WO2022230551A1 - 発光装置、光源ユニット、及び、移動体 - Google Patents

発光装置、光源ユニット、及び、移動体 Download PDF

Info

Publication number
WO2022230551A1
WO2022230551A1 PCT/JP2022/015429 JP2022015429W WO2022230551A1 WO 2022230551 A1 WO2022230551 A1 WO 2022230551A1 JP 2022015429 W JP2022015429 W JP 2022015429W WO 2022230551 A1 WO2022230551 A1 WO 2022230551A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
lens
light source
emitting device
support
Prior art date
Application number
PCT/JP2022/015429
Other languages
English (en)
French (fr)
Inventor
喜彦 金山
俊尚 秋江
良平 木本
光裕 内田
孝生 吉田
利彰 村井
智行 緒方
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP22795467.4A priority Critical patent/EP4332432A1/en
Publication of WO2022230551A1 publication Critical patent/WO2022230551A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/12Mirror assemblies combined with other articles, e.g. clocks
    • B60R1/1207Mirror assemblies combined with other articles, e.g. clocks with lamps; with turn indicators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/24Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments for lighting other areas than only the way ahead
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/20Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/10Protection of lighting devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • F21S8/08Lighting devices intended for fixed installation with a standard
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/503Cooling arrangements characterised by the adaptation for cooling of specific components of light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V31/00Gas-tight or water-tight arrangements
    • F21V31/03Gas-tight or water-tight arrangements with provision for venting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • F21Y2115/15Organic light-emitting diodes [OLED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers

Definitions

  • the present invention relates to a light emitting device, a light source unit, and a moving object.
  • Patent Document 1 there is a light-emitting device that is placed in a vehicle, which is an example of a moving object, and emits light toward the road surface around the vehicle.
  • Patent Document 1 discloses a lighting device, which is an example of a light-emitting device that is provided in a side mirror and illuminates the feet of passengers outside the vehicle.
  • side mirrors may have a light emitting device that emits light and an imaging device that captures an image of the road surface.
  • This type of imaging device generates an image of a road surface by detecting reflected light from a road surface, an obstacle, or the like, of light emitted from a light emitting device.
  • the present invention provides a light-emitting device and the like that can suppress the occurrence of halation in an image generated by an imaging device.
  • a light-emitting device is supported by a second support supported by a first support in parallel with an imaging device on the side of the first support, and receives light detected by the imaging device.
  • a light emitting device that emits light comprising: a light source unit that emits the light; and a lens that receives the light emitted by the light source unit and emits the incident light. is provided with a light reducing portion that reduces at least a part of the light emitted toward the first support member out of the light that has entered the lens.
  • a light-emitting device is supported by a second support supported by the first support side by side with the imaging device, and is detected by the imaging device.
  • a light source for emitting the light
  • a lens for receiving the light emitted by the light source and for emitting the incident light
  • a lens for emitting the incident light.
  • a light-attenuating section that reflects or diffuses at least a part of the light directed toward the first support among the emitted light.
  • a light-emitting device is supported by a second support supported by the first support side by side with the imaging device, and is detected by the imaging device.
  • a light emitting device for emitting light emitted from the Of the light emitted from the light source the amount of light directed toward the portion of the lens located on the side of the first support is the amount of light directed toward the portion of the lens located on the side opposite to the first support. less than quantity.
  • a light source unit includes the above-described light-emitting device and the above-described imaging device.
  • a moving body includes the light source unit described above, the main body portion that is the first support described above, and the side mirror that is the second support described above, and The light emitting device is attached to the side mirror so as to emit the light toward the road surface, and the imaging device detects the light reflected by the road surface to generate an image of the road surface. do.
  • the light-emitting device and the like it is possible to suppress the occurrence of halation in the image captured by the imaging device.
  • FIG. 1 is a front view showing a moving body according to Embodiment 1.
  • FIG. FIG. 2 is a side view showing an enlarged side mirror included in the mobile body according to the first embodiment.
  • FIG. 3 is a cross-sectional view showing the light source unit according to Embodiment 1, taken along line III-III in FIG. 4A is a diagram showing the inner surface side of the lens according to Embodiment 1.
  • FIG. 4B is a diagram showing the outer surface side of the lens according to Embodiment 1.
  • FIG. 5 is a cross-sectional view showing a light-emitting device according to a modification of Embodiment 1.
  • FIG. FIG. 6 is a cross-sectional view showing a light-emitting device according to Embodiment 2.
  • FIG. 1 is a front view showing a moving body according to Embodiment 1.
  • FIG. FIG. 2 is a side view showing an enlarged side mirror included in the mobile body according to the first embodiment.
  • FIG. 3 is a cross-
  • FIG. 7 is a cross-sectional view showing a light-emitting device according to Embodiment 3.
  • FIG. 8 is a cross-sectional view showing a light-emitting device according to Modification 1 of Embodiment 3.
  • FIG. 9 is a cross-sectional view showing a light-emitting device according to Modification 2 of Embodiment 3.
  • FIG. 10 is a cross-sectional view showing a light-emitting device according to Modification 3 of Embodiment 3.
  • FIG. 11 is a cross-sectional view showing a light-emitting device according to Modification 4 of Embodiment 3.
  • FIG. 12 is a cross-sectional view showing a light source unit according to Modification 4 of Embodiment 3.
  • FIG. 13 is a bottom view showing a lens for a light emitting unit according to Modification 4 of Embodiment 3.
  • FIG. 14 is a cross-sectional view showing a light source unit according to Modification 5 of Embodiment 3.
  • FIG. 15 is a cross-sectional view showing a light-emitting device according to Modification 6 of Embodiment 3.
  • FIG. 16 is a cross-sectional view showing a light-emitting device according to Modification 7 of Embodiment 3.
  • FIG. 17 is a cross-sectional view showing a light-emitting device according to Modification 8 of Embodiment 3.
  • FIG. 18 is a cross-sectional view showing a light source unit according to Modification 8 of Embodiment 3.
  • FIG. 19 is a cross-sectional view showing a light-emitting device according to Modification 9 of Embodiment 3.
  • FIG. 20 is a front view showing a monitoring system according to Embodiment 4.
  • FIG. 21 is a cross-sectional view showing a light-emitting device according to Embodiment 5.
  • FIG. 22 is an exploded perspective view showing a light emitting device according to Embodiment 5.
  • FIG. 23 is a bottom view showing a shield and a light source unit according to Embodiment 5.
  • FIG. FIG. 24 is a top view showing a shield according to Embodiment 5.
  • FIG. 25 is a top view showing a shield according to a modification of Embodiment 5.
  • each figure is a schematic diagram and is not necessarily strictly illustrated.
  • Each drawing is a schematic drawing in which emphasis, omission, and ratio adjustment are performed as appropriate to illustrate the present invention, and may differ from the actual shape, positional relationship, and ratio.
  • symbol is attached
  • the Z-axis direction is, for example, the vertical direction, and the positive direction side of the Z-axis may be described as upward, and the negative direction side of the Z-axis may be described as downward.
  • the Y-axis direction and the X-axis direction are directions orthogonal to each other on a plane (horizontal plane) perpendicular to the Z-axis.
  • the Y-axis direction may be described as the side of the moving body (first support).
  • the positive direction of the X-axis is described as the direction in which the mobile body advances (forward in the direction of travel), and the negative direction of the X-axis is described as the direction opposite to the direction in which the mobile body travels (backward in the direction of travel).
  • horizontal direction means not only a completely horizontal direction but also an error of several percent that occurs during manufacturing or placement.
  • FIGS. 14 to 19 and cross-sectional views shown in FIG. 21, which will be described below, are cross-sectional views corresponding to FIG.
  • FIG. 1 is a front view showing a moving body 200 according to Embodiment 1.
  • FIG. 2 is a side view showing an enlarged side mirror 220 included in mobile body 200 according to the first embodiment.
  • the moving body 200 is a moving body such as an automobile, a motorcycle, etc., which is equipped with the light source unit 100 .
  • mobile object 200 is a vehicle (more specifically, an automobile).
  • the light source unit 100 is arranged on the outer surface of the moving body 200, for example.
  • the moving body 200 includes, for example, a position near the outer surface of the main body (first support) 210 in the horizontal direction including the front-rear direction and the lateral direction, and the light source unit 100 has a light-emitting device.
  • the light source unit 100 is installed at a position where the light 300 can be emitted onto the road surface around the moving body 200 when the device 180 emits the light 300 downward.
  • the outer surface refers not only to the outer surface of the main body 210 of the moving body 200 including horizontal outer surfaces such as the front, back, left, and right, but also to the outer surface located on the side of the main body 210, such as a side mirror. It also includes the side surface of the (second support) 220, the lower surface of the side mirror 220, or the outer surface of the door of the moving body 200. Further, the moving body 200 having the light source unit 100 on its outer surface means not only when the light source unit 100 is disposed on the outer surface, but also when it is disposed near the outer surface and inside the moving body 200. Including cases where
  • the moving body 200 includes a body portion 210 , side mirrors 220 and a light source unit 100 .
  • the main body part 210 is a supporting body that supports the side mirrors 220, and is the main body of the vehicle that the driver gets into and drives.
  • the body portion 210 supports the side mirrors 220 on both sides of the body portion 210 .
  • the side mirror 220 is a support that supports the light source unit 100 and is a mirror attached to the side of the main body 210 .
  • the side mirror 220 is supported by the body portion 210 on the side of the body portion 210 and extends to the side of the body portion 210 .
  • Side mirror 220 supports light source unit 100 .
  • the moving body 200 includes the light source unit 100 in each of the side mirrors 220 positioned on both sides of the main body 210 (both sides in the Y-axis direction). 100 may be provided.
  • the light emitting device 180 is a device that is supported side by side with the imaging device 190 by a second support supported by the first support and emits light 300 that is detected by the imaging device 190 .
  • the first support is the main body portion 210 and the second support is the side mirror 220 .
  • the light source unit 100 is attached to the side mirror 220, emits light 300 toward the road surface, and detects reflected light of the emitted light 300 from the road surface, thereby capturing an image of the road surface.
  • the light source unit 100 is arranged below the side mirror 220 .
  • FIG. 3 is a cross-sectional view showing a cross section of the light source unit 100 according to Embodiment 1 taken along line III-III in FIG.
  • the light source unit 100 includes a light emitting device 180 and an imaging device 190 .
  • the light emitting device 180 is a device that emits light 300 that is detected by the imaging device 190 . Specifically, the light emitting device 180 is attached to the side mirror 220 so as to emit the light 300 toward the road surface (downward).
  • the light 300 emitted by the light emitting device 180 is, for example, near-infrared light (for example, light with a wavelength of about 700 nm to 2500 nm). It is illuminated to image the surrounding road surface.
  • the light emitting device 180 includes a lid portion 110 , a terminal portion 113 , a packing 114 , a heat sink 115 , a heat dissipation sheet 116 , a light source portion 120 , a lens 130 and a substrate 140 .
  • the lid portion 110 is a lid body for attaching the light emitting device 180 to the side mirror 220 .
  • a mounting portion 111 is formed in the lid portion 110, and a screw hole for mounting a screw 112 is formed in the mounting portion 111, for example.
  • the light emitting device 180 is attached to the side mirror 220 by screwing the screw 112 into the attachment portion 111 .
  • the material of the lid portion 110 is not particularly limited, for example, a resin material such as PBT (Polybutyleneterephthalate) or polycarbonate, or a metal material is adopted.
  • the terminal section 113 is a terminal for supplying electric power supplied from an external power supply (not shown) or the like to the light source section 120 .
  • the terminal portion 113 and the light source portion 120 are electrically connected by metal wiring or the like (not shown).
  • the heat sink 115 is arranged on the back surface 142 side of the substrate 140 opposite to the principal surface 141 on which the light source unit 120 is arranged, and is a heat dissipation member for dissipating heat generated by the light source unit 120 .
  • the heat sink 115 is supported by the lid portion 110 .
  • the heat sink 115 for example, aluminum metal, stainless steel, or the like having high thermal conductivity is adopted.
  • a substrate 140 is mounted on the heat sink 115 with a heat dissipation sheet 116 interposed therebetween.
  • the heat dissipation sheet 116 is a sheet-like member for facilitating heat dissipation from the substrate 140 to the heat sink 115 generated by the light source section 120 .
  • a material used for the heat dissipation sheet 116 is not particularly limited, and for example, a resin material or the like is used. Moreover, the heat dissipation sheet 116 may have electrical insulation.
  • the substrate 140 is a substrate on which the light source section 120 is placed.
  • the substrate 140 is arranged in contact with the lens 130 on the main surface 141 on which the light source unit 120 is placed.
  • the material of the substrate 140 is not particularly limited, for example, a metal substrate, a ceramic substrate, a resin substrate, or the like is adopted. Note that the substrate 140 may be a flexible substrate or a rigid substrate.
  • the light source unit 120 is a light source that emits light 300 .
  • the light source unit 120 emits near-infrared light as the light 300, for example.
  • the light source unit 120 has, for example, a solid semiconductor light source such as an LED (Light Emitting Diode).
  • the lens 130 is an optical member into which the light 300 emitted by the light source unit 120 is incident and which emits the incident light 300 .
  • the lens 130 is arranged to cover the lower side of the light source unit 120, receives the light 300 emitted from the light source unit 120, controls the light distribution of the incident light 300, and emits the light toward the road surface.
  • It is a projection lens that In this embodiment, the lens 130 has a bowl shape that protrudes downward and is open at the top.
  • the light source section 120 and the substrate 140 are accommodated in the lens 130 .
  • the upper part of the lens 130 is closed by the lid part 110 .
  • the lens 130 (more specifically, the base material of the lens 130) is made of, for example, a translucent glass material or a transparent resin material such as acrylic or polycarbonate.
  • the shape of the lens 130 is a convex shape protruding downward, but it is not particularly limited, and may be, for example, a planar shape.
  • a part of the lens 130 has a light reduction device that reduces at least part of the light 300 emitted toward the main body 210 (in FIG. 3, the Y-axis negative direction side) out of the light 300 incident on the lens 130.
  • a section 400 is provided.
  • the main body 210 side is a line segment parallel to the longitudinal direction of the moving body 200 (in this embodiment, the direction parallel to the X axis). is the portion closer to the main body portion 210 when the is divided into two equal parts.
  • the dimming section 400 is provided in a portion of the lens 130 when the moving body 200 is viewed from the front, which is positioned on the main body section 210 side.
  • the dimming portion 400 is a portion located closer to the main body portion 210 than the optical axis 310 (the dashed line shown in FIG. 3) of the light 300 emitted from the light source portion 120 in the cross-sectional view shown in FIG. is provided in Accordingly, the dimming section 400 dims the light 301 directed toward the main body section 210 among the light 300 emitted from the light source section 120 . Therefore, the light reduction unit 400 reduces the light 301 directed toward the main unit 210 from the light 300 incident on the lens 130 and emits the reduced light.
  • the light 302 directed to the side opposite to the main body section 210 side is emitted from the lens 130 without being dimmed. Therefore, according to the lens 130 , the light 301 emitted toward the body section 210 out of the light 300 incident on the lens 130 is attenuated by the dimming section 400 and directed toward the opposite side of the body section 210 . The emitted light 302 is not dimmed.
  • the dimming part 400 is a part of the lens 130 and is a part that dims the light 300 .
  • the dimming portion 400 has a structure formed by texturing, vapor deposition, two-color molding, insert molding, or laser irradiation.
  • part of the lens 130 is provided with the light reducing portion 400 which is a structure formed by texturing, vapor deposition, two-color molding, insert molding, or laser irradiation.
  • the lens 130 is textured to form unevenness on the surface (at least one of the inner surface 131 and the outer surface 132), thereby forming the light reducing portion 400. Accordingly, the dimming unit 400 dims the light 300 by diffusing it.
  • light reduction means that the amount of light (for example, light energy or luminous flux) per unit area when the light 300 is emitted from the lens 130 is reduced, for example, compared to the case where the light reduction section 400 is not provided. means to decline. That is, the light attenuation section 400 has a lower transmittance with respect to the light 300 than other portions of the lens 130 other than the light attenuation section 400 .
  • the lens 130 is vapor-deposited to form a thin film such as a metal film on the surface (at least one of the inner surface 131 and the outer surface 132), thereby forming the dimming portion 400. Accordingly, the dimming unit 400 absorbs or reflects the light 300 to dim it.
  • the lens 130 is subjected to two-color molding to form a portion that absorbs, reflects, or diffuses the light 300 on the surface (at least one of the inner surface 131 and the outer surface 132) or inside the lens 130.
  • the dimming portion 400 is formed. Accordingly, the dimming unit 400 absorbs, reflects, or diffuses the light 300 to dim it.
  • the lens 130 is irradiated with a laser, so that the surface (at least one of the inner surface 131 and the outer surface 132) or the inside of the lens 130 is colored to form a portion that absorbs the light 300.
  • a dimming portion 400 is formed. Accordingly, the dimming unit 400 absorbs the light 300 to dim it.
  • the light reduction portion 400 is formed by roughening the surface (at least one of the inner surface 131 and the outer surface 132) of the lens 130 by laser irradiation. Accordingly, the dimming unit 400 dims the light 300 by scattering it.
  • the light reduction unit 400 reduces the light 300 emitted from the lens 130 by, for example, absorbing, reflecting, or diffusing the light 300 incident on the lens 130 .
  • FIG. 4A is a diagram showing the inner surface 131 side of the lens 130 according to Embodiment 1.
  • FIG. 4B is a diagram showing the outer surface 132 side of the lens 130 according to Embodiment 1.
  • FIG. 4A is a diagram showing the inner surface 131 side of the lens 130 according to Embodiment 1.
  • FIG. 4B is a diagram showing the outer surface 132 side of the lens 130 according to Embodiment 1.
  • the dimming section 400 is provided, for example, on the surface (inner surface 131) of the lens 130 facing the light source section 120.
  • the dimming section 400 is provided on the surface (outer surface 132) of the lens 130 opposite to the surface facing the light source section 120 side.
  • an inner surface dimming portion 401 that is part of the dimming portion 400 is provided on the inner surface 131 side
  • an external dimming portion 402 that is part of the dimming portion 400 is provided on the outer surface 132 side.
  • the dimming section 400 may include only the inner dimming section 401 or only the outer dimming section 402, out of the inner dimming section 401 and the outer dimming section 402. and may have both.
  • FIG. 3 shows an example in which the light reduction section 400 is provided near the inner surface 131 and the outer surface 132 of the lens 130, the light reduction section 400 may be provided inside the lens 130. .
  • a cushioning material 117 which is an elastic member such as sponge, is provided.
  • the packing 114 is a cushioning material positioned between the lens 130 and the heat sink 115 .
  • the packing 114 is made of, for example, an elastic resin material such as rubber.
  • the imaging device 190 is a camera that detects the light 300 emitted by the light emitting device 180 .
  • the imaging device 190 is attached to the side mirror 220 so as to detect the reflected light of the light 300 reflected by the road surface, and detects the light 300 reflected by the road surface around the moving object 200. By doing so, an image of the road surface is generated.
  • the light source unit 120 is, for example, a near-infrared light source that emits near-infrared light (that is, the light 300 is near-infrared light), and the imaging device 190 emits light from the light-emitting device 180. Near-infrared light, specifically, near-infrared light emitted from the light source unit 120 and reflected on the road surface is detected.
  • the imaging device 190 has an imaging element for detecting the light 300, such as a CCD (Charge Coupled Device) image sensor, a CMOS (Complementary Metal Oxide Semiconductor) image sensor, or the like.
  • an imaging element for detecting the light 300 such as a CCD (Charge Coupled Device) image sensor, a CMOS (Complementary Metal Oxide Semiconductor) image sensor, or the like.
  • the main body section 210, the light emitting device 180, and the imaging device 190 are arranged side by side in this order.
  • the body section 210, the imaging device 190, and the light emitting device 180 may be arranged side by side in this order.
  • the imaging device 190 may be located on the opposite side of the light emitting device 180 from the direction in which the light emitting device 180 emits the light 300 (downward and in the negative Z-axis direction in the present embodiment). In this embodiment, imaging device 190 is positioned above light emitting device 180 .
  • light-emitting device 180 is supported by side mirror 220 supported by main body 210 alongside imaging device 190 on the side of main body 210 , and is detected by imaging device 190 . It is a light emitting device that emits light 300 that The light emitting device 180 includes a light source unit 120 that emits light 300 and a lens 130 that receives the light 300 emitted by the light source unit 120 and emits the incident light 300 . A part of the lens 130 is provided with a light reducing section 400 that reduces at least part of the light 300 emitted toward the main body 210 out of the light 300 incident on the lens 130 .
  • the inventors of the present application have made intensive studies and found that, when the light 300 emitted from the light emitting device 180 and once reflected by the main body 210 enters the imaging device 190, halation occurs under the influence of the light. I found out. Therefore, the light-reducing section 400 of the light-emitting device 180 reduces at least part of the light directed toward the main body section 210 from the light 300 incident on the lens 130 and emits the light. With this, the amount of light 300 reflected by the main body 210 can be reduced. Therefore, according to the light-emitting device 180, the occurrence of halation in the image generated by the imaging device 190 can be suppressed.
  • the dimming section 400 is provided on the surface (inner surface 131) of the lens 130 facing the light source section 120.
  • the dimming section 400 is provided on the surface (outer surface 132) opposite to the surface (inner surface 131) of the lens 130 facing the light source section 120 side.
  • the structure can be simplified compared to the case where the light emitting device 180 is separately provided with a structure for dimming the light 300 .
  • the dimming portion 400 is provided in a part of the lens 130 by texturing, vapor deposition, two-color molding, insert molding, or laser irradiation.
  • the dimming portion 400 can be easily formed on the lens 130 .
  • the dimming unit 400 absorbs, reflects, or diffuses the light 300 incident on the lens 130 , thereby dimming the light emitted from the lens 130 .
  • the dimming section 400 can reduce the amount of light per unit area directed toward the main body section 210 .
  • the light source unit 120 emits near-infrared light as the light 300 .
  • the light 300 When the light 300 is near-infrared light, it is difficult for the user to see the light 300 visually. Therefore, for example, even if an attempt is made to place a member that suppresses reflection at a position of the body portion 210 or the like where the light 300 is irradiated, it is not possible to know where the light 300 is irradiated, so the member is placed at an appropriate position. hard to do. Therefore, by adopting a configuration such as the light emitting device 180 that reduces the amount of light directed toward the main body 210, the occurrence of halation can be suppressed even when the light 300 is difficult to see. That is, the light emitting device 180 is particularly suitable when the light 300 is near-infrared light.
  • the light source unit 100 includes a light emitting device 180 and an imaging device 190 .
  • the light emitting device 180 can reduce the amount of the light 300 reflected by the main body 210, so that the occurrence of halation in the image generated by the imaging device 190 can be suppressed.
  • the moving body 200 includes the light source unit 100, the main body portion 210 as the first support described above, and the side mirror 220 as the second support described above.
  • Light emitting device 180 is attached to side mirror 220 so as to emit light 300 toward the road surface.
  • the imaging device 190 generates an image of the road surface by detecting the light 300 reflected by the road surface.
  • the moving body 200 can generate an image of the road surface around the moving body 200 in which halation is suppressed by the light source unit 100 .
  • FIG. 5 is a cross-sectional view showing a light-emitting device 180a according to a modification of Embodiment 1.
  • FIG. 5 is a cross-sectional view showing a light-emitting device 180a according to a modification of Embodiment 1.
  • a moving body and a light source unit according to a modification of Embodiment 1 are the same as in Embodiment 1 except for the configuration of the light emitting device.
  • the light emitting device 180a is supported side by side with the imaging device 190 by a second support supported by the first support, and emits light to be detected by the imaging device 190 .
  • the light emitting device 180a is a device that emits light 300 downward (road surface).
  • the light emitting device 180a includes a lid portion 110, a terminal portion 113, a packing 114, a heat sink 115, a heat radiation sheet 116, a light source portion 120, a lens 1300, a substrate 140, and a dimming portion 400a.
  • the lens 1300 is an optical member into which the light 300 emitted by the light source unit 120 is incident and which emits the incident light 300 .
  • the dimming part 400 a is a part of the lens 1300 and is a part that dims the light 300 .
  • the dimming unit 400a absorbs, reflects, or diffuses the light 300 incident on the lens 1300, thereby dimming the light emitted from the lens 1300.
  • the lens 1300 may have a base material of the lens 1300 in which the concave portion is formed in the inner surface 131, and the dimming portion 400a injected into the concave portion and integrally formed with the base material.
  • the lens 1300 may be manufactured by forming the dimming portion 400a in the concave portion using a material mainly composed of the same material as the base material of the lens 1300 .
  • Embodiment 2 Next, Embodiment 2 will be described. In addition, in the description of the second embodiment, the description will focus on the points of difference from the first embodiment. Some descriptions may be simplified or omitted.
  • FIG. 6 is a cross-sectional view showing a light emitting device 181 according to Embodiment 2.
  • FIG. 6 is a cross-sectional view showing a light emitting device 181 according to Embodiment 2.
  • the moving body and light source unit according to Embodiment 2 are the same as those in Embodiment 1 except for the configuration of the light emitting device.
  • the light emitting device 181 is supported side by side with the imaging device 190 by a second support supported by the first support, and emits light to be detected by the imaging device 190 .
  • the light emitting device 181 is a device that emits light 300 downward (road surface).
  • the light emitting device 181 includes a lid portion 110, a terminal portion 113, a packing 114, a heat sink 115, a heat radiation sheet 116, a light source portion 120, a lens 130a, a substrate 140, and a dimming portion 403.
  • the lens 130a is an optical member into which the light 300 emitted by the light source unit 120 is incident and which emits the incident light 300. Specifically, the lens 130a is arranged to cover the lower side of the light source unit 120, receives the light 300 emitted from the light source unit 120, controls the light distribution of the incident light 300, and emits the light toward the road surface. It is a projection lens that The lens 130a is made of, for example, a translucent glass material or a transparent resin material such as acrylic or polycarbonate.
  • the lens 130a is not provided with the dimming section 400. Therefore, the transmittance of the light 300 does not change depending on the position of the lens 130a.
  • a dimming portion 403 is placed on the outer surface 132 of the lens 130a.
  • the dimming section 403 is a member that reflects or diffuses at least a portion of the light 301 directed toward the main body section 210 out of the light 300 emitted from the lens 130a. Specifically, the dimming portion 403 reflects or diffuses at least part of the light 301 emitted from the outer surface 132 in the direction from the inner surface 131 to the outer surface 132 of the lens 130a. In this embodiment, the dimming section 403 has light reflectivity with respect to the light 300 .
  • the dimming section 403 is provided in a portion of the lens 130a when the moving body 200 is viewed from the front, which is positioned on the main body section 210 side.
  • the dimming section 403 is arranged to cover a part below the lens 130a and a part on the body section 210 side.
  • the dimming section 403 is arranged in contact with the outer surface 132 of the lens 130a on the side opposite to the light source section 120 side.
  • the light reduction section 403 is located outside (below) the side opposite to the light source section 120 side of the lens 130a, and in the cross-sectional view shown in FIG.
  • the dimming section 403 dims the light directed toward the main body section 210 among the light 300 emitted from the light source section 120 .
  • the light 301 directed toward the main body unit 210 is emitted from the lens 130a and passes through the light reduction unit 403 (more specifically, the light reduction unit 403 and the lens 130a). interface), repeats reflection between the substrate 140 and the lens 130a, and emerges from the lens 130a in a direction opposite to the body portion 210.
  • the light reduction unit 403 more specifically, the light reduction unit 403 and the lens 130a. interface
  • the dimming section 403 dims the light directed toward the main body section 210 out of the light 300 emitted from the lens 130a.
  • the dimming portion 403 is arranged in contact with the outer surface 132 of the lens 130a on the side opposite to the light source portion 120 side.
  • the dimming section 403 may be positioned outside the lens 130a on the side opposite to the light source section 120, and may not be in contact with the lens 130a.
  • the dimming part 403 may cover not only the outer surface 132 positioned below the lens 130a, but also the outer surface positioned laterally of the lens 130a.
  • the dimming portion 403 is made of, for example, a metal material having light reflectivity with respect to the light 300 .
  • the dimming portion 403 is made of a resin material or the like containing a light diffusing agent such as silica particles or titanium particles for diffusing the light 300 .
  • the dimming section 403 may have optical transparency with respect to the light 300 . In this case, if the light attenuation section 403 has optical transparency with respect to the light 300, the amount of the light 300 emitted from the light attenuation section 403 may be reduced by reflecting or diffusing the light 300. .
  • the light-emitting device 181 uses the second support (for example, the side mirror 220) supported by the first support (for example, the main body portion 210). It is a light emitting device 181 that is supported side by side with the imaging device 190 and that emits light 300 that is detected by the imaging device 190 .
  • the light emitting device 181 includes a light source unit 120 that emits light 300, a lens 130a that receives the light 300 emitted by the light source unit 120 and emits the incident light 300, and a lens 130a that emits the light 300 emitted from the lens 130a. and a dimming portion 403 that reflects or diffuses at least part of the light 300 directed toward the first support side (the Y-axis negative direction side in this embodiment).
  • the dimming section 403 can reduce at least part of the light directed toward the main body section 210 in the light 300 emitted from the lens 130a. Therefore, the amount of light 300 reflected by main body 210 can be reduced. Thereby, according to the light-emitting device 181, the occurrence of halation in the image generated by the imaging device 190 can be suppressed. Also, the dimming section 403 reduces the amount of the light 300 directed toward the main body section 210 by reflecting or diffusing the light 300 . For example, when the light attenuation part 403 absorbs the light 300 to reduce the amount of the light 300 directed to the main body part 210, the light attenuation part 403 generates heat.
  • the light attenuation part 403 if the light attenuation part 403 reflects or diffuses the light 300 to reduce the amount of the light 300 directed to the main body part 210 , the light attenuation part 403 absorbs the light 300 so that the main body part 210 The amount of heat generated can be reduced compared to a configuration that reduces the amount of directed light 300 . Therefore, the light reduction unit 403 reflects or diffuses the light 300 to reduce the amount of the light 300 directed toward the main body unit 210, thereby suppressing the occurrence of halation in the image generated by the imaging device 190 and preventing heat generation. can be suppressed.
  • the dimming section 403 is arranged in contact with the surface (outer surface 132) of the lens 130a opposite to the light source section 120 side (more specifically, the inner surface 131).
  • the main body portion 210 can pass through the gap compared to the case where there is a gap between the lens 130a and the dimming portion 403.
  • the generation of light leaking to the side is suppressed. Therefore, the occurrence of halation is further suppressed.
  • Embodiment 3 Next, Embodiment 3 will be described. In addition, in the description of Embodiment 3, the description will focus on the points of difference from Embodiments 1 and 2, and the configurations substantially similar to those described in Embodiments 1 and 2 will be given the same reference numerals. , and the explanation may be partially simplified or omitted.
  • FIG. 7 is a cross-sectional view showing a light emitting device 182 according to Embodiment 3. As shown in FIG.
  • the moving body and light source unit according to Embodiment 3 are the same as those in Embodiment 1 except for the configuration of the light emitting device.
  • the light emitting device 182 is supported side by side with the imaging device 190 by a second support supported by the first support, and emits light to be detected by the imaging device 190 .
  • the light emitting device 182 is a device that emits light 300 downward (road surface).
  • the light emitting device 182 includes a lid portion 110, a terminal portion 113, a packing 114, a heat sink 115, a heat radiation sheet 116, a light source portion 120, a lens 130a, a substrate 140, and a shield 404.
  • the shield 404 is arranged between the light source unit 120 and the lens 130a, and blocks at least part of the light 301 emitted from the light source unit 120 toward the portion of the lens 130a located on the main unit 210 side.
  • the shield 404 is provided at a portion located closer to the main unit 210 than the optical axis 310 (one-dot chain line shown in FIG. 7) of the light 300 emitted from the light source unit 120 in the cross-sectional view shown in FIG. .
  • the amount of light, of the light 300 emitted from the light source section 120, directed toward the portion of the lens 130a located on the main body section 210 is located on the side opposite to the main body section 210 of the lens 130a. less than the amount of light directed to the area where In the present embodiment, light emitting device 182 uses shield 404 to reduce the amount of light 300 emitted from light source section 120 toward the portion of lens 130a located in body section 210 so as to reduce the amount of light toward the body section of lens 130a. 210 is configured to be less than the amount of light directed to the portion located on the opposite side.
  • the member employed for the shield 404 is not particularly limited as long as it absorbs, reflects, or diffuses at least part of the light 301 directed toward the portion of the lens 130a located on the main body 210 side.
  • the shielding object 404 is formed of, for example, a metal material or the like having light reflectivity with respect to the light 300 .
  • the shield 404 is made of a resin material or the like containing a light diffusing agent such as silica particles or titanium particles for diffusing the light 300 .
  • the shield 404 is made of a resin material or the like containing a light absorbing agent such as a pigment that absorbs the light 300 .
  • the shield 404 may have optical transparency with respect to the light 300 . If the shield 404 is made of a material that is optically transparent to the light 300, the shield 404 may, for example, diffuse the light 300 to reduce the amount of the light 300 emitted from the shield 404. It is sufficient if it is configured so that
  • the shape of the shield 404 is not particularly limited.
  • the shield 404 may have a flat plate shape or a semi-cylindrical shape.
  • shield 404 is an electronic component arranged on substrate 140 .
  • the shield 404 is an electronic component arranged (mounted) on the main surface 141 of the substrate 140 on which the light source unit 120 is placed (mounted).
  • the type of electronic component is not particularly limited.
  • the electronic parts are tall parts such as capacitors, parts with leads, and the like.
  • the shield 404 is higher than the light source section 120 from the main surface 141 of the substrate 140, for example. According to this, the shield 404 is directed toward the main unit 210 from the light source unit 120 of the light 300 emitted from the light source unit 120, and is emitted from the light source unit 120 toward the lens 130a. Much of 301 can be reflected, absorbed or diffused.
  • the shield 404 may be arranged so as to cover the lower side of the light source section 120 .
  • the light-emitting device 182 allows the second support (for example, the side mirror 220) supported by the first support (for example, the main body portion 210) to It is a light emitting device that is supported side by side with the imaging device 190 and emits light 300 that is imaged by the imaging device 190 .
  • the light emitting device 182 includes a light source unit 120 that emits light 300, and a lens 130a that receives the light 300 emitted by the light source unit 120 and emits the incident light 300.
  • the amount of light directed toward the portion of the lens 130a located on the first support side is less than the amount of light directed to the portion located on the opposite side.
  • the light emitting device 182 further includes a shield 404 arranged between the light source section 120 and the lens 130a.
  • the shield 404 absorbs, reflects, or diffuses at least part of the light 300 emitted from the light source section 120 directed toward the portion of the lens 130a located on the body section 210 side.
  • the shield 404 can reduce at least part of the light directed toward the main body 210 in the light 300 emitted from the lens 130a. Therefore, the amount of light 300 reflected by main body 210 can be reduced. Thereby, according to the light-emitting device 182, the occurrence of halation in the image generated by the imaging device 190 can be suppressed.
  • the light emitting device 182 further includes a substrate 140 on which the light source section 120 is mounted.
  • Shield 404 is an electronic component placed on substrate 140 .
  • a plurality of electronic components are mounted on the substrate 140 in order to appropriately supply power to the light source unit 120, for example.
  • electronic components of this kind there is an electronic component with a tall height. Therefore, an electronic component mounted on the substrate 140 is adopted as the shield 404 . According to this, only by appropriately setting the arrangement layout of the electronic components on the substrate 140, the light of the light 300 emitted from the lens 130a directed toward the main unit 210 can be easily obtained without adding new components. can be reduced at least in part.
  • FIG. 8 is a cross-sectional view showing a light-emitting device 183 according to Modification 1 of Embodiment 3. As shown in FIG.
  • the light emitting device 183 includes a lid portion 110, a terminal portion 113, a packing 114, a heat sink 115, a heat dissipation sheet 116, a light source portion 120, a lens 130a, a substrate 140, and a shield 405.
  • the shield 405 is disposed between the light source unit 120 and the lens 130a, and blocks at least part of the light 301 emitted from the light source unit 120 toward the portion of the lens 130a located on the body unit 210 side.
  • the shield 405 is arranged on the substrate 140 through the substrate 140 .
  • the shield 405 is an electronic component having pins penetrating through the main surface 141 and the back surface 142 of the substrate 140 .
  • the shielding object 405 is arranged between the light source unit 120 and the lens 130a. It is only necessary to have a portion that at least partially absorbs, reflects, or diffuses.
  • the shield 405 is a connector that is electrically connected to the terminal portion 113 by wiring or the like (not shown). Power is supplied to the light source unit 120 from an external power supply (not shown) or the like through a shield 405 that is a connector.
  • the type of the electronic component that is the shield provided in the light emitting device according to the present invention is not particularly limited.
  • the pin of the shield 405 (the portion located on the main surface 141 side of the substrate 140 shown in FIG. 8) may be covered with a covering member such as a resin that shields the light 300, for example.
  • a covering member such as a resin that shields the light 300, for example.
  • FIG. 9 is a cross-sectional view showing a light-emitting device 184 according to Modification 2 of Embodiment 3. As shown in FIG.
  • the light emitting device 184 includes a lid portion 110, a terminal portion 113, a packing 114, a heat sink 115a, a heat dissipation sheet 116, a light source portion 120, a lens 130a, and a substrate 140.
  • the heat sink 115a is arranged on the back surface 142 side of the substrate 140 opposite to the main surface 141 on which the light source unit 120 is arranged, and is a heat dissipation member for dissipating heat generated in the light source unit 120. be.
  • the heat sink 115 a is supported by the lid portion 110 .
  • the heat sink 115a for example, highly thermally conductive aluminum metal, stainless steel, or the like is adopted.
  • a substrate 140 is mounted on the heat sink 115a with a heat dissipation sheet 116 interposed therebetween.
  • the heat sink 115 a has a shield 406 .
  • the heat sink 115a and the shield 406 are integrally formed.
  • the shield 406 is disposed between the light source unit 120 and the lens 130a, and blocks at least part of the light 301 emitted from the light source unit 120 toward the portion of the lens 130a located on the body unit 210 side.
  • shield 406 is provided to penetrate substrate 140 .
  • the shape of the shield 406 is pin-shaped in the present embodiment, but is not particularly limited.
  • the light emitting device 184 includes the light source unit 120, the lens 130a, the substrate 140 on which the light source unit 120 is mounted, and the heat sink 115a on which the substrate 140 is mounted.
  • the shield 406 is part of the heat sink 115a, penetrates the substrate 140, and is arranged between the light source section 120 and the lens 130a.
  • FIG. 10 is a cross-sectional view showing a light-emitting device 185 according to Modification 3 of Embodiment 3. As shown in FIG.
  • the light emitting device 185 includes a lid portion 110, a terminal portion 113, a packing 114, a heat sink 115, a heat dissipation sheet 116, a light source portion 120, a lens 130a, a substrate 140, and a shield 407.
  • the shield 407 is arranged between the light source unit 120 and the lens 130a, and blocks at least a part of the light 301 emitted from the light source unit 120 toward the portion of the lens 130a located on the body unit 210 side.
  • the shield 407 is arranged in contact with the inner surface 131 of the lens 130a.
  • the shield 407 is directly bonded to the inner surface 131 of the lens 130a by, for example, heat crimping without using an adhesive or the like.
  • the position where the shield 407 arranged between the light source unit 120 and the lens 130a is attached to the light emitting device 185 may be, for example, the substrate 140, the lens 130a, or the heat sink 115 or the like. It may be a member, and is not particularly limited.
  • FIG. 11 is a cross-sectional view showing a light emitting device 186 according to Modification 4 of Embodiment 3. As shown in FIG.
  • the light emitting device 186 includes a lid portion 110, a terminal portion 113, a packing 114, a heat sink 115, a heat dissipation sheet 116, a light source portion 120a, a lens 130a, and a substrate 140.
  • FIG. 12 is a cross-sectional view showing a light source section 120a according to Modification 4 of Embodiment 3.
  • FIG. 12 is a cross-sectional view showing a light source section 120a according to Modification 4 of Embodiment 3.
  • the light source unit 120a is a light source that emits light 300.
  • the light source unit 120a emits near-infrared light as the light 300, for example.
  • the light source section 120a includes a mounting board 122, a light emitting section 123, and a lens 124 for the light emitting section.
  • the mounting board 122 is a board on which the light emitting part 123 that emits the light 300 is mounted.
  • the mounting substrate 122 is connected to the substrate 140 via the bonding portion 121, which is an bonding member such as solder, on the connecting surface 122c opposite to the mounting surface 122b on which the light emitting portion 123 is mounted.
  • the light emitting section 123 is a light source that emits light 300 .
  • the light emitting unit 123 has, for example, a solid semiconductor light source such as an LED.
  • a light emitting unit lens 124 is arranged in the light emitting unit 123 in a direction in which the light emitting unit 123 emits the light 300 .
  • the optical axis of the light 300 emitted from the light emitting section 123 is parallel to the Z axis.
  • the light emitting unit lens 124 is an optical member into which the light 300 emitted by the light emitting unit 123 is incident and which emits the incident light 300 .
  • the light emitting unit lens 124 is arranged so as to cover the light emitting side (lower side in the present embodiment) of the light emitting unit 123, and the light 300 emitted by the light emitting unit 123 is incident thereon. It is a lens that controls the light distribution of the light 300 and emits it toward the road surface.
  • the light emitting unit lens 124 is made of, for example, a translucent glass material or a transparent resin material such as silicone, acrylic, or polycarbonate.
  • the light emitting section lens 124 is formed with an inclined surface 125 in order to reduce at least part of the light 300 directed toward the main body section 210 out of the light 300 emitted from the light emitting section 123 .
  • the inclined surface 125 is a flat surface formed on the lens 124 for the light emitting section, and is a light reducing section that reduces at least part of the light 300 directed toward the main body section 210 side.
  • the inclined surface 125 is provided in a portion of the light emitting unit lens 124 when the moving body 200 is viewed from the front, which is located on the main body unit 210 side.
  • the normal (normal vector) of inclined surface 125 faces main body 210 .
  • the inclined surface 125 is a plane that is inclined with respect to the optical axis of the light 300 emitted by the light emitting section 123 (the axis parallel to the Z-axis in this modified example).
  • the portion located on the side opposite to the main unit 210 side is curved. According to this, the light 302 directed to the side opposite to the main body part 210 side is emitted without being reflected. Therefore, according to the light emitting unit lens 124 in which the inclined surface 125 is formed, the light 301 directed toward the main unit 210 of the light 300 emitted from the light emitting unit 123 is attenuated by the inclined surface 125, and the main unit Light 302 going away from 210 is not dimmed.
  • the light 300 emitted from the light source section 120a is emitted toward the side opposite to the main body section 210 side.
  • the optical axis 310a of the light 300 emitted from the light source section 120a is on the opposite side of the main body section 210 when viewed from the light source section 120 with respect to the optical axis 310 of the light 300 emitted from the light source section 120. tilt.
  • FIG. 13 is a bottom view showing a light-emitting section lens 124 according to Modification 4 of Embodiment 3.
  • FIG. 13 is a bottom view showing a light-emitting section lens 124 according to Modification 4 of Embodiment 3.
  • the light emitting unit lens 124 when the moving body 200 is viewed from the front, two inclined surfaces 125 are formed on the main unit 210 side portion.
  • the light emitting lens 124 when viewed from the bottom, has a substantially triangular shape on the main body 210 side, and a semicircular shape on the side opposite to the main body 210 .
  • the number of inclined surfaces 125 formed on the lens 124 for light emitting section is not particularly limited.
  • the number of inclined surfaces 125 formed on the light emitting unit lens 124 may be one, or three or more.
  • the light source unit 120a includes the light emitting unit 123 that emits the light 300, the light 300 emitted by the light emitting unit 123 is incident, and the incident light 300 is received by a lens (for example, the lens shown in FIG. 3). 130).
  • the surface of the light emitting unit lens 124 located on the main body unit 210 side is a flat surface (an inclined surface 125).
  • FIG. 14 is a cross-sectional view showing a light source section 120b according to Modification 5 of Embodiment 3. As shown in FIG. 14
  • the inclined surface 125a formed in the light emitting section lens 124a is curved.
  • the inclined surface 125a is a curved surface that is curved so as to protrude toward the light emitting section. Even if the inclined surface 125a has a curved shape, the light 301, which is part of the light 300 emitted from the light emitting unit 123 and directed toward the main body unit 210, is reflected by the inclined surface 125a. Therefore, at least part of the light 301 directed toward the main body 210 out of the light 300 emitted from the light emitting section 123 is emitted from the light emitting section lens 124a toward the side opposite to the main body 210 side.
  • the radius of curvature of the inclined surface 125a is not particularly limited.
  • the light source unit 120b includes the light emitting unit 123 that emits the light 300, the light 300 emitted by the light emitting unit 123 is incident, and the incident light 300 is received by a lens (for example, the lens shown in FIG. 3). 130).
  • the light emitting unit lens 124 a has a curved surface that is curved such that the surface located on the main body unit 210 side protrudes toward the light emitting unit 123 .
  • the light 301 directed toward the main body section 210 is reflected by the inclined surface 125a. Therefore, out of the light 300 emitted from the light emitting section 123, the light directed toward the main body section 210 is attenuated.
  • FIG. 15 is a cross-sectional view showing a light emitting device 187 according to Modification 6 of Embodiment 3. As shown in FIG.
  • the light emitting device 187 includes a lid portion 110, a terminal portion 113, a packing 114, a heat sink 115, a heat dissipation sheet 116, a light source portion 120, a lens 130b, and a substrate 140.
  • the lens 130b is an optical member into which the light 300 emitted by the light source unit 120 is incident and which emits the incident light 300.
  • a protrusion 408 is formed on the lens 130b.
  • the protrusion 408 is formed on the lens 130b (more specifically, the inner surface 131 of the lens 130b), protrudes toward the substrate 140, and contacts the substrate 140 (more specifically, the main surface 141 of the substrate 140). It is convex.
  • the protrusion 408 is formed only on a portion of the inner surface 131 of the lens 130 b that contacts the substrate 140 . As a result, when the substrate 140 is arranged, the substrate 140 is arranged so that the direction of the normal to the main surface 141 of the substrate 140 on which the light source unit 120 is placed faces the opposite side of the main body unit 210. .
  • the optical axis 310b of the light 300 emitted by the light source unit 120 and the normal direction of the main surface 141 of the substrate 140 match. That is, the direction of the normal to the main surface 141 of the substrate 140 is the same as the direction in which the light source section 120 emits the light 300 . In this modified example, the direction of the normal to the main surface 141 is parallel to the optical axis 310b, and is in the positive direction of the Y-axis and the negative direction of the Z-axis. As described above, in the light emitting device 187, the normal line of the main surface 141 of the substrate 140 is arranged to face the opposite side of the main body 210 by the protruding portion 408. The light 300 is emitted to the side opposite to the portion 210 . Therefore, according to the light emitting device 187, the amount of light 300 directed toward the main body 210 can be reduced with a simple configuration.
  • the shapes of the lenses 124 and 124 for the light emitting portion shown in FIGS. 11 to 14 are merely examples.
  • the lens for the light emitting unit may be provided with three inclined surfaces, or may be arbitrarily changed such that the inclined surfaces are convex.
  • FIG. 16 is a cross-sectional view showing a light emitting device 187a according to Modification 7 of Embodiment 3. As shown in FIG.
  • the light emitting device 187a includes a lid portion 110, a terminal portion 113, a packing 114, a heat sink 115, a heat dissipation sheet 116, a light source portion 120, a lens 130a, and a substrate 140a.
  • the substrate 140a is a substrate having a main surface 141a on which the light source section 120 is placed.
  • a protrusion 408a is formed on the substrate 140a.
  • the protrusion 408a is formed on the substrate 140a (more specifically, the main surface 141a of the substrate 140a), protrudes toward the lens 130a, and contacts the lens 130a (more specifically, the inner surface 131 of the lens 130a). It is convex.
  • the protruding portion 408a is formed only on a portion of the main surface 141a of the substrate 140a that contacts the lens 130a. Accordingly, when the substrate 140a is arranged, the substrate 140a is arranged such that the direction of the normal line of the main surface 141a of the substrate 140a on which the light source unit 120 is mounted faces the side opposite to the main body unit 210. .
  • the optical axis 310b of the light 300 emitted from the light source unit 120 coincides with the normal direction of the main surface 141a of the substrate 140a.
  • the direction of the normal to the main surface 141a of the substrate 140a is the same as the direction in which the light source section 120 emits the light 300 .
  • the direction of the normal to the main surface 141a of the substrate 140a is arranged to face the opposite side of the main body 210 by the projecting portion 408a.
  • the light 300 is emitted to the side opposite to the portion 210 . Therefore, according to the light emitting device 187a, the amount of light 300 directed toward the main body 210 can be reduced with a simple configuration.
  • FIG. 17 is a cross-sectional view showing a light-emitting device 188 according to Modification 8 of Embodiment 3. As shown in FIG.
  • the light emitting device 188 includes a lid portion 110, a terminal portion 113, a packing 114, a heat sink 115, a heat radiation sheet 116, a light source portion 120c, a lens 130a, and a substrate 140.
  • FIG. 18 is a cross-sectional view showing a light source section 120c according to Modification 8 of Embodiment 3.
  • FIG. 18 is a cross-sectional view showing a light source section 120c according to Modification 8 of Embodiment 3.
  • the light source unit 120c is a light source that emits the light 300.
  • the light source unit 120c emits near-infrared light as the light 300, for example.
  • the light source section 120c includes a mounting substrate 122a, a light emitting section 123, and a lens 124 for the light emitting section.
  • the mounting board 122a is a board on which the light emitting section 123 that emits the light 300 is mounted.
  • the mounting substrate 122a is connected to the substrate 140 via the bonding portion 121, which is an bonding member such as solder, on the connecting surface 122c opposite to the mounting surface 122d on which the light emitting portion 123 is mounted.
  • the mounting board 122a is arranged so that the direction of the normal to the mounting surface 122d of the mounting board 122a on which the light emitting section 123 is mounted faces the side opposite to the main body section 210.
  • the main surface 141 of the substrate 140 and the connection surface 122c of the mounting substrate 122a are parallel.
  • the connection surface 122c of the mounting board 122a and the mounting surface 122d of the mounting board 122a are not parallel but cross each other.
  • the main surface 141 of the substrate 140 and the mounting surface 122d of the mounting substrate 122a are not parallel but cross each other.
  • the optical axis 310b of the light 300 emitted by the light source section 120c and the normal direction of the mounting surface 122d of the mounting board 122a match. That is, the direction of the normal to the mounting surface 122d of the mounting substrate 122a is the same as the direction in which the light source section 120c emits the light 300.
  • FIG. As described above, in the light emitting device 188, the mounting surface 122d is provided on the mounting substrate 122a so that the normal to the mounting surface 122d of the mounting substrate 122a faces the opposite side of the main body 210. The portion 120 c emits the light 300 to the side opposite to the body portion 210 . Therefore, according to the light emitting device 188, the amount of light 300 directed toward the main body 210 can be reduced with a simple configuration.
  • connection surface 122c and the mounting surface 122d is not particularly limited as long as it is an angle at which the light 300 is applied to the road surface.
  • FIG. 19 is a cross-sectional view showing a light-emitting device 189 according to Modification 9 of Embodiment 3. As shown in FIG. Note that FIG. 19 shows an enlarged view of the vicinity of the light source unit 120 included in the light emitting device 189 according to the ninth modification of the third embodiment.
  • the light-emitting device 189 has the same components as the light-emitting device 188 except for the light source section and the adhesive section.
  • the mounting substrate 122 has the bonding portion 121a, which is an bonding member such as solder, on the connection surface 122c opposite to the mounting surface 122b on which the light-emitting portion 123 is mounted. , 121b, and 121c.
  • the bonding portions 121a, 121b, and 121c are bonding members that bond the substrate 140 on which the light source portion 120 is mounted and the substrate 140 between the light source portion 120 and the substrate 140, respectively. be.
  • the adhesive portion 121a, the adhesive portion 121b, and the adhesive portion 121c are arranged side by side in this order.
  • the adhesive portion 121a is positioned closer to the main body portion 210 than the adhesive portions 121b and 121c.
  • the adhesive portion 121b is positioned closer to the main body portion 210 than the adhesive portion 121c.
  • the adhesive portion 121a is wider from the substrate 140 to the light source portion 120 than the adhesive portions 121b and 121c. More specifically, the adhesive portion 121a is longer than the adhesive portions 121b and 121c from the main surface 141 of the substrate 140 to the connection surface 122c of the mounting substrate 122 included in the light source section 120 . Further, the bonding portion 121b has a wider width from the substrate 140 to the light source portion 120 than the bonding portion 121c.
  • the plurality of bonding portions (bonding portions 121a, 121b, and 121c) provided in the light emitting device 189 are wider from the substrate 140 to the light source portion 120 as they are located closer to the main body portion 210 side.
  • the bonding portions included in the light emitting device 189 include a first bonding portion (eg, bonding portion 121a) located on the main body portion 210 side and a second bonding portion (eg, bonding portion 121a) located on the side opposite to the main body portion 210 side. part 121c);
  • the first bonding portion is wider from the substrate 140 to the light source portion 120 than the second bonding portion.
  • the first bonding portion is longer in the Z-axis direction than the second bonding portion.
  • the adhesive portions 121a, 121b, and 121c form a light reducing portion that is a structure for reducing the light 300 directed toward the main body portion 210 side.
  • the mounting substrate 122 is arranged so that the direction of the normal line faces the opposite side of the main body portion 210 .
  • the optical axis 310b of the light 300 emitted by the light source unit 120 and the normal direction of the mounting surface 122b of the mounting board 122 match. That is, the direction of the normal to the mounting surface 122 b of the mounting substrate 122 is the same as the direction in which the light source section 120 emits the light 300 .
  • the normal to the mounting surface 122b of the mounting substrate 122 is arranged to face the opposite side of the main body 210 by the bonding portions 121a, 121b, and 121c. , the light source unit 120 emits light 300 to the side opposite to the main body unit 210 . Therefore, according to the light emitting device 189, the amount of light 300 directed toward the main body 210 can be reduced with a simple configuration.
  • Embodiment 4 Next, Embodiment 4 will be described.
  • the description will focus on the differences from the first to third embodiments, and the same reference numerals will be used for substantially the same configurations as those described in the first to third embodiments. , and the explanation may be partially simplified or omitted.
  • FIG. 20 is a front view showing a monitoring system 201 according to Embodiment 4.
  • FIG. 20 is a front view showing a monitoring system 201 according to Embodiment 4.
  • a monitoring system 201 is an imaging system that includes the light source unit 100 .
  • the monitoring system 201 includes a column (first support) 211 , a support (second support) 221 , a stepped portion 230 and the light source unit 100 .
  • the strut 211 is a columnar member such as a telegraph pole that supports the support part 221 .
  • the strut 211 supports the supporting portion 221 on the side of the strut 211 .
  • the support part 221 is a support that supports the light source unit 100 and is a member that is attached to the side of the column 211 .
  • the support part 221 is, for example, a street light (lighting fixture) attached to a utility pole.
  • the support part 221 is supported by the support 211 on the side of the support 211 and extends on the side of the support 211 .
  • the support portion 221 supports the light source unit 100 via the step portion 230 .
  • the light-emitting device and the light source unit according to each embodiment are configured not only for the moving body 200 but also for the monitoring system 201 or the like such that the light emitted from the light-emitting device is reflected by the first support. is suitable for systems with
  • the column 211, the light emitting device 180, and the imaging device 190 are arranged side by side in this order.
  • the column 211, the imaging device 190, and the light emitting device 180 may be arranged side by side in this order.
  • the imaging device 190 may be located on the opposite side of the light emitting device 180 from the direction in which the light emitting device 180 emits the light 300 (downward and in the negative Z-axis direction in the present embodiment). In this embodiment, imaging device 190 is positioned above light emitting device 180 .
  • the monitoring system 201 includes a stepped portion 230 having a plurality of surfaces with different heights in the direction in which the light 300 is emitted from the light emitting device 180 .
  • the light emitting device 180 and the imaging device 190 are arranged on different surfaces among the plurality of surfaces.
  • Embodiment 5 Next, Embodiment 5 will be described. In addition, in the description of the fifth embodiment, the description will focus on the differences from the first to fourth embodiments. , and the explanation may be partially simplified or omitted.
  • FIG. 21 is a cross-sectional view showing a light emitting device 500 according to Embodiment 5.
  • FIG. 22 is an exploded perspective view showing a light emitting device 500 according to Embodiment 5.
  • FIG. 21 is a cross-sectional view showing a light emitting device 500 according to Embodiment 5.
  • FIG. 22 is an exploded perspective view showing a light emitting device 500 according to Embodiment 5.
  • the light emitting device 500 further includes a lid portion 110, a terminal portion 113, a packing 114, a cushioning material 117, and the like, similar to the light emitting device 180 shown in FIG. good too. 22, the substrate 140c, the shield 510, and the lens 130c included in the light emitting device 500 are illustrated, and the illustration of other components is omitted.
  • the moving body and light source unit according to Embodiment 5 are the same as those in Embodiment 1 except for the configuration of the light emitting device.
  • the light emitting device 500 is supported side by side with the imaging device 190 by a second support supported by the first support, and emits light to be detected by the imaging device 190 .
  • the light emitting device 500 is a device that emits light downward (road surface).
  • the light emitting device 500 includes a heat sink 115b, a heat radiation sheet 116a, a light source section 120, a lens 130c, a substrate 140c, and a shield 510.
  • the light emitting device 500 is a device that is supported side by side with the imaging device 190 by a second support supported by the first support and emits light 300 that is detected by the imaging device 190 . .
  • the first support is the body portion 210 shown in FIG. 1, and the second support is the side mirror 220 shown in FIG.
  • the light-emitting device 500 is arranged between the main unit 210 and the imaging device 190 when viewed from the moving direction of the moving object 200 .
  • the light emitting device 500 emits light toward the road surface (downward).
  • the imaging device 190 captures an image of the road surface around the moving body 200 by detecting the reflected light from the road surface of the light.
  • the light emitting device 500 and the imaging device 190 may be arranged side by side in the traveling direction of the moving object 200 .
  • the first support is the strut 211 shown in FIG. 20
  • the second support is the support 221 shown in FIG.
  • the heat sink 115b is arranged on the back surface 142 side, which is the surface opposite to the main surface (mounting surface) 141, which is the surface on which the light source unit 120 is arranged, of the substrate 140c, and dissipates the heat generated by the light source unit 120. It is a heat dissipation member for For the heat sink 115b, for example, highly thermally conductive aluminum metal, stainless steel, or the like is adopted. A substrate 140c is mounted on the heat sink 115b via a heat dissipation sheet 116a.
  • the heat radiation sheet 116a is a sheet-like member for facilitating radiation of heat generated in the light source section 120 from the substrate 140c to the heat sink 115b.
  • a material used for the heat dissipation sheet 116a is not particularly limited, and for example, a resin material or the like is used. Moreover, the heat dissipation sheet 116a may have electrical insulation.
  • the substrate 140c is a substrate on which the light source unit 120 is placed.
  • the substrate 140c is arranged in contact with the lens 130c on the main surface 141 on which the light source unit 120 is placed.
  • the material of the substrate 140c is not particularly limited, but for example, a metal substrate, a ceramic substrate, a resin substrate, or the like is adopted.
  • the substrate 140c may be a flexible substrate or a rigid substrate.
  • the lens 130c is an optical member into which the light emitted by the light source unit 120 is incident and which emits the incident light. Specifically, the lens 130c is arranged to cover the lower side of the light source unit 120, receives the light emitted from the light source unit 120, controls the distribution of the incident light, and emits the light toward the road surface. It is a lens for light.
  • the heat sink 115b, the heat radiation sheet 116a, the light source section 120 and the substrate 140c are accommodated in the lens 130c.
  • the lens 130c (more specifically, the base material of the lens 130c) is made of, for example, a translucent glass material or a transparent resin material such as acrylic or polycarbonate.
  • the shape of the lens 130c is a convex shape protruding downward, but it is not particularly limited, and may be, for example, a planar shape.
  • the shielding object 510 is arranged between the light source unit 120 and the lens 130c, and absorbs at least part of the light emitted from the light source unit 120 directed to the portion of the lens 130c located on the first support unit side. , reflecting or diffusing members.
  • the shield 510 has high reflectivity with respect to light emitted from the light source section 120 .
  • FIG. 23 is a bottom view showing the shield 510 and the light source section 120 according to Embodiment 5.
  • FIG. FIG. 24 is a top view showing shield 510 according to the fifth embodiment.
  • the shield 510 includes a light shielding portion 520 and a flat plate portion 530 .
  • the light shielding portion 520 is positioned between the lens 130c and the light source portion 120 and closer to the first support side (the Y-axis negative direction side in the present embodiment) than the light source portion 120. It is a light-shielding portion that absorbs, reflects, or diffuses at least part of the light directed toward the portion of the lens 130c located on the first support side.
  • the light shielding section 520 is provided at a portion located on the Y-axis negative direction side with respect to the optical axis of the light emitted from the light source section 120 .
  • the light shielding part 520 has, for example, a curved shape (for example, a half-bowl shape) along the inner surface 131 of the lens 130c.
  • the light shielding part 520 may be in contact with the light source part 120, but it is preferable that it is not in contact with the light source part 120.
  • the shield 510 and the light source unit 120 out of contact, it is possible to prevent the heat generated by the light source unit 120 from being transferred to the shield 510 and remaining in the space surrounded by the lens 130c and the substrate 140c.
  • the distance between the light blocking section 520 and the light source section 120 may be set arbitrarily and is not particularly limited.
  • the distance between the light blocking section 520 and the light source section 120 is, for example, 1 mm or more.
  • an opening 560 which is a through hole, is provided in the central portion of the shield 510 in plan view (bottom view).
  • the light source unit 120 is arranged at a position overlapping the opening 560 when viewed from above. Light emitted from the light source unit 120 is emitted to the outside of the light emitting device 500 through the opening 560 and the lens 130c.
  • the light shielding portion 520 is provided, for example, so as to cover the first support side half of the opening 560 which is circular in plan view.
  • the amount of light directed toward the first support is smaller than the amount of light directed toward the side opposite to the first support.
  • the light blocking section 520 may or may not cover the light source section 120 in plan view.
  • the light shielding part 520 is continuously provided from a position at least partially overlapping with the light source part 120 when the main surface 141 of the substrate 140c is viewed from above to between the light source part 120 and the first support. . That is, for example, the light shielding part 520 continuously covers from a position below the light source part 120 and overlapping with the light source part 120 when the main surface 141 of the substrate 140c is viewed from above to the side of the light source part 120. .
  • the position overlapping with the light source unit 120 may be, for example, a position overlapping with the center of the light source unit 120 in plan view (for example, the optical axis 310 of light emitted from the light source unit 120), or may be a position overlapping with the light source unit 120 in plan view. It may be on the first support side from the center.
  • the light shielding section 520 has a projecting section 521 that partially covers (overlaps) the light source section 120 when viewed from below.
  • the size and shape of the protrusion 521 are not particularly limited.
  • the size of the projecting portion 521 may be smaller than the light source portion 120 in plan view, for example.
  • the protrusion 521 can prevent the light emitted from the light source unit 120, which has the highest light intensity and is directed directly below the light source unit 120, from being directly emitted from the lens 130c. Therefore, uneven brightness of light detected by the imaging device 190 can be suppressed.
  • the size of the protrusion 521 for example, the length (width) in the X-axis direction shown in FIG. 23 is about 2 mm.
  • the flat plate portion 530 is a flat plate portion placed on the main surface 141 between the lens 130c and the main surface 141 of the substrate 140c.
  • the light shielding portion 520 and the flat plate portion 530 are integrally provided.
  • the member employed for the shield 510 is not particularly limited as long as it absorbs, reflects, or diffuses at least part of the light emitted from the light source section 120 .
  • the shield 510 is made of, for example, a metal material or the like that reflects light emitted from the light source section 120 .
  • the shield 510 is made of a resin material or the like containing a light diffusing agent such as silica particles or titanium particles for diffusing (or refracting) the light emitted from the light source section 120 .
  • the shield 510 is made of a resin material or the like containing a light absorbing agent such as a pigment that absorbs the light emitted from the light source section 120 .
  • the shield 510 may be made of PC (polycarbonate).
  • shield 510 may be constructed of a material that includes polycarbonate, for example.
  • the shield 510 may be made of PP (polypropylene), PPS (polyphenylene sulfide), or PMMA (polymethyl methacrylate, so-called acrylic).
  • the light shielding portion 520 and the flat plate portion 530 may be made of the same material or may be made of different materials. When the light shielding portion 520 and the flat plate portion 530 are made of different materials, it is sufficient that the light shielding portion 520 can absorb, reflect, or diffuse the light emitted from the light source portion 120, and the flat plate portion 530 is optional. configuration.
  • the structure capable of absorbing, reflecting, or diffusing may be a structure capable of absorbing part of the light and reflecting another part of the light, or a structure capable of absorbing a part of the light and reflecting the other part of the light. A configuration that can diffuse part of the light may be used, or a configuration for absorbing, reflecting, or diffusing may be arbitrarily combined.
  • the shield 510 may have a structure capable of at least one of absorption, reflection, and diffusion.
  • the respective thicknesses of the light shielding portion 520 and the flat plate portion 530 are not particularly limited.
  • the thickness of the flat plate portion 530 (for example, the thickness of the thinnest portion) is about 1 mm.
  • the shield 510 should be able to absorb, reflect, or diffuse at least part of the light, for example, absorb, reflect, or diffuse 70% to 90% of the light.
  • the shield 510 may reflect 70% or more of the light emitted by the light source unit 120 . Also, for example, the shield 510 may reflect 80% or more of the light emitted by the light source unit 120 . Also, for example, the shield 510 may reflect 90% or more of the light emitted by the light source section 120 .
  • the shield 510 may transmit 20% or less of the light emitted by the light source section 120 . Further, for example, the shield 510 may transmit 5% or less of the light emitted by the light source section 120 . Further, for example, the shield 510 may transmit 1% or less of the light emitted by the light source section 120 .
  • the transmittances of 20% and 5% here indicate the transmittance of light when the shielding object 510 has a thickness of 2 mm, for example.
  • the color of the shielding object 510 may be black, white, or another color, and is not particularly limited, but is preferably white. This makes it difficult for the shield 510 to generate heat due to light.
  • the surface of the shield 510 may be provided with a concave portion (gradual change portion) extending to the outer edge in plan view.
  • the shield 510 for example, the flat plate portion 530
  • the shield 510 may be provided with a portion (gradual change portion) in which the thickness decreases from the central portion toward the outer edge in plan view. According to this, there is an effect of increasing the surface rigidity, the vibration resistance can be improved, and the occurrence of deformation such as warping due to contraction can be suppressed.
  • a concave portion may be formed on the surface of the lens 130c facing the concave portion.
  • the shield 510 may be provided with beams (so-called ribs). Specifically, a beam may be provided on the edge of the flat plate portion 530 on the side of the first support. According to this, the generation of abnormal noise in the light emitting device 500 is suppressed.
  • both the above-described gradually changing portion and the above-described beam may be provided on the flat plate portion 530 . According to this, the generation of abnormal noise in the light emitting device 500 is further suppressed.
  • a through hole 541 is formed through the shield 510 (more specifically, the flat plate portion 530) in the direction normal to the main surface of the flat plate portion 530 (the Z-axis direction in the present embodiment).
  • a through-hole 542 is formed through the substrate 140c in the direction normal to the main surface 141 (the Z-axis direction in this embodiment).
  • a through-hole 543 is formed in the heat dissipation sheet 116a so as to penetrate in the direction normal to the main surface of the heat dissipation sheet 116a (the Z-axis direction in the present embodiment).
  • the heat sink 115b is formed with a through hole 544 penetrating in the direction normal to the main surface of the heat sink 115b (the Z-axis direction in this embodiment).
  • These through holes 541 to 544 are arranged so as to overlap each other when viewed from below.
  • An engaging portion 550 provided on the lens 130c is passed through these through holes 541 to 544 and disposed.
  • the engaging portion 550 is a columnar portion provided on the lens 130c.
  • the configuration in which the engaging portion 550 is arranged to pass through the through holes 541 to 544 facilitates the alignment of the heat sink 115b, the heat radiation sheet 116a, the substrate 140c, the shield 510, and the lens 130c.
  • the engaging portion 550 is passed through the through holes 541 to 544 and arranged (that is, after each component is positioned), the engaging portion 550 is subjected to heat caulking or the like so as to separate from the through holes 541 to 544. It is processed (deformed) so that it does not come off.
  • the heat sink 115b, the heat radiation sheet 116a, the substrate 140c, and the shield 510 are provided with two through holes 541 to 544, respectively. good.
  • the lens 130c may be provided with the engaging portions 550 corresponding to the number of the through holes 541-544.
  • the arrangement of the through holes 541 to 544 may be arbitrary and is not particularly limited.
  • the shield 510 may be provided with two through-holes 541 so as to be opposite to each other (for example, diagonally) with respect to the opening 560 in plan view.
  • through holes different from the through holes 541 to 544 may be further provided in the heat sink 115b, the heat dissipation sheet 116a, the substrate 140c, and the shield 510 so as to communicate with each other.
  • the air in the area surrounded by the lens 130c and the substrate 140c can travel through the ventilation holes to the inside and outside of the area, so that the area can be prevented from being filled with heat.
  • two breathing holes may be provided in each of the heat sink 115b, the heat radiation sheet 116a, the substrate 140c, and the shield 510.
  • FIG. According to this, positive pressure is applied to one ventilation hole and negative pressure is applied to the other ventilation hole, that is, the two ventilation holes function as an inlet and an outlet for the air in the area. , it is possible to further suppress heat buildup in the area.
  • an air-permeable but water-impermeable seal (a so-called waterproof sheet) may be placed in the breathing hole.
  • the shield 510 may be formed with a pin (for example, a convex portion) so that it can be positioned with respect to the lens 130c.
  • the lens 130c may be formed with a concave portion that engages with the convex portion.
  • the second support (for example, the side mirror 220) supported by the first support (for example, the main body portion 210) allows the first support to It is a light emitting device that is supported side by side with the imaging device 190 and emits light to be imaged by the imaging device 190 .
  • the light emitting device 500 includes a light source unit 120 that emits the light, and a lens 130c that receives the light emitted by the light source unit 120 and emits the incident light.
  • the amount of light directed toward the portion of the lens 130c located on the first support side is is less than the amount of light going to the part located on the opposite side.
  • the light emitting device 500 further includes a shield 510 arranged between the light source section 120 and the lens 130c.
  • the shield 510 absorbs, reflects, or diffuses at least part of the light emitted from the light source section 120 directed toward the portion of the lens 130c located on the first support side.
  • the light emitting device 500 further includes a substrate 140c having a mounting surface (principal surface 141) on which the light source section 120 is mounted.
  • the shielding object 510 is positioned, for example, between the lens 130c and the light source unit 120 and closer to the first support than the light source unit 120, and out of the light emitted from the light source unit 120, the first support in the lens 130c.
  • a light blocking portion 520 that absorbs, reflects, or diffuses at least part of the light directed toward a portion located on the body side, and a flat plate portion 530 that is placed on the main surface 141 between the lens 130c and the main surface 141. have.
  • the light that is emitted from the light source section 120 and directed toward the first support can be reduced by the light shielding section 520 .
  • an assembling device such as a robot equipped with a suction head or the like that assembles the light emitting device 500 can easily suction the flat plate portion 530 with the suction head. Therefore, the flat plate portion 530 makes it easier to manufacture the light emitting device 500 .
  • the flat plate portion 530 is positioned between the substrate 140c and the lens 130c, specifically, the flat plate portion 530 is sandwiched between the substrate 140c and the lens 130c, the positional deviation of the shield 510 is less likely to occur. . Therefore, the optical characteristics of the light-emitting device 500 are less likely to change due to vibration or the like.
  • the light shielding section 520 is continuously provided from a position at least partially overlapping with the light source section 120 when the main surface 141 is viewed from above to between the light source section 120 and the first support.
  • the light emitted from the light source section 120 can be made more difficult to reach the first support by the light shielding section 520 . Therefore, according to the light-emitting device 500, halation is less likely to occur.
  • the shield 510 contains polycarbonate. That is, shield 510 is made of polycarbonate.
  • the surface can be processed or the shape can be changed.
  • FIG. 25 is a bottom view showing a shield 511 according to a modification of Embodiment 5.
  • FIG. 25 is a bottom view showing a shield 511 according to a modification of Embodiment 5.
  • the shielding object 511 is arranged between the light source unit 120 and the lens 130c in the same way as the shielding object 510, and of the light emitted from the light source unit 120, the shielding object 511 is directed toward the portion of the lens 130c located on the first support side.
  • a member that absorbs, reflects, or diffuses at least part of light For example, the shield 511 has high reflectivity with respect to the light emitted from the light source section 120 .
  • the shield 511 has a light shielding portion 520a and a flat plate portion 530.
  • the light shielding portion 520a is located between the lens 130c and the light source portion 120 and closer to the first support side (in the present embodiment, the Y-axis negative direction side) than the light source portion 120. , which absorbs, reflects, or diffuses at least part of the light emitted from the light source unit 120 directed toward the portion of the lens 130c located on the first support side.
  • the light shielding portion 520a is provided at a portion located on the Y-axis negative direction side of the optical axis of the light emitted by the light source portion 120 .
  • the light shielding portion 520a has, for example, a curved shape (for example, a half-bowl shape) along the inner surface 131 of the lens 130c.
  • the second support for example, the side mirror 220 supported by the first support (for example, the main body 210 of the moving body 200) allows the first support to It is a light emitting device that is supported side by side with the imaging device 190 and emits light to be imaged by the imaging device 190 .
  • the light blocking section 520a blocks the light directed toward the rear side of the moving body 200 from the light source section 120 in the traveling direction of the moving body 200 from the light directed toward the portion of the lens 130c located on the moving body 200 side. It absorbs, reflects, or diffuses more than light directed forward in the direction of travel of 200 .
  • the light shielding part 520a moves more than the light source part 120 for the light directed to the front side of the traveling direction of the moving body 200 from the light source part 120, among the light directed to the portion of the lens 130c located on the moving body 200 side.
  • the amount of light that is absorbed, reflected, or diffused is smaller than that of the light traveling forward in the traveling direction of the body 200 .
  • the area of the first light shielding portion 522 located on the front side in the traveling direction of the moving object 200 in the light shielding portion 520a is the area located on the front side in the traveling direction of the moving object 200 in the light shielding portion 520a. is smaller than the area of the second light shielding portion 523 . That is, the first light shielding part 522 has a smaller area than the second light shielding part 523 to shield the light emitted from the light source unit 120 .
  • the light directed forward in the traveling direction of the moving body 200 is not so much blocked by the light blocking section 520a.
  • the side mirror 220 may be attached to the main body 210 differently depending on whether the mobile object 200 is left-handed or right-handed.
  • the end of the side mirror 220 opposite to the main body 210 is likely to be positioned forward in the traveling direction of the mobile body 200 compared to the case of a right-hand drive.
  • the side mirror 220 is positioned in this way, the amount of light emitted from the light emitting device to the front side in the traveling direction of the moving body 200 is reduced, for example, when the side mirror 220 is attached to the side mirror 220 in the case of a right-hand drive. It is smaller than the amount of light emitted forward in the traveling direction of the body 200 . Therefore, when viewed from directly below the imaging device 190, the road surface on the forward side in the traveling direction of the moving body 200 is difficult to be properly imaged.
  • the light on the forward side in the moving direction of the moving body 200 is not blocked (absorbed, reflected, or diffused) by the light shielding unit 520a. Even when the installation position of the side mirror 220 with respect to the vehicle is changed, it is possible to prevent the road surface on the front side of the traveling direction of the moving body 200 from being properly imaged when viewed from directly below the imaging device 190 .
  • the side of the shield 510 located in the positive Y-axis direction of the light shielding portion 520 is linear when viewed from above.
  • the side of the shield 511 located in the positive Y-axis direction of the light shielding portion 520a is bent at the center of the side.
  • an imaginary line extending in the positive X-axis direction from the side (the side included in the second light shielding portion 523) located on the negative X-axis direction side of the relevant side (see FIG. 25). ) and the side (the side included in the first light shielding portion 522) located in the positive X-axis direction of the side concerned is greater than zero. That is, the two-dot chain line shown in FIG. 25 and the virtual line (three points dashed line) is larger than 0.
  • is approximately 0 at the shield 510 .
  • the angle ⁇ may be set arbitrarily.
  • the angle ⁇ may be 5 degrees or more, or 10 degrees or more.
  • the angle ⁇ may be 30 degrees or less.
  • the light shielding portion 520a blocks light directed toward the rear side of the moving body 200 from the light source portion 120 in the traveling direction of the moving body 200 from the light directed toward the portion of the lens 130c located on the moving body 200 side.
  • the area of the first light shielding portion 522 is smaller than the area of the second light shielding portion 523 has been described in order to absorb, reflect, or diffuse more light than the light traveling forward in the direction of travel.
  • optical characteristics such as reflectance and transmittance are different between the first light-shielding portion 522 and the second light-shielding portion 523.
  • the unit 520a directs light toward the moving object 200-side portion of the lens 130c toward the moving object 200 toward the rear of the moving object 200 relative to the light source unit 120 in the traveling direction of the moving object 200. It may be absorbed, reflected, or diffused more than light directed forward.
  • the light shielding part 520a may not have the first light shielding part 522 and may have only the second light shielding part 523.
  • the light blocking section 520a may block only the light directed toward the rear side of the traveling direction of the moving body 200 from the light source section 120, among the light directed toward the portion of the lens 130c located on the moving body 200 side.
  • the light shielding part 520a may be located between the light source part 120 and the lens 130c, closer to the moving body 200 than the light source part 120, and to the rear side of the moving body 200 in the traveling direction.
  • an LED was exemplified as a specific example of the light source provided in the light emitting unit, but a semiconductor light emitting device such as a semiconductor laser, or a solid light emitting device such as an organic EL (Electro Luminescence) device or an inorganic EL device may be used. may be employed as the light source.
  • a semiconductor light emitting device such as a semiconductor laser, or a solid light emitting device such as an organic EL (Electro Luminescence) device or an inorganic EL device may be used.
  • an organic EL Electro Luminescence
  • first support and the second support may not be separate bodies, and may be integrally formed.
  • the light source unit may be implemented as an LED module with an SMD (Surface Mount Device) structure, or an LED module with a so-called COB (Chip On Board) structure in which an LED chip is directly mounted on a substrate.
  • SMD Surface Mount Device
  • COB Chip On Board
  • At least one of the inner surface and the outer surface of the lens of the light emitting device, which is located on the vehicle side and through which the light from the light source is emitted, may be provided with a concave portion. According to this, the light emitted from the light source is refracted or reflected by the concave portion and is less likely to travel toward the vehicle.
  • the concave portion provided in this manner is smoothly connected to the surface of the other portion of the lens. This suppresses halation.
  • the thickness of the lens is not particularly limited, it may be, for example, 0.5 mm or more at the thinnest part. This improves the moldability of the lens.
  • the method of attaching the light source unit 100 to the second support is not limited to this.
  • the light source unit, the light emitting device, and/or the imaging device may be arranged on the second support with the optical axis arbitrarily tilted with respect to the Z-axis direction (for example, the vertical direction).
  • the optical axis of the light source unit (more specifically, the light emitting device) is inclined by about 10° to 20° so as to face the side opposite to the first support (for example, the main body portion 210) with respect to the vertical direction.
  • the light source unit may be arranged on the second support (for example, the side mirror 220) so as to do so.
  • the light emitting unit included in the light emitting device 500 may be any one of the light source units 120a to 120c instead of the light source unit 120.
  • the light emitting device 500 may include dimming units 400 , 400 a and 403 .
  • each component included in the light source unit according to each embodiment and modification may be realized by being combined arbitrarily within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Multimedia (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Fastening Of Light Sources Or Lamp Holders (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

発光装置(180)は、第1支持体が支持する第2支持体によって、当該第1支持体の側方に撮像装置(190)と並んで支持され、撮像装置(190)に検出される光(300)を出射する発光装置である。発光装置(180)は、光(300)を出射する光源部(120)と、光源部(120)が出射した光(300)が入射され、且つ、入射された光(300)を出射するレンズ(130)と、を備える。レンズ(130)の一部には、レンズ(130)に入射された光(300)のうちの第1支持体側に向けて出射される光(301)の少なくとも一部を減ずる減光部(400)が設けられている。

Description

発光装置、光源ユニット、及び、移動体
 本発明は、発光装置、光源ユニット、及び、移動体に関する。
 従来、移動体の一例である車両に配置され、車両の周囲の路面に向けて光を照射する発光装置がある(例えば、特許文献1参照)。
 例えば、特許文献1には、サイドミラーに設けられ、車外において乗車者の足元を照らす発光装置の一例である照明装置が開示されている。
特開2015-71386号公報
 例えば、サイドミラーには、光を出射する発光装置とともに、路面を撮像する撮像装置が配置される場合がある。この種の撮像装置は、発光装置から出射された光の路面や障害物等での反射光を検出することで、路面の画像を生成する。
 ここで、撮像装置で検出される光量が多すぎると、撮像装置が生成する画像においてハレーションが発生する。
 本発明は、撮像装置が生成する画像におけるハレーションの発生を抑制できる発光装置等を提供する。
 本発明の一態様に係る発光装置は、第1支持体が支持する第2支持体によって、前記第1支持体の側方に撮像装置と並んで支持され、前記撮像装置に検出される光を出射する発光装置であって、前記光を出射する光源部と、前記光源部が出射した前記光が入射され、且つ、入射された前記光を出射するレンズと、を備え、前記レンズの一部には、前記レンズに入射された前記光のうちの前記第1支持体側に向けて出射される光の少なくとも一部を減ずる減光部が設けられている。
 また、本発明の別の一態様に係る発光装置は、第1支持体が支持する第2支持体によって、前記第1支持体の側方に撮像装置と並んで支持され、前記撮像装置に検出される光を出射する発光装置であって、前記光を出射する光源部と、前記光源部が出射した前記光が入射され、且つ、入射された前記光を出射するレンズと、前記レンズから出射された前記光のうちの前記第1支持体側に向かう光の少なくとも一部を反射又は拡散する減光部と、を備える。
 また、本発明の別の一態様に係る発光装置は、第1支持体が支持する第2支持体によって、前記第1支持体の側方に撮像装置と並んで支持され、前記撮像装置に検出される光を出射する発光装置であって、前記光を出射する光源部と、前記光源部が出射した前記光が入射され、且つ、入射された前記光を出射するレンズと、を備え、前記光源部から出射された前記光のうち、前記レンズにおける前記第1支持体側に位置する部分に向かう光の量は、前記レンズにおける前記第1支持体側とは反対側に位置する部分に向かう光の量よりも少ない。
 また、本発明の一態様に係る光源ユニットは、上記記載の発光装置と、上記記載の撮像装置と、を備える。
 また、本発明の一態様に係る移動体は、上記記載の光源ユニットと、上記記載の第1支持体である本体部と、上記記載の第2支持体であるサイドミラーと、を備え、前記発光装置は、前記光を路面に向けて出射するように、前記サイドミラーに取り付けられており、前記撮像装置は、前記路面で反射された前記光を検出することで、前記路面の画像を生成する。
 本発明の一態様に係る発光装置等によれば、撮像装置が撮像する画像におけるハレーションの発生を抑制できる。
図1は、実施の形態1に係る移動体を示す正面図である。 図2は、実施の形態1に係る移動体が備えるサイドミラーを拡大して示す側面図である。 図3は、図2のIII-III線における、実施の形態1に係る光源ユニットを示す断面図である。 図4Aは、実施の形態1に係るレンズの内面側を示す図である。 図4Bは、実施の形態1に係るレンズの外面側を示す図である。 図5は、実施の形態1の変形例に係る発光装置を示す断面図である。 図6は、実施の形態2に係る発光装置を示す断面図である。 図7は、実施の形態3に係る発光装置を示す断面図である。 図8は、実施の形態3の変形例1に係る発光装置を示す断面図である。 図9は、実施の形態3の変形例2に係る発光装置を示す断面図である。 図10は、実施の形態3の変形例3に係る発光装置を示す断面図である。 図11は、実施の形態3の変形例4に係る発光装置を示す断面図である。 図12は、実施の形態3の変形例4に係る光源部を示す断面図である。 図13は、実施の形態3の変形例4に係る発光部用レンズを示す下面図である。 図14は、実施の形態3の変形例5に係る光源部を示す断面図である。 図15は、実施の形態3の変形例6に係る発光装置を示す断面図である。 図16は、実施の形態3の変形例7に係る発光装置を示す断面図である。 図17は、実施の形態3の変形例8に係る発光装置を示す断面図である。 図18は、実施の形態3の変形例8に係る光源部を示す断面図である。 図19は、実施の形態3の変形例9に係る発光装置を示す断面図である。 図20は、実施の形態4に係る監視システムを示す正面図である。 図21は、実施の形態5に係る発光装置を示す断面図である。 図22は、実施の形態5に係る発光装置を示す分解斜視図である。 図23は、実施の形態5に係る遮蔽物及び光源部を示す下面図である。 図24は、実施の形態5に係る遮蔽物を示す上面図である。 図25は、実施の形態5の変形例に係る遮蔽物を示す上面図である。
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態等は、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 なお、各図は模式図であり、必ずしも厳密に図示されたものではない。各図は、本発明を示すために適宜強調や省略、比率の調整を行った模式的な図となっており、実際の形状や位置関係、比率とは異なる場合がある。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化される場合がある。
 また、以下の実施の形態において、Z軸方向は、例えば鉛直方向であり、また、Z軸の正方向側は、上方と記載され、Z軸の負方向側は、下方と記載される場合がある。また、Y軸方向及びX軸方向は、Z軸に垂直な平面(水平面)上において、互いに直交する方向である。また、Y軸方向は、移動体(第1支持体)の側方と記載される場合がある。また、X軸正方向は、移動体の進行する方向(進行方向前方)と記載され、X軸負方向は、移動体の進行する方向とは反対側の方向(進行方向後方)と記載される場合がある。
 また、以下の実施の形態において、例えば、「水平方向」等の方向を示す表現を用いる場合がある。この場合、「水平方向」とは、完全に水平方向である場合だけでなく、製造又は配置の際に生じる数%程度の誤差を含むことを意味する。
 また、以下で説明する図5~図12、図14~図19、及び、図21に示す断面図は、図3に対応する断面を示す図である。
 (実施の形態1)
 [構成]
 図1は、実施の形態1に係る移動体200を示す正面図である。図2は、実施の形態1に係る移動体200が備えるサイドミラー220を拡大して示す側面図である。
 移動体200は、光源ユニット100を備える自動車、バイク等の移動体である。本実施の形態では、移動体200は、車両(より具体的には、自動車)である。光源ユニット100は、例えば、移動体200の外面に配置されている。具体的には、移動体200には、例えば、本体部(第1支持体)210に対して前後方向及び側方を含む水平方向側の外面近傍の位置であって、光源ユニット100が備える発光装置180が下方に光300を照射した場合に、移動体200の周囲の路面に光300を照射できる位置に、光源ユニット100が設置されている。
 なお、外面とは、前後左右等の水平方向の外面を含む移動体200の本体部210の外側面を示すだけでなく、本体部210に対して側方側に位置する外面、例えば、サイドミラー(第2支持体)220の側面、サイドミラー220の下面、又は、移動体200が備えるドアの外側面等も含む。また、移動体200は、光源ユニット100を外面に備えるとは、光源ユニット100が外面表面に配置されている場合だけでなく、外面近傍であって、且つ、移動体200の内部に配置されている場合も含む。
 移動体200は、本体部210と、サイドミラー220と、光源ユニット100と、を備える。
 本体部210は、サイドミラー220を支持する支持体であって、ドライバが乗り込み運転する車両本体である。本体部210は、本体部210の両側側方でサイドミラー220を支持する。
 サイドミラー220は、光源ユニット100を支持する支持体であって、本体部210の側方に取り付けられるミラーである。サイドミラー220は、本体部210の側方で本体部210に支持され、且つ、本体部210の側方に延在している。サイドミラー220は、光源ユニット100を支持する。
 なお、図1においては、移動体200は、本体部210の側方両側(Y軸方向両側)に位置するサイドミラー220のそれぞれに光源ユニット100を備えるが、一方のサイドミラー220にのみ光源ユニット100を備えてもよい。
 発光装置180は、第1支持体が支持する第2支持体によって、第1支持体の側方に撮像装置190と並んで支持され、撮像装置190に検出される光300を出射する装置である。本実施の形態では、第1支持体は、本体部210であり、第2支持体は、サイドミラー220である。光源ユニット100は、サイドミラー220に取り付けられ、路面に向けて光300を出射し、出射した光300の路面での反射光を検出することで、路面を撮像する装置である。本実施の形態では、光源ユニット100は、サイドミラー220の下方に配置されている。
 図3は、図2のIII-III線における、実施の形態1に係る光源ユニット100の断面を示す断面図である。
 光源ユニット100は、発光装置180と、撮像装置190と、を備える。
 発光装置180は、撮像装置190に検出される光300を出射する装置である。具体的には、発光装置180は、光300を路面(下方)に向けて出射するように、サイドミラー220に取り付けられている。発光装置180が出射する光300は、例えば、近赤外光(例えば、波長が700nm~2500nm程度の光)であり、近赤外光を撮像可能なカメラである撮像装置190によって移動体200の周囲の路面を撮像するために照射される。
 発光装置180は、蓋部110と端子部113と、パッキン114と、ヒートシンク115と、放熱シート116と、光源部120と、レンズ130と、基板140と、を備える。
 蓋部110は、発光装置180をサイドミラー220に取り付けるための蓋体である。蓋部110には、取付部111が形成されており、取付部111には、例えば、ねじ112が取り付けられるためのねじ穴が形成されている。取付部111にねじ112が螺合されることで、発光装置180は、サイドミラー220に取り付けられる。蓋部110の材料は、特に限定されないが、例えば、PBT(PolyButyleneterephtalate)若しくはポリカーボネート等の樹脂材料、又は、金属材料等が採用される。
 端子部113は、図示しない外部電源等から供給される電力を光源部120に供給するための端子である。端子部113と光源部120とは、図示しない金属配線等により電気的に接続されている。
 ヒートシンク115は、基板140における光源部120が配置される面である主面141とは反対側の面である裏面142側に配置され、光源部120で発生した熱を放熱するための放熱部材である。本実施の形態では、ヒートシンク115は、蓋部110に支持されている。ヒートシンク115には、例えば、熱伝導性の高いアルミニウム金属、ステンレス鋼等が採用される。ヒートシンク115には、放熱シート116を介して基板140が載置されている。
 放熱シート116は、光源部120で発生した熱を基板140からヒートシンク115に放熱させやすくするためのシート状の部材である。放熱シート116に採用される材料は、特に限定されず、例えば、樹脂材料等が採用される。また、放熱シート116は、電気的絶縁性を有していてもよい。
 基板140は、光源部120が載置される基板である。基板140は、光源部120が載置される主面141でレンズ130と接触して配置されている。基板140の材料は、特に限定されないが、例えば、金属基板、セラミック基板、樹脂基板等が採用される。なお、基板140は、フレキシブル基板でもよいし、リジッド基板でもよい。
 光源部120は、光300を出射する光源である。光源部120は、例えば、光300として近赤外光を出射する。光源部120は、例えば、LED(Light Emitting Diode)等の固体半導体光源を有する。
 レンズ130は、光源部120が出射した光300が入射され、且つ、入射された光300を出射する光学部材である。具体的には、レンズ130は、光源部120の下方を覆うように配置され、光源部120が出射した光300が入射され、入射された光300の配光を制御して路面に向けて出射する投光用レンズである。本実施の形態では、レンズ130は、下方に突出し、且つ、上方が開放した椀状である。光源部120及び基板140は、レンズ130に収容されている。レンズ130の上方は蓋部110によって閉じられている。レンズ130(より具体的には、レンズ130の母材)は、例えば、透光性を有するガラス材料又はアクリル若しくはポリカーボネート等の透明樹脂材料によって形成される。
 なお、本実施の形態において、レンズ130の形状は、下方に突出した凸形状であるが、特に限定されるものではなく、例えば、平面形状でもよい。
 レンズ130の一部には、レンズ130に入射された光300のうちの本体部210側(図3では、Y軸負方向側)に向けて出射される光300の少なくとも一部を減ずる減光部400が設けられている。本体部210側とは、例えば、レンズ130を上面視した場合、レンズ130を移動体200の長尺な方向(本実施の形態では、X軸に平行な方向)に平行な線分でレンズ130を二等分した際に、本体部210に近い方の部分である。或いは、例えば、減光部400は、移動体200を正面視した場合におけるレンズ130において、本体部210側に位置する部分に設けられている。本実施の形態では、減光部400は、図3に示す断面視において、光源部120が出射した光300の光軸310(図3に示す一点鎖線)よりも本体部210側に位置する部分に設けられている。これにより、減光部400は、光源部120が出射した光300のうち、本体部210側に向かう光301を減光する。そのため、減光部400は、レンズ130に入射された光300のうちの本体部210側に向かう光301を減じて出射する。
 一方、光源部120が出射した光300のうち、本体部210側とは反対側に向かう光302は、減光されずにレンズ130から出射される。そのため、レンズ130によれば、減光部400によってレンズ130に入射された光300のうちの本体部210に向けて出射される光301が減光され、本体部210とは反対側に向けて出射される光302が減光されない。
 減光部400は、レンズ130の一部であって、光300を減光する部分である。例えば、減光部400は、シボ加工、蒸着、2色成形、インサート成形、又は、レーザ照射により形成される構造を有する。言い換えると、レンズ130の一部は、シボ加工、蒸着、2色成形、インサート成形、又は、レーザ照射により形成された構造である減光部400が設けられている。
 例えば、レンズ130は、シボ加工が施されることにより、表面(内面131及び外面132の少なくとも一方)に凹凸が形成されることで、減光部400が形成される。これにより、減光部400は、光300を拡散することで減光する。
 なお、減光とは、例えば、減光部400が設けられていない場合と比較して、光300がレンズ130から出射される際の単位面積当たりの光量(例えば、光エネルギー又は光束等)が低下することを意味する。つまり、減光部400は、レンズ130における減光部400以外の他部と比較して、光300に対する透過率が低い。
 また、例えば、レンズ130は、蒸着が施されることにより、表面(内面131及び外面132の少なくとも一方)に金属膜等の薄膜が形成されることで、減光部400が形成される。これにより、減光部400は、光300を吸収又は反射することで減光する。
 また、例えば、レンズ130は、2色成形が施されることにより、表面(内面131及び外面132の少なくとも一方)又はレンズ130の内部に光300を吸収、反射、又は、拡散する部分が形成されることで、減光部400が形成される。これにより、減光部400は、光300を吸収、反射、又は、拡散することで減光する。
 また、例えば、レンズ130は、レーザ照射が施されることにより、表面(内面131及び外面132の少なくとも一方)又はレンズ130の内部が着色されて光300を吸収する部分が形成されることで、減光部400が形成される。これにより、減光部400は、光300を吸収することで減光する。或いは、例えば、レンズ130は、レーザ照射が施されることにより、表面(内面131及び外面132の少なくとも一方)が粗化されることで、減光部400が形成される。これにより、減光部400は、光300を散乱することにより減光する。
 これらのように、減光部400は、例えば、レンズ130に入射される光300を、吸収、反射、又は、拡散することで、レンズ130から出射する光300を減光する。
 図4Aは、実施の形態1に係るレンズ130の内面131側を示す図である。図4Bは、実施の形態1に係るレンズ130の外面132側を示す図である。
 減光部400は、例えば、レンズ130の光源部120と対向する面(内面131)に設けられている。或いは、例えば、減光部400は、レンズ130の光源部120側と対向する面とは反対側の面(外面132)に設けられている。本実施の形態では、内面131側に減光部400の一部である内面減光部401が設けられ、外面132側に減光部400の一部である外面減光部402が設けられている。
 なお、減光部400は、内面減光部401及び外面減光部402のうち、内面減光部401のみを有していてもよいし、外面減光部402のみを有していてもよいし、両方を有していてもよい。
 また、図3には、レンズ130の内面131近傍及び外面132近傍に減光部400が設けられている例を示しているが、減光部400は、レンズ130の内部に設けられてもよい。
 サイドミラー220とレンズ130との間には、例えば、スポンジ等の弾性を有する部材である緩衝材117が設けられている。
 パッキン114は、レンズ130とヒートシンク115との間に位置する緩衝材である。パッキン114は、例えば、ゴム等の弾性を有する樹脂材料により形成されている。
 撮像装置190は、発光装置180が出射した光300を検出するカメラである。具体的には、撮像装置190は、路面で反射された光300の反射光を検出できるようにサイドミラー220に取り付けられており、移動体200の周囲の路面で反射された光300を検出することで、当該路面の画像を生成する。上記したように、光源部120は、例えば、近赤外光を発する近赤外光源であり(つまり、光300が近赤外光であり)、撮像装置190は、発光装置180から出射された近赤外光、具体的には、光源部120から出射されて路面で反射された近赤外光を検出する。
 撮像装置190は、例えば、CCD(Charge Coupled Device)イメージセンサ、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサ等の、光300を検出するための撮像素子を有する。
 また、本実施の形態では、本体部210と、発光装置180と、撮像装置190とは、この順に並んで配置されている。本体部210と、撮像装置190と、発光装置180とは、この順に並んで配置されていてもよい。
 また、撮像装置190は、発光装置180よりも、発光装置180が光300を出射する向き(本実施の形態では、下方であってZ軸負方向)とは反対側に位置してもよい。本実施の形態では、撮像装置190は、発光装置180よりも上方に位置する。
 これによれば、撮像装置190に発光装置180から出射された光300が路面で反射されずに直接入射されることが抑制される。
 [効果等]
 以上説明したように、実施の形態1に係る発光装置180は、本体部210が支持するサイドミラー220によって、本体部210の側方に撮像装置190と並んで支持され、撮像装置190に検出される光300を出射する発光装置である。発光装置180は、光300を出射する光源部120と、光源部120が出射した光300が入射され、且つ、入射された光300を出射するレンズ130と、を備える。レンズ130の一部には、レンズ130に入射された光300のうちの本体部210側に向けて出射される光300の少なくとも一部を減じる減光部400が設けられている。
 本願発明者らは、鋭意検討した結果、発光装置180から出射された光300のうち本体部210で一度反射された光が撮像装置190に入射された場合、当該光の影響でハレーションが発生することを見出した。そこで、発光装置180は、減光部400によって、レンズ130に入射された光300のうちの本体部210側に向かう光の少なくとも一部を減じて出射する。これによれば、本体部210で反射される光300の量を減らすことができる。そのため、発光装置180によれば、撮像装置190が生成する画像におけるハレーションの発生を抑制できる。
 また、例えば、減光部400は、レンズ130の光源部120と対向する面(内面131)に設けられている。
 或いは、例えば、減光部400は、レンズ130の光源部120側と対向する面(内面131)とは反対側の面(外面132)に設けられている。
 これらによれば、光300を減光するための構造を発光装置180が別途備える場合と比較して、構造を簡略化できる。
 また、例えば、減光部400は、シボ加工、蒸着、2色成形、インサート成形、又は、レーザ照射によりレンズ130の一部に設けられている。
 これによれば、レンズ130に減光部400を簡便に形成できる。
 また、例えば、減光部400は、レンズ130に入射される光300を、吸収、反射、又は、拡散することで、レンズ130から出射する光を減光する。
 これによれば、減光部400は、本体部210に向かう単位面積当たりの光量を減らすことができる。
 また、例えば、光源部120は、光300として近赤外光を出射する。
 光300が近赤外光である場合、ユーザは、光300を目視しにくい。そのため、例えば、光300が照射される本体部210等の位置に反射を抑制するような部材を配置しようとしても、光300がどこに照射されているか分からないため、適切な位置に当該部材を配置しにくい。そこで、発光装置180のように本体部210に向かう光を減じる構成とすることで、光300が目視しにくいような場合でも、ハレーションの発生を抑制できる。つまり、発光装置180は、特に、光300が近赤外光の場合に好適である。
 また、実施の形態1に係る光源ユニット100は、発光装置180と、撮像装置190と、を備える。
 これによれば、発光装置180が本体部210で反射される光300の量を減らすことができるため、撮像装置190が生成する画像におけるハレーションの発生を抑制できる。
 また、実施の形態1に係る移動体200は、光源ユニット100と、上記した第1支持体である本体部210と、上記した第2支持体であるサイドミラー220と、を備える。発光装置180は、光300を路面に向けて出射するように、サイドミラー220に取り付けられている。撮像装置190は、路面で反射された光300を検出することで、当該路面の画像を生成する。
 これによれば、移動体200は、光源ユニット100によって、ハレーションの発生が抑制された、移動体200の周囲の路面の画像を生成できる。
 [変形例]
 続いて、実施の形態1の変形例について説明する。なお、実施の形態1の変形例の説明においては、実施の形態1との差異点を中心に説明し、実施の形態1で説明した構成と実質的に同様の構成についてはそれぞれ同様の符号を付し、説明を一部簡略化又は省略する場合がある。
 図5は、実施の形態1の変形例に係る発光装置180aを示す断面図である。
 実施の形態1の変形例に係る移動体及び光源ユニットは、実施の形態1と発光装置の構成以外は同じである。例えば、発光装置180aは、第1支持体が支持する第2支持体によって、当該第1支持体の側方に撮像装置190と並んで支持され、撮像装置190に検出される光を出射する。
 発光装置180aは、下方(路面)に向けて光300を出射する装置である。
 発光装置180aは、蓋部110と、端子部113と、パッキン114と、ヒートシンク115と、放熱シート116と、光源部120と、レンズ1300と、基板140と、減光部400aと、を備える。
 レンズ1300は、光源部120が出射した光300が入射され、且つ、入射された光300を出射する光学部材である。
 レンズ1300の一部には、レンズ1300に入射された光300のうちの本体部210側(図5では、Y軸負方向側)に向けて出射される光300の少なくとも一部(例えば、図5に示す光301)を減ずる減光部400aが設けられている。
 減光部400aは、レンズ1300の一部であって、光300を減光する部分である。例えば、減光部400aは、レンズ1300に入射される光300を、吸収、反射、又は、拡散することで、レンズ1300から出射する光を減光する。本変形例では、ガラス材料又は樹脂材料等からなるレンズ1300の母材の内面131側に設けられた窪み(凹部)に、金属材料等の減光部400aが形成される(つまり、インサート成形される)ことで、減光部400aが設けられたレンズ1300が製造される。
 このように、レンズ1300は、内面131に凹部が形成されたレンズ1300の母材と、当該凹部に注入され、当該母材と一体に形成された減光部400aと、を有してもよい。なお、レンズ1300の母材と同一部材からなる材料を主とした材料が減光部400aとして当該凹部に形成されることでレンズ1300が製造されてもよい。
 (実施の形態2)
 続いて、実施の形態2について説明する。なお、実施の形態2の説明においては、実施の形態1との差異点を中心に説明し、実施の形態1で説明した構成と実質的に同様の構成についてはそれぞれ同様の符号を付し、説明を一部簡略化又は省略する場合がある。
 [構成]
 図6は、実施の形態2に係る発光装置181を示す断面図である。
 実施の形態2に係る移動体及び光源ユニットは、実施の形態1と発光装置の構成以外は同じである。例えば、発光装置181は、第1支持体が支持する第2支持体によって、当該第1支持体の側方に撮像装置190と並んで支持され、撮像装置190に検出される光を出射する。
 発光装置181は、下方(路面)に向けて光300を出射する装置である。
 発光装置181は、蓋部110と、端子部113と、パッキン114と、ヒートシンク115と、放熱シート116と、光源部120と、レンズ130aと、基板140と、減光部403と、を備える。
 レンズ130aは、光源部120が出射した光300が入射され、且つ、入射された光300を出射する光学部材である。具体的には、レンズ130aは、光源部120の下方を覆うように配置され、光源部120が出射した光300が入射され、入射された光300の配光を制御して路面に向けて出射する投光用レンズである。レンズ130aは、例えば、透光性を有するガラス材料又はアクリル若しくはポリカーボネート等の透明樹脂材料によって形成される。
 ここで、レンズ130aは、レンズ130とは異なり、減光部400が設けられていない。そのため、レンズ130aでは、位置によって光300に対する透過率は変化しない。
 また、レンズ130aの外面132には、減光部403が載置されている。
 減光部403は、レンズ130aから出射された光300のうちの本体部210側に向かう光301の少なくとも一部を反射又は拡散する部材である。具体的には、減光部403は、レンズ130aにおける内面131から外面132に向かう方向であって、外面132から出射された光301の少なくとも一部を反射又は拡散する。本実施の形態では、減光部403は、光300に対して光反射性を有する。
 例えば、減光部403は、移動体200を正面視した場合におけるレンズ130aにおいて、本体部210側に位置する部分に設けられている。減光部403は、レンズ130aを下方の一部であって、本体部210側の一部を覆うように配置されている。例えば、減光部403は、レンズ130aの光源部120側とは反対側の外面132に接触して配置されている。本実施の形態では、減光部403は、レンズ130aにおいて光源部120側とは反対側の外方(下方)であって、図6に示す断面視において、光源部120が出射した光300の光軸310(図6に示す一点鎖線)よりも本体部210側に位置する部分に設けられている。これにより、減光部403は、光源部120が出射した光300のうち、本体部210側に向かう光を減光する。
 例えば、光源部120が出射した光300のうち、本体部210側に向かう光301は、レンズ130aから出射されて減光部403で(より具体的には、減光部403とレンズ130aとの界面で)反射されて、さらに、基板140とレンズ130aとの間で反射を繰り返して、本体部210とは反対側に向かう向きで、レンズ130aから出射される。
 これにより、減光部403は、レンズ130aから出射される光300のうちの本体部210に向かう光を減光する。
 なお、本実施の形態では、減光部403は、レンズ130aの光源部120側とは反対側の外面132に接触して配置されている。減光部403は、レンズ130aにおいて光源部120側とは反対側である外方に位置していればよく、レンズ130aと接触していなくてもよい。
 また、減光部403は、レンズ130aの下方に位置する外面132だけでなく、レンズ130aの側方に位置する外面まで覆ってもよい。
 減光部403は、例えば、光300に対して光反射性を有する金属材料等によって形成される。或いは、減光部403は、光300を拡散させるためのシリカ粒子又はチタン粒子等の光拡散剤が含有された樹脂材料等によって形成される。なお、減光部403は、光300に対して光透過性を有していてもよい。この場合、減光部403が光300に対して光透過性を有する場合、光300を反射又は拡散することで、減光部403から出射される光300の量が減光されていればよい。
 [効果等]
 以上説明したように、実施の形態2に係る発光装置181は、第1支持体(例えば、本体部210)が支持する第2支持体(例えば、サイドミラー220)によって、当該第1支持体の側方に撮像装置190と並んで支持され、撮像装置190に検出される光300を出射する発光装置181である。発光装置181は、光300を出射する光源部120と、光源部120が出射した光300が入射され、且つ、入射された光300を出射するレンズ130aと、レンズ130aから出射された光300のうちの第1支持体側(本実施の形態では、Y軸負方向側)に向かう光300の少なくとも一部を反射又は拡散する減光部403と、を備える。
 これによれば、減光部403によって、レンズ130aから出射された光300のうちの本体部210側に向かう光の少なくとも一部を減らすことができる。そのため、本体部210で反射される光300の量を減らすことができる。これにより、発光装置181によれば、撮像装置190が生成する画像におけるハレーションの発生を抑制できる。また、減光部403は、光300を反射又は拡散することにより、本体部210に向かう光300の量を減らす。例えば、減光部403が光300を吸収することにより、本体部210に向かう光300の量を減らす場合、減光部403は、発熱する。一方、減光部403が光300を反射又は拡散することにより、本体部210に向かう光300の量を減らす構成であれば、減光部403が光300を吸収することにより、本体部210に向かう光300の量を減らす構成と比較して、発熱量を低減できる。そのため、減光部403が光300を反射又は拡散することにより、本体部210に向かう光300の量を減らすことにより、撮像装置190が生成した画像におけるハレーションの発生を抑制できるとともに、発熱することを抑制できる。
 また、例えば、減光部403は、レンズ130aの光源部120側(より具体的には、内面131)とは反対側の面(外面132)に接触して配置されている。
 これによれば、レンズ130aと減光部403とが接触していることで、レンズ130aと減光部403との間に隙間がある場合と比較して、当該隙間を通過して本体部210側に漏れ出る光の発生が抑制される。そのため、ハレーションの発生は、さらに抑制される。また、レンズ130aと減光部403とが接触していることで、減光部403で熱が生じたとしても、当該熱は、レンズ130aを介してヒートシンク115等に放熱される。そのため、このような構成によれば、発光装置181の放熱性が、向上される。
 (実施の形態3)
 続いて、実施の形態3について説明する。なお、実施の形態3の説明においては、実施の形態1及び2との差異点を中心に説明し、実施の形態1及び2で説明した構成と実質的に同様の構成についてはそれぞれ同様の符号を付し、説明を一部簡略化又は省略する場合がある。
 [構成]
 図7は、実施の形態3に係る発光装置182を示す断面図である。
 実施の形態3に係る移動体及び光源ユニットは、実施の形態1と発光装置の構成以外は同じである。例えば、発光装置182は、第1支持体が支持する第2支持体によって、当該第1支持体の側方に撮像装置190と並んで支持され、撮像装置190に検出される光を出射する。
 発光装置182は、下方(路面)に向けて光300を出射する装置である。
 発光装置182は、蓋部110と、端子部113と、パッキン114と、ヒートシンク115と、放熱シート116と、光源部120と、レンズ130aと、基板140と、遮蔽物404と、を備える。
 遮蔽物404は、光源部120とレンズ130aとの間に配置され、光源部120から出射された光300のうち、レンズ130aにおける本体部210側に位置する部分に向かう光301の少なくとも一部を吸収、反射、又は、拡散する部材である。例えば、遮蔽物404は、図7に示す断面視において、光源部120が出射した光300の光軸310(図7に示す一点鎖線)よりも本体部210側に位置する部分に設けられている。
 このように、発光装置182では、光源部120から出射された光300のうち、レンズ130aにおける本体部210に位置する部分に向かう光の量が、レンズ130aにおける本体部210とは反対側に位置する部分に向かう光の量よりも少ない。本実施の形態では、発光装置182は、遮蔽物404によって、光源部120から出射された光300のうち、レンズ130aにおける本体部210に位置する部分に向かう光の量が、レンズ130aにおける本体部210とは反対側に位置する部分に向かう光の量よりも少なくなるように構成されている。
 遮蔽物404に採用される部材は、レンズ130aにおける本体部210側に位置する部分に向かう光301の少なくとも一部を吸収、反射、又は、拡散する部材であればよく、特に限定されない。
 遮蔽物404は、例えば、光300に対して光反射性を有する金属材料等によって形成される。或いは、遮蔽物404は、光300を拡散させるためのシリカ粒子又はチタン粒子等の光拡散剤が含有された樹脂材料等によって形成される。或いは、遮蔽物404は、光300を吸収する色素等の光吸収剤が含有された樹脂材料等によって形成される。
 なお、遮蔽物404は、光300に対して光透過性を有していてもよい。遮蔽物404が光300に対して光透過性を有する材料で形成される場合、遮蔽物404は、例えば、光300を拡散することで、遮蔽物404から出射される光300の量が減光されるように構成されていればよい。
 また、遮蔽物404の形状は、特に限定されない。例えば、遮蔽物404の形状は、平板状でもよいし、半筒状でもよい。
 本実施の形態では、遮蔽物404は、基板140に配置された電子部品である。具体的には、遮蔽物404は、基板140における光源部120が載置(実装)される面である主面141に配置(実装)された電子部品である。電子部品の種別は、特に限定されない。例えば、電子部品は、コンデンサ等の上背のある部品、リード付きの部品等である。
 また、遮蔽物404は、例えば、基板140の主面141からの高さが光源部120よりも高い。これによれば、遮蔽物404は、光源部120から出射された光300のうちの光源部120から本体部210に向かう向きであって、光源部120からレンズ130aに向かう向きで出射された光301の多くを反射、吸収、又は、拡散できる。
 なお、遮蔽物404は、光源部120の下方を覆うように配置されていてもよい。
 [効果等]
 以上説明したように、実施の形態3に係る発光装置182は、第1支持体(例えば、本体部210)が支持する第2支持体(例えば、サイドミラー220)によって、当該第1支持体の側方に撮像装置190と並んで支持され、撮像装置190に撮像される光300を出射する発光装置である。発光装置182は、光300を出射する光源部120と、光源部120が出射した光300が入射され、且つ、入射された光300を出射するレンズ130aと、を備える。光源部120から出射された光300のうち、レンズ130aにおける第1支持体側(本実施の形態では、Y軸負方向側)に位置する部分に向かう光の量は、レンズ130aにおける第1支持体側とは反対側に位置する部分に向かう光の量よりも少ない。
 これによれば、レンズ130aに入射される光300のうちの本体部210側に向かう光の少なくとも一部を減らすことができる。そのため、本体部210で反射される光300の量を減らすことができる。これにより、発光装置182によれば、撮像装置190が生成する画像におけるハレーションの発生を抑制できる。
 また、例えば、発光装置182は、さらに、光源部120とレンズ130aとの間に配置された遮蔽物404を備える。遮蔽物404は、光源部120から出射された光300のうち、レンズ130aにおける本体部210側に位置する部分に向かう光の少なくとも一部を吸収、反射、又は、拡散する。
 これによれば、遮蔽物404によって、レンズ130aから出射された光300のうちの本体部210側に向かう光の少なくとも一部を減らすことができる。そのため、本体部210で反射される光300の量を減らすことができる。これにより、発光装置182によれば、撮像装置190が生成する画像におけるハレーションの発生を抑制できる。
 また、例えば、発光装置182は、さらに、光源部120が載置される基板140を備える。遮蔽物404は、基板140に配置された電子部品である。
 基板140には、例えば、光源部120に適切に電力を供給するために、複数の電子部品が実装されている。この種の電子部品の中には、上背のある電子部品がある。そこで、遮蔽物404として、基板140に載置されている電子部品を採用する。これによれば、基板140における電子部品の配置レイアウトを適切に設定するだけで、新たな構成要素を増やすことなく、簡便にレンズ130aから出射された光300のうちの本体部210側に向かう光の少なくとも一部を減らすことができる。
 [変形例]
 続いて、実施の形態3の各変形例について説明する。なお、実施の形態3の変形例の説明においては、実施の形態3及び各変形例との差異点を中心に説明し、実施の形態3及び各変形例で説明した構成と実質的に同様の構成についてはそれぞれ同様の符号を付し、説明を一部簡略化又は省略する場合がある。
 <変形例1>
 図8は、実施の形態3の変形例1に係る発光装置183を示す断面図である。
 発光装置183は、蓋部110と、端子部113と、パッキン114と、ヒートシンク115と、放熱シート116と、光源部120と、レンズ130aと、基板140と、遮蔽物405と、を備える。
 遮蔽物405は、光源部120とレンズ130aとの間に配置され、光源部120から出射された光300のうち、レンズ130aにおける本体部210側に位置する部分に向かう光301の少なくとも一部を吸収、反射、又は、拡散する部材である。
 遮蔽物405は、基板140を貫通して基板140に配置されている。具体的には、遮蔽物405は、基板140の主面141と裏面142とを貫通するピンを有する電子部品である。このように、遮蔽物405は、光源部120とレンズ130aとの間に配置され、光源部120から出射された光300のうち、レンズ130aにおける本体部210側に位置する部分に向かう光301の少なくとも一部を吸収、反射、又は、拡散する部分を有していればよい。
 本実施の形態では、遮蔽物405は、端子部113と図示しない配線等によって電気的に接続されるコネクタである。光源部120には、コネクタである遮蔽物405を介して図示しない外部電源等から電力が供給される。
 このように、本発明に係る発光装置が備える遮蔽物である電子部品の種別は、特に限定されない。
 また、遮蔽物405のピン(図8に示す、基板140の主面141側に位置する部分)は、例えば、光300を遮光する樹脂等の被覆部材により覆われていてもよい。これにより、例えば、当該ピンが細い場合においても、当該被覆部材によってレンズ130aにおける本体部210側に位置する部分に向かう光301の少なくとも一部を減光できる。
 <変形例2>
 図9は、実施の形態3の変形例2に係る発光装置184を示す断面図である。
 発光装置184は、蓋部110と、端子部113と、パッキン114と、ヒートシンク115aと、放熱シート116と、光源部120と、レンズ130aと、基板140と、を備える。
 ヒートシンク115aは、基板140における光源部120が配置される面である主面141とは反対側の面である裏面142側に配置され、光源部120で発生した熱を放熱するための放熱部材である。本実施の形態では、ヒートシンク115aは、蓋部110に支持されている。ヒートシンク115aには、例えば、熱伝導性の高いアルミニウム金属、ステンレス鋼等が採用される。ヒートシンク115aには、放熱シート116を介して基板140が載置されている。
 また、ヒートシンク115aは、遮蔽物406を有する。言い換えると、ヒートシンク115aと遮蔽物406とは、一体に形成されている。
 遮蔽物406は、光源部120とレンズ130aとの間に配置され、光源部120から出射された光300のうち、レンズ130aにおける本体部210側に位置する部分に向かう光301の少なくとも一部を吸収、反射、又は、拡散する部材である。本実施の形態では、遮蔽物406は、基板140を貫通するように設けられている。
 なお、本実施の形態では、遮蔽物406の形状は、ピン状であるが、特に限定されない。
 以上説明したように、変形例2に係る発光装置184は、光源部120と、レンズ130aと、光源部120が載置される基板140と、基板140が載置されるヒートシンク115aと、を備える。遮蔽物406は、ヒートシンク115aの一部であり、基板140を貫通して光源部120とレンズ130aとの間に配置されている。
 これによれば、遮蔽物406を固定するための接着剤等が不要になるため、構造が簡略化される。また、例えば、遮蔽物406を基板140に取り付ける際に、遮蔽物406が適切な位置からずれることを抑制できる。
 <変形例3>
 図10は、実施の形態3の変形例3に係る発光装置185を示す断面図である。
 発光装置185は、蓋部110と、端子部113と、パッキン114と、ヒートシンク115と、放熱シート116と、光源部120と、レンズ130aと、基板140と、遮蔽物407と、を備える。
 遮蔽物407は、光源部120とレンズ130aとの間に配置され、光源部120から出射された光300のうち、レンズ130aにおける本体部210側に位置する部分に向かう光301の少なくとも一部を吸収、反射、又は、拡散する部材である。
 遮蔽物407は、レンズ130aの内面131に接触して配置されている。遮蔽物407は、例えば、熱カシメによって、接着剤等を用いずにレンズ130aの内面131に直接接合されている。
 このように、光源部120とレンズ130aとの間に配置される遮蔽物407の発光装置185への取り付けられる位置は、例えば、基板140でもよいし、レンズ130aでもよいし、ヒートシンク115等の他部材でもよく、特に限定されない。
 <変形例4>
 図11は、実施の形態3の変形例4に係る発光装置186を示す断面図である。
 発光装置186は、蓋部110と、端子部113と、パッキン114と、ヒートシンク115と、放熱シート116と、光源部120aと、レンズ130aと、基板140と、を備える。
 図12は、実施の形態3の変形例4に係る光源部120aを示す断面図である。
 光源部120aは、光300を出射する光源である。光源部120aは、例えば、光300として近赤外光を出射する。
 光源部120aは、実装基板122と、発光部123と、発光部用レンズ124と、を備える。
 実装基板122は、光300を出射する発光部123が実装される基板である。実装基板122は、発光部123が実装される実装面122bとは反対側の接続面122cにおいて、半田等の接着部材である接着部121を介して基板140と接続されている。
 発光部123は、光300を出射する光源である。発光部123は、例えば、LED等の固体半導体光源を有する。発光部123には、発光部123が光300を出射する向きに、発光部用レンズ124が配置されている。本変形例では、発光部123が出射する光300の光軸は、Z軸と平行である。
 発光部用レンズ124は、発光部123が出射した光300が入射され、且つ、入射された光300を出射する光学部材である。具体的には、発光部用レンズ124は、発光部123の光出射側(本実施の形態では、下方)を覆うように配置され、発光部123が出射した光300が入射され、入射された光300の配光を制御して路面に向けて出射するレンズである。発光部用レンズ124は、例えば、透光性を有するガラス材料、又は、シリコーン、アクリル、若しくは、ポリカーボネート等の透明樹脂材料によって形成される。
 発光部用レンズ124は、発光部123から出射された光300のうちの本体部210側に向かう光300の少なくとも一部を減ずるために、傾斜面125が形成されている。つまり、傾斜面125は、発光部用レンズ124に形成された平らな面であって、本体部210側に向かう光300の少なくとも一部を減ずる減光部である。
 例えば、傾斜面125は、移動体200を正面視した場合における発光部用レンズ124において、本体部210側に位置する部分に設けられている。本実施の形態では、傾斜面125の法線(法線ベクトル)は、本体部210側を向いている。例えば、傾斜面125は、発光部123が出射した光300の光軸(本変形例では、Z軸に平行な軸)に対して傾斜した平面である。
 発光部123から出射された光300のうちの本体部210側に向かう光301は、傾斜面125で反射される。そのため、発光部123から出射された光300のうちの本体部210側に向かう光301の少なくとも一部は、本体部210側とは反対側に向かって発光部用レンズ124から出射される。
 一方、移動体200を正面視した場合における発光部用レンズ124において、本体部210側とは反対側に位置する部分は、湾曲している。これによれば、本体部210側とは反対側に向かう光302は、反射されずに出射される。そのため、傾斜面125が形成された発光部用レンズ124によれば、傾斜面125によって、発光部123から出射された光300のうちの本体部210側に向かう光301が減光され、本体部210とは反対側に向かう光302が減光されない。
 これにより、光源部120aから出射される光300は、本体部210側とは反対側に向けて出射される。言い換えると、光源部120aから出射される光300の光軸310aは、光源部120から出射される光300の光軸310に対して、光源部120から見て本体部210側とは反対側に傾く。
 図13は、実施の形態3の変形例4に係る発光部用レンズ124を示す下面図である。
 例えば、移動体200を正面視した場合における発光部用レンズ124において、本体部210側の部分には、傾斜面125が2箇所に形成されている。例えば、下面視した場合、発光部用レンズ124は、本体部210側が、略三角形状となっており、本体部210とは反対側が、半円形状となっている。
 なお、発光部用レンズ124に形成される傾斜面125の数は、特に限定されない。発光部用レンズ124に形成される傾斜面125の数は、1つでもよいし、3つ以上でもよい。
 以上説明したように、光源部120aは、光300を出射する発光部123と、発光部123が出射した光300が入射され、且つ、入射された光300をレンズ(例えば、図3に示すレンズ130)に向けて出射する発光部用レンズ124と、を有する。発光部用レンズ124は、本体部210側に位置する面が、発光部123が出射した光300の光軸(本変形例では、Z軸に平行な軸)に対して傾斜した平面(傾斜面125)である。
 これによれば、発光部123から出射された光300のうちの本体部210側に向かう光301は、傾斜面125で反射される。そのため、発光部123から出射された光300のうち本体部210側に向かう光は、減光される。
 <変形例5>
 図14は、実施の形態3の変形例5に係る光源部120bを示す断面図である。
 光源部120bでは、光源部120aとは異なり、発光部用レンズ124aに形成されている傾斜面125aが湾曲している。具体的には、傾斜面125aは、発光部に向けて突出するように湾曲した湾曲面である。傾斜面125aが湾曲した形状であっても、発光部123から出射された光300のうちの本体部210側に向かう光301は、傾斜面125aで反射される。そのため、発光部123から出射された光300のうちの本体部210側に向かう光301の少なくとも一部は、本体部210側とは反対側に向かって発光部用レンズ124aから出射される。
 なお、傾斜面125aの曲率半径は、特に限定されない。
 以上説明したように、光源部120bは、光300を出射する発光部123と、発光部123が出射した光300が入射され、且つ、入射された光300をレンズ(例えば、図3に示すレンズ130)に向けて出射する発光部用レンズ124aと、を有する。発光部用レンズ124aは、本体部210側に位置する面が、発光部123に向けて突出するように湾曲した湾曲面である。
 これによれば、発光部123から出射された光300のうちの本体部210側に向かう光301は、傾斜面125aで反射される。そのため、発光部123から出射された光300のうち本体部210側に向かう光は、減光される。
 <変形例6>
 図15は、実施の形態3の変形例6に係る発光装置187を示す断面図である。
 発光装置187は、蓋部110と、端子部113と、パッキン114と、ヒートシンク115と、放熱シート116と、光源部120と、レンズ130bと、基板140と、を備える。
 レンズ130bは、光源部120が出射した光300が入射され、且つ、入射された光300を出射する光学部材である。レンズ130bには、突出部408が形成されている。
 突出部408は、レンズ130b(より具体的には、レンズ130bの内面131)に形成され、基板140に向かって突出して基板140(より具体的には、基板140の主面141)と接触する凸部である。突出部408は、基板140と接触するレンズ130bの内面131のうちの一部にのみ形成されている。これにより、基板140を配置した場合に、基板140は、基板140における光源部120が載置される主面141の法線の向きが、本体部210とは反対側に向くように配置される。本変形例では、光源部120が出射する光300の光軸310bと、基板140の主面141の法線方向とが一致する。つまり、基板140の主面141の法線の向きは、光源部120が光300を出射する向きと同じである。本変形例では、主面141の法線の向きは、光軸310bに平行な方向であって、Y軸正方向側且つZ軸負方向側の向きである。このように、発光装置187では、基板140の主面141の法線の向きが、突出部408によって本体部210とは反対側に向くように配置されていることで、光源部120は、本体部210とは反対側に光300を出射する。そのため、発光装置187によれば、簡便な構成で本体部210に向かう光300の量を減らすことができる。
 なお、図11~図14に示す発光部用レンズ124、124の形状は、あくまで一例である。例えば、発光部用レンズには、傾斜面が3つ設けられていてよいし、傾斜面が凸状になっている等、任意に変更されてよい。
 <変形例7>
 図16は、実施の形態3の変形例7に係る発光装置187aを示す断面図である。
 発光装置187aは、蓋部110と、端子部113と、パッキン114と、ヒートシンク115と、放熱シート116と、光源部120と、レンズ130aと、基板140aと、を備える。
 基板140aは、光源部120が載置される主面141aを有する基板である。基板140aには、突出部408aが形成されている。
 突出部408aは、基板140a(より具体的には、基板140aの主面141a)に形成され、レンズ130aに向かって突出してレンズ130a(より具体的には、レンズ130aの内面131)と接触する凸部である。突出部408aは、レンズ130aと接触する基板140aの主面141aのうちの一部にのみ形成されている。これにより、基板140aを配置した場合に、基板140aは、基板140aにおける光源部120が載置される主面141aの法線の向きが、本体部210とは反対側に向くように配置される。本実施の形態では、光源部120が出射する光300の光軸310bと、基板140aの主面141aの法線方向とが一致する。つまり、基板140aの主面141aの法線の向きは、光源部120が光300を出射する向きと同じである。このように、発光装置187aでは、基板140aの主面141aの法線の向きが、突出部408aによって本体部210とは反対側に向くように配置されていることで、光源部120は、本体部210とは反対側に光300を出射する。そのため、発光装置187aによれば、簡便な構成で本体部210に向かう光300の量を減らすことができる。
 <変形例8>
 図17は、実施の形態3の変形例8に係る発光装置188を示す断面図である。
 発光装置188は、蓋部110と、端子部113と、パッキン114と、ヒートシンク115と、放熱シート116と、光源部120cと、レンズ130aと、基板140と、を備える。
 図18は、実施の形態3の変形例8に係る光源部120cを示す断面図である。
 光源部120cは、光300を出射する光源である。光源部120cは、例えば、光300として近赤外光を出射する。
 光源部120cは、実装基板122aと、発光部123と、発光部用レンズ124と、を備える。
 実装基板122aは、光300を出射する発光部123が実装される基板である。実装基板122aは、発光部123が実装される実装面122dとは反対側の接続面122cにおいて、半田等の接着部材である接着部121を介して基板140と接続されている。
 ここで、実装基板122aは、実装基板122aにおける発光部123が載置される実装面122dの法線の向きが、本体部210とは反対側に向くように配置されている。例えば、基板140の主面141と実装基板122aの接続面122cとは、平行となっている。また、実装基板122aの接続面122cと実装基板122aの実装面122dとは、平行となっておらず、交差する。つまり、基板140の主面141と実装基板122aの実装面122dとは、平行となっておらず、交差する。
 本実施の形態では、光源部120cが出射する光300の光軸310bと、実装基板122aの実装面122dの法線方向とが一致する。つまり、実装基板122aの実装面122dの法線の向きは、光源部120cが光300を出射する向きと同じである。このように、発光装置188では、実装基板122aの実装面122dの法線の向きが本体部210とは反対側に向くように、実装基板122aに実装面122dが設けられていることで、光源部120cは、本体部210とは反対側に光300を出射する。そのため、発光装置188によれば、簡便な構成で本体部210に向かう光300の量を減らすことができる。
 なお、接続面122cと実装面122dとのなす角度は、光300が路面に照射される角度であればよく、特に限定されない。
 <変形例9>
 図19は、実施の形態3の変形例9に係る発光装置189を示す断面図である。なお、図19においては、実施の形態3の変形例9に係る発光装置189が備える光源部120近傍を拡大して示している。発光装置189は、光源部及び接着部以外の構成要素が発光装置188と同様である。
 実施の形態3の変形例9に係る発光装置189では、実装基板122は、発光部123が実装される実装面122bとは反対側の接続面122cにおいて、半田等の接着部材である接着部121a、121b、及び、121cを介して基板140と接続されている。
 接着部121a、121b、及び、121cは、それぞれ、光源部120が載置される基板140、及び、光源部120と基板140との間で、光源部120と基板140とを接着する接着部材である。
 接着部121aと接着部121bと接着部121cとは、この順に並んで配置されている。接着部121aは、接着部121b及び121cよりも本体部210側に位置している。また、接着部121bは、接着部121cよりも本体部210側に位置している。
 ここで、接着部121aは、接着部121b及び121cよりも基板140から光源部120までの幅が広い。より具体的には、接着部121aは、接着部121b及び121cよりも基板140の主面141から光源部120が備える実装基板122の接続面122cまでの長さが長い。また、接着部121bは、接着部121cよりも基板140から光源部120までの幅が広い。
 このように、発光装置189が備える複数の接着部(接着部121a、121b、及び、121c)は、本体部210側に位置している程、基板140から光源部120までの幅が広い。例えば、発光装置189が備える接着部は、本体部210側に位置する第1接着部(例えば、接着部121a)と、本体部210側とは反対側に位置する第2接着部(例えば、接着部121c)と、を有する。当該第1接着部は、当該第2接着部よりも基板140から光源部120までの幅が広い。本実施の形態では、当該第1接着部は、当該第2接着部よりもZ軸方向の長さが長い。このように、発光装置189では、接着部121a、121b、及び、121cが本体部210側に向かう光300を減じるための構造である減光部となっている。
 これによれば、実装基板122の法線の向きが、本体部210とは反対側に向くように配置される。本実施の形態では、光源部120が出射する光300の光軸310bと、実装基板122の実装面122bの法線方向とが一致する。つまり、実装基板122の実装面122bの法線の向きは、光源部120が光300を出射する向きと同じである。このように、発光装置189では、実装基板122の実装面122bの法線の向きが、接着部121a、121b、及び、121cによって本体部210とは反対側に向くように配置されていることで、光源部120は、本体部210とは反対側に光300を出射する。そのため、発光装置189によれば、簡便な構成で本体部210に向かう光300の量を減らすことができる。
 (実施の形態4)
 続いて、実施の形態4について説明する。なお、実施の形態4の説明においては、実施の形態1~3との差異点を中心に説明し、実施の形態1~3で説明した構成と実質的に同様の構成についてはそれぞれ同様の符号を付し、説明を一部簡略化又は省略する場合がある。
 図20は、実施の形態4に係る監視システム201を示す正面図である。
 監視システム201は、光源ユニット100を備える撮像システムである。本実施の形態では、監視システム201は、支柱(第1支持体)211と、支持部(第2支持体)221と、段差部230と、光源ユニット100と、を備える。
 支柱211は、支持部221を支持する電信柱等の柱状部材である。支柱211は、支柱211の側方で支持部221を支持する。
 支持部221は、光源ユニット100を支持する支持体であって、支柱211の側方に取り付けられる部材である。支持部221は、例えば、電信柱に取り付けられている街路灯(照明器具)である。支持部221は、支柱211の側方で支柱211に支持され、且つ、支柱211の側方に延在している。支持部221は、段差部230を介して光源ユニット100を支持する。
 以上説明したように、各実施の形態に係る発光装置及び光源ユニットは、移動体200だけでなく、監視システム201等の、発光装置が出射した光が第1支持体で反射されるような構成を有するシステムに対して好適である。
 また、本実施の形態では、支柱211と、発光装置180と、撮像装置190とは、この順に並んで配置されている。支柱211と、撮像装置190と、発光装置180とは、この順に並んで配置されていてもよい。
 また、撮像装置190は、発光装置180よりも、発光装置180が光300を出射する向き(本実施の形態では、下方であってZ軸負方向)とは反対側に位置してもよい。本実施の形態では、撮像装置190は、発光装置180よりも上方に位置する。
 本実施の形態では、監視システム201は、発光装置180が光300を出射する向きの高さが互いに異なる複数の面を有する段差部230を備える。発光装置180と撮像装置190とは、当該複数の面において互いに異なる面にそれぞれ配置される。
 これによれば、撮像装置190に発光装置180から出射された光300が路面で反射されずに直接入射されることが抑制される。
 (実施の形態5)
 続いて、実施の形態5について説明する。なお、実施の形態5の説明においては、実施の形態1~4との差異点を中心に説明し、実施の形態1~4で説明した構成と実質的に同様の構成についてはそれぞれ同様の符号を付し、説明を一部簡略化又は省略する場合がある。
 [構成]
 図21は、実施の形態5に係る発光装置500を示す断面図である。図22は、実施の形態5に係る発光装置500を示す分解斜視図である。
 なお、図21においては、発光装置500が備える蓋部110等の一部の構成要素の図示を省略している。例えば、発光装置500は、図21に示す構成要素の他に、図3に示す発光装置180と同様に、さらに、蓋部110、端子部113、パッキン114、及び、緩衝材117等を備えてもよい。また、図22においては、発光装置500が備える基板140cと、遮蔽物510と、レンズ130cとを図示し、他の構成要素については図示を省略している。
 実施の形態5に係る移動体及び光源ユニットは、実施の形態1と発光装置の構成以外は同じである。例えば、発光装置500は、第1支持体が支持する第2支持体によって、当該第1支持体の側方に撮像装置190と並んで支持され、撮像装置190に検出される光を出射する。
 発光装置500は、下方(路面)に向けて光を出射する装置である。
 発光装置500は、ヒートシンク115bと、放熱シート116aと、光源部120と、レンズ130cと、基板140cと、遮蔽物510と、を備える。
 発光装置500は、第1支持体が支持する第2支持体によって、第1支持体の側方に撮像装置190と並んで支持され、撮像装置190に検出される光300を出射する装置である。
 例えば、第1支持体は、図1に示す本体部210であり、第2支持体は、図1に示すサイドミラー220である。例えば、発光装置500は、移動体200の進行方向から見た場合に、本体部210と撮像装置190との間に配置されている。
 発光装置500は、光を路面(下方)に向けて出射する。撮像装置190は、当該光の路面での反射光を検出することで、移動体200の周囲の路面を撮像する。
 なお、発光装置500と撮像装置190とは、移動体200の進行方向に並んで配置されていてもよい。
 或いは、例えば、第1支持体は、図20に示す支柱211であり、第2支持体は、図20に示す支持部221である。
 ヒートシンク115bは、基板140cにおける光源部120が配置される面である主面(載置面)141とは反対側の面である裏面142側に配置され、光源部120で発生した熱を放熱するための放熱部材である。ヒートシンク115bには、例えば、熱伝導性の高いアルミニウム金属、ステンレス鋼等が採用される。ヒートシンク115bには、放熱シート116aを介して基板140cが載置されている。
 放熱シート116aは、光源部120で発生した熱を基板140cからヒートシンク115bに放熱させやすくするためのシート状の部材である。放熱シート116aに採用される材料は、特に限定されず、例えば、樹脂材料等が採用される。また、放熱シート116aは、電気的絶縁性を有していてもよい。
 基板140cは、光源部120が載置される基板である。基板140cは、光源部120が載置される主面141でレンズ130cと接触して配置されている。基板140cの材料は、特に限定されないが、例えば、金属基板、セラミック基板、樹脂基板等が採用される。なお、基板140cは、フレキシブル基板でもよいし、リジッド基板でもよい。
 レンズ130cは、光源部120が出射した光が入射され、且つ、入射された光を出射する光学部材である。具体的には、レンズ130cは、光源部120の下方を覆うように配置され、光源部120が出射した光が入射され、入射された光の配光を制御して路面に向けて出射する投光用レンズである。ヒートシンク115b、放熱シート116a、光源部120及び基板140cは、レンズ130cに収容されている。
 レンズ130c(より具体的には、レンズ130cの母材)は、例えば、透光性を有するガラス材料又はアクリル若しくはポリカーボネート等の透明樹脂材料によって形成される。
 なお、本実施の形態において、レンズ130cの形状は、下方に突出した凸形状であるが、特に限定されるものではなく、例えば、平面形状でもよい。
 遮蔽物510は、光源部120とレンズ130cとの間に配置され、光源部120から出射された光のうち、レンズ130cにおける第1支持部側に位置する部分に向かう光の少なくとも一部を吸収、反射、又は、拡散する部材である。例えば、遮蔽物510は、光源部120から出射された光に対する高反射性を有する。
 図23は、実施の形態5に係る遮蔽物510及び光源部120を示す下面図である。図24は、実施の形態5に係る遮蔽物510を示す上面図である。
 遮蔽物510は、遮光部520と、平板部530と、を備える。
 遮光部520は、レンズ130cと光源部120との間であって、光源部120よりも第1支持体側(本実施の形態では、Y軸負方向側)に位置し、光源部120から出射された光のうち、レンズ130cにおける第1支持体側に位置する部分に向かう光の少なくとも一部を吸収、反射、又は、拡散する遮光部分である。
 例えば、遮光部520は、光源部120が出射した光の光軸よりもY軸負方向側に位置する部分に設けられている。遮光部520は、例えば、レンズ130cの内面131に沿って湾曲した形状(例えば、半椀状)となっている。
 また、遮光部520は、光源部120と接触していてもよいが、光源部120と非接触となっているとよい。遮蔽物510と光源部120とを非接触にすることにより、光源部120で発生した熱が遮蔽物510に伝わりレンズ130cと基板140cとで囲まれる空間に熱がこもることを抑制できる。
 なお、遮光部520と光源部120との間の距離は、任意に設定されてよく、特に限定されない。遮光部520と光源部120との間の距離は、例えば、1mm以上である。
 例えば、遮蔽物510の平面視(下面視)における中央部には、貫通孔である開口部560が設けられている。平面視した場合に、光源部120は、例えば、開口部560と重なる位置に配置される。光源部120が出射した光は、開口部560及びレンズ130cを通過して発光装置500の外部に出射される。遮光部520は、例えば、平面視で円形に設けられた開口部560の第1支持体側の半分を覆うように設けられる。
 これにより、光源部120から出射された光の一部が遮蔽物510(より具体的には、遮光部520)によって吸収、反射、又は、拡散されることで、光源部120が出射した光は、第1支持体側に向かいにくくなる。そのため、発光装置500によれば、第1支持体側に向かう光の量が、第1支持体とは反対側に向かう光の量よりも少なくなる。
 なお、遮光部520は、平面視した場合に、光源部120を覆ってもよいし、覆わなくてもよい。
 例えば、遮光部520は、基板140cの主面141を平面視した場合における光源部120と少なくとも一部が重なる位置から、光源部120と第1支持体との間まで連続して設けられている。つまり、遮光部520は、例えば、光源部120の下方であって、基板140cの主面141を平面視した場合における光源部120と重なる位置から、光源部120の側方までを連続して覆う。
 なお、光源部120と重なる位置は、例えば、平面視における光源部120の中心(例えば、光源部120から出射される光の光軸310)と重なる位置でもよいし、平面視における光源部120の中心より第1支持体側でもよい。
 本実施の形態では、遮光部520は、下面視した場合に光源部120の一部を覆う(重なる)突起部521を有する。突起部521が適切な位置及び形状で設けられることにより、発光装置500が出射する光の分布を適切な分布にしやすくできる。
 なお、突起部521のサイズ及び形状は、特に限定されない。突起部521のサイズは、例えば、平面視における光源部120よりも小さくてもよい。これによれば、例えば、光源部120から出射された光のうちで最も光強度が高い光源部120の直下に向かう光を突起部521によってレンズ130cから直接出射されることを抑制できる。そのため、撮像装置190で検出される光の輝度むらが抑制され得る。突起部521のサイズは、例えば、図23に示すX軸方向の長さ(幅)が2mm程度となっている。
 平板部530は、レンズ130cと基板140cの主面141との間で主面141に載置される平板状の部分である。遮光部520及び平板部530は、一体に設けられている。
 遮蔽物510に採用される部材は、光源部120が出射した光の少なくとも一部を吸収、反射、又は、拡散する部材であればよく、特に限定されない。
 遮蔽物510は、例えば、光源部120が出射した光に対して光反射性を有する金属材料等によって形成される。或いは、遮蔽物510は、光源部120が出射した光を拡散(或いは、屈折)させるためのシリカ粒子又はチタン粒子等の光拡散剤が含有された樹脂材料等によって形成される。或いは、遮蔽物510は、光源部120が出射した光を吸収する色素等の光吸収剤が含有された樹脂材料等によって形成される。
 具体的に例えば、遮蔽物510は、PC(ポリカーボネート)によって形成されてもよい。言い換えると、遮蔽物510は、例えば、ポリカーボネートを含む材料によって構成されてもよい。或いは、例えば、遮蔽物510は、PP(ポリプロピレン)、PPS(ポリフェニレンサルファイド)、又は、PMMA(ポリメチルメタクリレート、いわゆるアクリル)によって形成されてもよい。
 なお、遮光部520と平板部530とは、同じ材料で構成されてもよいし、異なる材料で構成されてもよい。遮光部520と平板部530とが異なる材料で構成される場合、遮光部520が、光源部120が出射した光を吸収、反射、又は、拡散できる構成であればよく、平板部530は、任意の構成でよい。また、吸収、反射、又は、拡散できる構成とは、光の一部を吸収し且つ当該光の他の一部を反射できる構成等でもよいし、光の一部を吸収し且つ当該光の他の一部を拡散できる構成等でもよく、吸収、反射、又は、拡散するための構成が任意に組み合わされてもよい。つまり、遮蔽物510は、吸収、反射、及び、拡散の少なくとも1つが可能な構成であればよい。
 また、遮光部520と平板部530とのそれぞれの厚みは、特に限定されない。例えば、平板部530の厚み(例えば、最も薄い部分の厚み)は、1mm程度である。
 また、遮蔽物510は、光の少なくとも一部を吸収、反射、又は、拡散できればよく、例えば、光の70%以上~90%以上を吸収、反射、又は、拡散できればよい。
 具体的に例えば、遮蔽物510は、光源部120が出射した光の70%以上を反射できてもよい。また、例えば、遮蔽物510は、光源部120が出射した光の80%以上を反射できてもよい。また、例えば、遮蔽物510は、光源部120が出射した光の90%以上を反射できてもよい。
 また、例えば、遮蔽物510は、光源部120が出射した光の20%以下を透過できてもよい。また、例えば、遮蔽物510は、光源部120が出射した光の5%以下を透過できてもよい。また、例えば、遮蔽物510は、光源部120が出射した光の1%以下を透過できてもよい。
 なお、ここでいう20%及び5%等の透過率は、例えば、遮蔽物510が2mm厚である場合における光の透過率を示す。
 また、遮蔽物510の色は、黒色でも白色でも他の色でもよく、特に限定されないが、白色であるとよい。これによれば、遮蔽物510が光により熱を発生しにくくできる。
 また、遮蔽物510の表面には平面視で外縁まで延びた凹部(徐変部)が設けられてもよい。また、遮蔽物510(例えば、平板部530)は、平面視において中央部側から外縁部に向かうにつれて厚みが薄くなっている部分(徐変部)が設けられていてもよい。これによれば、面剛性を上げる効果があり、耐振動性を向上させることができ、且つ、収縮等による反り等の変形が発生することを抑制できる。また、当該凹部に対向するレンズ130cの表面には、凹部が形成されていてもよい。
 また、遮蔽物510には、梁(いわゆるリブ)が設けられていてもよい。具体的には、平板部530の第1支持体側の縁部には、梁が設けられていてもよい。これによれば、発光装置500での異音の発生が抑制される。
 また、上記した徐変部と上記した梁との両方が平板部530に設けられていてもよい。これによれば、発光装置500での異音の発生がさらに抑制される。
 また、遮蔽物510(より具体的には、平板部530)には、平板部530の主面の法線方向(本実施の形態では、Z軸方向)に貫通する貫通孔541が形成されている。また、基板140cには、主面141の法線方向(本実施の形態では、Z軸方向)に貫通する貫通孔542が形成されている。また、放熱シート116aには、放熱シート116aの主面の法線方向(本実施の形態では、Z軸方向)に貫通する貫通孔543が形成されている。また、ヒートシンク115bには、ヒートシンク115bの主面の法線方向(本実施の形態では、Z軸方向)に貫通する貫通孔544が形成されている。
 これらの貫通孔541~544は、下面視で互いに重なるように配置されている。これらの貫通孔541~544には、レンズ130cに設けられた係合部550が通されて配置される。
 係合部550は、レンズ130cに設けられた柱状部である。貫通孔541~544に係合部550が貫通して配置される構成により、ヒートシンク115bと、放熱シート116aと、基板140cと、遮蔽物510と、レンズ130cとの位置合わせが容易になる。
 係合部550は、例えば、貫通孔541~544に通されて配置された後(つまり、各構成要素の位置決めがされた後)、熱カシメ等が施されることによって貫通孔541~544から外れないように加工(変形)される。
 なお、ヒートシンク115bと、放熱シート116aと、基板140cと、遮蔽物510とには、貫通孔541~544がそれぞれ2つずつ設けられているが、1つずつでもよいし、3つ以上ずつでもよい。レンズ130cには、貫通孔541~544の数に応じて係合部550が設けられればよい。
 また、貫通孔541~544の配置は、任意でよく、特に限定されない。例えば、遮蔽物510には、平面視した場合に、開口部560に対して互いに反対側の位置関係(例えば、対角の位置)となるように2つの貫通孔541が設けられてもよい。
 また、ヒートシンク115bと、放熱シート116aと、基板140cと、遮蔽物510とには、貫通孔541~544とは異なる貫通孔(呼吸孔)が、互いに連通するようにさらに設けられていてもよい。これによれば、呼吸孔を通じて空気がレンズ130c及び基板140cで囲まれた領域における空気が当該呼吸孔を通じて当該領域の内外を行き来できるので、当該領域に熱がこもることを抑制できる。なお、当該呼吸孔は、ヒートシンク115bと、放熱シート116aと、基板140cと、遮蔽物510とのそれぞれに、例えば、2箇所ずつ設けられてもよい。これによれば、一方の呼吸孔に陽圧が加わり、他方の呼吸孔に負圧が加わるようになるため、つまり、当該2箇所の呼吸孔が当該領域における空気の入口と出口として機能するため、当該領域に熱がこもることをさらに抑制できる。
 また、当該呼吸孔には、空気を通し且つ水を通さないシール(いわゆる遮水シート)が配置されてもよい。
 また、例えば、遮蔽物510には、レンズ130cに対して位置決めができるように、ピン(例えば、凸部)が形成されていてもよい。また、レンズ130cには、当該凸部と係合する凹部が形成されていてもよい。
 [効果等]
 以上説明したように、実施の形態5に係る発光装置500は、第1支持体(例えば、本体部210)が支持する第2支持体(例えば、サイドミラー220)によって、当該第1支持体の側方に撮像装置190と並んで支持され、撮像装置190に撮像される光を出射する発光装置である。発光装置500は、当該光を出射する光源部120と、光源部120が出射した光が入射され、且つ、入射された光を出射するレンズ130cと、を備える。光源部120から出射された光のうち、レンズ130cにおける第1支持体側(本実施の形態では、Y軸負方向側)に位置する部分に向かう光の量は、レンズ130cにおける第1支持体側とは反対側に位置する部分に向かう光の量よりも少ない。また、発光装置500は、さらに、光源部120とレンズ130cとの間に配置された遮蔽物510を備える。遮蔽物510は、光源部120から出射された光のうち、レンズ130cにおける第1支持体側に位置する部分に向かう光の少なくとも一部を吸収、反射、又は、拡散する。発光装置500は、さらに、光源部120が載置される載置面(主面141)を有する基板140cを備える。遮蔽物510は、例えば、レンズ130cと光源部120との間であって、光源部120よりも第1支持体側に位置し、光源部120から出射された光のうち、レンズ130cにおける第1支持体側に位置する部分に向かう光の少なくとも一部を吸収、反射、又は、拡散する遮光部520と、レンズ130cと主面141との間で主面141に載置される平板部530と、を有する。
 これによれば、遮光部520によって光源部120から出射された光のうちで第1支持体側に向かう光を減らすことができる。さらに、吸着ヘッド等を備えるロボット等の発光装置500を組み立てる組み立て装置が、平板部530を当該吸着ヘッドで吸着しやすくできる。したがって、平板部530によって、発光装置500を製造しやすくできる。さらに、平板部530が基板140cとレンズ130cとの間に位置する、具体的には、平板部530が基板140cとレンズ130cとに挟まれることで、遮蔽物510の位置ずれが発生しにくくなる。したがって、発光装置500は、振動等により光学特性が変化しにくくなる。
 また、例えば、遮光部520は、主面141を平面視した場合における光源部120と少なくとも一部が重なる位置から、光源部120と第1支持体との間まで連続して設けられている。
 これによれば、光源部120から出射された光は、遮光部520によって第1支持体にさらに向かいにくくできる。そのため、発光装置500によれば、ハレーションがさらに発生しにくくなる。
 また、例えば、遮蔽物510は、ポリカーボネートを含む。つまり、遮蔽物510は、ポリカーボネートによって構成される。
 ポリカーボネートであれば、例えば、光源部120が出射した光を反射させるための材料を含有させやすい。そのため、これによれば、遮蔽物510における光源部120から出射された光の反射率を向上させやすい。また、ポリカーボネートであれば、任意の形状にさせやすい。そのため、これによれば、遮蔽物510における光源部120から出射された光の反射率を向上させるために、表面加工を施したり形状を変形させたりできる。
 [変形例]
 続いて、実施の形態5の変形例について説明する。なお、実施の形態5の変形例の説明においては、実施の形態5との差異点を中心に説明し、実施の形態5で説明した構成と実質的に同様の構成についてはそれぞれ同様の符号を付し、説明を一部簡略化又は省略する場合がある。
 図25は、実施の形態5の変形例に係る遮蔽物511を示す下面図である。
 遮蔽物511は、遮蔽物510と同様に、光源部120とレンズ130cとの間に配置され、光源部120から出射された光のうち、レンズ130cにおける第1支持部側に位置する部分に向かう光の少なくとも一部を吸収、反射、又は、拡散する部材である。例えば、遮蔽物511は、光源部120から出射された光に対する高反射性を有する。
 遮蔽物511は、遮光部520aと平板部530とを有する。
 遮光部520aは、遮光部520と同様に、レンズ130cと光源部120との間であって、光源部120よりも第1支持体側(本実施の形態では、Y軸負方向側)に位置し、光源部120から出射された光のうち、レンズ130cにおける第1支持体側に位置する部分に向かう光の少なくとも一部を吸収、反射、又は、拡散する遮光部分である。
 例えば、遮光部520aは、光源部120が出射した光の光軸よりもY軸負方向側に位置する部分に設けられている。遮光部520aは、例えば、レンズ130cの内面131に沿って湾曲した形状(例えば、半椀状)となっている。
 上記した通り、本発明に係る発光装置は、例えば、第1支持体(例えば、移動体200の本体部210)が支持する第2支持体(例えば、サイドミラー220)によって、当該第1支持体の側方に撮像装置190と並んで支持され、撮像装置190に撮像される光を出射する発光装置である。
 ここで、遮光部520aは、レンズ130cにおける移動体200側に位置する部分に向かう光のうち、光源部120よりも移動体200の進行方向後方側に向かう光を、光源部120よりも移動体200の進行方向前方側に向かう光よりも多く、吸収、反射、又は、拡散する。言い換えると、遮光部520aは、レンズ130cにおける移動体200側に位置する部分に向かう光のうち、光源部120よりも移動体200の進行方向前方側に向かう光については、光源部120よりも移動体200の進行方向前方側に向かう光よりも、吸収、反射、又は、拡散する光量が少ない。
 本実施の形態では、平面視した場合に、遮光部520aにおける移動体200の進行方向前方側に位置する第1遮光部522の面積は、遮光部520aにおける移動体200の進行方向前方側に位置する第2遮光部523の面積よりも小さい。つまり、第1遮光部522の方が、第2遮光部523よりも光源部120が出射した光を遮光する部分が少ない。
 これによれば、光源部120から出射された光のうち、移動体200における進行方向前方側に向かう光が遮光部520aによってあまり遮光されない。
 サイドミラー220は、移動体200が自動車等の車両である場合に、移動体200が左ハンドルのときと右ハンドルのときとで、本体部210に対する取り付けられ方が異なることがある。例えば、左ハンドルの場合には、右ハンドルの場合と比較して、サイドミラー220における本体部210とは反対側の端部が、移動体200の進行方向前方側に位置されやすい。このようにサイドミラー220が位置すると、発光装置から移動体200の進行方向前方側に出射される光の量が、例えば、右ハンドルの場合にサイドミラー220に取り付けられた場合に発光装置から移動体200の進行方向前方側に出射される光の量よりも少なくなる。そのため、撮像装置190の直下から見て、移動体200の進行方向前方側の路面が適切に撮像されにくくなる。
 そこで、光源部120から出射された光のうち移動体200の進行方向前方側の光については遮光部520aによってあまり遮光(吸収、反射、又は、拡散)させないようにしておくことで、本体部210に対するサイドミラー220の設置位置が変わった場合においても、撮像装置190の直下から見て、移動体200の進行方向前方側の路面が適切に撮像されにくくなることが抑制される。
 例えば、図24に示すように、平面視した場合に、遮蔽物510における遮光部520のY軸正方向に位置する辺は、直線状となっている。
 一方、例えば、図25に示すように、平面視した場合に、遮蔽物511における遮光部520aのY軸正方向に位置する辺は、当該辺の中央部で屈曲している。例えば、当該中央部から見て、当該辺におけるX軸負方向側に位置する辺(第2遮光部523に含まれる辺)をX軸正方向側に延在させた仮想線(図25に示す二点鎖線)と、当該辺におけるX軸正方向側に位置する辺(第1遮光部522に含まれる辺)とのなす角度αが0より大きくなっている。つまり、図25に示す二点鎖線と、当該中央部から見て、当該辺におけるX軸正方向側に位置する辺のX軸正方向側に延在させた仮想線(図25に示す三点鎖線)とのなす角度αが0より大きくなっている。一方、遮蔽物510では、αが凡そ0となっている。
 なお、角度αは、任意に設定されてよい。例えば、角度αは、5度以上でもよいし、10度以上でもよい。また、例えば、角度αは、30度以下でもよい。
 また、遮光部520aが、レンズ130cにおける移動体200側に位置する部分に向かう光のうち、光源部120よりも移動体200の進行方向後方側に向かう光を、光源部120よりも移動体200の進行方向前方側に向かう光よりも多く、吸収、反射、又は、拡散するために、上記では、第1遮光部522の面積が、第2遮光部523の面積よりも小さい例について説明した。例えば、第1遮光部522及び第2遮光部523の面積が同じであっても、反射率及び透過率等の光学特性が第1遮光部522と第2遮光部523とで異なることにより、遮光部520aが、レンズ130cにおける移動体200側に位置する部分に向かう光のうち、光源部120よりも移動体200の進行方向後方側に向かう光を、光源部120よりも移動体200の進行方向前方側に向かう光よりも多く、吸収、反射、又は、拡散させてもよい。
 また、例えば、遮光部520aは、第1遮光部522を有さず、第2遮光部523のみを有してもよい。つまり、遮光部520aは、レンズ130cにおける移動体200側に位置する部分に向かう光のうち、光源部120よりも移動体200の進行方向後方側に向かう光のみを遮光してもよい。言い換えると、遮光部520aは、光源部120とレンズ130cとの間で、光源部120よりも移動体200側で、且つ、移動体200の進行方向後方側に位置してもよい。
 (他の実施の形態)
 以上、各実施の形態及び各変形例に係る発光装置等について説明したが、本発明は、上記各実施の形態及び各変形例に限定されるものではない。
 例えば、上記実施の形態では、発光部が備える光源の一具体例としてLEDを例示したが、半導体レーザ等の半導体発光素子、又は、有機EL(Electro Luminescence)素子もしくは無機EL素子等の固体発光素子が光源として採用されてもよい。
 また、例えば、第1支持体と第2支持体とは、別体でなくてもよく、一体に形成されていてもよい。
 また、例えば、光源部は、SMD(Surface Mount Device)構造のLEDモジュールとして実現されてもよいし、基板にLEDチップが直接実装された、いわゆるCOB(Chip On Board)構造のLEDモジュールでもよい。
 また、発光装置が備えるレンズにおける車両側に位置する、光源からの光が出射される内面及び外面の少なくとも一方には、凹部が設けられていてもよい。これによれば、凹部によって光源が出射された光は屈折又は反射されて車両に向かいにくくなる。
 また、例えば、このように設けられた凹部は、レンズの他部と表面が滑らかに接続しているとよい。これにより、ハレーションが抑制される。
 なお、レンズの厚みは、特に限定されないが、例えば、最薄の部分で0.5mm以上あればよい。これにより、レンズの成形性が向上される。
 また、上記実施の形態では、例えば、図3等に示すように、光源部120から出射される方向がZ軸方向と平行となるように光源ユニット100がサイドミラー220に取り付けられる場合を例示したが、光源ユニット100の第2支持体への取り付けられ方は、これに限定されない。例えば、光源ユニット、発光装置、及び/又は、撮像装置は、Z軸方向(例えば、鉛直方向)に対して光軸が任意に傾けられて第2支持体に配置されてよい。例えば、光源ユニット(よい具体的には、発光装置)の光軸を、鉛直方向に対して第1支持体(例えば、本体部210)とは反対側に向かうように10°~20°程度傾斜するように当該光源ユニットを第2支持体(例えば、サイドミラー220)配置してもよい。
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態、または、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。
 例えば、発光装置500が備える発光部は、光源部120ではなく、光源部120a~120cのいずれかでもよい。
 また、例えば、発光装置500は、減光部400、400a、403を備えてもよい。
 これらのように、各実施の形態及び変形例に係る光源ユニットが備える各構成要素は、本発明の趣旨を逸脱しない範囲で任意に組み合わされて実現されてよい。
 100 光源ユニット
 115、115a、115b ヒートシンク
 120、120a、120b、120c 光源部
 121、121a、121b、121c 接着部
 122、122a 実装基板
 122b、122d 実装面
 123 発光部
 124、124a 発光部用レンズ
 130、130a、130b、130c、1300 レンズ
 131 内面
 132 外面
 140、140a、140c 基板
 141、141a 主面(載置面)
 180、180a、181、182、183、184、185、186、187、187a、188、189、500 発光装置
 190 撮像装置
 200 移動体
 210 本体部(第1支持体)
 211 支柱(第1支持体)
 220 サイドミラー(第2支持体)
 221 支持部(第2支持体)
 300、301、302 光
 310、310a、310b 光軸
 400、400a、403 減光部
 401 内面減光部
 402 外面減光部
 404、405、406、407、510、511 遮蔽物
 408、408a 突出部
 520、520a 遮光部
 530 平板部

Claims (23)

  1.  第1支持体が支持する第2支持体によって、前記第1支持体の側方に撮像装置と並んで支持され、前記撮像装置に検出される光を出射する発光装置であって、
     前記光を出射する光源部と、
     前記光源部が出射した前記光が入射され、且つ、入射された前記光を出射するレンズと、を備え、
     前記レンズの一部には、前記レンズに入射された前記光のうちの前記第1支持体側に向けて出射される光の少なくとも一部を減ずる減光部が設けられている
     発光装置。
  2.  前記減光部は、前記レンズの前記光源部と対向する面に設けられている
     請求項1に記載の発光装置。
  3.  前記減光部は、前記レンズの前記光源部側と対向する面とは反対側の面に設けられている
     請求項1又は2に記載の発光装置。
  4.  前記減光部は、シボ加工、蒸着、2色成形、インサート成形、又は、レーザ照射により形成される構造を有する
     請求項1~3のいずれか1項に記載の発光装置。
  5.  前記減光部は、前記レンズに入射される光を、吸収、反射、又は、拡散することで、前記レンズから出射する光を減光する
     請求項1~4のいずれか1項に記載の発光装置。
  6.  第1支持体が支持する第2支持体によって、前記第1支持体の側方に撮像装置と並んで支持され、前記撮像装置に検出される光を出射する発光装置であって、
     前記光を出射する光源部と、
     前記光源部が出射した前記光が入射され、且つ、入射された前記光を出射するレンズと、
     前記レンズから出射された前記光のうちの前記第1支持体側に向かう光の少なくとも一部を反射又は拡散する減光部と、を備える
     発光装置。
  7.  前記減光部は、前記レンズの前記光源部側とは反対側の面に接触して配置されている
     請求項6に記載の発光装置。
  8.  第1支持体が支持する第2支持体によって、前記第1支持体の側方に撮像装置と並んで支持され、前記撮像装置に検出される光を出射する発光装置であって、
     前記光を出射する光源部と、
     前記光源部が出射した前記光が入射され、且つ、入射された前記光を出射するレンズと、を備え、
     前記光源部から出射された前記光のうち、前記レンズにおける前記第1支持体側に位置する部分に向かう光の量は、前記レンズにおける前記第1支持体側とは反対側に位置する部分に向かう光の量よりも少ない
     発光装置。
  9.  さらに、前記光源部と前記レンズとの間に配置された遮蔽物を備え、
     前記遮蔽物は、前記光源部から出射された前記光のうち、前記レンズにおける前記第1支持体側に位置する部分に向かう光の少なくとも一部を吸収、反射、又は、拡散する
     請求項8に記載の発光装置。
  10.  さらに、前記光源部が載置される載置面を有する基板を備え、
     前記遮蔽物は、
     前記レンズと前記光源部との間であって、前記光源部よりも前記第1支持体側に位置し、前記光源部から出射された前記光のうち、前記レンズにおける前記第1支持体側に位置する部分に向かう光の少なくとも一部を吸収、反射、又は、拡散する遮光部と、
     前記レンズと前記載置面との間で前記載置面に載置される平板部と、を有する
     請求項9に記載の発光装置。
  11.  前記遮光部は、前記載置面を平面視した場合における前記光源部と少なくとも一部が重なる位置から、前記光源部と前記第1支持体との間まで連続して設けられている
     請求項10に記載の発光装置。
  12.  前記第1支持体は、移動体の本体部であり、
     前記第2支持体は、前記本体部に設けられたサイドミラーであり、
     前記遮光部は、前記レンズにおける前記移動体側に位置する部分に向かう光のうち、前記光源部よりも前記移動体の進行方向後方側に向かう光を、前記光源部よりも前記移動体の進行方向前方側に向かう光よりも多く、吸収、反射、又は、拡散する
     請求項10又は11に記載の発光装置。
  13.  前記遮蔽物は、ポリカーボネートを含む
     請求項9~12のいずれか1項に記載の発光装置。
  14.  さらに、前記光源部が載置される基板を備え、
     前記遮蔽物は、前記基板に配置された電子部品である
     請求項9に記載の発光装置。
  15.  さらに、
     前記光源部が載置される基板と、
     前記基板が載置されるヒートシンクと、を備え、
     前記遮蔽物は、前記ヒートシンクの一部であり、前記基板を貫通して前記光源部と前記レンズとの間に配置されている
     請求項14に記載の発光装置。
  16.  前記光源部は、
     前記光を出射する発光部と、
     前記発光部が出射した前記光が入射され、且つ、入射された前記光を前記レンズに向けて出射する発光部用レンズと、を有し、
     前記発光部用レンズは、
     前記第1支持体側に位置する面が、前記発光部が出射した光の光軸に対して傾斜した平面、又は、前記発光部に向けて突出するように湾曲した湾曲面である
     請求項8に記載の発光装置。
  17.  さらに、前記光源部が載置される基板を備え、
     前記基板は、前記基板における前記光源部が載置される主面の法線の向きが、前記第1支持体とは反対側に向くように配置されている
     請求項8に記載の発光装置。
  18.  さらに、(i)前記レンズに形成され、且つ、前記基板に向かって突出して前記基板と接触している、又は、(ii)前記基板に形成され、且つ、前記レンズに向かって突出して前記レンズと接触している突出部を有し、
     前記突出部は、前記基板又は前記レンズにおいて前記第1支持体とは反対側に設けられている
     請求項17に記載の発光装置。
  19.  前記光源部は、
     前記光を出射する発光部と、
     前記発光部が載置される実装基板と、を有し、
     前記実装基板は、前記実装基板における前記発光部が載置される実装面の法線の向きが、前記第1支持体とは反対側に向くように配置されている
     請求項8に記載の発光装置。
  20.  さらに、前記光源部が載置される基板、及び、前記光源部と前記基板との間で、前記光源部と前記基板とを接着する接着部と、を備え、
     前記接着部は、前記第1支持体側に位置する第1接着部と、前記第1支持体側とは反対側に位置する第2接着部と、を有し、
     前記第1接着部は、前記第2接着部よりも前記基板から前記光源部までの幅が広い
     請求項8に記載の発光装置。
  21.  前記光源部は、前記光として近赤外光を出射する
     請求項1~20のいずれか1項に記載の発光装置。
  22.  請求項1~21のいずれか1項に記載の発光装置と、
     前記撮像装置と、を備える
     光源ユニット。
  23.  請求項22に記載の光源ユニットと、
     前記第1支持体である本体部と、
     前記第2支持体であるサイドミラーと、を備え、
     前記発光装置は、前記光を路面に向けて出射するように、前記サイドミラーに取り付けられており、
     前記撮像装置は、前記路面で反射された前記光を検出することで、前記路面の画像を生成する
     移動体。
PCT/JP2022/015429 2021-04-26 2022-03-29 発光装置、光源ユニット、及び、移動体 WO2022230551A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22795467.4A EP4332432A1 (en) 2021-04-26 2022-03-29 Light emitting apparatus, light source unit, and mobile body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-073891 2021-04-26
JP2021073891A JP6960589B1 (ja) 2021-04-26 2021-04-26 発光装置、光源ユニット、及び、移動体

Publications (1)

Publication Number Publication Date
WO2022230551A1 true WO2022230551A1 (ja) 2022-11-03

Family

ID=78409686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015429 WO2022230551A1 (ja) 2021-04-26 2022-03-29 発光装置、光源ユニット、及び、移動体

Country Status (3)

Country Link
EP (1) EP4332432A1 (ja)
JP (1) JP6960589B1 (ja)
WO (1) WO2022230551A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6448053A (en) * 1987-08-18 1989-02-22 Matsushita Electric Ind Co Ltd Video camera device
JPH0388480A (ja) * 1989-08-30 1991-04-12 Sumitomo Metal Mining Co Ltd ハレーション防止ccdカメラ装置
JP2005041240A (ja) * 2003-05-23 2005-02-17 Ichikoh Ind Ltd カメラユニット付きアウターミラー
JP2005266276A (ja) * 2004-03-18 2005-09-29 Sony Corp カメラ
JP2009300871A (ja) * 2008-06-16 2009-12-24 Edm Kk 画像処理装置用照明装置及び方法
JP2010266528A (ja) * 2009-05-12 2010-11-25 Honda Motor Co Ltd 車両用撮像装置および車両周辺監視装置
JP2011071093A (ja) * 2009-06-01 2011-04-07 Asahi Kasei Corp 照明器具
JP2015071386A (ja) 2013-10-04 2015-04-16 矢崎総業株式会社 車両用照明装置
JP2020019303A (ja) * 2018-07-30 2020-02-06 パナソニックIpマネジメント株式会社 光源ユニット及び車両
JP2020019304A (ja) * 2018-07-30 2020-02-06 パナソニックIpマネジメント株式会社 光源ユニット及び車両

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4231962B2 (ja) * 2003-03-31 2009-03-04 マツダ株式会社 車両用監視装置
JP2005085621A (ja) * 2003-09-09 2005-03-31 Nissan Motor Co Ltd 車両用暗視装置
JP4335228B2 (ja) * 2006-05-18 2009-09-30 株式会社村上開明堂 カメラ内蔵型バックミラー
JP2011184030A (ja) * 2010-03-11 2011-09-22 Koito Mfg Co Ltd カメラを内蔵した車両用灯具
WO2016152682A1 (ja) * 2015-03-23 2016-09-29 株式会社小糸製作所 車輌用撮像装置、車輌用灯具及び電子制御ユニット
KR20150065169A (ko) * 2015-05-19 2015-06-12 이스턴 마스텍 주식회사 자동차용 후방 카메라
US10873687B2 (en) * 2018-12-19 2020-12-22 Valeo North America, Inc. IR illuminator to avoid camera field-of-view

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6448053A (en) * 1987-08-18 1989-02-22 Matsushita Electric Ind Co Ltd Video camera device
JPH0388480A (ja) * 1989-08-30 1991-04-12 Sumitomo Metal Mining Co Ltd ハレーション防止ccdカメラ装置
JP2005041240A (ja) * 2003-05-23 2005-02-17 Ichikoh Ind Ltd カメラユニット付きアウターミラー
JP2005266276A (ja) * 2004-03-18 2005-09-29 Sony Corp カメラ
JP2009300871A (ja) * 2008-06-16 2009-12-24 Edm Kk 画像処理装置用照明装置及び方法
JP2010266528A (ja) * 2009-05-12 2010-11-25 Honda Motor Co Ltd 車両用撮像装置および車両周辺監視装置
JP2011071093A (ja) * 2009-06-01 2011-04-07 Asahi Kasei Corp 照明器具
JP2015071386A (ja) 2013-10-04 2015-04-16 矢崎総業株式会社 車両用照明装置
JP2020019303A (ja) * 2018-07-30 2020-02-06 パナソニックIpマネジメント株式会社 光源ユニット及び車両
JP2020019304A (ja) * 2018-07-30 2020-02-06 パナソニックIpマネジメント株式会社 光源ユニット及び車両

Also Published As

Publication number Publication date
JP6960589B1 (ja) 2021-11-05
EP4332432A1 (en) 2024-03-06
JP2022168437A (ja) 2022-11-08

Similar Documents

Publication Publication Date Title
CN110753169B (zh) 具有2部件元件的照相机
JP2002036949A (ja) 照明装置
JPWO2017086251A1 (ja) 灯具ユニット
US10976021B2 (en) Light projecting device having high light utilization efficiency
JP2017208206A (ja) 照明装置
JP6624550B2 (ja) 照明器具
JP6990851B2 (ja) 光源ユニット及び車両
JP2005129354A (ja) Led照明装置
WO2019177050A1 (ja) 車両用前照灯
KR20130103603A (ko) 자동차의 내부 조명을 위한 장치
US10429027B2 (en) Lamp unit, and lighting device and vehicle lamp using same
WO2022230551A1 (ja) 発光装置、光源ユニット、及び、移動体
EP1982866B1 (en) Lighting arrangement for illuminating the number plate of a motor-vehicle
JP7108853B2 (ja) 光源ユニット及び車両
CN112393198B (zh) 微型化光线投射装置
WO2023085066A1 (ja) 光源ユニット及び車両
US20190011101A1 (en) Lighting arrangement with exact positioning of an optical element
JP2019012617A (ja) 照明器具
WO2024062910A1 (ja) 発光装置、光源ユニット、および、車両
CN112393195A (zh) 光线投射装置
JP2006173031A (ja) 車両用照明装置
TWI694934B (zh) 微型化光線投射裝置
JP7474683B2 (ja) 車両用灯具
US11567241B2 (en) Light projection lens and mobile object
CN210107264U (zh) 微型化光线投射装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795467

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18285363

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022795467

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022795467

Country of ref document: EP

Effective date: 20231127