WO2022227246A1 - 一种活性磷脂 - Google Patents

一种活性磷脂 Download PDF

Info

Publication number
WO2022227246A1
WO2022227246A1 PCT/CN2021/100552 CN2021100552W WO2022227246A1 WO 2022227246 A1 WO2022227246 A1 WO 2022227246A1 CN 2021100552 W CN2021100552 W CN 2021100552W WO 2022227246 A1 WO2022227246 A1 WO 2022227246A1
Authority
WO
WIPO (PCT)
Prior art keywords
phospholipid
water
active
active phospholipid
liquid crystal
Prior art date
Application number
PCT/CN2021/100552
Other languages
English (en)
French (fr)
Inventor
徐子谦
Original Assignee
内蒙古铂贝曼科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 内蒙古铂贝曼科技有限公司 filed Critical 内蒙古铂贝曼科技有限公司
Publication of WO2022227246A1 publication Critical patent/WO2022227246A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/10Phosphatides, e.g. lecithin
    • C07F9/103Extraction or purification by physical or chemical treatment of natural phosphatides; Preparation of compositions containing phosphatides of unknown structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/74Recovery of fats, fatty oils, fatty acids or other fatty substances, e.g. lanolin or waxes

Definitions

  • the invention belongs to the field of phospholipid processing, in particular to an active phospholipid.
  • the raw material of phospholipid processing is soybean oil foot, referred to as oil foot, which is a by-product of the hydration and degumming process in the soybean oil refining process in the field of oil processing, also known as hydration oil foot, and its main components are phospholipids 30-45g/100g, Soybean oil 20-30g/100g and moisture 30-50g/100g, trace components are metal ions, such as calcium, magnesium and iron, etc., in the form of phospholipid metal salts, such as iron ion content, usually 50 in acetone insoluble matter -100mg/kg, in individual cases up to 150mg/kg or more.
  • phospholipid processing methods There are two main industrialized phospholipid processing methods.
  • One is the preparation of concentrated phospholipids by hydration, that is, after hydrating and extracting soybean oil bottoms from soybean crude oil, the concentrated phospholipids are directly dried and dehydrated to obtain concentrated phospholipids, which are also called fluid phospholipids because of their fluidity.
  • the content of acetone insolubles on a dry basis is 60-65g/100g
  • the second is to prepare powder phospholipids by solvent method, that is, using soybean oil or concentrated phospholipids as raw materials, extracting and removing oil with acetone to obtain powder phospholipids, whose dry basis acetone insolubles
  • the content is 95-98g/100g.
  • the mainstream products on the market are concentrated phospholipids, and powdered phospholipids account for less than 5% of the market.
  • Chinese patent CN107325125A discloses a method for preparing hydrated phospholipids from soybean oil bottoms and the obtained hydrated phospholipids (hereinafter referred to as hydrated phospholipids).
  • the amount of water added in the patented method is soybean oil. 24-74% of the feet, the amount of water added is obviously insufficient.
  • the patent does not explain the whereabouts of the inactivated phospholipids and water-soluble impurities derived from soybean oil foot in the process, nor does it explain the n-hexane insoluble index of the phospholipid products.
  • the inactivated phospholipids and water-soluble impurities derived from soybean oil foot are difficult to separate, which is the same as the defect of hydrated phospholipids.
  • the method in this document has the following technical defects: first, the literature does not characterize the liquid crystal state of the phospholipid, and it is impossible to determine whether it is a liquid crystal state or what kind of liquid crystal state it is; second, the acetone insoluble content of the phospholipid in the literature is only 86.05% , the purity of phospholipids is too low and does not match the purity of liquid crystal phospholipids, which further confirms that the liquid crystal state described in this document is doubtful.
  • Chinese patent CN102517148A discloses a two-step decolorization method for phospholipids, which adopts hydrogen peroxide bleaching and silica gel adsorption. It is natural and has food safety risks at the same time, which does not conform to the general trend of "green" development; (2) the effect of silica gel adsorption and decolorization is very poor, and the invalid silica gel becomes waste residue, which is not conducive to environmental protection; (3) bleaching destroys beneficial phospholipids in phospholipids.
  • Antioxidant ingredients reduce the antioxidant properties and nutritional value of phospholipids and shorten the shelf life of phospholipids.
  • the invention solves the technical problem of preparing the active phospholipid, the prepared active phospholipid fills the gap in the industry, and fundamentally solves the problem of low emulsification of the existing phospholipid.
  • the purpose of the present invention is to provide an active phospholipid to fill the gap that there is currently no active phospholipid product in the industry.
  • all basic phospholipid products including all concentrated phospholipids and acetone extraction powder phospholipids, they are mixtures of active and inactive phospholipids with poor surface activity.
  • the active phospholipid of the invention fills the blank of no active phospholipid product in the industry, and fundamentally solves the problem of low emulsification of the existing phospholipid.
  • the active phospholipid has not been reported in the field of phospholipid processing and related research.
  • An active phospholipid the acetone-insoluble matter is composed of soybean active phospholipid, prepared by dehydrating the active phospholipid lamellar liquid crystal, and the active phospholipid is restored to the lamellar liquid crystal after rehydration.
  • the dry acetone-insoluble content of the active phospholipid is 92-96 g/100 g, and the water content is less than or equal to 2 g/100 g.
  • the sensory index of the active phospholipid is yellow granules or powder.
  • the active phospholipid refers to a phospholipid with surface activity, referred to as active phospholipid.
  • Active phospholipids can form liquid crystals and have good emulsification and stability in water, so the surface activity of phospholipids can be detected.
  • surface active use which is mostly used as an emulsifier
  • functional use mainly because phospholipids contain phosphatidylcholine, that is, PC, and are mostly used as nutritional supplements.
  • Inactivated phospholipids which are opposite to active phospholipids, refer to phospholipids that have lost their surface activity, referred to as inactivated phospholipids. Inactivated phospholipids cannot form liquid crystals and have no emulsification in water, so they are not surfactants. For phospholipid products, inactivated phospholipids are impurities. The color of inactivated phospholipids is darker, and the separation of inactivated phospholipids can improve the color of phospholipid products.
  • Currently commercially available phospholipids, including all concentrated phospholipids and powdered phospholipids are mixtures of active phospholipids and inactive phospholipids, and there is no active phospholipid product.
  • the surface activity means that soybean phospholipids can reduce the surface tension of water.
  • Soy lecithin is called a surfactant, or surfactant.
  • Surface activity is one of the main uses of soybean lecithin.
  • injection nutrient solution uses soybean lecithin as an emulsifier, and for example, milk powder uses the surface activity of soybean lecithin to enhance instant solubility.
  • Phospholipids obtained by dehydration of lamellar liquid crystals are active phospholipids, which can be restored to lamellar liquid crystals after rehydration.
  • the rehydration method of the active phospholipid comprises the following steps: adding 5 g of active phospholipid sample into 15-25 g of purified water, stirring it with a 900 rpm stirrer, after the phospholipids are all dispersed, evaporating 10 g of water with microwave heating to obtain 10- 20 g of the product was then settled in a centrifuge at 3500 rpm for 5 min to remove air bubbles to obtain a brown-red transmissive lamellar liquid crystal with uniform texture.
  • the phospholipid sample contains inactivated phospholipids, follow the rehydration method above, and the resulting product will be a yellow reflection.
  • the method for detecting the hydrophilicity of the active phospholipid comprises the following steps: taking 1 g of the active phospholipid sample and placing it in 100 g of purified water, stirring it with a 900 rpm stirrer, and after mixing evenly, it is settled in a 3500 rpm centrifuge for 5 minutes to obtain a uniform texture. , Stable emulsion, no precipitate.
  • the phospholipid sample contains inactivated phospholipids, operate according to the above-mentioned hydrophilicity detection method, and the obtained emulsion contains inactivated phospholipid precipitates.
  • the present invention also relates to the preparation method of the above-mentioned active phospholipid, comprising the following steps: reacting soybean oil bottoms with raw material water, and sedimenting to obtain a layered water phase and active phospholipid lamellar liquid crystal, and the electrical conductivity of the water phase is 2-12 mS /cm, the active phospholipid lamellar liquid crystal is dried and pulverized.
  • the reaction includes two categories of chemistry and physical chemistry.
  • Chemical reaction means that the impurity components in soybean oil foot react with water to hydrolyze to produce a new substance - hydrolyzate.
  • the hydrolyzate is dissolved in raw water and ionized to produce water phase;
  • physicochemical reaction refers to the The active phospholipid component combines with water to create a new state - a lamellar liquid crystal.
  • the hydrolyzate is a powdery solid easily soluble in water, ionized in water, and insoluble in n-hexane.
  • the hydrolyzate is not inherent in soybean oil foot, but is produced by hydrolysis. The reason is that this hydrolyzate belongs to n-hexane insoluble matter, the content of n-hexane insoluble matter in soybean oil foot is usually ⁇ 0.3g/100g on a dry basis; and the n-hexane insoluble matter content of soybean oil foot after hydrolysis is The raw material soybean oil foot is 10-30 times the normal content.
  • the hydrolyzate is a new substance produced by the hydrolysis reaction of the impurity components in the raw soybean oil bottoms.
  • the reaction temperature of the soybean oil bottoms and the raw material water is 60-95°C.
  • the temperature can generate hydrolyzate and form active phospholipid liquid crystals in the range of 0°C to 100°C, but the higher the temperature, the higher the efficiency. Therefore, increasing the water temperature can shorten the reaction time.
  • the temperature is therefore preferably 60-95°C.
  • the temperature is above 60 °C, it belongs to the sterilization temperature, which can prevent the soybean oil bottom from deteriorating during the reaction, and less than 95 °C can prevent the water from boiling.
  • the reaction time of the soybean oil foot and the raw material water is 3-12h.
  • the settled active phospholipid liquid crystal can be obtained within 30 minutes, but in order to improve the yield of the active phospholipid liquid crystal, the time is preferably 3-12 hours. If the reaction time is too short, the yield of active phospholipid liquid crystal will be affected; if the reaction time is too long, the equipment will be occupied for too long, which will affect the production efficiency and production capacity, and increase the production cost.
  • the soybean oil bottoms are placed in the raw water and dispersed into granules by stirring; during the reaction, the reactants are not stirred.
  • the weight ratio of the soybean oil foot to the raw material water is 1:2-5.
  • the raw material water is 2-5 times the weight of the raw soybean oil bottoms, so that an independent water phase can still exist after the phospholipids in the soybean oil bottoms fully absorb water.
  • the function of this water phase first, dissolve and retain the hydrolyzate of the raw oil bottoms in the water phase, so that the water phase has appropriate conductivity, which is a necessary process condition for the aggregation of active phospholipids and water to form liquid crystals; second, Provide sufficient water source for active phospholipids to form liquid crystals to prevent water shortage; third, the water phase separates active phospholipid liquid crystals with a specific gravity greater than water from oil and inactivated phospholipids with a specific gravity less than water, and plays a role in separation.
  • the soybean oil foot can not achieve an effective reaction with water, thereby affecting the combination of active phospholipids and water to form liquid crystals.
  • the water consumption exceeds 5 times the weight of the raw oil bottoms, although the reaction of soybean oil bottoms is favorable, it increases the cost of water, energy consumption and the volume of the equipment.
  • the liquid crystal refers to soybean phospholipid liquid crystal, which refers to anisotropic molecular arrangement and orientation order fluid formed by soybean phospholipid in water.
  • the layered liquid crystal refers to the bilayer formed by active phospholipids and water arranged in layers, the long axes of the molecules are parallel to each other and perpendicular to the layer plane, the hydrophobic group is inside the bilayer, and the hydrophilic group is on the surface of the bilayer.
  • Table 1 The general properties of lamellar liquid crystals formed by activated phospholipids and water are shown in Table 1.
  • the method for preparing granular or powdery active phospholipid from active phospholipid lamellar liquid crystal usually requires two steps of concentration and drying.
  • Concentration refers to dehydrating the active phospholipid liquid crystal with a water content of 70-80g/100g to a water content of about 50g/100g. Drying is to concentrate the active phospholipid liquid crystal with a water content of about 50g/100g (at this time, the ratio of active phospholipid to water is 1:1, it is still a lamellar liquid crystal, and the sensory index is still brown-red transmission color), and the concentration is concentrated by a stirrer.
  • the active phospholipid is stirred to obtain a yellow reflective active phospholipid elastomer, which is then made into strips and dehydrated at two temperatures of 90° C. and 60° C. to obtain strip-shaped solid active phospholipids. Finally, the strip-shaped active phospholipid is crushed, and if it is passed through a 16-mesh sieve, a yellow granular active phospholipid is obtained; if it is passed through a 40-mesh sieve, a yellow powdery active phospholipid is obtained.
  • the water content of granular or powder active phospholipids is less than 2g/100g, and the products comply with the national standard "GB28401 Food Additive Phospholipids".
  • the raw material water is purified water or an aqueous solution of soybean oil foot hydrolyzate, and the conductivity is 0-10 mS/cm.
  • the raw material water and the water phase are different concepts, the raw material water belongs to the raw material, and the water phase belongs to the product.
  • the index of the water phase determines whether the active phospholipid lamellar liquid crystal can be obtained, and the index of the raw water is only used as the basis for the ingredients.
  • a part of the raw material water is absorbed by the active phospholipids in the soybean oil bottoms to become bound water of the active phospholipid lamellar liquid crystal, and the other part becomes the water phase in which the hydrolyzate of the raw soybean oil bottoms is dissolved.
  • the electrical conductivity of the water phase is higher than that of the raw material water, because the hydrolyzate of the raw soybean oil bottoms dissolved in the raw material water becomes the water phase, which increases the electrical conductivity.
  • the aqueous solution of soybean oil foot hydrolyzate is used as the water phase, and the electrical conductivity is in the range of 2-12 mS/cm, which is a necessary process condition for the active phospholipid component in soybean oil foot to aggregate with water to form high-purity liquid crystal.
  • the sedimentation includes natural sedimentation and centrifugal sedimentation.
  • the product system obtained by the reaction of soybean oil bottoms and raw material water is divided into three layers: upper, middle and lower layers, the upper layer is oil and inactivated phospholipids; the middle layer is water phase; the lower layer is active phospholipid lamellar liquid crystal .
  • the product system obtained by the reaction of soybean oil bottoms and raw material water is divided into 4 layers, the first layer from the top is grease, the second layer is inactivated phospholipid, and the third layer is water phase,
  • the bottom layer is active phospholipid lamellar liquid crystal.
  • the separation factor of the centrifugal sedimentation is 1000-4000 g.
  • the phase refers to the part of the homogeneous components in the raw material or product system with the same physical properties, which are separated from other components and have an interface.
  • the water phase is an aqueous solution of soybean oil bottoms hydrolyzate, and has an interface with a phase formed by other components in soybean oil bottoms, such as a lamellar liquid crystal phase formed by the combination of active phospholipid components and water.
  • the aqueous phase is dried to obtain a yellow-brown powdery soybean oil foot hydrolyzate; the active phospholipid lamellar liquid crystal is dried to obtain granular or powdery active phospholipids.
  • sodium hydroxide or potassium hydroxide is also added to the raw soybean oil bottoms or the raw water.
  • the added amount is 0.01-0.5% by weight of soybean oil bottoms.
  • Adding a trace amount of sodium hydroxide or potassium hydroxide to the raw material helps to disperse the raw oil bottoms into granules in the raw material water. Most of the raw soybean oil bottoms do not need to add sodium hydroxide or potassium hydroxide, but if a few raw oil bottoms do not add sodium hydroxide or potassium hydroxide, the raw oil bottoms will be difficult to disperse into granules in the raw material water.
  • the sedimentation includes natural sedimentation and centrifugal sedimentation.
  • the separation factor of the centrifugal sedimentation is 1000-4000 g, and g is the acceleration of gravity.
  • the active phospholipid layered liquid crystal is composed of water, active phospholipid and oil, the water content is 70-80g/100g, and the acetone-insoluble content on a dry basis is 92-96g/100g.
  • the lamellar liquid crystal the sensory index is brown-red transmission color; the birefringence phenomenon of oil striae polarized light texture unique to lamellar liquid crystal is observed with a polarizing microscope; the small angle X-ray scattering technique is used to analyze, the scattering factor q is in the range of 0.5-2nm - There is an obvious Bragg scattering peak between 1 ; the storage modulus G′ is always significantly larger than the loss modulus G′′ as measured by a rotational rheometer, indicating that the elastic response is dominant.
  • the phosphatidylcholine content of the active phospholipid of the present invention is 2-5 percentage points higher than that of the powdered phospholipid prepared from the soybean oil foot of the same raw material by an acetone extraction method.
  • the acetone extraction method powder phospholipid is the product of removing water and oil from raw oil bottoms;
  • the active phospholipid of the present invention is the product of removing water, oil, inactivated phospholipid and hydrolyzate from the raw oil bottoms.
  • the PC content of activated phospholipids is several percentage points higher than that of acetone extraction powder phospholipids.
  • the best emulsifying property All basic phospholipid products on the market, including all concentrated phospholipids and all acetone extraction powder phospholipids, are mixtures of active phospholipids and inactivated phospholipids, with poor surface activity.
  • One of the main uses of phospholipids is as an emulsifier.
  • the present invention is an active phospholipid product. Compared with all concentrated phospholipids and acetone extraction powder phospholipids, the emulsification is the best, and it fills the gap that there is no active phospholipid product at present. .
  • the highest content of functional component PC The second main use of phospholipids is as nutritional supplements, such as the preparation of oral phospholipid products. Taking soybean oil foot as raw material, concentrated phospholipid is the product of removing water; acetone extraction powder phospholipid is the product of removing water and oil; and the active phospholipid provided by the present invention is the product of removing water, oil, inactivated phospholipid and hydrolyzate , the content of functional ingredient PC is 2-5% higher than that of acetone extraction powder phospholipid.
  • inactivated phospholipids and soybean oil foot hydrolyzate have darker colors, and active phospholipid products do not contain inactivated phospholipids and soybean oil foot hydrolyzate, so the color of active phospholipid products is greatly improved. Improvement, the active phospholipid product is yellow, the traditional hydrogen peroxide bleaching and decolorization process is eliminated, and the food safety is guaranteed.
  • Fig. 1 is the liquid chromatogram of the active phospholipid of Example 1.
  • FIG. 2 is a liquid chromatogram of powdered phospholipids by acetone extraction in Comparative Example 3.
  • FIG. 2 is a liquid chromatogram of powdered phospholipids by acetone extraction in Comparative Example 3.
  • Fig. 3 is the polarization diagram of the active phospholipid lamellar liquid crystal of Example 1,
  • a is the polarized light at 25°C
  • b is the polarized light at 75°C.
  • Example 4 is a small-angle X-ray scattering diagram of the activated phospholipid lamellar liquid crystal of Example 1,
  • Fig. 5 is the rotational rheometer frequency sweep curve diagram of the active phospholipid lamellar liquid crystal of embodiment 1,
  • FIG. 6 is the polarization diagram of the lamellar liquid crystal formed by the active phospholipid and the same amount of water in Example 7.
  • FIG. 6 is the polarization diagram of the lamellar liquid crystal formed by the active phospholipid and the same amount of water in Example 7.
  • a is the polarized light at 25°C
  • b is the polarized light at 75°C.
  • Example 7 is a small-angle X-ray scattering diagram of the lamellar liquid crystal formed by the active phospholipid and the same amount of water in Example 7,
  • FIG. 8 is the polarization diagram of the lamellar liquid crystal formed by the active phospholipid and 3 times water in Example 7.
  • FIG. 8 is the polarization diagram of the lamellar liquid crystal formed by the active phospholipid and 3 times water in Example 7.
  • a is the polarized light at 25°C
  • b is the polarized light at 75°C.
  • the transmittance of active phospholipid liquid crystal was measured using a V-5600 visible spectrophotometer from Shanghai Yuanyan Instrument Co., Ltd.
  • the polarizing microscope used Shanghai Tianshen Instrument Co., Ltd. XPF-800 polarizing microscope with a CCD camera and a hot stage.
  • SAXS Small angle X-ray scattering
  • Conductivity measurement uses a multi-parameter transmitter produced by METTLER TOLEDO Instruments (Shanghai) Co., Ltd., product model (Model): M300Process 2-channel 1/2DIN; conductivity sensor model is InPro7100i/12/120/4435 , the measuring range of electrode conductivity is 0.02-500mS/cm.
  • the high-performance liquid chromatographic measurement used the Agilent 1200 high-performance liquid chromatograph of Agilent Technologies Co., Ltd. to implement the soybean phospholipid detection method specified in the fourth part of the Chinese Pharmacopoeia 2020 edition.
  • the rheological measurements were performed using an RS6000 rotational rheometer (HAAKE, Germany).
  • a kind of active phospholipid, its preparation method comprises the steps:
  • the conductivity of the pure water is 0.0mS/cm.
  • the temperature is 95°C and the reaction time is 3h.
  • the product system is divided into upper, middle and lower layers, the upper layer obtains oil and inactivated phospholipids; the middle layer obtains water phase; the lower layer obtains active phospholipid lamellar liquid crystal.
  • Soybean oil foot comes from COFCO Jiayue (Tianjin) Co., Ltd. Its material composition: water content is 40.75g/100g, and acetone insoluble content on dry basis is 62.01g/100g.
  • the conductivity of the resulting aqueous phase was 6.88 mS/cm.
  • the obtained aqueous phase was vacuum-dried to obtain a soybean oil foot hydrolyzate which was a yellow-brown powdery solid, and the yield accounted for 2.73% of the weight of soybean oil foot.
  • the obtained active phospholipid lamellar liquid crystal was brown-red transmissive color, its water content was 76.10g/100g, and the dry acetone-insoluble content was 95.58g/100g.
  • the obtained granular active phospholipid has a water content of 1.01g/100g, a n-hexane insoluble content of 0.08g/100g, and a dry basis acetone insoluble content of 95.58g/100g, and the granular active phospholipid yield accounts for acetone in oil feet 80.97% by weight of insolubles.
  • the obtained granular active phospholipids were tested for the PC content of phosphatidylcholine, and the detection method for soybean phospholipids stipulated in the fourth part of the 2020 edition of the Chinese Pharmacopoeia was performed, and the PC content was 24.76%.
  • the high performance liquid chromatogram of granular active phospholipid is shown in Figure 1.
  • a kind of active phospholipid, its preparation method comprises the steps:
  • the conductivity of the pure water is 0.0mS/cm.
  • the temperature is 80 ° C and the reaction time is 6 hours.
  • the product system is divided into upper, middle and lower layers, the upper layer obtains oil and inactivated phospholipids; the middle layer obtains water phase; the lower layer obtains active phospholipid lamellar liquid crystal.
  • Soybean oil foot comes from COFCO Cereals and Oils Industry (Jiujiang) Co., Ltd., and its material composition: water content is 38.93g/100g, and acetone-insoluble content on dry basis is 61.34g/100g.
  • the conductivity of the resulting aqueous phase was 4.28 mS/cm.
  • the obtained aqueous phase was vacuum-dried to obtain a soybean oil foot hydrolyzate which was a yellow-brown powdery solid, and the yield accounted for 4.91% of the weight of soybean oil foot.
  • the obtained active phospholipid lamellar liquid crystal was brown-red transmissive color, its water content was 77.23 g/100 g, and the content of acetone-insoluble matter on a dry basis was 94.63 g/100 g.
  • the obtained granular active phospholipid has a water content of 1.23g/100g, a n-hexane insoluble content of 0.06g/100g, and a dry basis acetone insoluble content of 94.63g/100g. 80.12% of the weight of the material.
  • a kind of active phospholipid, its preparation method comprises the steps:
  • the product system is divided into upper, middle and lower layers, the upper layer obtains oil and inactivated phospholipids; the middle layer obtains water phase; the lower layer obtains active phospholipid lamellar liquid crystal.
  • Soybean oil foot comes from COFCO Cereals and Oils Industry (Jiujiang) Co., Ltd., and its material composition: water content is 38.93g/100g, and acetone-insoluble content on dry basis is 61.34g/100g.
  • the conductivity of the resulting aqueous phase was 2.17 mS/cm.
  • the obtained aqueous phase was vacuum-dried to obtain a soybean oil foot hydrolyzate which was a yellow-brown powdery solid, and the yield accounted for 4.93% of the weight of soybean oil foot.
  • the obtained active phospholipid lamellar liquid crystal was brown-red transmissive color, and its water content was 78.65g/100g, and its acetone-insoluble content on a dry basis was 93.97g/100g.
  • the obtained granular active phospholipid has a water content of 1.18g/100g, a n-hexane insoluble content of 0.05g/100g, and a dry basis acetone insoluble content of 93.97g/100g. 80.20% of the weight of the material.
  • a kind of active phospholipid, its preparation method comprises the steps:
  • Soybean oil foot comes from COFCO Cereals and Oils Industry (Jiujiang) Co., Ltd., and its material composition: water content is 38.93g/100g, and acetone-insoluble content on dry basis is 61.34g/100g.
  • the conductivity of the obtained aqueous phase was 11.97 mS/cm.
  • the obtained aqueous phase was vacuum-dried to obtain a soybean oil foot hydrolyzate which was a yellow-brown powdery solid. After deducting the added 12.57 parts of the hydrolyzate, the yield accounted for 4.37% of the weight of the soybean oil foot.
  • the obtained active phospholipid lamellar liquid crystal was brown-red transmissive color, its water content was 70.72g/100g, and the dry acetone-insoluble content was 92.18g/100g.
  • the obtained granular active phospholipid has a water content of 1.16g/100g, a n-hexane insoluble content of 0.11g/100g, and a dry basis acetone insoluble content of 92.18g/100g. 80.68% of the weight of the material.
  • a kind of active phospholipid, its preparation method comprises the steps:
  • Soybean oil foot comes from COFCO Cereals and Oils Industry (Jiujiang) Co., Ltd., and its material composition: water content is 38.93g/100g, and acetone-insoluble content on dry basis is 61.34g/100g.
  • the conductivity of the obtained aqueous phase was 7.48 mS/cm.
  • the obtained aqueous phase was vacuum-dried to obtain a soybean oil foot hydrolyzate which was a yellow-brown powdery solid. After deducting 8.00 parts of the added hydrolyzate, the yield accounted for 4.85% of the weight of the soybean oil foot.
  • the obtained active phospholipid lamellar liquid crystal is brown-red transmission color, its water content is 74.89g/100g, and the content of acetone-insoluble matter on a dry basis is 95.89g/100g.
  • the obtained granular active phospholipid has a water content of 1.20g/100g, a n-hexane insoluble content of 0.09g/100g, and a dry basis acetone insoluble content of 95.89g/100g. 80.13% of the weight of the material.
  • a kind of active phospholipid, its preparation method comprises the steps:
  • Soybean oil foot comes from COFCO Jiayue (Tianjin) Co., Ltd. Its material composition: water content is 40.75g/100g, and acetone insoluble content on dry basis is 62.01g/100g.
  • the conductivity of the resulting aqueous phase was 5.64 mS/cm.
  • the obtained aqueous phase was vacuum-dried to obtain a soybean oil foot hydrolyzate which was a yellow-brown powdery solid. After deducting 4.00 parts of the added hydrolyzate, the yield accounted for 4.90% of the weight of the soybean oil foot.
  • the obtained activated phospholipid lamellar liquid crystal was brown-red transmission color, and its water content was 75.01 g/100 g, and the content of acetone-insoluble matter on a dry basis was 93.63 g/100 g.
  • the obtained granular active phospholipid has a water content of 1.21g/100g, a n-hexane insoluble content of 0.05g/100g, and a dry basis acetone insoluble content of 93.63g/100g. 80.09% of the weight of the material.
  • a kind of surface activity test of active phospholipid, its test method comprises the steps:
  • Example 2 Take 5 g of the granular activated phospholipid sample obtained in Example 1, add 15 g of purified water at room temperature, and stir it with a 900 rpm stirrer. After the granular activated phospholipid is all dispersed, use microwave heating to evaporate 10 g of water, and then at 3500 rpm. Settling in a centrifuge for 5 min to remove air bubbles to obtain 10 g of brown-red transmissive lamellar liquid crystal, and determine that the sample is an active phospholipid. Liquid crystal is an important indicator to detect active phospholipids, because only active phospholipids can become liquid crystals.
  • Example 2 Take 5 g of the granular activated phospholipid sample obtained in Example 1, add 25 g of purified water at room temperature, and stir it with a 900 rpm stirrer. After all the granular activated phospholipids are dispersed, use microwave heating to evaporate 10 g of water, and then at 3500 rpm. Settling in a centrifuge for 5 min to remove air bubbles, obtaining 20 g of brown-red transmissive lamellar liquid crystal, and determining that the sample is an active phospholipid.
  • Example 2 Take 1 g of the granular active phospholipid sample obtained in Example 1, add 100 g of purified water at room temperature, and stir it with a 900 rpm stirrer. After the granular active phospholipid is all dispersed, put it into a centrifuge tube and place it in a centrifuge at 3500 rpm. Settling for 5min, it is an emulsion with a uniform texture and no precipitates, that is, there is no floating matter on the surface, no suspended matter in the water, and no sediment at the bottom, and the hydrophilicity of the sample is judged to be qualified.
  • a kind of active phospholipid, its preparation method comprises the steps:
  • Soybean oil foot comes from COFCO Cereals and Oils Industry (Jiujiang) Co., Ltd., and its material composition: water content is 38.93g/100g, and acetone-insoluble content on dry basis is 61.34g/100g.
  • the conductivity of the resulting aqueous phase was 3.36 mS/cm.
  • the obtained aqueous phase was vacuum-dried to obtain a soybean oil foot hydrolyzate, which was a yellow-brown powdery solid, and the yield accounted for 4.95% of the weight of soybean oil foot.
  • the obtained active phospholipid lamellar liquid crystal has a brown-red transmission color, its water content is 75.13 g/100 g, and the acetone-insoluble content on a dry basis is 94.35 g/100 g.
  • the obtained granular active phospholipid has a water content of 1.16g/100g, a n-hexane insoluble content of 0.09g/100g, and a dry basis acetone insoluble content of 94.35g/100g. 80.81% of the weight of the material.
  • a kind of active phospholipid, its preparation method comprises the steps:
  • the product system was divided into 4 layers: the first layer from the top was grease, the second layer was inactivated phospholipid, the third layer was water phase, and the last layer was oil.
  • the lower layer is an active phospholipid lamellar liquid crystal.
  • Soybean oil foot comes from COFCO Cereals and Oils Industry (Jiujiang) Co., Ltd., and its material composition: water content is 38.93g/100g, and acetone-insoluble content on dry basis is 61.34g/100g.
  • the conductivity of the resulting aqueous phase was 11.02 mS/cm.
  • the obtained aqueous phase was vacuum-dried to obtain a yellow-brown powdery solid of soybean oil foot hydrolyzate.
  • the yield was 4.41% of the weight of soybean oil foot after deducting 12.00 parts of the added hydrolyzate.
  • the obtained active phospholipid lamellar liquid crystal was brown-red transmissive color, its water content was 71.28g/100g, and the content of acetone-insoluble matter on a dry basis was 92.46g/100g.
  • the obtained granular active phospholipid has a water content of 1.20g/100g, a n-hexane insoluble content of 0.10g/100g, and a dry basis acetone insoluble content of 92.46g/100g. 80.79% of the weight of the material.
  • a kind of active phospholipid, its preparation method comprises the steps:
  • the conductivity of the pure water is 0.0mS/cm.
  • Disperse the oil foot in water by stirring to form a reactant system with soybean oil foot particles as the dispersed phase and water as the continuous phase.
  • the temperature is 60°C and the reaction time is 12h.
  • the product system is divided into upper and lower layers, the upper layer obtains oil and inactivated phospholipids; the lower layer obtains water phase and active phospholipid liquid crystals. In the lower layer, phospholipid lamellar liquid crystals with brown transmission color can be seen dispersed in the water phase, but the liquid crystals are difficult to aggregate and cannot be separated from the water phase.
  • Soybean oil foot comes from COFCO Cereals and Oils Industry (Jiujiang) Co., Ltd., and its material composition: water content is 38.93g/100g, and acetone-insoluble content on dry basis is 61.34g/100g.
  • the conductivity of the aqueous phase was determined to be 1.49 mS/cm.
  • Example 3 shows that when the conductivity of the water phase is less than 2.00mS/cm, the aggregation of the activated phospholipid liquid crystal is weakened, resulting in the failure to separate and collect the liquid crystal from the water phase, resulting in the failure to prepare the activated phospholipid layered liquid crystal.
  • a kind of active phospholipid, its preparation method comprises the steps:
  • Soybean oil foot comes from COFCO Cereals and Oils Industry (Jiujiang) Co., Ltd., and its material composition: water content is 38.93g/100g, and acetone-insoluble content on dry basis is 61.34g/100g.
  • the conductivity of the resulting aqueous phase was 12.98 mS/cm.
  • the obtained active phospholipid liquid crystal was brown-red transmissive color, its water content was 70.05g/100g, and the content of acetone-insoluble matter on a dry basis was 92.09g/100g.
  • the active phospholipid liquid crystal is concentrated and dehydrated in a vacuum rotary dryer at 95 ° C to obtain a concentrated active phospholipid with a water content of 50g/100g; the concentrated active phospholipid is stirred with a 900rpm stirrer to obtain a yellow active phospholipid elastomer, and then made into Bars with a diameter of 3 mm were dried in a vacuum drying oven at 90°C for 20min, and then the temperature was set to 60°C and continued to be dried for 60min to obtain yellow bar-shaped solid active phospholipids; then the bar-shaped solid activated phospholipids were pulverized in a knife pulverizer , passed through a 16-mesh sieve to obtain yellow granular active phospholipids.
  • the obtained granular active phospholipid has a water content of 1.30g/100g, a n-hexane insoluble content of 0.21g/100g, and a dry basis acetone insoluble content of 92.09g/100g, and the granular active phospholipid yield accounts for acetone in oil feet 16.78% by weight of insolubles.
  • Example 4 Compared with Example 4, it is shown that when the conductivity of the water phase exceeds 12.00 mS/cm, the formation of liquid crystals by active phospholipids will be inhibited, resulting in a significant reduction in the yield of active phospholipids, resulting in failure to prepare active phospholipid lamellar liquid crystals.
  • the preparation method of the powdered phospholipid by the acetone extraction method is derived from the preparation method of the powdered soybean phospholipid in the patent CN103665029A, comprising the following steps:
  • Soybean oil foot comes from COFCO Jiayue (Tianjin) Co., Ltd., and its material composition: water content is 40.75g/100g, and acetone insoluble content on dry basis is 62.01g/100g.
  • step (2) to the solid part obtained in step (1), mix the solid part with anhydrous acetone in a weight ratio of 1:10, stir and extract 20min under normal pressure and room temperature conditions, then centrifugal sedimentation is carried out for solid-liquid separation, centrifugal The time was 1 min, the centrifugation speed was 5000 rpm, and the solid fraction was collected.
  • step (3) to the solid part obtained in step (2), mix the solid part with anhydrous acetone in a weight ratio of 1:10, stir and extract 20min under normal pressure and room temperature conditions, then centrifugal sedimentation is carried out for solid-liquid separation, centrifugal The time was 1 min, the centrifugation speed was 5000 rpm, and the solid fraction was collected. The solid part was crushed and dried under vacuum at 60°C for 5 hours to obtain soybean powder phospholipid. The content of acetone-insoluble matter on a dry basis was 97.69 g/100 g, and the drying weight was 0.47 g/100 g.
  • the PC content of phosphatidylcholine was detected on the obtained acetone extraction powder phospholipids, and the detection method for soybean phospholipids stipulated in the fourth part of the 2020 edition of the Chinese Pharmacopoeia was performed, and the PC content was 21.20%.
  • the high-performance liquid chromatogram of the powdered phospholipids by the acetone extraction method is shown in Figure 2.
  • Example 1 of the present invention The granular active phospholipid prepared in Example 1 of the present invention is compared with the powdered phospholipid prepared in Comparative Example 3, both of which use the same raw material soybean oil. Phospholipids were 3.56 percentage points higher.
  • a kind of surface activity test of acetone extraction method powder phospholipid, its test method comprises the steps:
  • Example 7 is compared with Comparative Example 4, and the same raw material soybean oil is used, which shows that the surface activity of acetone extraction powder phospholipid is unqualified, and it is proved that acetone extraction powder phospholipid is a mixture of active phospholipid and inactive phospholipid, and the surface active poor.
  • a kind of surface activity test of transparent concentrated phospholipid comprises the steps:
  • Example 7 shows that the surface activity of the above-mentioned transparent concentrated phospholipid is unqualified, and it is proved that the transparent concentrated phospholipid is a mixture of active phospholipid and inactive phospholipid, and the surface activity is poor.
  • Light transmittance test V-5600 visible spectrophotometer from Shanghai Yuanyan Instrument Co., Ltd. was used, and the wavelength was set to 450 nm. The sample was placed between two quartz plates with a thickness of 0.098 mm. The samples were stabilized for 10 min before testing.
  • Polarizing microscope image acquisition Use an XPF-800 polarizing microscope (with a CCD camera and a hot stage) (Shanghai Tianshen Instrument Co., Ltd.), magnification ⁇ 25, to observe the birefringence polarized light texture of the sample. The samples were kept at a constant temperature on a hot stage for 10 min before testing.
  • SAXS Small-angle X-ray scattering
  • Rheology measurement RS6000 rotational rheometer (Germany HAAKE company) was used, Z41Ti coaxial drum sensing system was used for the measuring rotor (the diameter of the drum and the rotor were 43.40mm and 41.42mm, respectively), and the sample was in the center of the sensing system The thickness is 3mm.
  • the experimental temperature was controlled using Phoenix temperature control equipment during the measurement. Each sample was left to stand in the drum for 10 min before the measurement started, so that the damage of the structure during the loading process could be completely recovered.
  • the brown-red transmission color is an obvious sensory feature of the activated phospholipid liquid crystal.
  • the light transmittance of the activated phospholipid layered liquid crystal was tested with a visible spectrophotometer, and the transmittance was 70.2% at 25 °C; 70.4%. The results show that temperature has little effect on the transmittance of activated phospholipid liquid crystals.
  • the test results quantify the transmittance of the transmitted color and quantify the sensory indicators.
  • the activated phospholipid liquid crystal sample was observed with a polarizing microscope for the polarized light texture, and it was observed that there was an obvious oily striae polarized light texture unique to lamellar liquid crystal at a temperature of 25°C, see Figure 3a.
  • the liquid crystal system was then characterized by SAXS technique, see Fig. 4a, the scattering factor q between 0.5-2 nm -1 obviously has a Bragg scattering peak unique to liquid crystal.
  • a rheological test was performed, and a frequency sweep was performed in the linear viscoelastic region. The experimental results are shown in Figure 5a.
  • the storage modulus G' of the sample has been significantly Greater than the loss modulus G′′, indicating that the elasticity of the sample greatly exceeds the viscosity, and the elastic response dominates, further indicating the formation of lamellar liquid crystals.
  • Example 1 is a layered liquid crystal, and the thermal stability of the liquid crystal is good.
  • the lamellar liquid crystals obtained in Examples 2-6 and 8-9 were detected, and they were all identified as lamellar liquid crystals.
  • the brown-red transmission color is an obvious sensory feature of the active phospholipid liquid crystal.
  • the light transmittance test of the liquid crystal sample of Example 7 was carried out with a visible spectrophotometer.
  • the light transmittance is 58.1% at 25°C; the light transmittance is 58.3% at 75°C; the brown-red transmissive lamellar liquid crystal formed by the combination of activated phospholipids and 3 times the weight of water is in
  • the transmittance at 25°C is 70.0%; at 75°C, the transmittance is 70.3%.
  • the test results quantify the transmittance of the transmitted color and quantify the sensory indicators.
  • the polarized photo of the sample (Fig. 6a) shows oil streaks. texture, which is typical of lamellar liquid crystals.
  • the polarized photo of the sample (Fig. 6b) shows an oily texture, and the SAXS image corresponding to the sample (Fig. 7b) still has two Bragg scattering peaks, which correspond to the scattering factors q (0.9913, 1.7802)
  • the ratio is still 1:2, indicating that the lamellar liquid crystal still exists.
  • the polarized photo of the sample shows an oil-like texture, which is a layer of typical characteristics of liquid crystals.
  • the SAXS diagram of the sample shows that the scattering factor q obviously has a not sharp scattering peak between 0.5 and 2 nm -1 , which confirms the formation of lamellar liquid crystal; when the detection temperature rises to 75 °C, the sample
  • the polarized light photo (Fig. 8b) still shows an oil streak texture, and the SAXS image corresponding to the sample (Fig. 9b) still has a not sharp scattering peak with a scattering factor q between 0.5-2 nm -1 , indicating that the layered Liquid crystals are still there.
  • oil foot hydrolyzate is the hydrolyzate of soybean oil foot
  • the hydrolyzate extracted in Example 1 and Example 2 and the n-hexane insoluble matter in the raw soybean oil foot were tested and compared.
  • the detection method of n-hexane insoluble matter implements the provisions of the national standard "GB28401 Food Additive Phospholipids".
  • the yellow-brown powdery oily foot hydrolyzate obtained by hydrolysis in Example 1 has a n-hexane insoluble content of 95.68 g/100 g, and the yield accounts for 2.73% of the weight of soybean oily foot.
  • Example 1 The raw material soybean oil foot of Example 1 was tested, and the content of n-hexane insoluble matter was 0.21 g/100 g on a dry basis. Converted to the content of n-hexane insoluble matter based on soybean oil foot, it is 0.13g/100g.
  • Example 1 Explain that the n-hexane insoluble matter obtained by hydrolysis in Example 1 is 20.09 times that of the raw oil bottoms.
  • Example 2 The yellow-brown powdery oily foot hydrolyzate obtained by hydrolysis has a n-hexane insoluble content of 96.13 g/100 g, and the yield accounts for 4.91% of the weight of soybean oily foot.
  • Example 2 The raw material soybean oil foot of Example 2 was tested and, on a dry basis, the content of n-hexane insoluble matter was 0.29 g/100 g. Converted to the content of n-hexane insoluble matter based on soybean oil foot, it is 0.18g/100g.
  • Example 2 Explain that the n-hexane insoluble matter obtained by hydrolysis in Example 2 is 26.22 times that of the raw material oil bottoms.
  • the oil foot hydrolyzate prepared from soybean oil foot is not a component of soybean oil foot, but is produced after the hydrolysis of soybean oil foot.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Fats And Perfumes (AREA)

Abstract

一种活性磷脂,所述活性磷脂的丙酮不溶物由大豆活性磷脂组成,由活性磷脂层状液晶脱水制得,所述活性磷脂复水后恢复为层状液晶。所述活性磷脂的干基丙酮不溶物含量为92-96g/100g,含水量≤2g/100g,感官指标为黄色颗粒或者粉末。所述活性磷脂的制备方法是,将大豆油脚与原料水反应、沉降得到分层的水相和活性磷脂层状液晶,所述水相的电导率为2-12mS/cm,将活性磷脂层状液晶干燥、粉碎即得。目前,所有的浓缩磷脂和所有的丙酮萃取法粉末磷脂都是活性磷脂和失活磷脂的混合物,表面活性较差。该活性磷脂,填补了行业目前没有活性磷脂产品的空白,从根本上解决了磷脂表面活性差的难题。

Description

一种活性磷脂 技术领域
本发明属于磷脂加工领域,具体涉及一种活性磷脂。
背景技术
磷脂加工的原料是大豆油脚,简称油脚,是油脂加工领域的大豆油脂精炼过程中水化脱胶工艺的副产物,也称为水化油脚,其主要成分是磷脂30-45g/100g、大豆油20-30g/100g和水分30-50g/100g,微量成分是金属离子,如钙、镁和铁等,以磷脂金属盐的形式存在,如铁离子含量,以丙酮不溶物计通常为50-100mg/kg,个别情况高达150mg/kg以上。
工业化的磷脂加工方法主要有两种,一是水化法制备浓缩磷脂,即从大豆毛油中水化提取大豆油脚后,直接干燥脱水得到浓缩磷脂,因其具有流动性也称为流体磷脂,其干基丙酮不溶物含量为60-65g/100g;二是溶剂法制备粉末磷脂,即以大豆油脚或者浓缩磷脂为原料,用丙酮萃取除去油脂,得到粉末磷脂,其干基丙酮不溶物含量为95-98g/100g。目前市场上主流产品是浓缩磷脂,粉末磷脂在市场中占比不足5%。
虽然大豆油脚绝大多数被加工成浓缩磷脂,但浓缩磷脂有很大缺陷。例如文献《大豆浓缩磷脂生产工艺》(胡兴中.大豆浓缩磷脂生产工艺[J].中国油脂,2007,32(9):20-21)和《浓缩磷脂制取工艺与实践》(胡庆涛等.浓缩磷脂制取工艺与实践[J].中国油脂,2002,27(1):39-40)介绍了以水化油脚为原料进行脱水、氧化漂白生产浓缩磷脂的方法。该工艺的缺点是浓缩磷脂的丙酮不溶物含量太低(60-65g/100g)、需要化学漂白,且市场价格较低,与粉末磷脂价格有较大差距。
目前水法制备磷脂的研究存在诸多缺陷,比如中国专利CN107325125A公开了一种大豆油脚制备水合磷脂的方法及其制得的水合磷脂(以下简称水合磷脂),该专利方法的加水量为大豆油脚的24-74%,加水量明显不足。该专利未说明源于大豆油脚的失活磷脂、水溶性杂质在工艺中的去向,也未说明磷脂产品的正己烷不溶物指标的情况。从该专利方法的加水量和工艺方法来看,原料大豆油脚中的失活磷脂、水溶性杂质是难以分离的,水合磷脂的表面活性和正己烷不溶物指标难以保障。
另一种水法提取磷脂的现有技术,如文献《液晶态分离提纯大豆磷脂的研究》(李子明等.液晶态分离提纯大豆磷脂的研究[J].中国粮油学报,2007,22(1):31-32),以下简称液晶态磷脂。该文献方法的加水量为大豆油脚的60%,加水量明显不足。该专利未说明原料大豆油脚中的失活磷脂、水溶性杂质的去向,也未说明磷脂产品的正己烷不溶物指标的情况。从该文献方法的加水量和工艺方法来看,源于大豆油脚的失活磷脂和水溶性杂质是难以分离的,与水合磷脂的缺陷相同。该文献方法存在以下技术缺陷:第一、文献未对磷脂液晶态进行表征,不能确定是否为液晶态,也不能确定是何种液晶态;第二、文献磷脂的丙酮不溶物含量仅为86.05%,磷脂纯度太低与液晶态磷脂的纯度不符,进一步印证该文献所述的液晶态是存疑的。
中国专利CN102517148A公开了一种磷脂两步脱色方法,采用过氧化氢漂白和硅胶吸附的两步脱色方法,该方法的缺点是:(1)化学漂白脱色,使磷脂产生氧化副产物、破坏磷脂的天然性,同时存在食品安全风险,不符合“绿色”发展的大趋势;(2)硅胶吸附脱色的效果很差,失效的硅胶成为废渣,不利于环保;(3)漂白破坏了磷脂中有益的抗氧化成分,使磷脂的抗氧化性、营养价值降低,缩短了磷脂的保质期。
虽然目前磷脂行业发展较快,但是基础磷脂产品,包括所有的浓缩磷脂和所有的丙酮萃取法粉末磷脂,作为磷脂最主要用途的乳化性仍然较差,原因是现有的磷脂产品都是活性磷脂与失活磷脂的混合物,目前还没有高纯度的活性磷脂产品。
本发明解决了制备活性磷脂的技术难题,制备的活性磷脂填补了行业空白,从根本上解决了现有磷脂乳化性较低的问题。
发明内容
本发明的目的在于提供一种活性磷脂,以填补行业目前没有活性磷脂产品的空白。在所有的基础磷脂产品中,包括所有的浓缩磷脂和丙酮萃取法粉末磷脂都是活性磷脂与失活磷脂的混合物,表面活性较差。本发明活性磷脂填补了行业没有活性磷脂产品的空白,从根本上解决了现有磷脂乳化性较低的问题。所述活性磷脂,在磷脂加工领域和相关研究中均未见报道。
本发明是通过以下技术方案予以实现的:
一种活性磷脂,其丙酮不溶物由大豆活性磷脂组成,由活性磷脂层状液晶脱水制得,所述活性磷脂复水后恢复为层状液晶。
优选地,所述活性磷脂的干基丙酮不溶物含量为92-96g/100g,含水量≤2g/100g。
优选地,所述活性磷脂的感官指标为黄色颗粒或者粉末。
所述活性磷脂,是指具有表面活性的磷脂,简称活性磷脂。活性磷脂能形成液晶,在水中具有良好的乳化性和稳定性,据此可以检测磷脂的表面活性。磷脂的主要用途有两个方面,一是表面活性用途,多用作乳化剂;二是功能性用途,主要因为磷脂中含有磷脂酰胆碱,即PC,多用作营养补充剂。
与活性磷脂相对的失活磷脂,是指失去表面活性的磷脂,简称失活磷脂,磷脂失活的主要原因是与钙镁铁等金属离子结合成为磷脂金属盐,又称为非水化磷脂。失活磷脂不能形成液晶,在水中也没有乳化作用,不属于表面活性剂。对于磷脂产品来说,失活磷脂属于杂质。失活磷脂的色泽较深,把失活磷脂分离出去,可以改善磷脂产品的色泽。目前市售的磷脂,包括所有的浓缩磷脂和粉末磷脂,都是活性磷脂与失活磷脂的混合物,尚无活性磷脂产品。
所述表面活性,是指大豆磷脂能够降低水的表面张力。大豆磷脂被称为表面活性物质,或者表面活性剂。表面活性是大豆磷脂的主要用途之一,例如针剂营养液是用大豆磷脂作为乳化剂,再如奶粉是利用大豆磷脂的表面活性增强速溶性。
只有活性磷脂才能形成层状液晶,失活磷脂则不能。由层状液晶脱水制得的磷脂,是活性磷脂,活性磷脂复水后可恢复为层状液晶。所述活性磷脂的复水方法包括如下步骤:将5g活性磷脂样品中加入15-25g纯净水中,用900rpm的搅拌器对其进行搅拌,在磷脂全部分散后,用微波加热蒸发10g水得到10-20g产物,然后在3500rpm的离心机中沉降5min除去气泡,得到质地均匀的棕红色透射色层状液晶。
如果磷脂样品中含有失活磷脂,按照上述复水方法操作,得到的产物为黄色反射色。
只有活性磷脂才具有亲水性,失活磷脂则没有亲水性。所述活性磷脂亲水性的检测方法包括如下步骤:取1g活性磷脂样品置于100g纯净水中,用900rpm的搅拌器对其进行搅拌,混合均匀后在3500rpm的离心机中沉降5min,得到质 地均匀、稳定的乳状液,无析出物。
如果磷脂样品中含有失活磷脂,按照上述亲水性检测方法操作,得到的乳状液中有失活磷脂析出物。
本发明还涉及上述的活性磷脂的制备方法,包括如下步骤:将大豆油脚与原料水反应、沉降得到分层的水相和活性磷脂层状液晶,所述水相的电导率为2-12mS/cm,将活性磷脂层状液晶干燥、粉碎即得。
所述反应,包括化学和物理化学两个范畴。化学反应是指大豆油脚中的杂质组分与水反应发生水解,产生新的物质——水解物,水解物溶于原料水并发生电离产生水相;物理化学反应是指大豆油脚中的活性磷脂组分与水结合,产生新的状态——层状液晶。
所述水解物,是易溶于水的粉末状固体,在水中发生电离,不溶于正己烷。第一,所述水解物,不是大豆油脚中自带的,而是水解产生的。原因在于,这种水解物属于正己烷不溶物,大豆油脚中的正己烷不溶物含量,以干基计通常为≦0.3g/100g;而大豆油脚水解后的正己烷不溶物含量,是原料大豆油脚正常含量的10-30倍。第二,所述水解物,是原料大豆油脚中的杂质组分发生水解反应产生的新物质。原因在于,未发现大豆油脚中油脂和磷脂发生水解的证据,例如溶血磷脂含量升高、磷脂酰胆碱含量降低等,而且油脂和磷脂的水解产物与所述水解物的性状不符。
优选地,所述大豆油脚与原料水反应的温度为60-95℃。
所述温度,在0℃到100℃的区间都可以产生水解物和形成活性磷脂液晶,但温度越高效率越高。因此,提高水温,可以缩短反应时间。但是在沸水中,不利于活性磷脂液晶的稳定,并且水的沸腾蒸发也浪费能源。因此所述温度优选为60-95℃。当温度在60℃以上时属于杀菌温度,可以防止反应期间大豆油脚发生变质,而小于95℃可防止水发生沸腾。
优选地,所述大豆油脚与原料水反应的时间为3-12h。
所述时间,在30min内就能得到沉降的活性磷脂液晶,但是为了提高活性磷脂液晶的得率,时间优选为3-12小时。反应时间太短影响活性磷脂液晶得率;反应时间太长,占用设备时间太长,影响生产效率和产能,增加生产成本。
优选地,在反应前,将大豆油脚置于原料水中以搅拌的方式打散成颗粒状;在反应过程中,不搅拌反应物。
优选地,所述大豆油脚与原料水的重量比为1:2-5。
所述原料水为原料大豆油脚重量的2-5倍,目的是在大豆油脚中的磷脂充分吸水后仍然能够存在一个独立的水相。这个水相的作用:第一、将原料油脚的水解物溶解并保留在水相中,使水相具有适当的电导率,这是活性磷脂与水聚集形成液晶的必要工艺条件;第二、为活性磷脂形成液晶提供充足水源,防止缺水;第三、水相把比重大于水的活性磷脂液晶与比重小于水的油脂和失活磷脂隔开,起到分离作用。用水量过少时,大豆油脚无法实现与水的有效反应,进而影响活性磷脂与水的结合形成液晶。当用水量超过原料油脚重量的5倍时,虽然有利于大豆油脚的反应,但增加了水的成本、能源消耗和增加了设备的体积。
所述液晶,是指大豆磷脂液晶,是指大豆磷脂在水中形成的各向异性的分子排列取向有序的流体。所述层状液晶,是指活性磷脂形成的双分子层和水作层状排列,分子长轴互相平行且垂直于层平面,疏水基在双分子层内部,亲水基在双分子层表面。活性磷脂与水形成的层状液晶的一般性质如表1所示。
表1活性磷脂与水形成的层状液晶的一般性质
液晶类型 外观 光学性质 偏光纹理
层状液晶 中等粘度,可流动 各向异性 十字花或油纹
用活性磷脂层状液晶制备颗粒状或者粉末状活性磷脂的方法,通常需要经过浓缩和干燥两个步骤。浓缩是指把含水量为70-80g/100g的活性磷脂液晶,脱水到含水量为50g/100g左右。干燥是把含水量为50g/100g左右浓缩活性磷脂液晶(,此时活性磷脂与水的比例是1:1,仍然是层状液晶,感官指标仍然是棕红色透射色),用搅拌器对浓缩活性磷脂进行搅拌,得到黄色反射色的活性磷脂的弹性体,然后制成条状在90℃和60℃两段温度下脱水,得到条状固体活性磷脂。最后把条状活性磷脂粉碎,如果过16目筛得到黄色颗粒状活性磷脂;如果过40目筛得到黄色粉末状活性磷脂。颗粒状或者粉末状活性磷脂的含水量为2g/100g以下,产品执行国家标准《GB28401食品添加剂磷脂》。
优选地,所述原料水,是纯净水或者是大豆油脚水解物的水溶液,电导率为0-10mS/cm。
所述原料水与水相是不同的概念,原料水属于原料,水相属于产物。水相的指标决定能否获得活性磷脂层状液晶,而原料水的指标仅仅作为配料的依据。
优选地,所述原料水,一部分被大豆油脚中的活性磷脂吸收成为活性磷脂层状液晶的结合水,另一部分成为水相,水相中溶解了原料大豆油脚的水解物。
水相的电导率,要高于原料水,原因是,原料水中溶解了原料大豆油脚的水解物才成为水相,使电导率上升。需要说明的是,以大豆油脚水解物的水溶液作为水相,电导率在2-12mS/cm区间,是大豆油脚中的活性磷脂组分与水聚集形成高纯度液晶的必要工艺条件。当水相的电导率小于2.00mS/cm时,活性磷脂液晶的聚集性减弱,导致无法从水相中分离并收集液晶,导致制备活性磷脂液晶失败;当水相的电导率超过12.00mS/cm时,活性磷脂形成液晶时会受到抑制,导致活性磷脂的得率显著降低,也会导致制备活性磷脂液晶失败。
所述沉降有自然沉降和离心沉降两种方式。
优选地,在自然沉降条件下,大豆油脚与原料水反应得到的产物体系,分为上中下3层,上层为油脂和失活磷脂;中间层为水相;下层为活性磷脂层状液晶。
优选地,在离心沉降条件下,大豆油脚与原料水反应得到的产物体系,分为4层,从上面数第一层为油脂,第二层为失活磷脂,第三层为水相,最下层为活性磷脂层状液晶。
更优选地,所述离心沉降的分离因数为1000-4000g。
所述相,是指原料或者产物体系中具有相同物理性质的均匀组分的部分,与其他组分相互分离,并存在分界面。所述水相,是大豆油脚水解物的水溶液,并与大豆油脚中其它组分所形成的相存在分界面,如活性磷脂组分与水结合形成的层状液晶相。
将水相干燥,得到黄褐色粉末状大豆油脚水解物;将活性磷脂层状液晶干燥,得到颗粒状或者粉末状活性磷脂。
优选地,在原料大豆油脚或者原料水中还添加氢氧化钠或者氢氧化钾。
更优选地,所述添加量为大豆油脚重量的0.01-0.5%。
在原料中添加微量氢氧化钠或者氢氧化钾,有助于将原料油脚在原料水中打散成颗粒状。多数的原料大豆油脚是不需要添加氢氧化钠或者氢氧化钾的,但是少数原料油脚如果不添加氢氧化钠或者氢氧化钾,原料油脚在原料水中就很难打散成颗粒状。
优选地,所述沉降包括自然沉降和离心沉降两种沉降方式。
更优选地,所述离心沉降的分离因数为1000-4000g,g为重力加速度。
所述活性磷脂层状液晶,由水、活性磷脂和油脂组成,含水量为70-80g/100g,干基丙酮不溶物含量为92-96g/100g。
所述层状液晶,感官指标为棕红色透射色;用偏光显微镜观察有层状液晶特有的油纹状偏光织构双折射现象;用小角X射线散射技术分析,散射因子q在0.5-2nm -1之间有明显的Bragg散射峰;用旋转流变仪测量,其储能模量G′一直显著大于损耗模量G″,表明弹性响应占主导地位。
本发明所述活性磷脂的磷脂酰胆碱含量,即PC含量,比相同原料大豆油脚用丙酮萃取法制取的粉末磷脂高出2-5个百分点。
丙酮萃取法粉末磷脂是将原料油脚除去水和油脂的产物;本发明活性磷脂是将原料油脚除去水、油脂、失活磷脂和水解物的产物。对于同一批的原料大豆油脚,活性磷脂的PC含量要比丙酮萃取法粉末磷脂高出几个百分点。
本发明的有益效果是:
(1)乳化性最好:目前市场上所有的基础磷脂产品,包括所有的浓缩磷脂和所有的丙酮萃取法粉末磷脂,都是活性磷脂与失活磷脂的混合物,表面活性较差。磷脂的主要用途之一是用作乳化剂,本发明是活性磷脂产品,与所有的浓缩磷脂和丙酮萃取法粉末磷脂相比,乳化性是最好的,并填补了目前没有活性磷脂产品的空白。
(2)功能成分PC含量最高:磷脂的主要用途之二是用作营养补充剂,例如制备口服磷脂产品。以大豆油脚为原料,浓缩磷脂是除去水的产物;丙酮萃取法粉末磷脂是除去水和油脂的产物;而本发明提供的活性磷脂,是除去水、油脂、失活磷脂和水解物的产物,功能成分PC的含量比丙酮萃取法粉末磷脂高出2-5个百分点。
(3)巧用油脚水解物的电离属性,获得活性磷脂液晶:纯水或者电导率小于2mS/cm的水溶液都不利于活性磷脂液晶的制取,如果额外添加电解质调节电导率,会带来外源性物质对磷脂的污染,也会增加成本。本发明提出合理利用油脚自身的水解物的电离属性,使水相的电导率处于合理的范围,因此获得了高纯度活性磷脂层状液晶。
(4)改善了磷脂产品的色泽:失活磷脂和大豆油脚水解物,色泽都比较深,活性磷脂产品中不含失活磷脂和大豆油脚水解物,因此活性磷脂产品的色泽得到 极大改善,活性磷脂产品是黄色的,淘汰了传统的过氧化氢漂白脱色工艺,食品安全性得到保障。
附图说明
图1为实施例1活性磷脂的液相色谱图。
图2为对比例3丙酮萃取法粉末磷脂的液相色谱图。
图3为实施例1活性磷脂层状液晶的偏光图,
其中:a是25℃偏光图;b是75℃偏光图。
图4为实施例1活性磷脂层状液晶的小角X射线散射图,
其中:a是25℃下的SAXS图;b是75℃下的SAXS图。
图5为实施例1活性磷脂层状液晶的旋转流变仪频率扫描曲线图,
其中:a是25℃下的频率扫描曲线;b是75℃下的频率扫描曲线。
图6为实施例7活性磷脂与等量水形成的层状液晶的偏光图。
其中:a是25℃偏光图;b是75℃偏光图。
图7为实施例7活性磷脂与等量水形成的层状液晶的小角X射线散射图,
其中:a是25℃下的SAXS图;b是75℃下的SAXS图。
图8为实施例7活性磷脂与3倍水形成的层状液晶的偏光图。
其中:a是25℃偏光图;b是75℃偏光图。
图9为实施例7活性磷脂与3倍水形成的层状液晶的小角X射线散射图,
其中:a是25℃下的SAXS图;b是75℃下的SAXS图。
具体实施方式
以下结合附图对本发明的内容作进一步说明。
下述实施例中所述实验方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可从商业途径获得。
活性磷脂液晶透光率测量使用上海元析仪器有限公司的V-5600可见分光光度计。
偏光显微镜使用上海天省仪器有限公司XPF-800型偏光显微镜,带有CCD照相机和热台。
小角X射线散射(SAXS)使用Anton-paar SAX Sess mc 2系统(奥地利)。
电导率测量使用梅特勒-托利多仪器(上海)有限公司生产的多参数变送器, 产品型号(Model):M300Process 2-channel 1/2DIN;电导率传感器型号为InPro7100i/12/120/4435,电极电导率测量范围0.02-500mS/cm。
高效液相色谱测量使用安捷伦科技有限公司的Agilent 1200型高效液相色谱仪,执行《中国药典》2020版第四部规定的大豆磷脂检测方法。
流变学测量使用RS6000旋转流变仪(德国HAAKE公司)。
实施例1
一种活性磷脂,其制备方法包括如下步骤:
取100份大豆油脚加入200份纯净水中,纯净水的电导率为0.0mS/cm。以搅拌方式把油脚在水中打散成为颗粒状,形成以大豆油脚颗粒为分散相、水为连续相的反应物体系,温度为95℃,反应时间为3h,在反应结束时,自然沉降的产物体系分为上中下3层,上层得到油脂和失活磷脂;中间层得到水相;下层得到活性磷脂层状液晶。
大豆油脚来自中粮佳悦(天津)有限公司,其物质组成:含水量是40.75g/100g,干基丙酮不溶物含量是62.01g/100g。
在反应结束时,得到的水相的电导率为6.88mS/cm。对得到的水相进行真空干燥,得到大豆油脚水解物是黄褐色粉末状固体,得率占大豆油脚重量的2.73%。
得到的活性磷脂层状液晶呈棕红色透射色,其含水量为76.10g/100g,干基丙酮不溶物含量为95.58g/100g。将活性磷脂层状液晶在95℃真空旋转干燥器中浓缩脱水,得到含水量为50g/100g的浓缩活性磷脂;用900rpm的搅拌器对浓缩活性磷脂进行搅拌,得到黄色反射色活性磷脂的弹性体,然后制成直径为3mm的条,在真空干燥箱中在90℃干燥20min,然后将温度设置到60℃继续干燥60min,得到黄色反射色条形固体活性磷脂;然后在刀式粉碎机中将条形固体活性磷脂粉碎,过16目筛得到黄色颗粒状活性磷脂。所得颗粒状活性磷脂的含水量为1.01g/100g,正己烷不溶物含量为0.08g/100g,其干基丙酮不溶物含量为95.58g/100g,所述颗粒状活性磷脂得率占油脚丙酮不溶物重量的80.97%。
对所得颗粒状活性磷脂检测磷脂酰胆碱PC含量,检测执行《中国药典》2020版第四部规定的大豆磷脂检测方法,PC含量为24.76%。颗粒状活性磷脂的高效液相色谱图见附图1。
实施例2
一种活性磷脂,其制备方法包括如下步骤:
取100份大豆油脚加入300份纯净水中,纯净水的电导率为0.0mS/cm。以搅拌方式把油脚在水中打散成为颗粒状,形成以大豆油脚颗粒为分散相、水为连续相的反应物体系,温度为80℃,反应时间为6h,在反应结束时,自然沉降的产物体系分为上中下3层,上层得到油脂和失活磷脂;中间层得到水相;下层得到活性磷脂层状液晶。
大豆油脚来自中粮粮油工业(九江)有限公司,其物质组成:含水量是38.93g/100g,干基丙酮不溶物含量是61.34g/100g。
在反应结束时,得到的水相的电导率为4.28mS/cm。对得到的水相进行真空干燥,得到大豆油脚水解物是黄褐色粉末状固体,得率占大豆油脚重量的4.91%。
得到的活性磷脂层状液晶呈棕红色透射色,其含水量为77.23g/100g,干基丙酮不溶物含量为94.63g/100g。将活性磷脂层状液晶在95℃真空旋转干燥器中浓缩脱水,得到含水量为50g/100g的浓缩活性磷脂;用900rpm的搅拌器对浓缩活性磷脂进行搅拌,得到黄色反射色活性磷脂的弹性体,然后制成直径为3mm的条,在真空干燥箱中在90℃干燥20min,然后将温度设置到60℃继续干燥60min,得到黄色条形固体活性磷脂;然后在刀式粉碎机中将条形固体活性磷脂粉碎,过16目筛得到黄色反射色颗粒状活性磷脂。所得颗粒状活性磷脂的含水量为1.23g/100g,正己烷不溶物含量为0.06g/100g,干基丙酮不溶物含量为94.63g/100g,所述颗粒状活性磷脂得率占油脚丙酮不溶物重量的80.12%。
实施例3
一种活性磷脂,其制备方法包括如下步骤:
取100份大豆油脚加入500份纯净水中,纯净水的电导率为0.0mS/cm。以搅拌方式把油脚在水中打散成为颗粒状,形成以大豆油脚颗粒为分散相、水为连续相的反应物体系,温度为60℃,反应时间为12h,在反应结束时,自然沉降的产物体系分为上中下3层,上层得到油脂和失活磷脂;中间层得到水相;下层得到活性磷脂层状液晶。
大豆油脚来自中粮粮油工业(九江)有限公司,其物质组成:含水量是38.93g/100g,干基丙酮不溶物含量是61.34g/100g。
在反应结束时,得到的水相的电导率为2.17mS/cm。对得到的水相进行真空干燥,得到大豆油脚水解物是黄褐色粉末状固体,得率占大豆油脚重量的4.93%。
得到的活性磷脂层状液晶呈棕红色透射色,其含水量为78.65g/100g,干基 丙酮不溶物含量为93.97g/100g。将活性磷脂层状液晶在95℃真空旋转干燥器中浓缩脱水,得到含水量为50g/100g的浓缩活性磷脂;用900rpm的搅拌器对浓缩活性磷脂进行搅拌,得到黄色反射色活性磷脂的弹性体,然后制成直径为3mm的条,在真空干燥箱中在90℃干燥20min,然后将温度设置到60℃继续干燥60min,得到黄色条形固体活性磷脂;然后在刀式粉碎机中将条形固体活性磷脂粉碎,过16目筛得到黄色反射色颗粒状活性磷脂。所得颗粒状活性磷脂的含水量为1.18g/100g,正己烷不溶物含量为0.05g/100g,干基丙酮不溶物含量为93.97g/100g,所述颗粒状活性磷脂得率占油脚丙酮不溶物重量的80.20%。
实施例4
一种活性磷脂,其制备方法包括如下步骤:
取300份纯净水,用15份实施例3得到的粉末状大豆油脚水解物调节原料水的电导率,原料水电导率达到9.90mS/cm,并在其中添加0.32份氢氧化钠,最后加入100份大豆油脚。以搅拌方式把油脚在水中打散成为颗粒状,形成以大豆油脚颗粒为分散相、水为连续相的反应物体系,温度为70℃,反应时间为12h,在反应结束时,自然沉降的产物体系分为上中下3层,上层得到油脂和失活磷脂;中间层得到水相;下层得到活性磷脂层状液晶。
大豆油脚来自中粮粮油工业(九江)有限公司,其物质组成:含水量是38.93g/100g,干基丙酮不溶物含量是61.34g/100g。
在反应结束后,得到的水相的电导率为11.97mS/cm。对得到的水相进行真空干燥,得到大豆油脚水解物是黄褐色粉末状固体,扣除添加的12.57份水解物,得率占大豆油脚重量的4.37%。
得到的活性磷脂层状液晶呈棕红色透射色,其含水量为70.72g/100g,干基丙酮不溶物含量为92.18g/100g。将活性磷脂层状液晶在95℃真空旋转干燥器中浓缩脱水,得到含水量为50g/100g的浓缩活性磷脂;用900rpm的搅拌器对浓缩活性磷脂进行搅拌,得到黄色反射色活性磷脂的弹性体,然后制成直径为3mm的条,在真空干燥箱中在90℃干燥20min,然后将温度设置到60℃继续干燥60min,得到黄色反射色条形固体活性磷脂;然后在刀式粉碎机中将条形固体活性磷脂粉碎,过16目筛得到黄色颗粒状活性磷脂。所得颗粒状活性磷脂的含水量为1.16g/100g,正己烷不溶物含量为0.11g/100g,干基丙酮不溶物含量为92.18g/100g,所述颗粒状活性磷脂得率占油脚丙酮不溶物重量的80.68%。
实施例5
一种活性磷脂,其制备方法包括如下步骤:
取400份纯净水,用实施例4得到的粉末状大豆油脚水解物调节原料水的电导率,水解物用量为8.00份,原料水电导率达到4.31mS/cm,并在其中添加0.04份氢氧化钠,最后加入100份大豆油脚。以搅拌方式把油脚在水中打散成为颗粒状,形成以大豆油脚颗粒为分散相、水为连续相的反应物体系,温度为85℃,反应时间为9h,在反应结束时,自然沉降的产物体系分为上中下3层,上层得到油脂和失活磷脂;中间层得到水相;下层得到活性磷脂层状液晶。
大豆油脚来自中粮粮油工业(九江)有限公司,其物质组成:含水量是38.93g/100g,干基丙酮不溶物含量是61.34g/100g。
在反应结束后,得到的水相的电导率为7.48mS/cm。对得到的水相进行真空干燥,得到大豆油脚水解物是黄褐色粉末状固体,扣除添加的8.00份水解物,得率占大豆油脚重量的4.85%。
得到的活性磷脂层状液晶呈棕红色透射色,其含水量为74.89g/100g,干基丙酮不溶物含量为95.89g/100g。将活性磷脂层状液晶在95℃真空旋转干燥器中浓缩脱水,得到含水量为50g/100g的浓缩活性磷脂;用900rpm的搅拌器对浓缩活性磷脂进行搅拌,得到黄色反射色活性磷脂的弹性体,然后制成直径为3mm的条,在真空干燥箱中在90℃干燥20min,然后将温度设置到60℃继续干燥60min,得到黄色反射色条形固体活性磷脂;然后在刀式粉碎机中将条形固体活性磷脂粉碎,过16目筛得到黄色颗粒状活性磷脂。所得颗粒状活性磷脂的含水量为1.20g/100g,正己烷不溶物含量为0.09g/100g,干基丙酮不溶物含量为95.89g/100g,所述颗粒状活性磷脂得率占油脚丙酮不溶物重量的80.13%。
实施例6
一种活性磷脂,其制备方法包括如下步骤:
取400份纯净水,用实施例4得到的粉末状大豆油脚水解物调节原料水的电导率,水解物用量为4.00份,原料水电导率达到2.28mS/cm,再加入100份大豆油脚。以搅拌方式把油脚在水中打散成为颗粒状,形成以大豆油脚颗粒为分散相、水为连续相的反应物体系,温度为85℃,反应时间为6h,在反应结束时,自然沉降的产物体系分为上中下3层,上层得到油脂和失活磷脂;中间层得到水相;下层得到活性磷脂层状液晶。
大豆油脚来自中粮佳悦(天津)有限公司,其物质组成:含水量是40.75g/100g,干基丙酮不溶物含量是62.01g/100g。
在反应结束时,得到的水相的电导率为5.64mS/cm。对得到的水相进行真空干燥,得到大豆油脚水解物是黄褐色粉末状固体,扣除添加的4.00份水解物,得率占大豆油脚重量的4.90%。
得到的活性磷脂层状液晶呈棕红色透射色,其含水量为75.01g/100g,干基丙酮不溶物含量为93.63g/100g。将活性磷脂层状液晶在95℃真空旋转干燥器中浓缩脱水,得到含水量为50g/100g的浓缩活性磷脂;用900rpm的搅拌器对浓缩活性磷脂进行搅拌,得到黄色反射色活性磷脂的弹性体,然后制成直径为3mm的条,在真空干燥箱中在90℃干燥20min,然后将温度设置到60℃继续干燥60min,得到黄色反射色条形固体活性磷脂;然后在刀式粉碎机中将条形固体活性磷脂粉碎,过16目筛得到黄色颗粒状活性磷脂。所得颗粒状活性磷脂的含水量为1.21g/100g,正己烷不溶物含量为0.05g/100g,干基丙酮不溶物含量为93.63g/100g,所述颗粒状活性磷脂得率占油脚丙酮不溶物重量的80.09%。
实施例7
一种活性磷脂的表面活性试验,其试验方法包括如下步骤:
取实施例1得到的颗粒状活性磷脂样品5g,加入15g室温的纯净水,用900rpm的搅拌器对其进行搅拌,在颗粒状活性磷脂全部分散后,用微波加热蒸发10g水,然后在3500rpm的离心机中沉降5min除去气泡,得到10g棕红色透射色层状液晶,判定样品为活性磷脂。液晶是检测活性磷脂的重要指标,因为只有活性磷脂才能成为液晶。
取实施例1得到的颗粒状活性磷脂样品5g,加入25g室温的纯净水,用900rpm的搅拌器对其进行搅拌,在颗粒状活性磷脂全部分散后,用微波加热蒸发10g水,然后在3500rpm的离心机中沉降5min除去气泡,得到20g棕红色透射色层状液晶,判定样品为活性磷脂。
取实施例1得到的颗粒状活性磷脂样品1g,加入100g室温的纯净水,用900rpm的搅拌器对其进行搅拌,在颗粒状活性磷脂全部分散后,放入离心管中在3500rpm的离心机中沉降5min,为质地均匀的乳状液,无析出物,即表面没有上浮物,水中没有悬浮物,底部也没有沉降物,判定样品的亲水性合格。
实施例8
一种活性磷脂,其制备方法包括如下步骤:
取100份大豆油脚加入400份纯净水中,纯净水的电导率为0.0mS/cm。以搅拌方式把油脚在水中打散成为颗粒状,形成以大豆油脚颗粒为分散相、水为连续相的反应物体系,温度为60℃,反应时间为3h,在反应结束时,将整个产物体系在分离因数为1000g(g为重力加速度)的离心机中离心沉降5min,离心沉降后产物体系分为4层:从上数第一层是油脂、第二层是失活磷脂、第三层是水相、最下层是活性磷脂层状液晶。
大豆油脚来自中粮粮油工业(九江)有限公司,其物质组成:含水量是38.93g/100g,干基丙酮不溶物含量是61.34g/100g。
在离心沉降结束时,得到的水相的电导率为3.36mS/cm。对得到的水相进行真空干燥,得到大豆油脚水解物是黄褐色粉末状固体,得率占大豆油脚重量的4.95%。
得到的活性磷脂层状液晶呈棕红色透射色,其含水量为75.13g/100g,干基丙酮不溶物含量为94.35g/100g。将活性磷脂层状液晶在95℃真空旋转干燥器中浓缩脱水,得到含水量为50g/100g的浓缩活性磷脂;用900rpm的搅拌器对浓缩活性磷脂进行搅拌,得到黄色反射色活性磷脂的弹性体,然后制成直径为3mm的条,在真空干燥箱中在90℃干燥20min,然后将温度设置到60℃继续干燥60min,得到黄色反射色条形固体活性磷脂;然后在刀式粉碎机中将条形固体活性磷脂粉碎,过16目筛得到黄色颗粒状活性磷脂。所得颗粒状活性磷脂的含水量为1.16g/100g,正己烷不溶物含量为0.09g/100g,干基丙酮不溶物含量为94.35g/100g,所述颗粒状活性磷脂得率占油脚丙酮不溶物重量的80.81%。
实施例9
一种活性磷脂,其制备方法包括如下步骤:
取300份纯净水,用实施例5得到的粉末状大豆油脚水解物调节原料水的电导率,水解物用量为12.00份,原料水电导率达到8.90mS/cm,并在其中添加0.28份氢氧化钠,最后加入100份大豆油脚。以搅拌方式把油脚在水中打散成为颗粒状,形成以大豆油脚颗粒为分散相、水为连续相的反应物体系,温度为95℃,反应时间为3h,在反应结束时,将整个产物体系在分离因数为4000g的离心机中离心沉降5min,离心沉降后产物体系分为4层:从上数第一层是油脂、第二 层是失活磷脂、第三层是水相、最下层是活性磷脂层状液晶。
大豆油脚来自中粮粮油工业(九江)有限公司,其物质组成:含水量是38.93g/100g,干基丙酮不溶物含量是61.34g/100g。
在离心沉降结束时,得到的水相的电导率为11.02mS/cm。对得到的水相进行真空干燥,得到大豆油脚水解物是黄褐色粉末状固体,扣除添加的12.00份水解物,得率占大豆油脚重量的4.41%。
得到的活性磷脂层状液晶呈棕红色透射色,其含水量为71.28g/100g,干基丙酮不溶物含量为92.46g/100g。将活性磷脂层状液晶在95℃真空旋转干燥器中浓缩脱水,得到含水量为50g/100g的浓缩活性磷脂;用900rpm的搅拌器对浓缩活性磷脂进行搅拌,得到黄色反射色活性磷脂的弹性体,然后制成直径为3mm的条,在真空干燥箱中在90℃干燥20min,然后将温度设置到60℃继续干燥60min,得到黄色反射色条形固体活性磷脂;然后在刀式粉碎机中将条形固体活性磷脂粉碎,过16目筛得到黄色颗粒状活性磷脂。所得颗粒状活性磷脂的含水量为1.20g/100g,正己烷不溶物含量为0.10g/100g,干基丙酮不溶物含量为92.46g/100g,所述颗粒状活性磷脂得率占油脚丙酮不溶物重量的80.79%。
对比例1
一种活性磷脂,其制备方法包括如下步骤:
取100份大豆油脚加入600份纯净水中,纯净水的电导率为0.0mS/cm。以搅拌方式把油脚在水中打散成为颗粒状,形成以大豆油脚颗粒为分散相、水为连续相的反应物体系,温度为60℃,反应时间为12h,在反应结束时,自然沉降的产物体系分为上下2层,上层得到油脂和失活磷脂;下层得到水相与活性磷脂液晶。在下层中可以见到棕色透射色的磷脂层状液晶分散在水相中,但是液晶难以聚集,无法与水相分离。
大豆油脚来自中粮粮油工业(九江)有限公司,其物质组成:含水量是38.93g/100g,干基丙酮不溶物含量是61.34g/100g。
在反应结束时,检测水相的电导率为1.49mS/cm。
与实施例3相比较,说明在水相的电导率小于2.00mS/cm时,活性磷脂液晶的聚集性减弱,导致无法从水相中分离并收集液晶,导致制备活性磷脂层状液晶失败。
对比例2
一种活性磷脂,其制备方法包括如下步骤:
取300份纯净水,用实施例3得到的粉末状大豆油脚水解物调节原料水的电导率,水解物用量为17.00份,原料水电导率达到11.01mS/cm,并在其中添加0.32份氢氧化钠,最后加入100份大豆油脚。以搅拌方式把油脚在水中打散成为颗粒状,形成以大豆油脚颗粒为分散相、水为连续相的反应物体系,温度为70℃,反应时间为12h,在反应结束时,自然沉降的产物体系分为上中下3层,上层得到油脂和失活磷脂;中间层得到水相;下层得到活性磷脂液晶。
大豆油脚来自中粮粮油工业(九江)有限公司,其物质组成:含水量是38.93g/100g,干基丙酮不溶物含量是61.34g/100g。
在反应结束时,得到的水相的电导率为12.98mS/cm。得到的活性磷脂液晶呈棕红色透射色,其含水量为70.05g/100g,干基丙酮不溶物含量为92.09g/100g。将活性磷脂液晶在95℃真空旋转干燥器中浓缩脱水,得到含水量为50g/100g的浓缩活性磷脂;用900rpm的搅拌器对浓缩活性磷脂进行搅拌,得到黄色活性磷脂的弹性体,然后制成直径为3mm的条,在真空干燥箱中在90℃干燥20min,然后将温度设置到60℃继续干燥60min,得到黄色条形固体活性磷脂;然后在刀式粉碎机中将条形固体活性磷脂粉碎,过16目筛得到黄色颗粒状活性磷脂。所得颗粒状活性磷脂的含水量为1.30g/100g,正己烷不溶物含量为0.21g/100g,其干基丙酮不溶物含量为92.09g/100g,所述颗粒状活性磷脂得率占油脚丙酮不溶物重量的16.78%。
与实施例4相比较,说明在水相的电导率超过12.00mS/cm时,活性磷脂形成液晶时会受到抑制,导致活性磷脂的得率显著降低,导致制备活性磷脂层状液晶失败。
对比例3
一种丙酮萃取法粉末磷脂的PC含量检测。
所述丙酮萃取法粉末磷脂的制备方法,来源于专利CN103665029A一种粉末大豆磷脂的制备方法,包括如下步骤:
(1)按大豆油脚与无水丙酮以1:10的重量比混合,在常压、室温条件下搅拌萃取20min,离心沉降进行固液分离,离心时间1min,离心速度为4000rpm,收集固体部分。
大豆油脚来自中粮佳悦(天津)有限公司,其物质组成:含水量是 40.75g/100g,干基丙酮不溶物含量是62.01g/100g。
(2)对步骤(1)所得到的固体部分,按照固体部分与无水丙酮以1:10的重量比例混合,在常压、室温条件下搅拌萃取20min,然后离心沉降进行固液分离,离心时间1min,离心速度为5000rpm,收集固体部分。
(3)对步骤(2)所得到的固体部分,按照固体部分与无水丙酮以1:10的重量比例混合,在常压、室温条件下搅拌萃取20min,然后离心沉降进行固液分离,离心时间1min,离心速度为5000rpm,收集固体部分。将固体部分进行破碎,在真空60℃条件下干燥5h,得到大豆粉末磷脂,干基丙酮不溶物含量为97.69g/100g,干燥减量为0.47g/100g。
对所得丙酮萃取法粉末磷脂检测磷脂酰胆碱PC含量,检测执行《中国药典》2020版第四部规定的大豆磷脂检测方法,PC含量为21.20%。丙酮萃取法粉末磷脂的高效液相色谱图见附图2。
本发明实施例1制备的颗粒状活性磷脂与对比例3制备的粉末磷脂进行比较,都使用相同的原料大豆油脚,本发明实施例1的活性磷脂的PC含量比对比例3丙酮萃取法粉末磷脂高出3.56个百分点。
对比例4
一种丙酮萃取法粉末磷脂的表面活性试验,其试验方法包括如下步骤:
取对比例3得到的丙酮萃取法粉末磷脂5g,加入15g室温的纯净水,用900rpm的搅拌器对其进行搅拌,在粉末状磷脂全部分散后,用微波加热蒸发10g水。然后在3500rpm的离心机中沉降5min除去气泡,得到10g产物。该产物为黄色反射色,不具有棕红色透射色特征,判定样品中含有失活磷脂。
取对比例3得到的丙酮萃取法粉末磷脂样品5g,加入25g室温的纯净水,用900rpm的搅拌器对其进行搅拌,在颗粒状活性磷脂全部分散后,用微波加热蒸发10g水,然后在3500rpm的离心机中沉降5min除去气泡,得到20g产物。该产物为黄色反射色,不具有棕红色透射色特征,判定样品中含有失活磷脂。
取对比例3得到的丙酮萃取法粉末磷脂1g,加入100g室温的纯净水,用900rpm的搅拌器对其进行搅拌,在颗粒状活性磷脂全部分散后,放入离心管中在3500rpm的离心机中沉降5min,有较多析出物:水中有少量悬浮物,底部有大量沉降物。判定样品的亲水性不合格,样品中含有失活磷脂。
实施例7与对比例4进行比较,都使用相同的原料大豆油脚,说明了丙酮萃 取法粉末磷脂的表面活性不合格,证明丙酮萃取法粉末磷脂是活性磷脂与失活磷脂的混合物,表面活性较差。
对比例5
一种透明浓缩磷脂的表面活性试验,其试验方法包括如下步骤:
取上海太伟药业股份有限公司提供的透明浓缩磷脂5g,加入15g室温的纯净水,用900rpm的搅拌器对其进行搅拌,在磷脂样品全部分散后,用微波加热蒸发10g水。然后在3500rpm的离心机中沉降5min除去气泡,得到10g产物。该产物为黄色反射色,不具有棕红色透射色特征,判定样品中含有失活磷脂。
取上海太伟药业股份有限公司提供的透明浓缩磷脂5g,加入25g室温的纯净水,用900rpm的搅拌器对其进行搅拌,在磷脂样品全部分散后,用微波加热蒸发10g水。然后在3500rpm的离心机中沉降5min除去气泡,得到20g产物。该产物为黄色反射色,不具有棕红色透射色特征,判定样品中含有失活磷脂。
取上海太伟药业股份有限公司提供的透明浓缩磷脂1g,加入100g室温的纯净水,用900rpm的搅拌器对其进行搅拌,在磷脂样品全部分散后,放入离心管中在3500rpm的离心机中沉降5min,有较多析出物:表面有少量上浮物,水中有少量悬浮物,底部有大量沉降物。判定样品的亲水性不合格,样品中含有失活磷脂。
实施例7与对比例5进行比较,说明上述透明浓缩磷脂的表面活性不合格,证明透明浓缩磷脂是活性磷脂与失活磷脂的混合物,表面活性较差。
测试例1
为确认实施例1制取的活性磷脂层状液晶,进行测试和表征。
透光率测试:使用上海元析仪器有限公司的V-5600可见分光光度计,设定波长为450nm。将样品置于两个石英片之间,厚度为0.098mm。样品测试前稳定10min。
偏光显微镜图像采集:使用XPF-800型偏光显微镜(带有CCD照相机和热台)(上海天省仪器有限公司),放大倍数×25,观察样品的双折射性偏光织构。样品测试前在热台上恒温10min。
小角X射线散射(SAXS)测试:液晶样品的结构表征在Anton-paar SAX Sess mc 2系统(奥地利)上进行,发射源为Cu靶,波长为0.154nm,操作电压为40 kV,电流为50mA。将样品放置于不锈钢凹槽中并用薄膜密封,用Peltier加热系统(Hecus MBraun,Graz,Austria)进行电脑控温。每个样品均在仪器中稳定10min后再测试。
流变学测量:使用RS6000旋转流变仪(德国HAAKE公司),测量转子使用Z41Ti同轴转筒传感系统(转筒和转子的直径分别为43.40mm和41.42mm),样品在传感系统中央的厚度为3mm。测定过程中使用Phoenix控温设备控制实验温度。每个样品在测量开始前均在转筒中静置10min,使得加样过程中结构的破坏得以完全恢复。
棕红色透射色是活性磷脂液晶所具有的明显的感官特征,用可见分光光度计对活性磷脂层状液晶进行透光率测试,25℃时透光率为70.2%;75℃时透光率为70.4%。结果表明,温度对活性磷脂液晶的透光率几乎没有影响。测试结果量化了透射色的透光率,量化了感官指标。
对活性磷脂液晶样品用偏光显微镜观察偏光纹理,可以观察到在温度为25℃时有明显的层状液晶特有的油纹状偏光织构,参见附图3a。随后用SAXS技术对该液晶体系进行表征,参见附图4a,散射因子q在0.5-2nm -1之间明显有一个液晶特有的Bragg散射峰。为了进一步探究该组分液晶相的性质,进行流变学测试,在线性粘弹区进行频率扫描,实验结果参见附图5a,在测量的频率范围内,样品的储能模量G′一直显著大于损耗模量G″,表明样品的弹性大大超过粘性,弹性响应占主导地位,进一步表明形成了层状液晶。
当检测温度升高到75℃时,对活性磷脂液晶样品进行了偏光显微镜和SAXS测试。相比于25℃时的测试结果,油纹状织构的双折射现象依然清晰(参见附图3b),SAXS图谱中出现的Bragg散射峰明显(参见附图4b)。在75℃下对该样品采用流变技术表征,在测量频率范围内,样品的储能模量G′始终大于损耗模量G″,样品的弹性性质突出(参见附图5b),由此可判断依然为层状液晶。
上述测试结果表明,实施例1的样品为层状液晶,并且液晶的热稳定性良好。
按照上述方法,对实施例2-6、实施例8-9所得到的层状液晶进行检测,均认定为层状液晶。
测试例2
为确认实施例7颗粒状活性磷脂复水后得到的层状液晶,进行测试和表征。
棕红色透射色是活性磷脂液晶所具有的明显的感官特征,用可见分光光度计对实施例7的液晶样品进行透光率测试,活性磷脂与1倍重量的水(即等量水)结合形成的棕红色透射色层状液晶,在25℃时透光率为58.1%;75℃时透光率为58.3%;活性磷脂与3倍重量的水结合形成的棕红色透射色层状液晶,在25℃时透光率为70.0%;75℃时透光率为70.3%。测试结果量化了透射色的透光率,量化了感官指标。
对于实施例7活性磷脂与1倍重量的水(即等量水)结合形成的棕红色透射色层状液晶样品,在温度为25℃时,样品的偏光照片(附图6a)呈现油纹状织构,这是层状液晶的典型特征。样品的SAXS图(附图7a)存在两个明显的Bragg散射峰,其对应的散射因子q(0.7956,1.5977)比值为1:2,再次印证了形成的是层状液晶;当检测温度升高到75℃时,样品的偏光照片(图6b)仍呈现油纹状织构,样品所对应的SAXS图(附图7b)仍存在两个Bragg散射峰,其对应散射因子q(0.9913,1.7802)的比值仍为1:2,表明层状液晶依然存在。
对于实施例7活性磷脂与3倍重量的水结合形成的棕红色透射色层状液晶样品,在温度为25℃时,样品的偏光照片(附图8a)呈现油纹状织构,这是层状液晶的典型特征。样品的SAXS图(附图9a)散射因子q在0.5-2nm -1之间明显有一个不算尖锐的散射峰,印证了形成的是层状液晶;当检测温度升高到75℃时,样品的偏光照片(图8b)仍呈现油纹状织构,样品所对应的SAXS图(附图9b)散射因子q在0.5-2nm -1之间仍然有一个不算尖锐的散射峰,表明层状液晶依然存在。
测试例3
为确认所述油脚水解物是大豆油脚的水解产物,对实施例1和实施例2提取的水解物和原料大豆油脚中的正己烷不溶物,进行测试和比对。正己烷不溶物的检测方法执行国家标准《GB28401食品添加剂磷脂》的规定。
实施例1水解得到的黄褐色粉末状油脚水解物,正己烷不溶物含量为95.68g/100g,得率占大豆油脚重量的2.73%。
实施例1的原料大豆油脚经检测,以干基计,正己烷不溶物含量为0.21g/100g。折算为以大豆油脚为基数的正己烷不溶物含量为0.13g/100g。
说明实施例1水解得到的正己烷不溶物是原料油脚的20.09倍。
实施例2水解得到的黄褐色粉末状油脚水解物,正己烷不溶物含量为96.13g/100g,得率占大豆油脚重量的4.91%。
实施例2的原料大豆油脚经检测,以干基计,正己烷不溶物含量为0.29g/100g。折算为以大豆油脚为基数的正己烷不溶物含量为0.18g/100g。
说明实施例2水解得到的正己烷不溶物是原料油脚的26.22倍。
从实施例1和实施例2的检测结果分析,由大豆油脚制备的油脚水解物,不是大豆油脚自带的组分,而是大豆油脚水解后产生的。
上述详细说明是针对本发明其中之一可行实施例的具体说明,该实施例并非用以限制本发明的专利范围,凡未脱离本发明所为的等效实施或变更,均应包含于本发明技术方案的范围内。

Claims (10)

  1. 一种活性磷脂,其特征在于,所述活性磷脂的丙酮不溶物由大豆活性磷脂组成,由活性磷脂层状液晶脱水制得,所述活性磷脂复水后恢复为层状液晶。
  2. 根据权利要求1所述的活性磷脂,其特征在于,所述活性磷脂的干基丙酮不溶物含量为92-96g/100g,含水量≤2g/100g;感官指标为黄色颗粒或者粉末。
  3. 一种权利要求1-2任一所述的活性磷脂的制备方法,其特征在于,包括如下步骤:将大豆油脚与原料水反应、沉降得到分层的水相和活性磷脂层状液晶,所述水相的电导率为2-12mS/cm,将活性磷脂层状液晶干燥、粉碎即得。
  4. 根据权利要求3所述的制备方法,其特征在于,所述大豆油脚与原料水的重量比为1:2-5,所述反应的温度为60-95℃,所述反应的时间为3-12h;在反应前,将大豆油脚置于原料水中以搅拌的方式打散成颗粒状;在反应过程中,不搅拌反应物。
  5. 根据权利要求3所述的制备方法,其特征在于,所述原料水,一部分被大豆油脚中的活性磷脂吸收成为活性磷脂层状液晶的结合水,另一部分成为水相,所述水相是大豆油脚水解物的水溶液。
  6. 根据权利要求3所述的制备方法,其特征在于,所述原料水是纯净水或者大豆油脚水解物的水溶液,电导率为0-10mS/cm。
  7. 根据权利要求3所述的制备方法,其特征在于,在大豆油脚或者原料水中添加氢氧化钠或者氢氧化钾。
  8. 根据权利要求7所述的制备方法,其特征在于,所述氢氧化钠或者氢氧化钾的添加量为大豆油脚重量的0.01-0.5%。
  9. 根据权利要求3所述的制备方法,其特征在于,所述活性磷脂层状液晶由水、活性磷脂和油脂组成,含水量为70-80g/100g,干基丙酮不溶物含量为92-96g/100g。
  10. 根据权利要求3所述的制备方法,其特征在于,所述活性磷脂层状液晶的感官指标为棕红色透射色;用偏光显微镜观察有油纹状偏光织构双折射现象;小角X射线散射的散射因子q在0.5-2nm -1之间有明显的Bragg散射峰;储能模量G′大于损耗模量G″。
PCT/CN2021/100552 2021-04-27 2021-06-17 一种活性磷脂 WO2022227246A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110461933.0A CN113201010A (zh) 2021-04-27 2021-04-27 一种活性磷脂
CN202110461933.0 2021-04-27

Publications (1)

Publication Number Publication Date
WO2022227246A1 true WO2022227246A1 (zh) 2022-11-03

Family

ID=77029305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100552 WO2022227246A1 (zh) 2021-04-27 2021-06-17 一种活性磷脂

Country Status (2)

Country Link
CN (1) CN113201010A (zh)
WO (1) WO2022227246A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363278A (ja) * 2001-03-02 2002-12-18 Nof Corp ポリアルキレンオキシド修飾リン脂質およびその製造方法
CN103665029A (zh) * 2012-09-07 2014-03-26 三河汇福生物科技有限公司 一种粉末大豆磷脂的制备方法
CN111533765A (zh) * 2020-05-26 2020-08-14 内蒙古铂贝曼科技有限公司 一种低铁粉末磷脂
CN111548861A (zh) * 2020-05-26 2020-08-18 内蒙古铂贝曼科技有限公司 一种水化法粉末磷脂
CN111574557A (zh) * 2020-05-26 2020-08-25 内蒙古铂贝曼科技有限公司 一种由含水磷脂制备固体磷脂的真空连续干燥方法
CN111574556A (zh) * 2020-05-26 2020-08-25 内蒙古铂贝曼科技有限公司 一种由含水磷脂制备固体磷脂的常压连续干燥方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363278A (ja) * 2001-03-02 2002-12-18 Nof Corp ポリアルキレンオキシド修飾リン脂質およびその製造方法
CN103665029A (zh) * 2012-09-07 2014-03-26 三河汇福生物科技有限公司 一种粉末大豆磷脂的制备方法
CN111533765A (zh) * 2020-05-26 2020-08-14 内蒙古铂贝曼科技有限公司 一种低铁粉末磷脂
CN111548861A (zh) * 2020-05-26 2020-08-18 内蒙古铂贝曼科技有限公司 一种水化法粉末磷脂
CN111574557A (zh) * 2020-05-26 2020-08-25 内蒙古铂贝曼科技有限公司 一种由含水磷脂制备固体磷脂的真空连续干燥方法
CN111574556A (zh) * 2020-05-26 2020-08-25 内蒙古铂贝曼科技有限公司 一种由含水磷脂制备固体磷脂的常压连续干燥方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI ZIMING, XU ZIQIAN, HU SHUZHEN, ZHANG SONGTAO: "Separation and Purification of Soybean Phosphatides in Liquid Crystal Phase", ZHONGGUO LIANGYOU XUEBAO - CHINESE CEREALS AND OILS ASSOCIATION.JOURNAL, ZHONGGUO LIANGYOU XUEHUI, BEIJING, CN, vol. 1, no. 22, 25 January 2007 (2007-01-25), CN , pages 30 - 34, XP009532115, ISSN: 1003-0174 *

Also Published As

Publication number Publication date
CN113201010A (zh) 2021-08-03

Similar Documents

Publication Publication Date Title
Chen et al. Effect of microfluidization process on the functional properties of insoluble dietary fiber
CN111533765B (zh) 一种低铁粉末磷脂
Feng et al. Physicochemical properties and in vitro bioaccessibility of lutein loaded emulsions stabilized by corn fiber gums
BR112014015652B1 (pt) Óleo de abacate, seu processo de obtenção e seu uso
Feng et al. Effect of microwave extraction temperature on the chemical structure and oil-water interface properties of fish skin gelatin
CN111574557B (zh) 一种由含水磷脂制备固体磷脂的真空连续干燥方法
Harasym et al. Effect of size reduction by freeze-milling on processing properties of beta-glucan oat bran
WO2022227246A1 (zh) 一种活性磷脂
Xu et al. Effect of different superfine grinding technologies on the physicochemical and antioxidant properties of tartary buckwheat bran powder
WO2022227248A1 (zh) 一种活性磷脂层状液晶及其制备工艺与应用
WO2022227247A1 (zh) 一种磷脂加工助剂及其应用
Mao et al. Aqueous two-phase simultaneous extraction and purification of a polysaccharide from Grifola frondosa: Process optimization, structural characteristics and antioxidant activity
CN105670815B (zh) 一种油茶籽去污粉及其制备工艺
CN111548365B (zh) 一种从大豆油脚中分离自聚集含水磷脂的方法
CN111548862B (zh) 一种自聚集含水磷脂
CN113995144B (zh) 一种改性柑橘纤维及其制备方法和应用
Whistler et al. Extraction of glycogen with dimethyl sulfoxide
CN113180141A (zh) 一种活性磷脂层状液晶及其应用
CN113214312A (zh) 一种活性磷脂层状液晶的制备方法
Zhao et al. Peanut oil and protein extraction using an aqueous enzymatic method and analysis of the characteristics of the emulsions produced
CN109602783B (zh) 一种酶辅助提取杜仲叶活性成分的方法
Itthisoponkul et al. Evaluation of high pressure treatment for improvement of physicochemical and functional qualities in purple corncobs.
CN110477403A (zh) 一种利用柑橘属果皮制备柑橘纤维的方法
WO2021238162A1 (zh) 一种自聚集含水磷脂及其制备方法
BRPI0913365B1 (pt) Method for glycosylation and separation of vegetable fiber material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21938714

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21938714

Country of ref document: EP

Kind code of ref document: A1