WO2022227621A1 - 一种混合动力液压系统及高空作业车 - Google Patents

一种混合动力液压系统及高空作业车 Download PDF

Info

Publication number
WO2022227621A1
WO2022227621A1 PCT/CN2021/139057 CN2021139057W WO2022227621A1 WO 2022227621 A1 WO2022227621 A1 WO 2022227621A1 CN 2021139057 W CN2021139057 W CN 2021139057W WO 2022227621 A1 WO2022227621 A1 WO 2022227621A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
oil
hydraulic system
gear pump
pressure
Prior art date
Application number
PCT/CN2021/139057
Other languages
English (en)
French (fr)
Inventor
张宇效
刘国良
赵俊波
石伟
Original Assignee
湖南星邦智能装备股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南星邦智能装备股份有限公司 filed Critical 湖南星邦智能装备股份有限公司
Publication of WO2022227621A1 publication Critical patent/WO2022227621A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/24Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/088Characterised by the construction of the motor unit the motor using combined actuation, e.g. electric and fluid actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/20Other details, e.g. assembly with regulating devices
    • F15B2015/206Combined actuation, e.g. electric and fluid actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to the technical field of hydraulic systems, and more particularly, to a hybrid hydraulic system. Furthermore, the present invention also relates to an aerial work vehicle comprising the above hybrid hydraulic system.
  • hybrid aerial work vehicles In order to respond to the mainstream development of energy saving and environmental protection, and to meet the needs of complex working conditions, hybrid aerial work vehicles have appeared on the market.
  • the hybrid aerial work vehicle adopts the gear pump hydraulic system of the dual power of the engine and the electric motor, that is, the engine and the electric motor are connected in series through the clutch, the electric motor is connected with the gear pump, and the rotation of the electric motor drives the gear pump to rotate, so as to provide the entire hydraulic system. Power oil source.
  • the hybrid aerial work vehicle has two working modes, namely electric mode and diesel-powered mode, and the switching between the two working modes is controlled by the rocker switch (or knob switch) on the control panel.
  • the engine When the hybrid aerial work vehicle is in the electric mode, the engine is disconnected from the electric motor, and the electric motor rotates under the power supply of the battery, which in turn drives the gear pump to rotate to supply hydraulic oil; at this time, the speed of the action of each actuator in the hydraulic system is determined by the electric motor.
  • Speed control that is, by controlling the motor speed, the flow rate output by the gear pump is controlled, and then the operating speed of each actuator is controlled.
  • the engine and the motor are connected through clutch coupling.
  • the motor is used as a generator
  • the engine is used as a power source to drive the generator (motor) to generate electricity and drive the gear pump to rotate.
  • the gear pump can only be made at the maximum speed. Demand flow output flow.
  • the purpose of the present invention is to provide a hybrid hydraulic system, which can reduce the outlet pressure of the gear pump in the diesel mode, without affecting the normal operation of the electric mode, thus, can reduce the energy loss, improve the power generation rate, At the same time prolong the service life of the gear pump.
  • Another object of the present invention is to provide an aerial work vehicle including the above hybrid hydraulic system, which has low energy loss, high power generation rate, and long service life of the gear pump.
  • the present invention provides the following technical solutions:
  • a hybrid hydraulic system comprising:
  • the oil inlet of the hydraulically controlled reversing valve is connected to the high pressure oil circuit, and the oil return port of the hydraulically controlled reversing valve is connected to the low pressure oil return circuit;
  • a control oil circuit which is arranged between the control oil port of the hydraulic control reversing valve and the working oil port of the proportional valve, the control oil circuit is provided with a check valve, and the oil inlet of the check valve is provided connected with the working oil port of the proportional valve;
  • an on-off valve which is arranged between the high-pressure oil circuit and the oil inlet of the hydraulically controlled reversing valve.
  • the on-off valve When the engine is not working, the on-off valve is closed; when the engine is on, the on-off valve is opened .
  • it also includes a flow valve, which is arranged between the control oil circuit and the low-pressure oil return circuit.
  • the proportional valve, the one-way valve, the hydraulically controlled reversing valve and the on-off valve are integrated into the same valve block.
  • the working oil port of the proportional valve is connected with a load reversing valve, and the working oil port of the load reversing valve is connected with the actuator.
  • the load reversing valve includes a 5/3-way reversing valve or a 3/2-way reversing valve.
  • the number of said proportional valves is at least two.
  • the number of the load reversing valves connected to the working oil port of a single proportional valve is one or two.
  • it also includes a safety relief valve arranged between the high-pressure oil circuit and the low-pressure oil return circuit.
  • the on-off valve is a solenoid valve.
  • An aerial work vehicle includes a hybrid hydraulic system, wherein the hybrid hydraulic system is any one of the above hybrid hydraulic systems.
  • the engine in the electric mode, the engine is separated from the electric motor, and the engine is in a non-working state.
  • the electric motor works under the condition of battery power supply, and the electric motor drives the gear pump to rotate to supply hydraulic pressure to the high-pressure oil circuit. Oil.
  • the on-off valve is closed, so that there is no communication between the high-pressure oil circuit and the hydraulic control reversing valve; at the same time, the opening of the proportional valve is in the maximum state, and the speed of each actuator is controlled by controlling the speed of the motor. That is, the power output by the electric motor is provided to the hydraulic system with maximum efficiency to promote the action of each actuator.
  • the engine In diesel mode, the engine is connected to the electric motor. At this time, the electric motor is used as a generator. The engine works, and the gear pump is driven to rotate by the electric motor. At the same time, the residual power of the engine is used to charge the battery of the electric motor (generator).
  • the on-off valve is opened, so that the high-pressure oil circuit and the hydraulic control reversing valve are connected, so the hydraulic oil in the high pressure oil circuit can flow to the hydraulic control reversing valve; at the same time, the opening size of the proportional valve is proportional to the The current of the valve is controlled, so that the opening size of the proportional valve is controlled by controlling the current of the proportional valve, that is, the flow rate of the proportional valve is controlled, so as to control the action speed of the actuator corresponding to the proportional valve; at this time , because the working oil port of the proportional valve and the control oil port of the hydraulic control reversing valve are connected through the control oil circuit, therefore, under the action of the one-way valve, the hydraulic oil flowing out from the working oil port of the proportional valve is introduced into the
  • the control oil port of the hydraulic control reversing valve makes one side of the hydraulic control reversing valve the hydraulic oil of the high-pressure oil circuit, and the other side is the hydraulic oil of the working oil port of the proportion
  • the oil return port can discharge the excess flow of the hydraulic oil of the high pressure oil circuit minus the hydraulic oil of the proportional valve to the low pressure return oil circuit.
  • the pressure of the discharge port of the gear pump can be reduced. P is approximately equal to the load pressure P f .
  • the energy loss is effectively reduced, the power P m of the engine used for the power generation part is increased, and the whole system is more energy-saving.
  • the gears of the gear pump can be prevented from working in a high-pressure state for a long time, thereby improving the service life of the gear pump.
  • the aerial work vehicle provided by the present invention including the above-mentioned hybrid hydraulic system, has the same beneficial effect.
  • FIG. 1 is a control principle diagram of a hybrid hydraulic system provided by a specific embodiment of the present invention.
  • 1 is the engine
  • 2 is the motor
  • 3 is the clutch
  • 4 is the gear pump
  • 5 is the high pressure oil circuit
  • 6 is the proportional valve
  • 7 is the hydraulic control reversing valve
  • 8 is the control oil circuit
  • 9 is the low pressure return oil circuit
  • 10 It is an on-off valve
  • 11 is a one-way valve
  • 12 is a flow valve
  • 13 is a load reversing valve
  • 14 is a safety relief valve
  • 15 is an actuator function valve group.
  • the core of the present invention is to provide a hybrid hydraulic system, which can reduce the outlet pressure of the gear pump in the diesel mode without affecting the normal operation of the electric mode. Therefore, it can reduce the energy loss, improve the power generation rate, and extend the gear pump at the same time. service life.
  • Another core of the present invention is to provide an aerial work vehicle including the above hybrid hydraulic system, which has small energy loss, high power generation rate and long service life of the gear pump.
  • FIG. 1 is a control principle diagram of a hybrid hydraulic system provided by a specific embodiment of the present invention.
  • the present invention provides a hybrid hydraulic system, comprising an engine 1, an electric motor 2, a gear pump 4, a high-pressure oil circuit 5, a low-pressure oil return circuit 9, a control oil circuit 8, a proportional valve 6, a one-way valve 11, and a hydraulic control reversing circuit. valve 7 and on-off valve 10.
  • the engine 1 is connected with the electric motor 2
  • the electric motor 2 is connected with the gear pump 4 .
  • the engine 1 and the electric motor 2 can be connected and disconnected to realize the switching between the electric mode and the diesel mode.
  • the engine 1 and the electric motor 2 are connected through the clutch 3.
  • the clutch 3 When the clutch 3 is coupled, the connection between the engine 1 and the electric motor 2 is realized; when the clutch 3 is disconnected, the engine 1 and the electric motor 2 are disconnected.
  • the high-pressure oil circuit 5 is connected to the discharge port of the gear pump 4 .
  • the gear pump 4 provides hydraulic oil for the entire hybrid hydraulic system, and the hydraulic oil provided by the gear pump 4 is delivered to each load circuit through the high-pressure oil circuit 5 .
  • the oil inlet of the proportional valve 6 and the oil inlet of the hydraulic control reversing valve 7 are respectively connected with the high pressure oil circuit 5 .
  • the low-pressure oil return circuit 9 is preferably connected to the oil tank for releasing pressure and returning oil.
  • the control oil circuit 8 is provided between the working oil port of the proportional valve 6 and the control oil port of the hydraulic control reversing valve 7 .
  • the hydraulic oil can only enter the hydraulic control reversing valve 7 from the working oil port of the proportional valve 6 along the control oil path 8, and cannot make the hydraulic oil flow in the reverse direction.
  • the oil return port of the hydraulic control reversing valve 7 is connected to the low pressure oil return line 9 .
  • the switch valve 10 is arranged between the high-pressure oil circuit 5 and the oil inlet of the hydraulically controlled reversing valve 7, and is used to control the on-off of the oil circuit between the high-pressure oil circuit 5 and the hydraulically controlled reversing valve 7.
  • the engine 1 When the hybrid hydraulic system needs to be in diesel mode, the engine 1 is connected to the motor 2. At this time, the motor 2 is used as a generator. The engine 1 works, and the gear pump 4 is driven by the motor 2 to rotate. At the same time, the residual power of the engine 1 It is then used to charge the battery of the motor 2 (generator).
  • the on-off valve 10 is opened, so that the high-pressure oil circuit 5 is communicated with the hydraulically controlled reversing valve 7, so that the hydraulic oil in the high-pressure oil circuit 5 can flow to the hydraulically controlled reversing valve 7; at the same time, the proportional valve
  • the size of the opening of the proportional valve 6 is controlled by the current of the proportional valve 6, so that the size of the opening of the proportional valve 6 is controlled by controlling the current of the proportional valve 6, that is, the flow of the proportional valve 6 is controlled to control the proportional valve 6.
  • Q is the flow rate of the discharge port of the gear pump 4
  • P is the pressure of the discharge port of the gear pump 4
  • the on-off valve 10 is opened, so that the hydraulic control reversing valve 7 is connected to the high-pressure oil circuit 5, and at the same time, the hydraulic oil of the working oil port of the proportional valve 6 acts on the check valve 11. It flows into the control oil port of the hydraulic control directional valve 7 through the control oil circuit 8, that is, the actual load pressure is fed back to the hydraulic control directional valve 7 through the control oil circuit 8. Therefore, the hydraulic control directional valve 7 can The excess flow rate other than the flow rate required for the load discharged from the discharge port of the gear pump 4 is drained to the low pressure return oil circuit 9 .
  • the power provided by the engine 1 is referred to herein as the power of the part that generates electricity for the electric motor 2 (the generator).
  • P m (P W -P P )* ⁇ w .
  • P W is the total power output by the engine 1
  • PP is the power required for driving the gear pump 4 to rotate in the power output by the engine 1 above
  • ⁇ w is the transmission efficiency.
  • the hybrid hydraulic system provided by the present invention effectively reduces the power P P required for driving the gear pump 4 to rotate, and accordingly, increases the power P m of the engine 1 for the power generation part, Make the whole system more energy efficient.
  • the gears of the gear pump 4 can be prevented from working in a high pressure state for a long time, thereby increasing the service life of the gear pump 4 .
  • the hybrid hydraulic system provided by the present invention also effectively avoids the long-time opening of the relief valve due to the The oil temperature rise caused by the overflow avoids the adverse effect of the hydraulic oil temperature rise on the hydraulic system.
  • the flow rate is also included.
  • the valve 12 is provided between the control oil passage 8 and the low pressure return oil passage 9 . That is to say, when the actuator stops working, the pressure of the control oil circuit 8 can be leaked from the flow valve 12 to the low-pressure oil return circuit 9, so that the control oil circuit 8 can be restored to the initial state, so as to ensure the normal operation of the hydraulic control reversing valve 7. Work.
  • proportional valve 6 , one-way valve 11 , hydraulic control reversing valve 7 and switch valve 10 are integrated into the same valve block to form actuator function valve group 15 .
  • the proportional valve 6, the one-way valve 11, the hydraulic control reversing valve 7 and the on-off valve 10 are integrated into one body to form an integral valve group, which is convenient for one-time installation.
  • the hydraulically controlled reversing valve 7 and the control oil circuit 8 for load feedback the commonality of the electric mode and the diesel-powered mode in the same valve group can be realized.
  • the hybrid hydraulic system further includes the flow valve 12, the flow valve 12, the proportional valve 6, the one-way valve 11, the hydraulic control reversing valve 7 and the on-off valve 10 can also be integrated into one body to form a Integral valve block.
  • the working oil port of the proportional valve 6 is connected with the load reversing valve 13 , and the control oil port of the load reversing valve 13 is connected to the actuator. connected.
  • the hydraulic oil flowing out from the proportional valve 6 enters the load reversing valve 13, and by controlling the switching of the load reversing valve 13, the actuator is controlled to change the action direction, so as to flexibly adjust the action of the load.
  • the load reversing valve 13 includes a three-position five-way reversing valve or a two-position reversing valve. Three-way reversing valve.
  • the specific number of the proportional valves 6 is not limited.
  • the number of the proportional valves 6 is at least two.
  • the number of proportional valves 6 may preferably be four.
  • the number of load reversing valves 13 connected to the working oil port of a single proportional valve 6 is one or two.
  • one load reversing valve 13 can be used to realize the reversing of one actuator, and two load reversing valves 13 can also be used to realize the reversing of one actuator.
  • the working oil port of a proportional valve 6 can be connected to a 5/3-way reversing valve, and the working oil port of a proportional valve 6 can also be connected to two 3/2-way reversing valves.
  • a safety relief valve 14 disposed between the high-pressure oil passage 5 and the low-pressure oil return passage 9 is also included.
  • the safety relief valve 14 is opened to relieve the pressure, so as to ensure the safety of the hybrid hydraulic system. .
  • the specific type of the on-off valve 10 is not limited.
  • the on-off valve 10 is a solenoid valve, that is, the solenoid valve is controlled to open by controlling whether the solenoid valve is energized. or off. That is, in the electric mode, the solenoid valve is not energized; in the diesel mode, the solenoid valve is energized to open.
  • load reversing valve 13 and the safety relief valve 14 can also be integrated into the same valve block formed by the proportional valve 6 , the hydraulically controlled reversing valve 7 , the on-off valve 10 and the flow valve 12 .
  • the present invention also provides an aerial work vehicle including the hybrid hydraulic system disclosed in the above embodiments.
  • an aerial work vehicle including the hybrid hydraulic system disclosed in the above embodiments.
  • the structure of other parts of the aerial work vehicle please refer to the prior art, which will not be repeated herein.
  • the aerial work vehicle is characterized in that it adopts the hybrid hydraulic system disclosed in any one of the above embodiments, so as to achieve the purpose of reducing energy loss, increasing power generation rate, and prolonging the service life of the gear pump 4 .

Abstract

一种混合动力液压系统及高空作业车,包括:发动机、电动机和齿轮泵,发动机与电动机可分离且可连接,齿轮泵与电动机相连;高压油路,其与齿轮泵的排出口相连;比例阀,其进油口与高压油路相连;液控换向阀,液控换向阀的进油口与高压油路相连,液控换向阀的回油口与低压回油路相连;控制油路,其设于液控换向阀的控制油口与比例阀的工作油口之间,控制油路设有单向阀,单向阀的进油口与比例阀的工作油口相连;开关阀,其设于高压油路与液控换向阀的进油口之间,发动机非工作时,开关阀关闭;发动机工作时,开关阀打开。在不影响电动模式下降低了柴动模式下齿轮泵的出口压力,降低了能量损耗,提升了发电率,延长了齿轮泵的使用寿命。

Description

一种混合动力液压系统及高空作业车
本申请要求于2021年04月30日提交中国专利局、申请号为202110484939.X、发明名称为“一种混合动力液压系统及高空作业车”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及液压系统技术领域,更具体地说,涉及一种混合动力液压系统。此外,本发明还涉及一种包括上述混合动力液压系统的高空作业车。
背景技术
为了响应节能环保的发展主流,同时适应复杂工况的需求,市场上出现了混合动力高空作业车。混合动力高空作业车采用发动机和电动机双动力混合的齿轮泵液压系统,也即,发动机与电动机通过离合器串联连接,电动机与齿轮泵连接,通过电动机的转动带动齿轮泵转动,从而给整个液压系统提供动力油源。该混合动力高空作业车具有两种工作模式,分别为电动模式和柴动模式,两种工作模式之间通过控制面板上的摇头开关(或旋钮开关)控制切换。
当该混合动力高空作业车处于电动模式时,发动机与电动机脱开,电动机在电池供电下转动,进而带动齿轮泵转动,以供给液压油;此时,液压系统中各执行机构动作的速度由电机转速控制,也即,通过控制电机转速,来控制齿轮泵所输出的流量大小,进而控制各执行机构的动作速度。
当该混合动力高空作业车处于柴动模式时,发动机与电动机通过离合器耦合相连,此时,电动机作为发电机来使用,发动机作为动力源,带动发电机(电动机)发电,并带动齿轮泵转动,以供给液压油;此种工况下,由于发动机的转速固定,因此,使得齿轮泵在定转速下输出的流量固定,而由于各执行机构动作所需求的流量不一致,只能使齿轮泵按最大需求流量输出流量。这就使得齿轮泵输出的流量会大于某些执行机构的实际需求流量,多余流量则形成高压溢流,这样,一方面使得齿轮泵长期工作在高 压状态下,导致齿轮泵的使用寿命大幅降低;另一方面,由于驱动齿轮泵转动所需的功率与齿轮泵出口的压力成正比,齿轮泵出口压力较大时,就会造成很大的功率浪费;进一步地,由于混合动力高空作业车处于柴动模式时,发动机定转速转动,会将多余功率用于发电机(电动机)发电,而由于齿轮泵造成很大能量浪费,从而将导致发动机用于发电的效率很低。
综上所述,如何提供一种混合动力液压系统,在不影响电动模式下高空作业车的工作状况的同时,降低高空作业车在柴动模式下齿轮泵的出口压力,是目前本领域技术人员亟待解决的问题。
发明内容
有鉴于此,本发明的目的是提供一种混合动力液压系统,其可降低柴动模式下齿轮泵的出口压力,同时不影响电动模式的正常运行,因此,可降低能量损耗,提升发电率,同时延长齿轮泵的使用寿命。
本发明的另一目的是提供一种包括上述混合动力液压系统的高空作业车,其能量损耗小,发电率高,且齿轮泵的使用寿命长。
为了实现上述目的,本发明提供如下技术方案:
一种混合动力液压系统,包括:
发动机、电动机和齿轮泵,所述发动机与所述电动机可分离且可连接,所述齿轮泵与所述电动机相连;
高压油路,其与所述齿轮泵的排出口相连;
比例阀,其进油口与所述高压油路相连;
液控换向阀,所述液控换向阀的进油口与所述高压油路相连,所述液控换向阀的回油口与低压回油路相连;
控制油路,其设于所述液控换向阀的控制油口与所述比例阀的工作油口之间,所述控制油路设有单向阀,所述单向阀的进油口与所述比例阀的工作油口相连;
开关阀,其设于所述高压油路与所述液控换向阀的进油口之间,所述发动机非工作时,所述开关阀关闭;所述发动机工作时,所述开关阀打开。
优选地,还包括流量阀,其设于所述控制油路与所述低压回油路之间。
优选地,所述比例阀、所述单向阀、所述液控换向阀和所述开关阀集成于同一个阀块。
优选地,所述比例阀的工作油口连接有负载换向阀,所述负载换向阀的工作油口与执行机构相连。
优选地,所述负载换向阀包括三位五通换向阀或两位三通换向阀。
优选地,所述比例阀的数量至少为两个。
优选地,单个所述比例阀的工作油口连接的所述负载换向阀的数量为一个或两个。
优选地,还包括设于所述高压油路与所述低压回油路之间的安全溢流阀。
优选地,所述开关阀为电磁阀。
一种高空作业车,包括混合动力液压系统,所述混合动力液压系统为上述任意一种混合动力液压系统。
本发明提供的混合动力液压系统,在电动模式下,发动机与电动机分离,发动机处于非工作状态,此时,电动机在电池供电的情况下工作,由电动机带动齿轮泵转动,为高压油路供给液压油。此种工况下,开关阀关闭,使得高压油路与液控换向阀之间不连通;同时,比例阀的开口处于最大状态,通过控制电动机的转速,控制各执行机构的动作速度,也即,电动机输出的功率最大效率的提供给液压系统以推动各执行机构动作。
在柴动模式下,发动机与电动机连接,此时电动机作为发电机使用,由发动机工作,通过电动机带动齿轮泵转动,同时,发动机的剩余功率则用来给电动机(发电机)的电池进行充电。此种工作模式下,开关阀打开,使得高压油路与液控换向阀之间连通,因此,可以使高压油路的液压油流向液控换向阀;同时,比例阀的开口大小由比例阀的得电电流大小控制,从而通过控制比例阀的电流大小来控制比例阀的开口大小,也即,控制比例阀的流量,以此来控制与比例阀对应的执行机构的动作速度;此时,由于比例阀的工作油口与液控换向阀的控制油口之间通过控制油路连通,因此,在单向阀的作用下,将从比例阀的工作油口流出的液压油引入到液控换向阀的控制油口,使得液控换向阀的一侧为高压油路的液压油,另一侧 为比例阀工作油口的液压油,此时,通过液控换向阀的回油口可将高压油路的液压油减去比例阀的液压油的多余流量排出到低压回油路,在忽略如管路压损等压力损失的情况下,使得齿轮泵的排出口的压力P与负载压力P f大致相等。相比于现有技术,有效降低了能量损耗,提高了发动机用于发电部分的功率P m,使整个系统更加节能。进一步地,由于齿轮泵排出口的压力P与实际负载压力大致相等,因此,可避免齿轮泵的齿轮长期工作在高压状态,从而可提升齿轮泵的使用寿命。
本发明提供的高空作业车,包括上述混合动力液压系统,具有同样的有益效果。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其它的附图。
图1为本发明具体实施例所提供的混合动力液压系统的控制原理图。
图1中的附图标记如下:
1为发动机、2为电动机、3为离合器、4为齿轮泵、5为高压油路、6为比例阀、7为液控换向阀、8为控制油路、9为低压回油路、10为开关阀、11为单向阀、12为流量阀、13为负载换向阀、14为安全溢流阀、15为执行机构功能阀组。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本发明的核心是提供一种混合动力液压系统,其可降低柴动模式下齿 轮泵的出口压力,同时不影响电动模式的正常运行,因此,可降低能量损耗,提升发电率,同时延长齿轮泵的使用寿命。本发明的另一核心是提供一种包括上述混合动力液压系统的高空作业车,其能量损耗小,发电率高,且齿轮泵的使用寿命长。
请参考图1,为本发明具体实施例所提供的混合动力液压系统的控制原理图。
本发明提供一种混合动力液压系统,包括发动机1、电动机2、齿轮泵4、高压油路5、低压回油路9、控制油路8、比例阀6、单向阀11、液控换向阀7以及开关阀10。
具体地,发动机1与电动机2相连,电动机2与齿轮泵4相连。需要说明的是,发动机1和电动机2之间可连接且可脱开,以实现电动模式和柴动模式的切换。优选地,发动机1与电动机2之间通过离合器3相连,当离合器3耦合时,实现发动机1与电动机2的连接;当离合器3断开时,使发动机1与电动机2脱开。
高压油路5与齿轮泵4的排出口相连,由齿轮泵4为整个混合动力液压系统提供液压油,齿轮泵4提供的液压油经由高压油路5输送给各个负载回路。其中,比例阀6的进油口和液控换向阀7的进油口分别与高压油路5相连。低压回油路9优选与油箱相连,用于泄压回油。控制油路8设于比例阀6的工作油口与液控换向阀7的控制油口之间,控制油路8设有单向阀11,单向阀11的进油口与比例阀6的工作油口相连,也即,液压油只能从比例阀6的工作油口沿控制油路8进入液控换向阀7,而不能使液压油反向流动。液控换向阀7的回油口与低压回油路9相连。开关阀10设于高压油路5与液控换向阀7的进油口之间,用于控制高压油路5与液控换向阀7之间油路的通断,当发动机1非工作时,开关阀10关闭;发动机1工作时,开关阀10打开。
可以理解的是,当该混合动力液压系统处于电动模式时,发动机1与电动机2分离,发动机1处于非工作状态,此时,电动机2在电池供电的情况下工作,由电动机2带动齿轮泵4转动,为高压油路5供给液压油。此种工况下,开关阀10关闭,使得高压油路5与液控换向阀7之间不连通; 同时,比例阀6的开口处于最大状态,通过控制电动机2的转速,控制各执行机构的动作速度,也即,电动机2输出的功率最大效率的提供给液压系统以推动各执行机构动作。
当该混合动力液压系统需要处于柴动模式时,发动机1与电动机2连接,此时电动机2作为发电机使用,由发动机1工作,通过电动机2带动齿轮泵4转动,同时,发动机1的剩余功率则用来给电动机2(发电机)的电池进行充电。此种工作模式下,开关阀10打开,使得高压油路5与液控换向阀7之间连通,因此,可以使高压油路5的液压油流向液控换向阀7;同时,比例阀6的开口大小由比例阀6的得电电流大小控制,从而通过控制比例阀6的电流大小来控制比例阀6的开口大小,也即,控制比例阀6的流量,以此来控制与比例阀6对应的执行机构的动作速度;此时,由于比例阀6的工作油口与液控换向阀7的控制油口之间通过控制油路8连通,因此,在单向阀11的作用下,将从比例阀6的工作油口流出的液压油引入到液控换向阀7的控制油口,使得液控换向阀7的一侧为高压油路5的液压油,另一侧为比例阀6的工作油口液压油,此时,通过液控换向阀7的回油口可将高压油路5的液压油减去比例阀6的液压油的多余流量排出到低压回油路9。
本领域技术人员可以理解的是,在柴动模式下,驱动齿轮泵4转动所需的功率P P为:
Figure PCTCN2021139057-appb-000001
其中,Q为齿轮泵4的排出口的流量,P为齿轮泵4的排出口的压力,η为齿轮泵4的效率。由于柴动模式下,发动机1定转速转动,也即,发动机1的转速n为常数,且齿轮泵4的排量V为常数,因此,齿轮泵4的排出口的流量Q为常数,其中,Q=n*V。同时,η为常数。因此,驱动齿轮泵4转动所需的功率P P与齿轮泵4的排出口的压力P成正比。
由上文内容可知,在柴动模式下,开关阀10打开,使得液控换向阀7与高压油路5连通,同时,比例阀6的工作油口的液压油在单向阀11的作用下经由控制油路8流入到液控换向阀7的控制油口,也即,通过控制油 路8将实际负载压力反馈至液控换向阀7,因此,通过液控换向阀7可将从齿轮泵4的排出口排出的除负载所需流量外的多余流量泄至低压回油路9。由此可以看出,在忽略如管路压损等压力损失的情况下,使得齿轮泵4的排出口的压力P与负载压力P f大致相等,也即,P≈P f,因此,可近似认为驱动齿轮泵4转动所需的功率P P为:
Figure PCTCN2021139057-appb-000002
相比于现有技术,在柴动模式下,无液控换向阀7进行泄压,而是利用溢流阀进行泄压,也即,齿轮泵4以负载最大需求流量排出液压油,使得齿轮泵4排出口排出的流量大于某些执行机构所需的实际流量,这就导致多余流量在齿轮泵4的排出口形成憋压,当压力升高到溢流阀的设定值后溢流阀打开,使多余的流量从溢流阀泄至低压回油路9。由此可知,这会导致齿轮泵4排出口的压力P远大于实际负载所需的压力P f,使得能量损耗大。
可见,本发明提供的混合动力液压系统,有效降低了能量损耗。
另外,由于柴动模式下,发动机1的多余功率用来为电动机2(作为发电机使用)进行充电,本文称发动机1所提供的功率用于为电动机2(发电机)进行发电的部分的功率为P m,则P m=(P W-P P)*η w。其中,P W为发动机1输出的总功率,P P为上文中发动机1输出的功率中用于驱动齿轮泵4转动所需的功率,η w为传动效率。由上文所述可知,本发明提供的混合动力液压系统,有效降低了驱动齿轮泵4转动所需的功率P P,因此,相应地,就提高了发动机1用于发电部分的功率P m,使整个系统更加节能。
进一步地,由于齿轮泵4排出口的压力P与实际负载压力大致相等,因此,可避免齿轮泵4的齿轮长期工作在高压状态,从而可提升齿轮泵4的使用寿命。而且,所公知的是,当溢流阀打开处于高压溢流状态时,液压系统的油温会迅速升高,因此,本发明提供的混合动力液压系统还有效避免了因溢流阀长时间打开溢流而造成的油温升高现象,避免液压油温升对液压系统造成不利影响。
另外,为了使执行机构每次停止动作后,控制油路8能够恢复初始状 态,避免控制油路8内憋压,对下次负载动作造成影响,在上述实施例的基础之上,还包括流量阀12,其设于控制油路8与低压回油路9之间。也就是说,当执行机构停止动作后,控制油路8的压力能够从流量阀12泄至低压回油路9,使控制油路8恢复初始状态,以便于保证液控换向阀7的正常工作。
考虑到安装的方便性,在上述实施例的基础之上,比例阀6、单向阀11、液控换向阀7和开关阀10集成于同一个阀块,形成执行机构功能阀组15。
也就是说,本实施例将比例阀6、单向阀11、液控换向阀7和开关阀10集成于一体,形成一个整体的阀组,便于一次性安装。同时,通过开关阀10、液控换向阀7及用于负载反馈的控制油路8的联合使用,可实现电动模式与柴动模式在同一个阀组的通用性。
需要说明的是,当该混合动力液压系统还包括流量阀12时,也可以将流量阀12、比例阀6、单向阀11、液控换向阀7和开关阀10集成于一体,形成一个整体的阀组。
为了控制执行机构的动作方向,在上述实施例的基础之上,如图1所示,比例阀6的工作油口连接有负载换向阀13,负载换向阀13的控制油口与执行机构相连。
也就是说,本实施例中,从比例阀6流出的液压油进入负载换向阀13,通过控制负载换向阀13切换,来控制执行机构更换动作方向,以灵活调整负载的动作。
需要说明的是,本实施例对负载换向阀13的具体类型并不做限定,优选地,在上述实施例的基础之上,负载换向阀13包括三位五通换向阀或两位三通换向阀。
另外,在上述各个实施例中,对比比例阀6的具体数量不做限定,优选地,在上述实施例的基础之上,比例阀6的数量至少为两个。例如,比例阀6的数量可优选为四个。
可以理解的是,比例阀6的数量越多,则对应的执行机构越多,可实现多个执行机构的独立运动。
进一步地,在上述实施例的基础之上,单个比例阀6的工作油口连接的负载换向阀13的数量为一个或两个。
也就是说,本实施例可以通过一个负载换向阀13来实现一个执行机构的换向,也可以通过两个负载换向阀13来实现一个执行机构的换向。
如图1所示,一个比例阀6的工作油口可以连接一个三位五通换向阀,一个比例阀6的工作油口也可以连接两个两位三通换向阀。
进一步地,考虑到安全性,在上述实施例的基础之上,还包括设于高压油路5与低压回油路9之间的安全溢流阀14。
也即,当齿轮泵4的排出口的压力升高到安全溢流阀14的设定值后,安全溢流阀14打开,起到泄压的作用,以确保该混合动力液压系统的安全性。
需要说明的是,在上述各个实施例中,对开关阀10的具体类型并不做限定,优选地,开关阀10为电磁阀,也即,通过控制电磁阀是否得电,来控制电磁阀打开或关闭。也即,在电动模式时,电磁阀不得电;在柴动模式时,电磁阀得电打开。
进一步地,负载换向阀13和安全溢流阀14也可以同时集成于比例阀6、液控换向阀7、开关阀10和流量阀12形成的同一个阀块上。
除了上述混合动力液压系统,本发明还提供一种包括上述实施例公开的混合动力液压系统的高空作业车,该高空作业车的其它各部分的结构请参考现有技术,本文不再赘述。
该高空作业车的特点在于,采用上述任意一个实施例公开的混合动力液压系统,以达到降低能量损耗,提升发电率,同时延长齿轮泵4的使用寿命的目的。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
以上对本发明所提供的混合动力液压系统及高空作业车进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出, 对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (10)

  1. 一种混合动力液压系统,其特征在于,包括:
    发动机(1)、电动机(2)和齿轮泵(4),所述发动机(1)与所述电动机(2)可分离且可连接,所述齿轮泵(4)与所述电动机(2)相连;
    高压油路(5),其与所述齿轮泵(4)的排出口相连;
    比例阀(6),其进油口与所述高压油路(5)相连;
    液控换向阀(7),所述液控换向阀(7)的进油口与所述高压油路(5)相连,所述液控换向阀(7)的回油口与低压回油路(9)相连;
    控制油路(8),其设于所述液控换向阀(7)的控制油口与所述比例阀(6)的工作油口之间,所述控制油路(8)设有单向阀(11),所述单向阀(11)的进油口与所述比例阀(6)的工作油口相连;
    开关阀(10),其设于所述高压油路(5)与所述液控换向阀(7)的进油口之间,所述发动机(1)非工作时,所述开关阀(10)关闭;所述发动机(1)工作时,所述开关阀(10)打开。
  2. 根据权利要求1所述的混合动力液压系统,其特征在于,还包括流量阀(12),其设于所述控制油路(8)与所述低压回油路(9)之间。
  3. 根据权利要求1或2所述的混合动力液压系统,其特征在于,所述比例阀(6)、所述单向阀(11)、所述液控换向阀(7)和所述开关阀(10)集成于同一个阀块。
  4. 根据权利要求3所述的混合动力液压系统,其特征在于,所述比例阀(6)的控制油口连接有负载换向阀(13),所述负载换向阀(13)的控制油口与执行机构相连。
  5. 根据权利要求4所述的混合动力液压系统,其特征在于,所述负载换向阀(13)包括三位五通换向阀或两位三通换向阀。
  6. 根据权利要求4所述的混合动力液压系统,其特征在于,所述比例阀(6)的数量至少为两个。
  7. 根据权利要求6所述的混合动力液压系统,其特征在于,单个所述比例阀(6)的工作油口连接的所述负载换向阀(13)的数量为一个或两个。
  8. 根据权利要求3所述的混合动力液压系统,其特征在于,还包括设 于所述高压油路(5)与所述低压回油路(9)之间的安全溢流阀(14)。
  9. 根据权利要求3所述的混合动力液压系统,其特征在于,所述开关阀(10)为电磁阀。
  10. 一种高空作业车,包括混合动力液压系统,其特征在于,所述混合动力液压系统为权利要求1-9任一项所述的混合动力液压系统。
PCT/CN2021/139057 2021-04-30 2021-12-17 一种混合动力液压系统及高空作业车 WO2022227621A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110484939.XA CN113153854A (zh) 2021-04-30 2021-04-30 一种混合动力液压系统及高空作业车
CN202110484939.X 2021-04-30

Publications (1)

Publication Number Publication Date
WO2022227621A1 true WO2022227621A1 (zh) 2022-11-03

Family

ID=76873157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/139057 WO2022227621A1 (zh) 2021-04-30 2021-12-17 一种混合动力液压系统及高空作业车

Country Status (2)

Country Link
CN (1) CN113153854A (zh)
WO (1) WO2022227621A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113153854A (zh) * 2021-04-30 2021-07-23 湖南星邦智能装备股份有限公司 一种混合动力液压系统及高空作业车

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11351202A (ja) * 1998-06-10 1999-12-24 Shin Caterpillar Mitsubishi Ltd ロードセンシング油圧回路
CN102434502A (zh) * 2011-12-23 2012-05-02 四川大学 装载机变频泵控转向液压系统
US20120224983A1 (en) * 2009-11-10 2012-09-06 Xiaogang Yi Multi-way valve, hydraulic device and concrete pump vehicle
CN103244496A (zh) * 2013-05-13 2013-08-14 三一汽车起重机械有限公司 回转控制阀组、回转控制液压系统和起重机
CN103671335A (zh) * 2013-12-19 2014-03-26 杭叉集团股份有限公司 负载敏感电比例多路阀
CN112591681A (zh) * 2020-12-24 2021-04-02 杭叉集团股份有限公司 一种门架起升及势能回收的液压油路
CN112607673A (zh) * 2020-12-24 2021-04-06 杭叉集团股份有限公司 一种用于电动空箱堆高机门架起升及势能回收的液压油路
CN113153854A (zh) * 2021-04-30 2021-07-23 湖南星邦智能装备股份有限公司 一种混合动力液压系统及高空作业车
CN214533782U (zh) * 2021-04-30 2021-10-29 湖南星邦智能装备股份有限公司 一种混合动力液压系统及高空作业车

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11351202A (ja) * 1998-06-10 1999-12-24 Shin Caterpillar Mitsubishi Ltd ロードセンシング油圧回路
US20120224983A1 (en) * 2009-11-10 2012-09-06 Xiaogang Yi Multi-way valve, hydraulic device and concrete pump vehicle
CN102434502A (zh) * 2011-12-23 2012-05-02 四川大学 装载机变频泵控转向液压系统
CN103244496A (zh) * 2013-05-13 2013-08-14 三一汽车起重机械有限公司 回转控制阀组、回转控制液压系统和起重机
CN103671335A (zh) * 2013-12-19 2014-03-26 杭叉集团股份有限公司 负载敏感电比例多路阀
CN112591681A (zh) * 2020-12-24 2021-04-02 杭叉集团股份有限公司 一种门架起升及势能回收的液压油路
CN112607673A (zh) * 2020-12-24 2021-04-06 杭叉集团股份有限公司 一种用于电动空箱堆高机门架起升及势能回收的液压油路
CN113153854A (zh) * 2021-04-30 2021-07-23 湖南星邦智能装备股份有限公司 一种混合动力液压系统及高空作业车
CN214533782U (zh) * 2021-04-30 2021-10-29 湖南星邦智能装备股份有限公司 一种混合动力液压系统及高空作业车

Also Published As

Publication number Publication date
CN113153854A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
CN102229328B (zh) 一种多泵合流的车辆机械节能液压系统
CN201309504Y (zh) 刚性矿用自卸车举升转向控制系统
CN104163385A (zh) 一种绞车液压控制系统
WO2022227621A1 (zh) 一种混合动力液压系统及高空作业车
CN104912136B (zh) 一种挖掘机及其回转液压系统
CN101367347B (zh) 刚性矿用自卸车举升转向控制方法及系统
CN207761575U (zh) 旋挖钻机主泵辅泵合流控制系统
CN214533782U (zh) 一种混合动力液压系统及高空作业车
US5862665A (en) Apparatus for preventing reverse rotation for hydraulic actuator
CN110953197A (zh) 功率控制液压系统及起重机
CN102691700A (zh) 一种上车回转能量回收利用系统
CN201232209Y (zh) 一种挖掘装载机液压双泵卸荷系统
CN207905007U (zh) 装载机液压控制系统
CN211141456U (zh) 一种怠速节能系统及内燃叉车
WO2012113208A1 (zh) 混凝土泵送设备的动力驱动装置和混凝土泵送设备
CN114151055B (zh) 一种压裂设备液压系统、控制方法及压裂设备
CN217502118U (zh) 维持电控重载开式泵出口压力装置
CN218542813U (zh) 一种定量液压泵的液压无级调速系统
EP1832686A1 (en) Hydraulic lock
CN212656305U (zh) 一种节省安装空间的挖掘机液压系统
CN220248260U (zh) 被动偏航机构及风力发电机组
CN218882981U (zh) 一种带液力制动功能的液力传动箱控制系统
CN109356218A (zh) 装载机用分配阀及装载机液压系统
CN217974566U (zh) 一种轮式挖掘机先导控制系统及轮式挖掘机
CN215315692U (zh) 一种钢包回转台的液压系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21939080

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE