WO2022228361A1 - 阀组件和传感器 - Google Patents

阀组件和传感器 Download PDF

Info

Publication number
WO2022228361A1
WO2022228361A1 PCT/CN2022/088898 CN2022088898W WO2022228361A1 WO 2022228361 A1 WO2022228361 A1 WO 2022228361A1 CN 2022088898 W CN2022088898 W CN 2022088898W WO 2022228361 A1 WO2022228361 A1 WO 2022228361A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
circuit board
filter
sensing module
plate member
Prior art date
Application number
PCT/CN2022/088898
Other languages
English (en)
French (fr)
Inventor
万霞
黄隆重
金骑宏
Original Assignee
杭州三花研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110481252.0A external-priority patent/CN113266964A/zh
Priority claimed from CN202110735654.9A external-priority patent/CN115540923A/zh
Priority claimed from CN202110734134.6A external-priority patent/CN115540922A/zh
Priority claimed from CN202121477951.XU external-priority patent/CN215296282U/zh
Priority claimed from CN202121479314.6U external-priority patent/CN215296283U/zh
Application filed by 杭州三花研究院有限公司 filed Critical 杭州三花研究院有限公司
Publication of WO2022228361A1 publication Critical patent/WO2022228361A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/10Particle separators, e.g. dust precipitators, using filter plates, sheets or pads having plane surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/02Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L11/00Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00

Definitions

  • the present application relates to the technical field of signal detection devices, in particular to a valve assembly and a sensor.
  • the valve assembly in the related art includes a valve body part and a sensor, the valve body part has a flow channel for the refrigerant to flow, and the sensor can detect important parameters such as a pressure signal or a temperature signal of the refrigerant in the flow channel.
  • the purpose of the present application is to provide a valve assembly and a sensor with better filtering effect on fluid impurities.
  • the present application provides a valve assembly, including a valve body and a sensor; the valve body is provided with an installation cavity, and the sensor is at least partially accommodated in the installation cavity;
  • the sensor includes a housing and a detection unit; the sensor has a first flow channel; the detection unit includes a plate part and a sensing module; the sensing module is connected with the plate part; the valve body is further provided with a first flow channel; Two flow channels; in the height direction of the sensor, the first flow channel is at least partially located between the second flow channel and the plate member;
  • the valve assembly further includes a filter part; the filter part includes a filter screen part and a fixed part, the filter screen part is fixedly connected with the fixed part or the two are integrated; the first flow channel and the second The flow channels are respectively located on different sides of the screen portion along the height direction of the sensor; the fixing portion is fixedly connected or limitedly connected with at least one of the valve body, the housing and the plate member; the The screen part is provided with a plurality of meshes, and the meshes communicate the first flow channel with the second flow channel.
  • disposing the filter member in the valve assembly is conducive to filtering the impurities in the fluid, so that the impurities cannot easily enter the first flow channel of the sensor; correspondingly, the valve assembly can achieve a better filtering effect of fluid impurities.
  • the present application also provides a sensor, including a housing, a detection unit and a filter component; the sensor has an inner cavity and a first flow channel, the detection unit includes a plate component and a sensing module; the sensing module connected to the plate member;
  • the filter part includes a filter screen part and a fixed part, the filter screen part is fixedly connected with the fixed part or the two are integrated; in the height direction of the sensor, the first flow channel is at least partially located in the filter screen. between the net part and the detection unit;
  • the fixing portion is fixedly connected or limitedly connected to at least one of the plate member and the housing; the filter screen portion protrudes in a direction away from the inner cavity relative to the fixing portion; the filter
  • the mesh part is provided with a plurality of meshes, and the meshes communicate with the first flow channel.
  • arranging the filter element in the sensor is conducive to filtering the impurities in the fluid, so that the impurities cannot easily enter the first flow channel of the sensor; correspondingly, the sensor can achieve a better filtering effect of fluid impurities.
  • FIG. 1 is a schematic three-dimensional structure diagram of a valve assembly of the application
  • FIG. 2 is a schematic cross-sectional structure diagram of the valve assembly shown in FIG. 1;
  • FIG. 3 is a schematic cross-sectional structural diagram of another angle of the valve assembly shown in FIG. 1;
  • FIG. 4 is a schematic exploded view of a partial structure of the valve assembly shown in FIG. 1;
  • FIG. 5 is a schematic three-dimensional structure diagram of a sensor according to the application in the first embodiment
  • FIG. 6 is a schematic three-dimensional structure diagram of another angle of the sensor shown in FIG. 5;
  • FIG. 7 is a schematic exploded view of the structure of the sensor shown in FIG. 5;
  • Fig. 8 is another perspective exploded schematic diagram of the structure of the sensor shown in Fig. 5;
  • FIG. 9 is a schematic three-dimensional cross-sectional view of the sensor shown in FIG. 5;
  • FIG. 10 is a schematic cross-sectional structural diagram of a part of the components of the sensor shown in FIG. 9;
  • Fig. 11 is an enlarged schematic diagram of a part of the structure of the sensor shown in Fig. 10;
  • FIG. 13 is an enlarged schematic diagram of a part of the structure of another sensor of the present application.
  • FIG. 14 is a schematic three-dimensional structure diagram of some components of the sensor shown in FIG. 10;
  • Fig. 15 is another perspective three-dimensional schematic diagram of the partial components of the sensor shown in Fig. 10;
  • 16 is a schematic diagram of the assembly structure of the detection unit and the filter component in an embodiment of the present application.
  • Figure 17 is an exploded schematic view of the sensor shown in Figure 16;
  • Fig. 19 is a partial structural cross-sectional schematic diagram of another valve assembly of the present application.
  • FIG. 20 is a schematic perspective cross-sectional view of the sensor of the present application in the third embodiment.
  • Fig. 21 is an enlarged schematic diagram of a part of the structure of the sensor shown in Fig. 20;
  • FIG. 22 is a schematic structural diagram of the housing of the sensor shown in FIG. 20;
  • FIG. 23 is a schematic perspective cross-sectional view of the sensor of the present application in the fourth embodiment.
  • 25 is a schematic cross-sectional view of the sensor of the present application in the sixth embodiment.
  • 26 is a schematic cross-sectional view of the sensor of the present application in the seventh embodiment.
  • 27 is a schematic cross-sectional view of the sensor of the present application in the eighth embodiment.
  • FIG. 28 is a schematic three-dimensional structural diagram of a molded part used for preparing a sensor housing in the present application.
  • Fig. 29 is the assembly schematic diagram of the sensor manufactured by the present application.
  • FIG. 30 is a schematic flowchart of a method for manufacturing a sensor of the present application.
  • FIG. 31 is a schematic flowchart of another method for manufacturing a sensor of the present application.
  • refrigerant is an important heat exchange fluid in such thermal management systems, and changes in refrigerant pressure and/or temperature changes are usually monitored by sensors.
  • the refrigerant may also contain granular impurities, which may come from debris left by the processing of various parts of the air-conditioning system, or substances peeled off from the surface of parts under the influence of high-temperature and high-pressure fluid during long-term use, or from on the fluid itself, etc.
  • the existence of these impurities will have a greater impact on the operation of system components.
  • the sensor of the valve assembly has higher requirements on the cleanliness of the fluid it senses.
  • valve assembly 8 including a valve body 80 and a sensor 100 .
  • the valve body 80 is provided with an installation cavity 801 , and the sensor 100 is at least partially accommodated in the installation cavity 801 .
  • the sensor 100 includes a housing 1 and a detection unit 2 .
  • the sensor 100 has an inner cavity 200 and a first flow channel 400 .
  • the inner cavity 200 and the first flow channel 400 are not in communication.
  • the detection unit 2 includes a board member 21 and a sensing module 23 .
  • the sensing module 23 is connected to the board member 21, for example, electrically connected.
  • At least parts of the inner cavity 200 and the first flow channel 400 are located on different sides of the plate member 21 along the height direction H of the sensor 100 , respectively.
  • For the height direction H of the sensor please refer to the schematic directions with double arrows in FIG. 1 to FIG. 3 and FIG. 5 (the up and down direction in FIG. 5 ).
  • the valve body 80 is further provided with a second flow channel 800 , and the first flow channel 400 is closer to the plate member 21 than the second flow channel 800 .
  • the first flow channel 400 and the second flow channel 800 axially intersect and are arranged substantially vertically.
  • the valve body 80 is further provided with a third flow channel 802, and the axial directions of the third flow channel 802 and the second flow channel 800 can be arranged in parallel.
  • the valve assembly 8 also includes a filter part 3, and the filter part 3 includes a filter part 31 and a fixing part.
  • the fixing part can be a component of an integral structure, or the fixing part includes a plurality of parts that are fixedly connected or limitedly connected.
  • the fixed part is fixedly connected or the two are integrated, and the first flow channel 400 and the second flow channel 800 are located on different sides of the screen part 31 along the height direction H of the sensor 100 .
  • the fixed portion is fixedly connected or limitedly connected to at least one of the valve body 80 , the housing 1 and the plate member 21 . Referring to FIGS. 2 and 3 , the fixing portion (specifically, the bracket 32 and the sleeve portion 33 ) of the filter member 3 is fixedly connected to the plate member 21 .
  • the fixing portion (specifically, the bracket 32 ) of the filter element 3 is fixedly connected and/or limitedly connected to the housing 1 .
  • the fixing portion (specifically, the bracket 32 ) of the filter member 3 is fixedly connected and/or limitedly connected to the valve body 80 .
  • the screen portion 31 is provided with a plurality of meshes 311 , the meshes 311 communicate with the first flow channel 400 , and the meshes 311 communicate with the second flow channel 800 .
  • the valve assembly 8 may also include a flow adjustment unit, the flow adjustment unit includes a coil assembly 81 and a valve core assembly 82, etc., the valve body 80 is provided with an installation cavity 801 and a valve cavity 803, and the sensor 100 is at least partially accommodated in the installation cavity 801, The valve core assembly 82 is at least partially accommodated in the valve cavity 803 .
  • the coil assembly 81 includes a stator coil, etc.
  • the valve core assembly 82 includes a valve seat, a valve core and a rotor assembly.
  • the valve seat has a valve port
  • the valve core changes the opening degree of the valve port by approaching and moving away from the valve port, thereby forming a throttling at the valve port.
  • the flow regulating unit may be embodied as an electronic expansion valve.
  • the valve assembly 8 may further include a compression nut 88 and a main control board 86.
  • the compression nut 88 press-fits the sensor 100 in the installation cavity 801.
  • the main control board 86 is electrically connected to the conductive member 7 of the sensor 100, and the conductive member 7 can be As shown in FIG. 5 , a part of the conductive spring is accommodated in the inner cavity of the sensor 100 and is electrically connected to the detection unit 2 , and the other part is exposed to the outside of the casing 1 through the through hole 121 . In this way, the main control board 86 can receive the electrical signal of the detection unit 2 by being in contact with the conductive spring.
  • the conductive member 7 can also be a conductive wire as shown in FIG. 18 , and the electrical signal of the sensing module 23 can also be transmitted to the main control board 86 through the conductive wire.
  • the structure of the sensor 100 is described in detail below.
  • the sensor 100 includes a housing 1 , a detection unit 2 and a filter part 3 .
  • the sensor 100 has the inner cavity 200 and the first flow channel 400 which are not communicated.
  • the housing 1 surrounds at least part of the interior cavity 200 .
  • the housing 1 includes a first shell 11 and a second shell 12, and the first shell 11 and the second shell 12 are assembled and fixed. Part of the housing of the first housing 11 is arranged circumferentially around the detection unit 2 .
  • the first shell 11 is provided with an accommodating hole 13 , and the filter element 3 is at least partially accommodated in the accommodating hole 13 .
  • the detection unit 2 includes a board member 21 and a sensing module 23 .
  • the sensing module 23 is fixed to the board member 21 .
  • the sensing module 23 may have a fluid signal sensing region 231 exposed to the first flow channel 400 .
  • At least part of the second housing 12 and the filter member 3 are respectively located on different sides of the plate member 21 along the height direction H of the sensor 100 .
  • the sensing module 23 may be an independent component type sensing chip.
  • the sensing chip may be a back pressure type pressure chip, a positive pressure type pressure chip, or a MEMS pressure chip using a flip-chip bonding method.
  • the sensing area of the sensing chip can be in direct contact with a fluid such as refrigerant to sense pressure.
  • the sensing chip can also integrate the functions of temperature and pressure sensing, and the fluid signal sensing area 231 includes a temperature sensing area and a pressure sensing area.
  • the sensing module 23 includes a sensing chip and a structure matched with the sensing chip.
  • the sensing module 23 further includes a gel covering the surface of the sensing chip.
  • the fluid is in contact with the gel material
  • the gel material is in contact with the fluid signal sensing area 231 of the sensing chip, and the pressure signal of the fluid can be indirectly transmitted to the sensing chip through the gel material .
  • the gel material can also protect the sensing chip, especially the bonding wires of the sensing chip from falling off or being damaged by the impact of the fluid, and at the same time, the sensing chip is not easily corroded by the fluid.
  • the board part 21 may be a printed circuit board (PCB). Specifically, the board part 21 may be a flexible circuit board or a rigid board with a certain thickness. Alternatively, the plate member 21 can also be a common plate structure, which can play the role of supporting and fixing the sensing module 23 .
  • PCB printed circuit board
  • the board member 21 includes a first surface 211 and a second surface 212 respectively located on different sides in the thickness direction thereof, and the board member 21 may be a circular or rectangular or other shaped ceramic circuit board or a common ceramic board.
  • the first surface 211 is the upper side surface of the plate member 21 illustrated in FIG. 10
  • the second surface 212 is the lower side surface illustrated in FIG. 10 .
  • the filter member 3 can function to filter impurities in the working medium such as refrigerant.
  • the filter member 3 includes a filter screen portion 31 and a fixing portion.
  • the filter screen portion 31 is provided with a plurality of meshes 311 through which a working medium such as a refrigerant can pass.
  • the first flow channel 400 is located on the side of the screen portion 31 close to the plate member 21 in the height direction H of the sensor.
  • the mesh 311 communicates with the first flow channel 400 .
  • the sensing module 23 and the filter member 3 are respectively located on different sides of the plate member 21 along the height direction H of the sensor. As shown in FIG. 10 , the sensing module 23 is located on the side where the first surface 211 of the plate member 21 is located, and the filter member 3 is located on the side where the second surface 212 of the plate member 21 is located. Of course, the sensing module 23 and the filter part 3 can both be located on the same side of the board part 21 along the height direction H of the sensor. As shown in FIG. 18 , the sensing module 23 and the filter part 3 are both located on the second surface 212 of the board part 21 . At least part of the screen part 31 of the filter part 3 is farther from the plate part 21 than the sensing module 23 is.
  • the plate member 21 is provided with a guide hole 26 , which penetrates the plate member 21 in the thickness direction.
  • the sensing module 23 and the filter member 3 are located on different sides of the guide hole 26 in the axial direction.
  • the axial direction of the guide hole 26 is the vertical direction in FIG. 10 .
  • the guide hole 26 is a part of the first flow channel 400 .
  • the sensor 100 further includes a circuit board 22 .
  • the circuit board 22 may be a common resin circuit board.
  • the circuit board 22 is located on the side where the first surface 211 of the board member 21 is located.
  • a plate-like member with a certain thickness the circuit board 22 has a third surface 221 and a fourth surface 222 located on different sides in the thickness direction of the circuit board 22, and circuit elements can be provided on both the third surface 221 and the fourth surface 222 of the circuit board 22, and
  • the plate member 21 can be a corrosion-resistant ceramic plate, which has a low cost, and the refrigerant is not likely to cause corrosion and damage to the plate member 21 after contacting the plate member 21 .
  • the plate member 21 may also be arranged with a small number of conductive lines on the side of the first surface 211 thereof.
  • the board member 21 is fixed on the side where the fourth surface 222 of the circuit board 22 is located, and the board member 21 is electrically connected to the circuit board 22.
  • conductive pins 29 can be used between the board member 21 and the circuit board 22 to achieve fixation and electrical properties.
  • the conductive pins 29 pass through the board part 21 and the circuit board 22 at the same time so that the board part 21 and the circuit board 22 are stacked together, and the conductive pins 29 and the board part 21 are soldered and fixed, and the conductive pins 29 and the circuit board 22 are soldered and fixed .
  • the circuit board 22 is provided with a notch portion 28 , the notch portion 28 penetrates through the third surface 221 and the fourth surface 222 of the circuit board 22 , the sensing module 23 is at least partially accommodated in the notch portion 28 , and the sensing module 23 is at the periphery of the guide hole 26 . It is fixed to the plate member 21 .
  • the board part 21 and the sensing module 23 can form an integrated sensing module, and the sensing module can be processed and sold separately. The advantage of this is that the product assembly and processing of the sensor 100 is more convenient. More customization requirements can be achieved.
  • the induction module of uniform size and specification can be processed and prepared, as long as the induction module has its board components 21 can be fixedly connected with the circuit board 22 .
  • the same sensing module can be adapted to other structures of the sensor 100 of different models and specifications. The adaptability and application range of sensor products are increased.
  • the sensing module 23 can be a back pressure-type pressure sensing element, and the sensing module 23 can be prepared by MEMS (Micro Electromechanical System, micro-electromechanical system) technology.
  • MEMS Micro Electromechanical System, micro-electromechanical system
  • the size of the sensing element prepared by MEMS technology is small, and the corresponding product size is generally On the millimeter scale, even smaller.
  • the sensing module 23 has a sensing cavity 27 , a signal sensing region 231 of the sensing module 23 is exposed to the sensing cavity 27 , and the signal sensing region 231 includes a pressure sensing region.
  • the meshes 311 of the screen part 31 communicate with the sensing cavity 27 .
  • the signal sensing area 231 of the sensing module 23 may include a pressure sensing area and a temperature sensing area at the same time.
  • the core part of the sensing module 23 is a three-layer structure, including a substrate layer, an intermediate layer and a top layer. The substrate layer and the intermediate layer are enclosed to form a sensing cavity 27 with an opening.
  • the sensing module 23 may also include a vacuum cavity.
  • the vacuum cavity It can be formed by enclosing the top layer and the middle layer.
  • the vacuum chamber is arranged on the other side of the sensing chamber 27 away from the guide hole 26 .
  • the vacuum chamber is not connected to the sensing module 23 , and the vacuum chamber is beneficial to ensure the signal sensing area 231
  • the sensed fluid pressure is absolute pressure. Of course, some sensing modules 23 may not be provided with a vacuum chamber. Correspondingly, the fluid pressure sensed by the signal sensing area 231 is relative pressure.
  • the substrate layer can be a glass substrate, the middle layer can be a silicon wafer material, and the top layer can also be a glass material.
  • the signal sensing area 231 realizes pressure detection through a piezoresistive Wheatstone bridge. When the circuit is connected, when no pressure acts on the thin film of the silicon wafer, the Wheatstone bridge is balanced and the output voltage is 0. When pressure acts on the thin film of the silicon wafer, the balance of the Wheatstone bridge is broken, and there is a voltage output. Therefore, the change of the pressure can be reflected by the change of the electrical signal in the detection circuit, thereby realizing the function of pressure detection.
  • the fixing method of the sensing module 23 and the plate member 21 includes one of bonding, eutectic welding, sintering fixing and glass micro-melting fixing.
  • the fixing and sealing between the sensing module 23 and the board body can be realized by means of sealing glue and eutectic welding, and the process is simple and easy to realize.
  • the fluid does not easily leak out from the guide hole 26 and the sensing cavity 27 .
  • the circuit board 22 may not be provided, the board member 21 is a ceramic circuit board or a common resin circuit board, and the first surface 211 of the board member 21 is connected to the external sensor 100 through a conductive structure member. Components are electrically connected.
  • the conductive structural member can be specifically the conductive spring 7 as shown in FIG. 5 , the sensing module 23 and the filter member 3 are respectively located on different sides of the plate member 21 along the height direction H of the sensor. Other specific implementations of the sensing module 23 are the same as It is similar in FIG. 10 and will not be repeated here.
  • the fixed portion of the filter member 3 can be fixedly connected or limitedly connected to at least one of the plate member 21 and the housing 1 .
  • the fixing portion includes a bracket 32 and a sleeve portion 33 .
  • the sleeve portion 33 has a cylindrical cavity 331
  • the first flow channel 400 includes at least a part of the cylindrical cavity 331 .
  • the sleeve part 33 has a main body part 332 and a connecting part 333 connected in the axial direction of the sleeve part 33 .
  • the bracket 32 and the connecting portion 333 of the sleeve portion 33 are fixedly connected, limitedly connected, or have an integrated structure.
  • the board member 21 may include a metal bonding portion 24 clad on the second surface 212 of the board member 21 through a copper cladding process.
  • the copper cladding process takes the idle space of the second surface 212 of the board member 21 as a reference.
  • the process of filling the surface with solid copper, the copper cladding process is a relatively mature technology, and will not be described in detail in this application.
  • the main body portion 332 and the plate member 21 can be sealed and fixed by soldering, laser welding, bonding, etc., so that there is a seal between one end of the sleeve portion 33 in the axial direction and the second surface 212 of the plate member 21 . Location.
  • the sleeve portion 33 can be fixed to the plate member 21 and the housing 1 at the same time.
  • the first shell 11 includes a peripheral wall portion 14 forming the accommodating hole 13, and the outer wall of the sleeve portion 33 and the peripheral wall portion 14 are at least partially welded through one of soldering, laser welding, bonding, and ultrasonic welding. It is sealed and fixed in one way.
  • solder is filled at the M position in FIG. 13 to weld the sleeve portion 33 and the tubular portion 112 .
  • the sleeve portion 33 and the first shell 11 can be clearance-fitted at the position of the accommodating hole 13 , that is, the two are not sealed, and at the same time, the plate member 21 and the bottom wall of the first shell 11 can pass through the sealing ring for a sealed fit.
  • the bracket 32 is a hollow annular member, the bracket 32 surrounds at least a part of the screen portion 31 in the circumferential direction, and the bracket 32 can play a certain role in supporting and shaping the screen portion 31 .
  • the projection of the screen portion 31 at least partially coincides with the projection of the cylindrical cavity 331 .
  • the flow path of the fluid is relatively straight, and the fluid of the working medium such as the refrigerant can more easily pass through the screen portion 31 .
  • the screen portion 31 is at least partially exposed on the side of the accommodating hole 13 away from the detection unit 2 .
  • the screen part 31 protrudes in a direction away from the sleeve part 33 with respect to the bracket 32 .
  • At least a part of the filter part 31 is exposed outside the housing 1 , and the filter part 31 is exposed to fluid earlier than other internal structural components of the sensor 100 , and impurities are less likely to enter the sensor 100 .
  • the filter part 31 protrudes to the outside of the sensor 100, so that the filter part does not occupy too much internal space of the sensor 100, so that the size of the first flow channel 400 of the sensor 100 can be shortened accordingly, which is beneficial to the sensor Product miniaturization.
  • the mesh number of the filter part 31 is between 200 meshes and 500 meshes. Within this range, the filtering precision of the filtering element 3 can be guaranteed, and the flow resistance requirement of the sensor 100 can be met. In some embodiments, the mesh number of the screen portion 31 is 350 meshes.
  • the bracket 32 and the screen portion 31 may be made of metal material or may be made of plastic material.
  • the filter part 31 is fixed with the bracket 32 or the bracket 32 and the filter part 31 are integrated. When one of the bracket 32 and the filter part 31 is made of plastic material, the bracket 32 and the filter part 31 pass through the filter part 31 as the The inserts are injection-molded to form a one-piece structure. When both the bracket 32 and the filter part 31 are made of metal, the bracket 32 and the filter part 31 can be fixed by welding.
  • the connecting portion 333 includes a first limiting portion 34 , a second limiting portion 36 and an intermediate portion 35 .
  • the first limiting portion 34 and the second limiting portion 36 are respectively located on different sides of the intermediate portion 35 in the axial direction of the sleeve portion 33 .
  • the first limiting portion 34 is connected between the main body portion 332 and the intermediate portion 35 .
  • Both the first limiting portion 34 and the second limiting portion 36 protrude toward the axial direction of the sleeve portion 33 relative to the intermediate portion 35 .
  • the bracket 32 is at least partially located between the first limiting portion 34 and the second limiting portion 36 .
  • the bracket 32 is in contact with the inner wall of the intermediate portion 35 . Therefore, the bracket 32 and the sleeve portion 33 are in an interference fit relationship at the position of the middle portion 35 , and the first limiting portion 34 and the second limiting portion 36 respectively limit the position of the bracket 32 from the upper and lower directions, so that The bracket 32 does not move in the axial direction of the sleeve portion 33 , the position of the bracket 32 is relatively stable, and it is not easy to fall off the sleeve portion 33 .
  • the first limiting portion 34 is formed with a depression 37 on the outer peripheral surface of the sleeve portion 33 and the second limiting portion 36 is formed at the outer peripheral surface of the sleeve portion 33 .
  • a depression is formed on the outer peripheral surface of the sleeve portion 33.
  • the first limiting portion 34 is prepared by grooving, and a depression 37 is formed on the outer peripheral surface of the sleeve portion 33 accordingly.
  • the second limiting portion 36 is formed by riveting the end of the sleeve portion 33 , that is, the end of the sleeve portion 33 is originally in a vertical state, and the bracket 32 extends from the bottom of the sleeve portion 33 into the cylindrical cavity 331 of the sleeve portion 33 .
  • the end of the sleeve portion 33 is riveted and bent by a riveting tool, thereby forming the second limiting portion 36, and the bracket 32 cannot out of the cylinder cavity 331 .
  • the second limiting portion 36 can also be formed by notching similar to the first limiting portion 34 , which is not limited in the present application.
  • the tubular portion 112 of the first shell 11 includes a first extension portion 115 and a second extension portion 116 .
  • the second extension portion 116 protrudes in the direction of the axis of the sleeve portion relative to the first extension portion 115 .
  • the second extension portion 116 may also be formed by a riveting process, and the second extension portion 116 and the second limiting portion 36 may be attached together to further limit the position of the sleeve portion 33 .
  • the sensing module 23 and the filter part 3 are respectively located on the same side of the board part 21 along the height direction H of the sensor, that is, the sensing module 23 and the filter part 3 are both located on the board part 21.
  • the sensing module 23 can be fixed on the second surface 212 of the board member 21 by flip-chip bonding, or the sensing module 23 can be electrically connected to the board member 21 through an elongated binding wire.
  • the filter element 3 is fixedly connected or limitedly connected to the housing 1 .
  • the filter component 3 only includes a bracket 32 , and the bracket 32 of the filter component 3 is fixedly connected or limitedly connected to the first shell 11 .
  • the first shell 11 includes a bottom wall portion 111 and a tubular portion 112 .
  • the bottom wall portion 111 and the tubular portion 112 are integrally formed, and the accommodating hole 13 is provided in the tubular portion 112 .
  • the detection unit 2 is fixed between the bottom wall portion 111 and the second case 12 .
  • the bracket 32 and the tubular portion 112 are fixedly connected or limitedly connected, and the portion of the accommodating hole 13 located on the side of the filter member 3 close to the detection unit 2 communicates with the mesh 311 of the filter screen portion 31 .
  • the first shell 11 further includes a longitudinal wall 113 and a bent portion 114.
  • the longitudinal wall 113 is circumferentially arranged around the detection unit 2.
  • the bent portion 114 and the bottom wall portion 111 are respectively located on different sides of the longitudinal wall 113 along the height direction H of the sensor,
  • the bent portion 114 extends in an axial line direction close to the sensor 100 relative to the longitudinal wall 113 .
  • the second shell 12 is provided with a plurality of through holes 121 penetrating the shell.
  • the sensor 100 further includes a conductive member 7 matched with the through holes 121.
  • the conductive member 7 can be a conductive spring, and a part of the conductive spring is accommodated in the inner cavity of the sensor 100. It is electrically connected to the detection unit 2 , and the other part is exposed to the outside of the casing 1 through the through hole 121 . In this way, the external element can receive the electrical signal of the detection unit 2 by being in contact with the conductive spring.
  • the conductive member 7 can also be a conductive wire as shown in FIG. 18 , and the electrical signal of the sensing module 23 can also be transmitted to the external element through the conductive wire.
  • the first shell 11 is made of metal material to facilitate processing of the flanging structure, while the second shell 12 can be a plastic shell, which can reduce the weight and cost of the sensor 100 .
  • the sensor 100 further includes a temperature sensing element 5.
  • the temperature sensing element 5 includes a temperature sensing head 51 and a pin 52.
  • the temperature sensing head 51 may be located outside the housing 1, and the temperature sensing head 51
  • the surface of the sensor has a temperature sensing area, and the temperature sensing area can be in direct contact with the fluid to sense the temperature signal of the fluid.
  • the pins 52 can be fixed by sintering with the first shell 11 , bonding, or glass fusing.
  • the detection unit 2 further includes a protective cover 25 , the protective cover 25 is located on the side where the first surface 211 of the plate member 21 is located, and the side wall of the protective cover 25 is connected to the plate
  • the components 21 are fixed, and the sensing module 23 is located between the top wall of the protective cover 25 and the first surface 211 of the board component 21.
  • a part of the protective cover 25 can also be accommodated in the notch 28 of the circuit board 22, and the protective cover 25 can be fixed To a certain extent, the surface of the sensing module 23 is prevented from contacting with dust or water vapor.
  • the sensor 100 also includes a gasket 6 .
  • the gasket 6 is located in the inner cavity.
  • the gasket 6 is pressed between the second surface 212 of the plate member 21 and the bottom wall portion 111 of the first case 11 .
  • the provision of the gasket 6 here not only functions to seal the plate member 21 and the first shell 11 , but also acts as a buffer when the detection unit 2 is press-fitted to the bottom wall 111 , thereby reducing the direction of the detection unit 2 and the bottom wall 111 toward the inner cavity.
  • the gasket 6 can be a sealing ring with certain elasticity.
  • the senor 100 further includes a sealing member 39 .
  • the sealing member 39 is in contact with the second surface 212 of the plate member 21 , and the sealing member 39 is in contact with the inner wall surface 120 of the bottom wall portion 111 .
  • Seal 39 may be an elastomeric seal or other type of sealing material.
  • the housing 1 further includes a groove portion 391 recessed from the bottom wall portion 111 in a direction away from the plate member 21 .
  • the sealing member 39 is at least partially accommodated in the groove portion 391 , in some embodiments, as shown in FIG.
  • the sealing member 39 is pressed between the plate member 21 and the bottom wall portion 111 , and the sealing member 39 has a deformation amount that maintains the sealing performance between the plate member 21 and the bottom wall portion 111 .
  • the senor 100 may not be provided with the gasket 6 , which will not be described in detail in this application.
  • the sensor 100 in the third embodiment of the sensor 100 of the present invention, includes a housing 1 and a detection unit 2 assembled in the housing 1 .
  • the sensor 100 is provided with an inner cavity 200 .
  • the detection unit 2 includes a circuit board 22 , a board member 21 and a sensing module (not shown). At least part of the casing of the casing 1 surrounds the outer peripheral sides of the circuit board 22 and the board member 21 .
  • the detection unit 2 is at least partially accommodated in the inner cavity 200 , and the inner cavity 200 includes a space for accommodating the detection unit 2 and an upper cavity 30 .
  • the upper cavity 30 may be jointly enclosed by the casing 1 and the circuit board 22 , or may be jointly enclosed by the casing 1 and the circuit board 22 and other structural components such as the second casing 12 .
  • the sensor 100 also has a barrel cavity 331 through which fluid can flow.
  • the cylinder cavity 331 may be provided on the housing 1, or may be provided on other structural components, or formed by the cooperation of the housing 1 and other structural components.
  • the plate member 21 has a first surface 211 and a second surface 212 on different sides in the thickness direction thereof, respectively.
  • the circuit board 22 has a third surface 221 and a fourth surface 222 on different sides in the thickness direction thereof, respectively.
  • the board member 21 is provided with a guide hole 26 penetrating the first surface 211 and the second surface 212 , the sensing module 23 is mounted on the side of the board member 21 where the first surface 211 is located, and the The sensing module 23 covers the guide hole 26 .
  • the first surface 211 of the board member 21 faces at least a partial area of the fourth surface 222 of the circuit board 22; the thickness of the board member 21 is smaller than the thickness of the circuit board 22, and/or the The material hardness of the board member 21 is lower than that of the circuit board 22 .
  • the material of the casing 1 can be metal, and the casing 1 includes a bottom wall portion 111 , a tubular portion 112 extending downward from the bottom wall portion 111 , a longitudinal wall 113 extending upward from the bottom wall portion 111 , and a longitudinal wall 113 extending from the bottom wall portion 111 .
  • the top end of 113 is bent inwardly at the bent portion 114 .
  • the longitudinal wall 113 is connected with the bottom wall portion 111 and the two are integrally formed.
  • the bottom wall portion 111 is located on one side of the main circuit board 22 in the thickness direction, and at least a part of the longitudinal wall 113 is disposed around the circuit board 22 .
  • the housing 1 further includes a stop portion 110 , and the portion for preparing the longitudinal wall 113 and the portion for preparing the bottom wall portion 111 can both be processed to form the stop portion 110 .
  • the stop portion 110 is connected with the longitudinal wall 113 and the two are integrally formed.
  • the stopper 110 is formed with a depression 140 on the outer peripheral surface of the longitudinal wall 113 away from the plate member 21 , and the stopper 110 of this structure can pass the notch.
  • the tooling is formed by notching on the molding 10 of the housing 1 for preparing the sensor 100 ; of course, in other embodiments, the stop portion 110 can also be formed at the longitudinal wall 113 of the housing 1 by dots.
  • the profile forming the housing 1 may be an integrally formed structural member with a uniform wall thickness.
  • the wall thickness of the body portion 118 of the longitudinal wall 113 is equal to the wall thickness of the bottom wall portion 111 .
  • the molded part 10 of the housing 1 can be prepared by an integral molding process such as extrusion integral molding.
  • the molding method of the molded part 10 can also be realized by metal injection molding, forging, or the like.
  • the stop part 110 has a convex structure on the side of the longitudinal wall 113 of the housing 1 close to the inner cavity, and a concave structure on the side away from the inner cavity 200 . Compared with the step structure machined in the related art, the stop portion 110 occupies less shell material.
  • the manufacturing process of the integrally formed profile corresponding to the housing 1 is simpler and the processing cost is lower, which is beneficial to the lightweight of the sensor product.
  • the bottom wall portion 111 is located on the side where the second surface 212 of the plate member 21 is located.
  • the longitudinal wall 113 includes a body portion 118 and a stop portion 110 .
  • the projection of the board member 21 is located within the projection range of the circuit board 22
  • the body portion 118 is at least partially located on the peripheral side of the circuit board 22
  • the stop portion 110 is located at least partially on the outer peripheral side of the plate member 21 .
  • the stopper portion 110 protrudes from the body portion 118 toward the axis of the sensor 100 , and there is a gap between the stopper portion 110 and the bottom wall portion 111 .
  • the surface of the stop portion 110 on the side close to the inner cavity 200 is convex from the surface of the body portion 118 close to the inner cavity 200
  • the surface of the stop portion 110 on the side away from the inner cavity 200 is concave from the surface of the body portion 118 away from the inner cavity 200 .
  • the axis line of the sensor 100 can be illustrated with reference to the dotted line in FIG. 20 .
  • the bottom wall portion 111 has an inner wall surface 120 facing the second surface 212 of the plate member 21 .
  • the wall thickness direction of the bottom wall portion 111 is substantially co-directional with the height direction H of the sensor 100
  • the stop portion 110 has a supporting surface 130 located on the side away from the bottom wall portion 111 (please combine 21 and 22).
  • the surface of the stop portion 110 on the side close to the inner cavity 200 includes the support surface 130 , and the circuit board 22 is pressed against the support surface 130 .
  • the distance between the support surface 130 or the fourth surface 222 and the inner wall surface 120 is greater than or equal to the thickness of the plate member 21.
  • the stop portion 110 is located between the circuit board 22 and the bottom wall portion 111 ; the circuit board 22 and the stop portion 110 are fixed or limited connect.
  • the third surface 221 of the circuit board 22 is subjected to the pressure from the second shell 12 , so that the fourth surface 222 of the circuit board 22 presses against the supporting surface 130 of the stop portion 110 , and the circuit board 22 can be fixed or limited to the accommodation of the housing 1 In the space, the circuit board 22 cannot continue to move toward and away from the bottom wall portion 111 in the thickness direction of the bottom wall portion 111, and because the circuit board 22 and the board member 21 are fixed together, and the stop portion 110
  • the distance between the supporting surface 130 and the inner wall surface 120 of the bottom wall portion 111 is not less than the thickness of the board member 21, so that the first surface 211 side of the board member 21 is not easily subjected to the pressure from the circuit board 22, and the The side of the two surfaces 212 is not easily subjected to the pressure of the bottom wall portion 111 , so that the plate member 21 can be protected from being crushed by no external force or only a small external force.
  • the stop portion 110 is a continuous closed structure along the circumferential direction around the plate member 21 , for example, the stop portion 110 is a closed annular structure.
  • the longitudinal wall 113 may be provided with a plurality of stop parts 110 , and the plurality of stop parts 110 are distributed along the circumferential direction around the plate member 21 .
  • the stops 110 can be prepared by dots on the longitudinal walls 113 . That is, the stopper portions 110 of the sensor 100 are bumps protruding from the body portion 118 of the longitudinal wall 113 toward the axis line of the sensor 100 , and the bumps of the stopper portions 110 are discontinuous.
  • the senor 100 further includes a sensing module electrically connected to the circuit board 22 .
  • the circuit board 22 has a third surface 221 and a fourth surface 222 on different sides in the thickness direction thereof.
  • the stop part 110 protrudes from the bottom wall part 111 of the housing 1 to the side close to the inner cavity 200 , and the stop part 110 forms a depression 140 on the side of the bottom wall part 111 away from the inner cavity 200 , that is, the stop part 110
  • the surface of the part 110 close to the inner cavity 200 is convex from the surface of the bottom wall part 111 close to the inner cavity 200
  • the surface of the stop part 110 away from the inner cavity 200 is concave from the surface of the bottom wall part 111 away from the inner cavity 200 .
  • the fourth surface 222 is in contact with the support surface 130 of the stop portion 110, that is, the circuit board 22 is pressed against the support surface 130 of the stop portion 110. In the embodiment shown in FIG.
  • the detection unit 2 may not include a plate member
  • the circuit board 22 is a circuit board electrically connected with the sensing module.
  • the sensor 100 has a cylindrical cavity 331 , and both the cylindrical cavity 331 and the bottom wall portion 111 are located on the side where the fourth surface 222 of the circuit board 22 is located.
  • the circuit board 22 is a capacitive pressure sensing element, and the circuit board 22 has a third surface 221 and a first surface 221 on the side close to the bottom wall 111 in the thickness direction of the circuit board 22 respectively.
  • the fourth surface 222 includes the first region 105 and the second region 106 .
  • the second area 106 is located at the periphery of the first area 105 , the second area 106 is pressed against the support surface 130 , and at least a part of the first area 105 forms a pressure sensing area that can be in contact with the fluid.
  • the senor 100 includes a base 20 that includes a circuit board 22 .
  • the circuit board 22 has a third surface 221 and a fourth surface 222 on different sides in the thickness direction thereof.
  • the housing 1 further includes a positioning portion 117 , and the positioning portion 117 is accommodated in the upper cavity 30 .
  • the positioning portion 117 protrudes from the body portion 332 in the axial direction of the sensor 100 .
  • the positioning portion 117 is formed with a depression at the outer peripheral surface of the longitudinal wall 113 away from the circuit board 22 .
  • the peripheral portion of the circuit board 22 is fixed or limited between the positioning portion 117 and the stop portion 110 .
  • both the positioning portion 117 and the stop portion 110 can be realized by a grooving process at the outer peripheral surface of the longitudinal wall 113 away from the plate member 21 , so that both the positioning portion 117 and the stop portion 110 are convex toward the axis of the sensor 100 .
  • the extended structure is advantageous for the positioning portion 117 and the stop portion 110 to clamp the circuit board 22 .
  • the peripheral portion of the circuit board 22 is limited and fixed between the positioning portion 117 and the stop portion 110 .
  • the stop portion 110 can be processed on the molded part 10 forming the housing 1 first, and then the detection unit 2 including the circuit board 22 , the board part 21 and the sensing element can be press-fitted into the accommodation space formed by the housing 1 , After the detection unit 2 is press-fitted in place, the circuit board 22 is pressed against the support surface 130 of the stop portion 110 , and then the positioning portion 117 is processed, so that the circuit board 22 can be restrained up and down.
  • the circuit board 22 and the stop portion 110 can also be fixed by means of adhesion, for example.
  • some embodiments of the present application further provide a method for manufacturing the sensor 100 in the foregoing embodiments, including:
  • Step S101 providing a molded part 10 .
  • the molding 10 is a structure for preparing the housing 1 of the sensor 100 , and the molding 10 includes a cylindrical first wall 101 and a second wall 102 located at the bottom of the first wall 101 .
  • the first wall 101 is connected to the second wall 102 and circumferentially surrounds the second wall 102 .
  • the molded part 10 has an inner cavity 103 , and an installation opening 104 is formed on the side of the first wall 101 away from the second wall 102 .
  • Step S102 a processing tool is provided, and an external force is applied on the molded part 10 by the processing tool to form the stop portion 110 by processing.
  • a processing tool applies an external force from the surface of the first wall 101 away from the inner cavity 103 to the direction close to the inner cavity 103 , and part of the first wall 101 is deformed by the external force to form the stop portion 110 , the other parts of the first wall 101 form the longitudinal wall 113, so that the surface of the stop portion 110 on the side close to the inner cavity 103 protrudes from the surface of the longitudinal wall 113 close to the inner cavity 103, and the stop portion 110 is far away from the inner cavity
  • the surface on the side of 103 is recessed from the surface of the longitudinal wall 113 away from the inner cavity 103 .
  • the processing tool applies an external force from the surface of the second wall 102 away from the inner cavity 103 to the direction close to the inner cavity 103 , and part of the second wall 102 is deformed by the external force to form the stop portion 110 , the second wall 102
  • the other parts of the bottom wall portion 111 are formed, so that the surface of the stop portion 110 on the side close to the inner cavity 103 protrudes from the surface of the bottom wall portion 111 close to the inner cavity 103, and the stop portion 110 is away from the inner cavity 103 side.
  • the surface of the bottom wall portion 111 is concave away from the surface of the inner cavity 103 .
  • Step S102 namely, machining the stop portion 110 on the molded part 10 may form the stop portion 110 protruding toward the inner cavity 103 by carving grooves on the first wall 101 away from the outer wall surface 1011 of the inner cavity 103 .
  • the stop portion 110 has a recess 140 formed on the outer wall surface 1011 of the first wall 101 away from the inner cavity 103 .
  • Step S103 assemble the circuit board 22 or the components including the circuit board 22 into the inner cavity 103 from the installation opening 104 , and make the circuit board 22 and the stop portion 110 fixed or limitedly connected.
  • the circuit board 22 can also be installed in the inner cavity 103 alone, and the circuit board 22 needs to be fixed or limited with the stop portion 110 in the inner cavity 103 of the molded part 10 .
  • the detection unit 2 can be fixed or limited in various ways. For example, after the components are assembled in place, the positioning portion 117 is processed on the molded part 10 (please refer to FIG. 20 to FIG. 25 ). On the side of the positioning portion 110 away from the second wall 102 , the processing method of the positioning portion 117 may be similar to that of the stopping portion 110 . The peripheral portion of the circuit board 22 is fixed or limited between the positioning portion 117 and the stopping portion 110 .
  • the present application provides a specific manufacturing method for the sensor 100, including:
  • Step S21 the appearance of the pipe is inspected.
  • This step S21 may be omitted as an optional step in some embodiments.
  • step S22 the molded part 10 is processed.
  • the integrally formed molded part 10 is prepared by extruding the pipe material.
  • step S23 the surface of the molded part is refined.
  • the inner and outer surfaces of the molded part 10 can be cleaned, and/or the inner hole of the molded part 10 can be finely machined to remove structures such as wall burrs.
  • This step S23 may be omitted in some embodiments.
  • step S24 the stop portion 110 is processed.
  • the processing step of the sensor further includes the step of assembling the seal.
  • the sealing member may be an elastic sealing ring, and the sealing member is press-fitted into the forming part 10 .
  • the step of assembling the seal and the step S24 of processing the stop portion 110 may not limit the execution order of the steps, and the stop portion 110 may be processed first, and then the seal may be assembled, or The seal is assembled, and the stop portion 110 is processed again.
  • the step of assembling the seal can also be omitted, so that the non-communication between the barrel cavity 331 and the inner cavity 200 can be achieved in other ways.
  • Step S25 assembly of components.
  • the detection unit 2 may include a board member 21 , a circuit board 22 and a sensing module 23 fixed together, and the detection unit 2 is assembled from the installation opening 104 of the first wall 101 to a direction close to the second wall 102 (eg downward)
  • the inner cavity 103 of the molded part 10 makes the circuit board 22 press against the support surface 130 of the stop portion 110 .
  • step S26 the positioning portion 117 is processed.
  • the positioning portion 117 is processed on the first wall 101 of the molded part 10 away from the outer wall surface 1011 of the inner cavity 103 by the method of spinning and carving the groove, that is, similar to the method of processing the stop portion 110 .
  • the inner cavity 103 of the molded part 10 protrudes.
  • the circuit board 22 may be confined between the positioning portion 117 and the stop portion 110 .
  • Step S27 the second shell 12 is assembled.
  • the second shell 12 is positioned on the side where the third surface 221 of the circuit board 22 is located by means of a tool, so that the second shell 12 is pressed against the circuit board 22 .
  • the material of the second shell 12 can be plastic, which is beneficial to reduce the weight and cost of the product.
  • step S28 the bent portion 114 is processed.
  • the bent portion 114 itself is a metal shell connected to the first wall 101 , which is first extended in the vertical direction with the first wall 101 in a vertical state.
  • the vertical bent portion 114 is pressed inwardly to form a laterally inclined flanging structure.
  • the molded part 10 after the bending 114 has been machined forms the first housing 11 of the sensor 100 .
  • the bent portion 114 presses against the second shell 12 , and the second shell 12 is fixed up and down by the bent portion 114 and the circuit board 22 . Therefore, the second case 12 is installed stably with respect to the first case 11 without falling.
  • step S26 of processing the positioning portion 117 can be omitted, and steps S27 and S28 are executed after step S25. That is, the upper and lower positions of the circuit board 22 can also be limited by the second shell 12 . Therefore, the step of processing the positioning portion 117 can be omitted, so that the fabrication steps of the sensor 100 are relatively simple and feasible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

本申请提供了一种阀组件和传感器,阀组件包括阀体和传感器;阀体设有安装腔,传感器至少部分收容于安装腔;传感器包括外壳和检测单元;传感器具有第一流道;检测单元包括板部件和感测模块;阀体还设有第二流道;阀组件还包括过滤部件;过滤部件包括滤网部和固定部,滤网部与固定部固定连接或者二者为一体结构;第一流道和第二流道分别位于滤网部沿传感器的高度方向的不同侧;固定部与阀体、外壳以及板部件中的至少一者固定连接或者限位连接;滤网部设有多个网眼,网眼将第一流道与第二流道连通。本申请提供的阀组件和传感器对流体杂质的过滤效果较好。

Description

阀组件和传感器
本申请要求于2021年4月30日提交的、申请号为202110481252.0、发明创造名称为“阀组件和传感器”的中国专利申请;2021年6月30日提交的、申请号为202110735654.9、发明创造名称为“传感器”的中国专利申请;2021年6月30日提交的、申请号为202121477951.X、发明创造名称为“传感器”的中国专利申请;2021年6月30日提交的、申请号为202110734134.6、发明创造名称为“传感器和传感器的制造方法”的中国专利申请;2021年6月30日提交的、申请号为202121479314.6、发明创造名称为“传感器”的中国专利申请的优先权,这些中国专利申请的全文以引用的方式并入本文中。
技术领域
本申请涉及信号检测装置的技术领域,尤其是一种阀组件和传感器。
背景技术
相关技术中的阀组件包括阀体部和传感器,阀体部具有能够供制冷剂流动的流道,传感器能够检测流道内制冷剂的压力信号或温度信号等重要参数。
但是在空调系统中,不可避免的会存在一些杂质,这些杂质会随制冷剂在系统中流动或停留在某个部件内。这些杂质如果进入传感器内部,可能会对传感器的检测精度、响应时间甚至使用寿命等造成影响,因此,相关技术需要进行改进。
发明内容
本申请的目的在于提供一种对流体杂质过滤效果较好的阀组件以及传感器。
一方面,本申请提供了一种阀组件,包括阀体和传感器;所述阀体设有安装腔,所述传感器至少部分收容于所述安装腔;
所述传感器包括外壳和检测单元;所述传感器具有第一流道;所述检测单元包括板部件和感测模块;所述感测模块与所述板部件相连接;所述阀体还设有第二流道;在沿传感器的高度方向上,所述第一流道至少部分位于所述第二流道和所述板部件之间;
所述阀组件还包括过滤部件;所述过滤部件包括滤网部和固定部,所述滤网部与所述固定部固定连接或者二者为一体结构;所述第一流道和所述第二流道分别位于所述滤网部沿传感器的高度方向的不同侧;所述固定部与所述阀体、所述外壳以及所述板部件中的至少一者固定连接或者限位连接;所述滤网部设有多个网眼,所述网眼将所述第一流道与所述第二流道连通。
相较于相关技术,通过在阀组件中设置所述过滤部件有利于过滤流体中的杂质,使杂质不容易进入传感器的第一流道;相应的,阀组件可以实现较好的流体杂质过滤效果。
另一方面,本申请还提供了一种传感器,包括外壳、检测单元和过滤部件;所述传感器具有内腔和第一流道,所述检测单元包括板部件和感测模块;所述感测模块与所述板部件相连接;
所述过滤部件包括滤网部和固定部,所述滤网部与所述固定部固定连接或者二者为一体结构;在沿传感器的高度方向上,所述第一流道至少部分位于所述滤网部与所述检测单元之间;
所述固定部与所述板部件和所述外壳中的至少一者固定连接或者限位连接;所述滤网部相对于所述固定部向远离所述内腔的方向凸出;所述滤网部设有多个网眼,所述网眼与所述第一流道相连通。
相较于相关技术,通过在传感器中设置所述过滤部件有利于过滤流体中的杂质,使杂质不容易进入传感器的第一流道;相应的,传感器可以实现较好的流体杂质过滤效果。
附图说明
图1为本申请的一种阀组件的立体结构示意图;
图2为图1所示的阀组件的剖面结构示意图;
图3为图1所示的阀组件的另一角度剖面结构示意图;
图4为图1所示的阀组件的部分结构分解示意图;
图5为本申请的一种传感器在第一实施方式中的立体结构示意图;
图6是如图5所示传感器另一角度的立体结构示意图;
图7是如图5所示传感器的结构分解示意图;
图8是如图5所示传感器的结构的另一角度分解示意图;
图9是如图5所述传感器的立体剖视示意图;
图10是如图9所示传感器的部分组件的剖视结构示意图;
图11是如图10所示传感器的部分结构放大示意图;
图12是本申请的另一种传感器的部分结构放大示意图;
图13是本申请的又一种传感器的部分结构放大示意图;
图14是如图10所示传感器的部分组件的立体结构示意图;
图15是如图10所示传感器的部分组件的另一角度立体结构示意图;
图16是本申请一种实施方式中的检测单元和过滤部件组装结构示意图;
图17是如图16所示的传感器的分解示意图;
图18是本申请的传感器在第二实施方式中的剖视结构示意图;
图19是本申请另一种阀组件的部分结构剖视示意图;
图20是为本申请的传感器在第三实施方式中的立体剖视示意图;
图21是如图20所示传感器的部分结构放大示意图;
图22是如图20所示传感器的外壳的结构示意图;
图23是为本申请的传感器在第四实施方式中的立体剖视示意图;
图24是为本申请的传感器在第五实施方式中的剖视示意图;
图25是为本申请的传感器在第六实施方式中的剖视示意图;
图26是为本申请的传感器在第七实施方式中的剖视示意图;
图27是为本申请的传感器在第八实施方式中的剖视示意图;
图28是本申请用于制备传感器外壳的成型件的立体结构示意图;
图29是本申请制造传感器的组装示意图;
图30是本申请一种传感器的制造方法的流程示意图;
图31是本申请另一种传感器的制造方法的流程示意图。
具体实施方式
在汽车空调、家用空调或商用空调等领域,制冷剂是此类热管理系统中的重要换热流体,制冷剂压力的变化和/或温度的变化通常都需要通过传感器进行监测。而制冷剂中可能还含有颗粒状的杂质,该杂质可能来自空调系统各个部件加工留下的碎屑,或者长期使用过程中受高温高压流体的影响而从零部件表面剥落掉的物质,或者来自于流体本身等等。这些杂质的存在对系统零部件的运行会产生较大的影响,对于阀组件来说,如果流体中的杂质进入传感器的内部,很可能会影响传感器的精度、响应时间、测量范围甚至使用寿命。因此,阀组件的传感器对其感测的流体清洁度有较高的要求。
请参考图1至图19,本申请提供了一种阀组件8,包括阀体80和传感器100。阀体80设有安装腔801,传感器100至少部分收容于安装腔801中。
传感器100包括外壳1和检测单元2。传感器100具有内腔200和第一流道400。内腔200和第一流道400不相通。检测单元2包括板部件21和感测模块23。感测模块23与板部件21相连接,例如电性连接。内腔200和第一流道400的至少部分分别位于板部件21沿传感器100的高度方向H的不同侧。传感器的高度方向H请参考图1至图3、图5中带双箭头的示意方向(如图5中的上下方向)。
阀体80还设有第二流道800,第一流道400比第二流道800更靠近板部件21。在图1至图4的示意方式中,第一流道400和第二流道800轴向相交且大致垂直设置。阀体80还设有第三流道802,第三流道802和第二流道800的轴向可以平行设置。
阀组件8还包括过滤部件3,过滤部件3包括滤网部31和固定部,固定部可以为一体结构的部件,或者固定部包括固定连接或者限位连接的多个部件,滤网部31与固定部固定连接或者二者为一体结构,第一流道400和第二流道800分别位于滤网部31沿传感器100的高度方向H的不同侧。固定部与阀体80、外壳1以及板部件21中的至少一者固定连接或者限位连接。参考图2和图3示意的方式中,过滤部件3的固定部(具体为支架32以及套筒部33)与板部件21固定连接。参考图18所示意的方式中,过滤部件3的固定部(具体为支架32)与外壳1固定连接和/或限位连接。参考图19所示意的方式中,过滤部件3的固定部(具体为支架32)与阀体80固定连接和/或限位连接。
滤网部31设有多个网眼311,网眼311与第一流道400连通,网眼311与第二流道800连通。
当然,阀组件8还可以包括流量调节单元,流量调节单元包括线圈组件81和阀芯组件82等,阀体80设有安装腔801和阀腔803,传感器100至少部分收容于安装腔801中,阀芯组件82至少部分收容于阀腔803中。线圈组件81包括定子线圈等,阀芯组件82包括阀座、阀芯和转子组件等,定子线圈套于转子组件的外周侧,转子组件能够带动阀芯动作,使得阀芯能够相对于阀座移动,阀座具有阀口,阀芯通过靠近和远离阀口从而改变阀口处的开度,进而能在阀口处形成节流。流量调 节单元可以具体为电子膨胀阀。
阀组件8还可以包括压紧螺母88、主控板86,压紧螺母88将传感器100压装在安装腔801中,主控板86与传感器100的导电构件7电性连接,导电构件7可以如图5所示意的导电弹簧,导电弹簧一部分收容在传感器100的内腔中且与检测单元2电性连接,另一部分通过贯通孔121露出于外壳1之外。这样,主控板86可以通过与导电弹簧相接触实现接收检测单元2的电信号。导电构件7也可以如图18所示意的导电线,通过导电线也可以将感测模块23的电信号传递到主控板86。
下面详细描述传感器100的结构,传感器100包括外壳1、检测单元2和过滤部件3。传感器100具有不相通的内腔200和第一流道400。外壳1包围至少部分内腔200。
在一些实施方式中,外壳1包括第一壳11和第二壳12,第一壳11和第二壳12组装固定。第一壳11的部分壳体周向围绕检测单元2设置。
第一壳11设有容纳孔13,过滤部件3至少部分收容于容纳孔13。
检测单元2包括板部件21和感测模块23。感测模块23与板部件21相固定。感测模块23可以具有暴露于第一流道400的流体信号感测区域231。第二壳12的至少部分与过滤部件3分别位于板部件21在沿传感器100的高度方向H的不同侧。
感测模块23可以是独立的元器件类型的感测芯片,具体的,该感测芯片可以是背压式的压力芯片,或者正压式的压力芯片或者采用倒装焊方式的MEMS压力芯片,该感测芯片的感测区域可以与制冷剂等流体直接接触而感测压力。当然,感测芯片也可以同时集成温度和压力感测的功能,其流体信号感测区域231包括温度感测区域和压力感测区域。
或者,感测模块23包括感测芯片和与该感测芯片相配合的结构,如当感测芯片为正压式的压力芯片时,感测模块23还包括覆盖在感测芯片表面的凝胶状材料等其他结构件,这样一方面,流体与凝胶材料接触,凝胶材料与感测芯片的流体信号感测区域231相接触,流体的压力信号可以通过凝胶材料间接传递给感测芯片。另一方面,凝胶材料也可以保护感测芯片,特别是保护感测芯片的绑定线不受流体冲击而脱落或破坏,同时感测芯片也不容易被流体腐蚀。
板部件21可以为印刷电路板(PCB),具体的,板部件21可以为柔性电路板或者具有一定厚度的硬板。或者板部件21也可以为普通的平板结构,其可以起到支撑和固定感测模块23的作用。
板部件21包括分别位于其厚度方向不同侧的第一表面211和第二表面212,板部件21可以是圆形或者矩形或者其他形状的陶瓷电路板或者普通陶瓷板。第一表面211为图10中所示意的板部件21的上侧表面,第二表面212为图10中所示意的下侧表面。
过滤部件3可以起到过滤制冷剂等工作介质的杂质的作用。过滤部件3包括滤网部31和固定部,滤网部31设有多个网眼311,制冷剂等工作介质可以从网眼311中通过。第一流道400位于滤网部31沿传感器的高度方向H靠近板部件21的一侧。网眼311与第一流道400相连通。
可选的,感测模块23与过滤部件3分别位于板部件21沿传感器的高度方向H的不同侧。如图10中所示意,感测模块23位于板部件21的第一表面211所在侧,过滤部件3位于板部件21的第二表面212所在侧。当然,感测模块23与过滤部件3可以均位于板部件21沿传感器的高度方向H的同侧,如图18所示,感测模块23和过滤部件3均位于板部件21的第二表面212所在侧,且过滤部件3的滤网部31的至少部分比感测模块23更远离板部件21。从而当流体进入传感器100时,会更容易先经过滤网部31的网眼311,后续经第一流道400后与感测模块23相接触,从而杂质更不容易与感测模块23接触,可以实现较好杂质过滤效果。
参考图10所述,板部件21设有导孔26,导孔26在厚度方向上贯穿板部件21,感测模块23与过滤部件3分别位于导孔26轴向方向不同侧。导孔26的轴向方向即为图10中的竖直方向。导孔26为第一流道400的一部分。
在如图10所示的实施方式中,传感器100还包括电路板22,电路板22可以是普通的树脂电路板,电路板22位于板部件21的第一表面211所在侧,电路板22是具有一定厚度的板状件,电路板22具有位于其厚度方向上不同侧的第三表面221和第四表面222,电路板22在第三表面221和第四表面222处均可以设置电路元件,而板部件21可以为耐腐蚀的陶瓷板片,其成本较低,制冷剂在接触板部件21后不容易对板部件21造成腐蚀和破坏。板部件21在其第一表面211一侧也可以布置少量的导电线路。板部件21固定于电路板22的第四表面222所在侧,板部件21与电路板22电性连接,参考图15,板部件21和电路板22之间可以采用导电针29实现固定和电性连接,如导电针29同时贯穿板部件21和电路板22从而使得板部件21和电路板22层叠在一起,并且导电针29和板部件21锡焊固定,导电针29和电路板22锡焊固定。
电路板22设有缺口部28,缺口部28贯穿电路板22的第三表面221和第四表面222,感测模块23至少部分收容于缺口部28,感测模块23在导孔26的外围处与板部件21相固定。板部件21可以与感测模块23组成一体的感应模组,该感应模组可以单独加工售卖。这样做的好处在于,传感器100 的产品组装加工更方便。可以实现更多的定制化需求。特别是在传感器100产品尺寸需求不统一时,如电路板22的尺寸不统一,外壳1的尺寸不统一等情况下,可以加工制备统一尺寸统一规格的感应模组,只要感应模组其板部件21能够和电路板22实现固定连接即可。用同样的感应模组可以适配不同型号不同规格的传感器100的其他结构。增加了传感器产品的适应性和应用范围。
感测模块23可以为背压式的压力感测元件,感测模块23可以通过MEMS(Micro Electromechanical System,微机电系统)技术制备,MEMS技术制备的感应元件尺寸较小,相应的产品尺寸一般都在毫米级,甚至更小。感测模块23具有感测腔27,感测模块23的信号感测区域231暴露于感测腔27,信号感测区域231包括压力感测区域。滤网部31的网眼311与感测腔27相连通。当然,感测模块23的信号感测区域231可以同时包括压力感测区域和温度感测区域。
感测模块23的芯体部分为三层结构,包括衬底层、中间层以及顶层,衬底层和中间层围合成带有开口的感测腔27,感测模块23还可以包括真空腔,真空腔可以由顶层与中间层相围合而成,该真空腔设置于感测腔27远离导孔26的另一侧,真空腔与感测模块23不连通,真空腔有利于保证信号感测区域231所感受到的流体压力为绝对压力,当然,一些感测模块23可以不设置真空腔,相应的,信号感测区域231所感受到的流体压力为相对压力。衬底层可以为玻璃衬底,中间层可以为硅晶元材料,顶层也可以为玻璃材质。信号感测区域231通过压阻式的惠斯通电桥实现压力检测,在接入电路时,当没有压力作用在硅晶元的薄膜上,惠斯通电桥平衡,输出电压为0。当有压力作用在硅晶元的薄膜上,惠斯通电桥平衡被打破,有电压输出。因此,通过检测电路中电信号的变化可以反映压力的变化,从而实现压力检测功能。
感测模块23与板部件21的固定方式包括粘接、共晶焊、烧结固定和玻璃微融固定中的一种。在实际加工制造中,可以选择密封胶粘胶以及共晶焊的方式实现感测模块23与板体部之间的固定和密封,工艺简单容易实现。流体不容易从导孔26以及感测腔27中泄漏出去。
参考图16所示,在一些实施方式中,可以不设置电路板22,板部件21为陶瓷电路板或者普通的树脂电路板,板部件21的第一表面211通过导电结构件与传感器100外部的元器件电性连接。导电结构件可以具体为如图5所示的导电弹簧7,感测模块23和过滤部件3分别位于板部件21沿传感器的高度方向H上的不同侧,感测模块23的其他具体实施方式与图10中较类似,在此不再过多赘述。
过滤部件3的固定部能够与板部件21和外壳1中的至少一者固定连接或者限位连接。
如图10、图16所示的实施方式中,固定部包括支架32和套筒部33。套筒部33具有筒腔331,第一流道400包括筒腔331的至少部分。套筒部33具有沿套筒部33轴向相连的主体部332和连接部333。支架32与套筒部33的连接部333之间固定连接、限位连接或者二者为一体结构。
主体部332远离连接部333的末端一侧与板部件21相固定且主体部332与板部件21密封连接。具体的,参考图17,板部件21可以包括通过覆铜工艺覆设于其第二表面212处的金属结合部24,覆铜工艺即为将板部件21的第二表面212闲置的空间作为基准面,然后用固体铜填充的工艺,覆铜工艺为较为成熟的技术,本申请不作过多赘述。主体部332和板部件21之间可以通过锡焊、激光焊、粘接等方式实现密封和固定,从而套筒部33轴向的一端与板部件21的第二表面212之间具有一处密封位置。
可选的,套筒部33可以同时与板部件21和外壳1相固定,如图9和图13所示,套筒部33的外周侧和第一壳11形成容纳孔13的孔壁之间也可以密封连接,具体的,第一壳11包括形成容纳孔13的周壁部14,套筒部33的外壁与周壁部14至少部分区域通过锡焊、激光焊、粘接、超声波焊中的一种方式密封固定为一体。例如在图13中的M位置处填充焊料从而将套筒部33和管状部112进行焊接。
这样通过上述两个关键位置的密封,流体不容易从套筒部33和第一壳11之间以及套筒部33和板部件21之间进入容纳腔,密封效果较好,从而,套筒部33、板体部和第一壳11之间相互配合使得流体能够经过过滤部件3和筒腔331之后再接触感测模块23。
当然,套筒部33和第一壳11之间可以在容纳孔13的位置间隙配合,即二者之间不进行密封,与此同时,板部件21和第一壳11的底壁可以通过密封圈实现密封配合。
支架32为中空的环状件,支架32周向围绕滤网部31的至少部分,支架32可以对滤网部31起到一定的支撑定型作用。
在垂直于套筒部33轴向方向的平面上,滤网部31的投影与筒腔331的投影至少部分重合。这样,流体的流道相对笔直,制冷剂等工作介质类的流体更容易从滤网部31通过。
在一些实施方式中,滤网部31至少部分露出于容纳孔13远离检测单元2的一侧。如图11所示,在沿套筒部33的轴向方向上,滤网部31相对于支架32向远离套筒部33的方向凸伸。滤网部31的至少一部分会暴露在外壳1之外,滤网部31相比于传感器100的其他内部结构件会更早的接触到流 体,杂质不容易进入传感器100内部。此外,滤网部31向传感器100的外部凸出,使得滤网部不会占用过多的传感器100的内部空间,从而传感器100的第一流道400可以相应的缩短尺寸,相应的,有利于传感器产品的小型化。
滤网部31的目数在200目至500目之间。在此范围内,即能够保证过滤部件3的过滤精度,又能够满足传感器100的流阻要求。一些实施方式中,滤网部31的目数在350目。支架32和滤网部31可以为金属材质,也可以为塑料材质。滤网部31与支架32固定或者支架32和滤网部31为一体结构,当支架32和滤网部31中的一个为塑料材质时,支架32与滤网部31通过以滤网部31为嵌件注塑而成为一体结构。当支架32和滤网部31都为金属材质时,支架32和滤网部31可以通过焊接固定。
在一些实施方式中,参考图11,连接部333包括第一限位部34、第二限位部36和中间部35。第一限位部34和第二限位部36在沿套筒部33的轴向方向上分别位于中间部35的不同侧。第一限位部34连接于主体部332和中间部35之间。
第一限位部34和第二限位部36均相对于中间部35向套筒部33的轴心线方向凸伸。支架32至少部分位于第一限位部34和第二限位部36之间。支架32与中间部35的内壁之间相抵接。从而支架32和套筒部33在中间部35的位置处呈过盈配合的关系,第一限位部34和第二限位部36分别从上下方向上对支架32的位置进行限位,从而支架32不会在沿套筒部33的轴向方向上移动,支架32的位置相对稳定,不容易从套筒部33上脱落。
加工上述限位部的方式可以有多种,在本申请提供的一种实施方式中,第一限位部34在套筒部33的外周面处形成有凹陷37和第二限位部36在套筒部33的外周面处形成有凹陷,参考图12中所示,第一限位部34是通过刻槽而制备,并且相应的在套筒部33的外周面处形成有凹陷37,第二限位部36是将套筒部33的末端铆压而形成,即套筒部33的末端原本保持竖直状态,支架32从套筒部33底部伸入到套筒部33的筒腔331内,在支架32接触到第一限位部34而不能继续向上移动后,通过铆压工装将套筒部33的末端进行铆压折弯,从而形成了第二限位部36,支架32不能从筒腔331内脱出。当然,第二限位部36也可以与第一限位部34类似的通过刻槽而形成,本申请对此不作过多限制。第一壳11的管状部112包括第一延伸部115和第二延伸部116,第二延伸部116相对于第一延伸部115向套筒部轴心线方向凸伸。第二延伸部116也可以通过铆压工艺而成,第二延伸部116与第二限位部36可以贴合在一起,进一步对套筒部33进行限位。
在其他实施方式中,参考图18中所示,感测模块23和过滤部件3分别位于板部件21沿传感器的高度方向H上的同侧,即感测模块23和过滤部件3均位于板部件21第二表面212所在侧,感测模块23可以以倒装焊的方式固定在板部件21的第二表面212,或者感测模块23通过细长的绑定线与板部件21电性连接。过滤部件3和外壳1固定连接或者限位连接。具体的,过滤部件3仅包括支架32,过滤部件3的支架32与第一壳11固定连接或者限位连接。第一壳11包括底壁部111和管状部112,底壁部111和管状部112为一体结构,容纳孔13设于管状部112。检测单元2被固定于底壁部111与第二壳12之间。支架32与管状部112之间固定连接或者限位连接,容纳孔13位于过滤部件3靠近检测单元2一侧的部分与滤网部31的网眼311相连通。
第一壳11还包括纵向壁113和折弯部114,纵向壁113周向围绕检测单元2设置,折弯部114和底壁部111分别位于纵向壁113沿传感器的高度方向H的不同侧,折弯部114相对于纵向壁113向靠近传感器100轴向线方向延伸,第二壳12抵压检测单元2,折弯部114抵压第二壳12。
第二壳12设有若干贯穿其壳体的贯通孔121,传感器100还包括与贯通孔121相配合的导电构件7,导电构件7可以为导电弹簧,导电弹簧一部分收容在传感器100的内腔中且与检测单元2电性连接,另一部分通过贯通孔121露出于外壳1之外。这样,外部元件可以通过与导电弹簧相接触实现接收检测单元2的电信号。导电构件7也可以如图18所示意的导电线,通过导电线也可以将感测模块23的电信号传递到外部元件。
第一壳11为金属材质便于加工翻边结构,而第二壳12可以为塑料壳,这样可以降低传感器100的重量和成本。
在一些实施方式中,传感器100还包括温度感应元件5,如图18所示,温度感应元件5包括感温头51和引脚52,感温头51可以位于外壳1之外,感温头51的表面具有温度感测区域,该温度感测区域能够与流体直接接触而感测流体的温度信号,引脚52穿过壳体最终与检测单元2的电路模块电性连接。引脚52可以通过与第一壳11烧结、粘接或者采用玻璃微融等方式实现固定。
在一些实施方式中,如图7、图8、图10所示,检测单元2还包括保护罩25,保护罩25位于板部件21的第一表面211所在侧,保护罩25的侧壁与板部件21相固定,感测模块23位于保护罩25的顶壁与板部件21的第一表面211之间,保护罩25的一部分也可以收容在电路板22的缺口部28,保护罩25可以一定程度上阻挡灰尘或者水汽等接触到感测模块23的表面。
在如图18所示意的实施方式中,传感器100还包括垫圈6。垫圈6位于内腔。垫圈6被压紧于板部件21的第二表面212与第一壳11的底壁部111之间。这里设置垫圈6一方面起到密封板部件21和第一壳11的作用,还可以对检测单元2压装到底壁部111时产生缓冲作用,从而降低检测单元2与底壁部111朝向内腔的内壁面之间的硬接触而损坏板部件21的风险。图18所示实施例中,垫圈6可以采用具有一定弹性的密封圈。
请结合图23所示,在本申请的另一些实施方式中,传感器100还包括密封件39。密封件39与板部件21的第二表面212接触,密封件39与底壁部111的内壁面120接触,密封件39能够保持板部件21与底壁部111之间的密封性。密封件39可以为弹性密封件或者其他类型的密封材料。
外壳1还包括自底壁部111向远离板部件21方向下凹的槽部391。密封件39至少部分收容于槽部391,在一些实施方式中,如图24所示,槽部391在外壳1远离板部件21的外壁面处形成有凸起122。密封件39被压紧于板部件21和底壁部111之间,且密封件39具有保持板部件21和底壁部111之间的密封性的变形量。
当然,传感器100也可以不设置垫圈6,本申请不再过多赘述。
请结合图20所示,在本发明传感器100的第三实施方式中,所述传感器100包括外壳1和装配在外壳1内的检测单元2。传感器100设有内腔200。检测单元2包括电路板22、板部件21和感测模块(未图示)。外壳1的至少部分外壳围绕在电路板22和板部件21的外周侧。检测单元2至少部分收容于内腔200内,内腔200包括收容检测单元2的空间以及上腔体30。上腔体30可以由外壳1和电路板22共同围合,或者由外壳1和电路板22以及其他结构件如第二壳12共同围合。传感器100还具有可供流体流动的筒腔331。筒腔331可以设置在外壳1上,也可以设置在其他结构件上,或者通过外壳1和其他结构件配合而形成。
板部件21具有分别位于其厚度方向上不同侧的第一表面211和第二表面212。电路板22具有分别位于其厚度方向上不同侧的第三表面221和第四表面222。所述板部件21设有贯穿所述第一表面211和所述第二表面212的导孔26,所述感测模块23安装于所述板部件21的第一表面211所在侧,且所述感测模块23覆盖所述导孔26。所述板部件21的第一表面211与所述电路板22的第四表面222至少部分区域相面对;所述板部件21的厚度小于所述电路板22的厚度,和/或,所述板部件21的材料硬度低于所述电路板22的材料硬度。
外壳1的材质可以为金属,外壳1包括底壁部111、自所述底壁部111向下延伸的管状部112、自所述底壁部111向上延伸的纵向壁113以及自所述纵向壁113的顶端向内折弯的折弯部114。在本申请的一种实施方式中,所述纵向壁113与所述底壁部111相连接且二者为一体结构。所述底壁部111位于所述主电路板22厚度方向的一侧,所述纵向壁113的至少部分围绕所述电路板22设置。外壳1还包括止位部110,制备纵向壁113的部分和制备底壁部111的部分均可以加工形成所述止位部110。所述止位部110和所述纵向壁113相连且二者为一体结构。在本申请的实施方式中,参考图5以及图29所示,止位部110在纵向壁113远离板部件21的外周面处形成有凹陷140,这种结构的止位部110可以通过刻槽工装在用于制备传感器100的外壳1的成型件10上通过刻槽而成;当然,在其它实施方式中,止位部110也可以通过打点的方式形成于外壳1的纵向壁113处。
进一步的,形成外壳1的型材可以为均匀壁厚的一体成型的结构件,在一些实施方式中,纵向壁113的本体部118的壁厚与底壁部111的壁厚相等,对于制备传感器100外壳1的成型件10而言,可以采用一体成型的工艺如挤压一体成型制备该成型件10。成型件10的成型方式也可以通过金属注塑、锻造等方式实现。在制备止位部110时,止位部110在外壳1的纵向壁113靠近内腔的一侧为凸起结构,在远离内腔200的一侧为凹陷结构。止位部110相比于相关技术中的机加工而成的台阶结构而言,占用的外壳材料较少。外壳1所对应的一体成型的型材制备工艺更加简单,加工成本较低,有利于传感器产品的轻量化。
在本申请的一些实施方式中,如图20所示,底壁部111位于板部件21的第二表面212所在侧。纵向壁113包括本体部118和止位部110。在垂直于所述电路板22的厚度方向的平面上,所述板部件21的投影位于所述电路板22的投影范围之内,本体部118至少部分位于电路板22的外围侧,止位部110至少部分位于板部件21的外围侧。止位部110自本体部118向传感器100的轴心线方向凸伸,且止位部110与底壁部111之间具有间隙。即,止位部110靠近内腔200一侧的表面自本体部118靠近内腔200的表面凸起,止位部110远离内腔200一侧的表面自本体部118远离内腔200的表面凹陷。传感器100的轴心线可参考图20中的虚线示意。
底壁部111具有面向板部件21的第二表面212的内壁面120。在沿底壁部111壁厚方向上,底壁部111的壁厚方向与传感器100的高度方向H大致共向,止位部110具有位于远离底壁部111一侧的支撑面130(请结合图21以及图22所示)。换言之,所述止位部110靠近所述内腔200一侧的表面包括所述支撑面130,所述电路板22抵压于所述支撑面130。支撑面130或者第四表面222与 内壁面120之间的间距大于或等于板部件21的厚度。在沿所述电路板22的厚度方向上,所述止位部110位于所述电路板22和所述底壁部111之间;所述电路板22与所述止位部110固定或限位连接。
电路板22的第三表面221受来自第二壳12的压力,从而电路板22的第四表面222抵压止位部110的支撑面130,电路板22可以被固定或者限位于外壳1的收容空间中,使得电路板22在沿底壁部111的厚度方向上不能继续向靠近以及远离底壁部111的方向移动,而又因为电路板22和板部件21固定在一起,且止位部110的支撑面130和底壁部111的内壁面120之间的间距不小于板部件21的厚度,从而板部件21的第一表面211侧不容易受来自电路板22的压力,板部件21的第二表面212侧不容易受到底壁部111的压力,使得板部件21可以不受外力或者仅受较小外力而避免被压坏。
在本申请的一种实施方式中,止位部110在沿围绕板部件21的周向方向上为连续的闭合结构,如止位部110为封闭的环状的结构。
当然,在本申请的其他实施方式中,纵向壁113可以设有多个止位部110,且多个止位部110沿围绕板部件21的周向方向上分散设置。止位部110可以通过在纵向壁113上打点而制备。即传感器100的多个止位部110是自纵向壁113的本体部118向传感器100轴心线方向凸出的凸点,且多个止位部110的凸点不连续。
在本申请的一些实施方式中,如图25所示,传感器100还包括与电路板22电性连接的感测模块。电路板22具有位于其厚度方向上不同侧的第三表面221和第四表面222。止位部110自外壳1的底壁部111处向靠近内腔200的一侧凸出,止位部110在底壁部111远离内腔200的一侧形成凹陷140,也就是说,止位部110靠近内腔200一侧的表面自底壁部111靠近内腔200的表面凸起,止位部110远离内腔200一侧的表面自底壁部111远离内腔200的表面凹陷。第四表面222与止位部110的支撑面130接触,即电路板22抵压于止位部110的支撑面130,在图25所示意的实施方式中,检测单元2可以不包括板部件,电路板22即为与感测模块电性连接的电路板。传感器100具有筒腔331,筒腔331和底壁部111均位于电路板22的第四表面222所在侧。
在本申请的一些实施方式中,如图26所示,电路板22为电容式的压力感应元件,电路板22在其厚度方向上分别具有第三表面221和靠近底壁部111一侧的第四表面222,第四表面222包括第一区域105和第二区域106。第二区域106位于第一区域105的外围,第二区域106抵压于支撑面130,第一区域105的至少部分形成能够与流体接触的压力感测区。
在本申请的一些实施方式中,如图27所示,传感器100包括基座20,基座20包括电路板22。电路板22具有位于其厚度方向上不同侧的第三表面221和第四表面222。
在本申请的一些实施方式中,如图20至图24所示,外壳1还包括定位部117,定位部117收容于上腔体30。定位部117自主体部332向传感器100的轴心线方向凸伸。定位部117在纵向壁113远离电路板22的外周面处形成有凹陷。电路板22的周缘部分被固定或者限位于定位部117与止位部110之间。即定位部117和止位部110都可以通过在纵向壁113远离板部件21的外周面处通过刻槽工艺而实现,使得定位部117和止位部110都是向传感器100轴心线方向凸伸的结构,这样有利于定位部117和止位部110将电路板22进行夹持,具体的,电路板22的周缘部分被限位固定于定位部117和止位部110之间。在实际中,可以先在形成外壳1的成型件10上加工止位部110,然后将包含电路板22、板部件21以及感测件的检测单元2压装到外壳1形成的收容空间中,当检测单元2压装到位后,电路板22抵压在止位部110的支撑面130处,然后再加工定位部117,从而电路板22可以被上下限位。当然,电路板22与止位部110也可以通过如粘接的方式进行固定。
基于相同的发明构思,参考图28至图30,并结合前述实施方式对应的附图,本申请的一些实施方式还提供了一种针对前述实施方式中的传感器100的制造方法,包括:
步骤S101、提供成型件10。
具体的,成型件10是用于制备传感器100的外壳1的结构,成型件10包括呈圆筒状的第一壁101以及位于第一壁101底部的第二壁102。第一壁101与第二壁102相连接且周向围绕第二壁102。成型件10具有内腔体103,第一壁101远离第二壁102的一侧形成有安装开口104。
步骤S102、提供加工工具,通过加工工具在成型件10上施加外力以加工形成止位部110。
具体的,提供加工工具,加工工具从第一壁101远离内腔体103一侧的表面向靠近内腔体103的方向施加外力,部分第一壁101受该外力发生形变而形成止位部110,第一壁101的其他部分形成纵向壁113,从而使得止位部110靠近内腔体103一侧的表面自纵向壁113靠近内腔体103的表面凸起,止位部110远离内腔体103一侧的表面自纵向壁113远离内腔体103的表面凹陷。或者,加工工具从第二壁102远离内腔体103一侧的表面向靠近内腔体103的方向施加外力,部分第二壁102受该外力发生形变而形成止位部110,第二壁102的其他部分形成底壁部111,从而使得止位部110靠近内腔体103一侧的表面自底壁部111靠近内腔体103的表面凸起,止位部110远离内腔体103一侧的表面自底壁部111远离内腔体103的表面凹陷。
步骤S102即在成型件10上加工止位部110可以通过在第一壁101远离内腔体103的外壁面1011处通过刻槽形成向内腔体103凸出的止位部110。止位部110在第一壁101远离内腔体103的外壁面1011形成有凹陷140。
步骤S103、将电路板22或包括电路板22的组件从安装开口104组装入内腔体103,并使电路板22与止位部110固定或限位连接。
在一些实施方式中,电路板22也可以单独安装入内腔体103中,电路板22在成型件10的内腔体103内需要与止位部110进行固定或者限位。
检测单元2固定或者限位的方式可以有多种,示例的,如在组件组装到位后,在成型件10上加工定位部117(请结合图20至图25所示),定位部117位于止位部110远离所述第二壁102的一侧,定位部117的加工方式可以与止位部110相似。电路板22的周缘部分被固定或者限位在定位部117和止位部110之间。
参考图31所示,本申请提供一种针对传感器100的具体的制造方法,包括:
步骤S21,管材外观检查。
该步骤S21在一些实施方式中可以为非必须步骤而进行省略。
步骤S22,加工成型件10。
具体的,是将管材通过挤压成型的方式制备一体成型的成型件10。
步骤S23,精细化处理成型件表面。
精细化的方式可以将成型件10的内外表面进行清洗,和/或对成型件10的内孔精车处理,去除壁面毛刺等结构。该步骤S23在一些实施方式中可以省略。
步骤S24,加工止位部110。
具体的,通过旋压刻槽的方式,在成型件10的第一壁101远离内腔体103的外壁面1011处施加外力而加工止位部110,止位部110向成型件10的内腔体103凸出。
在一些实施方式中,传感器的加工步骤中还包括密封件装配的步骤。具体的,密封件可以为弹性密封圈,将该密封件压装到成型件10内部。需要注意的是,在本申请的一些实施方式中,密封件装配的步骤和加工止位部110的步骤S24可以不限制步骤执行顺序,可以先加工止位部110,再装配密封件,或者先装配密封件,再加工止位部110。当然,在一些实施方式中,还可以省去装配密封件的步骤,从而可以采用其他方式实现筒腔331和内腔200之间的不连通。
步骤S25,组件装配。
检测单元2可以包括固定在一起的板部件21、电路板22和感测模块23,将检测单元2从第一壁101的安装开口104向靠近第二壁102的方向(例如向下)组装入成型件10的内腔体103,使得电路板22抵压于止位部110的支撑面130处。
步骤S26,加工定位部117。
具体的,通过旋压刻槽的方式,即与加工止位部110的方式类似,在成型件10的第一壁101远离内腔体103的外壁面1011处加工定位部117,定位部117向成型件10的内腔体103凸出。电路板22可以被限位于定位部117和止位部110之间。
步骤S27,第二壳12装配。
具体的,通过工装将第二壳12定位于电路板22的第三表面221所在侧,使得第二壳12抵压电路板22。第二壳12的材质可以为塑料,从而有利于降低产品的重量和成本。
步骤S28,加工折弯部114。
具体的,折弯部114本身是与第一壁101相连的金属外壳,其先是与第一壁101均保持竖直状态在纵向上延伸,在将第二壳12压装到位后,通过工装把竖直的折弯部114向内压成偏向横向的翻边结构。在加工完折弯部114后的成型件10形成了传感器100的第一壳11。最终,折弯部114抵压第二壳12,第二壳12又通过折弯部114和电路板22的固定上下限位。从而第二壳12相对于第一壳11安装稳定而不掉落。
需要注意的是,加工定位部117的步骤S26可以省略,在步骤S25之后执行步骤S27和S28。即通过第二壳12也可以对电路板22进行上下限位。从而可以省略加工定位部117的步骤,这样,传感器100的制备步骤较少,相对简单可行。
以上实施例仅用于说明本申请而并非限制本申请所描述的技术方案,对本说明书的理解应该以所属技术领域的技术人员为基础,例如对“前”、“后”、“左”、“右”、“上”、“下”等方向性的描述,尽管本说明书参照上述的实施例对本申请已进行了详细的说明,但是,本领域的普通技术人员应当理解,所属技术领域的技术人员仍然可以对本申请进行修改或者等同替换,而一切不脱离本申请的精神和范围的技术方案及其改进,均应涵盖在本申请的权利要求范围内。

Claims (20)

  1. 一种阀组件(8),包括阀体(80)和传感器(100);所述阀体(80)设有安装腔(801),所述传感器(100)至少部分收容于所述安装腔(801);
    所述传感器(100)包括外壳(1)和检测单元(2);所述传感器(100)具有第一流道(400);所述检测单元(2)包括板部件(21)和感测模块(23);所述感测模块(23)与所述板部件(21)相连接;所述阀体(80)还设有第二流道(800);在沿所述传感器(100)的高度方向(H)上,所述第一流道(400)的至少部分位于所述第二流道(800)和所述板部件(21)之间;
    所述阀组件(8)还包括过滤部件(3),所述过滤部件(3)包括滤网部(31)和固定部,所述滤网部(31)与所述固定部固定连接或者二者为一体结构;所述固定部与所述阀体(80)、所述外壳(1)以及所述板部件(21)中的至少一者固定连接或者限位连接;所述第一流道(400)和所述第二流道(800)分别位于所述滤网部(31)沿所述传感器(100)的高度方向(H)的不同侧;所述滤网部(31)设有多个网眼(311),所述网眼(311)将所述第一流道(400)与所述第二流道(800)连通。
  2. 根据权利要求1所述的阀组件(8),其中,所述感测模块(23)与所述过滤部件(3)分别位于所述板部件(21)沿传感器(100)的高度方向(H)上的不同侧;或者,
    所述感测模块(23)与所述过滤部件(3)均位于所述板部件(21)沿传感器(100)的高度方向(H)上的同侧,且所述滤网部(31)的至少部分比所述感测模块(23)更远离所述板部件(21)。
  3. 根据权利要求1所述的阀组件(8),其中,所述外壳(1)包括第一壳(11)和第二壳(12),所述第一壳(11)和所述第二壳(12)组装固定;所述第一壳(11)的部分壳体周向围绕所述检测单元(2)设置;所述第二壳(12)的至少部分与所述过滤部件(3)分别位于所述板部件(21)在沿所述传感器(100)的高度方向(H)的不同侧;
    所述第一壳(11)设有容纳孔(13),所述过滤部件(3)至少部分收容于所述容纳孔(13)。
  4. 根据权利要求3所述的阀组件(8),其中,所述固定部包括支架(32)和套筒部(33),所述支架(32)和所述套筒部(33)固定连接、限位连接或者二者为一体结构,所述滤网部(31)与所述支架(32)固定连接或者二者为一体结构;
    所述套筒部(33)具有筒腔(331),所述第一流道(400)包括所述筒腔(331)的至少部分;所述套筒部(33)具有沿套筒部(33)的轴向相连的主体部(332)和连接部(333);
    所述主体部(332)远离所述连接部(333)的一侧与所述板部件(21)相固定且所述主体部(332)与所述板部件(21)密封连接;所述支架(32)为环状件,所述支架(32)与所述连接部(333)固定连接或者限位连接;
    在垂直于所述套筒部(33)的轴向方向的平面上,所述滤网部(31)的投影与所述筒腔(331)的投影至少部分重合。
  5. 根据权利要求4所述的阀组件(8),其中,所述连接部(333)包括第一限位部(34)、第二限位部(36)和中间部(35);所述第一限位部(34)和所述第二限位部(36)在沿所述套筒部(33)的轴向方向上分别位于所述中间部(35)的不同侧;所述第一限位部(34)连接于所述主体部(332)和所述中间部(35)之间;
    所述第一限位部(34)和所述第二限位部(36)均相对于所述中间部(35)向所述套筒部(33)的轴心线方向凸伸;所述支架(32)至少部分位于所述第一限位部(34)和所述第二限位部(36)之间。
  6. 根据权利要求5所述的阀组件(8),其中,所述第一限位部(34)在所述套筒部(33)的外周面处形成有凹陷(37),和/或,所述第二限位部(36)在所述套筒部(33)的外周面处形成有凹陷。
  7. 根据权利要求5所述的阀组件(8),其中,所述滤网部(31)至少部分露出于所述容纳孔(13)远离所述检测单元(2)的一侧;
    所述支架(32)与所述中间部(35)的内壁之间相抵接;所述支架(32)和所述滤网部(31)为通过以所述滤网部(31)为嵌件注塑而成的一体结构,或者所述支架(32)与所述滤网部(31)之间通过焊接固定;
    所述滤网部(31)为金属材质的过滤网;所述滤网部(31)的目数在200目至500目之间;在沿所述套筒部(33)的轴向方向上,所述滤网部(31)相对于所述支架(32)向远离所述套筒部(33)的方向凸伸。
  8. 根据权利要求2所述的阀组件(8),其中,所述板部件(21)设有导孔(26),所述感测模块(23)与所述过滤部件(3)分别位于所述导孔(26)的轴向方向的不同侧;所述感测模块(23)具有感测腔(27),所述感测模块(23)具有暴露于所述感测腔(27)的信号感测区域(231),所述信号感测区域(231)包括压力感测区域和/或温度感测区域。
  9. 根据权利要求3所述的阀组件(8),其中,所述第一壳(11)包括底壁部(111)和管状部(112),所述容纳孔(13)设于所述管状部(112);所述检测单元(2)被固定于所述底壁部(111)与所述第二壳(12)之间;所述过滤部件(3)与所述管状部(112)之间固定连接或者限位连接。
  10. 一种传感器(100),其中,包括外壳(1)、检测单元(2)和过滤部件(3);所述传感器(100)具有内腔(200)和第一流道(400),所述检测单元(2)包括板部件(21)和感测模块(23);所述感测模块(23)与所述板部件(21)相连接;
    所述过滤部件(3)包括滤网部(31)和固定部,所述滤网部(31)与所述固定部固定连接或者二者为一体结构;在沿所述传感器(100)的高度方向(H)上,所述第一流道(400)至少部分位于所述滤网部(31)与所述检测单元(2)之间;
    所述固定部与所述板部件(21)和所述外壳(1)中的至少一者固定连接或者限位连接;所述滤网部(31)相对于所述固定部向远离所述内腔(200)的方向凸出;所述滤网部(31)设有多个网眼(311),所述网眼(311)与所述第一流道(400)相连通。
  11. 根据权利要求10所述的传感器(100),其中,所述外壳(1)至少部分位于所述内腔(200)的外围,所述检测单元(2)包括至少部分位于所述内腔(200)的电路板(22);所述外壳(1)包括底壁部(111)、纵向壁(113)和止位部(110),所述底壁部(111)位于所述电路板(22)厚度方向的一侧,所述纵向壁(113)的至少部分围绕所述电路板(22)设置;
    所述止位部(110)靠近所述内腔(200)一侧的表面自所述纵向壁(113)靠近所述内腔(200)的表面凸起,所述止位部(110)远离所述内腔(200)一侧的表面自所述纵向壁(113)远离所述内腔(200)的表面凹陷;或者,所述止位部(110)靠近所述内腔(200)一侧的表面自所述底壁部(111)靠近所述内腔(200)的表面凸起,所述止位部(110)远离所述内腔(200)一侧的表面自所述底壁部(111)远离所述内腔(200)的表面凹陷;所述电路板(22)与所述止位部(110)固定或限位连接。
  12. 根据权利要求11所述的传感器(100),其中,所述外壳(1)的材质为金属,所述止位部(110)和所述纵向壁(113)相连且二者为一体结构,所述止位部(110)自所述纵向壁(113)向所述传感器(100)的轴心线方向凸伸,且所述止位部(110)与所述底壁部(111)之间具有间隙;
    所述止位部(110)靠近所述内腔(200)一侧的表面包括支撑面(130),所述电路板(22)抵压于所述支撑面(130)。
  13. 根据权利要求12所述的传感器(100),其中,所述板部件(21)具有分别位于其厚度方向上不同侧的第一表面(211)和第二表面(212);所述板部件(21)设有贯穿所述第一表面(211)和所述第二表面(212)的导孔(26),所述感测模块(23)安装于所述板部件(21)的第一表面(211)所在侧,且所述感测模块(23)覆盖所述导孔(26);
    所述电路板(22)具有位于其厚度方向上不同侧的第三表面(221)和第四表面(222),所述板部件(21)的第一表面(211)与所述电路板(22)的第四表面(222)至少部分区域相面对;所述第四表面(222)与所述支撑面(130)接触;所述传感器(100)具有筒腔(331),所述筒 腔(331)和所述底壁部(111)均位于所述第四表面(222)所在侧。
  14. 根据权利要求11所述的传感器(100),其中,所述止位部(110)为围绕所述传感器(100)的轴心线方向上的连续的闭合结构;或者
    所述止位部(110)有多个,多个所述止位部(110)是自所述纵向壁(113)向所述传感器(100)的轴心线方向凸出的凸点。
  15. 根据权利要求11所述的传感器(100),其中,所述检测单元(2)包括与所述板部件(21)固定在一起的电路板(22);所述板部件(21)具有分别位于其厚度方向上不同侧的第一表面(211)和第二表面(212);所述电路板(22)具有位于其厚度方向上不同侧的第三表面(221)和第四表面(222);所述板部件(21)的第一表面(211)与所述电路板(22)的第四表面(222)至少部分区域相面对;所述板部件(21)的厚度小于所述电路板(22)的厚度,和/或,所述板部件(21)的材料硬度低于所述电路板(22)的材料硬度。
  16. 根据权利要求15所述的传感器(100),其中,所述外壳(1)包括底壁部(111)和止位部(110),所述底壁部(111)具有面向所述第二表面(212)的内壁面(120);在沿所述电路板(22)的厚度方向上,所述止位部(110)位于所述电路板(22)和所述底壁部(111)之间;所述电路板(22)与所述止位部(110)固定或限位连接;所述止位部(110)具有与所述电路板(22)相接触的支撑面(130),所述支撑面(130)与所述内壁面(120)之间的间距大于或等于所述板部件(21)的厚度。
  17. 根据权利要求16所述的传感器(100),其中,在垂直于所述电路板(22)的厚度方向的平面上,所述板部件(21)的投影位于所述电路板(22)的投影范围之内,所述止位部(110)位于所述板部件(21)的外围侧。
  18. 根据权利要求16所述的传感器(100),其中,所述纵向壁(113)包括本体部(118)和所述止位部(110),所述本体部(118)至少部分位于所述电路板(22)的外围侧,所述止位部(110)至少部分位于所述板部件(21)的外围侧;
    所述止位部(110)自所述本体部(118)向所述传感器(100)的轴心线方向凸伸,且所述止位部(110)与所述底壁部(111)之间具有间隙。
  19. 根据权利要求16所述的传感器(100),其中,所述传感器还包括具有弹性的密封件(39),所述密封件(39)被压紧于所述板部件(21)和所述底壁部(111)之间,且所述密封件(39)具有保持所述板部件(21)和所述底壁部(111)之间的密封性的变形量。
  20. 根据权利要求10所述的传感器(100),其中,所述感测模块(23)与所述过滤部件(3)分别位于所述板部件(21)沿所述传感器(100)的高度方向(H)上的不同侧;或者,
    所述感测模块(23)与所述过滤部件(3)均位于所述板部件(21)沿所述传感器(100)的高度方向(H)上的同侧,且所述滤网部(31)的至少部分比所述感测模块(23)更远离所述板部件(21)。
PCT/CN2022/088898 2021-04-30 2022-04-25 阀组件和传感器 WO2022228361A1 (zh)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN202110481252.0 2021-04-30
CN202110481252.0A CN113266964A (zh) 2021-04-30 2021-04-30 阀组件和传感器
CN202110735654.9A CN115540923A (zh) 2021-06-30 2021-06-30 传感器
CN202110734134.6A CN115540922A (zh) 2021-06-30 2021-06-30 传感器和传感器的制造方法
CN202121479314.6 2021-06-30
CN202121477951.X 2021-06-30
CN202110735654.9 2021-06-30
CN202121477951.XU CN215296282U (zh) 2021-06-30 2021-06-30 传感器
CN202110734134.6 2021-06-30
CN202121479314.6U CN215296283U (zh) 2021-06-30 2021-06-30 传感器

Publications (1)

Publication Number Publication Date
WO2022228361A1 true WO2022228361A1 (zh) 2022-11-03

Family

ID=83846695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/088898 WO2022228361A1 (zh) 2021-04-30 2022-04-25 阀组件和传感器

Country Status (1)

Country Link
WO (1) WO2022228361A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204255560U (zh) * 2014-11-21 2015-04-08 贵州大学 一种压力传感器探头结构
CN206044349U (zh) * 2015-10-01 2017-03-29 史利利 压力传感器及压力锅
CN206710010U (zh) * 2017-02-20 2017-12-05 福建上润精密仪器有限公司 多层滤网保护压力传感器
CN109269713A (zh) * 2018-09-29 2019-01-25 珠海格力电器股份有限公司 辅助装置及压差传感器组件
CN212377399U (zh) * 2020-06-30 2021-01-19 浙江三花智能控制股份有限公司 传感器装置和阀组件
CN112432716A (zh) * 2020-09-26 2021-03-02 杭州三花研究院有限公司 传感器组件和换热装置
CN113266964A (zh) * 2021-04-30 2021-08-17 杭州三花研究院有限公司 阀组件和传感器
CN215296283U (zh) * 2021-06-30 2021-12-24 杭州三花研究院有限公司 传感器
CN215296282U (zh) * 2021-06-30 2021-12-24 杭州三花研究院有限公司 传感器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204255560U (zh) * 2014-11-21 2015-04-08 贵州大学 一种压力传感器探头结构
CN206044349U (zh) * 2015-10-01 2017-03-29 史利利 压力传感器及压力锅
CN206710010U (zh) * 2017-02-20 2017-12-05 福建上润精密仪器有限公司 多层滤网保护压力传感器
CN109269713A (zh) * 2018-09-29 2019-01-25 珠海格力电器股份有限公司 辅助装置及压差传感器组件
CN212377399U (zh) * 2020-06-30 2021-01-19 浙江三花智能控制股份有限公司 传感器装置和阀组件
CN112432716A (zh) * 2020-09-26 2021-03-02 杭州三花研究院有限公司 传感器组件和换热装置
CN113266964A (zh) * 2021-04-30 2021-08-17 杭州三花研究院有限公司 阀组件和传感器
CN215296283U (zh) * 2021-06-30 2021-12-24 杭州三花研究院有限公司 传感器
CN215296282U (zh) * 2021-06-30 2021-12-24 杭州三花研究院有限公司 传感器

Similar Documents

Publication Publication Date Title
WO2022142994A1 (zh) 传感器装置以及阀组件
JP4848904B2 (ja) 圧力センサ
CN111022728B (zh) 一种电子膨胀阀以及热管理组件
KR102490126B1 (ko) 전자식 팽창 밸브 및 그 제조 방법 및 열관리 어셈블리
US20240044734A1 (en) Sensor assembly and valve device
CN212377399U (zh) 传感器装置和阀组件
WO2022105451A1 (zh) 传感器组件和阀装置
WO2022142738A1 (zh) 传感器、阀装置以及热管理系统
WO2022228361A1 (zh) 阀组件和传感器
CN215296282U (zh) 传感器
CN113266964A (zh) 阀组件和传感器
CN215296283U (zh) 传感器
CN214066405U (zh) 传感器装置
CN214308873U (zh) 传感器
CN115683199A (zh) 传感器
CN214748607U (zh) 传感器
CN113108829A (zh) 传感器组件
CN113108823A (zh) 传感器及阀装置
CN214309248U (zh) 传感器
CN214748616U (zh) 传感器和阀组件
CN216483195U (zh) 传感器
CN115540923A (zh) 传感器
CN220625590U (zh) 压力传感器
CN215296320U (zh) 传感器
CN214308835U (zh) 传感器及阀装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22794831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22794831

Country of ref document: EP

Kind code of ref document: A1