WO2022228130A1 - 一种多输入多输出可见光通信特征信道功率分配方法 - Google Patents

一种多输入多输出可见光通信特征信道功率分配方法 Download PDF

Info

Publication number
WO2022228130A1
WO2022228130A1 PCT/CN2022/086673 CN2022086673W WO2022228130A1 WO 2022228130 A1 WO2022228130 A1 WO 2022228130A1 CN 2022086673 W CN2022086673 W CN 2022086673W WO 2022228130 A1 WO2022228130 A1 WO 2022228130A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
power
value
visible light
sub
Prior art date
Application number
PCT/CN2022/086673
Other languages
English (en)
French (fr)
Inventor
党建
邓乾
张在琛
吴亮
朱秉诚
汪磊
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Publication of WO2022228130A1 publication Critical patent/WO2022228130A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/564Power control

Definitions

  • the invention belongs to the technical field of wireless communication, and in particular relates to a method for allocating characteristic channel power of multiple-input multiple-output visible light communication.
  • Visible Light Communication is a new type of broadband wireless communication technology, which is the product of the combination of traditional optical fiber communication and wireless radio frequency communication. It uses a light-emitting diode (Light Emitting Diode, LED) as a light source, transmits information by sending out high-speed bright and dark flashing visible light signals, and uses a photodiode (Photo-Diode, PD) at the receiving end to complete photoelectric conversion, and then receive electrical signals, Regeneration and demodulation to realize the transmission of information.
  • LED Light Emitting Diode
  • PD photodiode
  • VLC Compared with wireless radio frequency communication where the spectrum is strictly regulated, VLC uses the light wave frequency band for communication, there is no spectrum allocation problem, no need to apply for a frequency band license, and it has a large bandwidth.
  • the development of VLC not only relieves the pressure on the wireless spectrum, but also meets the high-speed development requirements of future wireless communications.
  • VLC can realize high-speed data transmission.
  • the existing experimental system combined with multiple input and multiple output technology has reached a transmission rate of several gigabits or even tens of gigabits per second.
  • the achievable transmission rate is an important criterion for evaluating the performance of a communication system.
  • the capacity analysis of VLC with multiple input and multiple output is fundamentally different from that of traditional wireless radio communication.
  • the traditional field of radio frequency communication there have been a large number of literatures studying the optimization problem of precoding matrix in order to obtain the maximum achievable transmission rate. Since the water-filling algorithm can allocate more power to the sub-channels with better performance, so as to maximize the channel capacity under the condition of power limitation, the water-filling algorithm is often used in the traditional RF communication to allocate the characteristic channel power.
  • the present invention proposes a characteristic channel power allocation method for multi-input multi-output visible light communication based on the idea of the water injection algorithm.
  • the present invention can quickly and effectively complete the power distribution of each characteristic channel and maximize the channel capacity.
  • a method for allocating characteristic channel power of multiple-input multiple-output visible light communication comprising the following steps:
  • Step 1 obtain the channel matrix through the transmitting end of the visible light communication system, and perform singular value decomposition on it;
  • Step 2 perform KKT condition analysis on the channel capacity to obtain the power allocation value
  • the input signal approximately obeys a Gaussian distribution, and the lower bound of the obtained channel capacity is Among them, k represents the kth sub-channel, N t is the number of sub-channels, e is a natural number, is the variance of white Gaussian noise, ⁇ k is the eigenvalue corresponding to the k-th sub-channel, and ⁇ k is the power allocation value of the k-th sub-channel;
  • Step 3 ensure that the power parameters of the N t sub-channels gradually decrease or do not increase, and remove the situation that the real number ⁇ cannot be solved under the condition of total power limitation;
  • Step 4 further remove on the basis of step 3 When ⁇ k ⁇ 0, ensure that the selected schemes all meet the power allocation value in step 2, and calculate the channel capacity under these schemes;
  • Step 5 take the maximum value of the channel capacity obtained in step 4 as the final channel capacity.
  • the method for obtaining the channel matrix is one of the following two methods: the first is that the transmitter sends a pilot, and the receiver calculates the channel matrix through the received signal and pilot, and feeds it back to the control link through the control link. Sending end; the second is to calculate the channel matrix according to the measurement of specific light-emitting diodes, photodiodes spatial distribution, quantity and radiation characteristics.
  • the formula for calculating the channel matrix according to the spatial distribution, quantity and radiation characteristics of specific light-emitting diodes and photodiodes measured is:
  • h ij represents the element value of the i-th row and the j-th column of the channel matrix.
  • the physical meaning is the DC gain between the j-th LED and the i-th photodiode, and the coefficient ⁇ is related to the half-angle value of the LED.
  • A is the effective light receiving area of the photodiode
  • dij is the distance between the jth light-emitting diode and the ith photodiode
  • is the angle between the incident light and the receiving axis, is the half angle of the field of view.
  • the present invention proposes a multi-input and multi-output visible light communication characteristic channel power allocation method, according to the sub-channel performance. Good or bad allocation of sub-channel power to maximize channel capacity. Compared with the traditional traversal method, the method involved in the present invention retains the superiority of visible light communication performance, and has the characteristics of low complexity, faster operation speed, and better time cost saving.
  • FIG. 1 is a schematic diagram of a visible light communication system model according to an embodiment of the present invention
  • Fig. 2 is the relation diagram of channel capacity and signal-to-noise ratio of Embodiment 1 and the traditional traversal method;
  • FIG. 3 is a relationship diagram of channel capacity and signal-to-noise ratio between Embodiment 2 and other existing precoding methods
  • FIG. 4 is a schematic flowchart of the precoding method of the present invention.
  • Figure 1 shows the visible light communication system model involved in the method of the present invention.
  • the water-filling algorithm cannot be directly used to allocate sub-channel power, thereby quickly maximizing the channel capacity;
  • the complexity is high.
  • the present invention performs KKT condition analysis on the optimization model, and obtains the analytical formula of the power parameter. Then, ensure that sub-channels with better performance obtain larger power parameters, and obtain a characteristic channel power allocation scheme of a multiple-input multiple-output visible light communication system, thereby maximizing channel capacity.
  • a method for allocating characteristic channel power of multiple-input multiple-output visible light communication includes the following steps:
  • Step 1 obtains the channel matrix by the transmitting end of the visible light communication system, and carries out singular value decomposition to it;
  • the method of obtaining the channel matrix is one of the following two methods: the first is that the transmitter sends a pilot, the receiver calculates the channel matrix through the received signal and the pilot, and feeds it back to the transmitter through the control link; The second is to calculate the channel matrix based on measuring the spatial distribution, quantity and radiation characteristics of specific light-emitting diodes and photodiodes.
  • the formula for calculating the channel matrix according to the spatial distribution, quantity and radiation characteristics of the specific light-emitting diodes and photodiodes measured is:
  • h ij represents the element value of the i-th row and the j-th column of the channel matrix.
  • the physical meaning is the DC gain between the j-th LED and the i-th photodiode, and the coefficient ⁇ is related to the half-angle value of the LED.
  • A is the effective light receiving area of the photodiode
  • dij is the distance between the jth light-emitting diode and the ith photodiode
  • is the angle between the incident light and the receiving axis, is the half angle of the field of view.
  • Step 2 perform KKT condition analysis on the channel capacity to obtain the power allocation value
  • the input signal approximately obeys a Gaussian distribution, and the lower bound of the obtained channel capacity is Among them, k represents the kth sub-channel, N t is the number of sub-channels, e is a natural number, is the variance of white Gaussian noise, ⁇ k is the eigenvalue corresponding to the k-th sub-channel, and ⁇ k is the power allocation value of the k-th sub-channel;
  • Step 3 ensure that the power parameters of the N t sub-channels gradually decrease or do not increase, and remove the situation that the real number ⁇ cannot be solved under the condition of total power limitation;
  • Step 4 further remove on the basis of step 3 When ⁇ k ⁇ 0, ensure that the selected schemes all meet the power allocation value in step 2, and calculate the channel capacity under these schemes;
  • Step 5 take the maximum value of the channel capacity obtained in step 4 as the final channel capacity.
  • Step 1 obtain the channel matrix through the transmitting end of the visible light communication system, and perform singular value decomposition on it;
  • the number of LEDs at the transmitting end is N t
  • the number of PDs at the receiving end is N r
  • y r is the received signal vector of N r ⁇ 1
  • n is the Gaussian noise vector of N r ⁇ 1
  • x is the transmission signal of N t ⁇ 1
  • the channel matrix H of visible light MIMO is as follows:
  • the coefficient ⁇ and the LED half-angle value related A is the effective light-receiving area of the PD, d ij is the distance between the j-th LED and the i-th PD, is the angle between the LED light and the emission axis, and ⁇ is the angle between the incident light and the receiving axis, is the field of view (FOV) half angle.
  • the model used in this embodiment is shown in Figure 1.
  • the coordinates of LED1 are set (-0.2, 0, 2.5), and the coordinates of LED2 are (0.2, 0, 2.5); the coordinates of the two detectors are PD1: (-0.1, 0, 0.75), PD2: (-0.1, 0, 0.75).
  • A 1 cm 2 . so,
  • the H matrix is decomposed by SVD to get
  • U and V are left and right singular matrices, which are N r ⁇ N r unitary matrices and N t ⁇ N t unitary matrices, respectively, and ⁇ is an N r ⁇ N t diagonal matrix with singular values on the diagonal.
  • T represents the transpose of the matrix.
  • d is an N t ⁇ 1 DC bias vector, used to ensure the non-negativity of x
  • F is a N t ⁇ N t precoding matrix
  • s is an N t -dimensional independent modulation signal, assuming that the symbol of s obeys a uniform distribution , the range is [- ⁇ , ⁇ ].
  • the total optical power of the limited transmitter is P t . Since the mean value of s is 0, the limit on the total optical power is:
  • is a diagonal matrix of N t ⁇ N t ;
  • 1 T is a row vector of N t dimensions whose elements are all 1, and ( ) T represents the transpose of the matrix.
  • e is a natural number, is the Gaussian white noise variance
  • the optimization model is established as follows:
  • equation (23) can be rewritten as:
  • the model is optimized directly according to the lower limit of the channel capacity, and the resulting power allocation scheme is as follows:
  • step 1 the channel matrix H is decomposed by SVD, which ensures that the higher the sub-channel, the better the performance. Therefore, the former sub-channel has a greater probability to take the value G 1 , and the latter sub-channel has poor performance, so the value of ⁇ k cannot be greater than that of the former sub-channel, thereby ensuring that the power parameters of the N t sub-channels decrease step by step or does not increase.
  • the power allocation should meet the total power constraints (P t is the total power at the input end), if the above equation cannot be solved for a real number ⁇ , it means that this situation cannot meet the total power limit, so this type of situation should be removed;
  • step 3 Further removal on the basis of step 3 When ⁇ k ⁇ 0, ensure that the selected schemes meet the power value in step 2, and calculate the channel capacity under these schemes;
  • the maximum capacity value in step 4 is selected as the final channel capacity obtained by the present invention.
  • Fig. 2 adopts the method proposed by the present invention in this embodiment and A comparison graph of the traversal results in each case. It can be seen from FIG. 2 that the results of the method of the present invention and the original traversal method are almost identical, and the two curves are almost completely coincident. Therefore, it can be shown that the method proposed in the present invention can better retain the performance superiority of the visible light communication system, and, compared with the original The traversal method can improve the operation efficiency and save the time cost.
  • step 1
  • the number of LEDs at the transmitting end is N t
  • the number of PDs at the receiving end is N r
  • y r is the received signal vector of N r ⁇ 1
  • n is the Gaussian noise vector of N r ⁇ 1
  • x is the transmission signal of N t ⁇ 1
  • the channel matrix H of visible light MIMO is as follows:
  • the coefficient ⁇ and the LED half-angle value related A is the effective light-receiving area of the PD, d ij is the distance between the j-th LED and the i-th PD, is the angle between the LED light and the emission axis, and ⁇ is the angle between the incident light and the receiving axis, is the field of view (FOV) half angle.
  • the H matrix is decomposed by SVD to get:
  • U and V are left and right singular matrices, which are N r ⁇ N r unitary matrices and N t ⁇ N t unitary matrices, respectively, and ⁇ is an N r ⁇ N t diagonal matrix with singular values on the diagonal.
  • T represents the transpose of the matrix.
  • d is an N t ⁇ 1 DC bias vector, used to ensure the non-negativity of x
  • F is a N t ⁇ N t precoding matrix
  • s is an N t -dimensional independent modulation signal, assuming that the symbol of s obeys a uniform distribution , the range is [- ⁇ , ⁇ ].
  • the total optical power of the limited transmitter is P t . Since the mean value of s is 0, the limit on the total optical power is:
  • is a diagonal matrix of N t ⁇ N t ;
  • 1 T is a row vector of N t dimensions whose elements are all 1, and ( ) T represents the transpose of the matrix.
  • e is a natural number, is the Gaussian white noise variance
  • the optimization model is established as follows:
  • equation (23) can be rewritten as:
  • the model is optimized directly according to the lower limit of the channel capacity, and the resulting power allocation scheme is as follows:
  • step 1 the channel matrix H is decomposed by SVD, which ensures that the higher the sub-channel, the better the performance. Therefore, the former sub-channel has a greater probability to take the value G 1 , and the latter sub-channel has poor performance, so the value of ⁇ k cannot be greater than that of the former sub-channel, thereby ensuring that the power parameters of the N t sub-channels decrease step by step or does not increase.
  • the power allocation should meet the total power constraints (P t is the total power at the input end), if the above equation cannot be solved for a real number ⁇ , it means that this situation cannot meet the total power limit, and such situations should not be considered;
  • step 3 Further removal on the basis of step 3 In the case of ⁇ k ⁇ 0, ensure that the selected schemes all satisfy the power value in step 2, and calculate the channel capacity under these schemes according to formula (14).
  • 1 T is a row vector of N t dimensions whose elements are all 1, and ( ) T represents the transpose of the matrix.
  • the channel capacity can be estimated as:
  • K is the rank of the channel matrix H, e is a natural number, is the Gaussian white noise variance; and, define for:
  • the maximum capacity value obtained under the idea of the water-filling algorithm in step 4 is selected as the final channel capacity obtained by the present invention.
  • the present invention proposes a multi-input multi-output visible light communication characteristic channel power allocation scheme, which can ensure that sub-channels with better performance are allocated larger power parameters, thereby maximizing channel capacity . Therefore, the present invention has the advantage of low complexity while retaining good communication performance, and saves time and cost.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本发明公开了一种多输入多输出可见光通信特征信道功率分配方法,包括如下步骤:步骤1,通过可见光通信系统的发送端获取信道矩阵,并对其进行奇异值分解;步骤2,对信道容量进行KKT条件分析,得到功率分配数值;步骤3,确保N t个子信道的功率参数逐级递减或不增加,并去除在总功率限制条件下无法求解出实数μ的情况;步骤4,在步骤3基础上进一步去除 aa时, bb≠0的情况,确保所选用方案均满足步骤2中的功率分配数值,并计算这些方案下的信道容量;步骤5,取步骤4所得信道容量的最大值作为最终的信道容量。本发明在保留较好的可见光通信系统性能同时,又具有低复杂度的特点,在计算时间上有明显改善。

Description

一种多输入多输出可见光通信特征信道功率分配方法 技术领域
本发明属于无线通信技术领域,尤其涉及一种多输入多输出可见光通信特征信道功率分配方法。
背景技术
可见光通信(Visible Light Communication,VLC)是一种新型的宽带无线通信技术,是传统光纤通信和无线射频通信相结合的产物。它以发光二极管(Light Emitting Diode,LED)作为光源,通过发出高速明暗闪烁的可见光信号来传输信息,在接收端利用光电二极管(Photo-Diode,PD)完成光电转换,然后进行电信号的接收、再生、解调来实现信息的传递。
与频谱受到严格管制的无线射频通信相比,VLC利用光波频段进行通信,不存在频谱分配问题,无需申请频段使用执照,而且具有很大的带宽。发展VLC,在缓解无线频谱压力的同时,还符合未来无线通信的高速率发展要求。VLC可以实现高速的数据传输,目前现有的实验系统结合多输入多输出技术,已达到每秒数吉比特甚至数十吉比特的传输速率。
可达传输速率(或信道容量)是评估通讯系统性能的重要衡量标准。然而由于可见光通讯的特殊性,例如信号的非负性,使得多输入多输出的VLC的容量分析与传统无线射频通信的容量分析有本质差异。在传统的射频通讯领域中,已经有大量的文献研究预编码矩阵的优化问题以求获得最大的可达传输速率。由于注水算法可以使性能较好的子信道分配更多的功率,从而实现在功率限制情况下信道容量最大化,所以,在传统射频通信中常常采用注水算法进行特征信道功率分配。但在可见光通信系统基于奇异值(SingularValueDecomposition,SVD)分解的预编码设计中,一个明显的现状是,信道容量是关于各子信道分配的功率参数平方而非本身的函数,这就导致与射频相比更加复杂困难,急需一种简单的方法,快速最大化信道容量。
发明内容
发明目的:针对技术背景中所提到的可见光通信系统中无法直接采用注水算法这一局限性,本发明依据注水算法思想,提出一种多输入多输出可见光通信特征信道功率分配方法。在功率分配问题中,本发明能够快速有效完成各特征信道功率分配,实现信道容量最大化。
技术方案:为实现上述目的,本发明采用的技术方案为:
一种多输入多输出可见光通信特征信道功率分配方法,包括如下步骤:
步骤1,通过可见光通信系统的发送端获取信道矩阵,并对其进行奇异值分解;
步骤2,对信道容量进行KKT条件分析,得到功率分配数值;
输入信号近似服从高斯分布,所得信道容量下界为
Figure PCTCN2022086673-appb-000001
其中,k表示第k个子信道,N t为子信道的个数,e为自然数,
Figure PCTCN2022086673-appb-000002
为高斯白噪声方差,λ k为相应于第k个子信道的特征值,φ k为第k个子信道的功率分配数值;
通过KKT条件分析得到的功率分配数值
Figure PCTCN2022086673-appb-000003
其 中,
Figure PCTCN2022086673-appb-000004
v jk为步骤1对信道矩阵奇异值分解所得酉矩阵V中第(j,k)个元素;μ=2ηln2,η为拉格朗日参数;
步骤3,确保N t个子信道的功率参数逐级递减或不增加,并去除在总功率限制条件下无法求解出实数μ的情况;
步骤4,在步骤3基础上进一步去除
Figure PCTCN2022086673-appb-000005
时,φ k≠0的情况,确保所选用方案均满足步骤2中的功率分配数值,并计算这些方案下的信道容量;
步骤5,取步骤4所得信道容量的最大值作为最终的信道容量。
所述步骤1中,获取信道矩阵的方法为以下两种之一:第一种是发射端发送导频,接收端通过接收到的信号和导频计算出信道矩阵,并通过控制链路反馈给发送端;第二种是根据测量具体的发光二极管、光电二极管的空间分布、数量和辐射特性情况来计算信道矩阵。
所述获取信道矩阵的第二种方法中,根据测量具体的发光二极管、光电二极管的空间分布、数量和辐射特性情况来计算信道矩阵的公式为:
Figure PCTCN2022086673-appb-000006
其中,h ij代表信道矩阵第i行第j列的元素值,物理意义是第j个发光二极管和第i个光电二极管之间的直流增益,系数κ与发光二极管半角值
Figure PCTCN2022086673-appb-000007
有关,
Figure PCTCN2022086673-appb-000008
A是光电二极管的有效光接收面积,d ij是第j个发光二极管与第i个光电二极管之间的距离,
Figure PCTCN2022086673-appb-000009
为发光二极管光线与发射轴之间的夹角,而ψ为入射光线与接收轴之间的夹角,
Figure PCTCN2022086673-appb-000010
为视场角半角。
所述步骤1中,奇异值分解的公式为Η=UΛV T;其中,
Figure PCTCN2022086673-appb-000011
均为信道矩阵Η的特征值,N t为发光二极管的个数,U和V均为酉矩阵。
所述步骤2中,关于直流偏置约束条件为abs(F)Δ=d,其中,F是预编码矩阵,abs(·)代表求矩阵所有元素的绝对值,Δ是元素值均为Δ的列向量,Δ为原始信号的最大值,d是直流偏置列向量。
所述步骤2中,关于光功率的约束条件为1 Td=P t,其中,1 T是元素都为1的行向量,P t代表总发送光功率限制,d是直流偏置列向量。
所述步骤3中,由步骤2得到的功率分配数值φ k的取值可能性,记
Figure PCTCN2022086673-appb-000012
Figure PCTCN2022086673-appb-000013
G 3=0,所以,G 1>G 2>G 3;由于步骤1对信道矩阵H进行奇异值分解,确保了越靠前的子信道性能越优;于是,前面的子信道有更大的概率取值G 1,后面的子信道性能较差,所以其功率参数φ k取值不能大于前面的子信道,从而确保N t个子信道的功率参数逐级递减或不增加;并且,功率分配应该满足总功率限制条件
Figure PCTCN2022086673-appb-000014
其中P t为输入端总功,如果上述等式求解不出实数μ,则意味着此情况无法满足总功率限制,所以应该去除在总功率限制条件下无法求解实数μ的情况。
有益效果:本发明针对可见光通信系统基于SVD分解的预编码设计中无法直接使用注水算法实现信道容量最大化这一限制,提出一种多输入多输出可见光通信特征信道功率分配方法,根据子信道性能好坏分配子信道功率,从而实现信道容量最大化。相比于传统的遍历方法,本发明所涉及的方法在保留可见光通信性能优越性的同时,又具有低复杂度特点,运算速度更快,可以较好地节约时间成本。
附图说明
图1为本发明实施例所涉及的可见光通讯系统模型示意图;
图2为实施例1与传统遍历方法信道容量与信噪比关系图;
图3为实施例2与现有其他预编码方法信道容量与信噪比关系图;
图4为本发明预编码方法的流程示意图。
具体实施方式
下面结合附图对本发明做进一步说明。
如图1所示为本发明的方法所涉及的可见光通讯系统模型,在可见光通信系统基于SVD分解的预编码设计中,无法直接采用注水算法分配子信道功率,从而快速最大化信道容量;而如果采用传统的遍历方法,则复杂度又较高。为解决这一不足,本发明对优化模型进行KKT条件分析,得到功率参数的解析式。然后,确保性能较好的子信道获取较大的功率参数,得到一种多输入多输出可见光通信系统特征信道功率分配方案,进而实现最大化信道容量。
如图4所示,本发明的一种多输入多输出可见光通信特征信道功率分配方法,包括如下步骤:
步骤1,通过可见光通信系统的发送端获取信道矩阵,并对其进行奇异值分解;奇异值分解的公式为Η=UΛV T;其中,
Figure PCTCN2022086673-appb-000015
均为信道矩阵Η的特征值,N t为发光二极管的个数,U和V均为酉矩阵。
其中,获取信道矩阵的方法为以下两种之一:第一种是发射端发送导频,接收端通过接收到的信号和导频计算出信道矩阵,并通过控制链路反馈给发送端;第二种是根据测量具体的发光二极管、光电二极管的空间分布、数量和辐射特性情况来计算信道矩阵。
其中,根据测量具体的发光二极管、光电二极管的空间分布、数量和辐射特性情况来计算信 道矩阵的公式为:
Figure PCTCN2022086673-appb-000016
其中,h ij代表信道矩阵第i行第j列的元素值,物理意义是第j个发光二极管和第i个光电二极管之间的直流增益,系数κ与发光二极管半角值
Figure PCTCN2022086673-appb-000017
有关,
Figure PCTCN2022086673-appb-000018
A是光电二极管的有效光接收面积,d ij是第j个发光二极管与第i个光电二极管之间的距离,
Figure PCTCN2022086673-appb-000019
为发光二极管光线与发射轴之间的夹角,而ψ为入射光线与接收轴之间的夹角,
Figure PCTCN2022086673-appb-000020
为视场角半角。
步骤2,对信道容量进行KKT条件分析,得到功率分配数值;
输入信号近似服从高斯分布,所得信道容量下界为
Figure PCTCN2022086673-appb-000021
其中,k表示第k个子信道,N t为子信道的个数,e为自然数,
Figure PCTCN2022086673-appb-000022
为高斯白噪声方差,λ k为相应于第k个子信道的特征值,φ k为第k个子信道的功率分配数值;
通过KKT条件分析得到的功率分配数值
Figure PCTCN2022086673-appb-000023
其中,
Figure PCTCN2022086673-appb-000024
v jk为步骤1对信道矩阵奇异值分解所得酉矩阵V中第(j,k)个元素;μ=2ηln2,η为拉格朗日参数;
其中,关于直流偏置约束条件为abs(F)Δ=d,其中,F是预编码矩阵,abs(·)代表求矩阵所有元素的绝对值,Δ是元素值均为Δ的列向量,Δ为原始信号的最大值,d是直流偏置列向量。
其中,关于光功率的约束条件为1 Td=P t,其中,1 T是元素都为1的行向量,P t代表总发送光功率限制,d是直流偏置列向量。
步骤3,确保N t个子信道的功率参数逐级递减或不增加,并去除在总功率限制条件下无法求解出实数μ的情况;
由步骤2得到的功率分配数值φ k的取值可能性,记
Figure PCTCN2022086673-appb-000025
Figure PCTCN2022086673-appb-000026
G 3=0,所以,G 1>G 2>G 3;由于步骤1对信道矩阵H进行奇异值分解,确保了越靠前的子信道性能越优;于是,前面的子信道有更大的概率取值G 1,后面的子信道性能较差,所以其功率参数φ k取值不能大于前面的子信道,从而确保N t个子信道的功率参数逐级递减或不增加;并且,功率分配应该满足总功率限制条件
Figure PCTCN2022086673-appb-000027
其中P t为输入端总功,如果上述等式求解不出实数μ,则意味着此情况无法满足总功率限制,所以应该去除在总功率限制条件下无法求解实数μ的情况。
步骤4,在步骤3基础上进一步去除
Figure PCTCN2022086673-appb-000028
时,φ k≠0的情况,确保所选用方案均满足步骤2中的功率分配数值,并计算这些方案下的信道容量;
步骤5,取步骤4所得信道容量的最大值作为最终的信道容量。
下面结合具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所限定的范围。
实施例1
本实施例包括如下步骤:
步骤1,通过可见光通信系统的发送端获取信道矩阵,并对其进行奇异值分解;
列出可见光通信系统信号模型的表达式为
y r=Hx+n    (1)
发送端LED数量为N t,接收端的PD数量为N r,则式中:y r为N r×1的接收信号矢量;n为N r×1的高斯噪声矢量,x为N t×1发送信号矢量,x=[x 1,x 2,x 3…x Nt] T,H为N r×N t的信道矩阵;本实例中设置LED和PD的规模N t=N r=2。
可见光MIMO的信道矩阵H如下:
Figure PCTCN2022086673-appb-000029
其中第i行第j和元素h ij代表第j个LED和第i个PD之间的直流增益,表达式为:
Figure PCTCN2022086673-appb-000030
其中,系数κ与LED半角值
Figure PCTCN2022086673-appb-000031
有关,
Figure PCTCN2022086673-appb-000032
A是PD的有效光接收面积,d ij是第j个LED与第i个PD之间的距离,
Figure PCTCN2022086673-appb-000033
为LED光线与发射轴之间的夹角,而ψ为入射光线与接收轴之间的夹角,
Figure PCTCN2022086673-appb-000034
为视场角(FOV)半角。
本实施例所采用的模型如图1所示,设置LED1坐标(-0.2,0,2.5),LED2坐标(0.2,0,2.5);两个探测器坐标分别为PD1:(-0.1,0,0.75),PD2:(-0.1,0,0.75)。
Figure PCTCN2022086673-appb-000035
A=1cm 2。所以,
Figure PCTCN2022086673-appb-000036
将H矩阵做SVD分解得到
Η=UΛV T        (4)
其中U和V是左右奇异矩阵,分别是N r×N r的酉矩阵和N t×N t的酉矩阵,Λ是N r×N t的对角矩阵,对角线上是奇异值。(·) T代表矩阵的转置。
步骤2:
发送信号为
x=d+Fs       (5)
d为N t×1的直流偏置向量,用来保证x的非负性,F为N t×N t的预编码矩阵,s为N t维的独立调制信号,假设s的符号服从均匀分布,范围是[-Δ,Δ]。
带入公式(1)的信道模型,得:
y r=HFs+Hd+n     (6)
去除直流的影响,得到下式:
y=y r-Hd=HFs+n      (7)
为了满足x的非负性,令
abs(F)Δ=d             (8)
其中Δ=[Δ,Δ,Δ…] T
实例中限制发射机的总光功率是P t,由于s的均值为0,对总光功率的限制为:
1 Td=P t                               (9)
设置预编码矩阵:
F=VΦ                             (10)
其中,Φ是N t×N t的对角阵;
公式(7)左右两边同时左乘U T得到
y'=U THFs+U Tn=ΛΦs+n'       (11)
其中n'=U Tn,y'=U Ty,
对于第k个子信道,
y' k=λ kφ ks k+n' k,k=1,2,3…N t          (12)
从公式(12)可以看出,φ k影响着相应子信道的信噪比,所以,φ k可以作为子信道功率分配的参数。并且,
φ k≥0                           (13)
本实施例中设置Δ=1方便计算,总能量限制为1 Tabs(VΦ)1=P t
其中1 T是N t维的元素均为1的行向量,(·) T代表矩阵的转置。
第k个子信道的可达传输速率下界为
Figure PCTCN2022086673-appb-000037
其中,e为自然数,
Figure PCTCN2022086673-appb-000038
为高斯白噪声方差;
根据功率约束条件最大化信道容量,建立优化模型如下:
Figure PCTCN2022086673-appb-000039
Figure PCTCN2022086673-appb-000040
φ k≥0                   (15)
对上述优化模型建立拉格朗日函数:
Figure PCTCN2022086673-appb-000041
对该函数进行KKT条件分析,共得到6个约束关系。具体如下:
Figure PCTCN2022086673-appb-000042
t k≥0                    k=1,2,···,N t,           (18)
t kφ k=0                   k=1,2,···,N t,           (19)
Figure PCTCN2022086673-appb-000043
φ k≥0                    k=1,2,···,N t,          (21)
η≠0                                           (22)
现需要根据上述约束条件求解出φ k,首先,需要消除参数t k
由公式(17)可知:
Figure PCTCN2022086673-appb-000044
将其代入公式(18),(19)得:
Figure PCTCN2022086673-appb-000045
Figure PCTCN2022086673-appb-000046
由于ε>0,φ k≥0,所以
Figure PCTCN2022086673-appb-000047
并且v k>0,从而η≥0,然后结合公式(22)可得:
η>0                                      (25)
随后,可将公式(23)改写为:
Figure PCTCN2022086673-appb-000048
对于公式(26),由于
Figure PCTCN2022086673-appb-000049
将其看为关于φ k的一个开口向上的一元二次曲线,下面将针对所有可能性进行分类讨论。
Figure PCTCN2022086673-appb-000050
时,即
Figure PCTCN2022086673-appb-000051
时,在这种情况下,由于开口向 上,所以,
Figure PCTCN2022086673-appb-000052
即:
Figure PCTCN2022086673-appb-000053
于是,公式(26)恒成立。此时,若想公式(24)成立,必须满足φ k=0。
Figure PCTCN2022086673-appb-000054
时,即
Figure PCTCN2022086673-appb-000055
时,公式(26)恒成立。此时,若想公式(24)成立,则需要满足
Figure PCTCN2022086673-appb-000056
或0。
Figure PCTCN2022086673-appb-000057
时,即
Figure PCTCN2022086673-appb-000058
时,只有当
Figure PCTCN2022086673-appb-000059
或者
Figure PCTCN2022086673-appb-000060
公式(26)才成立。此外,在确保公式(26)成立前提下,为满足公式(24)要求,求得:
Figure PCTCN2022086673-appb-000061
或0。
所以,综上所述,直接根据信道容量下限进行模型优化,所得功率分配方案如下:
Figure PCTCN2022086673-appb-000062
步骤3:
由步骤2已知φ k的取值可能性,记
Figure PCTCN2022086673-appb-000063
G 3=0。所以,G 1>G 2>G 3。步骤1对信道矩阵H进行SVD分解,确保了越靠前的子信道性能越优。于是,前面的子信道有更大的概率取值G 1,后面的子信道性能较差,所以其φ k取值不能大于前面的子信道,从而确保N t个子信道的功率参数逐级递减或不增加。并且,功率分配应该满足总功率限制条件
Figure PCTCN2022086673-appb-000064
(P t为输入端总功率),如果上述等式求解不出实数μ,则意味着此情况无法满足总功率限制,所以这类情况应该去除;
步骤4:
在步骤3基础上进一步去除
Figure PCTCN2022086673-appb-000065
时,φ k≠0的情况,确保所选用方案均满足步骤2中的功率取值,并计算这些方案下的信道容量;
步骤5:
选用步骤4中最大的容量值作为本发明所得最终信道容量。
现重新考虑公式(27)所得功率分配方式。
Figure PCTCN2022086673-appb-000066
或0共3种取值可能,则针对N t个子信道,将会有
Figure PCTCN2022086673-appb-000067
种可能性。现这些可能性采用遍历方法,寻找其中信道容量最大的一个为最优解。
图2为本实施例中采用本发明提出的方法与
Figure PCTCN2022086673-appb-000068
种情况下遍历结果的对比图。从图2可以看出,本发明的方法与原遍历方法结果几乎完全相同,两条曲线几近完全重合。由此,可以说明本发明提出的方法可以较好地保留可见光通信系统性能的优越性,并且,相对于原
Figure PCTCN2022086673-appb-000069
遍历方法,可以较好地提高运算效率,节约了时间成本。
实施例2
本实施例包括以下步骤:
步骤1:
列出可见光通信系统信号模型的表达式为
y r=Hx+n     (1)
发送端LED数量为N t,接收端的PD数量为N r,则式中:y r为N r×1的接收信号矢量;n为N r×1的高斯噪声矢量,x为N t×1发送信号矢量,x=[x 1,x 2,x 3…x Nt] T,H为N r×N t的信道矩阵;本实例中设置LED和PD的规模N t=N r=4。
可见光MIMO的信道矩阵H如下:
Figure PCTCN2022086673-appb-000070
其中第i行第j和元素h ij代表第j个LED和第i个PD之间的直流增益,表达式为:
Figure PCTCN2022086673-appb-000071
其中,系数κ与LED半角值
Figure PCTCN2022086673-appb-000072
有关,
Figure PCTCN2022086673-appb-000073
A是PD的有效光接收面积,d ij是第j 个LED与第i个PD之间的距离,
Figure PCTCN2022086673-appb-000074
为LED光线与发射轴之间的夹角,而ψ为入射光线与接收轴之间的夹角,
Figure PCTCN2022086673-appb-000075
为视场角(FOV)半角。
本实施例所采用的模型与图1相似,只不过增加了LED与PD的个数,设置LED1坐标(-0.3,-0.3,2.5),LED2坐标(-0.3,0.3,2.5);LED3坐标(0.3,-0.3,2.5),LED4坐标(0.3,0.3,2.5);四个探测器坐标分别为PD1:(-0.05,-0.05,0.75),PD2:(-0.05,0.05,0.75),PD3:(0.05,-0.05,0.75),PD4:(0.05,0.05,0.75)。
Figure PCTCN2022086673-appb-000076
A=1cm 2。所以,
Figure PCTCN2022086673-appb-000077
将H矩阵做SVD分解得到:
Η=UΛV T     (4)
其中U和V是左右奇异矩阵,分别是N r×N r的酉矩阵和N t×N t的酉矩阵,Λ是N r×N t的对角矩阵,对角线上是奇异值。(·) T代表矩阵的转置。
步骤2:
发送信号为
x=d+Fs      (5)
d为N t×1的直流偏置向量,用来保证x的非负性,F为N t×N t的预编码矩阵,s为N t维的独立调制信号,假设s的符号服从均匀分布,范围是[-Δ,Δ]。
带入公式(1)的信道模型,得:
y r=HFs+Hd+n      (6)
去除直流的影响,得到下式:
y=y r-Hd=HFs+n      (7)
为了满足x的非负性,令
abs(F)Δ=d      (8)
其中Δ=[Δ,Δ,Δ…] T
本实施例中限制发射机的总光功率是P t,由于s的均值为0,对总光功率的限制为:
1 Td=P t     (9)
设置预编码矩阵:
F=VΦ     (10)
其中,Φ是N t×N t的对角阵;
公式(7)左右两边同时左乘U T得到
y'=U THFs+U Tn=ΛΦs+n'     (11)
其中n'=U Tn,y'=U Ty,
对于第k个子信道,
y' k=λ kφ ks k+n' k,k=1,2,3…N t      (12)
从公式(12)可以看出,φ k影响着相应子信道的信噪比,所以,φ k可以作为子信道功率分配的参数。并且,
φ k≥0     (13)
本实施例中设置Δ=1方便计算,总能量限制为1 Tabs(VΦ)1=P t
其中1 T是N t维的元素均为1的行向量,(·) T代表矩阵的转置。
第k个子信道的可达传输速率下界为
Figure PCTCN2022086673-appb-000078
其中,e为自然数,
Figure PCTCN2022086673-appb-000079
为高斯白噪声方差;
根据功率约束条件最大化信道容量,建立优化模型如下:
Figure PCTCN2022086673-appb-000080
Figure PCTCN2022086673-appb-000081
φ k≥0      (15)
对上述优化模型建立拉格朗日函数:
Figure PCTCN2022086673-appb-000082
对该函数进行KKT条件分析,共得到6个约束关系。具体如下:
Figure PCTCN2022086673-appb-000083
t k≥0     k=1,2,···,N t,    (18)
t kφ k=0                   k=1,2,···,N t,           (19)
Figure PCTCN2022086673-appb-000084
φ k≥0                    k=1,2,···,N t,          (21)
η≠0                                           (22)
现需要根据上述约束条件求解出φ k,首先,需要消除参数t k
由公式(17)可知:
Figure PCTCN2022086673-appb-000085
将其代入公式(18),(19)得:
Figure PCTCN2022086673-appb-000086
Figure PCTCN2022086673-appb-000087
由于ε>0,φ k≥0,所以
Figure PCTCN2022086673-appb-000088
并且v k>0,从而η≥0,然后结合公式(22)可得:
η>0                                     (25)
随后,可将公式(23)改写为:
Figure PCTCN2022086673-appb-000089
对于公式(26),由于
Figure PCTCN2022086673-appb-000090
将其看为关于φ k的一个开口向上的一元二次曲线,下面将针对所有可能性进行分类讨论。
Figure PCTCN2022086673-appb-000091
时,即
Figure PCTCN2022086673-appb-000092
时,在这种情况下,由于开口向上,所以,
Figure PCTCN2022086673-appb-000093
即:
Figure PCTCN2022086673-appb-000094
于是,公式(26)恒成立。此时,若想公式(24)成立,必须满足φ k=0。
Figure PCTCN2022086673-appb-000095
时,即
Figure PCTCN2022086673-appb-000096
时,公式(26)恒成立。此时,若想公式(24)成立,则需要满足
Figure PCTCN2022086673-appb-000097
或0。
Figure PCTCN2022086673-appb-000098
时,即
Figure PCTCN2022086673-appb-000099
时,只有当
Figure PCTCN2022086673-appb-000100
或者
Figure PCTCN2022086673-appb-000101
公式(26)才成立。此外,在确保公式(26)成立前提下,为满足公式(24)要求,求得:
Figure PCTCN2022086673-appb-000102
或0。
所以,综上所述,直接根据信道容量下限进行模型优化,所得功率分配方案如下:
Figure PCTCN2022086673-appb-000103
步骤3:
由步骤2已知φ k的取值可能性,记
Figure PCTCN2022086673-appb-000104
G 3=0。所以,G 1>G 2>G 3。步骤1对信道矩阵H进行SVD分解,确保了越靠前的子信道性能越优。于是,前面的子信道有更大的概率取值G 1,后面的子信道性能较差,所以其φ k取值不能大于前面的子信道,从而确保N t个子信道的功率参数逐级递减或不增加。并且,功率分配应该满足总功率限制条件
Figure PCTCN2022086673-appb-000105
(P t为输入端总功率),如果上述等式求解不出实数μ,则意味着此情况无法满足总功率限制,这类情况应该不予考虑;
步骤4:
在步骤3基础上进一步去除
Figure PCTCN2022086673-appb-000106
φ k≠0的情况,确保所选用方案均满足步骤2中的功率取值,并根据公式(14)计算这些方案下的信道容量。
现采用另外一种预编码设计方案用以对比。首先,本发明是建立在信道矩阵H的SVD分解基础上的,现在考虑基于信道矩阵H的GMD分解的预编码矩阵设计方案。将H分解为:
H=QR gmdG T     (28)
并且,预编码矩阵F设计为F gmd=εG。此外,还需要满足功率限制条件:1 Tabs(F gmd)Δ=P t。其中,1 T是N t维的元素均为1的行向量,(·) T代表矩阵的转置。abs( )代表取矩阵元素的绝对值,Δ=[Δ,Δ,Δ…] T,为了计算方便,选取Δ=1。
在GMD分解方案下,信道容量可估计为:
Figure PCTCN2022086673-appb-000107
其中,K为信道矩阵H的秩,e为自然数,
Figure PCTCN2022086673-appb-000108
为高斯白噪声方差;并且,定义
Figure PCTCN2022086673-appb-000109
为:
Figure PCTCN2022086673-appb-000110
步骤5:
选用步骤4中满足注水算法思想方案下所得最大的容量值作为本发明所得最终信道容量。
而在基于GMD分解的预编码矩阵设计中,由于默认各子信道分配功率一样,仅需要根据功率限制条件1 Tabs(F gmd)Δ=P t求解出未知参数ε,从而可以得到该方案下所估计的信道容量。
最后,比较这两种不同分解方法下的信道容量,如图3所示。可以看出基于SVD分解的预编码矩阵方案下所得信道容量较大,说明该方案下具有更高的可达传输速率。
本发明在基于SVD分解的预编码矩阵设计基础上,提出来一种多输入多输出可见光通信特征信道功率分配方案,可以确保性能较好的子信道分配较大的功率参数,从而最大化信道容量。所以,本发明在保留较好的通信性能同时,还具有低复杂度优点,节约了时间成本。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (7)

  1. 一种多输入多输出可见光通信特征信道功率分配方法,其特征在于:包括如下步骤:
    步骤1,通过可见光通信系统的发送端获取信道矩阵,并对其进行奇异值分解;
    步骤2,对信道容量进行KKT条件分析,得到功率分配数值;
    输入信号近似服从高斯分布,所得信道容量下界为
    Figure PCTCN2022086673-appb-100001
    其中,k表示第k个子信道,N t为子信道的个数,e为自然数,
    Figure PCTCN2022086673-appb-100002
    为高斯白噪声方差,λ k为相应于第k个子信道的特征值,φ k为第k个子信道的功率分配数值;
    通过KKT条件分析得到的功率分配数值
    Figure PCTCN2022086673-appb-100003
    其中,
    Figure PCTCN2022086673-appb-100004
    v jk为步骤1对信道矩阵奇异值分解所得酉矩阵V中第(j,k)个元素;μ=2ηln2,η为拉格朗日参数;
    步骤3,确保N t个子信道的功率参数逐级递减或不增加,并去除在总功率限制条件下无法求解出实数μ的情况;
    步骤4,在步骤3基础上进一步去除
    Figure PCTCN2022086673-appb-100005
    时,φ k≠0的情况,确保所选用方案均满足步骤2中的功率分配数值,并计算这些方案下的信道容量;
    步骤5,取步骤4所得信道容量的最大值作为最终的信道容量。
  2. 根据权利要求1所述的多输入多输出可见光通信特征信道功率分配方法,其特征在于:所述步骤1中,获取信道矩阵的方法为以下两种之一:第一种是发射端发送导频,接收端通过接收到的信号和导频计算出信道矩阵,并通过控制链路反馈给发送端;第二种是根据测量具体的发光二极管、光电二极管的空间分布、数量和辐射特性情况来计算信道矩阵。
  3. 根据权利要求2所述的多输入多输出可见光通信特征信道功率分配方法,其特征在于:所述获取信道矩阵的第二种方法中,根据测量具体的发光二极管、光电二极管的空间分布、数量和辐射特性情况来计算信道矩阵的公式为:
    Figure PCTCN2022086673-appb-100006
    其中,h ij代表信道矩阵第i行第j列的元素值,物理意义是第j个发光二极管和第i个光电二极管之间的直流增益,系数κ与发光二极管半角值
    Figure PCTCN2022086673-appb-100007
    有关,
    Figure PCTCN2022086673-appb-100008
    A是光电二极管的有效光接收面积,d ij是第j个发光二极管与第i个光电二极管之间的距离,
    Figure PCTCN2022086673-appb-100009
    为发光二极管光线与发射轴之间的夹角,而ψ为入射光线与接收轴之间的夹角,
    Figure PCTCN2022086673-appb-100010
    为视场角半角。
  4. 根据权利要求1所述的多输入多输出可见光通信特征信道功率分配方法,其特征在于:所述步骤1中,奇异值分解的公式为Η=UΛV T;其中,
    Figure PCTCN2022086673-appb-100011
    均为信道矩阵Η的特征值,N t为发光二极管的个数,U和V均为酉矩阵。
  5. 根据权利要求1所述的多输入多输出可见光通信特征信道功率分配方法,其特征在于:所述步骤2中,关于直流偏置约束条件为abs(F)Δ=d,其中,F是预编码矩阵,abs(·)代表求矩阵所有元素的绝对值,Δ是元素值均为Δ的列向量,Δ为原始信号的最大值,d是直流偏置列向量。
  6. 根据权利要求1所述的多输入多输出可见光通信特征信道功率分配方法,其特征在于:所述步骤2中,关于光功率的约束条件为1 Td=P t,其中,1 T是元素都为1的行向量,P t代表总发送光功率限制,d是直流偏置列向量。
  7. 根据权利要求1所述的多输入多输出可见光通信特征信道功率分配方法,其特征在于:所述步骤3中,由步骤2得到的功率分配数值φ k的取值可能性,记
    Figure PCTCN2022086673-appb-100012
    Figure PCTCN2022086673-appb-100013
    G 3=0,所以,G 1>G 2>G 3;由于步骤1对信道矩阵H进行奇异值分解,确保了越靠前的子信道性能越优;于是,前面的子信道有更大的概率取值G 1,后面的子信道性能较差,所以其功率参数φ k取值不能大于前面的子信道,从而确保N t个子信道的功率参数逐级递减或不增加;并且,功率分配应该满足总功率限制条件
    Figure PCTCN2022086673-appb-100014
    其中P t为输入端总功,如果上述等式求解不出实数μ,则意味着此情况无法满足总功率限制,所以应该去除在总功率限制条件下无法求解实数μ的情况。
PCT/CN2022/086673 2021-04-26 2022-04-13 一种多输入多输出可见光通信特征信道功率分配方法 WO2022228130A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110451630.0 2021-04-26
CN202110451630.0A CN113162689A (zh) 2021-04-26 2021-04-26 一种多输入多输出可见光通信特征信道功率分配方法

Publications (1)

Publication Number Publication Date
WO2022228130A1 true WO2022228130A1 (zh) 2022-11-03

Family

ID=76870824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086673 WO2022228130A1 (zh) 2021-04-26 2022-04-13 一种多输入多输出可见光通信特征信道功率分配方法

Country Status (2)

Country Link
CN (1) CN113162689A (zh)
WO (1) WO2022228130A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115865197A (zh) * 2023-02-20 2023-03-28 南昌大学 散粒噪声下可见光通信scma实数码本优化方法及系统
CN115967423A (zh) * 2022-12-28 2023-04-14 郑州大学 Mimo-vlc系统中基于几何均值分解容量最大化的预编码设计方法
CN116418397A (zh) * 2023-06-12 2023-07-11 南昌大学 一种用户公平性的速率分集辅助的可见光通信方法及系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113162689A (zh) * 2021-04-26 2021-07-23 东南大学 一种多输入多输出可见光通信特征信道功率分配方法
CN115694569B (zh) * 2022-10-17 2024-04-05 东南大学 一种mimo可见光通信系统的容量确定方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108270485A (zh) * 2016-12-30 2018-07-10 徐州坤泰电子科技有限公司 可见光点对点及广播通信系统信号产生与容量计算方法
CN113162689A (zh) * 2021-04-26 2021-07-23 东南大学 一种多输入多输出可见光通信特征信道功率分配方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109743091A (zh) * 2019-01-29 2019-05-10 深圳市海派通讯科技有限公司 多秩信道矩阵之几何均值分解预编码方法
CN109802726B (zh) * 2019-03-21 2021-06-01 中国人民解放军战略支援部队信息工程大学 一种功率分配方法、系统及可见光通信系统
CN111585650B (zh) * 2020-04-10 2021-04-06 中国矿业大学 一种可见光通信系统的最优功率分配方法
CN111934769B (zh) * 2020-08-14 2023-02-14 东南大学 一种多输入多输出可见光通讯预编码方法
CN112543057B (zh) * 2020-12-08 2022-04-19 中国科学技术大学 Mimo可见光通信系统的信号处理方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108270485A (zh) * 2016-12-30 2018-07-10 徐州坤泰电子科技有限公司 可见光点对点及广播通信系统信号产生与容量计算方法
CN113162689A (zh) * 2021-04-26 2021-07-23 东南大学 一种多输入多输出可见光通信特征信道功率分配方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BORUI YANG, LI ZHAO, YING LU, YU ZHOU: "Research on MIMO channel capacity for adaptive power allocation visible light", JOURNAL OF APPLIED OPTICS, vol. 41, no. 3, 15 May 2020 (2020-05-15), CN , pages 626 - 630, XP055980238, ISSN: 1002-2082, DOI: 10.5768/JAO202041.0308002 *
ZHAI YANRONG; CHI HAO; TONG JUN; XI JIANGTAO: "Capacity Maximized Linear Precoder Design for Spatial-Multiplexing MIMO VLC Systems", IEEE ACCESS, vol. 8, 26 March 2020 (2020-03-26), USA , pages 63901 - 63909, XP011783524, DOI: 10.1109/ACCESS.2020.2983517 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115967423A (zh) * 2022-12-28 2023-04-14 郑州大学 Mimo-vlc系统中基于几何均值分解容量最大化的预编码设计方法
CN115967423B (zh) * 2022-12-28 2023-09-12 郑州大学 Mimo-vlc系统中基于几何均值分解容量最大化的预编码设计方法
CN115865197A (zh) * 2023-02-20 2023-03-28 南昌大学 散粒噪声下可见光通信scma实数码本优化方法及系统
CN116418397A (zh) * 2023-06-12 2023-07-11 南昌大学 一种用户公平性的速率分集辅助的可见光通信方法及系统
CN116418397B (zh) * 2023-06-12 2023-09-05 南昌大学 一种用户公平性的速率分集辅助的可见光通信方法及系统

Also Published As

Publication number Publication date
CN113162689A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
WO2022228130A1 (zh) 一种多输入多输出可见光通信特征信道功率分配方法
Chi et al. Visible light communication in 6G: Advances, challenges, and prospects
CN110266382B (zh) 一种基于可见光通信mu-mimo-ofdm系统的多维度混合调光方法
WO2018218697A1 (zh) 一种可见光通信收发器与可见光通信系统
Ma et al. Robust MMSE linear precoding for visible light communication broadcasting systems
CN107070517B (zh) 一种可见光通信非正交多址系统预编码矩阵优化方法
CN104600873B (zh) 面向大规模天线阵列的无线能量信息传输网络功控方法
CN107547130B (zh) 波束域光无线通信方法和系统
CN110635836A (zh) 一种基于波束选择的毫米波大规模mimo系统mmse-pca信道估计方法
CN108234101A (zh) 能效最大化导频信号设计方法及大规模多天线系统
WO2021203487A1 (zh) 光纤使能光无线通信系统及方法
CN111934769B (zh) 一种多输入多输出可见光通讯预编码方法
An et al. Energy efficiency optimization for MIMO visible light communication systems
Zhai et al. Capacity maximized linear precoder design for spatial-multiplexing MIMO VLC systems
Sun et al. Capacity characterization analysis of optical intelligent reflecting surface assisted MISO VLC
CN113489536B (zh) 一种可见光通信多输入多输出系统信道容量可达方法
CN112583485B (zh) 一种基于速率匹配的预编码与均衡联合优化方法
Lu et al. Full-duplex visible light communication system based on single blue Mini-LED acting as transmitter and photodetector simultaneously
Sharda et al. Diversity-multiplexing tradeoff for indoor visible light communication
Rao et al. 10.5 Gbps visible light communication systems based on c-plane freestanding GaN micro-LED
Jha et al. Generalized spatial modulation for multi-user in visible light communication
CN110098871B (zh) 基于颜色空间的室内vlc多流空间调制系统的工作方法
Liu et al. Power allocation algorithm of optical MIMO NOMA visible light communications
CN114665928B (zh) 一种基于mimo-vlc系统中的电功率分配与qr-osic预编码方法
CN107733488A (zh) 一种大规模mimo系统中注水功率分配改进方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22794601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22794601

Country of ref document: EP

Kind code of ref document: A1