WO2022227435A1 - 一种显示面板及显示装置 - Google Patents

一种显示面板及显示装置 Download PDF

Info

Publication number
WO2022227435A1
WO2022227435A1 PCT/CN2021/125547 CN2021125547W WO2022227435A1 WO 2022227435 A1 WO2022227435 A1 WO 2022227435A1 CN 2021125547 W CN2021125547 W CN 2021125547W WO 2022227435 A1 WO2022227435 A1 WO 2022227435A1
Authority
WO
WIPO (PCT)
Prior art keywords
display panel
common electrode
layer
pixel
base substrate
Prior art date
Application number
PCT/CN2021/125547
Other languages
English (en)
French (fr)
Inventor
方正
董学
梁蓬霞
韩佳慧
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2022227435A1 publication Critical patent/WO2022227435A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a display panel and a display device.
  • the current solution is to increase the width of the black matrix to cover the location where the crosstalk occurs.
  • the increase of the width of the black matrix will reduce the area of the opening area of the pixel and reduce the overall brightness of the display product.
  • a display panel including:
  • a driving layer located on one side of the first base substrate
  • each of the pixel electrodes is electrically connected to the driving layer;
  • the common electrode is located on the side of the pixel electrode away from the driving layer, and the common electrode and each of the pixel electrodes are insulated from each other; the common electrode includes a plurality of openings for exposing each of the pixel electrodes; the At least a partial area of the common electrode is opaque to light;
  • a reflective layer is located between the first base substrate and the driving layer; the reflective layer includes a plurality of openings for exposing each of the pixel electrodes.
  • the common electrode includes:
  • a transparent conductive layer located on the side close to the pixel electrode
  • a light shielding layer located on the side of the transparent conductive layer away from the pixel electrode;
  • Both the transparent conductive layer and the light shielding layer include openings for exposing each of the pixel electrodes, and the orthographic projection of the light shielding layer on the first substrate is located on the first substrate of the transparent conductive layer. within the orthographic projection of the base substrate.
  • the width of the light shielding layer between two adjacent openings is smaller than the width of the transparent conductive layer between the two adjacent openings.
  • the width of the light shielding layer between two adjacent openings is 1.8 ⁇ m ⁇ 2.2 ⁇ m.
  • the material used for the light shielding layer is metal molybdenum.
  • the width of the reflective layer between two adjacent openings is 1.8 ⁇ m ⁇ 2.3 ⁇ m.
  • the common electrode adopts a conductive light-shielding material.
  • the width of the common electrode between two adjacent openings is 2.8 ⁇ m ⁇ 3.4 ⁇ m.
  • the material used for the common electrode is metal molybdenum.
  • the width of the reflective layer between two adjacent openings is 2.3 ⁇ m ⁇ 3.3 ⁇ m.
  • the driving layer includes:
  • the plurality of the scanning signal lines and the plurality of the data signal lines are divided into a plurality of sub-pixel units, the pixel electrodes and the The sub-pixel units are in one-to-one correspondence;
  • a plurality of transistors are in one-to-one correspondence with each of the sub-pixel units; the control electrodes of the transistors are electrically connected to the corresponding scan signal lines, and the first electrodes of the transistors are electrically connected to the corresponding data signal lines, The second electrode of the transistor is electrically connected to the corresponding pixel electrode;
  • the display panel also includes:
  • an insulating layer located between each of the pixel electrodes and the common electrode;
  • a second base substrate located on the side of the common electrode away from the pixel electrode, the second base substrate and the common electrode are separated by a set distance;
  • the color filter layer located on the side of the second base substrate facing the common electrode;
  • the color filter layer includes a plurality of color filter units corresponding to each of the sub-pixel units one-to-one and spaced from each of the color filter units the black matrix of the cell;
  • the liquid crystal layer is located between the common electrode and the color filter layer.
  • the orthographic projection of the common electrode on the first base substrate and the orthographic projection of the pixel electrode on the first base substrate have an overlapping area
  • the orthographic projection of the data signal line on the first base substrate does not overlap with the orthographic projection of the pixel electrode on the first base substrate.
  • the orthographic projection of the data signal line on the first base substrate is within the range of the orthographic projection of the reflective layer on the first base substrate.
  • an embodiment of the present disclosure provides a display device including a backlight module, and any of the above-mentioned display panels located on a light-emitting side of the backlight module.
  • the display device is a virtual reality display device or an augmented reality display device.
  • FIG. 1 is a schematic cross-sectional structure diagram of a display panel provided by an embodiment of the present disclosure
  • FIG. 2 is one of a schematic plan view of a display panel according to an embodiment of the present disclosure
  • FIG. 3 is a schematic cross-sectional structure diagram of the display panel corresponding to FIG. 2;
  • FIG. 4 is a corresponding transmittance curve diagram when the common electrode is fully transparent and at least partially opaque according to an embodiment of the present disclosure
  • FIG. 5 is a graph of relative brightness corresponding to the case where the common electrode is fully transparent and at least partially opaque according to an embodiment of the present disclosure
  • FIG. 6 is the second schematic diagram of the plan structure of the display panel provided by the embodiment of the present disclosure.
  • FIG. 7 is a schematic cross-sectional structure diagram of the display panel corresponding to FIG. 6;
  • FIG. 8 is a simplified schematic structural diagram of a display panel according to an embodiment of the present disclosure.
  • FIG. 9 is one of the corresponding relationship curves between the width of the reflective layer and the brightness gain provided by the embodiment of the present disclosure.
  • FIG. 10 is a relationship curve between the width and transmittance of the light shielding layer and the reflective layer provided by the embodiment of the present disclosure
  • FIG. 11 is a third schematic diagram of a plane structure of a display panel provided by an embodiment of the present disclosure.
  • FIG. 12 is a schematic cross-sectional structure diagram of the display panel corresponding to FIG. 11;
  • FIG. 13 is a fourth schematic diagram of a plane structure of a display panel according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic cross-sectional structure diagram of the display panel corresponding to FIG. 13;
  • FIG. 15 is the second curve of the corresponding relationship between the width of the reflective layer and the brightness gain provided by the embodiment of the present disclosure.
  • FIG. 16 is a transmittance curve diagram corresponding to different common electrode widths according to an embodiment of the present disclosure.
  • FIG. 17 is one of the schematic cross-sectional structural diagrams of the display device provided by the embodiment of the present disclosure.
  • FIG. 18 is a second schematic diagram of a cross-sectional structure of a display device according to an embodiment of the present disclosure.
  • Near-eye display is a hot research topic at present. Near-eye display can provide people with an unprecedented sense of interaction, and has important application value in many fields such as telemedicine, industrial design, education, military virtual training, and entertainment.
  • VR Virtual reality
  • AR Augment de Reality
  • the VR near-eye display technology is to display the images of the left and right eyes on the near-eye displays corresponding to the left and right eyes, respectively, and the left and right eyes can obtain the image information with differences and then synthesize stereoscopic vision in the brain.
  • the AR near-eye display technology superimposes and displays the virtual image generated by the near-eye display device and the real-world image, so that the user can see the final enhanced real-life image from the screen.
  • the near-eye display device usually takes the form of a helmet or glasses, and the near-eye display device is provided with a micro display screen and light-transmitting elements to realize image display.
  • the micro display screen can be a liquid crystal display screen or an organic light emitting diode display screen. Since the size of the display screen in the near-eye display device is small, the use of the liquid crystal display screen can effectively reduce the cost.
  • the liquid crystal display is mainly composed of a backlight module and a liquid crystal display panel.
  • the liquid crystal display panel itself does not emit light, and needs to rely on the light source provided by the backlight module to achieve brightness display.
  • the imaging principle of the liquid crystal display is to place the liquid crystal between two pieces of glass, driven by the electric field between the two electrodes, to cause the electric field effect of the liquid crystal molecules to distort, so as to control the transmission or shielding function of the backlight source, so as to display the image. . If a color filter is added, color images can be displayed.
  • the structure of the liquid crystal display panel in the near-eye display device is different from that of the liquid crystal display panel in display devices such as mobile phones, televisions, and computers.
  • FIG. 1 is a schematic cross-sectional structure diagram of a display panel according to an embodiment of the present disclosure.
  • the display panel includes an array substrate L1 and a color filter substrate L2, and further includes a liquid crystal layer lc between the array substrate L1 and the color filter substrate L2.
  • the array substrate L1 includes a first base substrate 10, and the color filter substrate L2 includes a second base substrate 60.
  • the first base substrate 10 and the second base substrate 60 are disposed opposite to each other to form two substrates sandwiching the liquid crystal layer 1c. Structure.
  • the surface of the second base substrate 60 of the color filter substrate L2 facing the first base substrate 10 is further provided with a color filter layer 70 .
  • the color filter layer 70 includes a plurality of The color filter unit 71 and the black matrix 72 that separates the color filter units 71 .
  • FIG. 2 is a schematic plan view of a display panel according to an embodiment of the present disclosure
  • FIG. 3 is a schematic cross-sectional structure view of the display panel corresponding to FIG. 2 .
  • Figures 2 and 3 show the structure of the array substrate in the display panel.
  • the display panel includes: a first base substrate 10.
  • the first base substrate 10 is located at the bottom and has a support and carrying role.
  • the first base substrate 10 can generally be made of glass.
  • the driving layer d1 is located on the base substrate 10.
  • the driving layer d1 usually includes a plurality of film layers, which can be sequentially formed on the first base substrate 10 by a thin film process.
  • the driving layer d1 includes devices such as signal lines, transistors, capacitors, and resistors, and is used to transmit driving signals.
  • the driving layer d1 includes: a plurality of scan signal lines 20 , a plurality of data signal lines 30 and a plurality of transistors T.
  • the plurality of scanning signal lines 20 extend along the first direction x and are arranged along the second direction y.
  • the first direction x and the second direction y intersect.
  • the first direction x may be the direction of the sub-pixel unit row
  • the second direction y may be the direction of the sub-pixel unit column
  • the first direction x and the first direction The two directions y are perpendicular to each other.
  • the plurality of data signal lines 30 extend along the second direction y and are arranged along the first direction x.
  • a plurality of scan signal lines 20 and a plurality of data signal lines 30 are divided into a plurality of sub-pixel units p.
  • a plurality of transistors T are in one-to-one correspondence with each sub-pixel unit p; the control electrodes of the transistors are electrically connected to the corresponding scan signal lines 20 , the first electrodes of the transistors are electrically connected to the corresponding data signal lines 30 , and the second electrodes of the transistors are electrically connected to the corresponding data signal lines 30 .
  • the pixel electrodes are electrically connected.
  • the transistor T as an active driving element, corresponds to each sub-pixel unit p one-to-one, and one sub-pixel unit p is provided with one transistor T.
  • the transistor T loads the data signal transmitted by the connected data signal line 30 to the pixel electrode of the corresponding sub-pixel unit p under the control of the scan signal transmitted by the connected scan signal line 20, so as to control the brightness of the sub-pixel unit p.
  • the display panel further includes: a plurality of pixel electrodes 40 and a common electrode 50 .
  • the pixel electrodes 40 are in one-to-one correspondence with the sub-pixel units p, and one pixel electrode 40 is provided in one sub-pixel unit p.
  • the plurality of pixel electrodes 40 are located on the side of the driving layer d1 away from the first base substrate 10, and each pixel electrode 40 is electrically connected to the second electrode of the transistor in the driving layer d1.
  • the pixel electrodes 40 and the common electrodes 50 are both located on one side of the array substrate, and an insulating layer is further included between the pixel electrodes 40 and the common electrodes 50 for insulating the pixel electrodes 40 and the common electrodes 50 .
  • the common electrode 50 is located on the side of the pixel electrode 40 away from the driving layer d1, and the common electrode 50 includes a plurality of openings for exposing each pixel electrode 40.
  • the orthographic projection of the common electrode 50 on the first base substrate 10 and the orthographic projection of the pixel electrode 40 on the first base substrate 10 have an overlapping area, and the overlapping area can generate
  • the capacitance is the storage capacitance of the sub-pixel unit p.
  • the orthographic projection of the data signal line 30 on the first base substrate does not overlap with the orthographic projection of the pixel electrode on the first base substrate.
  • the width of the sub-pixel unit is greater than the width of the pixel electrode 40 , and usually also includes half the width of the common electrode 50 on both sides of the pixel electrode 40 , namely the sub-pixel unit.
  • the width of the pixel unit is a as shown in FIG. 3 , and the distance between the two pixel electrodes 40 is b.
  • the width a of the sub-pixel unit is generally less than 6 ⁇ m, and the distance b between the two pixel electrodes 40 is less than 4 ⁇ m.
  • the electric field between the pixel electrode and the common electrode in one sub-pixel unit will not be accurately divided by the center line of the common electrode, and the electric fields of adjacent sub-pixel units will crosstalk each other.
  • the adjacent two sub-pixel units are the first sub-pixel unit L1 and the second sub-pixel unit p2 respectively. If the first sub-pixel unit p1 is in a bright state, and the second sub-pixel unit p2 is in a dark state In principle, there is only an electric field in the first sub-pixel unit p1, and there is no electric field in the second sub-pixel unit p2.
  • the electric field line of the first sub-pixel unit p1 will cross the center line of the common electrode. , acts on the common electrode 50 in the second sub-pixel unit p2, and an electric field is also generated in the edge region of the second sub-pixel unit p2. This will make the second sub-pixel unit p2 have brightness, resulting in crosstalk between the sub-pixel units.
  • the width of the black matrix 72 on the color filter substrate L2 in FIG. 1 needs to be increased. However, the increase in the width of the black matrix 72 will reduce the aperture ratio of the sub-pixel unit, which cannot meet the brightness requirement.
  • the large angle emitted by the sub-pixel unit will also cause a cross-color problem. This is because the colors of adjacent sub-pixel units are usually different, so the large-angle light emitted by the first sub-pixel unit p1 will be incident into the area corresponding to the second sub-pixel unit p2, and then pass through the second sub-pixel unit p2. After the color filter unit of the unit p2, the sub-pixel units of the two colors will have brightness, causing the problem of cross-color at large angles.
  • the embodiments of the present disclosure provide a display panel, in which at least a part of the common electrode 50 is opaque to light, which can effectively block the boundary position of adjacent sub-pixel units, so that the area where the electric field crosstalk is generated is located in the common electrode In the opaque area, the crosstalk light can be blocked and the problem of light crosstalk can be solved.
  • the opaque area of the common electrode can also block the large-angle light, so as to solve the problem of cross-color at large viewing angles.
  • the present disclosure further disposes a reflective layer between the first base substrate 10 and the driving layer d1, and the reflective layer includes a plurality of openings for exposing each pixel electrode 40 .
  • the light emitted by the backlight module can be smoothly emitted to the area of the pixel electrode 40, and the light emitted by the backlight module can be effectively reflected after being emitted to the reflective layer, and the reflected light can be re-entered into the backlight module, where it is reflected by the backlight module.
  • the reflective structures such as the reflective sheet in the group are reflected, they can be emitted to the display panel again, and a part of the light can be emitted to the area of the pixel electrode 40 .
  • the output efficiency of light can be effectively improved, and the transmittance of the display panel is not lost.
  • the orthographic projection of the data signal line 30 on the first base substrate 10 is located within the range of the orthographic projection of the reflective layer on the first base substrate 10 . Since the scanning signal lines 20 and the data signal lines 30 are not light-transmitting, the light emitted by the backlight module will be blocked by the scanning signal lines 20 and the data signal lines 30 and other signal lines.
  • a reflective layer is arranged between dl, and the reflective layer has a high reflectivity, so that the pattern of the reflective layer can cover the pattern of the scanning signal line 20 and the pattern of the data signal line, then the light emitted from the reflective layer of the backlight module can be effectively reflected, and will not be completely lost.
  • the reflective layer in the embodiment of the present disclosure can be made of materials such as metal aluminum or silver. These metal materials have high reflectivity. Generally, when the thickness of the reflective layer is less than 1 ⁇ m, it has a better reflective effect, which can effectively improve the display panel. The final light extraction efficiency.
  • the width of the opaque area in the common electrode is larger, the size of the opening area of the sub-pixel unit will be smaller, and the transmittance of light will be lower.
  • the setting of the reflective layer 70 can increase the light intensity of the opening area, so the final gain and transmittance of the display panel are affected by the width of the opaque area in the common electrode and the width of the reflective layer 70 .
  • the embodiment of the present disclosure takes a display panel of 1500 PPI as an example for the correlation of the display panel. parameters are simulated.
  • the pitch of the sub-pixel units p is 5.8 ⁇ m, and the width of the data signal line 30 is 1.8 ⁇ m.
  • FIG. 4 is a corresponding transmittance curve diagram in the case where the common electrode is completely transparent and at least partially opaque according to an embodiment of the present disclosure.
  • the curves connected by the black dots are all light-transmitting common electrodes
  • the corresponding transmittance curves of the common electrodes at different widths
  • the curves connected by the white dots are at least part of the common electrode that is opaque to light, and the opaque area Corresponding transmittance curves at different widths.
  • the numbers in front of the "-" in the abscissa represent the width of the data signal lines
  • the numbers behind the "-" represent the width of the common electrode or the opaque area in the common electrode.
  • FIG. 5 is a graph of relative brightness corresponding to the case where the common electrode is completely transparent and at least partially opaque according to an embodiment of the present disclosure.
  • the curves connected by the black dots are all light-transmitting common electrodes, and the corresponding relative brightness curves of the common electrodes under different widths.
  • the numbers in front of the "-" in the abscissa represent the width of the data signal lines, and the numbers behind the "-" represent the width of the common electrode or the opaque area in the common electrode.
  • the ratio of target brightness to crosstalk brightness can reflect the degree of crosstalk between sub-pixel units. The purer the color; on the contrary, the smaller the ratio of the target brightness to the crosstalk brightness, the smaller the target brightness and the greater the crosstalk brightness, the greater the degree of crosstalk.
  • FIG. 6 is a second schematic diagram of a plan structure of a display panel according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of a cross-sectional structure of the display panel corresponding to FIG. 6 .
  • the common electrode includes: a transparent conductive layer ( 50 ) and a light shielding layer 60 .
  • the display panel also includes a reflective layer 70 .
  • the transparent conductive layer (50) is located on the side close to the pixel electrode 40.
  • the transparent conductive layer can be made of a transparent conductive material, such as indium tin oxide (ITO), which is not limited herein.
  • ITO indium tin oxide
  • the light shielding layer 60 is located on the side of the transparent conductive layer (50) away from the pixel electrode 40.
  • the light-shielding layer 60 can be made of metal molybdenum, which is the material used for the metal layer in the display panel, and the metal molybdenum has a better light-shielding effect.
  • the above-mentioned light shielding layer 60 is made of metal material, and the light shielding layer 60 is in contact with the transparent conductive layer (50), so that the resistance of the common electrode can be reduced.
  • other light-shielding materials can also be used to make the above-mentioned light-shielding layer 60, which is not limited herein.
  • both the transparent conductive layer (50) and the light shielding layer 60 include openings for exposing each pixel electrode 40, and the light shielding layer 60 is located on the transparent conductive layer (50 in the orthographic projection of the first base substrate 10). ) is within the range of the orthographic projection of the first base substrate 10 .
  • the function of the light-shielding layer 60 is to block the crosstalk area between adjacent sub-pixel units and the large-angle light emitted by the sub-pixel units.
  • the size of the light shielding layer 60 in the present disclosure does not exceed the size of the transparent conductive layer (50).
  • the width of the light shielding layer 60 between two adjacent openings is smaller than the width of the transparent conductive layer (50) between the two adjacent openings.
  • the embodiment of the present disclosure conducts a simulation test on the relevant parameters of the display panel for the light-shielding layer 60 and the reflective layer 70 with different widths .
  • FIG. 8 is a schematic diagram of a simplified structure of a display panel according to an embodiment of the present disclosure.
  • FIG. 8 a plurality of components with the same structure in the display panel are removed, and only the backlight module B, the first base substrate 10 , the reflective layer 70 and the insulating layer n are retained.
  • the present disclosure changes the width of the reflective layer 70 between the two openings, and simulates the gain of the display device under different widths of the reflective layer 70 , and the simulation result is shown in FIG. 9 .
  • the abscissa represents the width of the reflective layer 70
  • the ordinate represents the luminance gain of the display device. It can be seen that with the increase of the width of the reflective layer 70, the brightness gain of the display panel increases, that is to say, the increase of the width of the reflective layer 70 is beneficial to improve the light extraction efficiency of the display panel and the brightness of the sub-pixel unit.
  • a light-shielding layer 60 is also provided above the transparent conductive layer (50), and the larger the width of the light-shielding layer 60, the smaller the opening area of the sub-pixel unit will be, resulting in the transmission of the sub-pixel unit. Pass rate decreased.
  • the transmittance of the display panel corresponding to the width of different reflective layers and the width of the light shielding layer is simulated.
  • FIG. 10 is a relationship curve between the width and transmittance of the light shielding layer and the reflective layer according to the embodiment of the present disclosure.
  • the numbers in front of "/" in the abscissa represent the width of the reflective layer
  • the numbers behind the "/" represent the width of the light shielding layer.
  • the width of the data signal line is 1.8 ⁇ m
  • the width of the reflective layer and the light shielding layer are both 1.8 ⁇ m
  • the transmittance decreases; as the width of the reflective layer increases, the gain increases.
  • the matching result of the reflective layer and the light-shielding layer is shown in Figure 10.
  • the width of the reflective layer 70 between two adjacent openings is 1.8-2.3um
  • the width of the light-shielding layer 60 between the two adjacent openings is 1.8-2.3um
  • the transmittance of the display panel is better, which meets practical application requirements.
  • FIG. 11 is a third schematic diagram of a plan structure of a display panel according to an embodiment of the present disclosure
  • FIG. 12 is a schematic diagram of a cross-sectional structure of the display panel corresponding to FIG. 11 .
  • the pattern of the light shielding layer 60 can be set to be consistent with the transparent conductive layer (50), in this case the The width of the transparent conductive layer (50) between two adjacent openings is equal to the width of the light shielding layer 60 between two adjacent openings.
  • the patterns of the transparent conductive layer (50) and the light shielding layer 60 are exactly the same, but the above structure needs to be patterned twice for two different conductive layers.
  • the common electrode 50 may also be directly made of a conductive light-shielding material, thereby omitting the setting of the light-shielding layer 60 to achieve the same effect.
  • the common electrode 50 can be made of metal molybdenum, which is the material used for the metal layer in the display panel. Therefore, the common electrode is made of metal molybdenum, which can be directly applied to the process line of the display panel.
  • metal molybdenum which is the material used for the metal layer in the display panel.
  • other conductive light-shielding materials can also be used to form the common electrode 50, which is not limited herein.
  • FIG. 13 is a fourth schematic diagram of a plane structure of a display panel according to an embodiment of the present disclosure
  • FIG. 14 is a schematic diagram of a cross-sectional structure of the display panel corresponding to FIG. 13 .
  • the common electrode 50 is made of conductive light-shielding material, which can block the crosstalk area between adjacent sub-pixel units and block the large-angle light emitted by the sub-pixel units, so as to solve the problem between the sub-pixel units.
  • a reflective layer 70 is arranged on the first base substrate 10, and the cyclic reflection effect between the reflective layer 70 and the elements in the backlight module can be used to improve the light output brightness of the opening area of the sub-pixel unit.
  • the embodiments of the present disclosure conduct simulation tests on the brightness gain and transmittance of the display panel under different widths of the common electrode 50 and the reflective layer 70 .
  • FIG. 15 is a corresponding relationship curve between the width of the reflective layer and the luminance gain according to an embodiment of the present disclosure.
  • the abscissa represents the width of the reflective layer, and the ordinate represents the brightness gain of the display panel.
  • FIG. 16 is a transmittance curve diagram corresponding to different common electrode widths according to an embodiment of the present disclosure.
  • the dotted line in FIG. 16 represents the transmittance level of the display panel when the common electrode is made of transparent conductive material and the reflective layer 70 is not provided;
  • the curve connected by the black dots represents the common electrode with different widths when the width of the The transmittance curve corresponding to the electrode;
  • the curve connected by the white dots represents the transmittance curve corresponding to the common electrodes of different widths when the width of the reflective layer is 2.8 ⁇ m;
  • the curve connected by the network points represents when the width of the reflective layer is 3.3 ⁇ m , the transmittance curves corresponding to common electrodes of different widths.
  • the transmittance of the display panel can be improved.
  • the width of the reflective layer is 2.3 ⁇ m ⁇ 3.3 ⁇ m, and the width of the common electrode between two adjacent openings is 2.8 ⁇ m ⁇ 3.4 ⁇ m, the transmittance of the display panel is better and meets practical application requirements.
  • FIGS. 17 and 18 are schematic cross-sectional structural diagrams of the display device provided by the embodiment of the present disclosure.
  • the display device provided by the embodiment of the present disclosure includes a backlight module B, and any of the above-mentioned display panels located on the light-emitting side of the backlight module.
  • the common electrode includes a transparent conductive layer (50) and a light shielding layer 60
  • the structure of the display device is shown in FIG. 17
  • the common electrode 50 is made of conductive light shielding material
  • the structure of the display device is shown in FIG. 18. Since the principle of solving the problem of the display device is similar to that of the above-mentioned display panel, the implementation of the display device can refer to the implementation of the above-mentioned display panel, and the repetition will not be repeated.
  • the above-mentioned display device provided by the embodiments of the present disclosure may be applied to the field of near-eye display, and the display device may be a virtual reality (VR) display device or an augmented reality (AR) display device, which is not limited herein.
  • VR virtual reality
  • AR augmented reality

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

一种显示面板及显示装置,包括:第一衬底基板(10)、驱动层(dl)、多个像素电极(40)和公共电极(50),公共电极(50)位于像素电极(40)背离驱动层(dl)的一侧,公共电极(50)与各像素电极(40)相互绝缘;公共电极(50)包括多个用于暴露各像素电极(40)的开口;公共电极(50)的至少部分区域不透光;反射层(70),位于第一衬底基板(10)与驱动层(dl)之间;反射层(70)包括多个用于暴露各像素电极(40)的开口。公共电极(50)至少部分区域不透光,由此可以遮挡相邻的子像素单元之间串扰区域,以及遮挡子像素单元出射的大角度光线,从而解决子像素单元之间的串扰问题,利用反射层(70)和背光模组(B)中的元件之间的循环反射作用,可以提高子像素单元开口区的出光亮度。

Description

一种显示面板及显示装置
相关申请的交叉引用
本申请要求在2021年04月26日提交中国专利局、申请号为202110453800.9、申请名称为“一种显示面板及显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤其涉及一种显示面板及显示装置。
背景技术
随着显示技术的不断发展,人们对于显示产品的需求越来越高,高解析度是显示产品的必然趋势。
但是随着显示产品的解析度越来越高,像素尺寸越来越小,尤其是在应用于微型显示产品时,像素间距缩小,不可避免地造成像素间的串扰。为解决像素串扰的问题,目前的方案是增加黑矩阵的宽度,将产生串扰的位置覆盖,但是,黑矩阵宽度的增大会减小像素的开口区面积,使得显示产品的整体亮度下降。
发明内容
第一方面,本公开实施例提供一种显示面板,包括:
第一衬底基板;
驱动层,位于所述第一衬底基板的一侧;
多个像素电极,位于所述驱动层背离所述第一衬底基板的一侧,各所述像素电极与所述驱动层电连接;
公共电极,位于所述像素电极背离所述驱动层的一侧,所述公共电极与各所述像素电极相互绝缘;所述公共电极包括多个用于暴露各所述像素电极 的开口;所述公共电极的至少部分区域不透光;
反射层,位于所述第一衬底基板与所述驱动层之间;所述反射层包括多个用于暴露各所述像素电极的开口。
本公开一些实施例中,所述公共电极包括:
透明导电层,位于靠近所述像素电极的一侧;
遮光层,位于所述透明导电层背离所述像素电极的一侧;
所述透明导电层和所述遮光层均包括用于暴露各所述像素电极的开口,所述遮光层在所述第一衬底基板的正投影位于所述透明导电层在所述第一衬底基板的正投影的范围之内。
本公开一些实施例中,相邻两个开口之间的所述遮光层的宽度小于所述相邻两个开口之间的所述透明导电层的宽度。
本公开一些实施例中,相邻两个开口之间的所述遮光层的宽度为1.8μm~2.2μm。
本公开一些实施例中,所述遮光层采用的材料为金属钼。
本公开一些实施例中,相邻两个开口之间的所述反射层的宽度为1.8μm~2.3μm。
本公开一些实施例中,所述公共电极采用导电遮光性材料。
本公开一些实施例中,相邻两个开口之间的所述公共电极的宽度为2.8μm~3.4μm。
本公开一些实施例中,所述公共电极采用的材料为金属钼。
本公开一些实施例中,相邻两个开口之间的所述反射层的宽度为2.3μm~3.3μm。
本公开一些实施例中,所述驱动层包括:
多条扫描信号线,沿第一方向延伸,沿第二方向排列;所述第一方向和所述第二方向交叉;
多条数据信号线,沿所述第二方向延伸,沿所述第一方向排列;多条所述扫描信号线和多条所述数据信号线划分出多个子像素单元,所述像素电极 和所述子像素单元一一对应;
多个晶体管,与各所述子像素单元一一对应;所述晶体管的控制极与对应的所述扫描信号线电连接,所述晶体管的第一极与对应的所述数据信号线电连接,所述晶体管的第二极与对应的所述像素电极电连接;
所述显示面板还包括:
绝缘层,位于各所述像素电极与所述公共电极之间;
第二衬底基板,位于所述公共电极背离像素电极的一侧,所述第二衬底基板与所述公共电极之间相距设定距离;
彩膜层,位于所述第二衬底基板面向所述公共电极的一侧;所述彩膜层包括多个与各所述子像素单元一一对应的彩膜单元以及间隔各所述彩膜单元的黑矩阵;
液晶层,位于所述公共电极和所述彩膜层之间。
本公开一些实施例中,所述公共电极在所述第一衬底基板的正投影与所述像素电极在所述第一衬底基板的正投影存在交叠区域;
所述数据信号线在所述第一衬底基板的正投影与所述像素电极在所述第一衬底基板的正投影互不交叠。
本公开一些实施例中,所述数据信号线在所述第一衬底基板的正投影位于所述反射层在所述第一衬底基板的正投影的范围之内。
第二方面,本公开实施例提供一种显示装置,包括背光模组,以及位于所述背光模组出光侧的上述任一显示面板。
本公开一些实施例中,所述显示装置为虚拟现实显示装置或增强现实显示装置。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例中所需要使用的附图作简单地介绍,显而易见地,下面所介绍的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的 前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的显示面板的截面结构示意图;
图2为本公开实施例提供的显示面板的平面结构示意图之一;
图3为图2对应的显示面板的截面结构示意图;
图4为本公开实施例提供的公共电极全部透光和至少部分不透光情况下对应的透过率曲线图;
图5为本公开实施例提供的公共电极全部透光和至少部分不透光情况下对应的相对亮度曲线图;
图6为本公开实施例提供的显示面板的平面结构示意图之二;
图7为图6对应的显示面板的截面结构示意图;
图8为本公开实施例提供的显示面板的简化结构示意图;
图9为本公开实施例提供的反射层的宽度与亮度增益的对应关系曲线之一;
图10为本公开实施例提供的遮光层和反射层的宽度与透过率的关系曲线;
图11为本公开实施例提供的显示面板的平面结构示意图之三;
图12为图11对应的显示面板的截面结构示意图;
图13为本公开实施例提供的显示面板的平面结构示意图之四;
图14为图13对应的显示面板的截面结构示意图;
图15为本公开实施例提供的反射层的宽度与亮度增益的对应关系曲线之二;
图16为本公开实施例提供的不同公共电极宽度对应的透过率曲线图;
图17为本公开实施例提供的显示装置的截面结构示意图之一;
图18为本公开实施例提供的显示装置的截面结构示意图之二。
具体实施方式
为使本公开的上述目的、特征和优点能够更为明显易懂,下面将结合附图和实施例对本公开做进一步说明。然而,示例实施方式能够以多种形式实 施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本公开更全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。在图中相同的附图标记表示相同或类似的结构,因而将省略对它们的重复描述。本公开中所描述的表达位置与方向的词,均是以附图为例进行的说明,但根据需要也可以做出改变,所做改变均包含在本公开保护范围内。本公开的附图仅用于示意相对位置关系不代表真实比例。
近眼显示是目前的研究热点内容,近眼显示能够给人们提供前所未有的交互感,在远程医疗、工业设计、教育、军事虚拟训练、娱乐等众多领域具有重要的应用价值。
随着近眼显示技术的快速发展,虚拟现实(Virtue Reality,VR)和增强现实(Augmentde Reality,AR)日益成为人类获取信息的重要途径,也成为人与世界交互的新方式。其中,VR近眼显示技术是在左右眼对应的近眼显示器上分别显示左右眼的图像,左右眼分别获取带有差异的图像信息后在大脑中可以合成立体视觉。AR近眼显示技术是将近眼显示装置产生的虚拟图像与真实世界的实景图像叠加显示,从而使用户能够从屏幕上看到最终的增强实景图像。
近眼显示装置通常会采用头盔形态或眼镜形态,近眼显示装置中设置有微型显示屏配合透光等元件实现图像显示。其中微型显示屏可以采用液晶显示屏或有机发光二极管显示屏。由于近眼显示装置中的显示屏尺寸较小,因此采用液晶显示屏可以有效降低成本。
液晶显示屏主要由背光模组和液晶显示面板构成。液晶显示面板本身不发光,需要依靠背光模组提供的光源实现亮度显示。
液晶显示屏的显像原理,是将液晶置于两片玻璃之间,靠两个电极间电场的驱动,引起液晶分子扭曲的电场效应,以控制背光源透射或遮蔽功能,从而将影像显示出来。若加上彩色滤光片,则可显示彩色影像。
近眼显示装置中的液晶显示面板与手机、电视、电脑等显示装置中的液晶显示面板的结构有所不同。
图1为本公开实施例提供的显示面板的截面结构示意图。
如图1所示,显示面板包括阵列基板L1和彩膜基板L2,在阵列基板L1和彩膜基板L2之间还包括液晶层lc。
其中,阵列基板L1包括第一衬底基板10,彩膜基板L2包括第二衬底基板60,第一衬底基板10和第二衬底基板60相对设置,形成两个基板夹持液晶层lc的结构。
彩膜基板L2的第二衬底基板60面向第一衬底基板10的表面还设置有彩膜层70,如图1所示,彩膜层70包括多个与各子像素单元一一对应的彩膜单元71以及间隔各彩膜单元71的黑矩阵72。
图2为本公开实施例提供的显示面板的平面结构示意图之一,图3为图2对应的显示面板的截面结构示意图。
图2和图3所示的为显示面板中的阵列基板的结构,如图2和图3所示,显示面板,包括:第一衬底基板10,第一衬底基板10位于底部,具有支撑和承载的作用。第一衬底基板10通常可以采用玻璃。
驱动层dl位于衬底基板10之上,驱动层dl通常包括多个膜层,可以采用薄膜工艺依次形成于第一衬底基板10之上。驱动层dl包括信号线、晶体管、电容、电阻等器件,用于传输驱动信号。
如图2和图3所示,驱动层dl包括:多条扫描信号线20、多条数据信号线30和多个晶体管T。
多条扫描信号线20,沿第一方向x延伸,沿第二方向y排列。其中,第一方向x和第二方向y交叉,在一些实施中,第一方向x可以为子像素单元行的方向,第二方向y可以为子像素单元列的方向,第一方向x和第二方向y相互垂直。
多条数据信号线30,沿第二方向y延伸,沿第一方向x排列。多条扫描信号线20和多条数据信号30线划分出多个子像素单元p。
多个晶体管T与各子像素单元p一一对应;晶体管的控制极与对应的扫描信号线20电连接,晶体管的第一极与对应的数据信号线30电连接,晶体管的第二极与对应的像素电极电连接。
晶体管T作为有源驱动元件,与各子像素单元p一一对应,一个子像素单元p中设置有一个晶体管T。晶体管T在连接的扫描信号线20传输的扫描信号的控制下将连接的数据信号线30传输的数据信号加载至对应子像素单元p的像素电极上,从而对子像素单元p的亮度进行控制。
如图2和图3所示,显示面板还包括:多个像素电极40和公共电极50。
像素电极40和子像素单元p一一对应,一个子像素单元p中设置有一个像素电极40。
多个像素电极40,位于驱动层dl背离第一衬底基板10的一侧,各像素电极40与驱动层dl中的晶体管的第二极电连接。
本公开实施例提供的显示面板中,像素电极40和公共电极50均位于阵列基板一侧,像素电极40和公共电极50之间还包括绝缘层,用于对像素电极40和公共电极50进行绝缘。
公共电极50,位于像素电极40背离驱动层dl的一侧,公共电极50包括多个用于暴露各像素电极40的开口。
当对像素电极40和公共电极50施加电信号之后,电场线由像素电极40向公共电极50的开口穿出后指向公共电极50,由此形成水平电场,驱动液晶分子进行翻转,由此调整每个子像素单元对应的液晶层的透过率,实现子像素单元的亮度调节。
其中,如图2和图3所示,公共电极50在第一衬底基板10的正投影与像素电极40在第一衬底基板10的正投影存在交叠区域,该交叠区域可以产生的电容为子像素单元p的存储电容。
数据信号线30在第一衬底基板的正投影与像素电极在第一衬底基板的正投影互不交叠。
如图3所示,当采用本公开实施例提供的显示面板结构时,子像素单元的宽度大于像素电极40的宽度,通常还包括像素电极40两侧的一半的公共电极50的宽度,即子像素单元的宽度为图3所示的a,两个像素电极40之间的间距为b。对于高解析度显示面板来说,以1500PPI的显示面板为例,子像 素单元的宽度a通常小于6μm,两个像素电极40之间的间距b小于4μm。在这样的尺寸设置下,一个子像素单元中的像素电极与公共电极之间电场并不会准确地以公共电极的中线进行分割,相邻的子像素单元的电场会相互串扰。如图3所示,相邻的两个子像素单元分别为第一子像素单元L1和第二子像素单元p2,如果第一子像素单元p1为亮态,而第二子像素单元p2为暗态时,原则上只有第一子像素单元p1内有电场,而第二子像素单元p2内没有电场,由于像素电极40的间距较小,第一子像素单元p1的电场线会越过公共电极的中线,作用到第二子像素单元p2内的公共电极50,在第二子像素单元p2的边缘区域也产生电场。这样会使得第二子像素单元p2有亮度,造成子像素单元之间的串扰。为了避免串扰,需要增大图1中彩膜基板L2上的黑矩阵72的宽度,然而黑矩阵72的宽度增大,又会导致子像素单元的开口率减小,无法满足亮度需求。
除此之外,如图3所示,子像素单元出射的大角度还会产生串色问题。这是因为相邻的子像素单元的颜色通常情况下是不同的,那么第一子像素单元p1出射的大角度光线会入射到第二子像素单元p2对应的区域内,再经过第二子像素单元p2的彩膜单元之后会产生两个颜色的子像素单元都有亮度,造成大角度串色的问题。
为了解决上述技术问题,本公开实施例提供了一种显示面板,公共电极50的至少部分区域不透光,这样可以有效遮挡相邻的子像素单元交界位置,使得产生电场串扰的区域位于公共电极的不透光区域内,从而可以阻挡串扰光线的出射,解决光线串扰的问题。而对于子像素单元出射的大角度光线,公共电极的不透光区域也可以对该大角度光线进行遮挡,从而解决大视角串色的问题。
然而,由于公共电极50的至少部分区域不透光,该不透光的区域无法出射光线,造成显示面板的透过率损失,亮度下降。为了改善上述问题,本公开还在第一衬底基板10与驱动层dl之间设置反射层,反射层包括多个用于暴露各像素电极40的开口。这样背光模组出射的光线可以顺利地向像素电极40 的区域出射,而背光模组出射的光线在出射到反射层之后可以被有效反射,反射光线重新入射到背光模组中,在被背光模组中的反射片等反光结构进行反射后,可以重新向显示面板出射,又会有一部分光线可以向像素电极40的区域出射。经过反射层与背光模组中的反光膜片之间的循环反射作用,可以有效提升光线的出射效率,保证显示面板的透过率不损失。
在具体实施时,数据信号线30在第一衬底基板10的正投影位于反射层在第一衬底基板10的正投影的范围之内。由于扫描信号线20、数据信号线30均不透光,因此背光模组出射的光线会被扫描信号线20、数据信号线30等信号线遮挡,本申请在第一衬底基板10和驱动层dl之间设置反射层,且反射层具有较高的反射率,使反射层的图形可以覆盖扫描信号线20和数据信号线的图形,那么背光模组出射反射层的光线可以被有效反射,而不会被完全损失掉。
本公开实施例中的反射层可以采用金属铝或银等材料进行制作,这些金属材料具有较高的反射率,通常情况反射层的厚度小于1μm就具有较佳的反射效果,可以有效提高显示面板最终的光线出射效率。
由于公共电极中不透光区域的宽度越大,会导致子像素单元的开口区尺寸越小,使得光线的透过率越低。但是反射层70的设置又可以提高开口区域的光强,因此显示面板最终的增益和透过率受到公共电极中不透光区域的宽度和反射层70的宽度的影响。
为了将公共电极中不透光区域的宽度和反射层70设置在合适范围,以使显示面板具有较佳的增益和透过率,本公开实施例以1500PPI的显示面板为例对显示面板的相关参数进行模拟测试。其中,子像素单元p的间距为5.8μm,数据信号线30的宽度为1.8μm。
图4为本公开实施例提供的公共电极全部透光和至少部分不透光情况下对应的透过率曲线图。如图4所示,黑色点连接的曲线为公共电极全部透光,公共电极在不同宽度下对应的透过率曲线,白色点连接的曲线为公共电极至少部分区域不透光,不透光区域在不同宽度下对应的透过率曲线。其中,横 坐标中的“-”前方的数字表示数据信号线的宽度,“-”后方的数字表示公共电极或公共电极中的不透光区域的宽度。
对比图4中的两条曲线可以看出,当显示面板中只采用透明的公共电极,即公共电极的全部区域均透光时,随着公共电极的宽度越大,透过率有所提升;当显示面板中公共电极的至少部分区域为不透光时,随着不透光区域的宽度的增大,显示面板的透过率随之减小。
图5为本公开实施例提供的公共电极全部透光和至少部分不透光情况下对应的相对亮度曲线图。如图5所示,黑色点连接的曲线为公共电极全部透光,公共电极在不同宽度下对应的相对亮度曲线,白色点连接的曲线为公共电极至少部分区域不透光,不透光区域在不同宽度下对应的相对亮度曲线。其中,横坐标中的“-”前方的数字表示数据信号线的宽度,“-”后方的数字表示公共电极或公共电极中的不透光区域的宽度。
目标亮度与串扰亮度之比可以反映子像素单元之间的串扰程度,目标亮度与串扰亮度的比值越大,则说明目标亮度越大、串扰亮度越小,则串扰程度越小,子像素单元的颜色越纯;反之,目标亮度与串扰亮度的比值越小,则说明目标亮度越小、串扰亮度越大,则串扰程度越大。
对比图5中的两条曲线可以看出,当显示面板中只采用透明的公共电极,即公共电极的全部区域均透光时,随着公共电极的宽度越大,相对亮度有所提升;当显示面板中公共电极的至少部分区域为不透光时,随着不透光区域的宽度的增大,显示面板的相对亮度提升程度更大。由此可以说明在公共电极中设置不透光区域,且随着不透光区域宽度的增大,子像素单元之间的串扰程度越小。
图6为本公开实施例提供的显示面板的平面结构示意图之二,图7为图6对应的显示面板的截面结构示意图。
在一些实施例中,如图6和图7所示,公共电极包括:透明导电层(50)以及遮光层60。显示面板还包括反射层70。
透明导电层(50),位于靠近像素电极40的一侧。该透明导电层可以采 用透明导电材料,例如可以采用氧化铟锡(ITO)等材料进行制作,在此不做限定。
遮光层60,位于透明导电层(50)背离像素电极40的一侧。为了适应目前显示面板的制作工艺,遮光层60可以采用金属钼进行制作,金属钼为显示面板中的金属层采用的材料,并且金属钼的遮光效果较佳。采用金属材料制作上述遮光层60,遮光层60与透明导电层(50)相接触,从而可以降低公共电极的电阻。除此之外,还可以采用其它遮光性材料制作上述遮光层60在此不做限定。
如图6和图7所示,透明导电层(50)和遮光层60均包括用于暴露各像素电极40的开口,遮光层60在第一衬底基板10的正投影位于透明导电层(50)在第一衬底基板10的正投影的范围之内。
遮光层60的作用是为了遮挡相邻的子像素单元之间串扰区域,以及遮挡子像素单元出射的大角度光线,然而如果遮光层60的设置尺寸过大,则会导致子像素单元的开口率下降,因此本公开中遮光层60的尺寸不会超过透明导电层(50)的尺寸。
如图6和图7所示,相邻两个开口之间的遮光层60的宽度小于相邻两个开口之间的透明导电层(50)的宽度。
由于遮光层60的宽度以及反射层70的宽度共同影响显示面板的亮度增益和透过率,因此本公开实施例对遮光层60和反射层70在不同宽度下对显示面板的相关参数进行模拟测试。
图8为本公开实施例提供的显示面板的简化结构示意图。
如图8所示,将显示面板中结构相同的多个部件去除,只保留了背光模组B、第一衬底基板10、反射层70和绝缘层n。本公开改变两个开口之间的反射层70的宽度,对反射层70在不同宽度下的显示装置的增益进行仿真,仿真结果如图9所示。
如图9所示,横坐标表示反射层70的宽度,纵坐标表示显示装置的亮度增益。可以看出,随着反射层70的宽度的增加,显示面板的亮度增益增大, 也就是说明反射层70宽度的增加有利于提高显示面板的出光效率,提高子像素单元的亮度。
然而,在具体实施时,透明导电层(50)的上方还设置有遮光层60,而遮光层60的宽度越大,则会导致子像素单元的开口区域越小,从而导致子像素单元的透过率下降。
本公开实施例在透明导电层(50)的宽度是为3.4μm,像素电极的宽度为3μm情况下,对不同反射层的宽度和遮光层的宽度对应的显示面板的透过率进行模拟。
图10为本公开实施例提供的遮光层和反射层的宽度与透过率的关系曲线。其中,横坐标中的“/”前方的数字表示反射层的宽度,“/”后方的数字表示遮光层的宽度。
如图10所示,由于数据信号线的宽度为1.8μm,因此当反射层和遮光层的宽度均为1.8μm时对于透过率没有损失,而随着遮光层的宽度的增加,透过率下降;随着反射层的宽度的增加,增益上升。反射层和遮光层搭配结果如图10所示,当相邻两个开口之间的反射层70的宽度为1.8~2.3um,相邻两个开口之间的遮光层60的宽度为1.8μm~2.2μm时,显示面板的透过率较佳,满足实际应用需求。
图11为本公开实施例提供的显示面板的平面结构示意图之三,图12为图11对应的显示面板的截面结构示意图。
在一些实施例中,如图11和图12所示,为了最大程度地改善子像素单元之间的串扰问题,可以将遮光层60的图形设置为与透明导电层(50)一致,此时相邻两个开口之间的透明导电层(50)的宽度与相邻两个开口之间的遮光层60的宽度相等。
采用上述结构时透明导电层(50)与遮光层60的图形完全相同,但是需要对两层不同的导电采用两次构图才能得到上述结构。为了简化工艺,减小膜层厚度,还可以直接采用导电遮光性材料来制作公共电极50,从而省略遮光层60的设置,达到相同的效果。
在具体实施时,可以采用金属钼来制作公共电极50,金属钼为显示面板中的金属层采用的材料,因此公共电极采用金属钼来进行制作,可以直接适用于显示面板的工艺线。当然,除此之外,还可以采用其它具有导电性的遮光材料制作公共电极50,在此不做限定。
图13为本公开实施例提供的显示面板的平面结构示意图之四,图14为图13对应的显示面板的截面结构示意图。
如图13和图14所示,采用导电遮光性材料制作公共电极50,可以遮挡相邻的子像素单元之间串扰区域,以及遮挡子像素单元出射的大角度光线,从而解决子像素单元之间的串扰问题,同时在第一衬底基板10之上设置反射层70,利用反射层70和背光模组中的元件之间的循环反射作用,可以提高子像素单元开口区的出光亮度。
同样地,本公开实施例对公共电极50和反射层70在不同宽度下显示面板的亮度增益和透过率进行模拟测试。
图15为本公开实施例提供的反射层的宽度与亮度增益的对应关系曲线。其中,横坐标表示反射层的宽度,纵坐标表示显示面板的亮度增益。
由图15可以看出,随着反射层70的宽度的增加,显示面板的亮度增益增大,也就是说明反射层70宽度的增加有利于提高显示面板的出光效率,提高子像素单元的亮度。
图16为本公开实施例提供的不同公共电极宽度对应的透过率曲线图。其中,图16中的虚线表示公共电极采用透明导电材料,且不设置反射层70时的显示面板的透过率水平;黑色点连接的曲线表示反射层的宽度为2.3μm时,不同宽度的公共电极对应的透过率曲线;白色点连接的曲线表示反射层的宽度为2.8μm时,不同宽度的公共电极对应的透过率曲线;网络状点连接的曲线表示反射层的宽度为3.3μm时,不同宽度的公共电极对应的透过率曲线。
如图16所示,从提升透过率的目的出发,当反射层的宽度设置为2.3μm以上时,均可以提高显示面板的透过率,根据测试结构,当相邻两个开口之间的反射层的宽度为2.3μm~3.3μm,相邻两个开口之间的公共电极的宽度为 2.8μm~3.4μm时,显示面板的透过率较佳,满足实际应用需求。
基于同一发明构思,本公开实施例还提供一种显示装置,图17和18为本公开实施例提供的显示装置的截面结构示意图。
如图17和图18所示,本公开实施例提供的显示装置包括背光模组B,以及位于背光模组出光侧的上述任一显示面板。
当公共电极包括透明导电层(50)和遮光层60时,显示装置的结构如图17所示;当公共电极50采用导电遮光性材料进行制作时,显示装置的结构如图18所示。由于该显示装置解决问题的原理与上述显示面板相似,因此该显示装置的实施可以参见上述显示面板的实施,重复之处不再赘述。
本公开实施例提供的上述显示装置可以应用于近眼显示领域,该显示装置可以为虚拟现实(VR)显示装置或增强现实(AR)显示装置,在此不做限定。
尽管已描述了本公开的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开范围的所有变更和修改。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (15)

  1. 一种显示面板,包括:
    第一衬底基板;
    驱动层,位于所述第一衬底基板的一侧;
    多个像素电极,位于所述驱动层背离所述第一衬底基板的一侧,各所述像素电极与所述驱动层电连接;
    公共电极,位于所述像素电极背离所述驱动层的一侧,所述公共电极与各所述像素电极相互绝缘;所述公共电极包括多个用于暴露各所述像素电极的开口;所述公共电极的至少部分区域不透光;
    反射层,位于所述第一衬底基板与所述驱动层之间;所述反射层包括多个用于暴露各所述像素电极的开口。
  2. 如权利要求1所述的显示面板,其中,所述公共电极包括:
    透明导电层,位于靠近所述像素电极的一侧;
    遮光层,位于所述透明导电层背离所述像素电极的一侧;
    所述透明导电层和所述遮光层均包括用于暴露各所述像素电极的开口,所述遮光层在所述第一衬底基板的正投影位于所述透明导电层在所述第一衬底基板的正投影的范围之内。
  3. 如权利要求2所述的显示面板,其中,相邻两个开口之间的所述遮光层的宽度小于所述相邻两个开口之间的所述透明导电层的宽度。
  4. 如权利要求3所述的显示面板,其中,相邻两个开口之间的所述遮光层的宽度为1.8μm~2.2μm。
  5. 如权利要求2所述的显示面板,其中,所述遮光层采用的材料为金属钼。
  6. 如权利要求4所述的显示面板,其中,相邻两个开口之间的所述反射层的宽度为1.8μm~2.3μm。
  7. 如权利要求1所述的显示面板,其中,所述公共电极采用导电遮光性 材料。
  8. 如权利要求7所述的显示面板,其中,相邻两个开口之间的所述公共电极的宽度为2.8μm~3.4μm。
  9. 如权利要求7所述的显示面板,其中,所述公共电极采用的材料为金属钼。
  10. 如权利要求8所述的显示面板,其中,相邻两个开口之间的所述反射层的宽度为2.3μm~3.3μm。
  11. 如权利要求1-10任一项所述的显示面板,其中,所述驱动层包括:
    多条扫描信号线,沿第一方向延伸,沿第二方向排列;所述第一方向和所述第二方向交叉;
    多条数据信号线,沿所述第二方向延伸,沿所述第一方向排列;多条所述扫描信号线和多条所述数据信号线划分出多个子像素单元,所述像素电极和所述子像素单元一一对应;
    多个晶体管,与各所述子像素单元一一对应;所述晶体管的控制极与对应的所述扫描信号线电连接,所述晶体管的第一极与对应的所述数据信号线电连接,所述晶体管的第二极与对应的所述像素电极电连接;
    所述显示面板还包括:
    绝缘层,位于各所述像素电极与所述公共电极之间;
    第二衬底基板,位于所述公共电极背离像素电极的一侧,所述第二衬底基板与所述公共电极之间相距设定距离;
    彩膜层,位于所述第二衬底基板面向所述公共电极的一侧;所述彩膜层包括多个与各所述子像素单元一一对应的彩膜单元以及间隔各所述彩膜单元的黑矩阵;
    液晶层,位于所述公共电极和所述彩膜层之间。
  12. 如权利要求11所述的显示面板,其中,所述公共电极在所述第一衬底基板的正投影与所述像素电极在所述第一衬底基板的正投影存在交叠区域;
    所述数据信号线在所述第一衬底基板的正投影与所述像素电极在所述第 一衬底基板的正投影互不交叠。
  13. 如权利要求12所述的显示面板,其中,所述数据信号线在所述第一衬底基板的正投影位于所述反射层在所述第一衬底基板的正投影的范围之内。
  14. 一种显示装置,包括背光模组,以及位于所述背光模组出光侧的如权利要求1-13任一项所述的显示面板。
  15. 如权利要求14所述的显示装置,所述显示装置为虚拟现实显示装置或增强现实显示装置。
PCT/CN2021/125547 2021-04-26 2021-10-22 一种显示面板及显示装置 WO2022227435A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110453800.9A CN113156651A (zh) 2021-04-26 2021-04-26 一种显示面板及显示装置
CN202110453800.9 2021-04-26

Publications (1)

Publication Number Publication Date
WO2022227435A1 true WO2022227435A1 (zh) 2022-11-03

Family

ID=76870835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125547 WO2022227435A1 (zh) 2021-04-26 2021-10-22 一种显示面板及显示装置

Country Status (2)

Country Link
CN (1) CN113156651A (zh)
WO (1) WO2022227435A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113156651A (zh) * 2021-04-26 2021-07-23 京东方科技集团股份有限公司 一种显示面板及显示装置
CN116648659A (zh) * 2021-12-24 2023-08-25 京东方科技集团股份有限公司 显示基板及其制备方法、显示面板、显示装置
CN114200713A (zh) * 2021-12-31 2022-03-18 重庆惠科金渝光电科技有限公司 显示面板及显示装置
CN114442383B (zh) * 2022-01-30 2024-01-09 合肥京东方光电科技有限公司 显示面板和显示装置
CN114911105B (zh) * 2022-05-31 2023-11-21 厦门天马微电子有限公司 一种显示面板及显示装置
TWI809943B (zh) * 2022-06-21 2023-07-21 友達光電股份有限公司 透明顯示器
CN115390322A (zh) * 2022-08-16 2022-11-25 武汉华星光电技术有限公司 显示模组及显示装置
CN115728984A (zh) * 2022-11-28 2023-03-03 厦门天马微电子有限公司 显示面板和显示面板的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5721599A (en) * 1996-01-16 1998-02-24 Industrial Technology Research Institute Black matrix for liquid crystal display
CN101295090A (zh) * 2007-04-27 2008-10-29 群康科技(深圳)有限公司 液晶显示装置
CN103365014A (zh) * 2013-07-11 2013-10-23 京东方科技集团股份有限公司 显示面板制作方法、显示面板及显示装置
CN205301759U (zh) * 2016-01-19 2016-06-08 昆山龙腾光电有限公司 一种彩膜基板和液晶显示面板
CN109856870A (zh) * 2019-03-28 2019-06-07 惠科股份有限公司 显示面板及显示装置
CN110349976A (zh) * 2019-07-12 2019-10-18 京东方科技集团股份有限公司 阵列基板及其制备方法、显示面板和显示装置
CN111061079A (zh) * 2019-12-18 2020-04-24 京东方科技集团股份有限公司 一种阵列基板及其制备方法、显示装置
CN111948858A (zh) * 2020-08-06 2020-11-17 Tcl华星光电技术有限公司 液晶显示面板及液晶显示装置
CN113156651A (zh) * 2021-04-26 2021-07-23 京东方科技集团股份有限公司 一种显示面板及显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060001662A (ko) * 2004-06-30 2006-01-06 엘지.필립스 엘시디 주식회사 수평전계방식 액정표시소자 및 그 제조방법
CN107632453B (zh) * 2017-10-31 2021-03-02 京东方科技集团股份有限公司 显示面板及制造方法和显示装置
JP6522182B1 (ja) * 2018-02-21 2019-05-29 シャープ株式会社 液晶表示装置
CN110752221B (zh) * 2019-10-30 2022-02-11 厦门天马微电子有限公司 一种显示装置
CN111948848A (zh) * 2020-08-06 2020-11-17 Tcl华星光电技术有限公司 显示面板与显示装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5721599A (en) * 1996-01-16 1998-02-24 Industrial Technology Research Institute Black matrix for liquid crystal display
CN101295090A (zh) * 2007-04-27 2008-10-29 群康科技(深圳)有限公司 液晶显示装置
CN103365014A (zh) * 2013-07-11 2013-10-23 京东方科技集团股份有限公司 显示面板制作方法、显示面板及显示装置
CN205301759U (zh) * 2016-01-19 2016-06-08 昆山龙腾光电有限公司 一种彩膜基板和液晶显示面板
CN109856870A (zh) * 2019-03-28 2019-06-07 惠科股份有限公司 显示面板及显示装置
CN110349976A (zh) * 2019-07-12 2019-10-18 京东方科技集团股份有限公司 阵列基板及其制备方法、显示面板和显示装置
CN111061079A (zh) * 2019-12-18 2020-04-24 京东方科技集团股份有限公司 一种阵列基板及其制备方法、显示装置
CN111948858A (zh) * 2020-08-06 2020-11-17 Tcl华星光电技术有限公司 液晶显示面板及液晶显示装置
CN113156651A (zh) * 2021-04-26 2021-07-23 京东方科技集团股份有限公司 一种显示面板及显示装置

Also Published As

Publication number Publication date
CN113156651A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
WO2022227435A1 (zh) 一种显示面板及显示装置
US11335284B2 (en) Display panel and display device
US20220093682A1 (en) Display substrates, display panels and display devices
WO2017012297A1 (zh) 显示面板和显示装置
CN106501988B (zh) Cf基板及其制作方法与液晶显示面板
US20240027835A1 (en) Display panel and electronic device
WO2021169580A1 (zh) 一种显示装置及其驱动方法
CN113467137B (zh) 显示面板和显示装置
CN113552750B (zh) 显示面板和显示装置
CN110398864B (zh) 一种显示装置及其驱动方法
JP2020160304A (ja) 表示装置
CN102736309A (zh) 显示面板、显示装置及电子设备
WO2021036874A1 (zh) 阵列基板、控光面板和显示装置
CN109212832B (zh) 一种液晶显示面板及其制作方法、液晶显示装置
US20140253857A1 (en) Active matrix and display panel
US20240210770A1 (en) Display panel and display device
US20240019731A1 (en) Display panel and electronic device
JP2004258365A (ja) 電気光学装置、およびそれを用いた電子機器
CN113556532A (zh) 一种显示装置
JP2020166170A (ja) 表示装置
JP2015138217A (ja) 電気光学装置および電子機器
CN212933499U (zh) 一种显示面板和显示装置
CN114930234B (zh) 显示面板及其制造方法、显示装置
JP7457500B2 (ja) 液晶表示装置
CN113608380B (zh) 双面显示面板、显示装置和驱动方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21938898

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18556942

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26.03.2024)