WO2022227758A1 - 一种全息透镜的拼接加工方法及装置 - Google Patents

一种全息透镜的拼接加工方法及装置 Download PDF

Info

Publication number
WO2022227758A1
WO2022227758A1 PCT/CN2022/074903 CN2022074903W WO2022227758A1 WO 2022227758 A1 WO2022227758 A1 WO 2022227758A1 CN 2022074903 W CN2022074903 W CN 2022074903W WO 2022227758 A1 WO2022227758 A1 WO 2022227758A1
Authority
WO
WIPO (PCT)
Prior art keywords
holographic lens
grating
sub
lens substrate
fringes
Prior art date
Application number
PCT/CN2022/074903
Other languages
English (en)
French (fr)
Inventor
邹文龙
华露
李朝明
吴建宏
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2022227758A1 publication Critical patent/WO2022227758A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/44Grating systems; Zone plate systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses

Definitions

  • the present application relates to the technical field of information optics, in particular to a method and device for splicing and processing a holographic lens.
  • Geosynchronous orbit satellites have high temporal resolution and continuous detection capabilities, and have become an important development direction in the field of remote sensing satellites.
  • Large aperture telescope imaging systems can effectively improve the spatial resolution of satellites in geosynchronous orbit.
  • the increase in the diameter of the mirror in the traditional mirror imaging system will lead to an increase in the mass and volume of the system, which exceeds the limit of the vehicle.
  • the splicing technology of multiple small-aperture mirrors requires precise control of the common phase between the sub-mirrors, which requires high performance of the wavefront sensor.
  • diffraction imaging technology [Zhang Jian, Li Mengjuan, Yin Ganghua, et al.
  • Changchun Chinese Academy of Sciences, 2017] designed a thin film diffraction telescope system and produced a 320mm diameter four-step polyimide thin film primary mirror , measured the support structure and imaging performance of thin-film diffractive mirrors; Zhang Jian et al. [Zhang Jian, Li Mengjuan, Yin Ganghua, et al. Large-aperture thin-film Fresnel diffractive element for space telescopes [J]. Optical Precision Engineering, 2016, 24(6): 1289-1296] A two-step Fresnel zone plate with a diameter of 400mm was fabricated on a glass substrate by ultraviolet lithography and ion beam etching, and the polyamide was completed by a replication process.
  • the measured diffraction efficiency is 34%.
  • the fabrication methods of the primary diffraction mirror are UV lithography or laser direct writing.
  • the aperture of the element is limited by the aperture of the equipment. For areas with small line widths, both UV lithography and laser direct writing will produce manufacturing errors. .
  • Liao Zhou et al. Liao Zhou, Qiu Qi, Zhang Yudong. Numerical simulation of block-spliced telescopes [J]. Acta Optics Sinica, 2014, 34(7): 0722002] established a theoretical model of a spliced telescope imaging system.
  • the purpose of the present application is to provide a splicing processing method and device for a holographic lens, the manufacturing method is simple and controllable, and meets the requirements of high spatial resolution of a large-diameter telephoto system.
  • a method for splicing and processing a holographic lens characterized in that the method comprises:
  • the step S1 includes: the laser beam emitted from the laser is divided into transmitted light and reflected light by a beam splitter prism,
  • the transmitted light enters the first spatial filter and after filtering, the transmitted light beam becomes the first spherical wave of emission, and the transmitted light after passing through the half mirror is projected on the holographic lens substrate to be exposed;
  • the reflected light After the reflected light is deflected by the first reflecting mirror and the second reflecting mirror, it is incident on the second spatial filter. After filtering, the reflected light beam becomes the second spherical wave emitted, which is incident on the half mirror, and is reflected and projected. onto the holographic lens substrate to be exposed,
  • the first spherical wave and the second spherical wave interfere on the holographic lens to form interference fringes of concentric rings.
  • the circular sub-grating diaphragm is placed in front of the holographic lens substrate, and the holographic lens substrate is recorded separately.
  • the interference fringes of the first spherical wave and the second spherical wave are developed to obtain a circular sub-grating.
  • first and second for example: the first spherical wave and the second spherical wave are only for the convenience of expression to distinguish the numbers of multiple components of the same type, not for the structure. , and the specific limitation of the shape should not be construed as a limitation on the sequence.
  • this step S2 includes:
  • the real-time interference light fields of the first spherical wave and the second spherical wave are superimposed on the central circular sub-grating of the prepared holographic lens substrate to obtain Moire fringes.
  • the moire fringes after obtaining the moire fringes, it also includes,
  • the parallel plate Insert the parallel plate into the optical path, and move the parallel plate to half of the beam aperture, the first spherical wave is deflected by the parallel plate, and an additional optical path difference is introduced, and the moire fringes change from zero fringe state to Moiré fringes with concentric rings and set them as standard fringes.
  • step S4 exposing the first sub-grating includes:
  • the first sub-grating after exposing the first sub-grating, it further includes:
  • the holographic lens substrate Rotate the holographic lens substrate based on the adjustment device, so that the holographic lens substrate rotates 90° clockwise around the optical axis, and fine-tune the holographic lens substrate adjustment device so that the phase of the fringes collected in real time is consistent with the standard fringes, and the first sub-grating on the edge of the holographic lens substrate is opened.
  • the diaphragm is used to collect fringes in real time, and compare the real-time fringes with the standard fringes.
  • the piezoelectric ceramics of the first reflector By adjusting the piezoelectric ceramics of the first reflector, the phases of the real-time collected fringes and the standard fringes are consistent until the second sub-grating on the edge of the holographic lens substrate is exposed.
  • the second sub-grating diaphragm at the edge of the holographic lens substrate is closed, and the third sub-grating and the fourth sub-grating at the edge of the holographic lens substrate are sequentially exposed in sequence.
  • the embodiment of the present application provides a splicing and processing device for a holographic lens, which is characterized by comprising:
  • the holographic lens exposure splicing control device includes:
  • the first attitude console of the first spatial filter the second attitude console of the second spatial filter, piezoelectric ceramic, parallel plate and moire fringe monitoring module,
  • the first attitude console and the second attitude console are used to adjust the spatial position of the first spherical wave and the second spherical wave
  • the piezoelectric ceramic is connected to the first reflector, and is used to control the micro-displacement of the first reflector to change the optical path of the reflected light in real time,
  • the parallel plate is used to deflect the optical path, so that the positions of the first spherical wave and the second spherical wave are slightly displaced, and the formed optical field interference fringes are superimposed with the prepared holographic lens, thereby forming moire fringes.
  • the holographic lens substrate adjusting device includes:
  • the holographic lens substrate has a five-dimensional adjustment frame, a rotating frame and a diaphragm, and the diaphragm is placed in front of the holographic lens substrate.
  • the five-dimensional adjustment frame of the holographic lens substrate is connected to the holographic lens substrate to adjust the spatial position of the holographic lens substrate,
  • the rotating frame is configured to be rotatable around the optical axis to realize multiple splicing exposures; the diaphragm is used to block the areas on the holographic lens substrate that do not need exposure, and sequentially expose the areas to be exposed.
  • the circular sub-grating aperture and the first sub-grating aperture at the edge of the holographic lens there are five types of apertures, the circular sub-grating aperture and the first sub-grating aperture at the edge of the holographic lens, the second sub-grating aperture at the edge of the holographic lens, the third sub-grating aperture at the edge of the holographic lens, and the fourth sub-grating aperture at the edge of the holographic lens
  • the grating diaphragm, the circular sub-grating diaphragm is used to shield light when making the circular sub-grating
  • the sub-grating diaphragm at the edge of the holographic lens is used to shield the light when the first to fourth sub-gratings are produced at the edge of the holographic lens.
  • the Moiré fringe monitoring module includes a camera, an image acquisition and display module, the camera is connected to an image acquisition and display module, and the image acquisition and display module displays the camera in real time. An image of the moiré pattern taken.
  • a circular sub-grating is prepared in the center of the holographic lens substrate.
  • the circular sub-grating is a sub-region of the holographic lens.
  • the relative position of the holographic lens substrate and the real-time interference light field is adjusted so that the circular sub-grating is The grating and the real-time interference light field are partially overlapped to generate Moiré fringes.
  • the holographic lens substrate is adjusted to make the moiré fringes zero, and the remaining sub-gratings at the edge of the holographic lens substrate are sequentially exposed and processed to obtain a large-diameter holographic lens.
  • the splicing processing method of the holographic lens proposed in the embodiment of the present application is particularly suitable for processing large-diameter gratings of more than 400 mm, and the splicing precision is high.
  • the curved grating lines are spliced, and the manufacturing process is simple and controllable, and it can be mounted on satellites in geosynchronous orbit to meet the high spatial resolution requirements of large-diameter telescopic systems.
  • FIG. 1 is a light path diagram of exposure and splicing of a holographic lens according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of splicing a holographic lens according to an embodiment of the present application.
  • FIG. 3 is a Moiré fringe formed by the superposition of the circular sub-grating and the real-time interference light field according to the embodiment of the present application.
  • FIG. 4 is a measurement optical path of a holographic lens interferometer according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a measurement result of a holographic lens according to an embodiment of the present application.
  • 1-beam splitting prism 2-first reflector, 3-piezoelectric ceramics, 4-second reflector, 5-first spatial filter, 6-second spatial filter, 7-semi-transparent mirror , 8- the attitude console of the first spatial filter, 9- the attitude console of the second spatial filter, 10- parallel plate, 11- holographic lens substrate, 12- holographic lens substrate attitude adjustment system, 13- moire fringe monitoring system .
  • the present application proposes a splicing and processing method for a holographic lens, the method comprising:
  • Exposure After exposing the first sub-grating on the edge of the holographic lens substrate, rotate the preset angle to expose and sequentially splicing other sub-gratings on the edge of the holographic lens substrate to obtain a large-diameter holographic lens.
  • four sub-gratings are arranged on the edge of the holographic lens substrate, which is rotated by 90°.
  • 6 sub-gratings are arranged on the edge of the holographic lens substrate, which is rotated by 60°, so as to sequentially splicing other sub-gratings on the edge of the holographic lens substrate. grating.
  • a parallel plate is used to deflect the optical path, and the beam aperture is enlarged due to the beam deflection, and the curved grating lines are sequentially spliced into each edge sub-grating (such as the first to fourth sub-gratings) by rotating exposure to obtain Large aperture holographic lens.
  • edge sub-grating such as the first to fourth sub-gratings
  • four sub-gratings are arranged on the edge of the hologram lens substrate.
  • the number of edge-configured sub-gratings is not limited, so long as the curved grating lines can be spliced through the rotational exposure of the holographic lens substrate.
  • the method of the circular sub-grating is described with reference to FIG. 1 and FIG. 2 , firstly, the circular sub-grating is fabricated in the center of the holographic lens substrate. According to FIG. 1, the laser beam emitted from the laser is divided into transmitted light and reflected light by the beam splitter prism 1,
  • the transmitted light enters the first spatial filter 5, and after filtering, the transmitted light beam becomes the first spherical wave emitted, and after passing through the half mirror 7, the transmitted light is projected onto the holographic lens substrate 11 to be exposed;
  • the reflected light After the reflected light is turned by the first reflecting mirror 2 and the second reflecting mirror 4, it is incident on the second spatial filter 6. After filtering, the reflected light beam becomes the second spherical wave emitted, which is incident on the half mirror 7. , the reflection is projected onto the holographic lens substrate 11 to be exposed.
  • the first spherical wave and the second spherical wave interfere on the holographic lens 11 to form interference fringes of concentric rings.
  • the center of the interference fringes is coincident with the center of the holographic lens substrate.
  • the circular sub-grating diaphragm is placed in front of the holographic lens substrate, the interference fringes of the first and second spherical waves are recorded on the holographic lens substrate, the circular sub-grating is obtained by developing, and the holographic lens substrate is reset (restored to its original position), Reset the circular sub-grating diaphragm.
  • exposing a circular sub-grating at the geometric center of the grating substrate further includes resetting after development.
  • the method further includes: adjusting the relative position of the grating substrate and the real-time interference light field, so that the circular sub-grating and the real-time interference light field are adjusted.
  • the Moiré fringe is zero stripe state (that is, no black circular stripe state), at this time, insert the parallel plate 10 into the optical path, move the parallel plate 10 to the half position of the beam aperture, and the first spherical wave is deflected by the parallel plate 10 and introduced into the optical path.
  • the above-mentioned moiré fringes change from zero fringe state to moiré fringes of concentric rings, as shown in Figure 3, the moiré fringes at this time are recorded in real time with a camera and set as standard fringes.
  • the step of beam deflecting and expanding the beam aperture also includes: fine-tuning the first mirror 2, so that the reflected beam is deflected toward the edge of the holographic lens substrate, and by adjusting the first spatial filter 5 and the second spatial filter
  • the three-dimensional adjustment frame of 6 makes the moire fringes of the circular sub-grating in the center of the holographic lens substrate return to the above standard fringes.
  • Exposure splicing is performed based on the deflection of the beam and the rotation of the grating substrate so that the moire fringes of the circular sub-grating and the real-time interference light field are consistent with the previous reference fringes.
  • the above-mentioned first sub-grating at the edge of the holographic lens substrate includes:
  • the second sub-grating diaphragm on the edge of the holographic lens substrate Open the second sub-grating diaphragm on the edge of the holographic lens substrate, collect the moire fringes in FIG. 3 in real time, compare the real-time fringes with the standard fringes, and adjust the piezoelectric ceramics 3 of the first reflector to make the real-time collected fringes match the standard fringes.
  • the phases of the fringes are consistent until the exposure of the second sub-grating at the edge of the holographic lens substrate is completed, and the aperture of the second sub-grating at the edge of the holographic lens substrate is closed.
  • the third and fourth sub-gratings at the edge of the holographic lens substrate are exposed sequentially.
  • the central circular sub-grating of the holographic lens substrate is sealed with a sealing ring, and the edge sub-gratings are developed.
  • the holographic lens substrate After developing, put the holographic lens substrate into the measuring optical path of the interferometer.
  • the measuring optical path is shown in Figure 4.
  • the interferometer emits a convergent spherical wave, and the convergence point is just at the focal point of the holographic lens.
  • the spherical wave is incident on the holographic lens substrate, and its -1st-order diffracted light becomes parallel light, and the parallel light returns to the interferometer along the original optical path through the auxiliary mirror.
  • the measurement results are shown in Figure 5, the splicing error between each seam (the seam is the black line in the figure, the splicing of the first sub-grating - the fourth sub-grating and the circular sub-grating in the center of the substrate can refer to Figure 2) All are better than 0.1 ⁇ ( ⁇ is the wavelength).
  • the embodiment of the present application provides a holographic lens splicing and processing device of the above method, and the device includes:
  • a holographic lens exposure recording device a holographic lens exposure splicing control device and a holographic lens substrate adjustment device.
  • FIG. 1 the holographic lens exposure splicing optical path diagram of the embodiment of the application is shown
  • the laser beam emitted from the laser is divided into transmitted light and reflected light by the beam splitter prism 1,
  • the transmitted light enters the first spatial filter 5, and after filtering, the transmitted light beam becomes the first spherical wave emitted, and after passing through the half mirror 7, the transmitted light is projected onto the holographic lens substrate 11 to be exposed;
  • the reflected light After the reflected light is turned by the first reflecting mirror 2 and the second reflecting mirror 4, it is incident on the second spatial filter 6. After filtering, the reflected light beam becomes the second spherical wave emitted, which is incident on the half mirror 7. , the reflection is projected onto the holographic lens substrate 11 to be exposed.
  • the first spherical wave and the second spherical wave interfere on the holographic lens 11 to form interference fringes of concentric rings.
  • the holographic lens exposure splicing control device includes: an attitude console 8 of the first spatial filter 5 , an attitude console 9 of the second spatial filter 6 , a piezoelectric ceramic 3 , a parallel plate 10 and a moire fringe monitoring system 13 .
  • the attitude console 8 of the first spatial filter 5 and the attitude console 9 of the second spatial filter 6 are used to adjust the spatial positions of the first spherical wave and the second spherical wave.
  • Piezoelectric ceramics are used to control the micro-displacement of the first reflecting mirror 2 to change the optical path of the reflected light in real time.
  • the parallel plate 10 deflects the optical path, so that the positions of the first spherical wave and the second spherical wave are slightly displaced, and the formed optical field interference fringes are superimposed with the prepared holographic lens to form moire fringes.
  • the moire fringe monitoring system 13 includes a camera, an image acquisition and display system, and displays the image of the moiré fringes in real time.
  • the holographic lens substrate adjusting device mainly includes: a five-dimensional adjusting frame of the holographic lens substrate, a rotating frame and a diaphragm.
  • the five-dimensional adjustment frame of the holographic lens substrate is used to adjust the spatial position of the holographic lens substrate, and the rotating frame can rotate around the optical axis to realize multiple splicing exposures.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Holo Graphy (AREA)

Abstract

一种全息透镜的拼接加工方法及装置。拼接加工方法包括:在全息透镜基板(11)的几何中心曝光一个圆形的子光栅;调整全息透镜基板(11)与实时干涉光场的相对位置,使得圆形子光栅与实时干涉光场的莫尔条纹为零条纹状态,插入平行平板(10)以将光束偏折来扩大光束口径,获得参考条纹,并基于记录装置记录;曝光全息透镜基板(11)边缘第一子光栅,曝光后、旋转预设角度曝光并依次拼接全息透镜基板(11)边缘的其它子光栅,得到大口径的全息透镜。这种方法通过光束的偏折扩大光束口径,通过曝光拼接将弯曲的光栅线条进行拼接以制作大口径的全息透镜,满足大口径望远系统的高空间分辨率的要求。

Description

一种全息透镜的拼接加工方法及装置 技术领域
本申请涉及一种信息光学技术领域,具体的涉及一种全息透镜的拼接加工方法及装置。
背景技术
随着社会经济与国家安全战略领域的发展,对空间遥感的需求迅速增加。地球同步轨道卫星具有高时间分辨率和持续探测能力,已成为遥感卫星领域重要的发展方向。大口径的望远镜成像系统可以有效提高地球同步轨道卫星的空间分辨率。传统的反射镜成像系统中反射镜口径增大会导致系统的质量体积增大,超出运载器的限制。多块小口径反射镜拼接技术需要精确控制子镜之间的共相,对波前传感器性能要求高。而衍射成像技术[张健,栗孟娟,阴刚华,等.用于太空望远镜的大口径薄膜菲涅尔衍射元件[J].光学精密工程,2016,24(6):1289-1296]中衍射主镜具有材料选择广,口径容易做大,质量小,面型公差宽松等优势,在空间望远镜成像领域有很大的应用前景。国内王若秋等人[王若秋.基于衍射成像系统的薄膜元件关键技术研究[D].长春:中国科学院,2017]对薄膜衍射望远镜系统进行了设计,制作了口径320mm四台阶聚酰亚胺薄膜主镜,对薄膜衍射镜的支撑结构以及成像性能进行了测量;张健等人[张健,栗孟娟,阴刚华,等.用于太空望远镜的大口径薄膜菲涅尔衍射元件[J].光学精密工程,2016,24(6):1289-1296]通过紫外光刻、离子束刻蚀在玻璃基底上制作了口径为400mm的两台阶结构菲涅尔波带片,并通过复制工艺完成了聚酰亚胺基底薄膜波带片的制作,测量的衍射效率为34%。上述研究中衍射主镜的制作方法都是采用紫外光刻或激光直写,元件的口径受限于设备的口径大小,对线宽较小的 区域,紫外光刻与激光直写都会产生制作误差。廖周等人[廖周,邱琪,张雨东.分块拼接望远镜的数值仿真[J].光学学报,2014,34(7):0722002]建立了拼接式望远镜成像系统的理论模型。采用机械式拼接是实现10m及更大口径望远镜主镜的有效途径,但是该方式下拼接涉及到空间六个维度的拼接,控制系统十分复杂,而且需要实时监测和调整,不宜在太空应用。
为此需要一种的改进现有的大口径的薄膜透镜。
发明内容
为克服上述缺陷点,本申请的目的在于:提供一种全息透镜的拼接加工方法及装置,该制作方法简单可控,满足大口径望远系统的高空间分辨率的要求。
为实现上述目的,本申请采用如下的技术方案:
一种全息透镜的拼接加工方法,其特征在于,所述方法包括:
S1.在全息透镜基板的几何中心曝光一个圆形的子光栅;
S2.调整全息透镜基板与实时干涉光场的相对位置,使得圆形子光栅与实时干涉光场的莫尔条纹为零条纹状态,
S3.插入平行平板以将光束偏折来扩大光束口径,获得参考条纹,并基于记录装置记录;
S4.曝光全息透镜基板边缘第一子光栅曝光后、旋转预设角度曝光并依次拼接全息透镜基板边缘的其它子光栅,得到大口径的全息透镜。该方法通过光束的偏折扩大光束口径,通过曝光拼接将弯曲的光栅线条进行拼接以制作大口径的全息透镜,满足大口径望远系统的高空间分辨率的要求。
在一较佳的实施方式中,该步骤S1中包括:从激光器发出的激光束通过分光棱镜分成透射光和反射光,
所述透射光进入第一空间滤波器经滤波后,透射光束变成发射的第一球面 波,经过半透半反镜后的透射光投射到待曝光的全息透镜基板上;
反射光经第一反射镜和第二反射镜的转折后,入射到第二空间滤波器,经过滤波后反射光束变成发射的第二球面波,入射到半透半反镜上,并反射投射到待曝光的全息透镜基板上,
所述第一球面波和所述第二球面波在所述全息透镜上发生干涉,形成同心圆环的干涉条纹。
在一较佳的实施方式中,通过调节全息透镜基板调节装置,使得干涉条纹的圆心与全息透镜基板的中心重合,将圆形子光栅光阑放在全息透镜基板前,全息透镜基板上分别记录下第一球面波及第二球面波的干涉条纹,显影获得圆形子光栅。
值得说明的是上述“第一”、“第二”例如:第一球面波和所述第二球面波仅是为方便表述而对多个同种部件做出的编号加以区分,并不是对结构、形状的具体限定,也不得理解为是对顺序的限定。
在一较佳的实施方式中,该步骤S2中包括:
微调全息透镜基板的调节装置,第一球面波和第二球面波的实时干涉光场与上述已制备好的全息透镜基板中心圆形子光栅叠加,得到莫尔条纹。
在一较佳的实施方式中,在得到莫尔条纹之后还包括,
将平行平板插入光路,且所述平行平板移动至光束口径的一半位置,所述第一球面波经过平行平板的偏折,引入额外的光程差,所述莫尔条纹由零条纹状态变成同心圆环的莫尔条纹,并将其设定为标准条纹。
在一较佳的实施方式中,该步骤S4中,曝光第一子光栅曝光包括:
打开全息透镜基板边缘第一子光栅光阑,实时采集条纹,将实时采集的条纹与标准条纹对比,并通过调节第一反射镜的压电陶瓷,使得实时采集的条纹 与标准条纹的相位一致,直至全息透镜基板边缘第一子光栅完成曝光。
在一较佳的实施方式中,该曝光第一子光栅之后还包括,
基于调节装置旋转全息透镜基板,使得全息透镜基板绕光轴顺时针旋转90°,并微调全息透镜基板调节装置,使得实时采集的条纹与标准条纹的相位一致,打开全息透镜基板边缘第一子光栅光阑,实时采集条纹,将实时条纹与标准条纹对比,通过调节第一反射镜的压电陶瓷,使得实时采集的条纹与标准条纹的相位一致,直至全息透镜基板边缘第二子光栅完成曝光,关闭全息透镜基板边缘第二子光栅光阑,并依次方式依次曝光全息透镜基板边缘第三子光栅、第四子光栅。
本申请实施例提供一种全息透镜的拼接加工装置,其特征在于,包括:
全息透镜曝光拼接控制装置和全息透镜基板调节装置,
所述全息透镜曝光拼接控制装置,包括:
第一空间滤波器的第一姿态控制台,第二空间滤波器的第二姿态控制台,压电陶瓷,平行平板和莫尔条纹监视模块,
所述第一姿态控制台和第二姿态控制台用来调整第一球面波和第二球面波的空间位置,
所述压电陶瓷连接第一反射镜,用于控制第一反射镜的微位移,以实时改变反射光的光程,
所述平行平板用以光路的偏折,使得第一球面波和第二球面波的位置发生微小的位移,形成的光场干涉条纹与已制备好的全息透镜叠加,进而形成莫尔条纹。
在一较佳的实施方式中,该全息透镜基板调节装置包括:
全息透镜基板五维调节架、旋转架和光阑,所述光阑置于全息透镜基板前,
所述全息透镜基板五维调节架连接全息透镜基板,用以调整全息透镜基板 的空间位置,
所述旋转架配置成可绕光轴旋转,以实现多次拼接曝光;光阑用于遮挡全息透镜基板上不需要曝光的区域,并依次露出待曝光的区域。
光阑配置成五种,圆形子光栅光阑和全息透镜边缘第一子光栅光阑,全息透镜边缘第二子光栅光阑,全息透镜边缘第三子光栅光阑,全息透镜边缘第四子光栅光阑,圆形子光栅光阑用于制作圆形子光栅时遮光,全息透镜边缘子光栅光阑用于制作全息透镜边缘第一至第四子光栅时遮光。
在一较佳的实施方式中,该莫尔条纹监视模块包括,摄像机、图像采集和显示模组,所述摄像机连接图像采集和显示模组,所述图像采集和显示模组实时显示所述摄像机拍摄的莫尔条纹的图像。
有益效果
本技术方案中使用拼接的思想,先在全息透镜基板中心制备圆形子光栅,该圆形子光栅是全息透镜的子区域,调整全息透镜基板与实时干涉光场的相对位置,使得圆形子光栅与实时干涉光场部分重叠产生莫尔条纹,调整全息透镜基板使得莫尔条纹为零条纹状态,依次曝光加工全息透镜基板边缘其余子光栅,从而得到大口径的全息透镜。与现有技术相比,本申请实施方式中提出的全息透镜的拼接加工方法,特别适合加工400mm以上的大口径光栅,并且拼接精度高,其通过光束的偏折扩大光束口径,然后通过曝光拼接将弯曲的光栅线条的进行拼接,其制作工艺简单可控,其可搭载于地球同步轨道卫星等满足大口径望远系统的高空间分辨率的要求。
附图说明
图1为本申请实施例的全息透镜曝光拼接光路图。
图2为本申请实施例的全息透镜拼接示意图。
图3为本申请实施例的圆形子光栅与实时干涉光场叠加形成的莫尔条纹。
图4为本申请实施例的全息透镜干涉仪测量光路。
图5为本申请实施例的全息透镜测量结果示意图。
其中,1-分光棱镜,2-第一反射镜,3-压电陶瓷,4-第二反射镜,5-第一空间滤波器,6-第二空间滤波器,7-半透半反镜,8-第一空间滤波器姿态控制台,9-第二空间滤波器姿态控制台,10-平行平板,11-全息透镜基板,12-全息透镜基板姿态调节系统,13-莫尔条纹监视系统。
具体实施方式
以下结合具体实施例对上述方案做进一步说明。应理解,这些实施例是用于说明本申请而不限于限制本申请的范围。实施例中采用的实施条件可以如具体厂家的条件做进一步调整,未注明的实施条件通常为常规实验中的条件。
本申请提出一种全息透镜的拼接加工方法,该方法包括:
在全息透镜基板的几何中心曝光一个圆形的子光栅;
基于插入的平行平板以获得参考条纹,并基于记录装置记录;将光束偏折来扩大光束口径;
曝光全息透镜基板边缘第一子光栅曝光后、旋转预设角度曝光并依次拼接全息透镜基板边缘的其它子光栅,得到大口径的全息透镜。本实施方式中,全息透镜基板边缘配置4个子光栅,这样旋转90°,在其他的实施方式中,全息透镜基板边缘配置6个子光栅,这样旋转60°,以依次拼接全息透镜基板边缘的其它子光栅。该实施方中,利用平行平板使得光路的偏折,因光束偏折来扩大光束口径,并通过旋转曝光将弯曲的光栅线条依次拼接各边缘子光栅(如第一至第四子光栅),得到大口径的全息透镜。本实施方式中,全息透镜基板边 缘配置4个子光栅(第一至第四子光栅)。在其他的实施方式中,边缘配置子光栅的数量不作限制,以实现通过全息透镜基板的旋转曝光将弯曲的光栅线条拼接即可。
在一实施方式中,结合图1及图2来描述该圆形的子光栅的方法,先在全息透镜基板中心制作圆形子光栅。按照附图1,从激光器发出的激光束通过分光棱镜1分成透射光和反射光,
透射光进入第一空间滤波器5,经过滤波后,透射光束变成发射的第一球面波,经过半透半反镜7,透射光投射到待曝光的全息透镜基板11上;
反射光经第一反射镜2和第二反射镜4转折后,入射到第二空间滤波器6,经过滤波后,反射光束变成发射的第二球面波,入射到半透半反镜7上,反射投射到待曝光的全息透镜基板11上。第一球面波和第二球面波在全息透镜11上发生干涉,形成同心圆环的干涉条纹。通过调节全息透镜基板调节装置,使得干涉条纹的圆心与全息透镜基板的中心重合。将圆形子光栅光阑放在全息透镜基板前,全息透镜基板上记录下第一、第二球面波的干涉条纹,显影获得圆形子光栅,将全息透镜基板复位(恢复至原处),将圆形子光栅光阑复位。
在一实施方式中,在光栅基板的几何中心曝光一个圆形的子光栅,还包括显影后复位。
在一实施方式中,继续参考图1及图2及图3,曝光圆形的子光栅之后还包括:调整光栅基板与实时干涉光场的相对位置,使得该圆形子光栅与实时干涉光场的莫尔条纹为零条纹状态(即无黑圆条纹状态),此时将平行平板10插入光路,平行平板10移动至光束口径的一半位置,第一球面波经过平行平板10的偏折,引入额外的光程差,上述的莫尔条纹由零条纹状态变成同心圆环的莫尔条纹,如附图3所示,用摄像机实时记录此时的莫尔条纹,设定为标准条纹。
在一实施方式中,光束偏折扩大光束口径步骤中还包括:微调第一反射镜2,使得反射光束向全息透镜基板的边缘偏折,通过调整第一空间滤波器5和第二空间滤波器6的三维调整架,使得全息透镜基板中心圆形子光栅的莫尔条纹恢复至上述的标准条纹。
基于光束的偏折及旋转该光栅基板使得该圆形子光栅与实时干涉光场的莫尔条纹与之前的参考条纹一致,进行曝光拼接。
在一实施方式中,上述的全息透镜基板边缘第一子光栅包括:
实时采集如附图3所示的莫尔条纹,将该实时条纹与标准条纹对比,通过调节第一反射镜的压电陶瓷,使得实时采集的条纹与标准条纹的相位一致,直至全息透镜基板边缘第一子光栅完成曝光,关闭全息透镜基板边缘第一子光栅光阑。旋转全息透镜基板调节装置,使得全息透镜基板绕光轴顺时针旋转90度。微调全息透镜基板调节装置,使得实时采集的条纹与标准条纹的相位一致。打开全息透镜基板边缘第二子光栅光阑,实时采集附图3的莫尔条纹,将该实时条纹与标准条纹对比,通过调节第一反射镜的压电陶瓷3,使得实时采集的条纹与标准条纹的相位一致,直至全息透镜基板边缘第二子光栅完成曝光,关闭全息透镜基板边缘第二子光栅光阑。按照上述相同的方法,依次曝光全息透镜基板边缘第三、第四子光栅。
在一实施方式中,上述的全息透镜基板边缘子光栅(第一子光栅-第四子光栅)曝光完成后,将全息透镜基板中心圆形子光栅用密封圈封住,对边缘子光栅进行显影。显影完后,将全息透镜基板放入干涉仪测量光路中,测量光路如图4所示,干涉仪发出汇聚的球面波,汇聚点正好在全息透镜的焦点处,过了汇聚点变成发散的球面波,入射上全息透镜基板上,其-1级衍射光变成平行光,平行光经过辅助反射镜沿原光路返回至干涉仪。测量结果如图5所示,每个拼 缝(拼接缝为图中的黑线,第一子光栅-第四子光栅及基板中心圆形子光栅的拼接可参考图2)间的拼接误差均优于0.1λ(λ为波长)。
本申请实施例提供一种上述方法的全息透镜拼接加工装置,该装置包括:
全息透镜曝光记录装置、全息透镜曝光拼接控制装置和全息透镜基板调节装置。接下来结合附图来描述描述本申请提出的装置。
如图1所示为本申请实施例的全息透镜曝光拼接光路图,
从激光器发出的激光束通过分光棱镜1分成透射光和反射光,
透射光进入第一空间滤波器5,经过滤波后,透射光束变成发射的第一球面波,经过半透半反镜7,透射光投射到待曝光的全息透镜基板11上;
反射光经第一反射镜2和第二反射镜4转折后,入射到第二空间滤波器6,经过滤波后,反射光束变成发射的第二球面波,入射到半透半反镜7上,反射投射到待曝光的全息透镜基板11上。
第一球面波和第二球面波在全息透镜11上发生干涉,形成同心圆环的干涉条纹。
该全息透镜曝光拼接控制装置包括:第一空间滤波器5的姿态控制台8,第二空间滤波器6的姿态控制台9,压电陶瓷3,平行平板10和莫尔条纹监视系统13。
其中,第一空间滤波器5姿态控制台8和第二空间滤波器6的姿态控制台9用来调整第一球面波和第二球面波的空间位置。压电陶瓷用于控制第一反射镜2的微位移,实时改变反射光的光程。平行平板10起到光路的偏折,使得第一球面波和第二球面波的位置发生微小的位移,形成的光场干涉条纹与已制备好的全息透镜叠加,形成莫尔条纹。莫尔条纹监视系统13包括摄像机、图像采集和显示系统,实时显示所述的莫尔条纹的图像。
该全息透镜基板调节装置主要包括:全息透镜基板五维调节架、旋转架和光阑。全息透镜基板五维调节架用以调整全息透镜基板的空间位置,旋转架可以绕光轴旋转,实现多次拼接曝光。
上述实施例只为说明本申请的技术构思及特点,其目的在于让熟悉此项技术的人是能够了解本申请的内容并据以实施,并不能以此限制本申请的保护范围。凡如本申请精神实质所做的等效变换或修饰,都应涵盖在本申请的保护范围之内。

Claims (10)

  1. 一种全息透镜的拼接加工方法,其特征在于,所述方法包括:
    S1.在全息透镜基板的几何中心曝光一个圆形的子光栅;
    S2.调整全息透镜基板与实时干涉光场的相对位置,使得圆形子光栅与实时干涉光场的莫尔条纹为零条纹状态,
    S3.插入平行平板以将光束偏折来扩大光束口径,获得参考条纹,并基于记录装置记录;
    S4.曝光全息透镜基板边缘第一子光栅曝光后、旋转预设角度曝光并依次拼接全息透镜基板边缘的其它子光栅,得到大口径的全息透镜。
  2. 如权利要求1所述的全息透镜的拼接加工方法,其特征在于,
    所述步骤S1中包括:从激光器发出的激光束通过分光棱镜分成透射光和反射光,
    所述透射光进入第一空间滤波器经滤波后,透射光束变成发射的第一球面波,经过半透半反镜后的透射光投射到待曝光的全息透镜基板上;
    反射光经第一反射镜和第二反射镜的转折后,入射到第二空间滤波器,经过滤波后反射光束变成发射的第二球面波,入射到半透半反镜上,并反射投射到待曝光的全息透镜基板上,
    所述第一球面波和所述第二球面波在所述全息透镜上发生干涉,形成同心圆环的干涉条纹。
  3. 如权利要求2所述的全息透镜的拼接加工方法,其特征在于,
    通过调节全息透镜基板调节装置,使得干涉条纹的圆心与全息透镜基板的中心重合,将圆形子光栅光阑放在旋转架的定位柱上,即放置在全息透镜基板前,全息透镜基板上分别记录下第一球面波及第二球面波的干涉条纹,显影获得圆形子光栅。
  4. 如权利要求1所述的全息透镜的拼接加工方法,其特征在于,所述步骤S2中包括:
    微调全息透镜基板的调节装置,第一球面波和第二球面波的实时干涉光场与已制备好的全息透镜基板中心圆形子光栅叠加,得到莫尔条纹。
  5. 如权利要求4所述的全息透镜的拼接加工方法,其特征在于,得到莫尔条纹之后还包括,
    将平行平板插入光路,且所述平行平板移动至光束口径的一半位置,所述第一球面波经过平行平板的偏折,引入额外的光程差,所述莫尔条纹由零条纹状态变成同心圆环的莫尔条纹,并将其设定为标准条纹。
  6. 如权利要求1所述的全息透镜的拼接加工方法,其特征在于,
    所述步骤S4中,曝光第一子光栅曝光包括:
    打开全息透镜基板边缘第一子光栅光阑,实时采集条纹,将实时采集的条纹与标准条纹对比,并通过调节第一反射镜的压电陶瓷,使得实时采集的条纹与标准条纹的相位一致,直至全息透镜基板边缘第一子光栅完成曝光。
  7. 如权利要求6所述的全息透镜的拼接加工方法,其特征在于,曝光第一子光栅之后还包括,
    基于调节装置旋转全息透镜基板,使得全息透镜基板绕光轴顺时针旋转90°,并微调全息透镜基板调节装置,使得实时采集的条纹与标准条纹的相位一致,打开全息透镜基板边缘第二子光栅光阑,实时采集条纹,将实时条纹与标准条纹对比,通过调节第一反射镜的压电陶瓷,使得实时采集的条纹与标准条纹的相位一致,直至全息透镜基板边缘第二子光栅完成曝光,关闭全息透镜基板边缘第二子光栅光阑,并依次方式依次曝光全息透镜基板边缘第三子光栅、第四子光栅。
  8. 一种全息透镜的拼接加工装置,其特征在于,包括:
    全息透镜曝光拼接控制装置和全息透镜基板调节装置,
    所述全息透镜曝光拼接控制装置,包括:
    第一空间滤波器的第一姿态控制台,第二空间滤波器的第二姿态控制台,压电陶瓷,平行平板和莫尔条纹监视模块,
    所述第一姿态控制台和第二姿态控制台用来调整第一球面波和第二球面波的空间位置,
    所述压电陶瓷连接第一反射镜,用于控制第一反射镜的微位移,以实时改变反射光的光程,
    所述平行平板用以光路的偏折,使得第一球面波和第二球面波的位置发生微小的位移,形成的光场干涉条纹与已制备好的全息透镜叠加,进而形成莫尔条纹。
  9. 如权利要求8所述的全息透镜的拼接加工装置,其特征在于,
    所述全息透镜基板调节装置包括:全息透镜基板五维调节架、旋转架和光阑,
    所述光阑置于全息透镜基板前侧,
    所述全息透镜基板五维调节架连接全息透镜基板,用以调整全息透镜基板的空间位置,
    所述旋转架配置成可绕光轴旋转,以实现多次拼接曝光,同时旋转架朝着光束面配置有四个定位柱,四个所述定位柱分别位于旋转架的四周,以实现多次拼接时放置光阑;
    所述的光阑配置成五种,圆形子光栅光阑和全息透镜边缘第一子光栅光阑,全息透镜边缘第二子光栅光阑,全息透镜边缘第三子光栅光阑,全息透镜边缘第四子光栅光阑,圆形子光栅光阑用于制作圆形子光栅时遮光,全息透镜边缘 子光栅光阑用于制作全息透镜边缘第一至第四子光栅时遮光。
  10. 如权利要求8所述的全息透镜的拼接加工装置,其特征在于,
    所述莫尔条纹监视模块包括,摄像机、图像采集和显示模组,
    所述摄像机连接图像采集和显示模组,所述图像采集和显示模组实时显示所述摄像机拍摄的莫尔条纹的图像。
PCT/CN2022/074903 2021-04-25 2022-01-29 一种全息透镜的拼接加工方法及装置 WO2022227758A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110450575.3A CN115248488A (zh) 2021-04-25 2021-04-25 一种全息透镜的拼接加工方法及装置
CN202110450575.3 2021-04-25

Publications (1)

Publication Number Publication Date
WO2022227758A1 true WO2022227758A1 (zh) 2022-11-03

Family

ID=83695841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074903 WO2022227758A1 (zh) 2021-04-25 2022-01-29 一种全息透镜的拼接加工方法及装置

Country Status (2)

Country Link
CN (1) CN115248488A (zh)
WO (1) WO2022227758A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117687135B (zh) * 2024-02-04 2024-04-16 安徽中科光栅科技有限公司 一种虚实光栅对准方法
CN117687136B (zh) * 2024-02-04 2024-04-16 安徽中科光栅科技有限公司 一种拼接光栅对准精度检测方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1311525A (en) * 1969-03-31 1973-03-28 Canon Kk Optical inspection method for optical element accuracy inspection
US5071207A (en) * 1990-09-25 1991-12-10 The United States Of America As Represented By The United States Department Of Energy Broadband diffractive lens or imaging element
US6083650A (en) * 1997-06-27 2000-07-04 Canon Kabushiki Kaisha Device manufacturing method utilizing concentric fan-shaped pattern mask
JP2000266917A (ja) * 1999-03-18 2000-09-29 Canon Inc 回折光学素子の製造方法
CN101382611A (zh) * 2008-10-10 2009-03-11 苏州大学 一种基于参考光栅二次曝光的大面积全息光栅制备方法
CN102566391A (zh) * 2012-02-16 2012-07-11 中国科学院上海光学精密机械研究所 基于柱面镜聚焦的全息扫描高密度光栅的制备装置
CN104375227A (zh) * 2014-12-05 2015-02-25 苏州大学 一种多次曝光拼接制作大面积全息光栅的方法
CN108318954A (zh) * 2018-04-09 2018-07-24 苏州大学 一种制作米量级光栅的系统及方法
CN214540190U (zh) * 2021-04-25 2021-10-29 苏州大学 一种全息透镜的拼接加工装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1311525A (en) * 1969-03-31 1973-03-28 Canon Kk Optical inspection method for optical element accuracy inspection
US5071207A (en) * 1990-09-25 1991-12-10 The United States Of America As Represented By The United States Department Of Energy Broadband diffractive lens or imaging element
US6083650A (en) * 1997-06-27 2000-07-04 Canon Kabushiki Kaisha Device manufacturing method utilizing concentric fan-shaped pattern mask
JP2000266917A (ja) * 1999-03-18 2000-09-29 Canon Inc 回折光学素子の製造方法
CN101382611A (zh) * 2008-10-10 2009-03-11 苏州大学 一种基于参考光栅二次曝光的大面积全息光栅制备方法
CN102566391A (zh) * 2012-02-16 2012-07-11 中国科学院上海光学精密机械研究所 基于柱面镜聚焦的全息扫描高密度光栅的制备装置
CN104375227A (zh) * 2014-12-05 2015-02-25 苏州大学 一种多次曝光拼接制作大面积全息光栅的方法
CN108318954A (zh) * 2018-04-09 2018-07-24 苏州大学 一种制作米量级光栅的系统及方法
CN214540190U (zh) * 2021-04-25 2021-10-29 苏州大学 一种全息透镜的拼接加工装置

Also Published As

Publication number Publication date
CN115248488A (zh) 2022-10-28

Similar Documents

Publication Publication Date Title
WO2022227758A1 (zh) 一种全息透镜的拼接加工方法及装置
US3807829A (en) Extended-field holographic lens arrays
JPH0335647B2 (zh)
JPS6352453B2 (zh)
WO2009006919A1 (en) Method of measuring a deviation an optical surface from a target shape
TW200831855A (en) Exposure apparatus and device manufacturing method
JP2631134B2 (ja) 計算機ホログラムを利用した非球面形状測定用干渉計
US7602502B2 (en) Methods of testing and manufacturing optical elements
JPS631031A (ja) 倍率誤差検出装置及びこの倍率誤差検出装置を用いる結像装置
Tiziani et al. Testing of aspheric surfaces
JP3330874B2 (ja) 自動光ファイバブラッグ格子書き込みのための高精度波長制御装置及び方法
JP3977126B2 (ja) 変位情報検出装置
CN214540190U (zh) 一种全息透镜的拼接加工装置
WO2019222909A1 (zh) 一种全息光栅光刻系统及其干涉光路自准直的调节方法
WO2009006914A1 (en) Method of measuring a deviation of an actual shape from a target shape of an optical surface
US5886800A (en) Large optics compensated imaging systems
CN109458944A (zh) 基于同步共轭差分干涉的平面绝对检验装置及其检测方法
CN114047137B (zh) 偏振信息转化或复制拼接方法
CN113985703B (zh) 光学系统
JPH0789537B2 (ja) X線縮小投影露光装置
CN112304873A (zh) 琼斯椭偏仪的标定装置及方法
CN114562954B (zh) 柱面镜的cgh补偿绝对检验方法
CN116819917B (zh) 一种掩模板、曝光设备及掩模板对准方法
JPH06118234A (ja) ホログラムレンズ及びそれを用いた表示装置
US10824112B2 (en) Projection system for measuring vibrations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22794239

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22794239

Country of ref document: EP

Kind code of ref document: A1