WO2022230210A1 - 水分散装置及び親水性多糖高分子の水分散液 - Google Patents

水分散装置及び親水性多糖高分子の水分散液 Download PDF

Info

Publication number
WO2022230210A1
WO2022230210A1 PCT/JP2021/022237 JP2021022237W WO2022230210A1 WO 2022230210 A1 WO2022230210 A1 WO 2022230210A1 JP 2021022237 W JP2021022237 W JP 2021022237W WO 2022230210 A1 WO2022230210 A1 WO 2022230210A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
tank
water
reaction
reaction tank
Prior art date
Application number
PCT/JP2021/022237
Other languages
English (en)
French (fr)
Inventor
健 加藤木
Original Assignee
Caetus Technology株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Caetus Technology株式会社 filed Critical Caetus Technology株式会社
Priority to JP2021559881A priority Critical patent/JP7007781B1/ja
Priority to CN202180097155.XA priority patent/CN117157346A/zh
Publication of WO2022230210A1 publication Critical patent/WO2022230210A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media

Definitions

  • the present invention relates to a water dispersion device and an aqueous dispersion of a hydrophilic polysaccharide polymer obtained using the water dispersion device.
  • Hydrophilic polysaccharide polymers in which monosaccharides are polymerized by glucoside bonds, such as cellulose nanofibers, are generally stored as dry powders and redispersed in water, etc. when used.
  • Patent Document 1 discloses a method for producing a cellulose nanofiber dispersion by adding a redispersion accelerator or a dispersant.
  • the dispersion liquid of cellulose nanofibers contains the third component, there is a problem that post-treatment requires cost and time depending on the intended use of the dispersed cellulose nanofibers.
  • the remaining third component such as the redispersion accelerator and the dispersing agent may have a chemical effect on the subsequent processing steps and reaction steps of the cellulose nanofibers.
  • the present invention has been made in view of the above circumstances, and provides a simple water dispersion device that does not require the application of high shear force or physical force, and does not require the addition of a redispersion accelerator or a dispersant. Make it part of the task to In particular, one of the objects is to provide a water dispersion apparatus capable of easily and uniformly dispersing a hydrophilic polysaccharide polymer in water.
  • the water dispersion apparatus of the present invention includes a reaction tank having an aqueous solvent and a hydrophobic hydrocarbon therein and having a liquid-liquid interface formed therein, and an intake tank for recovering the aqueous solvent.
  • an oil tank having therein an oil having the same composition as the hydrophobic hydrocarbon in the reaction tank or a hydrophobic hydrocarbon oil having a different composition from the hydrophobic hydrocarbon in the reaction tank, the oil tank and the reaction Between the tanks, a flow path capable of controlling oil feeding state and oil feeding stop state, and a water intake valve that can be opened and closed at the bottom or side of the reaction tank, and when the flow path is in the oil feeding state,
  • the oil in the oil tank is sent to the reaction tank, and when the water intake valve is in an open state, the aqueous solvent in the reaction tank is configured to flow into the intake tank, and the hydrophobic hydrocarbon in the reaction tank and the oil in the oil bath has a lower density than the water-based solvent.
  • the reaction tank side of the channel is preferably arranged above the liquid-liquid interface.
  • the oil tank and/or the reaction tank are preferably capable of temperature control and/or stirring.
  • a sieve may be further included in the upper part of the oil tank.
  • the oil tank disperses the powder containing the hydrophilic polysaccharide polymer in the oil, and the reaction tank dissolves the hydrophilic polysaccharide polymer sent through the flow path and dispersed in the oil. It may be one that is dispersed in the water-based solvent after being sieved.
  • the sieve may be configured to reduce the diameter of the hydrophilic polysaccharide polymer powder to a predetermined value or less, and the hydrophilic polysaccharide polymer having a powder diameter of the predetermined value or less is introduced into the oil tank. .
  • the hydrophilic polysaccharide polymer may contain one or more of cellulose nanofibers, cellulose, cellulose derivatives, glucomannan, carrageenan, chitin, starch, glycogen, agarose, pectin, and xanthan gum.
  • the reaction vessel may further contain a reaction terminator. It is preferable that the reaction terminator has a density lower than that of the aqueous solvent and a density higher than that of the hydrophobic hydrocarbon.
  • the reaction terminator is preferably an alcohol.
  • the aqueous dispersion of the hydrophilic polysaccharide polymer of the present invention is characterized by being obtained using the above water dispersion apparatus.
  • water dispersion apparatus of the present invention water dispersion can be easily carried out, there is no need to apply a high shearing force or physical force for water dispersion, and production time and production costs can be reduced.
  • a hydrophilic polysaccharide polymer that tends to form aggregates is applied to the water dispersion device, it can be easily and uniformly dispersed in water, and a redispersion accelerator, a dispersant, etc. are added for water dispersion. Since there is no need to do so, the third component such as the redispersion accelerator and the dispersant does not remain in the aqueous dispersion, and the treatment after recovery of the dispersion can be simplified.
  • the aqueous dispersion of hydrophilic polysaccharide polymer obtained by using the water dispersion apparatus of the present invention can have a more uniform particle size distribution.
  • FIG. 1 shows a photograph of cellulose nanofibers that are aggregated by adding water directly to cellulose nanofiber powder.
  • 1 shows a photograph of an aqueous dispersion of hydrophilic polysaccharide polymer powder containing hydrophilic polysaccharide polymer, to which the principle of the water dispersion apparatus of the present invention is applied.
  • Fig. 2 shows the particle size distribution of dispersed cellulose nanofibers in a water dispersion to which the principle of the water dispersion apparatus of the present invention is applied.
  • 1 shows the particle size distribution of dispersed cellulose nanofibers in the aqueous dispersion of Comparative Example 1 (direct low-shear stirring).
  • FIG. 1 shows the particle size distribution of an aqueous dispersion of cellulose nanofibers to which the principle of the water dispersion apparatus of the present invention is applied.
  • FIG. 5(a) shows the results of the first measurement
  • FIG. 5(b) shows the results of the second measurement.
  • Figure 2 shows the particle size distribution of aqueous dispersions by direct low-shear agitation.
  • FIG. 6(a) shows the results of the first measurement
  • FIG. 6(b) shows the results of the second measurement.
  • Fig. 3 shows the particle size distribution of aqueous dispersions obtained by wet bead milling.
  • FIG. 7(a) shows the results of the first measurement
  • FIG. 7(b) shows the results of the second measurement.
  • 1 shows the particle size distribution of an aqueous dispersion of cellulose nanofibers obtained by the water dispersion apparatus of the present invention.
  • a water dispersion device 1 includes an oil tank 2 , a reaction tank 3 , an intake tank 4 , a flow path 5 and an intake valve 6 .
  • the reaction tank 3 contains an aqueous solvent and a hydrophobic hydrocarbon.
  • the density of the hydrophobic hydrocarbon is lower than the density of the aqueous solvent, the layer of the hydrophobic hydrocarbon is formed on the layer of the aqueous solvent, and the liquid-hydrocarbon is formed between the aqueous solvent and the hydrophobic hydrocarbon. A liquid interface is formed.
  • Hydrophobic hydrocarbons in the reaction vessel 3 are appropriately selected from hydrocarbons having hydrophobicity, and liquid paraffin, microcrystalline wax, vaseline, squalane, etc. are particularly preferable. Since it is required to have the property of forming a liquid-liquid interface with an aqueous solvent, less hydrophobic hydrocarbons such as vegetable oils and alcohols having ester groups, hydroxyl groups, ether groups, etc. are not preferred. One type of hydrophobic hydrocarbon may be used, or two or more types may be used in combination.
  • the water-based solvent in the reaction tank 3 is exemplified by water, an aqueous solution containing additives necessary for water, a solvent having hydrophilicity similar to water, and the like, and water is particularly preferable.
  • the purity of water can be appropriately selected depending on the purpose of use. For example, purified water, distilled water, tap water, industrial water, degassed water, etc. can be used.
  • Required additives are exemplified by pH adjusters, preservatives, antioxidants and the like.
  • Solvents having hydrophilicity similar to water are exemplified by ethanol, ethylene glycol, glycerin, 1,3-BG (butylene glycol) and the like.
  • Aqueous solvents have hydrophilic properties that form liquid-liquid interfaces with hydrophobic hydrocarbons. One type of aqueous solvent may be used, or two or more types may be used in combination.
  • the reaction tank 3 may be provided with a heater or the like so that the temperature can be adjusted. It is possible to heat the oil to the same temperature as the oil temperature of the oil tank 2, which will be described later, and to adjust the viscosity of the hydrophobic hydrocarbon. Further, the reaction tank 3 may be provided with stirring fins or the like so as to enable stirring. Depending on the contents of the reaction in the tank, the stirring speed can be adjusted, and stirring can be stopped if standing still is desirable.
  • a water intake valve 6 that can be opened and closed is attached to the bottom or side of the reaction tank 3 .
  • the intake valve 6 When the intake valve 6 is open, the aqueous solvent in the reaction tank 3 flows into the intake tank 4 . That is, the installation position of the water intake valve 6 may be at the height of the layer of the aqueous solvent in the reaction vessel 3 or below it, but is more preferably at the bottom of the reaction vessel 3 .
  • the intake tank 4 recovers the aqueous solvent in the reaction tank 3.
  • the intake valve 6 attached to the bottom or side of the reaction tank 3 is opened, the aqueous solvent in the reaction tank 3 can flow into the intake tank 4 . Further, by adjusting the intake valve 6, the flow rate of the aqueous solvent can be adjusted.
  • the oil tank 2 contains an oil having the same composition as the hydrophobic hydrocarbons in the reaction tank 3 or a hydrophobic hydrocarbon oil having a different composition from the hydrophobic hydrocarbons in the reaction tank 3 . Also, the density of the oil in the oil tank 2 is lower than that of the aqueous solvent in the reaction tank 3 .
  • the hydrophobic hydrocarbon used for the oil in the oil tank 2 is appropriately selected from hydrocarbons having hydrophobicity, and liquid paraffin, microcrystalline wax, petrolatum, squalane, etc. are particularly preferable. Since it is required to have the property of forming a liquid-liquid interface with an aqueous solvent, less hydrophobic hydrocarbons such as vegetable oils and alcohols having ester groups, hydroxyl groups, ether groups, etc. are not preferred.
  • the oil in the oil tank 2 one type of hydrophobic hydrocarbon may be used, or two or more types may be used in combination.
  • the oil tank 2 may be provided with a heater, a cooler, or the like so that the temperature can be adjusted. For example, it is preferable that the temperature can be adjusted to about 4°C to 80°C. Hydrophobic hydrocarbons used as the oil in the oil tank 2 increase in viscosity when the temperature is lowered, and decrease when the temperature is raised. Therefore, the viscosity can be adjusted by adjusting the oil temperature. It should be noted that the temperature may remain at room temperature. Further, the oil tank 2 may be provided with stirring fins or the like so as to enable stirring. The stirring speed can be adjusted according to the dispersing conditions in the tank.
  • the flow path 5 is provided between the oil tank 2 and the reaction tank 3, and can control the oil feeding state and the oil feeding stop state.
  • the oil in the oil tank 2 is sent to the reaction tank 3 when the flow path 5 is in the oil sending state.
  • the flow path 5 is provided with a valve such as a cock and a pump valve to control the oil feeding state and the oil feeding stop state.
  • the reaction vessel 3 side of the flow path 5 is located from the liquid-liquid interface of the reaction vessel 3 so that the oil sent to the reaction vessel 3 is more efficiently mixed with the hydrophobic hydrocarbons in the reaction vessel 3. It is preferably located on top. As long as it is above the liquid-liquid interface of the reaction tank 3, it may be above the layer of the hydrophobic hydrocarbon or may be positioned so as to pour into the layer of the hydrophobic hydrocarbon.
  • the water dispersion device 1 may be further provided with a sieve 7 above the oil tank 2 .
  • the diameter of the sample put into the oil tank 2 can be set to a certain value or less, and the sample can be dispersed more uniformly and efficiently in the oil in the oil tank 2 .
  • the sieve 7 is exemplified by adjusting the sieve mesh to about 0.1 mm to 0.5 mm.
  • the water dispersion device 1 can be applied to dispersion of powder containing a hydrophilic polysaccharide polymer.
  • the powder containing the hydrophilic polysaccharide polymer put into the oil tank 2 is dispersed in the oil in the oil tank 2 and sent to the reaction tank 3 through the flow path 5 .
  • the hydrophilic polysaccharide polymer starts to defibrate while being dispersed in the oil in the oil tank 2 .
  • the hydrophilic polysaccharide polymer dispersed in the oil in the oil tank 2 is further defibrated while being mixed with the layer of hydrophobic hydrocarbon in the reaction tank 3, and associates with water in the aqueous solvent at the liquid-liquid interface, It migrates into the solvent and disperses.
  • the hydrophilic polysaccharide polymer dispersed in the aqueous solvent is collected in the water intake tank 4 by opening and closing the water intake valve 6 . At this time, since the dispersion speed from the liquid-liquid interface to the aqueous solvent is slower than the fibrillation speed with hydrophobic hydrocarbons, it is desirable to adjust the water intake speed with the water intake valve 6 .
  • the powder containing the hydrophilic polysaccharide polymer can be sieved 7 to reduce the diameter of the powder to a certain value or less before being put into the oil tank 2 .
  • hydrophilic polysaccharide polymers examples include cellulose nanofibers, cellulose, cellulose derivatives, glucomannan, carrageenan, chitin, starch, glycogen, agarose, pectin, and xanthan gum.
  • hydrophilic polysaccharide polymers include cellulose nanofibers, cellulose, cellulose derivatives, glucomannan, carrageenan, chitin, starch, glycogen, agarose, pectin, and xanthan gum.
  • One type of these hydrophilic polysaccharide polymers may be used, or two or more types may be used in combination.
  • the reaction tank 3 In the case of dispersing the hydrophilic polysaccharide polymer in water, it is preferable to allow the reaction tank 3 to stand still without stirring, or to gently stir at a low speed to maintain the liquid-liquid interface. Although the dispersion speed is lowered by standing still, it is easy to obtain a uniform aqueous dispersion without increasing the particle size of the hydrophilic polysaccharide polymer in the dispersion.
  • the aqueous dispersion of the hydrophilic polysaccharide polymer recovered using the water dispersion apparatus 1 is a dispersion of hydrophilic polysaccharide polymers having a highly uniform particle size and a smaller minimum particle size. That is, aggregates of hydrophilic polysaccharide polymer particles are difficult to form, or aggregates are not formed.
  • the water dispersion device 1 the water dispersion can be made to contain neither a redispersion accelerator nor a dispersant. Since it is not dispersed using air by a disper or the like, the dispersion liquid does not contain air, and a degassing step is not necessary. For similar reasons, anaerobic operation of water dispersion is possible. In the conventional method, aggregates are easily formed and it is difficult to produce a high-concentration dispersion. Hard to generate.
  • the water dispersion device 1 By using the water dispersion device 1, it is possible to circulate and use the hydrophobic hydrocarbon, so carryover can be reduced. Further, even without adjusting the viscosity of the hydrophobic hydrocarbon, a uniform and stable aqueous dispersion can be obtained by adjusting the flow path 5 and the water intake valve 6 . In particular, when applied to water dispersion of hydrophilic polysaccharide polymers, a large amount of water dispersion having a high concentration of 1% or more can be obtained.
  • a reaction terminator may be added to the reaction tank 3 when it is desired to stop dispersion in water.
  • a reaction terminator having a density lower than that of the aqueous solvent and having a higher density than the hydrophobic hydrocarbon in the reaction tank 3 is selected.
  • alcohols such as ethanol and methanol
  • solvents that satisfy the density conditions described above are exemplified.
  • reaction terminator When the reaction terminator is added, a layer of the reaction terminator is formed at the position of the liquid-liquid interface due to the density difference between the aqueous solvent and the hydrophobic hydrocarbon. For this reason, the hydrophilic polysaccharide polymer or the like stays in the layer of the reaction terminator, and the dispersion in the aqueous solvent does not progress, and the dispersion eventually stops.
  • cellulose nanofibers When cellulose nanofibers reach the liquid-liquid interface, they associate with water and disperse in water. An aqueous dispersion is obtained by recovering the water. After the cellulose nanofibers are added, if the cellulose nanofibers are allowed to stand sufficiently, that is, if sufficient time is taken for the cellulose nanofibers to defibrate with liquid paraffin, associate with water, and disperse in water, 99% by mass or more can be obtained. It was confirmed that cellulose nanofibers disperse in water.
  • the defibration rate in the hydrophobic hydrocarbon is greater than the dispersion rate in the aqueous solvent. Therefore, when the uniformity of the particle size of the hydrophilic polysaccharide polymer dispersed in the aqueous solvent is to be emphasized, the fibrillation speed is adjusted to be lower than the dispersion speed.
  • the adjusting method include adjusting the viscosity of the hydrophobic hydrocarbon. The viscosity can be adjusted by temperature, the composition of the hydrophobic hydrocarbon, and the like.
  • Comparative example 1 As Comparative Example 1, a cellulose nanofiber dispersion solution obtained by direct low-shear stirring was prepared. Specifically, Homodisper (manufactured by Primix Co., Ltd.) was used and allowed to stand at 1800 rpm at 25° C. for 24 hours to obtain a 0.1 mass % cellulose nanofiber dispersion solution.
  • Homodisper manufactured by Primix Co., Ltd.
  • Comparative example 2 As Comparative Example 2, a cellulose nanofiber dispersion solution obtained by a wet bead mill was prepared. The 0.1% by mass cellulose nanofiber dispersion solution was stored at 4° C. for 6 months and then allowed to stand at 25° C. for 24 hours.
  • FIGS. 4A, 4B, and 4C show the particle size distribution, with the horizontal axis representing the particle size and the vertical axis representing the number (%).
  • Comparative Example 1 shown in FIG. 4B it was found that the cellulose nanofibers could not be sufficiently defibrated, and submicron-sized agglomerates were generated. Even in Comparative Example 2 shown in FIG. 4C, it was found that the cellulose nanofibers could not be sufficiently defibrated, and irregular aggregates of submicron to micron size and large particle size were generated. It should be noted that in a sample in which large particle size agglomerates are irregularly present as in Comparative Example 2, fine particles cannot be accurately measured by DLS analysis.
  • the cellulose nanofibers with a particle size of about 75 nm were uniformly dispersed at about 97% to 99% and were stably dispersed.
  • FIG. 5 to 7 show the particle size distribution, with the horizontal axis representing the particle size and the vertical axis representing the frequency.
  • FIG. 5(a) is the first measurement result of the sample of the example. Particles with a size of 1 nm to 180.8 nm account for 75% or more.
  • FIG. 5(b) shows the second measurement result of the sample of the example. Particles of 1 nm to 104.2 nm account for approximately 96%. These results were almost the same as the particle size distribution by DLS.
  • FIG. 6(a) is the first measurement result of the sample of Comparative Example 1
  • FIG. 6(b) is the second measurement result. It was found that the particle size distribution was different for each measurement. In other words, it is thought that the degree of shearing differs depending on the location of the cellulose nanofibers and is uneven.
  • Fig. 7(a) is the result of the first measurement of the sample of Comparative Example 2
  • Fig. 7(b) is the result of the second measurement.
  • the frequency of particles with a size of about 198.6 nm to 369.2 nm was high, it was found that large string-like agglomerates were present in all measurements, indicating that agglomeration had occurred.
  • the water dispersion device of the example has the following configuration.
  • Sieve sieve mesh size 0.1 mm, provided at the upper opening of the oil tank
  • Oil tank size 24 x 11.4 x 25 cm, with a water intake at the bottom of one side to which the flow path is connected
  • Flow path a rubber hose
  • a cock is provided at the connecting part with the oil tank, and the reaction tank side of the flow path is connected to the upper opening of the reaction tank.
  • the particle size distribution was measured by DLS (Dynamic Light Scattering).
  • the measurement results are shown in FIG. FIG. 8 shows the particle size distribution, with the horizontal axis representing the particle size and the vertical axis representing the number (%).
  • the cellulose nanofibers having a particle diameter of about 26.15 nm accounted for almost 100%, showing high uniformity. , and was found to be stably dispersed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

高せん断力や物理的な力を加える必要がなく、また、再分散促進剤や分散剤を添加する必要がない、簡便な水分散装置を提供することを課題とする。 水分散装置は、水系溶媒及び疎水性炭化水素を内部に有し、液-液界面が形成された反応槽と、前記水系溶媒を回収する取水槽と、前記反応槽内の前記疎水性炭化水素と同じ組成の油又は前記反応槽内の前記疎水性炭化水素と異なる組成の疎水性炭化水素の油を内部に有する、油槽と、前記油槽及び前記反応槽の間に、送油状態と送油停止状態を制御可能な流路と、前記反応槽の底部又は側部に開閉可能な取水弁と、を備え、前記流路が送油状態のとき、前記油槽の前記油は前記反応槽に送られ、前記取水弁が開放状態のとき、前記反応槽の前記水系溶媒が前記取水槽に流れるように構成され、前記反応槽内の前記疎水性炭化水素及び前記油槽内の前記油は、前記水系溶媒より密度が小さいことを特徴とする。

Description

水分散装置及び親水性多糖高分子の水分散液
 本発明は、水分散装置、及び、該水分散装置を用いて得られた親水性多糖高分子の水分散液に関する。
 セルロースナノファイバー等のグルコシド結合によって単糖が重合した親水性多糖高分子は、乾燥粉体として保管され、使用時に水等に再分散させて利用されるのが一般的である。
 粉体の親水性多糖高分子をそのまま水系の溶媒に分散させようとすると、粉体表面だけが濡れる現象が見られる。さらに水系の溶媒中では、繊維が絡まり凝集塊を形成してしまいやすい(図2参照)。このため、乾燥粉体として保管されていた親水性多糖高分子を水等の溶媒に均一に再分散させるために、高速ホモジナイザー等を使用して粉体と溶媒に高せん断力を加えたり、湿式・乾式のビーズミル等を使用して粉体に物理的な力を加えたりする方法が開発されてきた。しかしながら、高せん断力や物理的な力を加える方法は、特に工業生産においては設備投資が必要となり、製造コストや時間を要するという課題があった。
 また、特許文献1には、再分散促進剤や分散剤を添加することにより、セルロースナノファイバー分散液を製造する方法が開示されている。しかしながら、セルロースナノファイバーの分散液に第三成分が含有するため、分散させたセルロースナノファイバーの使用目的によっては後処理にコストや時間を要するという課題があった。さらには、残存した再分散促進剤や分散剤等の第三成分が、セルロースナノファイバーのその後の処理工程や反応工程に対し化学的な影響を与える可能性があるという課題があった。
特開2014-118521号公報
 本発明は、上記事情を鑑みたものであり、高せん断力や物理的な力を加える必要がなく、また、再分散促進剤や分散剤を添加する必要がない、簡便な水分散装置を提供することを課題の一部とする。特に、親水性多糖高分子を簡便かつ均一に水分散させることが可能な水分散装置を提供することを課題の一部とする。
 上記課題を解決するために、本発明の水分散装置は、水系溶媒及び疎水性炭化水素を内部に有し、液-液界面が形成された反応槽と、前記水系溶媒を回収する取水槽と、前記反応槽内の前記疎水性炭化水素と同じ組成の油又は前記反応槽内の前記疎水性炭化水素と異なる組成の疎水性炭化水素の油を内部に有する、油槽と、前記油槽及び前記反応槽の間に、送油状態と送油停止状態を制御可能な流路と、前記反応槽の底部又は側部に開閉可能な取水弁と、を備え、前記流路が送油状態のとき、前記油槽の前記油は前記反応槽に送られ、前記取水弁が開放状態のとき、前記反応槽の前記水系溶媒が前記取水槽に流れるように構成され、前記反応槽内の前記疎水性炭化水素及び前記油槽内の前記油は、前記水系溶媒より密度が小さいことを特徴とする。
 前記流路の前記反応槽側は、前記液-液界面より上部に配置されることが好ましい。
 前記油槽及び/又は前記反応槽は、温度調整及び/又は攪拌可能なことが好ましい。
 前記油槽の上部に篩をさらに含んでもよい。
 前記油槽は、親水性多糖高分子を含有する粉末を前記油に分散し、前記反応槽は、前記流路を介して送られてきた、前記油に分散した前記親水性多糖高分子を、解繊して前記水系溶媒に分散するものであってもよい。
 前記篩は前記親水性多糖高分子の粉末の径を一定値以下とし、前記粉末の径が一定値以下となった前記親水性多糖高分子は前記油槽に投入されるように構成されてもよい。
 前記親水性多糖高分子は、セルロースナノファイバー、セルロース、セルロース誘導体、グルコマンナン、カラギーナン、キチン、デンプン、グリコーゲン、アガロース、ペクチン、キサンタンガムのうち1以上を含んでもよい。
 前記反応槽は、反応停止剤をさらに含んでもよい。
 該反応停止剤は前記水系溶媒より密度が小さく、かつ、前記疎水性炭化水素より密度が大きいことが好ましい。
 前記反応停止剤は、アルコール類であることが好ましい。
 本発明の親水性多糖高分子の水分散液は、上記水分散装置を用いて得られることを特徴とする。
 本発明の水分散装置により、簡便に水分散を行うことができ、水分散のために高せん断力や物理的な力を加える必要がなく、製造時間、製造コストを抑えることができる。特に凝集塊を形成しやすい親水性多糖高分子を該水分散装置に適用した場合、簡便かつ均一に水分散させることができ、また、水分散のために再分散促進剤や分散剤等を添加する必要がないため、水分散液中に再分散促進剤や分散剤等第三成分が残存せず、分散液回収後の処理も簡便となり得る。
 さらに、本発明の水分散装置を用いて得られた親水性多糖高分子の水分散液は、粒度分布の均一性をより高くすることが可能である。
本発明の水分散装置の一例を示す。 セルロースナノファイバーの粉末に直接水を加え、凝集塊となったセルロースナノファイバーの写真を示す。 本発明の水分散装置の原理を適用した、親水性多糖高分子を含有する粉末の親水性多糖高分子の水分散液の写真を示す。 本発明の水分散装置の原理を適用した水分散液の、分散したセルロースナノファイバーの粒度分布を示す。 比較例1(直接低せん断攪拌)の水分散溶液の分散したセルロースナノファイバーの粒度分布を示す。 比較例2(湿式ビーズミル)の水分散溶液の分散したセルロースナノファイバーの粒度分布を示す。 本発明の水分散装置の原理を適用したセルロースナノファイバーの水分散液の粒度分布を示す。図5(a)は1回目の測定結果、図5(b)は2回目の測定結果である。 直接低せん断攪拌による水分散液の粒度分布を示す。図6(a)は1回目の測定結果、図6(b)は2回目の測定結果である。 湿式ビーズミルによる水分散液の粒度分布を示す。図7(a)は1回目の測定結果、図7(b)は2回目の測定結果である。 本発明の水分散装置で得られた、セルロースナノファイバーの水分散液の粒度分布を示す。
 以下に、図面及び符号を用いて本発明の水分散装置、及び、該水分散装置を用いて得られた親水性多糖高分子の水分散液について説明するが、本発明は該図面の内容に限定されるものではない。
 図1に本発明の水分散装置1の一例を示す。水分散装置1は、油槽2、反応槽3、取水槽4、流路5、取水弁6を備えるものである。
 反応槽3は、水系溶媒及び疎水性炭化水素を内部に有する。該疎水性炭化水素の密度は、該水系溶媒の密度より小さく、該水系溶媒の層の上に該疎水性炭化水素の層が形成され、該水系溶媒と該疎水性炭化水素の間に液-液界面が形成される。
 反応槽3の疎水性炭化水素は、疎水性を有する炭化水素から適宜選択されるが、特に、流動パラフィン、マイクロクリスタリンワックス、ワセリン、スクワラン等が好ましい。なお、水系溶媒と液-液界面を形成する性質であることが要求されるため、エステル基やヒドロキシル基、エーテル基等を有する植物油やアルコール等の疎水性の低い炭化水素は好ましくない。
 疎水性炭化水素は、1種を用いてもよいし、2種以上を併用してもよい。
 反応槽3の水系溶媒は、水や、水に必要な添加剤を含有する水溶液、水と同様な親水性を有する溶媒等が例示され、特に水が好ましい。
 水は、使用目的により適宜純度を選択することができる。たとえば、精製水、蒸留水、水道水、工業用水、脱気水等を用いることができる。
 必要な添加剤は、pH調整剤、防腐剤、酸化防止剤等が例示される。
 水と同様な親水性を有する溶媒は、エタノール、エチレングリコール、グリセリン、1,3-BG(ブチレングリコール)等が例示される。
 水系溶媒は、疎水性炭化水素と液-液界面を形成する親水性を有する。また、水系溶媒は1種を用いてもよいし、2種以上を併用してもよい。
 反応槽3は、温度調整が可能となるようにヒーター等を設けてもよい。後述する油槽2の油温と同程度の温度に加温したり、疎水性炭化水素の粘度を調整したりすることが可能となる。
 また、反応槽3は、攪拌可能となるように攪拌フィン等が設けられてもよい。槽内の反応内容により、攪拌速度を調整し、また、静置が望ましい場合は攪拌を停止することもできる。
 反応槽3の底部又は側部には、開閉可能な取水弁6が取り付けられる。取水弁6が開放状態のとき、反応槽3の水系溶媒は取水槽4に流れる。すなわち、取水弁6の取付位置は、反応槽3の水系溶媒の層の高さ位置又はその下方にあればよいが、反応槽3の底部にあることがより望ましい。
 取水槽4は、反応槽3内の水系溶媒を回収する。反応槽3の底部又は側部に取り付けられた取水弁6を開放すると、反応槽3の水系溶媒を取水槽4に流すことができる。また、取水弁6を調整することで、水系溶媒の流量を調整することができる。
 油槽2は、反応槽3内の疎水性炭化水素と同じ組成の油、又は、反応槽3内の疎水性炭化水素と異なる組成の疎水性炭化水素の油を内部に有する。また、油槽2内の該油の密度は、反応槽3内の水系溶媒より小さい。
 油槽2の油に用いられる疎水性炭化水素は、疎水性を有する炭化水素から適宜選択されるが、特に、流動パラフィン、マイクロクリスタリンワックス、ワセリン、スクワラン等が好ましい。なお、水系溶媒と液-液界面を形成する性質であることが要求されるため、エステル基やヒドロキシル基、エーテル基等を有する植物油やアルコール等の疎水性の低い炭化水素は好ましくない。
 油槽2の油として、疎水性炭化水素を1種用いてもよいし、2種以上を併用してもよい。
 油槽2は、温度調整が可能となるようにヒーターや冷却器等を設けてもよい。たとえば、4℃~80℃程度に温度調整が可能であることが好ましい。油槽2の油に用いられる疎水性炭化水素は、温度を下げると粘度が増加し、温度を上げると粘度が下がるので、油温を調整することにより粘度調整が可能となる。なお、室温のままであってもよい。
 また、油槽2は、攪拌可能となるように攪拌フィン等が設けられてもよい。槽内の分散条件により、攪拌速度を調整することができる。
 流路5は、油槽2及び反応槽3の間に設けられ、送油状態と送油停止状態を制御可能なものである。流路5が送油状態のとき、油槽2の油は反応槽3に送られる。
 流路5には、送油状態と送油停止状態を制御するために、コック等の弁やポンプ弁が設けられる。
 また、反応槽3に送られた油が、反応槽3の疎水性炭化水素とより効率的に混合されるように、流路5の反応槽3側は、反応槽3の液-液界面より上部に配置されることが好ましい。反応槽3の液-液界面より上部であれば、疎水性炭化水素の層より上方であっても、疎水性炭化水素の層内に注ぎ込むような位置であってもよい。
 なお、液-液界面より下方に配置されても、該油は水系溶媒との密度差により反応槽3の疎水性炭化水素に向かって移動して疎水性炭化水素と混合し、最終的には液-液界面を形成するため、効率的ではないが許容される。
 水分散装置1には、油槽2の上部に篩7がさらに設けられてもよい。油槽2に投入される試料の径を一定値以下にすることができ、油槽2の油中により均一に効率的に分散させることができる。その結果、反応槽3でもより均一に効率的に分散され、取水槽4でもより均一に効率的に分散された水分散液を回収することができる。篩7は、篩の目を0.1mm~0.5mm程度に調整することが例示される。
 水分散装置1は、一例として親水性多糖高分子を含有する粉末の分散に応用することができる。
 油槽2に投入された親水性多糖高分子を含有する粉末は、油槽2の油に分散され、流路5を介して反応槽3に送られる。なお、親水性多糖高分子は、油槽2の油に分散されつつ解繊が始まる。
 油槽2の油に分散された親水性多糖高分子は、反応槽3の疎水性炭化水素の層と混合されつつさらに解繊が進み、液-液界面で水系溶媒中の水と会合し、水系溶媒中に移行して分散する。
 水系溶媒中に分散した親水性多糖高分子は、取水弁6を開閉することにより、取水槽4に回収する。このとき、液-液界面から水系溶媒への分散速度は、疎水性炭化水素での解繊速度より遅いため、取水速度は取水弁6で調整することが望ましい。
 親水性多糖高分子を含有する粉末は、油槽2に投入する前に、篩7で粉末の径を一定値以下にすることができる。
 親水性多糖高分子は、セルロースナノファイバー、セルロース、セルロース誘導体、グルコマンナン、カラギーナン、キチン、デンプン、グリコーゲン、アガロース、ペクチン、キサンタンガム等が例示される。これらの親水性多糖高分子は1種を用いてもよいし、2種以上を併用してもよい。
 なお、親水性多糖高分子の水分散の場合、反応槽3では、攪拌せずに静置して行うか、液-液界面を維持する程度に低速度で静かに攪拌することが好ましい。静置により分散速度は下がるが、分散液中の親水性多糖高分子の粒子径が大きくならずに均一性を有する水分散液が得られやすい。
 水分散装置1を用いて回収された親水性多糖高分子の水分散液は、粒子径の均一性が高く、かつ、最小粒子径がより小さい親水性多糖高分子が分散したものとなる。すなわち、親水性多糖高分子の粒子の凝集塊は形成されにくい、又は、凝集塊は形成されない。
 水分散装置1を用いることにより、該水分散液には、再分散促進剤や分散剤を含まないようにすることができる。
 ディスパー等で空気を用いて分散したものではないため、分散液は空気を噛んでおらず脱気工程も不要である。同様な理由で水分散の嫌気的操作が可能となる。
 従来法では凝集塊が形成しやすく高濃度の分散液を製造することは難しいが、本発明の水分散液は高濃度であっても液-液界面での解繊であるため、凝集塊が生成しにくい。
 水分散装置1を用いることにより、疎水性炭化水素を循環して使用することが可能であるため、キャリーオーバーが少なくて済む。また、疎水性炭化水素の粘度を調整しなくても、流路5や取水弁6を調整することにより、均一で安定的に水分散液を得ることができる。
 特に、親水性多糖高分子の水分散に応用した場合、1%以上といった高濃度の水分散液を大量に得ることができる。
 水への分散を停止させたいときには、反応槽3に反応停止剤を投入してもよい。この場合、反応停止剤は水系溶媒より密度が小さく、かつ、反応槽3内の疎水性炭化水素より密度が大きいものが選択される。たとえば、アルコール類であり、エタノール、メタノール等のうち、前述の密度条件を満たす溶媒が例示される。
 反応停止剤が投入されると、水系溶媒及び疎水性炭化水素との密度差により、液-液界面の位置に反応停止剤の層が形成される。このため、親水性多糖高分子等は、反応停止剤の層に留まり、水系溶媒へ分散が進まなくなりやがて分散は停止する。
(本発明の水分散装置の基礎実験の結果について)
 以下に、本発明の水分散装置の基礎実験の結果を説明する。
(基礎実施例)
 本発明の水分散装置の基礎実施例として、以下の操作を行い、水分散液を得た。
 まず、水より低密度の流動パラフィン(疎水性炭化水素)を、水(水系溶媒)の上に静かに載せ、液-液界面を形成させる。
 次に、セルロースナノファイバー(親水性多糖高分子)を、流動パラフィンの上から篩にかけ、流動パラフィンの液面に対して均一に落下させる。
 セルロースナノファイバーは、流動パラフィンに接触すると直ちに濡れが観察される。その後、セルロースナノファイバーはセミマイクロ程度の大きさに解繊が進み、流動パラフィンの中をほぼ等速で沈降する(図3参照)。
 セルロースナノファイバーが液-液界面に到達すると、水と会合し水中に分散する。水を回収することにより、水分散液を得る。
 なお、セルロースナノファイバーを投入後、十分に静置すると、すなわち、セルロースナノファイバーの流動パラフィンでの解繊、水との会合、水中への分散の時間を十分にとると、99質量%以上のセルロースナノファイバーが水へ分散することが確認された。
 ここで、疎水性炭化水素中での解繊速度は、水系溶媒への分散速度より大きい。このため、水系溶媒へ分散する親水性多糖高分子の粒径の均一性を重視したい場合は、解繊速度が分散速度より小さくなるように調整する。調整方法としては、疎水性炭化水素の粘度を調整する等が例示される。粘度は、温度や疎水性炭化水素の組成等により調整可能である。
(比較例1)
 比較例1として、直接低せん断攪拌して得られたセルロースナノファイバー分散溶液を作成した。
 具体的には、ホモディスパー(プライミクス株式会社製)を用い、1800rpm、25℃、24時間静置することにより、0.1質量%のセルロースナノファイバー分散溶液を得た。
(比較例2)
 比較例2として、湿式ビーズミルにより得られたセルロースナノファイバー分散溶液を作成した。該0.1質量%セルロースナノファイバー分散溶液を4℃で6か月保存後、25℃で24時間静置した。
(DLSによる粒度分析)
 得られた基礎実施例及び比較例の試料を用い、DLS(動的光散乱法;Dinamic Light Scattering)により粒度分布を測定した。使用機器はMalvern Panalytical製のゼータサイザーナノZSで、測定条件は、分散媒:水、25℃、disposable microcuvett使用して、n=3で行った。
 測定結果を、図4A、図4B、図4Cに示す。図4A、図4B、図4Cは、横軸に粒径、縦軸に個数(%)を取って、粒度分布を示したものである。
 図4Bに示した比較例1では、セルロースナノファイバーを十分に解繊することができず、サブミクロンサイズの粒塊が生成していることが分かった。
 図4Cに示した比較例2でも、セルロースナノファイバーを十分に解繊することができず、不規則なサブミクロン~ミクロンサイズの大粒径の凝集塊が生成していることが分かった。なお、比較例2のように大粒径の凝集塊が不規則に存在する試料は、DLS分析では細かい粒子について正確に測定することができない。
 これに対し、図4Aに示した基礎実施例では、75nm程度の粒子径のセルロースナノファイバーが97%~99%程度と均一性が高く、かつ、安定して分散していることが分かった。
(ナノメジャーによる粒度分析)
 上記DLSにおいては、測定論理上、溶液中の粒子に粒度分布がある場合、特に大きな粒子が多く存在する場合、より小さな粒子の粒度分布を正確に測定できない。そこで、ナノメジャー(登録商標、株式会社カワノラボ製)により、粒度分布を測定した。
 測定条件は、以下のとおりである。基礎実施例及び比較例の試料をそれぞれ希釈せず軽く振り交ぜ、1μLをナノメジャーに滴下し、毛細管現象を利用して導入した後、干渉縞を用いて粒子径を計測した。測定温度は25±1℃、対物レンズは20倍(トータル200倍)であった。n=2で測定した。
 測定結果を、図5~図7に示す。図5~図7は、横軸に粒子サイズ、縦軸に頻度を取って、粒度分布を示したものである。
 図5(a)は実施例の試料の1回目の測定結果である。1nm~180.8nmのサイズの粒子が75%以上を占めている。図5(b)は実施例の試料の2回目の測定結果である。1nm~104.2nmの粒子が凡そ96%を占めている。これらの結果は、DLSによる粒度分布とほぼ同様であった。
 図6(a)は比較例1の試料の1回目の測定結果であり、図6(b)は2回目の測定結果である。測定ごとに粒度分布が異なることが分かった。すなわち、せん断の度合いがセルロースナノファイバーの場所によって異なり、不均一になっていると考えられる。
 図7(a)は比較例2の試料の1回目の測定結果であり、図7(b)は2回目の測定結果である。198.6nm~369.2nm程度のサイズの粒子の頻度が高めであるが、いずれの測定も大きな紐状粒塊が存在しており、凝集が発生していることが分かった。
 本発明の水分散装置の一例を用いてセルロースナノファイバーの水分散液を得た。実施例の水分散装置は以下の構成を有する。

 篩:篩の目のサイズが0.1mmのもの、油槽の上部開口部に設けられる
 油槽:大きさ24x11.4x25cm、片側下部に取水口があり流路が接続される
 流路:ゴムホースであり、油槽との接続部分にコックを備え、流路の反応槽側は反応槽の上部開口部に接続される
 反応槽:大きさ24x11.4x25cm、片側下部に取水口があり取水弁が取り付けられる
 取水槽:取水弁の下方に設けられる

 実施例の水分散装置の油槽に予め約500mlの流動パラフィン(ハイコールK-350、カネダ株式会社製)を満たす。反応槽に、200mlの蒸留水を満たした後、約20mlの流動パラフィン(ハイコールK-350、カネダ株式会社製)を静かに投入した。
 セルロースナノファイバー(Cellenpia、日本製紙製)2gを篩に掛けて油槽に投入し、セルロースナノファイバーが油槽内の流動パラフィンに十分に浸潤したことを確認した後、油槽と流路の接続部分のコックを静かに開き、セルロースナノファイバーを含んだ流動パラフィンを反応槽に流し込み、24時間静置した。その後、反応槽の下部に取り付けられた取水弁を開き、取水槽にて水の層を約100ml回収した。
 回収された水分散液の試料を用い、DLS(動的光散乱法;Dinamic Light Scattering)により粒度分布を測定した。使用機器はMalvern Panalytical製のゼータサイザーナノZSで、測定条件は、分散媒:水、25℃、disposable microcuvett使用して、n=3で行った。
 測定結果を、図8に示す。図8は、横軸に粒径、縦軸に個数(%)を取って、粒度分布を示したものである。
 図8に示すように、実施例の水分散装置を用いて回収されたセルロースナノファイバーの水分散液には、直径26.15nm程度の粒子径のセルロースナノファイバーがほぼ100%と均一性が高く、かつ、安定して分散していることが分かった。
1 水分散装置
2 油槽
3 反応槽
4 取水槽
5 流路
6 取水弁
7 篩

Claims (10)

  1.  水分散装置であって、
     水系溶媒及び疎水性炭化水素を内部に有し、液-液界面が形成された反応槽と、
     前記水系溶媒を回収する取水槽と、
     前記反応槽内の前記疎水性炭化水素と同じ組成の油又は前記反応槽内の前記疎水性炭化水素と異なる組成の疎水性炭化水素の油を内部に有する、油槽と、
     前記油槽及び前記反応槽の間に、送油状態と送油停止状態を制御可能な流路と、
     前記反応槽の底部又は側部に開閉可能な取水弁と、
    を備え、
     前記流路が送油状態のとき、前記油槽の前記油は前記反応槽に送られ、
     前記取水弁が開放状態のとき、前記反応槽の前記水系溶媒が前記取水槽に流れるように構成され、
     前記反応槽内の前記疎水性炭化水素及び前記油槽内の前記油は、前記水系溶媒より密度が小さい、水分散装置。
  2.  前記流路の前記反応槽側は、前記液-液界面より上部に配置される、請求項1に記載の水分散装置。
  3.  前記油槽及び/又は前記反応槽は、温度調整及び/又は攪拌可能な、請求項1又は2に記載の水分散装置。
  4.  前記油槽の上部に篩をさらに含む、請求項1~3いずれか一項に記載の水分散装置。
  5.  前記油槽は、親水性多糖高分子を含有する粉末を前記油に分散し、
     前記反応槽は、前記流路を介して送られてきた、前記油に分散した前記親水性多糖高分子を、解繊して前記水系溶媒に分散する、請求項1~4いずれか一項に記載の水分散装置。
  6.  前記篩は前記親水性多糖高分子の粉末の径を一定値以下とし、前記粉末の径が一定値以下となった前記親水性多糖高分子は前記油槽に投入されるように構成される、請求項5に記載の水分散装置。
  7.  前記親水性多糖高分子は、セルロースナノファイバー、セルロース、セルロース誘導体、グルコマンナン、カラギーナン、キチン、デンプン、グリコーゲン、アガロース、ペクチン、キサンタンガムのうち1以上を含む、請求項5又は6に記載の水分散装置。
  8.  前記反応槽は、反応停止剤をさらに含み、該反応停止剤は前記水系溶媒より密度が小さく、かつ、前記疎水性炭化水素より密度が大きい、請求項1~7いずれか一項に記載の水分散装置。
  9.  前記反応停止剤は、アルコール類である、請求項8に記載の水分散装置。
  10.  請求項6~9いずれか一項に記載の水分散装置を用いて得られた、親水性多糖高分子の水分散液。
PCT/JP2021/022237 2021-04-28 2021-06-11 水分散装置及び親水性多糖高分子の水分散液 WO2022230210A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021559881A JP7007781B1 (ja) 2021-04-28 2021-06-11 水分散装置
CN202180097155.XA CN117157346A (zh) 2021-04-28 2021-06-11 水分散装置及亲水性多糖高分子的水分散液

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021076178 2021-04-28
JP2021-076178 2021-04-28

Publications (1)

Publication Number Publication Date
WO2022230210A1 true WO2022230210A1 (ja) 2022-11-03

Family

ID=83846837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022237 WO2022230210A1 (ja) 2021-04-28 2021-06-11 水分散装置及び親水性多糖高分子の水分散液

Country Status (1)

Country Link
WO (1) WO2022230210A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011056456A (ja) * 2009-09-14 2011-03-24 National Institute Of Advanced Industrial Science & Technology バイオナノファイバーの製造方法
WO2016174863A1 (ja) * 2015-04-28 2016-11-03 バンドー化学株式会社 ゴム組成物及びその製造方法
JP2017048293A (ja) * 2015-09-01 2017-03-09 株式会社スギノマシン セルロースナノファイバー分散体、その製造方法、およびセルロースナノファイバーフィルム
JP2020517840A (ja) * 2017-04-21 2020-06-18 ファイバーリーン テクノロジーズ リミテッド 増強された特性を有するミクロフィブリル化セルロースおよびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011056456A (ja) * 2009-09-14 2011-03-24 National Institute Of Advanced Industrial Science & Technology バイオナノファイバーの製造方法
WO2016174863A1 (ja) * 2015-04-28 2016-11-03 バンドー化学株式会社 ゴム組成物及びその製造方法
JP2017048293A (ja) * 2015-09-01 2017-03-09 株式会社スギノマシン セルロースナノファイバー分散体、その製造方法、およびセルロースナノファイバーフィルム
JP2020517840A (ja) * 2017-04-21 2020-06-18 ファイバーリーン テクノロジーズ リミテッド 増強された特性を有するミクロフィブリル化セルロースおよびその製造方法

Similar Documents

Publication Publication Date Title
Gestranius et al. Phase behaviour and droplet size of oil-in-water Pickering emulsions stabilised with plant-derived nanocellulosic materials
Domenech et al. Capillary-driven percolating networks in ternary blends of immiscible polymers and silica particles
Zoppe et al. Pickering emulsions stabilized by cellulose nanocrystals grafted with thermo-responsive polymer brushes
Laun Rheological properties of aqueous polymer dispersions
Errezma et al. Surfactant-free emulsion Pickering polymerization stabilized by aldehyde-functionalized cellulose nanocrystals
JPH11509473A (ja) 乳濁液の製造方法
CN110917064A (zh) 一种南瓜籽蛋白纳米颗粒的制备方法和产品及其应用
EP0023533B1 (de) Mittel zum Entschäumen flüssiger Medien
Kamaly et al. Dispersion of clusters of nanoscale silica particles using batch rotor-stators
Yue et al. Rheological behaviors of fumed silica filled polydimethylsiloxane suspensions
Ji et al. Core-shell-structured silica/polyacrylate particles prepared by Pickering emulsion: influence of the nucleation model on particle interfacial organization and emulsion stability
Gavi et al. Breakup of nanoparticle clusters using Microfluidizer M110-P
Hecht et al. Emulsification of particle loaded droplets with regard to miniemulsion polymerization
CN111450770A (zh) 具有CO2响应的稳定Pickering乳液
Stauch et al. Burstable nanostructured micro-raspberries: Towards redispersible nanoparticles from dry powders
WO2022230210A1 (ja) 水分散装置及び親水性多糖高分子の水分散液
Kempin et al. Influence of particle type and concentration on the ultrafiltration behavior of nanoparticle stabilized Pickering emulsions and suspensions
JP7007781B1 (ja) 水分散装置
Pu et al. Enhanced stability of low oil-to-water ratio water-in-oil emulsions (oil-based drilling fluids): Synergistic effect of nano-SiO2 and emulsifiers
DE4422118A1 (de) Präparationen von monodispersen kugelförmigen Oxidpartikeln
Wu et al. Preparation of cyclohexanone/water Pickering emulsion together with modification of silica particles in the presence of PMHS by one pot method
Yang et al. Rheological behavior of carbon nanotube and graphite nanoparticle dispersions
Scurati et al. Influence of powder surface treatment on the dispersion behavior of silica into polymeric materials
Stauch et al. Silanization of Silica Nanoparticles and Their Processing as Nanostructured Micro‐Raspberry Powders—A Route to Control the Mechanical Properties of Isoprene Rubber Composites
WO2022230209A1 (ja) 親水性多糖高分子を含有する粉末の水分散液の製造方法、及び、親水性多糖高分子の水分散液

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021559881

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21939366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21939366

Country of ref document: EP

Kind code of ref document: A1