WO2022227336A1 - 有机半导体器件原位电学性能智能监测设备 - Google Patents

有机半导体器件原位电学性能智能监测设备 Download PDF

Info

Publication number
WO2022227336A1
WO2022227336A1 PCT/CN2021/111715 CN2021111715W WO2022227336A1 WO 2022227336 A1 WO2022227336 A1 WO 2022227336A1 CN 2021111715 W CN2021111715 W CN 2021111715W WO 2022227336 A1 WO2022227336 A1 WO 2022227336A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
organic semiconductor
vacuum chamber
vacuum
situ
Prior art date
Application number
PCT/CN2021/111715
Other languages
English (en)
French (fr)
Inventor
申学礼
迟力峰
王文冲
黄丽珍
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2022227336A1 publication Critical patent/WO2022227336A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/14Measuring as part of the manufacturing process for electrical parameters, e.g. resistance, deep-levels, CV, diffusions by electrical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention relates to the technical field of organic semiconductor electrical performance monitoring, in particular to an in-situ electrical performance intelligent monitoring device of an organic semiconductor device.
  • Organic semiconductor materials are easy to process into thin films and have good ductility properties.
  • the emergence of organic semiconductor materials can better meet the needs of modern electronic products in terms of lightness, thinness, portability, and ease of design.
  • the advantages of organic semiconductor materials can be summarized as follows: good mechanical flexibility, easy large-area manufacturing, rich chemical structure, ultra-thin, light weight and low cost.
  • Device technology is a key area in organic semiconductor research, which will directly determine device cost, device performance, integration, and even yield. Electrical performance testing of conventional organic semiconductor device processes is performed ex-situ.
  • the technological process is as follows: device design, device preparation (including metal electrode preparation, organic thin film preparation), and electrical performance testing.
  • the device preparation is completed in a vacuum environment (the equipment used are metal evaporation and organic evaporation), and then taken from the vacuum to the atmospheric environment for electrical measurement (the equipment used are probe station and semiconductor analysis) instrument). It can be seen that the preparation process and the electrical testing process are independent of each other, and the electrical performance testing is performed ex-situ.
  • the device is transferred from the vacuum chamber to the atmosphere, which is easily polluted by impurities such as external air and water;
  • the technical problem to be solved by the present invention is to overcome the problem that in-situ monitoring of organic semiconductors cannot be realized in the prior art, and to provide an intelligent monitoring device for in-situ electrical performance of organic semiconductor devices, which can be used in the process of preparing organic semiconductor thin films. Measure the electrical signal of organic semiconductor thin films in real time, and obtain the real-time evolution of the electrical signal with the film thickness or heterojunction type.
  • the present invention provides an in-situ electrical performance intelligent monitoring device of an organic semiconductor device, including:
  • the vacuum chamber provides a vacuum environment for device preparation and in-situ monitoring
  • Evaporation source providing raw materials for device preparation
  • a detection assembly including a probe for in-situ electrical detection, a probe seat disposed outside the vacuum chamber, and a probe moving table driving the probe seat to move, a vacuum is arranged between the probe seat and the vacuum chamber A bellows, the probe is mounted on the probe seat and inserted into the vacuum cavity through the vacuum bellows.
  • the visual component is used to observe the position of the probe located in the vacuum chamber, and adjust the probe moving stage to move the probe to the in-situ electrical monitoring point;
  • a monitoring instrument is connected to the detection component to obtain detection data of the detection component.
  • the probe moving table is a three-axis moving platform, including a lift table that drives the probe seat to move up and down, and a horizontal moving table that drives the probe seat to move in the direction of abutting against or away from the vacuum chamber. and a rotary table that drives the probe base to rotate.
  • two sets of detection components are included, and the detection components are disposed on the side wall of the vacuum chamber.
  • the vacuum chamber includes an open box body and a cover plate for sealing the opening, one end of the cover plate is hinged on the open box body, and the cover plate The other end of the vacuum chamber can be locked on the open box, and the vacuum chamber is also provided with a stage for placing devices.
  • an observation window is provided on the side wall of the vacuum chamber.
  • the vacuum chamber is further provided with an air suction port, and the air suction port is communicated with the vacuum pump through a pipeline.
  • the evaporation sources are arranged obliquely on the cover plate, and the cover plate is provided with one or more groups of evaporation sources.
  • the evaporation source includes a heat shield assembly, a vacuum flange for supporting the heat shield assembly, a container for holding the evaporation material, a container fixed in the heat shield assembly for a built-in container
  • the heating assembly, the container is detachably embedded in the end of the heat shielding assembly away from the vacuum flange, the container has an inner cavity and its end away from the vacuum flange is provided with an opening communicating with the inner cavity, the The opening is provided with a peripheral wall extending into the inner cavity, the end of the peripheral wall extending into the inner cavity is open and its area is smaller than that of the inner cavity in the same plane.
  • the visual component includes a CCD camera for photographing the position of the probe and a display capable of visual display.
  • a film thickness gauge for detecting semiconductor devices is further included.
  • the in-situ electrical performance intelligent monitoring device of the organic semiconductor device integrates a vacuum chamber, an evaporation source, a detection component, a visual component and a monitoring instrument, and the vacuum chamber and the evaporation source are used to provide the preparation conditions of the organic semiconductor thin film. and preparation of raw materials to complete the preparation of organic semiconductor thin films, and through the detection components, visual components and monitoring instruments, in the process of organic semiconductor thin film preparation, real-time in-situ measurement of the electrical signals of the organic semiconductor thin films, and obtain the electrical signals with the thickness of the thin film. or real-time evolution of heterojunction types;
  • the in-situ electrical performance intelligent monitoring device of the present invention solves the problem that organic semiconductor molecules are susceptible to environmental pollution and inaccurate detection after shifting. At the same time, it also greatly saves time cost, labor cost and equipment cost.
  • FIG. 1 is a schematic diagram of the overall structure of an organic semiconductor device in-situ electrical performance intelligent monitoring device of the present invention
  • Fig. 2 is the structural representation of the detection assembly of the present invention
  • FIG. 3 is a schematic structural diagram of the evaporation source of the present invention.
  • Vacuum chamber 11. Open box body; 12. Cover plate; 13. Air suction port; 14. Object stage; 15. Observation window; 2. Evaporation source; 22, flange; 23, container; 231, inner cavity; 232, opening; 233, peripheral wall; 24, heating assembly; 3, detection assembly; 31, probe; 32, probe seat; 33, probe moving table ; 34, vacuum bellows; 41, CCD camera; 42, display; 5, monitoring instrument; 6, film thickness gauge.
  • an in-situ electrical performance intelligent monitoring device of an organic semiconductor device of the present invention includes: a vacuum chamber 1 , an evaporation source 2 , a detection component 3 , a visual component and a monitoring instrument 5 ;
  • Vacuum chamber 1 providing a vacuum environment for device preparation and in-situ monitoring
  • Evaporation source 2 processing raw materials for device preparation
  • the raw material located in the vacuum chamber 1 is heated by the evaporation source 2 to vaporize it, and then the film is coated in the vacuum chamber 1 to complete the preparation of the organic semiconductor thin film;
  • the monitoring instrument 5 connected to the detection component 3 is used to obtain the detection data of the detection component 3, so that in the process of preparing the organic semiconductor thin film, the electrical signal of the organic semiconductor thin film can be measured in situ in real time, and the electrical signal can be obtained with the thickness or difference of the thin film.
  • a visual component is used to observe the position of the probe 31 in the vacuum chamber 1; the visual component includes a CCD camera 41 for photographing the position of the probe 31 and a display 42 capable of visual display;
  • the probe 31 can be moved to the in-situ electrical monitoring point through the cooperation of the visual component and the detection component 3 .
  • the CCD camera 41 in the visual component captures the position of the probe 31 in real time, and uploads it to the display 42 , and observes the position of the probe 31 in the display 42 .
  • the assembly 3 drives the movement of the probe 31, so that the probe 31 moves to the in-situ electrical monitoring point.
  • the in-situ electrical performance intelligent monitoring device of the present invention solves the problem that organic semiconductor molecules are susceptible to environmental pollution and inaccurate detection after shifting. At the same time, it also greatly saves time cost, labor cost and equipment cost.
  • the vacuum chamber 1 of this embodiment includes an open box body 11 and a cover plate 12 for sealing the opening.
  • One end of the cover plate 12 is hinged to the open box body 11
  • the other end of the cover plate 12 can be locked on the open box body 11, when the cover plate 12 is fastened on the open box body 11, the vacuum chamber 1 is in a sealed state state, the vacuum chamber 1 is provided with an air extraction port 13, the air extraction port 13 is communicated with a vacuum pump through a pipeline, and the vacuum pump is used to realize the vacuuming process in the vacuum chamber 1, and the vacuum chamber 1 is also provided with There is a stage 14 for placing devices.
  • the evaporation source 2 completes the preparation of organic semiconductor devices on the stage 14. After the organic semiconductor device preparation and in-situ monitoring are completed, the cover plate 12 is opened, and the The organic semiconductor device is taken out.
  • the vacuum pump set in this example is composed of a mechanical pump, a turbomolecular pump, and an ion pump.
  • the vacuum pump requires that the system vacuum degree be better than 2 ⁇ 10-10 mbar.
  • an observation window 15 is provided on the side wall of the vacuum chamber 1 .
  • the detection assembly 3 in this embodiment includes a probe 31 for in-situ electrical detection, a probe seat 32 disposed outside the vacuum chamber 1 , and a probe that drives the probe seat 32 to move.
  • the probe moving table 33 is a three-axis moving platform, including a lift table that drives the probe base 32 to move up and down, and a horizontal movement that drives the probe base 32 to move toward or away from the vacuum chamber 1 A rotary table and a rotary table that drives the probe base 32 to rotate.
  • the lifting table is arranged at the bottom, the horizontal moving table is arranged on the lifting table, and the rotating table is arranged on the horizontal moving table.
  • the range that the lift table drives the probe base 32 to move is 5 mm
  • the range that the horizontal moving stage drives the probe base 32 to move closer to or away from the vacuum chamber 1 is 5 cm
  • the rotating table drives the probe base 32 to move within a range of 5 cm.
  • the rotation angle is 45°.
  • the side wall of the vacuum chamber 1 is provided with a through hole for the probe 31 to pass through, and to ensure The through hole is large enough to not affect the movement of the probe 31 in the through hole.
  • the vacuum chamber 1 of this embodiment cannot meet the sealing condition. Therefore, in this embodiment, the probe A vacuum bellows 34 is arranged between the needle seat 32 and the vacuum chamber 1 , the probe 31 is mounted on the probe seat 32 and inserted into the vacuum chamber 1 through the vacuum bellows 34 . One end of the vacuum bellows 34 is communicated with the through hole, and the other end is sealed on the probe seat 32.
  • the vacuum bellows 34 By setting the vacuum bellows 34, on the one hand, the airtightness of the vacuum chamber 1 can be maintained, and a vacuum environment can be created, on the other hand, Due to the characteristics of the bellows, the normal movement of the probe base 32 will not be affected.
  • two sets of detection components 3 are provided in this embodiment, and the detection components 3 are arranged on the side walls of the vacuum chamber 1 .
  • the detection components 3 are arranged on the side walls of the vacuum chamber 1 .
  • three groups of detection components 3 may also be set to realize the detection of the electrical signal of the triode.
  • the evaporation source 2 in this embodiment is obliquely arranged on the cover plate 12 , and one or more groups of evaporation sources 2 can be arranged on the cover plate 12 .
  • the detection of organic semiconductor devices on a single evaporation source 2 can also be realized on the mixed evaporation source 2, and different comparative experimental groups can be set.
  • a container 23 for holding evaporative materials, a heating element 24 fixed in the heat shielding component 21 for a built-in container 23 the container 23 is detachably embedded in the heat shielding component 21 away from the vacuum flange 22
  • the container 23 has an inner cavity 231 and its end away from the vacuum flange 22 is provided with an opening 232 that communicates with the inner cavity 231.
  • the opening 232 is provided with a peripheral wall 233 extending into the inner cavity 231, so The end of the peripheral wall 233 extending into the inner cavity 231 is open and its area is smaller than the area of the inner cavity 231 in the same plane.
  • peripheral wall 233 By providing a peripheral wall 233 extending into the inner cavity 231 at the opening 232, and the end of the peripheral wall 233 extending into the inner cavity 231 is open and its area is smaller than the area of the inner cavity 231 in the same plane, the peripheral wall 233 and the container 23 are formed.
  • the accommodating space for storing the evaporation material is formed between the inner cavities 231 of the evaporating material, and the evaporation material can be prevented from falling from the opening 232 when the evaporation source 2 is in an inclined or inverted state, so as to realize the purpose of installing the evaporation source 2 obliquely.
  • the types of evaporation sources 2 may include: resistance heating evaporation sources, electron beam heating evaporation sources, induction heating evaporation sources, and laser heating evaporation sources; among which resistance evaporation sources are more commonly used, Simple, economical, reliable, can be made into different capacities, shapes, and have different electrical properties, but in some special cases, sometimes many materials cannot be evaporated in the form of resistance heating, such as commonly used in visible light and near-infrared optical device coating insulating material.
  • the electron beam heating method must be used; and according to the actual use requirements, the induction heating evaporation source that uses a high-frequency electromagnetic field to inductively heat the film material to vaporize it and the photon beam emitted by the laser source can also be used. It can be used as a heat source for heating the film material, and the laser heating type evaporation source can make the film material absorb heat and vaporize.
  • a film thickness gauge 6 for detecting semiconductor devices is also included.
  • the film thickness gauge 6 is connected to the vacuum chamber 1 and includes a film thickness test head arranged in the vacuum chamber 1 and a film thickness test head arranged in the vacuum chamber.
  • the film thickness display outside the body 1 can monitor the coating thickness in real time during the coating process of the semiconductor device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及一种有机半导体器件原位电学性能智能监测设备,包括:真空腔体,提供器件制备及原位监测的真空环境;蒸发源,提供器件制备的原材料;检测组件,包括用于实现原位电学检测的探针、设置在真空腔体外的探针座和带动探针座移动的探针移动台,探针座与真空腔体之间设置有真空波纹管,探针安装在所述探针座上并穿过真空波纹管插入到真空腔体内。可视组件,用于观察位于真空腔体内的探针的位置,调节探针移动台使探针移动到原位电学监测点;监测仪器,与检测组件连接,获取检测组件的检测数据。本发明能够在有机半导体薄膜制备的过程中,实时原位测量有机半导体薄膜的电学信号,获得电学信号随薄膜厚度或异质结类型的实时演变。

Description

有机半导体器件原位电学性能智能监测设备 技术领域
本发明涉及有机半导体电学性能监测技术领域,尤其是指一种有机半导体器件原位电学性能智能监测设备。
背景技术
近年来,有机半导体的研究和应用得到了飞速的发展,形成了跨物理学、化学、电子学和材料学等多学科的研究领域,在光电子、微电子、太阳能电池、通信等各方面引起了广泛关注。有机半导体材料容易加工成薄膜并且具有良好的延展特性,有机半导体材料的出现,更能满足现代电子产品轻薄、便携及易于设计等方面的需求。与传统的硅基半导体材料相比,有机半导体材料的产品特征优势可概括为:机械柔性好、易大面积制造、化学结构丰富、超薄、重量轻以及成本低廉等。
器件工艺是有机半导体研究中的一个关键领域,将直接决定器件成本、器件性能、集成度、甚至成品率。传统有机半导体器件工艺的电学性能测试是非原位进行的。其工艺流程如下:器件设计、器件制备(包括金属电极的制备、有机薄膜的制备)、电学性能测试。器件制备是在真空环境中完成(用到的设备有金属蒸镀仪和有机蒸镀仪),然后再从真空中拿到大气环境中进行电学测量(用到的设备有探针台和半导体分析仪)。由此可见,期间制备环节和电学测试环节是彼此独立的,所进行的电学性能测试是非原位的。
对于上述非原位的电学性能测试,其缺点如下:
1、器件从真空腔转移至大气中,容易受到外界空气、水等杂质的污染;
2、器件在不同设备之间进行转移,无法保证是对同一微区进行了测试和表征,经常得到不一致的结论分析;
3、耗时、耗力、设备成本高。
在有机半导体薄膜复杂的生长动力学和物理性质的背景下,非原位测试的工艺给行业发展带来了极大的阻挠。
发明内容
为此,本发明所要解决的技术问题在于克服现有技术中无法实现有机半导体原位监测的问题,提供一种有机半导体器件原位电学性能智能监测设备,可以在有机半导体薄膜制备的过程中,实时测量有机半导体薄膜的电学信号,获得电学信号随薄膜厚度或异质结类型的实时演变。
为解决上述技术问题,本发明提供了一种有机半导体器件原位电学性能智能监测设备,包括:
真空腔体,提供器件制备及原位监测的真空环境;
蒸发源,提供器件制备的原材料;
检测组件,包括用于实现原位电学检测的探针、设置在真空腔体外的探针座和带动探针座移动的探针移动台,所述探针座与真空腔体之间设置有真空波纹管,所述探针安装在所述探针座上并穿过所述真空波纹管插入到真空腔体内。
可视组件,用于观察位于真空腔体内的探针的位置,调节探针移动台使探针移动到原位电学监测点;
监测仪器,与所述检测组件连接,获取检测组件的检测数据。
在本发明的一个实施例中,所述探针移动台为三轴移动平台,包括带动探针座上下移动的升降台、带动探针座向靠接或远离真空腔体方向移动的水平移动台和带动探针座旋转的旋转台。
在本发明的一个实施例中,包括两组检测组件,所述检测组件设置在所述真空腔体的侧壁上。
在本发明的一个实施例中,所述真空腔体包括敞口箱体和用于封堵敞口 的盖板,所述盖板的一端铰接在所述敞口箱体上,所述盖板的另一端能够锁合在所述敞口箱体上,所述真空腔体内还设置有用于放置器件的载物台。
在本发明的一个实施例中,所述真空腔体的侧壁上设置有观察窗。
在本发明的一个实施例中,所述真空腔体上还设置有抽气口,所述抽气口通过管路与真空泵连通。
在本发明的一个实施例中,所述蒸发源倾斜设置在所述盖板上,所述盖板设置有一组或多组蒸发源。
在本发明的一个实施例中,所述蒸发源包括热屏蔽组件、用于支撑热屏蔽组件的真空法兰、用于盛放蒸发材料的容器、固定于所述热屏蔽组件内用于内置容器的加热组件,所述容器可拆卸嵌设于热屏蔽组件远离真空法兰的一端,所述的容器具有内腔且其远离真空法兰的一端设有与内腔相连通的开口,所述的开口处设有伸入内腔的周壁,所述周壁伸入内腔的端部敞开且其面积小于与其处于同一平面内的内腔面积。
在本发明的一个实施例中,所述可视组件包括用于拍摄探针位置的CCD相机和能够可视化显示的显示器。
在本发明的一个实施例中,还包括用于检测半导体器件的膜厚仪。
本发明的上述技术方案相比现有技术具有以下优点:
本发明所述的有机半导体器件原位电学性能智能监测设备,集成真空腔体、蒸发源、检测组件、可视组件和监测仪器于一体,采用真空腔体、蒸发源提供有机半导体薄膜的制备条件和制备原材料,完成有机半导体薄膜的制备,并且通过检测组件、可视组件和监测仪器,实现在有机半导体薄膜制备的过程中,实时原位测量有机半导体薄膜的电学信号,获得电学信号随薄膜厚度或异质结类型的实时演变;
相比于现有技术中,将有机半导体器件移位后进行电学检测的方法,本发明的原位电学性能智能监测设备,解决了有机半导体分子易受环境污染、以及转移后所存在检测不准确的问题,同时也大大节约时间成本、人力成本 和设备成本。
附图说明
为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明,其中:
图1是本发明的有机半导体器件原位电学性能智能监测设备整体结构示意图;
图2是本发明的检测组件的结构示意图;
图3是本发明的蒸发源的结构示意图。
说明书附图标记说明:1、真空腔体;11、敞口箱体;12、盖板;13、抽气口;14、载物台;15、观察窗;2、蒸发源;21、热屏蔽组件;22、法兰;23、容器;231、内腔;232、开口;233、周壁;24、加热组件;3、检测组件;31、探针;32、探针座;33、探针移动台;34、真空波纹管;41、CCD相机;42、显示器;5、监测仪器;6、膜厚仪。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
参照图1所示,本发明的一种有机半导体器件原位电学性能智能监测设备,包括:真空腔体1、蒸发源2、检测组件3、可视组件和监测仪器5;
真空腔体1,提供器件制备及原位监测的真空环境;
蒸发源2,处理器件制备的原材料;
通过蒸发源2对位于所述真空腔体1内的原材料加热使之气化,然后在真空腔体1内镀膜,完成有机半导体薄膜的制备;
采用检测组件3的探针31对制备成的有机半导体薄膜进行原位检测;
采用与所述检测组件3连接的监测仪器5,获取检测组件3的检测数据, 实现在有机半导体薄膜制备的过程中,实时原位测量有机半导体薄膜的电学信号,获得电学信号随薄膜厚度或异质结类型的实时演变;
采用可视组件,用于观察位于真空腔体1内的探针31的位置;所述可视组件包括用于拍摄探针31位置的CCD相机41和能够可视化显示的显示器42;
通过所述可视组件与所述检测组件3的配合可以保证将探针31移动至原位电学监测点。具体地,首先可视组件中的CCD相机41实时拍摄探针31的位置,并上传至显示器42中,在显示器42中观察探针31的位置,在观察探针31位置的同时,通过移动检测组件3带动探针31的移动,使探针31移动到原位电学监测点。
相比于现有技术中,将有机半导体器件移位后进行电学检测的方法,本发明的原位电学性能智能监测设备,解决了有机半导体分子易受环境污染、以及转移后所存在检测不准确的问题,同时也大大节约时间成本、人力成本和设备成本。
参照图1所示,本实施例的所述真空腔体1包括敞口箱体11和用于封堵敞口的盖板12,所述盖板12的一端铰接在所述敞口箱体11上,所述盖板12的另一端能够锁合在所述敞口箱体11上,当所述盖板12扣合在所述敞口箱体11上时,所述真空腔体1处于密封状态,所述真空腔体1上设置有抽气口13,所述抽气口13通过管路与真空泵连通,通过真空泵实现对真空腔体1内的抽真空处理,所述真空腔体1内还设置有用于放置器件的载物台14,所述蒸发源2在所述载物台14上完成有机半导体器件的制备,在有机半导体器件制备和原位监测完成后,打开所述盖板12,将有机半导体器件取出。
具体地,本实例中的真空泵组由机械泵、涡轮分子泵、离子泵组成,优选的,真空泵要求系统真空度优于2×10-10mbar。
本实施例中,为了能够观察到真空腔体1内的情况,所述真空腔体1的侧壁上设置有观察窗15。
参照图1和图2所示,本实施例中的检测组件3包括用于实现原位电学检测的探针31、设置在真空腔体1外的探针座32和带动探针座32移动的探针移动台33,所述探针移动台33为三轴移动平台,包括带动探针座32上下移动的升降台、带动探针座32向靠接或远离真空腔体1方向移动的水平移动台和带动探针座32旋转的旋转台,在本实施例中,所述升降台设置在最下方,所述水平移动台设置在升降台上,所述旋转台设置在水平移动台上,根据实际需求设置所述升降台带动探针座32移动的范围为5mm,设置所述水平移动台带动探针座32靠近或远离真空腔体1的范围为5cm,设置旋转台带动探针座32的旋转角度为45°。
为了保证探针31能够穿过真空腔体1,并能够在上述移动范围内在真空腔体1内移动,所述真空腔体1侧壁上开设有供探针31穿过的通孔,并且保证该通孔足够大,不会影响到探针31在通孔内移动,在开设通孔后,本实施例的真空腔体1就不能满足密封条件,因此,本实施例中,在所述探针座32与真空腔体1之间设置有真空波纹管34,所述探针31安装在所述探针座32上并穿过所述真空波纹管34插入到真空腔体1内,所述真空波纹管34一端与所述通孔连通,另一端密封设置在探针座32上,通过设置真空波纹管34一方面能够保持真空腔体1的密闭性,能够创造真空环境,另一方面,由于波纹管的特性,不会影响探针座32的正常移动。
具体地,为了能够实现对有机半导体器件的检测,本实施例中设置两组检测组件3,所述检测组件3设置在所述真空腔体1的侧壁上,通过两组检测组件3能够实现对二极管电学信号的检测,在其他实施例中,也可以设置三组检测组件3实现对三极管电学信号的检测。
参照图1所示,本实施例中的所述蒸发源2倾斜设置在所述盖板12上,所述盖板12上可以设置一组或多组蒸发源2,根据科研需求,可以实现在单一蒸发源2上对有机半导体器件的检测,也可以实现在混合蒸发源2上对有机半导体器件的检测,能够设置不同的对比实验组。
本实施例中,为了能够使所述蒸发源2倾斜设置在所述盖板12上,参 照图3所示,所述蒸发源2包括热屏蔽组件21、用于支撑热屏蔽组件21的真空法兰22、用于盛放蒸发材料的容器23、固定于所述热屏蔽组件21内用于内置容器23的加热组件24,所述容器23可拆卸嵌设于热屏蔽组件21远离真空法兰22的一端,所述的容器23具有内腔231且其远离真空法兰22的一端设有与内腔231相连通的开口232,所述开口232处设有伸入内腔231的周壁233,所述周壁233伸入内腔231的端部敞开且其面积小于与其处于同一平面内的内腔231面积。
通过在开口232处设有伸入内腔231的周壁233,并且周壁233伸入内腔231的端部敞开且其面积小于与其处于同一平面内的内腔231面积,使得该周壁233与容器23的内腔231间形成储存蒸发材料的容置空间,当蒸发源2处于倾斜或者倒置状态时可以防止蒸发材料从开口232处掉落,从而实现蒸发源2切斜安装的目的。
具体地,根据加热组件24的不同,蒸发源2的类型可以包括:电阻加热式蒸发源、电子束加热蒸发源、感应加热式蒸发源、激光加热式蒸发源;其中电阻式蒸发源比较常用,简单、经济、可靠,可以做成不同的容量、形状,并具有不同的电特性,但是在一些特殊情况下,有时很多材料不能用电阻加热的形式蒸发,例如常用于可见光和近红外光学器件镀膜的绝缘材料。在这种情况下,必须采用电子束加热方式;并且根据实际使用需求,也可以采用利用高频电磁场感应加热膜材使其汽化蒸发的感应加热式蒸发源和利用激光源发射的光子束的光能作为加热膜材的热源,使膜材吸热汽化蒸发的激光加热式蒸发源。
本实施例中,还包括用于检测半导体器件的膜厚仪6,所述膜厚仪6与真空腔体1连接,包括设置在真空腔体1内的膜厚测试头,和设置在真空腔体1外的膜厚显示器,在半导体器件镀膜的过程中,能够实时监测镀膜厚度。
显然,上述实施例仅仅是为清楚地说明所作的举例,并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式变化或变动。这里无需也无法对所有的实施方式予以穷举。而 由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

  1. 一种有机半导体器件原位电学性能智能监测设备,其特征在于:包括:
    真空腔体,提供器件制备及原位监测的真空环境;
    蒸发源,处理器件制备的原材料;
    检测组件,包括用于实现原位电学检测的探针、设置在真空腔体外的探针座和带动探针座移动的探针移动台,所述探针座与真空腔体之间设置有真空波纹管,所述探针安装在所述探针座上并穿过所述真空波纹管插入到真空腔体内;
    可视组件,用于观察位于真空腔体内的探针的位置,通过调节探针移动台使探针移动到原位电学监测点;
    监测仪器,与所述检测组件连接,获取检测组件的检测数据。
  2. 根据权利要求1所述的有机半导体器件原位电学性能智能监测设备,其特征在于:所述探针移动台为三轴移动平台,包括带动探针座上下移动的升降台、带动探针座向靠接或远离真空腔体方向移动的水平移动台和带动探针座旋转的旋转台。
  3. 根据权利要求1所述的有机半导体器件原位电学性能智能监测设备,其特征在于:包括两组检测组件,所述检测组件设置在所述真空腔体的侧壁上。
  4. 根据权利要求1所述的有机半导体器件原位电学性能智能监测设备,其特征在于:所述真空腔体包括敞口箱体和用于封堵敞口的盖板,所述盖板的一端铰接在所述敞口箱体上,所述盖板的另一端能够锁合在所述敞口箱体上,所述真空腔体内还设置有用于放置器件的载物台。
  5. 根据权利要求4所述的有机半导体器件原位电学性能智能监测设备, 其特征在于:所述真空腔体的侧壁上设置有观察窗。
  6. 根据权利要求4所述的有机半导体器件原位电学性能智能监测设备,其特征在于:所述真空腔体上还设置有抽气口,所述抽气口通过管路与真空泵连通。
  7. 根据权利要求4所述的有机半导体器件原位电学性能智能监测设备,其特征在于:所述蒸发源倾斜设置在所述盖板上,所述盖板设置有一组或多组蒸发源。
  8. 根据权利要求7所述的有机半导体器件原位电学性能智能监测设备,其特征在于:所述蒸发源包括热屏蔽组件、用于支撑热屏蔽组件的真空法兰、用于盛放蒸发材料的容器、固定于所述热屏蔽组件内用于内置容器的加热组件,所述容器可拆卸嵌设于热屏蔽组件远离真空法兰的一端,所述的容器具有内腔且其远离真空法兰的一端设有与内腔相连通的开口,所述的开口处设有伸入内腔的周壁,所述周壁伸入内腔的端部敞开且其面积小于与其处于同一平面内的内腔面积。
  9. 根据权利要求1所述的有机半导体器件原位电学性能智能监测设备,其特征在于:所述可视组件包括用于拍摄探针位置的CCD相机和能够可视化显示的显示器。
  10. 根据权利要求1所述的有机半导体器件原位电学性能智能监测设备,其特征在于:还包括用于检测半导体器件的膜厚仪。
PCT/CN2021/111715 2021-04-28 2021-08-10 有机半导体器件原位电学性能智能监测设备 WO2022227336A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110464112.2 2021-04-28
CN202110464112.2A CN112864039B (zh) 2021-04-28 2021-04-28 有机半导体器件原位电学性能监测设备

Publications (1)

Publication Number Publication Date
WO2022227336A1 true WO2022227336A1 (zh) 2022-11-03

Family

ID=75992911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/111715 WO2022227336A1 (zh) 2021-04-28 2021-08-10 有机半导体器件原位电学性能智能监测设备

Country Status (2)

Country Link
CN (1) CN112864039B (zh)
WO (1) WO2022227336A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112864039B (zh) * 2021-04-28 2021-07-20 苏州大学 有机半导体器件原位电学性能监测设备
CN114664681B (zh) * 2022-02-14 2022-09-23 江苏中芯沃达半导体科技有限公司 一种led芯片原位监测设备及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101846635A (zh) * 2010-05-07 2010-09-29 中国科学院半导体研究所 一种超高真空多功能综合测试系统
CN101981678A (zh) * 2008-03-27 2011-02-23 Imra美国公司 一种制备薄膜的方法
CN103789733A (zh) * 2014-02-27 2014-05-14 苏州大学 可任意角度安装使用的真空蒸发源
CN103792443A (zh) * 2012-11-01 2014-05-14 国家纳米科学中心 探针台、有机薄膜器件的制备与测试集成系统及其方法
CN107543487A (zh) * 2016-06-27 2018-01-05 北京北方华创微电子装备有限公司 一种原位膜厚监测方法及装置
CN112864039A (zh) * 2021-04-28 2021-05-28 苏州大学 有机半导体器件原位电学性能智能监测设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2837831Y (zh) * 2005-11-11 2006-11-15 中国科学院物理研究所 新型超高真空原位生长、表征和测试系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101981678A (zh) * 2008-03-27 2011-02-23 Imra美国公司 一种制备薄膜的方法
CN101846635A (zh) * 2010-05-07 2010-09-29 中国科学院半导体研究所 一种超高真空多功能综合测试系统
CN103792443A (zh) * 2012-11-01 2014-05-14 国家纳米科学中心 探针台、有机薄膜器件的制备与测试集成系统及其方法
CN103789733A (zh) * 2014-02-27 2014-05-14 苏州大学 可任意角度安装使用的真空蒸发源
CN107543487A (zh) * 2016-06-27 2018-01-05 北京北方华创微电子装备有限公司 一种原位膜厚监测方法及装置
CN112864039A (zh) * 2021-04-28 2021-05-28 苏州大学 有机半导体器件原位电学性能智能监测设备

Also Published As

Publication number Publication date
CN112864039B (zh) 2021-07-20
CN112864039A (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
WO2022227336A1 (zh) 有机半导体器件原位电学性能智能监测设备
CN108660419B (zh) 一种基于超高真空条件下挥发性腐蚀性物质薄膜沉积与催化反应测试装置
US9564288B2 (en) Sample storage container, charged particle beam apparatus, and image acquiring method
US10068745B2 (en) Charged particle beam device and sample holder for charged particle beam device
CN109246860A (zh) 可实现在显微镜下原位、动态观察材料的高温装置
CN110487609B (zh) 超高真空原位薄膜刻蚀电极生长系统
CN104798173A (zh) 带电粒子线装置、试样台单元以及试样观察方法
JP2011231384A (ja) 成膜装置及びアライメント方法
US10658150B2 (en) Cryostation system
CN107884310B (zh) 基于双测试室气路转换的材料放气率测量装置
CN104613911B (zh) 沉积薄膜膜厚分布测量系统
Meng et al. Face–centered cubic p–type NiO films room–temperature prepared via direct-current reactive magnetron sputtering–Influence of sputtering power on microstructure, optical and electrical behaviors
CN206385275U (zh) 二维材料范德瓦尔斯外延生长与修饰系统
US8210742B2 (en) Method and apparatus for detecting foreign matter attached to peripheral edge of substrate, and storage medium
CN113327866B (zh) 二维器件真空制备系统及其方法
CN115201307B (zh) 环境pld生长及电化学性能测试系统、方法及用途
CN205790073U (zh) 一种高真空变温有机半导体器件测量腔
CN208674091U (zh) 承载盘组件和机械手臂
CN212864949U (zh) 一种基于红外检测技术的真空镀膜基板温度监控组件
CN104596906B (zh) 多测量头的水氧透气率测量系统
KR20180017884A (ko) 시편 준비 장치를 갖는 주사전자현미경
CN111647855A (zh) 一种基于红外检测技术的真空镀膜基板温度监控组件
CN215599051U (zh) 一种薄膜热电参数测试仪及其检测装置
CN115724397B (zh) 一种向晶体表面转移二维材料的真空装置及方法
CN114664681B (zh) 一种led芯片原位监测设备及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21938801

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21938801

Country of ref document: EP

Kind code of ref document: A1