WO2022227787A1 - 中空回转型岩石巷道掘进机 - Google Patents

中空回转型岩石巷道掘进机 Download PDF

Info

Publication number
WO2022227787A1
WO2022227787A1 PCT/CN2022/076035 CN2022076035W WO2022227787A1 WO 2022227787 A1 WO2022227787 A1 WO 2022227787A1 CN 2022076035 W CN2022076035 W CN 2022076035W WO 2022227787 A1 WO2022227787 A1 WO 2022227787A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutter head
boring machine
tunnel boring
annular body
rotary
Prior art date
Application number
PCT/CN2022/076035
Other languages
English (en)
French (fr)
Inventor
孟小玲
Original Assignee
孟小玲
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202120870479.XU external-priority patent/CN214697855U/zh
Priority claimed from CN202121910505.3U external-priority patent/CN215860189U/zh
Priority claimed from CN202121966047.5U external-priority patent/CN215860190U/zh
Application filed by 孟小玲 filed Critical 孟小玲
Publication of WO2022227787A1 publication Critical patent/WO2022227787A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/10Making by using boring or cutting machines

Definitions

  • the invention belongs to the field of rock roadway excavation equipment, in particular to a hollow rotary type rock roadway excavator.
  • Existing rock tunnel boring machines mainly include rock-type shield tunneling machines and riser drilling rigs, which perform full-section destruction and excavation on the working face mainly by rolling.
  • the rock shield machine relies on external mechanical or hydraulic drive to propel the cutter head and the body as a whole, and at the same time press the cutter into the rock with strong pressure, and then rotate the cutter head with strong torque, so as to implement rolling on the rock face.
  • the rock damage of a large amount of rolling and a small amount of cutting on the rock face is a high-energy-consumption damage method, especially full-section excavation, which requires high power and high mechanical strength.
  • the shield machine body is large and functional. , The cost is high, and it is not suitable for construction in small-sized working faces with variable construction positions in the underground mine, and at the same time, it is not possible to construct projects such as patios and underground wells.
  • the reaming bit is fixed on the drill pipe, the upward pulling force and torque are applied by the drilling rig located in the upper part of the patio, and the rock is passively rotated around the center hole of the patio and crushed to destroy the rock.
  • the strength requirements for power and implements are equally high.
  • the drill bit of the new type of riser drilling rig also has a combination of rolling damage and other damage, but for the working face, it is still full-section excavation. Raise drilling rigs can only construct steeply inclined patios due to the bottom-up traction mode of the drilling rigs, and cannot construct projects such as leveling, inclined wells and ground wells.
  • the present invention aims to provide a hollow rotary type rock roadway boring machine, which can adapt to all-round and multi-angle roadway drilling; the overall structure is simple, the cost is low, and it can be operated continuously and has a fast driving speed.
  • the hollow rotary type rock tunnel boring machine includes an annular body, and the annular body is provided with:
  • the cutting cutter head which is an annular structure, is arranged on the front side of the annular body and is movably connected with the annular body.
  • a cutting cutter is installed on the cutting cutter head, which is used to perform rotary cutting on the outer periphery of the rock roadway to form a rock cylinder ;
  • a rotary power mechanism used to drive the cutting disc to perform rotary motion along the annular body
  • the axial power mechanism is used to drive the annular body forward and backward in the rock tunnel.
  • the rotary power mechanism includes:
  • a gear is mounted on the driving end of the rotary drive assembly and meshes with the ring gear.
  • the axial power mechanism is a combination of one or more of a wheel-type axial movement mechanism, a spiral body axial movement mechanism, and a step-type axial movement mechanism.
  • the wheeled axial movement mechanism includes:
  • a moving wheel drive assembly connected with the moving wheel, for driving the moving wheel to rotate to drive the annular body to move;
  • the pressing component is used for providing the moving wheel with the pressing force to abut against the rock.
  • spiral body axial movement mechanism includes:
  • the outer edge of the spiral body is arranged protruding from the annular body, so that the spiral pattern of the spiral body can abut against the rock and provide thrust;
  • the spiral body driving component is connected with the spiral body and is used for driving the spiral body to rotate.
  • step-by-step axial movement mechanism includes:
  • the radial support unit includes a support end and a support drive assembly, the support end is provided with two, and the support drive assembly is used to drive the two support ends between the inner and outer walls of the annular groove cut by the cutting blade to tighten or disengage;
  • the axial driving unit is arranged on the annular body, and is used for driving the radial support unit to move forward and backward along the excavation direction.
  • the support end is a support plate, a support rod is fixed on the support plate, the support rod is distributed along the radial direction of the annular body, and the support drive is arranged between the support rods of the two support ends. component;
  • the cutting blade includes:
  • an outer ring cutting cutter head an inner gear ring is fixed on the inner side wall of the outer ring cutting cutter head;
  • an inner ring cutting cutter head an outer gear ring is fixed on the outer side wall of the inner ring cutting cutter head;
  • the gears are respectively meshed with the inner gear ring and the outer gear ring, and are used to drive the outer ring cutting cutter head and the inner ring cutting cutter head to rotate in opposite directions during rotation.
  • annular body is also provided with:
  • the rotary power mechanism includes:
  • the driving end of the rotary drive assembly is also connected with the excavation cutter head to drive the excavation cutter head to rotate.
  • the rotary power mechanism includes:
  • the two sets of slewing drive assemblies are installed on the annular body, and the driving end of one set of the slewing drive assemblies is installed with the gears, and the other set of the slewing drive assemblies has the gears installed.
  • the driving end is connected with the excavation cutter head.
  • the driving end of the rotary power assembly is connected with the excavation cutter head through a planetary gear transmission mechanism or a gear transmission mechanism.
  • annular width of the cutting cutter head is smaller than the width of the excavation cutter head.
  • the rotary power mechanism is one of an electric motor or an air motor.
  • the electric motor includes:
  • stator comprising an annular stator iron core and a stator winding wound on the stator iron core;
  • a rotor comprising an annular rotor iron core and a rotor winding wound on the rotor iron core, and the rotor iron core is fixed with the cutting cutter disc;
  • stator winding is composed of a plurality of stator coils, and the plurality of the stator coils are evenly distributed around the stator iron core;
  • the rotor winding is composed of a plurality of rotor coils, and the plurality of the rotor coils are wound around each other.
  • the rotor iron cores are uniformly distributed in a ring shape.
  • the rotor iron core is arranged on the front side of the stator iron core, or is arranged around the outer side of the stator iron core, a cavity is formed between the rotor iron core and the stator iron core, and the rotor winding and The stator windings are all arranged in the cavity;
  • a conductive brush is also arranged in the cavity, and the conductive brush is connected with the power source through a wire, and provides power to the rotor winding.
  • the air motor includes:
  • the stator is a circular structure, and the annular cavity of the stator is a hollow structure;
  • a rotor which is a ring-shaped structure and is accommodated in the annular cavity of the stator, and is fixed to the excavation cutter head;
  • a plurality of blades are provided, the plurality of blades are annularly distributed around the rotor, and the blades are movably embedded on the rotor.
  • a plurality of blade expansion and contraction slots are annularly distributed on the outer circumference of the rotor of the air motor, the blade expansion and contraction slots extend from the outside to the inside, and the blades are movably connected in the blade expansion and contraction slots.
  • the axial power mechanism includes:
  • rollers There are a plurality of rollers, the plurality of rollers are evenly distributed in a ring shape around the inner cavity wall of the stator, and the axial direction of the rollers is arranged at an angle with the axial direction of the cutting disc.
  • the hollow rotary rock tunnel boring machine of the present invention is provided with a ring-shaped cutting cutter head on the annular body, and the cutting cutter head is driven to rotate by a rotary power mechanism, and the roadheader as a whole provides the power of the whole machine to advance or retreat through an axial power mechanism, It can adapt to all-round and multi-angle roadway drilling; the overall structure is simple, the cost is low, and at the same time, it can be operated continuously and the driving speed is fast.
  • the present invention is provided with a cutting cutter head and an excavating cutter head on the annular body at the same time.
  • the rotation of the cutting cutter head can perform rotary cutting on the outer periphery of the rock roadway to form a rock cylinder, and the rotation of the excavating cutter head can cut the rock cylinder formed by the cutting cutter head.
  • the outer edge performs rotary excavation and provides space for continuous operation and follow-up of the cutting cutter head. Therefore, the roadheader of the present invention can minimize the amount of work on the roadway, thereby saving mechanical power and increasing the cutting and excavation speed.
  • the rotary drive assembly of the present invention can be provided with one group or two groups.
  • the cutting cutter head and the excavation cutter head can be driven to rotate synchronously, saving space and cost; when two groups are provided, they can be controlled separately.
  • the cutting cutter head and the excavation cutter head can be adjusted separately to adjust the rotation speed of the cutting cutter head and the excavation cutter head.
  • the drive motor of the present invention is connected with the excavation cutter head through a planetary gear transmission mechanism or a gear transmission mechanism, which can effectively control the rotational speed of the excavation cutter head.
  • the annular width of the cutting cutter head of the present invention is smaller than the width of the excavation cutter head, so as to minimize the rock cutting width as much as possible, thereby greatly reducing the amount of cutting work.
  • the rotary power mechanism of the present invention can also be an electric motor or a pneumatic motor. Both the electric motor and the pneumatic motor include a stator and a rotor. It is fixed with the excavation cutter head, that is, the rotor is used to directly drive the excavation cutter head to rotate, which saves the mechanical transmission structure, thereby simplifies the body structure, and ensures the driving efficiency and the excavation speed.
  • the axial power mechanism of the present invention also includes rollers evenly distributed in a ring shape around the stator.
  • the axial direction of the roller and the axial direction of the cutting blade are arranged at a small angle.
  • the stator is affected by the cutting blade.
  • the torque in the opposite direction of rotation, the roller fixed on the stator drives the stator to rotate a little under the action of the torque, and because of the included angle between the axis of the cutter head and the cutter head, it will push the stator to move to the working surface, thereby actively promoting the roadheader. It is in close contact with the rock face and pushes the roadheader forward.
  • Fig. 1 is the schematic diagram of the hollow rotary type rock roadway boring machine in Embodiment 1 of the present invention
  • Fig. 2 is the cross-sectional schematic diagram of A-A of Fig. 1;
  • Fig. 3 is the cross-sectional schematic diagram of B-B of Fig. 1;
  • Fig. 4 is the cross-sectional schematic diagram of C-C of Fig. 1;
  • Fig. 5 is the cross-sectional schematic diagram of D-D of Fig. 1;
  • FIG. 6 is a schematic diagram of the hollow rotary annular rock roadway boring machine drilling in the roadway in Embodiment 1 of the present invention.
  • FIG. 7 is a schematic diagram of a hollow rotary annular rock tunnel boring machine in Embodiment 2 of the present invention.
  • FIG. 8 is a schematic diagram of a hollow rotary annular rock roadway boring machine in Embodiment 3 of the present invention.
  • FIG. 9 is a schematic diagram of a hollow rotary annular rock tunnel boring machine in Embodiment 4 of the present invention.
  • FIG. 10 is an internal schematic diagram of a rotary power mechanism in Embodiment 5 of the present invention.
  • Fig. 11 is the internal schematic diagram of the rotary power mechanism in Embodiment 6 of the present invention.
  • FIG. 13 is a schematic diagram of a hollow rotary rock tunnel boring machine in Embodiment 8 of the present invention.
  • FIG. 14 is a front cross-sectional view of a hollow rotary type rock tunnel boring machine in Embodiment 9 of the present invention.
  • Figure 15 is a top view of the hollow rotary rock tunnel boring machine in Embodiment 9 of the present invention.
  • FIG. 16 is a front cross-sectional view of the cutting blade in Embodiment 9 of the present invention.
  • FIG. 17 is a schematic diagram of the connection between the rotary power mechanism, the cutting cutter head and the driving cutter head in Embodiment 9 of the present invention.
  • Fig. 18 is the bottom view of the hollow rotary rock tunnel boring machine in Embodiment 9 of the present invention.
  • Fig. 19 is the structural representation of spirochete I in embodiment 9 of the present invention.
  • Fig. 20 is another kind of structural representation of spirochete I in the embodiment 9 of the present invention.
  • Fig. 21 is the use state diagram of the hollow rotary rock tunnel boring machine in Embodiment 9 of the present invention.
  • FIG. 22 is a schematic diagram of the rock cut by the hollow rotary rock tunnel boring machine in Embodiment 9 of the present invention.
  • FIG. 23 is a schematic diagram of the connection between the rotary power mechanism, the cutting cutter head, and the driving cutter head in Embodiment 10 of the present invention.
  • FIG. 24 is a top view of the hollow rotary type rock tunnel boring machine in Embodiment 11 of the present invention.
  • Fig. 25 is a front sectional view of the hollow rotary type rock tunnel boring machine in Embodiment 12 of the present invention.
  • FIG. 26 is a top view of the hollow rotary rock tunnel boring machine in Embodiment 12 of the present invention.
  • Figure 27 is a sectional view at E-E in Figure 25;
  • Fig. 28 is a partial structural schematic diagram of the hollow rotary type rock tunnel boring machine in Embodiment 13 of the present invention.
  • Fig. 29 is a top sectional view of the hollow rotary rock tunnel boring machine in Embodiment 14 of the present invention.
  • Fig. 30 is a partial structural schematic diagram of a hollow rotary rock roadway boring machine in Embodiment 14 of the present invention.
  • Fig. 31 is a partial structural schematic diagram of a hollow rotary type rock tunnel boring machine in Embodiment 15 of the present invention.
  • Fig. 32 is a bottom view of the hollow rotary type rock tunnel boring machine in Embodiment 15 of the present invention.
  • the embodiment of the present invention provides a hollow rotary type rock roadway roadheader, as shown in FIG. 3.
  • the cutting disc 2 , the rotary power mechanism 3 and the axial power mechanism are all arranged on the annular body 1 .
  • the cutting blade 2 is an annular structure, the cutting blade 2 is arranged on the front side of the annular body 1, and is movably connected with the annular body 1, and a cutting tool is installed on the cutting blade 2 , which is used for rotary cutting of the outer circumference of rock tunnels to form rock cylinders.
  • the rotary power mechanism 3 is arranged on the annular body 1 , and is used to drive the cutting blade 2 to rotate along the annular body 1 .
  • the rotary power mechanism 3 includes: a ring gear 301 , a rotary drive assembly 302 and a gear 303 ; the ring gear 301 is fixed on the cutting disc 2 , and the rotary drive assembly 302 is installed on the The gear 303 is installed on the annular body 1 and the driving end of the rotary drive assembly 302 , and the gear 303 is engaged with the ring gear 301 .
  • the rotary drive assembly 302 (which can be an electric motor or a hydraulic motor, etc.) drives the gear 303 to rotate, and drives the ring gear 301 to make the cutting disc 2 rotate along the annular body 1. get in.
  • This embodiment adopts the rotary power mechanism of the first form.
  • the ring gear 301 is arranged in a ring shape (coaxial) corresponding to the cutting blade 2 , and the outer ring surface of the ring gear 301 is fixed to the cutting blade 2 .
  • the width of the cutting blade 2 in this embodiment is larger than the width of the annular body 1 , and the position where the cutting blade 2 is exposed from the annular body 1 is provided with a row
  • the slag port 101 and the position of the slag discharge port 101 can also be provided with a mud collection component.
  • the mud collection component is an existing product. At this time, the rock slag generated during drilling is discharged from the slag discharge port 101 and collected by the mud collection component.
  • the axial power mechanism is used to drive the annular body 1 to move forward and backward in the rock tunnel.
  • the axial power mechanism in this embodiment is a wheel-type axial moving mechanism 4 and a
  • the combination of the stepping axial moving mechanisms 5, and each group of axial power mechanisms includes two symmetrically distributed wheeled axial moving mechanisms 4 and two symmetrically distributed stepping axial moving mechanisms 5.
  • the wheeled axial moving mechanism 4 includes: a moving wheel 401 and a moving wheel drive assembly (electrical motor and hydraulic motor, etc. can be used) 402 , and the wheel surface of the moving wheel 401 is in contact with the rock.
  • the moving wheel driving assembly 402 is connected with the moving wheel 401, specifically, the moving wheel 401 can be connected with the moving wheel driving assembly 402 through the worm gear 403 to drive the moving wheel 401 to rotate to drive the annular body 1 to move.
  • the moving wheel 401 can be a conventional wheel used for walking, and can also include a crawler-type traveling wheel. When the crawler-type traveling wheel is selected, the crawler is in contact with the rock.
  • the wheel-type axial moving mechanism 4 in this embodiment further includes a pressing component 404, and the pressing component 404 may be a telescopic structure, specifically a hydraulic push rod, an electric Push rod, etc. for top push.
  • the step-by-step axial movement mechanism 5 includes: a radial support unit and an axial drive unit 501 .
  • the radial support unit includes a support end 502 and a support drive assembly 503.
  • the driving assembly 503 is used for driving the two supporting ends 502 to be tightened or disengaged between the inner wall of the outer diameter and the inner wall of the inner diameter of the annular groove.
  • the support end 502 is a support plate that cooperates with the outer diameter inner wall and the inner diameter inner wall of the annular groove.
  • the support end 502 is also fixed with a support rod 504 that is consistent with the radial direction of the annular body 1, and a support rod 504 is arranged between the two support rods.
  • the support drive assembly 503 is described.
  • axial drive units hydraulic push rods, electric push rods, etc.
  • driving ends of the two axial drive units 501 are respectively connected with the corresponding support rods 504; wherein, the annular body 1 is connected to the support rods 504.
  • An avoidance groove 102 is provided at the position of 1 to provide avoidance for the relative movement of the annular body 1 and the radial support unit.
  • a first support bearing 103 is also installed between the cutting blade 2 and the annular body 1, and the cutting blade 2 passes through
  • the first support bearing 103 is assembled with the annular body 1, which can be used to reduce the friction between the cutting blade 2 and the annular body 1 when the cutting blade 2 rotates, and can also be used for the axial limit between the cutting blade 2 and the annular body 1. and radial limit.
  • the rotary power mechanism 3 and the axial power mechanism in this embodiment form a power group.
  • the rotary power mechanisms 3 of the multiple power groups in this embodiment can be driven together or used alone, and can be selected according to the actual rotary resistance.
  • a symmetrical rotary power mechanism 3 can also be used to drive the rotation.
  • the rotary drive assembly 302 drives the gear 303 to rotate, and drives the ring gear 301 to make the cutting blade 2 rotate along the annular body 1. get in.
  • the axial power mechanism drives the annular body 1 to move axially.
  • the driving mechanism 402 drives the moving wheel 401 to rotate, and uses the friction force between the wheel surface of the moving wheel 401 and the rock to make the annular body 1 advance in the tunneling direction.
  • the two support ends 502 are driven by the support drive assembly 503 to advance between the outer diameter inner wall and the inner diameter inner wall of the annular groove, and are pushed by the axial drive mechanism unit 501, Under the pushing action of the driving wheel 401 and the axial driving unit 501, the annular body 1 jointly applies the drilling thrust to the cutting cutter head 2; and in the process of retraction, only the wheel-type axial moving mechanism 4 can be used.
  • the support end 502 of the step-type axial movement mechanism 5 is disengaged from the annular groove.
  • the axial drive unit 501 in the mechanism 5 pushes the annular body 1 forward until the radial support units of the four step-by-step axial movement mechanisms 5 are located at the rear limit of the annular body 1, and the four stepper detached When the radial support unit of the moving axial moving mechanism 5 moves to the limit position in the forward direction, it is tightened; then, the four stepping axial moving mechanisms 5 located at the rear limit position are disengaged, and the aforementioned operations are repeated, Further, the continuous forward drilling of the annular body 1 is realized.
  • the four sets of power sets can be used together. For example, when the drilling angle needs to be adjusted, part of the power sets can be advanced, so that the drilling direction of the annular body 1 can be adjusted as required. The angle is deflected.
  • the roadheader can form an annular drilling groove 100 during the drilling process.
  • the rock column 200 in the center of the annular drilling groove 100 can be processed by other mechanical equipment, because the surrounding of the rock column 200 is free face, it is easier to separate the rock column 200.
  • the hollow rotary type rock tunnel boring machine as shown in FIG. 7 , is different from Embodiment 1 in that the axial power mechanism of this embodiment is a wheel-type axial moving mechanism 4 .
  • the hollow rotary rock tunnel boring machine as shown in Figure 8, is different from Embodiment 1 in that the axial power mechanism of this embodiment is a step-by-step axial moving mechanism 5. At this time, each power group includes four Group stepping type axial movement mechanism 5.
  • the hollow rotary type rock tunnel boring machine as shown in FIG. 9 , is different from Embodiment 3 in that the power group of this embodiment is provided with three groups.
  • the hollow rotary type rock tunnel boring machine is different from the first embodiment in that the second form of rotary power mechanism is used in this embodiment, specifically: the outer diameter side of the ring gear 301 corresponds to the The inner diameter side outer wall of the cutting blade 2 is fixed, the inner diameter side of the gear ring 301 is circumferentially distributed with meshing teeth, the axial direction of the gear 302 is consistent with the axial direction of the cutting blade 2 and meshes with the ring gear 301 .
  • annular slide rail 103 and an annular slide block 104 are arranged between the outer diameter side outer wall of the cutting blade 2 and the outer diameter side inner wall of the annular body 1 ; the annular slide rail 103 and the annular slide block 104 are respectively installed in the annular On the body 1 and the cutting blade 2 , the cutting blade 2 is assembled with the annular body 1 through the annular sliding rail 103 and the annular sliding block 104 .
  • a radial limit wheel 105 is also arranged between the outer wall of the outer diameter side of the cutting blade 2 and the inner wall of the outer diameter side of the annular body 1, which is used for the radial limit of the cutting blade 2 and the annular body 1;
  • the annular slide rail 103 and the annular slider 104 can also be arranged on the inner diameter side of the cutting blade 1 , while the ring gear 301 and the gear 302 are arranged at the outer diameter side of the cutting blade 2 .
  • the hollow rotary type rock tunnel boring machine as shown in Figure 11, is different from the embodiment 1 in that this embodiment adopts the third form of the rotary power mechanism, that is, the first support bearing is no longer used, but the The annular slide rail and annular slider structure shown in Embodiment 5.
  • the cutting blade 2 is provided with a ring gear 301 on the annular surface close to the annular body 1 , and the length direction of the meshing teeth on the ring gear 301 is consistent with the radial direction of the cutting blade 2 .
  • the annular slide rail and the annular slider structure shown in Embodiment 5 are respectively arranged between the outer diameter side surface and the outer diameter inner side surface of the annular body 1, the inner diameter outer surface surface of the cutting blade 2 and the inner diameter inner surface surface of the annular body 1, and
  • the radial limit wheels 105 are respectively arranged correspondingly.
  • the hollow rotary type rock tunnel boring machine is designed with reverse rotation for the cutting cutter head 2 in this embodiment.
  • the cutting cutter head 2 includes an outer ring cutting cutter head 2-1 and an inner ring Cutting blade 2-2; an inner gear ring 201 is fixed on the inner side wall of the outer ring cutting blade 2-1, and an outer gear ring 1 202 is fixed on the outer side wall of the inner ring cutting blade 2-2, The same gear 203 is meshed between the inner ring gear 201 and the outer ring gear I 202 .
  • the gear 203 in this embodiment When the gear 203 in this embodiment rotates, it can drive the outer ring cutting blade 2-1 and the inner ring cutting blade 2-2 to rotate in opposite directions.
  • the hollow rotary type rock tunnel boring machine as shown in FIG. 13 , this embodiment provides the state of the hollow rotary rock tunnel boring machine in the construction site well.
  • the slag discharge port 101 is set at the outer diameter of the cutting cutter head 2.
  • a mud collecting device is arranged at the position of the slag discharge port 101 to discharge the mud produced during drilling.
  • the annular body 1 is also provided with an excavating cutter head 6, and there are at least two groups of excavating cutter heads 6, and the plurality of groups of the excavating cutter heads 6 are It is movably connected to the front side of the annular body 1, and a plurality of groups of the excavating cutter discs 6 are evenly distributed around the annular body 1 to perform rotary excavation on the outer edge of the rock cylinder cut by the cutting cutter disc 2.
  • the inner side of the annular body 1 of the present embodiment is provided with a convex portion 106, and the number of the convex portion 106 corresponds to the number of the excavation cutter head 6.
  • the longitudinal section of the cutting blade 2 is an inverted L-shaped structure, and a groove 107 is formed on the front surface of the annular body 1 .
  • the shaped end is embedded in the groove 107.
  • the cutting blade 2 can also be slidably connected to the annular body 1.
  • the rotary power mechanism 3 of this embodiment also includes: a ring gear 301 , a rotary drive assembly 302 and a gear 303 , and the driving end of the rotary drive assembly 302 is sleeved with the The gear 303 meshes with the ring gear 301 fixed on the inner wall of the cutting cutter head 2 .
  • the difference from Embodiment 1 is that the driving end of the rotary drive assembly 302 is also connected to the excavation cutter head 6 .
  • the driving end of the rotary drive assembly 302 is connected to the excavation cutter head 6 through a planetary gear transmission mechanism, and the planetary gear transmission assembly includes: an outer ring gear II 304 , a central gear 305 and Planetary gear 306 .
  • the outer ring gear II 304 is fixedly arranged on the annular body 1, the sun gear 305 is sleeved on the driving end of the rotary drive assembly 302, and is located at the center of the outer ring gear II 304, and the planetary gear 306 is provided with two, and the two planetary gears 306 mesh with the sun gear 305 and the outer ring gear II 304 respectively, and the axle of each of the planetary gears 306 is connected with the excavation cutter head 6 . It should be noted that, the number of the planetary gears 306 is not limited in this embodiment.
  • the rotary drive assembly 302 When the rotary drive assembly 302 is working, it can drive the central gear 305 to rotate. Under the action of the central gear 305 and the outer ring gear II 304, the two planetary gears 306 can rotate around the central gear 305 and drive the excavation cutter head 6 to rotate.
  • a rotary drive assembly 302 drives the cutting cutter head 2 and the excavation cutter head 6 to rotate at the same time, which simplifies the structure and saves space and cost.
  • this embodiment defines that the width of the excavation cutter head 6 is greater than the annular width of the cutting cutter head 2, so as to reduce the cutting workload of the outer periphery as much as possible.
  • the excavation cutter head 6 in this embodiment has a straight-line structure.
  • the excavation cutter head 6 may also be circular, and a cutter assembly is also provided on the front surface of the excavation cutter head 6 .
  • the axial power mechanism of this embodiment is a spiral body axial movement mechanism 7
  • the spiral body axial movement mechanism 7 is installed on the rear side of the annular body 1 .
  • the spiral body axial movement mechanism 7 in this embodiment also has two groups, that is, the spiral body axial movement mechanism 7 corresponds to the driving cutter head 6 one-to-one.
  • each group of spiral body axial movement mechanisms 7 is Including spirochetes I 701, spirochetes II 702, spirochetes III 703, and spirochetes IV 704, spirochetes I 701, spirochetes II 702, spirochetes III 703, and spirochetes IV 704 are arranged on the inner and outer sides of the annular body 1 in twos, and the spirochetes I 701 ,
  • the outer edge of the spiral body II 702 is set protruding from the outer edge of the annular body 1, and the outer edges of the spiral body III 703 and the spiral body IV 704 are set protruding from the inner edge of the annular body 1, so that it can be in contact with the rock.
  • the spiral body I 701 is formed by arranging the spiral pattern on the outer surface of the cylinder, and the spiral pattern is made of cemented carbide to ensure that it can be embedded in the rock and provide a strong thrust,
  • the spiral body I 701 is also connected with the spiral body driving component I 705 through the central axis 701-1 to drive the spiral body I 701 to rotate, and the spiral body II 702, the spiral body III 703, and the spiral body IV 704 have the same structure as the spiral body I 701 .
  • the spiral body drive assembly I 705 is externally placed, that is, the spiral body drive assembly I 705 is arranged on the rear side of the spiral body I 701.
  • the output shaft is connected to the central shaft 701-1; as shown in FIG. 17 , the central shaft 701-1 of this embodiment penetrates the spiral body I 701, and the central shaft 701-1 passes through the end of the spiral body I 701 and the annular body 1 Turn the connection.
  • the spiral body driving assembly I 705 can also be built in the spiral body I 701, at this time, the spiral body I 701 is a hollow structure, and the built-in spiral body driving assembly I 705 is a conventional technology, In this embodiment, the built-in structure is not described repeatedly.
  • the state of use of the roadheader in this embodiment is shown in FIG. 21 .
  • the roadheader cuts the rock 300 horizontally forward.
  • the cutting blade 2 cuts the outer periphery of the roadway to form an annular groove 100 and forms a rock column 200 .
  • the excavation cutter head 6 cuts the outer edge of the rock column 200 to form a circular space, and the excavation cutter head 6 provides the cutting cutter head 2 with space for continuous operation and follow-up, which can reduce the workload of the roadway to a minimum, thereby saving machinery
  • the power also increases the cutting speed.
  • the hollow rotary type rock tunnel boring machine as shown in FIG. 23, is different from Embodiment 9 in that there are two sets of rotary drive assemblies 302 in this embodiment, and the two sets of rotary drive assemblies 302 are arranged side by side and are installed in On the annular body 1 , one set of the rotary drive assemblies 302 drives the cutting cutter head 2 to rotate through gear ring gear meshing, and the driving end of the other set of rotary drive assemblies 302 is connected to the excavation cutter head 6 through a gear transmission assembly.
  • the two sets of rotary drive assemblies 302 respectively drive the cutting cutter head 2 and the excavation cutter head 6 to rotate, so that the rotational speed of the cutting cutter head 2 and the excavation cutter head 6 can be independently regulated.
  • the hollow rotary rock tunnel boring machine as shown in FIG. 24, is different from Embodiment 9 in that the driving cutter discs 6 of this embodiment are provided with four groups, and the four groups of the driving cutter discs 6 are evenly distributed around the annular body 1. , this embodiment increases the number of excavating cutter heads 6, which can improve the cutting and drilling speed.
  • the hollow rotary type rock tunnel boring machine, the rotary power mechanism 3 in this embodiment is an electric motor, and the electric motor includes a stator 307 and a rotor 308 .
  • the stator 307 includes: a stator iron core 307-1 and a stator winding 307-2.
  • the stator core 307-1 is annular, and the longitudinal section of the stator core 307-1 is I-shaped, and the stator winding 307-2 is composed of a plurality of stator coils composition, a plurality of the stator coils are evenly distributed in a ring around the stator core 307-1.
  • the rotor 308 includes a rotor iron core 308-1 and a rotor winding 308-2.
  • the rotor iron core 308-1 is arranged around the stator iron core 307-1. the outer side of the stator core 307-1, and is in contact with the outer end of the stator core 307-1.
  • the front end of the rotor iron core 308-1 (ie, the top end in FIG. 27 ) is fixed with the cutting blade 2 to drive the cutting blade 2 to rotate.
  • the fixing of the rotor iron core 308-1 and the cutting blade 2 may be: It is integrally formed, or it can be fixed in separate parts, which is not limited in this embodiment.
  • the rotor iron core 308-1 is also annular. As shown in FIG. 27 , the rotor iron core 308-1 extends to the rear side close to the stator iron core 307-1. At the bottom, the rotor iron core 308-1 forms an extension part horizontally inward, and the extension part extends to be in contact with the outer side of the stator iron core 307-1, thus, the stator iron core 307-1 and the rotor iron core 308 A cavity 309 is formed between -1.
  • a third support bearing 310 is provided between the front end of the stator iron core 307-1 and the rear end of the cutting blade 2.
  • a fourth support bearing 311 is provided between the rear end of the iron core 308-1 and the bottom of the stator iron core 307-1, and the arrangement of the support bearing makes the rotor iron core 308-1 always maintain a correct radial position.
  • a first gasket 312 is provided between the front end of the stator iron core 307-1 and the rear end of the cutting blade 2, and inside the third support bearing 310, and the rotor iron core 308 is provided with a first gasket 312.
  • a second gasket 313 is provided between the rear end of the -1 and the bottom of the stator iron core 307-1, and on the outer side of the fourth support bearing 311, and also between the outer end of the stator iron core 307-1 and the rotor iron core 308-1
  • a third gasket 314 is provided at the place where the rotor core 308-1 is attached, and a fourth gasket 315 is provided at the place where the extension of the rotor core 308-1 and the stator core 307-1 are attached.
  • the rotor winding 308-2 is composed of a plurality of rotor coils, and the plurality of rotor coils are evenly distributed in a ring around the rotor core 308-1.
  • the rotor winding 308-2 is connected to the stator winding 307. -2 corresponds to one another; as shown in FIG. 27 , the rotor winding 308 - 2 and the stator winding 307 - 2 are both located in the cavity 309 .
  • the cavity 309 is further provided with a conductive brush 316.
  • the conductive brush 316 is connected to the power supply through wires, and provides power to the rotor winding 308-2.
  • a wire hole 307-3 is opened on the stator iron core 307-1.
  • the hollow rotary rock tunnel boring machine is different from Embodiment 12 in that the rotor iron core 308-1 of this embodiment is arranged on the front side of the stator iron core 307-1 (that is, the upper part in FIG. 28 ). ), specifically, the rotor iron core 308-1 of this embodiment is in the shape of a circular disk and is fixed to the cutting blade 2, the longitudinal section of the stator iron core 307-1 is a concave structure, and the rotor iron core 308 -1 encloses a cavity 309, and the cavity 309 is provided with a stator winding 307-2, a rotor winding 308-2 and a conductive brush 306.
  • a fifth support bearing 317 is provided between the front end surface of the stator iron core 307-1 and the rear end surface of the rotor iron core 308-1.
  • the hollow rotary rock tunnel boring machine as shown in Figures 29 and 30, is different from Embodiment 12 in that the rotary power mechanism 3 of this embodiment is an air motor, and the air motor includes: a stator 307, a rotor 308 and blades 318 .
  • the stator 307 is a circular structure, and the annular cavity of the stator 307 is a hollow structure, the rotor 308 is also a circular structure, and the rotor 308 is accommodated in the stator 307 ; the front side of the stator 307 is provided with a through slot for the rotor 308 to pass through, and the end of the rotor 308 passing through the stator 307 is fixed to the cutting disc 2 .
  • a plurality of the blades 318 are provided, and the plurality of the blades 318 are evenly distributed in an annular shape around the rotor 308 , and each blade 318 is movably embedded on the rotor 308 Specifically, a plurality of blade expansion and contraction slots 308-3 are formed on the outer circumference of the rotor 308, the blade expansion and contraction slots 308-3 extend from the outside to the inside, and the blades 318 are movably connected in the blade expansion and contraction slots 308-3,
  • the connection between the blade 318 and the blade expansion groove 308-3 belongs to the prior art, and is not specifically limited in this embodiment.
  • a plurality of inlet and exhaust ports 307-4 are further opened on the stator 307, and the compressed gas enters the interior of the stator 307 through the inlet and exhaust ports 307-4. .
  • support bearings and gaskets are provided between the front end of the stator 307 and the cutting blade 2, and at the junction of the stator 307 and the rotor 308.
  • the hollow rotary type rock tunnel boring machine as shown in Figures 31 and 32, is different from the embodiments 12-14 in that the axial power mechanism of this embodiment also includes a roller 8, and the roller 8 is provided with multiple, multiple The rollers 8 are evenly distributed around the inner cavity wall of the stator iron core 307-1, and the axial direction of the roller 8 and the axial direction of the cutting blade 2 are arranged at an angle, specifically a small angle.
  • stator iron core 307-1 When the cutting blade 2 rotates, the stator iron core 307-1 is subjected to a torque opposite to the rotation direction of the cutting blade 2, and the roller 8 fixed on the stator iron core 307-1 drives the stator iron core 307 under the action of this torque. -1 A small amount of rotation, and because of the included angle with the axial direction of the cutting disc 2, it will push the stator core 307-1 to move towards the working face, so as to actively promote the roadheader to be in close contact with the rock face, and push the roadheader go ahead.
  • the arrangement of the rollers 8 can, on the one hand, push the roadheader to move and, on the other hand, can prevent reverse torque.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Earth Drilling (AREA)

Abstract

一种中空回转型岩石巷道掘进机,包括环形机体(1),环形机体(1)上设有:切割刀盘(2)、回转动力机构(3)以及轴向动力机构,切割刀盘(2)为环形结构,设置在环形机体(1)的前侧,且与环形机体(1)活动连接,切割刀盘(2)上安装有切割刀具,用于对岩石巷道的外周进行回转切割以形成岩石圆柱;回转动力机构(3)用于驱动切割刀盘(2)沿环形机体(1)做回转运动;轴向动力机构用于驱动环形机体(1)在岩石巷道中前进、后退。中空回转型岩石巷道掘进机可以适应全方位多角度的巷道钻进;结构简单,成本低,同时可连续作业,掘进速度快。

Description

中空回转型岩石巷道掘进机 技术领域
本发明属于岩石巷道掘进设备领域,具体涉及一种中空回转型岩石巷道掘进机。
背景技术
现有岩石巷道掘进机主要有岩石型盾构机和反井钻机,其对工作面实施的以碾压为主的全断面破坏和掘进。
其中岩石盾构机依靠外部机械或液压式驱动对刀盘和机体进行整体推进,同时将刀具通过强大的压力压入岩石中,再通过强大的扭矩转动刀盘,从而在岩石工作面实施碾压和切削作业,其对岩石工作面进行大量碾压和少量切削方式的岩石破坏属于高能耗的破坏方式,特别是全断面掘进,要求动力高,机械强度高,同时盾构机机体庞大、功能齐全、造价高昂,不适合在矿山井下施工位置多变的小规格工作面中施工,同时不能施工天井、地井等工程。
反井钻机施工时,扩孔钻头固定在钻杆上,由位于天井上部的钻机实施向上的拉力和扭矩,以天井的中心孔为中心被动转动并碾压破坏岩石,全断面碾压破坏时,对动力和机具的强度要求同样很高。新型反井钻机的钻头也有碾压破坏和其它破坏的组合方式,但对工作面而言,依然时全断面掘进。反井钻机由于钻机自下向上的牵引方式,只能施工陡倾斜天井,不能施工平巷、斜井和地井等工程。
同时,采用上述全断面掘进机进行作业时,设备购置成本高、施工电力高、施工成本高,并且掘进速度非常慢。
发明内容
基于上述背景问题,本发明旨在提供一种中空回转型岩石巷道掘进机,可以适应全方位多角度的巷道钻进;整体结构简单,成本低,同时可连续作业,掘进速度快。
为达到上述目的,本发明实施例提供的技术方案是:
中空回转型岩石巷道掘进机,包括环形机体,所述环形机体上设有:
切割刀盘,为环形结构,设置在环形机体的前侧,且与所述环形机体活动连接,所述切割刀盘上安装有切割刀具,用于对岩石巷道的外周进行回转切割以形成岩石圆柱;
回转动力机构,用于驱动所述切割刀盘沿环形机体做回转运动;
轴向动力机构,用于驱动环形机体在岩石巷道中前进、后退。
进一步地,所述回转动力机构包括:
齿圈,固定在所述切割刀盘上;
回转驱动组件,安装在所述环形机体上;
齿轮,安装在所述回转驱动组件的驱动端,且与所述齿圈啮合。
进一步地,所述轴向动力机构为轮式轴向移动机构、螺旋体轴向移动机构、步进式轴向移动机构中的一种或多种的组合。
进一步地,所述轮式轴向移动机构包括:
移动轮,所述移动轮的轮面与岩石抵接;
移动轮驱动组件,与所述移动轮连接,用于驱动移动轮转动以带动环形机体移动;
压紧组件,用于为所述移动轮提供与岩石抵接的压力。
进一步地,所述螺旋体轴向移动机构包括:
螺旋体,所述螺旋体的外缘凸出环形机体设置,以使螺旋体的螺旋纹能够与岩石抵接并提供推力;
螺旋体驱动组件,与所述螺旋体连接,用于驱动螺旋体转动。
进一步地,所述步进式轴向移动机构包括:
径向支撑单元,包括支撑端和支撑驱动组件,所述支撑端设有两个,所述支撑驱动组件用于驱动两个所述支撑端在切割刀盘切割出的环形槽的内外壁之间撑紧或脱离;
轴向驱动单元,设置在所述环形机体上,用于驱动所述径向支撑单元沿掘进方向前进、后退。
更进一步地,所述支撑端为支撑板,所述支撑板上固定有支撑杆,所述支撑杆沿环形机体的径向分布,两个所述支撑端的支撑杆之间设有所述支撑驱动组件;
所述轴向驱动单元设有两组,两组所述轴向驱动单元分别与对应的支撑杆连接。
进一步地,所述切割刀盘包括:
外环切割刀盘,所述外环切割刀盘的内侧壁上固定有内齿圈;
内环切割刀盘,所述内环切割刀盘的外侧壁上固定有外齿圈;
齿轮,分别与所述内齿圈、外齿圈啮合,用于在转动时带动所述外环切割刀盘和内环切割刀盘按相反的方向回转。
进一步地,所述环形机体上还设有:
掘进刀盘,至少设有两组,多组所述掘进刀盘均活动连接在环形机体的前侧,且多组所述掘进刀盘绕所述环形机体环形均匀分布,用于对所述岩石圆柱的外缘进行回转掘进。
在一个实施例中,所述回转动力机构包括:
齿圈,固定在所述切割刀盘的内壁上;
回转驱动组件,安装在所述环形机体上;
齿轮,安装在所述回转驱动组件的驱动端,且与所述齿圈啮合;
所述回转驱动组件的驱动端还与所述掘进刀盘连接,以驱动掘进刀盘转动。
在一个实施例中,所述回转动力机构包括:
齿圈,固定在所述切割刀盘的内壁上;
齿轮,与所述齿圈啮合;
回转驱动组件,设有两组,两组所述回转驱动组件均安装在环形机体上,且其中一组所述回转驱动组件的驱动端安装有所述齿轮,另一组所述回转驱动组件的驱动端与所述掘进刀盘连接。
进一步地,所述回转动力组件的驱动端通过行星轮传动机构或齿轮传动机构与所述掘进刀盘连接。
进一步地,所述切割刀盘的环形宽度小于掘进刀盘的宽度。
在一个实施例中,所述回转动力机构为电动马达或气动马达中的一种。
进一步地,所述电动马达包括:
定子,包括圆环形的定子铁芯和绕设在所述定子铁芯上的定子绕组;
转子,包括圆环形的转子铁芯和绕设在所述转子铁芯上的转子绕组,所述转子铁芯与所述切割刀盘固定;
更进一步地,所述定子绕组由多个定子线圈组成,多个所述定子线圈绕所述定子铁芯环形均匀分布;所述转子绕组由多个转子线圈组成,多个所述转子线圈绕所述转子铁芯环形均匀分布。
更进一步地,所述转子铁芯设置在所述定子铁芯的前侧、或环绕设置在定子铁芯的外侧,所述转子铁芯和定子铁芯之间形成空腔,所述转子绕组和定子绕组均设置在所述空腔内;
所述空腔内还设有导电电刷,所述导电电刷与电源通过导线连接,并将电力提供给转子绕组。
进一步地,所述气动马达包括:
定子,为圆环形结构,且所述定子的环形腔为中空结构;
转子,为圆环形结构,且容置在所述定子的环形腔内,所述转子与掘进刀盘固定;
叶片,设有多个,多个所述叶片绕所述转子环形分布,且所述叶片活动嵌设在转子上。
更进一步地,所述气动马达的转子的外周环形分布有多个叶片伸缩槽,所述叶片伸缩槽从外至内延伸,所述叶片伸缩槽内活动连接有所述叶片。
进一步地,所述轴向动力机构包括:
滚轮,设有多个,多个所述滚轮绕所述定子的内腔壁环形均匀分布,所述滚轮的轴向与切割刀盘的轴向成角度设置。
与现有技术相比,本发明实施例至少具有以下效果:
1、本发明的中空回转型岩石巷道掘进机在环形机体上设置环形的切割刀盘,切割刀盘通过回转动力机构驱动转动,掘进机整体通过轴向动力机构提供整机前进或后退的动力,可适应全方位多角度的巷道 钻进;整体结构简单,成本低,同时可连续作业,掘进速度快。
2、本发明在环形机体上同时设有切割刀盘和掘进刀盘,切割刀盘转动可以对岩石巷道外周进行回转切割形成岩石圆柱,掘进刀盘转动可以对切割刀盘切割形成的岩石圆柱的外缘进行回转掘进,并为切割刀盘提供持续作业和跟进的空间,因此,本发明的掘进机可将对巷道的作业量降低到最小,从而节省机械动力同时提高切割掘进速度。
3、本发明的回转驱动组件可以设置一组也可设置两组,当设置一组时,可以同步驱动切割刀盘和掘进刀盘转动,节省空间和成本;当设置两组时,可以单独控制切割刀盘和掘进刀盘,从而对切割刀盘和掘进刀盘的转速等进行分别调控。
4、本发明的驱动电机通过行星轮传动机构或齿轮传动机构与掘进刀盘连接,能够有效调控掘进刀盘的转速。
5、本发明的切割刀盘的环形宽度小于掘进刀盘的宽度,尽量实现岩石切割宽度最小化,从而大大减小切割作业量。
6、本发明的回转动力机构还可以是电动马达或气动马达,电动马达和气动马达均包括定子和转子,定子和转子均为圆环形结构,可以驱动圆环形的掘进刀盘转动,转子与掘进刀盘固定,即利用转子直接带动掘进刀盘转动,节省了机械传动结构,进而简化了机体结构,并保证了驱动效率和掘进速度。
7、本发明的轴向动力机构还包括绕定子环形均匀分布的滚轮,滚轮的轴向与切割刀盘的轴向成小角度夹角设置,当切割刀盘转动时,定子受到与切割刀盘转动方向相反的扭矩,固定在定子上的滚轮在该扭矩的作用下,带动定子少量转动,并因其与切割刀盘轴向存在夹角,会推动定子向工作面移动,从而主动促使掘进机与岩石工作面紧密接触,并推动掘进机前进。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。
图1为本发明实施例1中的中空回转型岩石巷道掘进机的示意图;
图2为图1的A-A的剖面示意图;
图3为图1的B-B的剖面示意图;
图4为图1的C-C的剖面示意图;
图5为图1的D-D的剖面示意图;
图6为本发明实施例1中的中空回转环形岩石巷道掘进机的在巷道中钻进的示意图;
图7为本发明实施例2中的中空回转环形岩石巷道掘进机的示意图;
图8为本发明实施例3中的中空回转环形岩石巷道掘进机的示意图;
图9为本发明实施例4中的中空回转环形岩石巷道掘进机的示意图;
图10为本发明实施例5中的回转动力机构的内部示意图;
图11为本发明实施例6中的回转动力机构的内部示意图;
图12为本发明实施例7中的回转动力机构的内部示意图;
图13为本发明实施例8中的中空回转型岩石巷道掘进机的示意图;
图14为本发明实施例9中的中空回转型岩石巷道掘进机的主视剖视图;
图15为本发明实施例9中的中空回转型岩石巷道掘进机的俯视图;
图16为本发明实施例9中的切割刀盘的主视剖视图;
图17为本发明实施例9中的回转动力机构与切割刀盘、掘进刀盘的连接示意图;
图18为本发明实施例9中的中空回转型岩石巷道掘进机的仰视图;
图19为本发明实施例9中螺旋体I的结构示意图;
图20为本发明实施例9中螺旋体I的另一种结构示意图;
图21为本发明实施例9中的中空回转型岩石巷道掘进机的使用状态图;
图22为本发明实施例9中的中空回转型岩石巷道掘进机切割后的岩石的示意图;
图23为本发明实施例10中回转动力机构与切割刀盘、掘进刀盘的连接示意图;
图24为本发明实施例11中的中空回转型岩石巷道掘进机的俯视图;
图25为本发明实施例12中的中空回转型岩石巷道掘进机的主视剖视图;
图26为本发明实施例12中的中空回转型岩石巷道掘进机的俯视图;
图27为图25中E-E处的剖视图;
图28为本发明实施例13中的中空回转型岩石巷道掘进机的局部结构示意图;
图29为本发明实施例14中的中空回转型岩石巷道掘进机的俯视剖视图;
图30为本发明实施例14中的中空回转型岩石巷道掘进机的局部结构示意图;
图31为本发明实施例15中的中空回转型岩石巷道掘进机的局部结构示意图;
图32为本发明实施例15中的中空回转型岩石巷道掘进机的仰视图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所 有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“中心”、“顶”、“底”、“左”、“右”、“竖直”、“水平”、“内”、“外”、“前”、“后”等指示的方位或位置关系为基于说明书附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
实施例1
为了解决现有全断面掘进机存在的掘进速度慢等问题,本发明实施例提供一种中空回转型岩石巷道掘进机,如图1所示,包括环形机体1、切割刀盘2、回转动力机构3、以及轴向动力机构,所述切割刀盘2、回转动力机构3以及轴向动力机构均设置在所述环形机体1上。
在本实施例中,所述切割刀盘2为环形结构,切割刀盘2设置在环形机体1的前侧,且与所述环形机体1活动连接,所述切割刀盘2上安装有切割刀具,用于对岩石巷道的外周进行回转切割以形成岩石圆柱。
在本实施例中,所述回转动力机构3设置在所述环形机体1上,用于驱动所述切割刀盘2沿环形机体1做回转运动。
具体的,如图2所示,所述回转动力机构3包括:齿圈301、回转驱动组件302以及齿轮303;所述齿圈301固定在切割刀盘2上,所述回转驱动组件302安装在环形机体1上,且所述回转驱动组件302的驱动端安装有所述齿轮303,所述齿轮303与所述齿圈301啮合。
回转驱动组件302(可采用电机或液压马达等)驱动齿轮303转动,并带动齿圈301,使切割刀盘2沿环形机体1回转,此时切割刀盘2上设置的切割刀具在岩石上进行钻进。
本实施例采用了第一种形态的回转动力机构,具体为:齿圈301设置为与切割刀盘2对应的环形(同轴心),齿圈301的外环面与切割刀盘2固定,内环面分布有啮合齿,齿轮303通过外环面设置的啮合齿与齿圈301啮合。
为了将掘进机钻进时产生的岩石料渣排出,如图2所示,本实施例的切割刀盘2的宽度大于环形机体1的宽度,切割刀盘2露出环形机体1的位置设置有排渣口101,排渣口101的位置还可设置泥浆收集组件,泥浆收集组件为现有产品,此时,钻进时产生的岩石料渣从排渣口101排出,并通过泥浆收集组件收集。
在本实施例中,所述轴向动力机构用于驱动环形机体1在岩石巷道中前进、后退,如图1所示,本实施例中的轴向动力机构为轮式轴向移动机构4和步进式轴向移动机构5的组合,且每组轴向动力机构均包括两个对称分布的轮式轴向移动机构4和两个对称分布的步进式轴向移动机构5。
具体的,如图3所示,所述轮式轴向移动机构4包括:移动轮401和移动轮驱动组件(可采用电机 和液压马达等)402,所述移动轮401的轮面与岩石抵接;所述移动轮驱动组件402与所述移动轮401连接,具体可通过蜗轮蜗杆403将移动轮401与移动轮驱动组件402连接,用于驱动移动轮401转动以带动环形机体1移动。
其中,所述移动轮401可以为常规的用于行走的轮,也可包括履带式行走轮,选择履带式行走轮时,履带与岩石接触。
为了提供所述移动轮401与岩石抵接的压力,本实施例的轮式轴向移动机构4还包括压紧组件404,压紧组件404可以是伸缩式结构,具体可采用液压推杆、电动推杆等进行顶推。
具体的,如图4所示,所述步进式轴向移动机构5包括:径向支撑单元和轴向驱动单元501。
所述径向支撑单元包括支撑端502和支撑驱动组件503,所述支撑端502为两个,分别对应的与切割刀盘2切割出的环形槽的外径内壁和内径内壁配合,所述支撑驱动组件503用于驱动两个支撑端502在所述环形槽的外径内壁和内径内壁之间撑紧或脱离。
所述支撑端502为与环形槽的外径内壁和内径内壁配合的支撑板,支撑端502上还固定有与环形机体1径向方向一致的支撑杆504,两个支撑杆504之间设置有所述的支撑驱动组件503。
所述轴向驱动单元(液压推杆、电动推杆等)501为两个,两个轴向驱动单元501的驱动端分别与对应的支撑杆504连接;其中,环形机体1在与支撑杆504的位置设置有避让槽102,用于为环形机体1与径向支撑单元相对运动时提供避让。
为了保证切割刀盘2的平稳转动,如图2和5所示,本实施例在所述切割刀盘2与环形机体1之间还安装有第一支撑轴承103,所述切割刀盘2通过第一支撑轴承103与环形机体1装配,可以用于减少切割刀盘2回转时与环形机体1之间的摩擦力,还可以用于切割刀盘2与环形机体1之间的轴向限位和径向限位。
需要说明的是,本实施例的回转动力机构3和轴向动力机构组成动力组,为了保证切割刀盘2的回转以及整机移动的动力需求,如图1所示,本实施例在环形机体1上沿环形方向规则分布有四组动力组,且每组动力组均设置了两个对称分布的回转动力机构3。
此时,本实施例的多组动力组的回转动力机构3可以共同驱动,也可单独使用,可根据实际的回转阻力选择,为了使回转平稳,也可使用对称的回转动力机构3驱动回转。
本实施例的工作原理是:
本实施例的掘进机工作时,回转驱动组件302驱动齿轮303转动,并带动齿圈301,使切割刀盘2沿环形机体1回转,此时切割刀盘2上设置的切割刀具在岩石上进行钻进。
在切割刀盘2回转的同时,轴向动力机构带动环形机体1进行轴向移动,本实施例采用的是轮式轴向移动机构4和步进式轴向移动机构5组合使用,通过移动轮驱动机构402驱动移动轮401转动,利用 移动轮401的轮面与岩石摩擦力,使环形机体1掘进方向前进,此时还可采用压紧组件404向移动轮401的轮轴施压。
同步的,步进式轴向移动机构5中,通过支撑驱动组件503驱动两个支撑端502在环形槽的外径内壁和内径内壁之间撑进,通过轴向驱动机构单元501进行顶推,环形机体1在驱动轮401和轴向驱动单元501顶推的作用下,共同对切割刀盘2施加钻进的推力;而在回退过程中,仅通过轮式轴向移动机构4即可,步进式轴向移动机构5的支撑端502与环形槽脱离。
在实际工作中,由于在环形机体1上设置了四组动力组,此时则包括了八个步进式轴向移动机构5,在钻进过程中,还可采用四加四的动作方式,即其中四个步进式轴向移动机构5的径向支撑单元进行撑紧,另四个步进式轴向移动机构5的径向支撑单元脱离,撑紧的四个步进式轴向移动机构5中的轴向驱动单元501将环形机体1向前顶推,直至该四个步进式轴向移动机构5的径向支撑单元位于环形机体1后限位处,脱离的四个步进式轴向移动机构5的径向支撑单元移动至前进方向的限位处时,进行撑紧;然后,位于后限位处的四个步进式轴向移动机构5脱离,重复前述的操作,进而实现环形本体1的连续向前钻进。
由于设置了四组的动力组,四组动力组可配合使用,例如,在需要调整钻进角度时,可使其中部分的动力组进行推进,即可使环形本体1的钻进方向按所需角度进行偏转。
最后,如图6所示,掘进机在钻进过程中可形成环形钻槽100,此时环形钻槽100中心的岩石柱200可采用其他机械设备进行处理,由于岩石柱200的四周皆为自由面,对岩石柱200进行分离,更加容易。
实施例2
中空回转型岩石巷道掘进机,如图7所示,与实施例1不同的是,本实施例的轴向动力机构为轮式轴向移动机构4。
实施例3
中空回转型岩石巷道掘进机,如图8所示,与实施例1不同的是,本实施例的轴向动力机构为步进式轴向移动机构5,此时每组动力组中包括了四组步进式轴向移动机构5。
实施例4
中空回转型岩石巷道掘进机,如图9所示,与实施例3不同的是,本实施例的动力组设置了三组。
实施例5
中空回转型岩石巷道掘进机,如图10所示,与实施例1不同的是,本实施例采用的是第二种形态的回转动力机构,具体为:齿圈301的外径侧对应的与切割刀盘2的内径侧外壁固定,齿圈301的内径侧周向分布有啮合齿,齿轮302的轴向与切割刀盘2的轴向一致,并与齿圈301啮合。
同时,所述切割刀盘2的外径侧外壁与环形机体1的外径侧内壁间设置有环形滑轨103和环形滑块 104;所述环形滑轨103和环形滑块104分别安装在环形机体1和切割刀盘2上,所述切割刀盘2通过环形滑轨103和环形滑块104与环形机体1装配。
所述切割刀盘2的外径侧外壁与环形机体1的外径侧内壁间还设置有径向限位轮105,用于切割刀盘2与环形机体1的径向限位;当然按照本实施例的设计思路,还可将环形滑轨103、环形滑块104设置在切割刀盘1的内径侧,而齿圈301、齿轮302设置在切割刀盘2的外径侧。
实施例6
中空回转型岩石巷道掘进机,如图11所示,与实施例1不同的是,本实施例采用的是第三种形态的回转动力机构,即不再采用第一支撑轴承,而是采用如实施例5所示的环形滑轨、环形滑块结构。
具体的,所述切割刀盘2在靠近环形机体1的环面设置有齿圈301,齿圈301上的啮合齿的长度方向与切割刀盘2的径向方向一致,切割刀盘2的外径外侧面与环形机体1的外径内侧面、切割刀盘2的内径外侧面与环形机体1的内径内侧面之间分别设置有实施例5所示的环形滑轨、环形滑块结构,并分别对应设置有径向限位轮105。
实施例7
中空回转型岩石巷道掘进机,如图12所示,本实施例对切割刀盘2进行了相反回转的设计,具体的,所述切割刀盘2包括外环切割刀盘2-1和内环切割刀盘2-2;所述外环切割刀盘2-1的内侧壁上固定有内齿圈201,所述内环切割刀盘2-2的外侧壁上固定有外齿圈I 202,所述内齿圈201和外齿圈I 202之间啮合同一齿轮203。
本实施例的齿轮203在转动时,可以带动外环切割刀盘2-1和内环切割刀盘2-2按相反的方向回转。
为了保证外环切割刀盘2-1和内环切割刀盘2-2之间的平稳转动,本实施例在所述外环切割刀盘2-1和内环切割刀盘2-2之间还设置有第二支撑轴承2-3,所述外环切割刀盘2-1通过第二支撑轴承2-3与内环切割刀盘2-2装配,减小了摩擦。
实施例8
中空回转型岩石巷道掘进机,如图13所示,本实施例提供的是中空回转型岩石巷道掘进机在施工地井时的状态,此时,排渣口101设置在切割刀盘2靠外径侧的位置上,并在排渣口101的位置设置有泥浆收集装置,用于排出钻进时产生的泥浆。
实施例9
中空回转型岩石巷道掘进机,如图14和15所示,本实施例在环形机体1还设有掘进刀盘6,掘进刀盘6至少设有两组,多组所述掘进刀盘6均活动连接在环形机体1的前侧,且多组所述掘进刀盘6绕所述环形机体1环形均匀分布,用于对切割刀盘2切割形成的岩石圆柱的外缘进行回转掘进。
如图15所示,为了安装掘进刀盘6,本实施例环形机体1的内侧设有凸起部106,凸起部106的设 置个数与掘进刀盘6的个数对应。
在本实施例中,如图16和17所示,所述切割刀盘2的纵截面呈倒L型结构,所述环形机体1的前表面上开设有凹槽107,切割刀盘2的L型端嵌入所述凹槽107内,为了保证切割刀盘2的平稳转动,也可将切割刀盘2与环形机体1滑配连接。
为了同时驱动切割刀盘2和掘进刀盘6转动,本实施例的回转动力机构3同样包括:齿圈301、回转驱动组件302以及齿轮303,所述回转驱动组件302的驱动端套设有所述齿轮303,所述齿轮303与固定在切割刀盘2内壁上的齿圈301啮合,与实施例1不同的是,所述回转驱动组件302的驱动端还与所述掘进刀盘6连接。
具体的,如图17所示,所述回转驱动组件302的驱动端通过行星齿轮传动机构与所述掘进刀盘6连接,所述行星齿轮传动组件包括:外齿圈II 304、中心齿轮305以及行星齿轮306。
所述外齿圈II 304固定设置在环形机体1上,所述中心齿轮305套设在所述回转驱动组件302的驱动端,且位于所述外齿圈II 304的圆心处,所述行星齿轮306设有两个,两个所述行星齿轮306分别与所述中心齿轮305、外齿圈II 304啮合,每个所述行星齿轮306的轮轴均与所述掘进刀盘6连接。需要说明的是,对于行星齿轮306的个数,本实施例不做限制。
回转驱动组件302工作时,可以带动中心齿轮305转动,在中心齿轮305和外齿圈II 304的作用下,两个行星齿轮306可以绕中心齿轮305转动,并带动掘进刀盘6转动。
本实施例通过一个回转驱动组件302同时带动切割刀盘2和掘进刀盘6转动,简化了结构,节省空间和成本。
对于掘进刀盘6的结构,如图15所示,本实施例限定掘进刀盘6的宽度大于切割刀盘2的环形宽度,以尽可能地减小外周的切割工作量。
如图15所示,本实施例的掘进刀盘6为一字形结构,在其他实施例中,掘进刀盘6也可以选择圆形,掘进刀盘6的前表面上同样设有刀具组件。
与实施例1还不同的是,如图17所示,本实施例的轴向动力机构为螺旋体轴向移动机构7,所述螺旋体轴向移动机构7安装在环形机体1的后侧。
本实施例的螺旋体轴向移动机构7同样设有两组,即螺旋体轴向移动机构7与掘进刀盘6一一对应,具体的,如图18所示,每组螺旋体轴向移动机构7均包括螺旋体I 701、螺旋体II 702、螺旋体III 703、以及螺旋体IV 704,螺旋体I 701、螺旋体II 702、螺旋体III 703、以及螺旋体IV 704两两分设在环形机体1的内外侧,所述螺旋体I 701、螺旋体II 702的外缘均凸出环形机体1的外缘设置,所述螺旋体III 703、螺旋体IV 704的外缘凸出环形机体1的内缘设置,以使其能与岩石抵接。
具体如图19所示,以螺旋体I 701为例,所述螺旋体I 701通过在圆柱体的外表面设置螺旋纹形成, 螺旋纹采用硬质合金制成,以确保能够嵌入岩石并提供强大推力,此外,所述螺旋体I 701还通过中心轴701-1与螺旋体驱动组件I 705连接,以驱动螺旋体I 701转动,所述螺旋体II 702、螺旋体III 703、螺旋体IV 704具有与螺旋体I 701相同的结构。
对于螺旋体驱动组件I 705的设置,本实施例将螺旋体驱动组件I 705外置,即将螺旋体驱动组件I 705设置在螺旋体I 701的后侧,螺旋体驱动组件I 705具体可采用减速电机,减速电机的输出轴与所述中心轴701-1连接;如图17所示,本实施例的中心轴701-1贯穿螺旋体I 701,且中心轴701-1穿出螺旋体I 701的端部与环形机体1转动连接。
对于螺旋体驱动组件I 705的设置,如图20所示,螺旋体驱动组件I 705也可以内置在螺旋体I 701内,此时,螺旋体I 701为中空结构,螺旋体驱动组件I 705的内置为常规技术,本实施例不再对其内置结构进行赘述。
本实施例的掘进机的使用状态如图21所示,掘进机水平向前切割岩石300,具体如图22所示,切割刀盘2切割巷道外周形成环形槽100,并形成岩石柱200,所述掘进刀盘6切割岩石柱200的外缘,形成圆形空间,掘进刀盘6为切割刀盘2提供持续作业和跟进的空间,可以将对巷道的作业量降低到最小,从而节省机械动力同时提高切割掘进速度。
实施例10
中空回转型岩石巷道掘进机,如图23所示,与实施例9不同的是,本实施例的回转驱动组件302设有两组,两组所述回转驱动组件302并排设置,且均安装在环形机体1上,其中一组所述回转驱动组件302通过齿轮齿圈啮合带动切割刀盘2回转,另一组回转驱动组件302的驱动端通过齿轮传动组件与所述掘进刀盘6连接。
本实施例通过两组回转驱动组件302分别驱动切割刀盘2、掘进刀盘6转动,可对切割刀盘2和掘进刀盘6的转速等进行单独调控。
实施例11
中空回转型岩石巷道掘进机,如图24所示,与实施例9不同的是,本实施例的掘进刀盘6设有四组,四组所述掘进刀盘6绕环形机体1环形均匀分布,本实施例增加掘进刀盘6的个数,可以提高切割钻进速度。
实施例12
中空回转型岩石巷道掘进机,如图25-26所示,本实施例的回转动力机构3为电动马达,所述电动马达包括定子307和转子308。
在本实施例中,如图26所示,所述定子307包括:定子铁芯307-1和定子绕组307-2。
如图25-26所示,所述定子铁芯307-1为圆环形,且所述定子铁芯307-1的纵截面呈工字型,所述定 子绕组307-2由多个定子线圈组成,多个所述定子线圈绕所述定子铁芯307-1环形均匀分布。
在本实施例中,如图26-27所示,所述转子308包括:转子铁芯308-1和转子绕组308-2,所述转子铁芯308-1环绕设置在定子铁芯307-1的外侧,且与定子铁芯307-1的外端贴和。
所述转子铁芯308-1的前端(即图27中的顶端)与所述切割刀盘2固定,以带动切割刀盘2转动,转子铁芯308-1与切割刀盘2的固定可以是一体成型,也可以是分体固定,本实施例不做限制。
具体的,如图26所示,所述转子铁芯308-1同样为圆环形,如图27所示,所述转子铁芯308-1向后侧延伸至接近定子铁芯307-1的底部时,转子铁芯308-1水平向内形成延伸部,所述延伸部延伸至与所述定子铁芯307-1的外侧贴和,由此,定子铁芯307-1和转子铁芯308-1之间形成空腔309。
为了保证转子铁芯308-1的平稳转动,如图27所示,本实施例在定子铁芯307-1的前端与切割刀盘2的后端之间设有第三支撑轴承310,在转子铁芯308-1的后端与定子铁芯307-1的底部之间设有第四支撑轴承311,支撑轴承的设置,使得转子铁芯308-1始终维持在正确的径向位置。
另外,为了保证密封性,本实施例在定子铁芯307-1的前端与切割刀盘2的后端之间、第三支撑轴承310的内侧设有第一密封垫312,在转子铁芯308-1的后端与定子铁芯307-1的底部之间、第四支撑轴承311的外侧设有第二密封垫313,还在定子铁芯307-1的外端与转子铁芯308-1的贴和处设有第三密封垫314,在转子铁芯308-1的延伸部与定子铁芯307-1的贴和处设有第四密封垫315,上述密封件的设置可以防止杂物进入,进一步保证了空腔309内的密封性,使得各部件能够正常工作。
如图26所示,所述转子绕组308-2由多个转子线圈组成,多个所述转子线圈绕所述转子铁芯308-1环形均匀分布,所述转子绕组308-2与定子绕组307-2一一对应;如图27所示,所述转子绕组308-2和定子绕组307-2均位于所述空腔309内。
在本实施例中,所述空腔309内还设有导电电刷316,所述导电电刷316通过导线与电源连接,并将电力提供给转子绕组308-2,为了方便导线穿过,本实施例在所述定子铁芯307-1上开设有穿线孔307-3。
本实施例通过将转子铁芯308-1与切割刀盘2直接连接,节省了传动结构,提高了驱动效率,进一步提高了掘进速度。
实施例13
中空回转型岩石巷道掘进机,如图28所示,与实施例12不同的是,本实施例的转子铁芯308-1设置在定子铁芯307-1的前侧(即图28中的上方),具体的,本实施例的转子铁芯308-1为圆环盘状,且与切割刀盘2固定,所述定子铁芯307-1的纵截面呈凹型结构,且与转子铁芯308-1合围形成空腔309,所述空腔309内设有定子绕组307-2、转子绕组308-2以及导电电刷306。
为了保证转子铁芯308-1的平稳转动,本实施例在定子铁芯307-1的前端面和转子铁芯308-1的后端面之间设有第五支撑轴承317。
实施例14
中空回转型岩石巷道掘进机,如图29和30所示,与实施例12不同的是,本实施例的回转动力机构3为气动马达,所述气动马达包括:定子307、转子308以及叶片318。
在本实施例中,所述定子307为圆环形结构,且所述定子307的环形腔为中空结构,所述转子308同样为圆环形结构,且所述转子308容置在所述定子307的环形腔内;所述定子307的前侧开设有供转子308穿出的通槽,所述转子308穿出定子307的端部与切割刀盘2固定。
在本实施例中,如图29所示,所述叶片318设有多个,多个所述叶片318绕所述转子308环形均匀分布,每个所述叶片318均活动嵌设在转子308上,具体的,所述转子308的外周上开设有多个叶片伸缩槽308-3,叶片伸缩槽308-3从外向内延伸,所述叶片318活动连接在所述叶片伸缩槽308-3内,叶片318与叶片伸缩槽308-3的连接属于现有技术,本实施例不做具体限制。
为了供压缩气体进入,如图29和30所示,本实施例在所述定子307上还开设有多个进排气口307-4,压缩气体通过进排气口307-4进入定子307内部。
为了保证转子308的平稳转动,同样的,本实施例在定子307的前端与切割刀盘2之间、定子307与转子308的相接处均设有支撑轴承和密封垫。
实施例15
中空回转型岩石巷道掘进机,如图31和32所示,与实施例12-14不同的是,本实施例的轴向动力机构还包括滚轮8,所述滚轮8设有多个,多个所述滚轮8绕所述定子铁芯307-1的内腔壁环形均匀分布,所述滚轮8的轴向与切割刀盘2的轴向成角度设置,具体成小角度夹角。
当切割刀盘2转动时,定子铁芯307-1受到与切割刀盘2转动方向相反的扭矩,固定在定子铁芯307-1上的滚轮8在该扭矩的作用下,带动定子铁芯307-1少量转动,并因其与切割刀盘2的轴向存在夹角,因此会推动定子铁芯307-1向工作面移动,从而主动促使掘进机与岩石工作面紧密接触,并推动掘进机前进。滚轮8的设置一方面可以推动掘进机移动,另一方面还可以防止反向扭矩。
应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (20)

  1. 中空回转型岩石巷道掘进机,其特征在于,包括环形机体,所述环形机体上设有:
    切割刀盘,为环形结构,设置在环形机体的前侧,且与所述环形机体活动连接,所述切割刀盘上安装有切割刀具,用于对岩石巷道的外周进行回转切割以形成岩石圆柱;
    回转动力机构,用于驱动所述切割刀盘沿环形机体做回转运动;
    轴向动力机构,用于驱动环形机体在岩石巷道中前进、后退。
  2. 根据权利要求1所述的中空回转型岩石巷道掘进机,其特征在于,所述回转动力机构包括:
    齿圈,固定在所述切割刀盘上;
    回转驱动组件,安装在所述环形机体上;
    齿轮,安装在所述回转驱动组件的驱动端,且与所述齿圈啮合。
  3. 根据权利要求1所述的中空回转型岩石巷道掘进机,其特征在于,所述轴向动力机构为轮式轴向移动机构、螺旋体轴向移动机构、步进式轴向移动机构中的一种或多种的组合。
  4. 根据权利要求3所述的中空回转型岩石巷道掘进机,其特征在于,所述轮式轴向移动机构包括:
    移动轮,所述移动轮的轮面与岩石抵接;
    移动轮驱动组件,与所述移动轮连接,用于驱动移动轮转动以带动环形机体移动;
    压紧组件,用于为所述移动轮提供与岩石抵接的压力。
  5. 根据权利要求3所述的中空回转型岩石巷道掘进机,其特征在于,所述螺旋体轴向移动机构包括:
    螺旋体,所述螺旋体的外缘凸出环形机体设置,以使螺旋体的螺旋纹能够与岩石抵接并提供推力;
    螺旋体驱动组件,与所述螺旋体连接,用于驱动螺旋体转动。
  6. 根据权利要求3所述的中空回转型岩石巷道掘进机,其特征在于,所述步进式轴向移动机构包括:
    径向支撑单元,包括支撑端和支撑驱动组件,所述支撑端设有两个,所述支撑驱动组件用于驱动两个所述支撑端在切割刀盘切割出的环形槽的内外壁之间撑紧或脱离;
    轴向驱动单元,设置在所述环形机体上,用于驱动所述径向支撑单元沿掘进方向前进、后退。
  7. 根据权利要求6所述的中空回转型岩石巷道掘进机,其特征在于,所述支撑端为支撑板,所述支撑板上固定有支撑杆,所述支撑杆沿环形机体的径向分布,两个所述支撑端的支撑杆之间设有所述支撑驱动组件;
    所述轴向驱动单元设有两组,两组所述轴向驱动单元分别与对应的支撑杆连接。
  8. 根据权利要求1所述的中空回转型岩石巷道掘进机,其特征在于,所述切割刀盘包括:
    外环切割刀盘,所述外环切割刀盘的内侧壁上固定有内齿圈;
    内环切割刀盘,所述内环切割刀盘的外侧壁上固定有外齿圈;
    齿轮,分别与所述内齿圈、外齿圈啮合,用于在转动时带动所述外环切割刀盘和内环切割刀盘按相反的方向回转。
  9. 根据权利要求1所述的中空回转型岩石巷道掘进机,其特征在于,所述环形机体上还设有:
    掘进刀盘,至少设有两组,多组所述掘进刀盘均活动连接在环形机体的前侧,且多组所述掘进刀盘绕所述环形机体环形均匀分布,用于对所述岩石圆柱的外缘进行回转掘进。
  10. 根据权利要求9所述的中空回转型岩石巷道掘进机,其特征在于,所述回转动力机构包括:
    齿圈,固定在所述切割刀盘的内壁上;
    回转驱动组件,安装在所述环形机体上;
    齿轮,安装在所述回转驱动组件的驱动端,且与所述齿圈啮合;
    所述回转驱动组件的驱动端还与所述掘进刀盘连接,以驱动掘进刀盘转动。
  11. 根据权利要求9所述的中空回转型岩石巷道掘进机,其特征在于,所述回转动力机构包括:
    齿圈,固定在所述切割刀盘的内壁上;
    齿轮,与所述齿圈啮合;
    回转驱动组件,设有两组,两组所述回转驱动组件均安装在环形机体上,且其中一组所述回转驱动组件的驱动端安装有所述齿轮,另一组所述回转驱动组件的驱动端与所述掘进刀盘连接。
  12. 根据权利要求10或11所述的中空回转型岩石巷道掘进机,其特征在于,所述回转动力组件的驱动端通过行星轮传动机构或齿轮传动机构与所述掘进刀盘连接。
  13. 根据权利要求9所述的中空回转型岩石巷道掘进机,其特征在于,所述切割刀盘的环形宽度小于掘进刀盘的宽度。
  14. 根据权利要求1所述的中空回转型岩石巷道掘进机,其特征在于,所述回转动力机构为电动马达或气动马达中的一种。
  15. 根据权利要求14所述的中空回转型岩石巷道掘进机,其特征在于,所述电动马达包括:
    定子,包括圆环形的定子铁芯和绕设在所述定子铁芯上的定子绕组;
    转子,包括圆环形的转子铁芯和绕设在所述转子铁芯上的转子绕组,所述转子铁芯与所述切割刀盘固定。
  16. 根据权利要求15所述的中空回转型岩石巷道掘进机,其特征在于,所述定子绕组由多个定子线圈组成,多个所述定子线圈绕所述定子铁芯环形均匀分布;所述转子绕组由多个转子线圈组成,多个所述转子线圈绕所述转子铁芯环形均匀分布。
  17. 根据权利要求15所述的中空回转型岩石巷道掘进机,其特征在于,所述转子铁芯设置在所述定子铁芯的前侧、或环绕设置在定子铁芯的外侧,所述转子铁芯和定子铁芯之间形成空腔,所述转子绕组和定子绕组均设置在所述空腔内;
    所述空腔内还设有导电电刷,所述导电电刷与电源通过导线连接,并将电力提供给转子绕组。
  18. 根据权利要求14所述的中空回转型岩石巷道掘进机,其特征在于,所述气动马达包括:
    定子,为圆环形结构,且所述定子的环形腔为中空结构;
    转子,为圆环形结构,且容置在所述定子的环形腔内,所述转子与掘进刀盘固定;
    叶片,设有多个,多个所述叶片绕所述转子环形分布,且所述叶片活动嵌设在转子上。
  19. 根据权利要求18所述的中空回转型岩石巷道掘进机,其特征在于,所述气动马达的转子的外周环形分布有多个叶片伸缩槽,所述叶片伸缩槽从外至内延伸,所述叶片伸缩槽内活动连接有所述叶片。
  20. 根据权利要求15或18所述的中空回转型岩石巷道掘进机,其特征在于,所述轴向动力机构包括:
    滚轮,设有多个,多个所述滚轮绕所述定子的内腔壁环形均匀分布,所述滚轮的轴向与切割刀盘的轴向成角度设置。
PCT/CN2022/076035 2021-04-26 2022-02-11 中空回转型岩石巷道掘进机 WO2022227787A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202120870479.X 2021-04-26
CN202120870479.XU CN214697855U (zh) 2021-04-26 2021-04-26 中空回转环形岩石巷道掘进机
CN202121910505.3 2021-08-16
CN202121910505.3U CN215860189U (zh) 2021-08-16 2021-08-16 中空回转型岩石巷道切割掘进装置
CN202121966047.5U CN215860190U (zh) 2021-08-20 2021-08-20 掘进刀盘驱动机构及掘进机
CN202121966047.5 2021-08-20

Publications (1)

Publication Number Publication Date
WO2022227787A1 true WO2022227787A1 (zh) 2022-11-03

Family

ID=83847732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076035 WO2022227787A1 (zh) 2021-04-26 2022-02-11 中空回转型岩石巷道掘进机

Country Status (1)

Country Link
WO (1) WO2022227787A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102086767A (zh) * 2009-12-07 2011-06-08 同济大学 一种泥水平衡式环形盾构机
US20130076100A1 (en) * 2010-05-26 2013-03-28 Kabuki Construction Co., Ltd. Tunnel excavation apparatus and tunnel excavation method
CN105986824A (zh) * 2015-02-05 2016-10-05 杨柳 环断面硬岩掘进机
WO2020104161A1 (en) * 2018-11-23 2020-05-28 Sandvik Mining And Construction Tools Ab Disc cutter for tunnel boring machines and a method of manufacture thereof
CN112682057A (zh) * 2021-01-11 2021-04-20 湖南师范大学 一种适用于极硬岩地层下的掘进机刀盘
CN112682056A (zh) * 2021-01-11 2021-04-20 湖南师范大学 一种用于极硬岩地层下的tbm刀盘
CN113062749A (zh) * 2021-04-26 2021-07-02 邓义坡 中空回转环形岩石巷道掘进机
CN214697855U (zh) * 2021-04-26 2021-11-12 邓义坡 中空回转环形岩石巷道掘进机

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102086767A (zh) * 2009-12-07 2011-06-08 同济大学 一种泥水平衡式环形盾构机
US20130076100A1 (en) * 2010-05-26 2013-03-28 Kabuki Construction Co., Ltd. Tunnel excavation apparatus and tunnel excavation method
CN103025999A (zh) * 2010-05-26 2013-04-03 株木建设株式会社 隧道挖掘装置和隧道挖掘方法
CN105986824A (zh) * 2015-02-05 2016-10-05 杨柳 环断面硬岩掘进机
WO2020104161A1 (en) * 2018-11-23 2020-05-28 Sandvik Mining And Construction Tools Ab Disc cutter for tunnel boring machines and a method of manufacture thereof
CN112682057A (zh) * 2021-01-11 2021-04-20 湖南师范大学 一种适用于极硬岩地层下的掘进机刀盘
CN112682056A (zh) * 2021-01-11 2021-04-20 湖南师范大学 一种用于极硬岩地层下的tbm刀盘
CN113062749A (zh) * 2021-04-26 2021-07-02 邓义坡 中空回转环形岩石巷道掘进机
CN214697855U (zh) * 2021-04-26 2021-11-12 邓义坡 中空回转环形岩石巷道掘进机

Similar Documents

Publication Publication Date Title
WO2020082747A1 (zh) 并联机器人支撑、可开挖任意断面隧道的柔臂掘进机
CN111058857B (zh) 一种钻爆辅助破岩的复合全断面隧道掘进机刀盘系统
CN212563242U (zh) 一种蠕动式盾构机用行进装置
CN113062749A (zh) 中空回转环形岩石巷道掘进机
CN103703215B (zh) 挖掘装置
CN102619529B (zh) 螺旋牵拉与推进联合自行进掘进装置
WO2022227787A1 (zh) 中空回转型岩石巷道掘进机
KR101276216B1 (ko) 지반 굴착장치의 비트조립체
CN214697855U (zh) 中空回转环形岩石巷道掘进机
CN219061646U (zh) 一种盾构机的复合刀盘及盾构机
CN217841649U (zh) 软质岩土掘进机
CN116163756A (zh) 一种联络通道用复合式刀盘
CN110725692A (zh) 一种盾构机伸缩式中心切削刀装置
CN212774303U (zh) 一种钻裂器
CN215860190U (zh) 掘进刀盘驱动机构及掘进机
CN116517568B (zh) 全断面硬岩隧洞掘进机用可变径装置及掘进机和使用方法
CN113027473A (zh) 一种多圈圆环组装式盾构刀盘及工作方法
US2707626A (en) Adjustable boring head for continuous mining machine
JPH11336472A (ja) 地中接合式トンネル掘削機及び掘削方法
JPH02210189A (ja) シールド機
CN115773121B (zh) 隧道盾构掘进设备及其使用方法
CN214697858U (zh) 整体回转旋进式岩石巷道切割机
CN113482520B (zh) 一种盾构隧道联络通道的钻进设备
CN216974841U (zh) 一种用于机械法联络通道施工的盾构掘进机模型
CN113622935B (zh) 一种联络通道掘进设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22794267

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22794267

Country of ref document: EP

Kind code of ref document: A1