WO2022227673A1 - Appareil et procédé de surveillance d'emballement thermique de batterie d'alimentation, et système de batterie d'alimentation - Google Patents

Appareil et procédé de surveillance d'emballement thermique de batterie d'alimentation, et système de batterie d'alimentation Download PDF

Info

Publication number
WO2022227673A1
WO2022227673A1 PCT/CN2021/143102 CN2021143102W WO2022227673A1 WO 2022227673 A1 WO2022227673 A1 WO 2022227673A1 CN 2021143102 W CN2021143102 W CN 2021143102W WO 2022227673 A1 WO2022227673 A1 WO 2022227673A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitoring
thermal runaway
power battery
communication line
module
Prior art date
Application number
PCT/CN2021/143102
Other languages
English (en)
Chinese (zh)
Inventor
马腾翔
荣常如
刘轶鑫
许立超
孙承锐
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2022227673A1 publication Critical patent/WO2022227673A1/fr

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present application relates to the technical field of electric vehicles, for example, to a power battery thermal runaway monitoring device, method, and power battery system.
  • the power battery safety industry has become the bottom line for the development of new energy vehicles. Domestic and foreign vehicle companies, battery companies and other parts companies have improved the safety of battery systems from multiple perspectives and throughout the life cycle through chemical safety, mechanical safety, electrical safety and functional safety design. , to avoid thermal runaway of the power battery.
  • the power battery thermal runaway monitoring method determines whether the power battery is thermally runaway by monitoring the battery voltage, temperature, current and pressure in real time. However, when the battery is injected and ignited, the acquisition sensor and communication transmission link will be damaged, so that the thermal runaway of the power battery cannot be detected at the first time.
  • the present application provides a power battery thermal runaway monitoring device, method and power battery system, which can effectively detect the power battery thermal runaway and improve the safety of the power battery system.
  • a power battery thermal runaway monitoring device includes a monitoring parameter acquisition module, a monitoring parameter transmission module, a thermal runaway judgment module and a safety control execution module; the monitoring parameter transmission module is respectively connected with the monitoring parameter acquisition module and the thermal runaway module.
  • the judging module is connected, and the thermal runaway judging module is connected with the safety control execution module;
  • the monitoring parameter collection module is configured to collect the power battery thermal runaway monitoring parameters of the vehicle in multiple operation scenarios;
  • the monitoring parameter transmission module is configured to acquire the power battery thermal runaway monitoring parameters collected by the monitoring parameter acquisition module, and transmit the power battery thermal runaway monitoring parameters to the thermal runaway judgment module;
  • the thermal runaway judgment module is configured to judge the power battery Whether the battery thermal runaway monitoring parameter satisfies the thermal runaway condition and monitoring whether the monitoring parameter transmission module satisfies the failure condition;
  • the safety control execution module is configured to determine whether to execute the safety mechanism according to the result output by the thermal runaway judgment module.
  • a power battery thermal runaway monitoring method including:
  • a power battery system is also provided, the system includes a power battery and a power battery thermal runaway monitoring device, and the power battery thermal runaway monitoring device is inside the power battery;
  • a protection device is installed outside the monitoring parameter acquisition module and the monitoring parameter transmission module in the power battery thermal runaway monitoring device. Describe the damage of the monitoring parameter acquisition module and the monitoring parameter transmission module.
  • FIG. 1 is a schematic structural diagram of a power battery thermal runaway monitoring device provided in Embodiment 1 of the present application;
  • FIG. 2 is a schematic structural diagram of a power battery thermal runaway monitoring device provided in Embodiment 2 of the present application;
  • FIG. 3 is a schematic flowchart of a method for monitoring thermal runaway of a power battery provided in Embodiment 3 of the present application;
  • FIG. 4 is an exemplary flowchart of a method for monitoring thermal runaway of a power battery provided in Embodiment 3 of the present application;
  • FIG. 5 is a schematic structural diagram of a power battery system according to Embodiment 4 of the present application.
  • the term “including” and variations thereof are open-ended inclusions, ie, "including but not limited to”.
  • the term “based on” is “based at least in part on.”
  • the term “one embodiment” means “at least one embodiment”; the term “another embodiment” means “at least one additional embodiment”; the term “some embodiments” means “at least some embodiments”. Relevant definitions of other terms will be given in the description below.
  • FIG. 1 is a schematic structural diagram of a power battery thermal runaway monitoring device provided in Embodiment 1 of the present application.
  • the device is suitable for judging whether thermal runaway occurs in a power battery.
  • the device can be implemented by software and/or hardware. And integrated in the power battery.
  • a power battery thermal runaway monitoring device provided in Embodiment 1 of the present application includes a monitoring parameter acquisition module 110, a monitoring parameter transmission module 120, a thermal runaway judgment module 130 and a safety control execution module 140; the monitoring parameter transmission module 120 is respectively connected with the monitoring parameter collection module 110 and the thermal runaway judgment module 130, and the thermal runaway judgment module 130 is connected with the safety control execution module 140; the monitoring parameter collection module 110 is set to collect the power battery thermal runaway monitoring parameters of the vehicle in multiple operating scenarios
  • the monitoring parameter transmission module 120 is configured to obtain the power battery thermal runaway monitoring parameters collected by the monitoring parameter acquisition module 110, and transmit the power battery thermal runaway monitoring parameters to the thermal runaway judgment module 130; the thermal runaway judgment module 130 is set to judge the The power battery thermal runaway monitoring parameter satisfies the thermal runaway condition, and monitors whether the monitoring parameter transmission module 120 satisfies the failure condition; the safety control execution module 140 is configured to determine whether to execute the safety mechanism according to the result output by the thermal runaway judgment module 130
  • the multi-operation scenarios may include multiple scenarios of vehicle stationary, vehicle running, and vehicle charging.
  • the thermal runaway parameters of the power battery may include the cell voltage, total current, battery temperature, and internal pressure value of the power battery in the power battery.
  • the monitoring parameter transmission module 120 is respectively connected with the monitoring parameter collection module 110 and the thermal runaway judgment module 130, and sends the power battery thermal runaway monitoring parameters collected by the monitoring parameter collection module 110 to the thermal runaway judgment module 130, So that the thermal runaway judgment module 130 judges the thermal runaway monitoring parameters of the power battery.
  • the thermal runaway judging module 130 can judge whether the thermal runaway monitoring parameters meet the preset trigger conditions and monitor whether the monitoring parameter transmission module 120 meets the failure conditions.
  • the thermal runaway condition can be understood as a series of preset conditions, and the thermal runaway condition can be set according to the actual situation.
  • the thermal runaway condition can include that the battery temperature exceeds the normal temperature and the duration of exceeding the normal temperature exceeds the preset time. , and the duration of the cell voltage invalid value exceeds the preset time or there is a cell voltage sampling failure.
  • the above-mentioned normal temperature and normal voltage are obtained by establishing the thermal runaway model of the power battery to obtain the thermal runaway value of the power battery under different operating scenarios of the vehicle, and the normal value can be determined through calculation.
  • the failure condition may be that the circuit inside the monitoring parameter transmission module 120 is damaged or broken, and the signal cannot be transmitted and the effective thermal runaway monitoring parameter cannot be transmitted.
  • the thermal runaway monitoring parameter has an invalid value.
  • the safety control execution module 140 can obtain the result output by the thermal runaway judging module 130 by connecting with the thermal runaway judging module 130, and judge whether to trigger the safety mechanism according to the result. After the safety mechanism is triggered, de-escalation, warning and disconnection of the high-voltage circuit can be performed to protect the power battery.
  • the first embodiment of the present application provides a power battery thermal runaway monitoring device.
  • the device collects the power battery thermal runaway monitoring parameters of the vehicle in multiple operating scenarios through a monitoring parameter collection module, and obtains the monitoring parameter collection through a monitoring parameter transmission module.
  • the power battery thermal runaway monitoring parameters collected by the module and the power battery thermal runaway monitoring parameters are transmitted to the thermal runaway judgment module;
  • the thermal runaway judgment module is used to judge whether the power battery thermal runaway monitoring parameters meet the thermal runaway conditions and monitor all the thermal runaway monitoring parameters.
  • whether the monitoring parameter transmission module satisfies the failure condition;
  • the safety control execution module determines whether to execute the safety mechanism according to the result output by the thermal runaway judgment module.
  • the above device can effectively detect the thermal runaway of the power battery and improve the safety of the power battery system.
  • FIG. 2 is a schematic structural diagram of a power battery thermal runaway monitoring device provided in the second embodiment of the present application.
  • the power battery thermal runaway monitoring device provided in the second embodiment of the present application is described on the basis of the first embodiment.
  • Embodiment 1 For the content that has not been described in detail in this embodiment, please refer to Embodiment 1.
  • the power battery thermal runaway monitoring device includes: a monitoring parameter acquisition module 210 , a monitoring parameter transmission module 220 , a thermal runaway judgment module 230 and a safety control execution module 240 .
  • the monitoring parameter collection module 210 includes a sampling chip 211, a current sensor 212, a pressure sensor 213, and an input/output (I/O) interface 214;
  • the sampling chip 211 may be set to collect data in the power battery Cell voltage and battery temperature;
  • the current sensor 212 can be set to collect the total current of the power battery;
  • the pressure sensor 213 is set to collect the pressure value of the power battery, and
  • the I/O interface 214 is set to send and receive monitoring communication signals.
  • the monitoring parameter transmission module 220 includes two intertwined communication lines 221 and monitoring communication lines 222; the communication line 221 is a ring-shaped communication line connecting the monitoring parameter acquisition module 210 and the thermal runaway judgment module 230, and is set to transmit The power battery thermal runaway monitoring parameters obtained from the monitoring parameter acquisition module 210 are sent to the thermal runaway judgment module 230; the monitoring communication line 222 is a one-way communication line connecting the monitoring parameter acquisition module 210 and the thermal runaway judgment module 230, and is set to monitor the monitoring Communication status between the parameter collection module 210 and the thermal runaway judgment module 230 .
  • the communication line 221 is a ring-shaped communication line.
  • the monitoring communication line 222 is a one-way communication line, and the monitoring communication line 222 is only configured to send a monitoring communication signal to the thermal runaway judgment module 230. If the thermal runaway judgment module 230 can receive the monitoring communication signal, it is determined that the monitoring communication line 222 is not broken.
  • the failure condition of the monitoring parameter transmission module 220 is that the communication line 221 and the monitoring communication line 222 fail at the same time; wherein, the failure of the communication line 221 is that the thermal runaway monitoring parameter of the power battery received by the thermal runaway judgment module 230 contains invalid values, and the monitoring communication line 222 fails. This is because the thermal runaway judgment module 230 does not receive the monitoring communication signal sent by the monitoring communication line 222 .
  • the thermal runaway monitoring parameter transmitted by the communication line 221 to the thermal runaway judging module 230 contains an invalid value
  • the communication line 221 is determined to be invalid, and if the monitoring communication line 222 cannot send a monitoring communication signal, it is determined that the monitoring communication line 222 invalid.
  • whether to perform a fault alarm may also be determined according to whether the communication line 221 and the monitoring communication line 222 are disconnected.
  • the thermal runaway judging module 230 cannot receive the monitoring communication signal, it can be determined that the monitoring communication line 222 is in a disconnected state, and it can be determined that there is no disconnection in the communication line 221, it can be determined that only the monitoring communication line 222 is faulty, and then A fault alarm message that monitors the communication line 222 may be generated.
  • the thermal runaway judgment module 230 receives the monitoring communication signal; if the thermal runaway judgment module 230 receives the monitoring communication signal sent by the monitoring communication line 222, it can be determined that the monitoring If the communication line 222 is in the connected state, it can be determined that only the communication line 221 is faulty, and then the fault alarm information of the communication line 221 can be generated.
  • the method for monitoring thermal runaway of a power battery provided by the second embodiment of the present application, it is possible to determine whether thermal runaway occurs in a power battery through a communication line and a monitoring communication line. In addition, it can also effectively judge whether the communication line and the monitoring communication line are faulty and generate fault alarm information, so that the staff can monitor the power battery in an all-round way.
  • Embodiment 3 is a schematic flowchart of a method for monitoring thermal runaway of a power battery provided in Embodiment 3 of the present application.
  • the method can be applied to determine whether thermal runaway occurs in a power battery.
  • the method can be executed by a power battery thermal runaway monitoring device.
  • the device can be realized by software and/or hardware and integrated in the power battery.
  • a method for monitoring thermal runaway of a power battery provided in Embodiment 3 of the present application includes the following steps.
  • the thermal runaway monitoring parameters of the power battery can be acquired from the monitoring parameter collection module.
  • the thermal runaway parameters of the power battery may include the temperature of the power battery, the voltage of the power battery cell, the total current of the power battery, and the pressure value inside the power battery.
  • the temperature of the power battery and the voltage of the power battery cell can be collected by the sampling chip in the monitoring parameter collection module, the total current of the power battery can be collected by the current sensor in the monitoring parameter collection module, and the pressure value inside the power battery can be collected by the pressure sensor. .
  • the judgment result is that the power battery has thermal runaway; if the thermal runaway monitoring parameters do not meet the thermal runaway conditions, the judgment result is that the power battery does not have thermal runaway.
  • the thermal runaway monitoring parameters satisfy the thermal runaway. condition.
  • the thermal runaway monitoring parameters do not satisfy the thermal runaway condition.
  • the monitoring result is determined to be the thermal runaway of the power battery; if only one of the monitoring communication line and the communication line meets the failure condition, the monitoring result is determined that the power battery does not have thermal runaway. .
  • the determining whether the power battery has thermal runaway according to the judgment result and the monitoring result includes: if the judgment result is that the thermal runaway monitoring parameter of the power battery reaches a preset trigger condition, determining that the power battery has thermal runaway; If the monitoring result is that the communication line and the monitoring communication line meet the failure condition, it is determined that the power battery has thermal runaway.
  • any one of the judgment result and the monitoring result is that the power battery is thermally out of control, it is determined that the power battery is thermally out of control.
  • determining whether to perform a failure alarm according to whether the communication line and the monitoring communication line are disconnected includes: determining the monitoring communication line. After being in the disconnected state, if the communication line is in a normal state, a fault alarm message for monitoring the communication line is generated; the normal state is that there is no disconnection in the communication line; it is determined that there is at least one disconnection in the communication line Then, according to the monitoring communication signal of the monitoring communication line, it is determined that the monitoring communication line is in a connected state, and then the fault alarm information of the communication line is generated.
  • the thermal runaway judging module cannot receive the monitoring communication signal, it can be determined that the monitoring communication line is in a disconnected state. Communication line failure alarm information. If at least one disconnection of the communication line is detected, it can be monitored whether the thermal runaway judgment module receives the monitoring communication signal. If the thermal runaway judgment module receives the monitoring communication signal sent by the monitoring communication line, it can be determined that the monitoring communication line is connected. status, it can be determined that only the communication line is faulty, and then the fault alarm information of the communication line can be generated.
  • the method further includes: judging the hazard probability and risk factor according to the thermal runaway monitoring result and determining whether to execute safety control; the safety mechanism may include degrading , limit power, disconnect the high-voltage contactor, perform instrument prompts and buzzer alarms.
  • the safety mechanism can be implemented.
  • thermal runaway monitoring parameter is close to the pre-set thermal runaway threshold but does not reach the threshold, de-escalation and power limiting operations can be performed; if the thermal runaway monitoring parameter reaches the pre-set thermal runaway threshold, disconnection can be performed. High voltage contactor, instrument prompt and buzzer alarm operation.
  • the third embodiment of the present application provides a method for monitoring thermal runaway of a power battery, which obtains monitoring parameters for thermal runaway of a power battery; determines a judgment result according to whether the monitoring parameters for thermal runaway of the power battery meet the thermal runaway condition; monitors communication lines and whether the communication lines The monitoring result is determined when the failure condition is satisfied; whether thermal runaway occurs in the power battery is determined based on the judgment result and the monitoring result.
  • FIG. 4 is an exemplary flowchart of a method for monitoring thermal runaway of a power battery provided in Embodiment 3 of the present application.
  • the hard wire is the monitoring communication wire
  • the daisy chain is the communication wire.
  • the method includes:
  • Receive thermal runaway monitoring parameters and hard-wired signals determine whether the thermal runaway monitoring parameters reach the set threshold, that is, determine whether the thermal runaway monitoring parameters meet the thermal runaway conditions, and if so, determine that the power battery has thermal runaway and trigger a safety mechanism;
  • the daisy chain is disconnected, the hard wire is disconnected, and the thermal runaway monitoring parameters that can be transmitted by the daisy chain are valid, the daisy chain disconnection fault and the hard wire disconnection fault will be reported;
  • the daisy chain is disconnected, the hard wire is disconnected, and the thermal runaway monitoring parameters transmitted by the daisy chain contain invalid values, it is determined that the power battery is thermally runaway and the safety mechanism is triggered;
  • the daisy chain is not disconnected, and the hard wire is not disconnected, the power battery is determined to be safe.
  • FIG. 5 is a schematic structural diagram of a power battery system according to Embodiment 4 of the present application.
  • the system can be applied to determine whether thermal runaway occurs in the power battery.
  • the system can be implemented by software and/or hardware and integrated in on the vehicle.
  • the vehicle includes: an electric vehicle.
  • the power battery system includes a power battery 520 and a power battery thermal runaway monitoring device 510 ; a monitoring parameter transmission module 511 and a monitoring parameter acquisition module 513 in the power battery thermal runaway monitoring device 510 are equipped with protective devices 512 outside.
  • the protection device 512 is configured to delay and protect the monitoring parameter transmission module 511 and the monitoring parameter acquisition module 513 to reduce damage to the monitoring parameter transmission module 511 and the monitoring parameter acquisition module 513 .
  • the protection device 512 may include a protective cover and a jet valve.
  • the jet valve may be set to protect the communication line, the monitoring communication line and the acquisition module.
  • the jet valve may prevent gas from being injected into the acquisition module and the communication line when the power battery is thermally out of control. , to ensure the reliability of the acquisition module, communication line and monitoring communication line.
  • the additional protective cover can also be used to delay the damage of the acquisition module and the disconnection of the communication line and the monitoring communication line.
  • the communication line and the monitoring communication line are intertwined in the monitoring parameter transmission module 511 to ensure that the communication line and the monitoring communication line can be simultaneously blown out when the power battery suffers thermal runaway.
  • the fifth embodiment of the present application provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, is used to execute a method for monitoring thermal runaway of a power battery, and the method includes:
  • the program when executed by the processor, it can also be used to execute the method for monitoring thermal runaway of a power battery provided by any embodiment of the present application.
  • the computer storage medium of the embodiments of the present application may adopt any combination of one or more computer-readable media.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable storage medium can be, for example, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or a combination of any of the above.
  • Computer-readable storage media include: electrical connections with one or more wires, portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), erasable Erasable Programmable Read Only Memory (EPROM), flash memory, optical fiber, portable (Compact Disc Read Only Memory, CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • a computer-readable storage medium can be any tangible medium that contains or stores a program that can be used by or in connection with an instruction execution system, apparatus, or device.
  • the storage medium may be a non-transitory storage medium.
  • a computer-readable signal medium may include a propagated data signal in baseband or as part of a carrier wave, with computer-readable program code embodied thereon. Such propagated data signals may take a variety of forms, including electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium can also be any computer-readable medium other than a computer-readable storage medium that can transmit, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device .
  • Program code embodied on a computer-readable medium may be transmitted using any suitable medium, including wireless, wire, optical fiber cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • RF radio frequency
  • Computer program code for carrying out the operations of the present application may be written in one or more programming languages, including object-oriented programming languages, such as Java, Smalltalk, C++, and conventional A procedural programming language, such as the "C" language or similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through any kind of network, including a Local Area Network (LAN) or Wide Area Network (WAN), or may be connected to an external computer (eg, use an internet service provider to connect via the internet).
  • LAN Local Area Network
  • WAN Wide Area Network

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

La présente invention concerne un appareil et un procédé de surveillance d'emballement thermique de batterie d'alimentation, et un système de batterie d'alimentation. L'appareil de surveillance d'emballement thermique de batterie d'alimentation comprend un module de collecte de paramètres de surveillance (110), un module de transmission de paramètres de surveillance (120), un module de détermination d'emballement thermique (130) et un module d'exécution de commande de sécurité (140), le module de collecte de paramètres de surveillance (110) étant conçu pour collecter des paramètres de surveillance d'emballement thermique de batterie d'alimentation d'un véhicule dans de multiples scénarios de fonctionnement ; le module de transmission de paramètres de surveillance (120) est conçu pour acquérir les paramètres de surveillance d'emballement thermique de batterie d'alimentation qui sont collectés par le module de collecte de paramètres de surveillance (110), et pour transmettre les paramètres de surveillance d'emballement thermique de batterie d'alimentation au module de détermination d'emballement thermique (130) ; le module de détermination d'emballement thermique (130) est conçu pour déterminer si les paramètres de surveillance d'emballement thermique satisfont une condition d'emballement thermique, et pour surveiller si le module de transmission de paramètres de surveillance (120) satisfait une condition de défaillance ; et le module d'exécution de commande de sécurité (140) est conçu pour déterminer, en fonction d'un résultat qui est fourni par le module de détermination d'emballement thermique (130), s'il faut exécuter un mécanisme de sécurité pour la dégradation, l'avertissement et la déconnexion d'une boucle haute tension.
PCT/CN2021/143102 2021-04-28 2021-12-30 Appareil et procédé de surveillance d'emballement thermique de batterie d'alimentation, et système de batterie d'alimentation WO2022227673A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110470532.1A CN113119737B (zh) 2021-04-28 2021-04-28 一种动力电池热失控监控装置、方法及动力电池系统
CN202110470532.1 2021-04-28

Publications (1)

Publication Number Publication Date
WO2022227673A1 true WO2022227673A1 (fr) 2022-11-03

Family

ID=76780676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143102 WO2022227673A1 (fr) 2021-04-28 2021-12-30 Appareil et procédé de surveillance d'emballement thermique de batterie d'alimentation, et système de batterie d'alimentation

Country Status (2)

Country Link
CN (1) CN113119737B (fr)
WO (1) WO2022227673A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115792629A (zh) * 2022-11-21 2023-03-14 惠州恒立能源科技有限公司 一种锂电池储能的报警监测系统和方法
CN115882090A (zh) * 2023-02-06 2023-03-31 中创新航技术研究中心(深圳)有限公司 电池组的智能化自控实现方法及装置、电池组
CN116118566A (zh) * 2023-03-27 2023-05-16 广东华庄科技股份有限公司 一种电池管理方法、系统及存储介质
CN116176281A (zh) * 2023-04-25 2023-05-30 中国第一汽车股份有限公司 动力电池的功能安全控制方法、装置、车辆及存储介质
CN117289147A (zh) * 2023-11-24 2023-12-26 珠海科创储能科技有限公司 电池监测方法、装置、存储介质及电子设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113119737B (zh) * 2021-04-28 2023-02-21 中国第一汽车股份有限公司 一种动力电池热失控监控装置、方法及动力电池系统
CN113745768B (zh) * 2021-07-28 2024-01-16 岚图汽车科技有限公司 动力电池系统及电池热失控的控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110967642A (zh) * 2019-04-30 2020-04-07 宁德时代新能源科技股份有限公司 热失控检测电路及方法
CN110979014A (zh) * 2019-11-21 2020-04-10 中国第一汽车股份有限公司 动力电源安全监控方法、装置、系统和车辆
CN111391668A (zh) * 2020-03-31 2020-07-10 威睿电动汽车技术(宁波)有限公司 一种电池热失控预警处理方法、装置、设备及存储介质
WO2020220512A1 (fr) * 2019-04-30 2020-11-05 宁德时代新能源科技股份有限公司 Procédé, dispositif et système de détection d'emballement thermique pour batteries, et unité de gestion de batterie
CN111907329A (zh) * 2020-06-29 2020-11-10 东风汽车集团有限公司 可进行动力电池全时段热失控预警的监测系统及监测方法
CN113119737A (zh) * 2021-04-28 2021-07-16 中国第一汽车股份有限公司 一种动力电池热失控监控装置、方法及动力电池系统

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010106588A1 (fr) * 2009-03-16 2010-09-23 新神戸電機株式会社 Dispositif de stockage électrique et dispositif de circuit électronique utilisé pour celui-ci
US8089248B2 (en) * 2009-04-09 2012-01-03 Ford Global Technologies, Llc Battery monitoring and control system and method of use including redundant secondary communication interface
US9553460B2 (en) * 2011-03-31 2017-01-24 Elite Power Solutions Llc Wireless battery management system
EP2899556B1 (fr) * 2012-09-10 2018-12-19 Renesas Electronics Corporation Dispositif semi-conducteur et dispositif de surveillance de tension de batterie
CN204008826U (zh) * 2014-08-12 2014-12-10 上海申通地铁集团有限公司 车辆电池安全监测系统
CN104215823B (zh) * 2014-08-12 2017-09-08 上海申通地铁集团有限公司 车辆电池安全监测系统
CN104553852B (zh) * 2015-01-06 2017-02-01 重庆长安汽车股份有限公司 一种电动汽车电池管理系统混合通信系统
JP6432473B2 (ja) * 2015-09-11 2018-12-05 株式会社デンソー 組電池制御装置
CN206012357U (zh) * 2016-05-25 2017-03-15 烟台创为新能源科技有限公司 一种基于pwm方式通信的电池热失控检测系统
CN106080251B (zh) * 2016-08-05 2020-05-05 合肥工业大学 具有完备故障自诊断功能的电动汽车动力电池管理系统
US10168364B2 (en) * 2016-11-29 2019-01-01 Wipro Limited Battery monitoring system for a vehicle and a method thereof
DE212018000198U1 (de) * 2018-05-04 2019-11-28 H55 Sa Batterieüberwachungssystem für Elektro- und Hybridluftfahrzeuge
CN110838609B (zh) * 2018-08-15 2023-04-07 上海汽车集团股份有限公司 一种动力电池热失控保护方法、装置及系统
JP2020042968A (ja) * 2018-09-10 2020-03-19 株式会社豊田自動織機 蓄電装置モジュール
JP7247543B2 (ja) * 2018-11-22 2023-03-29 トヨタ自動車株式会社 車両
CN209590239U (zh) * 2018-12-14 2019-11-05 浙江零跑科技有限公司 一种多功能bms测试系统
CN112448045B (zh) * 2019-08-31 2021-11-12 比亚迪股份有限公司 电池管理系统及电动汽车
CN112477687A (zh) * 2019-09-11 2021-03-12 重庆长安新能源汽车科技有限公司 一种电动汽车动力蓄电池热失控预警系统
CN110712561B (zh) * 2019-10-15 2021-06-15 宁波吉利汽车研究开发有限公司 电池管理系统及电动汽车
CN111337836B (zh) * 2020-03-10 2022-04-22 超威电源集团有限公司 一种蓄电池组失效电池监控系统及方法
CN111653840B (zh) * 2020-06-08 2021-07-09 中国第一汽车股份有限公司 一种预警方法、装置、设备及存储介质
CN111959344B (zh) * 2020-07-06 2022-04-12 北汽福田汽车股份有限公司 电池管理系统、控制方法和车辆
CN112038560A (zh) * 2020-09-15 2020-12-04 重庆金康动力新能源有限公司 一种电池包热失控预警灭火系统
CN112684349A (zh) * 2021-01-25 2021-04-20 中国第一汽车股份有限公司 电池单体失效的分析方法、验证方法、装置、设备及介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110967642A (zh) * 2019-04-30 2020-04-07 宁德时代新能源科技股份有限公司 热失控检测电路及方法
WO2020220512A1 (fr) * 2019-04-30 2020-11-05 宁德时代新能源科技股份有限公司 Procédé, dispositif et système de détection d'emballement thermique pour batteries, et unité de gestion de batterie
CN110979014A (zh) * 2019-11-21 2020-04-10 中国第一汽车股份有限公司 动力电源安全监控方法、装置、系统和车辆
CN111391668A (zh) * 2020-03-31 2020-07-10 威睿电动汽车技术(宁波)有限公司 一种电池热失控预警处理方法、装置、设备及存储介质
CN111907329A (zh) * 2020-06-29 2020-11-10 东风汽车集团有限公司 可进行动力电池全时段热失控预警的监测系统及监测方法
CN113119737A (zh) * 2021-04-28 2021-07-16 中国第一汽车股份有限公司 一种动力电池热失控监控装置、方法及动力电池系统

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115792629A (zh) * 2022-11-21 2023-03-14 惠州恒立能源科技有限公司 一种锂电池储能的报警监测系统和方法
CN115792629B (zh) * 2022-11-21 2024-04-02 惠州因博利电子科技有限公司 一种锂电池储能的报警监测系统和方法
CN115882090A (zh) * 2023-02-06 2023-03-31 中创新航技术研究中心(深圳)有限公司 电池组的智能化自控实现方法及装置、电池组
CN115882090B (zh) * 2023-02-06 2023-05-23 中创新航技术研究中心(深圳)有限公司 电池组的智能化自控实现方法及装置、电池组
CN116118566A (zh) * 2023-03-27 2023-05-16 广东华庄科技股份有限公司 一种电池管理方法、系统及存储介质
CN116118566B (zh) * 2023-03-27 2023-10-20 广东华庄科技股份有限公司 一种电池管理方法、系统及存储介质
CN116176281A (zh) * 2023-04-25 2023-05-30 中国第一汽车股份有限公司 动力电池的功能安全控制方法、装置、车辆及存储介质
CN116176281B (zh) * 2023-04-25 2023-07-07 中国第一汽车股份有限公司 动力电池的功能安全控制方法、装置、车辆及存储介质
CN117289147A (zh) * 2023-11-24 2023-12-26 珠海科创储能科技有限公司 电池监测方法、装置、存储介质及电子设备
CN117289147B (zh) * 2023-11-24 2024-04-02 珠海科创储能科技有限公司 电池监测方法、装置、存储介质及电子设备

Also Published As

Publication number Publication date
CN113119737A (zh) 2021-07-16
CN113119737B (zh) 2023-02-21

Similar Documents

Publication Publication Date Title
WO2022227673A1 (fr) Appareil et procédé de surveillance d'emballement thermique de batterie d'alimentation, et système de batterie d'alimentation
EP3621142B1 (fr) Système de prévention et de commande de sécurité de bloc-batterie d'alimentation destiné à un véhicule électrique et procédé de commande
CN111261957B (zh) 基于分布控制的锂离子储能电池热失控保护系统及方法
CN105406601A (zh) 一种智能配电柜监控系统及监控方法
CN109591645A (zh) 一种车桩充电管理方法、系统及终端设备
CN114995208A (zh) 储能安全系统及储能安全系统的控制方法
CN115513541A (zh) 储能安全控制系统及方法
US20240139571A1 (en) Fire-protection detecting method and device, electronic device and medium
CN109655715A (zh) 一种基于电网故障智能识别设备的电网故障识别方法
CN116186744B (zh) 一种计算机数据传输系统及方法
CN108199477A (zh) 变电站交直流系统故障远程智能监控方法及设备
CN116626492A (zh) 电池故障诊断方法、装置及车辆
CN109345789A (zh) 一种供水设备故障智能联动报警控制系统
CN108366128A (zh) 一种自诊断烟雾传感系统
CN203397453U (zh) 一种电力设备防盗及状态监测装置
CN208653658U (zh) 基于无线传感网络的新型电气接点温度在线监测装置
CN201867178U (zh) 一种放射源测厚装置及放射源测厚监控系统
CN207410005U (zh) 一种节能电网电压电流检测保护装置
CN206193531U (zh) 一种自动化系统电网的故障控制器试验平台
WO2024092428A1 (fr) Appareil de protection de sécurité, système d'électrification, système de stockage d'énergie et système de commande
CN111026097A (zh) 一种巡检机器人的故障自诊断及预警方法
CN111146863A (zh) 一种变电站的电力安全检测方法
CN109830087A (zh) 智能监控装置及方法
CN214795612U (zh) 一种智慧用电安全防控管理系统
CN104410041A (zh) 一种换流站阀厅火灾跳闸装置逻辑判断方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21939132

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21939132

Country of ref document: EP

Kind code of ref document: A1