient's body temperature at that time was 35.9°C in the morning. , at 36.2°C in the evening. The patient's temperature gradually decreased from the second to the third dose.
  • the date and time when the antiviral material No. 2 was administered for the fourth time was five days after the diagnosis of the influenza A virus, and the patient's body temperature at that time was 36.4°C in the morning. , at 36.5°C in the evening. The patient's temperature rose slightly from the 3rd to the 4th dose, but the increase was not rapid, and since the temperature was normal at 36.5°C and showed no lesions, the patient healed. was diagnosed.
  • both antiviral materials No. 1 and No. 2 according to the present embodiment have a certain healing effect on viral infections. Also, the antiviral material using quantum dot carbon of the present invention is completely harmless to humans.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Biotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Dispersion Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Oncology (AREA)
  • Botany (AREA)
  • Medical Informatics (AREA)
  • Communicable Diseases (AREA)
  • Virology (AREA)
  • Agronomy & Crop Science (AREA)
  • Plant Pathology (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

ウィルス類の内部に進入可能であり、ウィルス類を分解ないしは変質させて無害化することが可能な抗ウィルス材料及びその製造方法を提供する。有機物の原料を無酸素雰囲気において所定の温度で加熱して前記雰囲気中及び有機物中の炭素以外の初期成分を、500℃以下の温度において分解温度の低いものから順次熱分解させて個別的に遊離させて製造されたクウォンタムドット・カーボンを水中に分散せしめ、当該クウォンタムドット・カーボンが水中に分散することにより生成されたマイナスイオンを水中に滞留させ、前記クウォンタムドット・カーボンをウィルス類の内部に浸透させる。これにより、大量のマイナスイオンによるアルカリ効果およびクウォンタムドット・カーボンの遠赤外線効果によりウィルス類を分解ないしは変質せしめ、無力化したりする上、分解されたウィルス類を酵素化する。

Description

抗ウィルス材料及びその製造方法
 本発明は、抗ウィルス材料及びその製造方法、特に高アルカリ性を有し、且つウィルス類の内部に進入可能であり、ウィルス類を分解ないしは変質させて無害化することが可能な抗ウィルス材料及びその製造方法に関するものである。
 近年、感染症を引き起こす新しいウィルスが度々出現し、一般市民を重篤な病変に陥らせたり、社会を混乱に巻き込んだりしてきた。古くはスペイン風邪の流行、近年では西暦2000年代初頭のSARSや鳥インフルエンザ等の流行があり、直近では2020年初からの新型コロナウィルス禍の蔓延がある。
 従来、病気の元となっている菌、ウィルス類、さらには悪性物質や悪性細胞(以下、ウィルス類で代表する)を駆除するため、主として様々な化学合成による薬品やワクチンが開発され、使用されている。これらの化学合成薬品等は、それぞれの化学的性質(毒性)によって対応するウィルス類を殺したり無力化して駆除するという薬効を有する。
国際公開第2005/037296号公報
 上述した種々の災禍はウィルス類が人から人へ伝染して流行するものであるから、ウィルス感染を抑えるためには、迅速なワクチンや治療薬の開発が必要であるが、完全に要求に応じることは難しいのが現状である。特に、薬効があるとされる化学合成薬品等は、他面において副作用も有している場合があり、その副作用によって新たな病気を引き起こす場合もあるため、半良半毒と認識されている。そして、まったく無害の薬品の登場が望まれているが、すべての薬品に対して無害であることを望むのは困難である。化学合成薬品が副作用を有する理由は、これらの化学合成薬品は殆どが熱エネルギー(300℃程度以下)を使用し製造されることから、化学物質の分子同士の共有結合が促進され、身体(30~40℃程度)では分解されない結晶体が体内に残り、蓄積されるからである。熱処理された物質は製造されたときの温度までは分解されないことはよく知られている通りである。したがって、病気の治療に化学合成薬品を使用した場合、その結晶粒子が副作用の元凶となり、新たな病気を引き起こすことになる。
 本発明は上述のような状況に鑑みてなされたもので、その目的は、ウィルス類の内部に進入可能であり、ウィルス類を分解ないしは変質させて無害化することにより複数種類のウィルス性疾患に適用して、ウィルス感染症の発症を抑え、またその治療に供することが可能な抗ウィルス材料及びその製造方法を提供することである。
 本発明の第2の目的は、製造に当たって熱エネルギーを必要とせず、自然温度帯の条件で製造でき、且つ人体の体温でウィルス類を完全に分解ないしは変質させることができ、分解されたウィルス類を酵素化して無害化ないしは有用化することができる抗ウィルス材料及びその製造方法を提供することである。
 上述の目的を達成するために、本件第1発明は、クウォンタムドット・カーボンを水中に分散させ、当該クウォンタムドット・カーボンがウィルス類の内部に浸透可能としてウィルス類に作用させ、当該ウィルス類を分解ないしは変質する抗ウィルス材料を要旨とする。ここで、「クウォンタムドット・カーボン」とは、炭素原子1個の極超微細ナノ粒子、或いは炭素原子が2乃至3個までの鎖状に結合した状態の極超微細ナノ粒子から構成された原子状の炭素と定義されるものである。本発明の抗ウィルス材料に用いられるクウォンタムドット・カーボンは、上述したように、炭素原子が1個、或いは炭素原子が2乃至3個までの結合体であり、微細粒子化が極限まで推進されている。このクウォンタムドット・カーボンの具体的な大きさは、例えば、直径が1Å~20nm或いはそれ以下である。
 前記抗ウィルス材料において、クウォンタムドット・カーボンは生物、好ましくは植物を原料としてつくられ、当該クウォンタムドット・カーボンが水中に分散することにより生成されたマイナスイオンを水中に滞留させることによりPH値が8以上に維持せしめられてもよい。
 本件第2発明は、抗ウィルス材料の製造方法として、炭素単体を含まない有機物を無酸素雰囲気において所定の温度で加熱して前記雰囲気中及び有機物中の炭素以外の初期成分を、500℃以下の温度において分解温度の低いものから順次熱分解させて個別的に遊離させて製造されたクウォンタムドット・カーボンを水中に分散せしめ、当該クウォンタムドット・カーボンが水中に分散することにより生成されたマイナスイオンを水中に滞留させることにより、前記クウォンタムドット・カーボンをウィルス類の内部に浸透可能としたことを要旨とする。
前記抗ウィルス材料の製造方法において、炭素単体を含まない有機物として植物が用いられ、クウォンタムドット・カーボンは500℃以下において1Å~20nm以下の粒径に粉砕されてもよい。
 本発明の抗ウィルス材料によれば、炭素原子が2乃至3個までの鎖状に結合した状態の極超微細ナノ粒子から構成されたクウォンタムドット・カーボンを水中に分散させ、ウィルス類の内部に浸透させてウィルス類に作用させ、当該ウィルス類を分解ないしは変質させるから、毒性のない抗ウィルス性能を発揮することができる。
 また、本発明の抗ウィルス材料の製造方法によれば、原料である生物系材料を加熱温度としては低い範囲の温度で、抗ウィルス材料を製造できるから、熱処理操作を簡単にしてコストの低減を図ることができるという格別な効果を奏する。
本発明における抗ウイルス材料に用いられるクウォンタムドット・カーボン製造装置の一実施の形態を示す断面図である。 前記実施の形態に係るクウォンタムドット・カーボン製造装置による製造工程を表す工程図である。 本発明に係るクウォンタムドット・カーボンの倍率200万倍の超高分解能走査透過型電子顕微鏡写真である。 本発明に係るクウォンタムドット・カーボンの倍率200万倍の超高分解能透過型電子顕微鏡写真である。 図4の撮影対象を倍率400万倍に拡大して示す超高分解能透過型電子顕微鏡写真である。 本発明に係るクウォンタムドット・カーボンを元素記号で模式的に表した図である。 前記実施の形態に係るクウォンタムドット・カーボンから得られた抗ウィルス材料をウイルス感染者に適用した治癒経過を観察した例を示す図である。 前記実施の形態に係るクウォンタムドット・カーボンから得られた抗ウィルス材料をインフルエンザ感染者に適用した治癒経過を観察した例を示す図である。
 (クウォンタムドット・カーボン及びその製造)
 まず、本発明の抗ウィルス材料に原料として用いられるクウォンタムドット・カーボンおよびその製造について説明する。
 図1は上記クウォンタムドット・カーボンを製造するための装置の一例を示す断面図である。図1において、クウォンタムドット・カーボン製造装置は、空気の入らない気密室1と、気密室1に着脱可能に取り付けられたクウォンタムドット・カーボン取り出し用のカートリッジ5と、気密室1の内部に設置された台6とから構成されている。気密室1はクウォンタムドット・カーボンの製造中には内部が窒素雰囲気に保持される。カートリッジ5は、内部が気密室1と同じ雰囲気(窒素雰囲気)に保持される。台6にはクウォンタムドット・カーボンの原料となる有機物が載置される。気密室1はガス注入開閉弁2を持ったガス注入管路9と、熱分解されたガス排出用のガス排出開閉弁3を持った熱分解ガス排出管路10とを備えている。また、気密室1には、内部に所定の温度まで上昇させるためのヒーター4が組み込まれている。ヒーター4としては、気密室1の内部周壁に設置され、適宜の手段により気密室1の外部から通電可能な遠赤外線炭素セラミックヒータや炭素フィラメント等が用いられる。さらに、ヒーター4は、気密室1の内部周壁の他に、底部にも装備されていてもよい。なお、図1において、7は気密室1の出入り口に設けられたシャッターであり、閉鎖されたときは気密室1を気密或いは窒素雰囲気に保つ。8はカートリッジ5に設けられた蓋或いは開閉扉であり、閉鎖されたときはカートリッジ5を気密或いは窒素雰囲気に保つ。また、図1中、符号11はローラーを表し、出来上がったクウォンタムドット・カーボンを気密室1からカートリッジ5に搬送したり、原料をカートリッジ5から気密室1へ搬送したりする作業に使われる。ローラー11はカートリッジ5の底部にも設置されている。
 次に、前記図1に示したクウォンタムドット・カーボン製造装置によるクウォンタムドット・カーボンの製造方法の好ましい例について説明する。
 図1に示したクウォンタムドット・カーボン製造装置による製造工程は、気密に開閉可能なシャッター7を有する気密室1内の台6に有機物からなる原料Mを気密状態の下で装填するともに、気密室1内の空気を不活性ガスに置換して無酸素雰囲気にする第1工程と、気密室1内に装填された原料Mを比較的低温の温度で加熱して水分を蒸発させて気密室1から排出させる第2工程と、気密室1内の原料Mを第2工程の温度よりも高い所定の温度で加熱して有機物中の炭素以外の初期成分を、分解温度の低いものから順次熱分解させて個別的に遊離させて気密室1から排出させる第3工程と、原料Mの加熱を止めて気密室1内に残存するクウォンタムドット・カーボンを回収する第4工程とによりクウォンタムドット・カーボンが製造される。
 第1工程で用いられるクウォンタムドット・カーボンの原料としては、例えば高分子物質や生物等の普通に存在する有機物を用いることができるが、高分子物質のような炭素単体を含むものは、炭素単体が結晶化して分子状を呈していることと、製造した炭素に分子状の炭素が混入するので原料としては好ましくない。クウォンタムドット・カーボンの原料としてより好ましいのは生物系材料、農業分野で扱われる材料であり、好ましいものとして具体的な例を挙げれば木片、竹片、穀類(小豆、大豆等)その他の植物などである。本発明者が種々の材質について実験を行い、抗ウィルス材料に用いるクウォンタムドット・カーボンの原料として適切な材質として種々検討を行ったところ、小豆の実が適切であるという知見が得られた。よって、本実施の形態においてはクウォンタムドット・カーボンの原料に小豆を用いることとする。
 図2はクウォンタムドット・カーボン製造装置による製造工程を表す工程図である。この工程図に基き、上記した処理工程についてさらに詳しく説明する。まず、第1工程では、シャッター7を開放した状態で、気密室1内の台6上に有機物である小豆からなる原料Mを装填してシャッター7を閉じ、熱分解ガス排出管路10を開放した状態で気密室1を初期加熱する。この原料の投入と加熱動作の初期段階までで約30分間の動作でありこの間での熱分解室内の温度上昇は100℃以下である。次に、気密室1内にガス注入管路9から、例えば不活性ガスである窒素ガス12やアルゴンガス13(他の不活性ガスを用いてもよい。ここでは窒素ガスで代表させる。)を送入する一方で、それまで気密室1内に存在していた空気14(酸素や二酸化炭素等)を排出し、窒素ガス12で完全に置換して無酸素状態にし、ガス注入管路9のガス注入開閉弁2と熱分解ガス排出管路10のガス排出開閉弁3を一旦閉じる。このガス置換処理は約50分間の動作であり、この処理動作により熱分解室内の気体はほぼ100%不活性ガスに置換される。
 次に、第2工程として、ヒーター4に通電して最初に気密室1及びその内部に装填した原料Mを水分が蒸発する程度の温度である100℃~150℃に加熱し、原料Mの表面に付着している水分(HO)或いは原料Mの組織体内から浸出してきた水分および窒素雰囲気中の水分を充分に蒸発させ、その後ガス注入管路9のガスの注入開閉弁2と熱分解ガス排出管路10のガス排出開閉弁3を開き、ガス注入管路9から窒素を導入させた状態で熱分解ガス排出管路10から水蒸気15、酸素、窒素を含む気体を気密室1の外部へと排出する。この水分の蒸発動作は、約120分間位の時間をかけて行われても良いが、より完全に水分を蒸発させるためには約300分間或いはそれ以上と、十分に長い時間をかけて行われるのが良い。この水分の蒸発動作は、本発明にとってはクウォンタムドット・カーボンを製造するために重要な動作である。これにより、気密室1から酸素がほぼ完全に除去される。その間、温度は100~150℃に保持される。原料Mの水分の蒸発は、原料Mの水分が重量パーセントで、約15%(10~25%位)或いはそれ以下になるまで水分を蒸発させることが好ましい。水蒸気15及び酸素が十分に排出された後、気密室1内および原料Mを完全に無酸素状態かつ乾燥状態に保持し、ガス注入管路9のガス注入開閉弁2と熱分解ガス排出管路10のガス排出開閉弁3を閉じる。
 次いで、第3工程の前半として、気密室1内を窒素雰囲気に保持したままで、再びヒーター4に通電して原料Mを200℃~350℃に加熱し、原料M中の塩素化合物を遊離させて前記水分等を排出した場合と同様にして原料M内の塩素化合物を気密室1から排出する。この加熱・抽出動作は約100分~120分位の時間をかけて行われる。
 さらに、第3工程の後半として、気密室1内を窒素雰囲気に保持したままで、ヒーター4にさらに通電して原料Mを350~450℃に保ち、前記塩素化合物を排出した場合と同様にして原料M中の残りの高分子成分を遊離させて気密室1から排出し、第3工程を終了する。以上の第3工程を終了した時点で気密室1内には450℃では気化しない炭素すなわち、炭素材料が残存する。この加熱・抽出動作は約50分~100分位の時間をかけて行われる。
 次いで、第4工程として、ヒーター4の通電を停止して、ガス注入管路9から低温の窒素を導入するとともに、熱分解ガス排出管路10から高温の窒素を排出させて気密室1内の温度を20~50℃程度まで冷却して第4工程を終了する。この冷却動作は約120分位の時間をかけて行われ、気密室1内の温度がほぼ常温になるまで行われる。その後、付加的工程として、シャッター7を開放して気密室1内に残存する炭素材料をカートリッジ5へ移送し、クウォンタムドット・カーボンを取り出す。これにより、本発明におけるクウォンタムドット・カーボンの塊が、原料Mの形状を部分的に残したものとして生成される。
 図3は本発明に係るクウォンタムドット・カーボンを超高分解能走査透過型電子顕微鏡により200万倍で撮影した写真である。この図ではクウォンタムドット・カーボンの周りに無数の有機物由来の金属イオンが取り囲んで、直径が約20nmの円環状又は球状構造体を形成している状態が捉えられている。上記「有機物由来の金属イオン」とは、有機物(植物)が本来有しており、有機物の中に存在している微量の金属(Ca、Zn、Mg,Mn等)のイオンのことをいう。図3に表されているクウォンタムドット・カーボンは、上述したように、炭素原子1個の非晶質の極超微細ナノ粒子で構成されるか、又は炭素原子が2乃至3個までの鎖状に結合した状態の極超微細ナノ粒子が原子間引力により互いに不規則に集合してなる非晶質の極超微細ナノ粒子の複合体から構成された、原子状の炭素である。そして、炭素が原子1個程度の極超微細ナノ粒子になると、当該炭素自体が自壊作用を発揮してさらに小さくなるように変化する。このようになると、炭素は、非晶質の極超微細ナノ粒子を基としたエネルギー体として存在する物質である。本発明のクウォンタムドット・カーボンはこのエネルギー体によって構成され、非合金である。そして、非合金のエネルギー体のエネルギーにより上記金属(Ca、Zn、Mg,Mn等)のイオンが引き寄せられ、円環状又は球状構造体を形成しているのが図3の状態である。したがって、本発明のクウォンタムドット・カーボンは、エネルギー体によって構成されていることにより、生体に対し或いは物質に対して様々な物理的、化学的、或いは生物学的な作用を及ぼすことができる。
 図4は本発明に係るクウォンタムドット・カーボンを超高分解能透過型電子顕微鏡により200万倍で撮影した写真である。図5は図4の撮影対象を倍率400万倍に拡大して示す電子顕微鏡写真である。この図5中の四角枠で囲んだ部分は一辺が10nm以下、厚さが0.2~2Å(オングストローム)の試料の観察映像であり、10nmの中に無数の非晶質性物質があり、10nmの中に約1Åから大きくても2nm程度の炭素が集合しており、平均の大きさは1.66Åとなっている。炭素の径から考えて1Åは炭素Cが1つのものである。棒状に見える2nmの物体は炭素Cが2~3個鎖状に結合しているものであり、グラファイト炭素6面体を構成しない有機物状態であることがわかる。図5の映像は発明者が研究してきた範囲では世界最微小の炭素の撮影像と考えられる。
 図6は図3の写真をもとに本発明に係るクウォンタムドット・カーボンを炭素のSP軌道をもとに、元素記号で模式的に表したものである。元々物理的に炭素は電子(エレクトロン)を4つ持ち、生命活動、物質の構成に必要な組み合わせが無数にできるものであることは知られており、エレクトロンの活動が様々なエネルギーを生み出すものであるが、エレクトロンは物質が結晶化することにより失われるか、数が減少し、多様な他の物質に結合することができなくなるものである。
 本発明のクウォンタムドット・カーボンはCが1であれば炭素原子一個一個が、4本の手のそれぞれに何らの原子あるいはイオンと結合していない状態で個別に存在しているため、エレクトロンが4個活動することができ、高いイオン吸着能力を有する。また、Cが2個であればエレクトロンが6個活動することができ、イオン吸着能力が通常のグラファイト炭素の3倍から20倍以上に達するものである。また、本発明のクウォンタムドット・カーボンはCが1で存在していた場合、粒子の大きさが0.5nm以下(理論的には1.66Å)の原子に近い状態であり、図6に示すように炭素原子1個あたり4個のイオンを吸着する能力を有する。そのため本発明のクウォンタムドット・カーボンは、60個の炭素原子で構成されるフラーレンのイオン吸着能力60の4倍、すなわち、240のイオン吸着能力を有する。
 また、本発明のクウォンタムドット・カーボンは、1000個の炭素原子で構成されるカーボンナノチューブのイオン吸着能力1000の4倍、すなわち、4000のイオン吸着能力を有することになり、きわめて活性で、各種の用途に利用することができる。さらに、本発明のクウォンタムドット・カーボンはグラファイト化している従来の炭素と異なり更に細かいばかりか各種の物質と化合物を作ることが可能であり、特に人体に対しても毒性を有しないので水を改善する能力が高いという性質を持つ。
 また、上記の方法により得られた塊状のクウォンタムドット・カーボンは、化合している他の成分を熱分解して遊離する過程で酸素に触れることがないので、石炭、コークス、活性炭などのように生成段階で酸化されることがなく、また、加熱温度も他の成分の分解温度である500℃以下(好ましくは450℃以下)としたので、炭素自身に同素体結合を生じさせるだけの励起エネルギーを与えることがなく、さらに単に化合している他の成分が遊離するだけであり、原料Mに化合物として結合していた状態、即ち、原子状のままで固定されるので、図3乃至図5に示したクウォンタムドット・カーボンが得られるのである。
 以上のようにして得られたクウォンタムドット・カーボンの成分、すなわち物質特性を求めると、本実施の形態において得られたクウォンタムドット・カーボンの主成分は97.4重量%の炭素であり、残りの2.6重量%はミネラル分である。また、上記クウォンタムドット・カーボンの分光放射出力を求めると、本実施の形態におけるクウォンタムドット・カーボンの分光放射出力は、黒体の分光放射出力にきわめて近く、備長炭の100倍、活性炭の400倍の出力を示すことが分かる。また、このクウォンタムドット・カーボンは、100℃程度に加熱されたときに、6~14μmの波長の放射線、すなわち中赤外線を著しく放射することが分かる。
 遠赤外線の中でも波長6~14μmの中赤外線は、強い熱深達力および熱振動反応を有するので、このクウォンタムドット・カーボンの粉体を水の中に分散させると、水を分子レベルで激しく振動させ、その振動エネルギーにより水分子を分解して水素イオンと水酸イオンを多量に発生させるので、高いイオン変換効率を得ることができる。
 なお、図1以下に示した本実施の形態の製造装置(方法)において、無酸素雰囲気を形成するために安価で安定しているとともに低温ガス化も容易な窒素ガスを用いたが、他の不活性ガスを用いてもよく、また、製造装置として図1に示したカートリッジ取り出しタイプのものを用いたが、他の型式の製造装置を用いることもできる。
 (抗ウィルス材料の製造)
 上記のようにして得られた塊状のクウォンタムドット・カーボンを例えばミルなどを用いて1Å~20nm以下の粒径に粉砕して粉末状とする。この場合、クウォンタムドット・カーボンは必ず500℃(好ましくは450℃)よりも十分に低い温度、通常は20℃~60℃に冷却した雰囲気で粉末にすることが必要である。こうすることにより、粉砕過程におけるグラファイト化を防ぐことができる。
 粉末にされたクウォンタムドット・カーボンは、水の中に投入される。本発明のクウォンタムドット・カーボンを水の中に投入するとクウォンタムドット・カーボンが分散された水溶液ができウィルス類の分解液となる。これが本発明の抗ウィルス材料である。このウィルス類の分解液は、クウォンタムドット・カーボンが持つ優れた遠赤外線放出能力により水の分子が強く、持続的な振動を受ける。これにより水の分子は分解されて水素イオンH と水酸イオンOH に電離する。また、炭素が炭素以下の原子番号を持つ元素との結合に強い親和力を有するので、クウォンタムドット・カーボン(C)が、クウォンタムドット・カーボン水溶液の水素イオン(H)を吸着して、水素イオン(H)と水酸イオン(OH)への電離を促し、さらに電離した水素イオン(H)はクウォンタムドット・カーボン(C)に吸着される。その結果、ウィルス類の分解液には水酸イオン(OH)(すなわち、マイナスイオン)の割合が多くなり、マイナスイオン水となるとともに強アルカリ性を示し、抗ウィルス材料となる。
 上記のような作用において、クウォンタムドット・カーボンから成る抗ウィルス材料は、その強力なイオン吸着力により水素イオンと結合する。このため、本発明の抗ウィルス材料は内部に多量のマイナスイオンを含んだ水となり、ウィルス類を分解ないしは変質させるという良好な性質を有する。クウォンタムドット・カーボンが投入されるための水について特に制限はなく、水道水、井戸水、その他の自然の水であってもよい。例えば水道水に本発明のクウォンタムドット・カーボンを入れると、水道水中の残留塩素化合物が著しく減少する上、マイナスイオンの作用により、水中にマイナスイオンを保ったPH8~PH14の液体がつくられる。
 本発明の抗ウィルス材料に含まれるクウォンタムドット・カーボンは水の分子に比べると同程度もしくはそれ以下の大きさ(1Å~20nm以下)であるから、人体の細胞のみならずウィルス等の内部までマイナスイオンを保持したまま浸透する。ちなみに、ウィルスの例としてコロナウィルスを取り上げてみると、コロナウィルスの大きさは直径が100nm程度であるのに対し、本発明のクウォンタムドット・カーボンは極超微細化されており、その大きさは直径が1Å~20nm程度であるから、本発明のクウォンタムドット・カーボンは容易にコロナウィルスの内部に浸透する。
 ウィルス等の内部に浸透したクウォンタムドット・カーボンは、それ自体の賦活性及びマイナスイオンの作用によりコロナウィルス等のウィルス類を分解ないしは変質させ、酵素化していく。そして、マイナスイオンにより酵素化されたウィルス類はアミノ酸、タンパク質、多糖類などへと変化することにより身体の栄養源となることにより、ウィルス類の分解或いは無害化が達成される。上述したように、本実施の形態においてはクウォンタムドット・カーボンの原料に小豆を用いることを説明した。この小豆からつくられたクウォンタムドット・カーボンは多糖化する力が強く、ウィルス類をアミノ酸、タンパク質、多糖類などへと変化或いは変質させるのに強力な作用を及ぼし、他の原料に比べて効果が大きい。本発明の抗ウィルス材料は上記のようにPH8~PH14であることから、強アルカリ性を示すが、通常のアルカリ水とは異なったアルカリ物質の混入していない液体であり、水酸化ナトリウムや灰分などに含まれる結晶体は混入していない。
 なお、本発明の抗ウィルス材料がウィルス類の分解或いは無害化という効果を得るにはPH値は8以上であれば十分である。本発明の抗ウィルス材料は、水にクウォンタムドット・カーボンを投入して得られたものであるから、有機物状態のミネラルイオンによりマイナスイオン水となっている。したがって、生体中と同じ有機物状態のイオンを使用していることになって生体との親和性を有し、人体への悪影響は生じない。これに対して酸化チタンや白金などの金属、或いはバナジウムなどの結晶体の微粒子を使って生成されたマイナスイオン水では、水中に微粒子の金属や結晶体が残留し、これが体内に蓄積されるので、長い時間を経た後に人体に悪影響が及ぶ可能性があり、完全に安全とはいえないものである。
 次に、本発明において用いられているクウォンタムドット・カーボンは通常の活性炭や炭、或いはカーボンナノチューブとは性質が異なり、結晶体(グラファイト構造)が一切なく、炭素単体もしくは炭素原子が2~10個程度、鎖状につながった構造のものを使用することが条件であり、この条件に当てはまるクウォンタムドット・カーボンは上述した製造方法により製造されるものである。今日、「炭素」とは、電子顕微鏡等で確認されているように、炭素原子が6個以上のベンゼン環をなしている結晶体であると一般に認識されている。しかしながら、本発明では、アミノ酸やタンパク質の中にある炭素は電子顕微鏡等では確認できないものであることを認識し、それと同じ有機質炭素であるクウォンタムドット・カーボンを抗ウィルス材料に使用している。よって、通常の炭素の大きさは300nmより小さくなることができない結晶体であるのに対し、本発明に使用するクウォンタムドット・カーボンは1Å~20nmサイズであり、有機物状態である。したがって、本発明の抗ウィルス材料はマイナスイオンのみを持った液体物質であり、人間が飲用しても害はなく有益な働きをする。
 図7はクウォンタムドット・カーボンの水中分散により得られたウィルス類の分解液、すなわち、抗ウィルス材料を人体に適用した経過を観察した例を示す図である。図7の事例では、PH13~PH14の強アルカリ性を示すウィルス類の分解液からなる抗ウィルス材料(No.1とする)を準備した。この抗ウィルス材料No.1は社会において比較的強力なウィルスに対して適用されるように製造したものである。この抗ウィルス材料No.1を、ウィルスに罹患した患者に2回に分けて服用させて時間経過を観察した。1回目に抗ウィルス材料No.1を服用したときの時刻は2020年4月10日の午後9時36分頃であり、その時の患者の体温は38℃であった。その体温は1回目の服用の直後から下がり始め、2020年4月11日の午前7時12分頃に2回目の抗ウィルス材料No.1を服用した。その時の患者の体温は37℃をわずかに下回ったところであった。2回目に抗ウィルス材料No.1を服用した後も患者の体温は下がり続け、午前12時00分頃には平熱に戻った。
 図8はクウォンタムドット・カーボンの水中分散により得られたウィルス類の分解液、すなわち、抗ウィルス材料を人体に適用した経過を観察した別の例を示す図である。図8の事例では、PH9~PH11のやや強アルカリ性を示すウィルス類の分解液からなる抗ウィルス材料(No.2とする)を準備した。この抗ウィルス材料No.2はインフルエンザ用に使用されるように製造したものである。この抗ウィルス材料No.2を、インフルエンザA型のウィルスに罹患したと診断された患者(インフルエンザの予防接種無し)に数回(数日)に分けて服用させて時間経過を観察した。患者への検温は、毎日朝方と夕方の2回実行した。図8において、実線で示された折れ線は毎日朝方に検温した結果を表すグラフであり、1点鎖線で示された折れ線は毎日夕方に検温した結果を表すグラフである。
 上記インフルエンザA型のウィルスに罹患したと診断された日(1日目とする)の患者の体温は朝方で36.7℃、夕方で36.5℃であった。1回目に抗ウィルス材料No.2を服用したときの日時は、上記インフルエンザA型のウィルスに罹患したと診断された日の翌日の2日目であり、その時の患者の体温は朝方で36.4℃、夕方で36.4℃であった。
 2回目に抗ウィルス材料No.2を服用したときの日時は、上記インフルエンザA型のウィルスに罹患したと診断された日から3日目であり、その時の患者の体温は朝方で36.4℃、夕方で36.5℃であった。患者の体温は1回目の服用から2回目の服用にかけて、若干ではあるが上昇した。
 3回目に抗ウィルス材料No.2を服用したときの日時は、上記インフルエンザA型のウィルスに罹患したと診断された日から4日目であり、その時の患者の体温は朝方で35.9℃、夕方で36.2℃であった。患者の体温は2回目の服用から3回目の服用にかけて緩やかに下降した。
 4回目に抗ウィルス材料No.2を服用したときの日時は、上記インフルエンザA型のウィルスに罹患したと診断された日から5日目であり、その時の患者の体温は朝方で36.4℃、夕方で36.5℃であった。患者の体温は3回目の服用から4回目の服用にかけて僅かに上昇したが、この上昇は急激なものではなく、また体温は平熱である36.5℃で病変を示すものではないため、治癒したとの診断が行われた。
 以上のように、本実施の形態に係る抗ウィルス材料No.1、No.2はいずれもウィルス感染に一定の治癒作用を及ぼすことが明らかになった。また、本発明の、クウォンタムドット・カーボンを使った抗ウィルス材料には人間にはまったく害がないものである。
  1 気密室
  2 ガス注入開閉弁
  3 ガス排出開閉弁
  4 ヒーター
  5 カートリッジ
  6 台
  7 シャッター
  8 蓋
  9 ガス注入管路
  10 熱分解ガス排出管路

Claims (5)

  1.  直径が1Å~20nm以下の極超微細ナノ粒子から構成されたクウォンタムドット・カーボンを水中に分散せしめ、クウォンタムドット・カーボンをウィルス類の内部に浸透可能としてウィルス類を分解ないしは変質することを特徴とする抗ウィルス材料。
  2.  前記クウォンタムドット・カーボンが小豆を原料としてつくられ、当該クウォンタムドット・カーボンが水中に分散することにより生成されたマイナスイオンを水中に滞留させることによりPH値が8以上に維持せしめられていることを特徴とする請求項1記載の抗ウィルス材料。
  3.  クウォンタムドット・カーボンは、その極超微細ナノ粒子性から、ウィルス等の内部に浸透し、それ自体の賦活性及びマイナスイオンの作用によりコロナウィルス等のウィルス類を分解ないしは変質させ、酵素化することを特徴とする請求項2記載の抗ウィルス材料。
  4.  炭素単体を含まない有機物を無酸素雰囲気において所定の温度で加熱して前記雰囲気中及び有機物中の炭素以外の初期成分を、500℃以下の温度において分解温度の低いものから順次熱分解させて個別的に遊離させて製造されたクウォンタムドット・カーボンを水中に分散せしめ、当該クウォンタムドット・カーボンが水中に分散することにより生成されたマイナスイオンを水中に滞留させることにより、前記クウォンタムドット・カーボンをウィルス類の内部に浸透可能としたことを特徴とする抗ウィルス材料の製造方法。
  5.  炭素単体を含まない有機物として小豆が用いられ、クウォンタムドット・カーボンは500℃以下において1Å~20nm以下の粒径に粉砕されたものであることを特徴とする請求項4に記載の抗ウィルス材料の製造方法。
PCT/JP2022/016776 2021-04-28 2022-03-31 抗ウィルス材料及びその製造方法 WO2022230614A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023517223A JPWO2022230614A1 (ja) 2021-04-28 2022-03-31

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021099039 2021-04-28
JP2021-099039 2021-04-28

Publications (1)

Publication Number Publication Date
WO2022230614A1 true WO2022230614A1 (ja) 2022-11-03

Family

ID=83848079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016776 WO2022230614A1 (ja) 2021-04-28 2022-03-31 抗ウィルス材料及びその製造方法

Country Status (2)

Country Link
JP (1) JPWO2022230614A1 (ja)
WO (1) WO2022230614A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116603172A (zh) * 2023-06-06 2023-08-18 东莞市红富照明科技有限公司 一种柔性量子点远红外理疗带

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005097675A1 (ja) * 2004-04-05 2005-10-20 Kunimichi Sato 原子状炭素材料及びその製造方法
JP2006231137A (ja) * 2005-02-22 2006-09-07 Kunimichi Sato マイナスイオン水
JP2015040135A (ja) * 2013-08-20 2015-03-02 宇部興産株式会社 微細な炭素繊維を含む抗菌性分散液および懸濁液
JP2017136581A (ja) * 2016-02-02 2017-08-10 早稲田ビジネスコンサルティング株式会社 植物熱分解粉末組成物、炭素含有水系液状物及び植物熱分解粉末組成物の製造方法
JP2022041909A (ja) * 2020-09-01 2022-03-11 国立大学法人 熊本大学 カーボンナノ粒子の製造方法及びカーボンナノ粒子、並びに、抗菌剤及び抗ウイルス剤

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005097675A1 (ja) * 2004-04-05 2005-10-20 Kunimichi Sato 原子状炭素材料及びその製造方法
JP2006231137A (ja) * 2005-02-22 2006-09-07 Kunimichi Sato マイナスイオン水
JP2015040135A (ja) * 2013-08-20 2015-03-02 宇部興産株式会社 微細な炭素繊維を含む抗菌性分散液および懸濁液
JP2017136581A (ja) * 2016-02-02 2017-08-10 早稲田ビジネスコンサルティング株式会社 植物熱分解粉末組成物、炭素含有水系液状物及び植物熱分解粉末組成物の製造方法
JP2022041909A (ja) * 2020-09-01 2022-03-11 国立大学法人 熊本大学 カーボンナノ粒子の製造方法及びカーボンナノ粒子、並びに、抗菌剤及び抗ウイルス剤

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ŁOCZECHIN ALEKSANDRA, SéRON KARIN, BARRAS ALEXANDRE, GIOVANELLI EMERSON, BELOUZARD SANDRINE, CHEN YEN-TING, METZLER-NOLT: "Functional Carbon Quantum Dots as Medical Countermeasures to Human Coronavirus", APPLIED MATERIALS & INTERFACES, AMERICAN CHEMICAL SOCIETY, US, vol. 11, no. 46, 20 November 2019 (2019-11-20), US , pages 42964 - 42974, XP055833214, ISSN: 1944-8244, DOI: 10.1021/acsami.9b15032 *
TONG TING, LIANG JIANGONG: "Research progress of carbon-based quantum dots in field of virus detection and antivirus.", JOURNAL OF HUAZHONG AGRICULTURAL UNIVERSITY., vol. 40, no. 2, 1 March 2021 (2021-03-01), pages 85 - 92, XP055981386, ISSN: 1000-2412 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116603172A (zh) * 2023-06-06 2023-08-18 东莞市红富照明科技有限公司 一种柔性量子点远红外理疗带
CN116603172B (zh) * 2023-06-06 2024-01-02 东莞市红富照明科技有限公司 一种柔性量子点远红外理疗带

Also Published As

Publication number Publication date
JPWO2022230614A1 (ja) 2022-11-03

Similar Documents

Publication Publication Date Title
Indhira et al. Biomimetic facile synthesis of zinc oxide and copper oxide nanoparticles from Elaeagnus indica for enhanced photocatalytic activity
WO2022230614A1 (ja) 抗ウィルス材料及びその製造方法
Monteiro et al. Dissolution properties of calcium phosphate granules with different compositions in simulated body fluid
KR101242027B1 (ko) 원자상 탄소재료 및 그 제조방법
Imani et al. Optimized synthesis of novel hydroxyapatite/CuO/TiO2 nanocomposite with high antibacterial activity against oral pathogen Streptococcus mutans
JP2008161864A (ja) 遠赤外線放射波動水の製造方法及び遠赤外線放射波動水
Mahgoub et al. Cellulose-based activated carbon/layered double hydroxide for efficient removal of Clarithromycin residues and efficient role in the treatment of stomach ulcers and acidity problems
US9381375B2 (en) Method for killing and tracing bacteria by coating same with self-assembled gold nanoshell layer and producing photothermal decomposition and cold light by means of laser
JP2006231137A (ja) マイナスイオン水
CN106731790A (zh) 一种生态量子功能粉末及其制备方法
KR102177415B1 (ko) 패각 소성분말을 이용한 천연 항균용액 제조방법, 이에 의해 제조된 마스크 살균용 천연 항균용액
KR200422046Y1 (ko) Oh 라디칼 살균기
KR102174153B1 (ko) 입과 코를 가리는 퀀텀 위생 마스크 및 그 제조방법
Osseni et al. Synthesis of calcium phosphate bioceramics based on snail shells: towards a valorization of snail shells from Republic of Benin
Fink et al. The “artificial ostrich eggshell” project: Sterilizing polymer foils for food industry and medicine
WO2022230612A1 (ja) クウォンタムドット・カーボン及びその製造方法
Jha et al. Antibacterial activities of biosynthesized zinc oxide nanoparticles and silver-zinc oxide nanocomposites using Camellia sinensis leaf extract
Rubi et al. Photocatalytic degradation of Atrazine herbicide using nano-Hydroxyapatite from Cow Bone synthesized via Simulated Body Fluid
CN101745131A (zh) 一种空气消毒熏香的制作方法
JPH10226509A (ja) 活性炭
Jokanović et al. Mechanochemical and Low‐Temperature Synthesis of Nanocrystalline Fluorohydroxyapatite/Fluorapatite
TW531626B (en) Method and apparatus for treating medical and common disposals with heat
JP2021186812A (ja) 消毒剤、消毒方法および消毒剤キット
RU2399385C1 (ru) Способ профилактической обработки животных и птиц
Sinha et al. Preparation and Exploration of Physical Properties of Calcium based Indian Origin Ayurvedic Medicine-Shankh Bhasma (Marine Drug) as Nanomaterials for its Applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795530

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023517223

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22795530

Country of ref document: EP

Kind code of ref document: A1