WO2022227114A1 - 显示装置以及显示装置的制造方法 - Google Patents

显示装置以及显示装置的制造方法 Download PDF

Info

Publication number
WO2022227114A1
WO2022227114A1 PCT/CN2021/092814 CN2021092814W WO2022227114A1 WO 2022227114 A1 WO2022227114 A1 WO 2022227114A1 CN 2021092814 W CN2021092814 W CN 2021092814W WO 2022227114 A1 WO2022227114 A1 WO 2022227114A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel definition
layer
definition layer
pixel
absorbance
Prior art date
Application number
PCT/CN2021/092814
Other languages
English (en)
French (fr)
Inventor
郭旺回
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US17/417,443 priority Critical patent/US20220359626A1/en
Publication of WO2022227114A1 publication Critical patent/WO2022227114A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K50/865Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. light-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens

Definitions

  • the present application relates to the field of display technology, and in particular, to a display device and a manufacturing method of the display device.
  • a known depolarizer display device includes a pixel definition layer with a light-shielding effect. The material of the pixel definition layer with the shading effect has low light transmittance, and the area above the photosensitive module also has the problem of performance degradation caused by the low light transmittance.
  • the purpose of the present application is to provide a display device and a manufacturing method of the display device which can improve the light transmittance of the area above the photosensitive module, thereby improving the performance of the photosensitive module.
  • the present application provides a display device, which includes a transparent display area and a main display area, the main display area and the transparent display area are arranged adjacent to each other, and the display device includes:
  • a pixel definition layer is disposed on the substrate, an opening is formed in the pixel definition layer, the pixel definition layer includes a first pixel definition layer and a second pixel definition layer, and the first pixel definition layer is located in the transparent a display area, the second pixel definition layer is located in the main display area, wherein the absorbance of the first pixel definition layer is less than the absorbance of the second pixel definition layer;
  • a light-emitting pixel is arranged in the opening.
  • the ratio of the absorbance of the first pixel definition layer to the absorbance of the second pixel definition layer ranges from one-half to two-thirds.
  • the absolute value of the difference between the reflectivity of the first pixel definition layer and the reflectivity of the second pixel definition layer is less than or equal to two percent.
  • the thickness of the first pixel definition layer is less than the thickness of the second pixel definition layer.
  • the ratio of the thickness of the first pixel definition layer to the thickness of the second pixel definition layer ranges from one-half to two-thirds.
  • the material of the first pixel definition layer is different from that of the second pixel definition layer, and the absorbance of the material of the first pixel definition layer is lower than the absorbance of the material of the second pixel definition layer.
  • the first pixel definition layer includes a first pixel definition part and a second pixel definition part disposed on the substrate, and the second pixel definition part has a lower absorbance than the first pixel definition part absorbance.
  • the absorbance of the second pixel defining layer is the same as the absorbance of the first pixel defining portion.
  • the display device further includes:
  • an encapsulation layer disposed on the side of the light-emitting pixel away from the pixel definition layer;
  • a color filter layer disposed on the side of the encapsulation layer away from the light-emitting pixels, the color filter layer includes a plurality of color filters, the pixel definition layer includes a plurality of pixel definition parts, each of the pixel definition parts corresponds to arranged in the gap between two adjacent color filters; and
  • a planarization layer covers the side of the color filter layer away from the encapsulation layer, and in the transparent display area, the planarization layer is filled in the gap.
  • the display device further includes a touch control module, the touch control module is located in the main display area and disposed between the encapsulation layer and the color filter layer, the color filter The layer further includes a black matrix, which is located in the main display area and fills the gap between two adjacent color filters.
  • the present application provides a method for manufacturing a display device, which includes the following steps:
  • the substrate includes a first area and a second area, the first area and the second area are arranged adjacently;
  • a light-shielding material layer is formed on the substrate, the light-shielding material layer is patterned to form a light-shielding pixel definition layer, an opening is formed in the light-shielding pixel definition layer, and the light-shielding pixel definition layer includes a first pixel definition layer and a second pixel definition layer. Two pixel definition layers, the first pixel definition layer is located in the first area, the second pixel definition layer is located in the second area, wherein the absorbance of the first pixel definition layer is smaller than that of the second pixel define the absorbance of the layer; and
  • Light-emitting pixels are formed in the openings to obtain the display device.
  • the ratio of the absorbance of the first pixel definition layer to the absorbance of the second pixel definition layer ranges from one-half to two-thirds.
  • the absolute value of the difference between the reflectivity of the first pixel definition layer and the reflectivity of the second pixel definition layer is less than or equal to two percent.
  • the absorbance of which is less than the absorbance of the second pixel-defining layer includes:
  • a first pixel definition layer and a second pixel definition layer with different thicknesses are obtained by using a halftone mask or a grayscale mask, wherein the thickness of the first pixel definition layer is smaller than the thickness of the second pixel definition layer.
  • the ratio of the thickness of the first pixel definition layer to the thickness of the second pixel definition layer ranges from one-half to two-thirds.
  • the material of the first pixel definition layer is different from that of the second pixel definition layer, and the absorbance of the material of the first pixel definition layer is lower than the absorbance of the material of the second pixel definition layer.
  • the first pixel definition layer includes a first pixel definition part and a second pixel definition part disposed on the substrate, and the second pixel definition part has a lower absorbance than the first pixel definition part absorbance.
  • the absorbance of the second pixel defining layer is the same as the absorbance of the first pixel defining portion.
  • the method further includes:
  • a color filter layer is formed on the side of the encapsulation layer away from the light-emitting pixels, the color filter layer includes a plurality of color filters, and the pixel definition layer includes a plurality of pixel definition parts, each of the pixel definition parts corresponds to a gap between two adjacent color filters;
  • a planarization layer is formed on a side of the color filter layer away from the encapsulation layer, and in the first region, the planarization layer is filled in the gap.
  • the method before forming the encapsulation layer on the side of the light-emitting pixel away from the pixel definition layer, and after forming the color filter layer on the side of the encapsulation layer away from the light-emitting pixel, the method further includes:
  • a touch module is formed in the first area, and the touch module is disposed between the encapsulation layer and the color filter layer.
  • the display device of the present application includes a transparent display area and a main display area.
  • the main display area and the transparent display area are set adjacent to each other.
  • a display device includes a substrate, a pixel definition layer, and light-emitting pixels.
  • the pixel definition layer is disposed on the substrate. Openings are opened in the pixel definition layer.
  • the pixel definition layer includes a first pixel definition layer and a second pixel definition layer.
  • the first pixel definition layer is located in the transparent display area.
  • the second pixel definition layer is located in the main display area. Wherein, the absorbance of the first pixel definition layer is smaller than the absorbance of the second pixel definition layer.
  • the light-emitting pixels are arranged in the openings.
  • FIG. 1 is a schematic top view of a display device according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of the display device of FIG. 1 .
  • FIG. 3 is a partial cross-sectional schematic diagram of the display device of FIG. 1 .
  • Fig. 4 is a graph showing the relationship between the film thickness of Toray DL-3811 and the absorbance and reflectance.
  • FIG. 5 is a partial cross-sectional schematic diagram of a display device according to another embodiment of the present application.
  • FIG. 6 is a partial cross-sectional schematic diagram of a display device according to still another embodiment of the present application.
  • FIG. 7 is a schematic top view of the first pixel definition layer of FIG. 6 .
  • FIG. 8 is a flowchart of a manufacturing method of the display device of the present application.
  • FIG. 9( a ) and FIG. 9( b ) are schematic diagrams of a specific example of the manufacturing method of the display device of the present application.
  • the first feature "on” or “under” the second feature may include the first and second features directly, or the first and second features are not Direct contact but through additional features between them.
  • the first feature being “above”, “over” and “above” the second feature includes the first feature being directly above and obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature is “below”, “below” and “below” the second feature includes the first feature being directly below and diagonally below the second feature, or simply means that the first feature has a lower level than the second feature.
  • FIG. 1 is a schematic top view of a display device according to an embodiment of the present application.
  • the display device 100 may be an electronic device with a display function, such as a mobile phone, a tablet computer, a notebook, a game console, a digital camera, a car navigator, an electronic billboard, and an automatic teller machine.
  • the display device 100 is an organic light emitting diode (Organic Light Emitting Diode) Light-emitting Diode, OLED) display device 100.
  • the OLED display device can be an active matrix organic light-emitting diode (Active Matrix Organic Light-emitting diode). diode, AMOLED) display device, passive matrix organic light emitting diode (Passive Matrix Organic Light-emitting diode (PMOLED) display device or one of quantum dot organic light-emitting diode (Quantum Dot Light-emitting Diode, QLED) display devices.
  • AMOLED Active Matrix Organic Light-emitting diode
  • PMOLED Passive Matrix Organic Light-emitting diode
  • QLED Quantum Dot Light-emitting Diode
  • the display device 100 is a POL-less display device, that is, a display device using a color filter instead of a polarizer. It can not only reduce the thickness of the functional layer of the display device 100, but also improve the light extraction rate.
  • POL-less technology based on color film is also considered as one of the key technologies to realize the development of dynamic bending products. The specific structure of the display device 100 will be described in detail below.
  • the display device 100 includes a transparent display area 100a and a main display area 100b.
  • the main display area 100b and the transparent display area 100a are disposed adjacent to each other.
  • the main display area 100b is used to display images.
  • the display device 100 further includes a photosensitive module 101 .
  • the photosensitive module 101 is disposed corresponding to the transparent display area 100a, and is located on the non-display side 100a1 of the transparent display area 100a.
  • the transparent display area 100a is in a light-transmitting state for light to enter the photosensitive module 101; when the photosensitive module 101 is turned off, the transparent display area 100a is in a display state, and displays a picture together with the main display area 100b , to achieve full screen display.
  • the display device 100 further includes a bending region 100c.
  • the bending region 100c is used for bending to the back of the display device 100 to electrically connect the circuit board.
  • the bending area 100c is located on the side of the main display area 100b away from the transparent display area 100a.
  • the main display area 100b surrounds the transparent display area 100a.
  • the transparent display area 100 a is located on the upper side of the display device 100 .
  • the present application does not limit the shapes and relative positions of the main display area 100b and the transparent display area 100a.
  • FIG. 2 is a schematic structural diagram of the display device of FIG. 1 .
  • FIG. 3 is a partial cross-sectional schematic diagram of the display device of FIG. 1 .
  • the display device 100 includes a substrate 10 , a driving circuit layer 20 , a pixel definition layer 30 , a light-emitting pixel layer 40 , an encapsulation layer 50 , a touch module 60 , a color filter layer 70 and a planarization layer 80 .
  • the driving circuit layer 20 , the pixel definition layer 30 , the light-emitting pixel layer 40 , the packaging layer 50 , the touch module 60 , the color filter layer 70 and the planarization layer 80 are sequentially stacked on the substrate 10 .
  • the main display area 100b and the transparent display area 100a both include a substrate 10, a driving circuit layer 20, a pixel definition layer 30, a light-emitting pixel layer 40, an encapsulation layer 50, a touch module 60, a color filter layer 70, and a planarization layer 80. in the layers shown.
  • the bending region 100c may not include the driving circuit layer 20 , the pixel definition layer 30 , the light-emitting pixel layer 40 , the encapsulation layer 50 , the touch module 60 , the color filter layer 70 and other functional film layers used for display, but is used for setting Traces.
  • the display device 100 may further include components not shown, such as a frame backplane. Here, the details will not be repeated.
  • the substrate 10 may be a rigid substrate such as a glass substrate or a plastic substrate, or may be a flexible substrate.
  • the flexible substrate may include a single flexible organic layer, or may include two or more flexible organic layers, and a barrier layer disposed between two adjacent flexible organic layers.
  • the material of the flexible organic layer is selected from polyimide (PI), polyethylene naphthalate (PEN), polyethylene terephthalate (PET), polyarylate (PAR), polycarbonate One or more of (PC), polyetherimide (PEI) and polyethersulfone (PES).
  • the material of the barrier layer is selected from one or more of inorganic materials such as silicon dioxide and silicon nitride.
  • the substrate 10 includes a first polyimide layer 11 , a barrier layer 12 and a second polyimide layer 13 that are stacked in sequence.
  • the driving circuit layer 20 is disposed on the substrate 10 .
  • the driving circuit layer 20 is used for driving the light-emitting pixel layer 40 to emit light.
  • the driver circuit layer 20 includes driver circuits.
  • the driving circuit may be a 7T1C circuit or a 5T1C circuit and other commonly used driving circuits in the field.
  • the driving circuit includes thin film transistors.
  • the thin film transistor is a double-gate thin film transistor.
  • the thin film transistor includes an active layer CL, a first gate insulating layer GI1, a first gate GE1, a second gate insulating layer GI2, a second gate GE2, an interlayer insulating layer IL, a source SE and Drain DE.
  • the active layer CL is disposed on the substrate 10
  • the first gate capping layer GI1 covers the side of the active layer CL away from the substrate 10
  • the first gate GE1 is disposed on the first gate insulating layer GI1 away from the active layer
  • the second gate insulating layer GI2 covers the first gate GE1 and the first gate insulating layer GI1
  • the second gate GE2 is disposed on a side of the first gate insulating layer GI1 away from the first gate GE1.
  • the interlayer insulating layer IL covers the second gate electrode GE2 and the first gate insulating layer GI1, the source electrode SE and the drain electrode DE are arranged on the side of the interlayer insulating layer IL away from the first gate electrode GE1, and are respectively connected with the gate electrode SE and the drain electrode DE. Both ends of the source layer CL are connected.
  • a light shielding layer LS and a buffer layer BL may also be disposed between the driving circuit layer 20 and the substrate 10 .
  • the present application does not limit the structure of the thin film transistor included in the driving circuit layer 20 , which can be a top-gate thin film transistor or a bottom-gate thin film transistor, which can be the double-gate thin film transistor shown in FIG. 1 .
  • the thin film transistor may also be a single-gate thin film transistor.
  • the pixel definition layer 30 is disposed on a side of the driving circuit layer 20 away from the substrate 10 .
  • the pixel definition layer 30 is used to define a light-emitting area, and has a light-shielding effect, and can also avoid light reflection.
  • the pixel definition layer 30 is provided with an opening 30a. The openings are located in the main display area and the transparent display area.
  • the opening 30a is used for disposing the organic light emitting diode device.
  • the material of the pixel definition layer 30 is a black matrix material commonly used in the art.
  • the material of the pixel definition layer 30 is mainly composed of thermosensitive, photosensitive polymer and black filler; wherein, the thermosensitive and photosensitive polymer can be acrylic resin or methacrylic resin, and the black filler can be carbon black, organic light-absorbing material, etc. .
  • the pixel definition layer 30 includes a first pixel definition layer 31 and a second pixel definition layer 32 .
  • the first pixel definition layer 31 is located in the transparent display area 100a.
  • the second pixel definition layer 32 is located in the display area 100b.
  • the absorbance of the first pixel definition layer 31 is lower than the absorbance of the second pixel definition layer 32 .
  • the ratio of the absorbance of the first pixel definition layer 31 to the absorbance of the second pixel definition layer 32 ranges from one third to three quarters.
  • the ratio of the absorbance of the first pixel definition layer 31 to the absorbance of the second pixel definition layer 32 ranges from one third, one half, two thirds or three quarters.
  • the ratio of the absorbance of the first pixel definition layer 31 to the absorbance of the second pixel definition layer 32 is lower than this range, the difference in light transmittance between the first pixel definition layer 31 and the second pixel definition layer 32 is too large, and the Display unevenness (mura) occurs between the transparent display area 100a and the main display area 100b.
  • the ratio of the absorbance of the first pixel definition layer 31 to the absorbance of the second pixel definition layer 32 is higher than this range, the light transmittance of the transparent display area 100a cannot be significantly improved.
  • the photosensitive module 101 is a camera.
  • the ratio of the absorbance of the first pixel definition layer 31 to the absorbance of the second pixel definition layer 32 is in the range of one-half to two-thirds, experiments show that the camera can obtain a better shooting effect.
  • the pixel definition layer is used to reduce light reflectivity and light transmittance, so as to achieve the function of a polarizing plate.
  • the under-screen sensing technology requires the transparent display area 100a to have high transmittance and low reflectivity.
  • the difference between the reflectivity of the first pixel definition layer 31 and the reflectivity of the second pixel definition layer 32 is less than or equal to two percent.
  • the reflectivity of the first pixel definition layer 31 is set as R1
  • the reflectivity of the second pixel definition layer 32 is set as R2, so that R1-R2 ⁇ 2%.
  • the thickness of the first pixel definition layer 31 is 1.5 ⁇ m, and the reflectivity of the first pixel definition layer 31 is 8.5%.
  • the reflectivity thickness of the second pixel definition layer 32 is 2 microns, and the reflectivity of the second pixel definition layer 32 is 8.0%.
  • the difference between the reflectivity of the first pixel definition layer 31 and the reflectivity of the second pixel definition layer 32 is 0.5%, which is less than or equal to 2%. It should be noted that, in the present application, with the main display area as a reference, the second pixel definition layer 32 in the main display area is a pixel definition layer that can meet conventional display requirements.
  • performance parameters such as absorbance and reflectivity of the second pixel definition layer 32 in the main display area are subject to being able to meet conventional display requirements.
  • the performance parameters such as the absorbance and reflectivity of the first pixel definition layer 31 are adjusted.
  • R1-R2>2% the reflectivity of the first pixel definition layer 31 is too high, which cannot meet the requirements of POL-less and under-screen sensing technology, thereby affecting the sensing quality of the photosensitive module and the appearance of the screen off.
  • the reflectivity of the main display area 100b and the transparent display area 100a can be guaranteed to be within a reasonable range, thereby At the same time, the sensing quality of the photosensitive module and the screen-off appearance effect of the display device 100 are guaranteed.
  • Figure 4 is a graph showing the relationship between the thickness, absorbance and reflectance of Toray DL-3811.
  • Toray DL-3811 can be used as the material of the pixel definition layer 30 .
  • the abscissa is the thickness in microns.
  • the ordinate on the left is the absorbance, and the unit is L/(g ⁇ cm).
  • the ordinate on the right is the reflectance in percent.
  • the absorbance of the material of the pixel definition layer 30 is negatively correlated with the thickness, that is, as the thickness of the pixel definition layer 30 increases, the absorbance increases approximately proportionally, and the transmittance approximately proportionally increases decline. Meanwhile, as the thickness of the pixel definition layer 30 increases, the change in reflectance is not large.
  • the main determinants of the absorbance of the layers of the pixel definition layer 30 are thickness and material.
  • the first pixel definition layer 31 and the second pixel definition layer 32 can be adjusted by setting the thickness h1 of the first pixel definition layer 31 and the thickness h2 of the second pixel definition layer 32 absorbance and reflectance.
  • the materials of the first pixel definition layer 31 and the second pixel definition layer 32 are the same, and the thickness h1 of the first pixel definition layer 31 is smaller than the thickness h2 of the second pixel definition layer 32 .
  • the ratio of the thickness h1 of the first pixel definition layer 31 to the thickness h2 of the second pixel definition layer 32 ranges from one third to three quarters. Specifically, the ratio of the thickness h1 of the first pixel definition layer 31 to the thickness h2 of the second pixel definition layer 32 ranges from one third, one half, two thirds or three quarters.
  • the absorbance and reflectivity of the first pixel definition layer 31 and the second pixel definition layer 32 can be adjusted by selecting the materials of the first pixel definition layer 31 and the second pixel definition layer 32 .
  • the materials of the first pixel definition layer 31 and the second pixel definition layer 32 are different, and the absorbance of the material of the first pixel definition layer 31 is smaller than that of the second pixel definition layer 32.
  • the absorbance of the material of the pixel definition layer 32 .
  • the thicknesses of the first pixel definition layer 31 and the second pixel definition layer 32 may be the same or different.
  • FIG. 5 is a partial cross-sectional schematic diagram of a display device according to another embodiment of the present application. In order to simplify the process, the thicknesses of the first pixel definition layer 31 and the second pixel definition layer 32 are the same.
  • FIG. 6 is a partial cross-sectional schematic diagram of a display device according to still another embodiment of the present application.
  • FIG. 7 is a schematic top view of the first pixel definition layer of FIG. 6 .
  • the absorbance and reflectivity of the first pixel definition layer 31 can be adjusted by designing the structure of the first pixel definition layer 31 .
  • the pixel definition layer 30 includes a plurality of pixel definition parts 301 .
  • the pixel definition part 301 includes a first pixel definition part 301 a and a second pixel definition part 301 b arranged on the substrate 10 .
  • the absorbance of the second pixel defining portion 301b is smaller than that of the first pixel defining portion 301a.
  • the absorbance of the second pixel definition portion 301b and the second pixel definition layer 32 may be the same or different. In order to simplify the process, the absorbance of the second pixel defining portion 301b and the second pixel defining layer 32 are the same.
  • the present application does not limit the arrangement of the first pixel definition part 301a and the second pixel definition part 301b.
  • the first pixel definition parts 301a and the second pixel definition parts 301b can be alternately arranged in rows in the first direction D1, and two adjacent rows are arranged at intervals in the second direction D2 to form a matrix.
  • the first pixel definition part 301a, the second pixel definition part 301b and the second pixel definition layer 32 are made of the same material.
  • the thickness h2 of the second pixel definition layer 32 is the same as the thickness h3 of the first pixel definition portion 301a.
  • the thickness h4 of the second pixel defining portion 301b is smaller than the thickness h3 of the first pixel defining portion 301a.
  • the thickness h2 of the second pixel definition layer 32 is equal to the thickness h3 of the first pixel definition portion 301a.
  • the first pixel definition part 301a and the second pixel definition part 301b are made of different materials.
  • the absorbance of the second pixel defining portion 301b is smaller than the absorbance of the first pixel defining portion 301a.
  • the thickness h3 of the first pixel definition portion 301a and the thickness h4 of the second pixel definition portion 301b may be the same or different.
  • the thickness h3 of the first pixel definition portion 301a is the same as the thickness h4 of the second pixel definition portion 301b.
  • the material and thickness of the second pixel defining portion 301b and the second pixel defining layer 32 are the same, and the absorbance is the same.
  • the light-emitting pixel layer 40 includes a plurality of light-emitting pixels 41 . Each light-emitting pixel 41 is disposed in one opening. Each light emitting pixel 41 includes an organic light emitting diode device.
  • the organic light emitting diode device includes an anode, a cathode, and a hole injection layer, a hole transport layer, an organic light emitting layer, an electron transport layer, an electron injection layer, and the like located between the anode and the cathode.
  • the plurality of light-emitting pixels 41 may be arranged in a matrix. It can be understood that the pixel definition layer 30 of the present application is further provided with spacers PS.
  • the spacers PS are used to support the vapor deposition of the light-emitting pixels 41 .
  • the encapsulation layer 50 is disposed on a side of the light-emitting pixel layer 40 away from the pixel definition layer 30 .
  • the encapsulation layer 50 is a thin-film encapsulation layer (Thin-Film Encapsulation, TFE).
  • the thin film encapsulation layer 50 includes at least one inorganic layer and at least one organic layer which are alternately stacked.
  • the inorganic layer may be selected from inorganic materials such as aluminum oxide, silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, titanium oxide, zirconium oxide, zinc oxide, and the like.
  • the organic layer is selected from transparent organic materials such as epoxy resin, polyimide, polyethylene terephthalate, polycarbonate, polyethylene (PE), polyacrylate, and the like.
  • the touch module 60 is a DOT (English full name: Direct on-cell touch, built-in touch) module.
  • the touch module 60 may be a self-capacitive touch module or a mutual capacitive touch module.
  • the touch module 60 is located in the main display area 100b.
  • the color filter layer 70 is disposed on a side of the encapsulation layer 50 away from the touch module 60 .
  • the color filter layer 70 includes red (R), green (G), and blue (B) color filters 71 . Based on the self-luminous characteristics of the OLED, each color filter is respectively set corresponding to the red, green and blue light-emitting pixels 41 of the OLED. There is a gap 70a between two adjacent color filters 71 . It should be noted that, in the transparent display area 100a, the black matrix BM is not provided in the gap 70a between two adjacent color filters 71.
  • Each pixel definition portion 301 of the pixel definition layer 30 is disposed corresponding to the gap 70 a between two adjacent color filters 71 .
  • the black matrix located between the two color filters blocks the viewing angle and deteriorates its optical performance, such as color matching.
  • the pixel definition layer 30 is used to replace the black matrix, which can improve the viewing angle and optical performance, and omit a black matrix process.
  • the color filter layer 70 also includes a black matrix BM.
  • the black matrix BM is located in the main display area 100b and fills the gap 70a between two adjacent color filters 71 .
  • the touch module 60 is generally formed of a metal mesh, which is easy to reflect ambient light, resulting in a decrease in display quality. Therefore, in the present application, the touch module 60 is not disposed in the transparent display area 100a, and the touch module 60 is only disposed in the main display area 100b.
  • a black matrix BM for shading is provided between the color filters 71.
  • the planarization layer 80 covers the side of the color filter layer 70 away from the encapsulation layer 50 .
  • the planarization layer 80 is filled in the gap 70 a of the color filter layer 70 .
  • the color filter layer 70 and the planarization layer 80 together constitute the depolarizer structure of the present application, and function instead of the polarizer.
  • the material of the planarization layer 80 is an organic material, such as acrylic resin. resin) or perfluoroalkoxy resin (PFA).
  • the planarization layer 80 covers the color filter 71 and the black matrix BM.
  • an opening ODH is further provided in the bending region 100c, and the flattening layer 80 is filled in the opening ODH.
  • the photosensitive module 101 is disposed on the side of the substrate 10 away from the driving circuit layer 20 .
  • the photosensitive module 101 includes a fingerprint recognition sensor, a camera, a structured light sensor, a time-of-flight sensor, a distance sensor, etc., so that the sensor can collect signals through the display light-transmitting area, so that the display device 100 can realize Under-screen sensing solutions such as under-screen fingerprint recognition, under-screen camera, under-screen face recognition, and under-screen distance sensing.
  • the display device of the present application includes a transparent display area and a main display area.
  • the main display area and the transparent display area are set adjacent to each other.
  • a display device includes a substrate, a pixel definition layer, and light-emitting pixels.
  • the pixel definition layer is disposed on the substrate. Openings are opened in the pixel definition layer.
  • the pixel definition layer includes a first pixel definition layer and a second pixel definition layer.
  • the first pixel definition layer is located in the transparent display area.
  • the second pixel definition layer is located in the main display area. Wherein, the absorbance of the first pixel definition layer is smaller than the absorbance of the second pixel definition layer.
  • the light-emitting pixels are arranged in the openings.
  • the display device of the present application increases the light transmittance of the transparent display area by reducing the absorbance of the pixel definition layer in the transparent display area, thereby improving the performance of the photosensitive module.
  • FIG. 8 is a flowchart of a method for manufacturing a display device of the present application.
  • the manufacturing method of the display device includes the following steps:
  • the substrate includes a first area and a second area, and the first area and the second area are disposed adjacent to each other;
  • a light-shielding material layer on a substrate, patterning the light-shielding material layer to obtain a pixel definition layer, an opening is formed in the pixel definition layer, and the pixel definition layer includes a first pixel definition layer and a second pixel definition layer, and the first pixel definition layer The layer is located in the first region and the second pixel-defining layer is located in the second region, wherein the absorbance of the first pixel-defining layer is less than the absorbance of the second pixel-defining layer.
  • the material of the light-shielding material layer is a black matrix material commonly used in the art.
  • the material of the pixel definition layer 30 is mainly composed of thermosensitive, photosensitive polymer and black filler; wherein, the thermosensitive and photosensitive polymer can be acrylic resin or methacrylic resin, and the black filler can be carbon black, organic light-absorbing material, etc. .
  • the absorbance of the first pixel definition layer 31 is lower than the absorbance of the second pixel definition layer 32 . Further, the ratio of the absorbance of the first pixel definition layer 31 to the absorbance of the second pixel definition layer 32 ranges from one third to three quarters.
  • the ratio of the absorbance of the first pixel definition layer 31 to the absorbance of the second pixel definition layer 32 ranges from one third, one half, two thirds or three quarters.
  • the photosensitive module 101 is a camera.
  • the ratio of the absorbance of the first pixel definition layer 31 to the absorbance of the second pixel definition layer 32 ranges from one-half to two-thirds.
  • the difference between the reflectivity of the first pixel definition layer 31 and the reflectivity of the second pixel definition layer 32 is less than or equal to two percent.
  • the first pixel definition layer 31 and the second pixel definition layer 32 can be adjusted by setting the thickness h1 of the first pixel definition layer 31 and the thickness h2 of the second pixel definition layer 32 absorbance and reflectance.
  • the materials of the first pixel definition layer 31 and the second pixel definition layer 32 are the same, and the thickness h1 of the first pixel definition layer 31 is smaller than the thickness h2 of the second pixel definition layer 32 .
  • the ratio of the thickness h1 of the first pixel definition layer 31 to the thickness h2 of the second pixel definition layer 32 ranges from one third to three quarters.
  • the ratio of the thickness h1 of the first pixel definition layer 31 to the thickness h2 of the second pixel definition layer 32 ranges from one third, one half, two thirds or three quarters.
  • the light-shielding material layer may be patterned using a halftone mask or a grayscale mask.
  • the absorbance and reflectivity of the first pixel definition layer 31 and the second pixel definition layer 32 can be adjusted by selecting the materials of the first pixel definition layer 31 and the second pixel definition layer 32 .
  • the materials of the first pixel definition layer 31 and the second pixel definition layer 32 are different, and the absorbance of the material of the first pixel definition layer 31 is smaller than that of the second pixel definition layer 32.
  • the absorbance of the material of the pixel definition layer 32 .
  • the thicknesses of the first pixel definition layer 31 and the second pixel definition layer 32 may be the same or different.
  • FIG. 5 is a partial cross-sectional schematic diagram of a display device according to another embodiment of the present application. In order to simplify the process, the thicknesses of the first pixel definition layer 31 and the second pixel definition layer 32 are the same.
  • the absorbance and reflectivity of the first pixel definition layer 31 can be adjusted by designing the structure of the first pixel definition layer 31 .
  • the pixel definition layer 30 includes a plurality of pixel definition parts 301 .
  • the pixel definition part 301 includes a first pixel definition part 301 a and a second pixel definition part 301 b arranged on the substrate 10 .
  • the absorbance of the second pixel defining portion 301b is smaller than that of the first pixel defining portion 301a.
  • the absorbance of the second pixel definition portion 301b and the second pixel definition layer 32 may be the same or different.
  • the absorbance of the second pixel defining portion 301b and the second pixel defining layer 32 are the same.
  • the present application does not limit the arrangement of the first pixel definition part 301a and the second pixel definition part 301b.
  • the first pixel definition parts 301a and the second pixel definition parts 301b can be alternately arranged in rows in the first direction D1, and two adjacent rows are arranged at intervals in the second direction D2 to form a matrix.
  • the first pixel definition part 301a, the second pixel definition part 301b and the second pixel definition layer 32 are made of the same material.
  • the thickness h2 of the second pixel definition layer 32 is the same as the thickness h3 of the first pixel definition portion 301a.
  • the thickness h4 of the second pixel defining portion 301b is smaller than the thickness h3 of the first pixel defining portion 301a.
  • the thickness h2 of the second pixel definition layer 32 is equal to the thickness h3 of the first pixel definition portion 301a.
  • the first pixel definition part 301a and the second pixel definition part 301b are made of different materials.
  • the absorbance of the second pixel defining portion 301b is smaller than the absorbance of the first pixel defining portion 301a.
  • the thickness h3 of the first pixel definition portion 301a and the thickness h4 of the second pixel definition portion 301b may be the same or different.
  • the thickness h3 of the first pixel definition portion 301a is the same as the thickness h4 of the second pixel definition portion 301b.
  • the material and thickness of the second pixel defining portion 301b and the second pixel defining layer 32 are the same, and the absorbance is the same.
  • the first pixel definition part 301a and the second pixel definition part 301b with different thicknesses can be obtained by using a halftone mask or a grayscale mask.
  • FIGS. 9( a ) and 9 ( b ) are schematic diagrams of a specific example of the manufacturing method of the display device of the present application.
  • the manufacturing method of the display device includes the following steps:
  • the preparatory substrate 100' includes a first area 101' and a second area 102', and the first area 101' and the second area 102' are arranged adjacently.
  • the first area 101' corresponds to the transparent display area 100a of the display device, and the second area 102' corresponds to the main display area 100b.
  • the preparatory substrate 100' includes the substrate 10 and the driving circuit layer 20 and the anode layer of the organic light emitting diode device.
  • the thickness of the first polyimide layer 11 is 10 microns.
  • the thickness of the barrier layer 12 is 500 nm.
  • the thickness of the second polyimide layer 13 is 6 micrometers.
  • the thickness of the buffer layer BL is 500 nm.
  • the thickness of the active layer CL is 45 nm.
  • the thickness of the first gate insulating layer GI1 is 130 nm.
  • the thickness of the first gate GE1 is 250 nm.
  • the thickness of the second gate insulating layer GI2 is 130 nm.
  • the thickness of the second gate GE2 is 250 nm.
  • the thickness of the interlayer insulating layer IL is 500 nm.
  • the thickness of the source electrode SE and the drain electrode DE is 600 nanometers, and the material is a stacked metal of Ti/Al/Ti.
  • the thickness of the anode layer is 140 nm.
  • the depth of the opening ODH is 1.5 microns.
  • the pixel definition layer 30 includes a first pixel definition layer 31 and a pixel definition layer 30 .
  • the second pixel definition layer 32 is located in the first region 101 ′, and the second pixel definition layer 32 is located in the second region 102 ′, wherein the absorbance of the first pixel definition layer 31 is lower than that of the second pixel definition layer 32 absorbance.
  • the thickness of the light shielding material layer 200 may be 1.5 microns.
  • the light shielding material layer 200 is exposed and developed using the mask 300 to form the pixel definition layer 30 .
  • the mask 300 includes a light-shielding area 301 , a semi-transparent area 302 and a light-transmitting area 303 .
  • the semi-transparent area 302 corresponds to the transparent display area 100a.
  • the touch module 60 may include a first insulating layer made of silicon nitride with a thickness of 300 nanometers; a first metal layer made of Ti/Al/Ti with a thickness of 50/200/80 nanometers; a second insulating layer, The material is silicon nitride with a thickness of 300 nanometers; the second metal layer is made of Ti/Al/Ti with a thickness of 50/200/50 nanometers.
  • a layer of low-temperature organic material is uniformly coated on the surface of the color filter layer 70 , and a planarization layer 80 is obtained through exposure and development processes.
  • the light transmittance of the transparent display area is improved by the manufacturing method of the display device of the present application, thereby improving the performance of the photosensitive module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示装置(100)及其制造方法。显示装置(100)包括透明显示区域(100a)和主显示区域(100b)。显示装置(100)包括像素定义层(30)。像素定义层(30)包括第一像素定义层(31)和第二像素定义层(32)。第一像素定义层(31)位于透明显示区域(100a)。第二像素定义层(32)位于主显示区域(100b)。第一像素定义层(31)的吸光度小于第二像素定义层(32)的吸光度。

Description

显示装置以及显示装置的制造方法 技术领域
本申请涉及显示技术领域,尤其涉及一种显示装置以及显示装置的制造方法。
背景技术
为了提高屏占比,实现全面屏,将感光模组,例如,摄像头放置于显示面板下方的技术已成为主流。但是,由于感光模组上方的显示面板膜层较多,光线透过较低,导致感光模组的感光效果差,影响感光模组性能。其中,偏光片的透光率低至43%。一种解决方案通过采用彩膜(Color Filter)替代偏光片(POL)的去偏光片(POL-less)技术搭配屏下感光模组能大幅度提升屏下感光模组的性能。已知的一种去偏光片显示装置包括具有遮光效果的像素定义层。具有遮光效果的像素定义层的材料透光率低,感光模组上方的区域同样存在透光率低导致的性能下降的问题。
技术问题
有鉴于此,本申请目的在于提供一种能够提高设置有感光模组上方的区域的透光率,从而提高感光模组性能的显示装置以及显示装置的制造方法。
技术解决方案
本申请提供一种显示装置,其包括透明显示区域和主显示区域,所述主显示区域和所述透明显示区域相邻设置,所述显示装置包括:
基板;
像素定义层,设置于所述基板上,所述像素定义层中开设有开口,所述像素定义层包括第一像素定义层和第二像素定义层,所述第一像素定义层位于所述透明显示区域,所述第二像素定义层位于所述主显示区域,其中,所述第一像素定义层的吸光度小于所述第二像素定义层的吸光度;以及
发光像素,设置于所述开口中。
在一个实施方式中,所述第一像素定义层的吸光度与所述第二像素定义层的吸光度的比值范围为二分之一至三分之二。
在一个实施方式中,所述第一像素定义层的反射率与所述第二像素定义层的反射率的差值的绝对值小于或者等于百分之二。
在一个实施方式中,所述第一像素定义层的厚度小于所述第二像素定义层的厚度。
在一个实施方式中,所述第一像素定义层的厚度与所述第二像素定义层的厚度的比值范围为二分之一至三分之二。
在一个实施方式中,所述第一像素定义层与所述第二像素定义层的材料不同,所述第一像素定义层的材料的吸光度小于所述第二像素定义层的材料的吸光度。
在一个实施方式中,所述第一像素定义层包括设置在所述基板上的第一像素定义部和第二像素定义部,所述第二像素定义部的吸光度小于所述第一像素定义部的吸光度。
在一个实施方式中,所述第二像素定义层的吸光度与所述第一像素定义部的吸光度相同。
在一个实施方式中,所述显示装置还包括:
封装层,设置于所述发光像素远离像素定义层的一侧;
彩膜层,设置于所述封装层远离所述发光像素的一侧,所述彩膜层包括多个彩膜,所述像素定义层包括多个像素定义部,每一所述像素定义部对应于相邻两个所述彩膜之间的间隙设置;以及
平坦化层,覆盖于所述彩膜层远离所述封装层的一侧,在所述透明显示区域,所述平坦化层填充于所述间隙中。
在一个实施方式中,所述显示装置还包括触控模组,所述触控模组位于所述主显示区,并设置于所述封装层与所述彩膜层之间,所述彩膜层还包括黑矩阵,所述黑矩阵位于所述主显示区,并填充于相邻两个所述彩膜之间的间隙。
本申请提供一种显示装置的制造方法,其包括以下步骤:
提供一基板,所述基板包括第一区域和第二区域,所述第一区域和所述第二区域相邻设置;
在所述基板上形成遮光材料层,对所述遮光材料层进行图案化形成遮光像素定义层,所述遮光像素定义层中开设有开口,所述遮光像素定义层包括第一像素定义层和第二像素定义层,所述第一像素定义层位于所述第一区域,所述第二像素定义层位于所述第二区域,其中,所述第一像素定义层的吸光度小于所述第二像素定义层的吸光度;以及
在所述开口中形成发光像素,得到所述显示装置。
在一个实施方式中,所述第一像素定义层的吸光度与所述第二像素定义层的吸光度的比值范围为二分之一至三分之二。
在一个实施方式中,所述第一像素定义层的反射率与所述第二像素定义层的反射率的差值的绝对值小于或者等于百分之二。
在一个实施方式中,所述在所述基板上形成遮光材料层,对所述遮光材料层进行图案化形成遮光像素定义层,所述遮光像素定义层中开设有开口,所述遮光像素定义层包括第一像素定义层和第二像素定义层,所述第一像素定义层位于所述第一区域,所述第二像素定义层位于所述第二区域,其中,所述第一像素定义层的吸光度小于所述第二像素定义层的吸光度包括:
利用半色调掩膜或者灰阶掩膜得到厚度不同的第一像素定义层、第二像素定义层,其中,所述第一像素定义层的厚度小于所述第二像素定义层的厚度。
在一个实施方式中,所述第一像素定义层的厚度与所述第二像素定义层的厚度的比值范围为二分之一至三分之二。
在一个实施方式中,所述第一像素定义层与所述第二像素定义层的材料不同,所述第一像素定义层的材料的吸光度小于所述第二像素定义层的材料的吸光度。
在一个实施方式中,所述第一像素定义层包括设置在所述基板上的第一像素定义部和第二像素定义部,所述第二像素定义部的吸光度小于所述第一像素定义部的吸光度。
在一个实施方式中,所述第二像素定义层的吸光度与所述第一像素定义部的吸光度相同。
在一个实施方式中,所述在所述开口中形成发光像素之后还包括:
在所述发光像素远离像素定义层的一侧形成封装层;
在所述封装层远离所述发光像素的一侧形成彩膜层,所述彩膜层包括多个彩膜,所述像素定义层包括多个像素定义部,每一所述像素定义部对应于相邻两个所述彩膜之间的间隙设置;以及
在所述彩膜层远离所述封装层的一侧形成平坦化层,在所述第一区域,所述平坦化层填充于所述间隙中。
在一个实施方式中,所述在所述发光像素远离像素定义层的一侧形成封装层之前,所述在所述封装层远离所述发光像素的一侧形成彩膜层之后还包括:
在所述第一区域形成触控模组,所述触控模组设置于所述封装层与所述彩膜层之间。
有益效果
本申请的显示装置包括透明显示区域和主显示区域。主显示区域和透明显示区域相邻设置。显示装置包括基板、像素定义层和发光像素。像素定义层设置于基板上。像素定义层中开设有开口。像素定义层包括第一像素定义层和第二像素定义层。第一像素定义层位于透明显示区域。第二像素定义层位于主显示区域。其中,第一像素定义层的吸光度小于第二像素定义层的吸光度。发光像素设置于开口中。
附图说明
为了更清楚地说明本申请中的技术方案,下面将对实施方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施方式,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施方式提供的显示装置的俯视示意图。
图2为图1的显示装置的结构示意图。
图3为图1的显示装置的部分剖面示意图。
图4是Toray DL-3811的膜厚与吸光度和反射率的关系图。
图5为本申请另一实施方式的显示装置的部分剖面示意图。
图6为本申请再一实施方式的显示装置的部分剖面示意图。
图7为图6的第一像素定义层的俯视示意图。
图8为本申请的显示装置的制造方法的流程图。
图9(a)和图9(b)为本申请的显示装置的制造方法的一个具体例子的示意图。
本发明的实施方式
下面将结合本申请实施方式中的附图,对本申请中的技术方案进行清楚、完整地描述。显然,所描述的实施方式仅仅是本申请一部分实施方式,而不是全部的实施方式。基于本申请中的实施方式,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
请参考图1,图1为本申请实施方式提供的显示装置的俯视示意图。显示装置100可以为手机、平板电脑、笔记本、游戏机、数码相机、车载导航仪、电子广告牌、自动取款机等具有显示功能的电子设备。
显示装置100为有机发光二极管(Organic Light-emitting Diode,OLED)显示装置100。OLED显示装置可以是主动矩阵有机发光二极管(Active Matrix Organic Light-emitting diode,AMOLED)显示装置、被动矩阵有机发光二极管(Passive Matrix Organic Light-emitting diode,PMOLED)显示装置或者量子点有机发光二极管(Quantum Dot Light-emitting Diode,QLED)显示装置中的一种。
显示装置100为POL-less显示装置,即,使用彩膜代替偏光片的显示装置。它不仅能将显示装置100的功能层的厚度降低,而且能够提高出光率。此外,基于彩膜的POL-less技术还被认为是实现动态弯折产品开发的关键技术之一。下面对显示装置100的具体结构进行详细描述。
显示装置100包括透明显示区100a和主显示区100b。主显示区100b和透明显示区100a相邻设置。主显示区100b用于显示图像。显示装置100还包括感光模组101。感光模组101对应于透明显示区100a设置,且位于透明显示区100a的非显示侧100a1。在感光模组101打开时,透明显示区100a呈透光状态,供光线射入感光模组101;在感光模组101关闭时,透明显示区100a呈显示状态,与主显示区100b一起显示画面,以实现全面屏显示。在本申请中,显示装置100还包括弯折区域100c。弯折区域100c用于弯折至显示装置100的背面以电连接电路板。弯折区域100c位于主显示区100b远离透明显示区100a的一侧。在一个实施方式中,主显示区100b包围透明显示区100a。透明显示区100a位于显示装置100的上侧。但是,本申请不限定主显示区100b和透明显示区100a的形状和相对位置。
请一并参考图2和图3,图2为图1的显示装置的结构示意图。图3为图1的显示装置的部分剖面示意图。
显示装置100包括基板10、驱动电路层20、像素定义层30、发光像素层40、封装层50、触控模组60、彩膜层70以及平坦化层80。其中,驱动电路层20、像素定义层30、发光像素层40、封装层50、触控模组60、彩膜层70以及平坦化层80依次层叠设置在基板10上。主显示区100b和透明显示区100a均包括基板10、驱动电路层20、像素定义层30、发光像素层40、封装层50、触控模组60、彩膜层70以及平坦化层80等用于显示的膜层。弯折区域100c可以不包括驱动电路层20、像素定义层30、发光像素层40、封装层50、触控模组60、彩膜层70等用于显示的功能膜层,而是用于设置走线。显示装置100还可以包括边框背板等未图示的部件。在此,不再一一赘述。
基板10可以为玻璃基板、塑料基板等刚性基板,也可以是柔性基板。柔性基板可以包括单层柔性有机层,也可以包括两层以及以上的柔性有机层,以及设置于相邻两个柔性有机层之间的阻隔层。柔性有机层的材料选自聚酰亚胺(PI)、聚萘二甲酸乙二醇酯(PEN)、聚对苯二甲酸乙二醇酯(PET)、聚芳酯(PAR)、聚碳酸酯(PC)、聚醚酰亚胺(PEI)和聚醚砜(PES)中的一种或多种。阻隔层的材料选自二氧化硅,氮化硅等无机材料中的一种或多种。在一个实施方式中,基板10包括依次层叠设置的第一聚酰亚胺层11、阻隔层12以及第二聚酰亚胺层13。
驱动电路层20设置于基板10上。驱动电路层20用于驱动发光像素层40发光。驱动电路层20包括驱动电路。驱动电路可以是7T1C电路或者5T1C电路等本领域常用的驱动电路。驱动电路包括薄膜晶体管。具体地,在本实施方式中,薄膜晶体管为双栅型薄膜晶体管。薄膜晶体管包括依次层叠设置的有源层CL、第一栅极绝缘层GI1、第一栅极GE1、第二栅极绝缘层GI2、第二栅极GE2、层间绝缘层IL、源极SE以及漏极DE。具体地,有源层CL设置于基板10上,第一栅极覆盖层GI1覆盖于有源层CL远离基板10的一侧,第一栅极GE1设置于第一栅极绝缘层GI1远离有源层CL的一侧,第二栅极绝缘层GI2覆盖第一栅极GE1以及第一栅极绝缘层GI1,第二栅极GE2设置于第一栅极绝缘层GI1远离第一栅极GE1的一侧,层间绝缘层IL覆盖第二栅极GE2以及第一栅极绝缘层GI1,源极SE以及漏极DE设置在层间绝缘层IL远离第一栅极GE1的一侧,并分别与有源层CL的两端连接。可以理解,驱动电路层20与基板10之间还可以设置有遮光层LS和缓冲层BL。
可以理解,本申请不限定驱动电路层20中所包含的薄膜晶体管的结构,其可以为顶栅型薄膜晶体管,也可以为底栅型薄膜晶体管,其可以为图1所示的双栅极型薄膜晶体管,也可以为单栅极型薄膜晶体管。
像素定义层30设置于驱动电路层20远离基板10的一侧。像素定义层30用于限定发光区域,并具有遮光效果,还可以避免光反射。像素定义层30中开设有开口30a。开口位于主显示区和透明显示区。开口30a用于设置有机发光二极管器件。在一种实施方式中,像素定义层30的材料采用本领域中常用的黑矩阵材料。像素定义层30的材料主要由热敏、光敏型聚合物以及黑色填料组成;其中,热敏和光敏型聚合物可以是丙烯酸树脂或甲基丙烯酸树脂,黑色填料可以是炭黑、有机吸光材料等。
为了解决透明显示区100a透光率低的问题,在一个实施方式中,像素定义层30包括第一像素定义层31和第二像素定义层32。第一像素定义层31位于透明显示区100a。第二像素定义层32位于显示区100b。其中,第一像素定义层31的吸光度小于第二像素定义层32的吸光度。进一步地,第一像素定义层31的吸光度与第二像素定义层32的吸光度的比值范围为三分之一至四分之三。具体地,第一像素定义层31的吸光度与第二像素定义层32的吸光度的比值范围为三分之一、二分之一、三分之二或者四分之三。当第一像素定义层31的吸光度与第二像素定义层32的吸光度的比值低于该范围,第一像素定义层31与第二像素定义层32之间的透光率差别过大,容易在透明显示区100a与主显示区100b之间产生显示不均(mura)。当第一像素定义层31的吸光度与第二像素定义层32的吸光度的比值高于该范围,透明显示区100a的透光性无法得到显著提高。在一个实施方式中,感光模组101为摄像头。当第一像素定义层31的吸光度与第二像素定义层32的吸光度的比值范围为二分之一至三分之二的范围内时,实验表明:摄像头能够获得较好的拍摄效果。
在POL-less型显示装置100中,像素定义层用于降低光线反射率和透光率,以达到偏光板的作用。而屏下传感技术要求透明显示区100a的透光率高且反射率低。为了同时满足POL-less和屏下传感技术的要求,第一像素定义层31的反射率与第二像素定义层32的反射率之差小于或者等于百分之二。将第一像素定义层31的反射率设为R1,第二像素定义层32的反射率设为R2,则R1-R2≤2%。例如,请参考图4,在一个实施方式中,第一像素定义层31的厚度为1.5微米,第一像素定义层31的反射率为8.5%。第二像素定义层32的反射率厚度为2微米,第二像素定义层32的反射率为8.0%。第一像素定义层31的反射率与第二像素定义层32的反射率之差为0.5%,小于或者等于2%。需要说明的是,在本申请中,以主显示区作为参照,主显示区的第二像素定义层32为能够满足常规显示需求的像素定义层。即,主显示区的第二像素定义层32的吸光度和反射率等性能参数以能够满足常规显示需求为准。在第二像素定义层32的吸光度和反射率的基础上,调整第一像素定义层31的吸光度和反射率等性能参数。当R1-R2>2%,第一像素定义层31的反射率过高,则无法满足POL-less和屏下传感技术的要求,从而影响感光模组的感测品质和熄屏外观效果。通过将第一像素定义层31的反射率与第二像素定义层32的反射率之差控制在该范围内,能够保证主显示区100b和透明显示区100a的反射率在合理的范围内,从而同时保证感光模组的感测品质以及显示装置100的熄屏外观效果。
进一步,为了控制像素定义层30的吸光度与反射率,发明人对像素定义层30的材料特性进行了研究。请参考图4,图4是Toray DL-3811的厚度与吸光度和反射率的关系图。Toray DL-3811可以作为像素定义层30的材料。其中,横坐标是厚度,单位为微米。左边的纵坐标为吸光度,单位为L/(g·cm)。吸光度的计算方法为:吸光度=log(1/透光率)。右边的纵坐标为反射率,单位为百分数。通过分析像素定义层30的材料特性发现:像素定义层30的材料的吸光度与厚度呈负相关,即,随着像素定义层30的厚度增大,吸光度大致成比例上升,透光率大致成比例下降。同时,随着像素定义层30的厚度增大,反射率的变化并不大。
像素定义层30的膜层的吸光度的主要决定因素是厚度与材料。为了解决透明显示区100a透光率低的问题,可以通过设置第一像素定义层31的厚度h1和第二像素定义层32的厚度h2来调节第一像素定义层31和第二像素定义层32的吸光度和反射率。在一个实施方式中,第一像素定义层31与第二像素定义层32的材料相同,第一像素定义层31的厚度h1小于第二像素定义层32的厚度h2。进一步地,第一像素定义层31的厚度h1与第二像素定义层32的厚度h2的比值范围为三分之一至四分之三。具体地,第一像素定义层31的厚度h1与第二像素定义层32的厚度h2的比值范围为三分之一、二分之一、三分之二或者四分之三。
在本申请又一个实施方式中,可以通过选择第一像素定义层31和第二像素定义层32的材料来调节第一像素定义层31和第二像素定义层32的吸光度和反射率。为了使第一像素定义层31的吸光度小于第二像素定义层32的吸光度,第一像素定义层31与第二像素定义层32的材料不同,第一像素定义层31的材料的吸光度小于第二像素定义层32的材料的吸光度。具体地,第一像素定义层31与第二像素定义层32的厚度可以相同,也可以不同。请参考图5,图5为本申请另一实施方式的显示装置的部分剖面示意图。为了简化制程,第一像素定义层31与第二像素定义层32的厚度相同。
请参考图6和图7,图6为本申请再一实施方式的显示装置的部分剖面示意图。图7为图6的第一像素定义层的俯视示意图。在本申请再一个实施方式中,可以通过设计第一像素定义层31的结构来调节第一像素定义层31的吸光度和反射率。为了使第一像素定义层31的吸光度小于第二像素定义层32的吸光度,像素定义层30包括多个像素定义部301。像素定义部301包括在基板10上排列设置的第一像素定义部301a和第二像素定义部301b。其中,第二像素定义部301b的吸光度小于第一像素定义部301a的吸光度。第二像素定义部301b和第二像素定义层32的吸光度可以相同,也可以不同。为了简化制程,第二像素定义部301b与第二像素定义层32的吸光度相同。本申请不限定第一像素定义部301a和第二像素定义部301b的排列方式。为了透光和显示均匀,第一像素定义部301a和第二像素定义部301b可以在第一方向D1上交替排列成行,相邻两行在第二方向D2上间隔排列,形成矩阵状。
在一个具体的实施方式中,为了简化制程,第一像素定义部301a、第二像素定义部301b以及第二像素定义层32为相同材料。第二像素定义层32的厚度h2与第一像素定义部301a的厚度h3相同。第二像素定义部301b的厚度h4小于第一像素定义部301a的厚度h3。第二像素定义层32的厚度h2等于第一像素定义部301a的厚度h3。或者,第一像素定义部301a和第二像素定义部301b为不同材料。第二像素定义部301b的吸光度小于第一像素定义部301a的吸光度。第一像素定义部301a的厚度h3与第二像素定义部301b的厚度h4可以相同也可以不同。为了简化制程,第一像素定义部301a的厚度h3与第二像素定义部301b的厚度h4相同。并且,第二像素定义部301b和第二像素定义层32的材料和厚度相同,吸光度相同。
发光像素层40包括多个发光像素41。每一发光像素41设置于一个开口中。每一发光像素41包括一个有机发光二极管器件。有机发光二极管器件包括阳极、阴极以及位于阳极与阴极之间的空穴注入层、空穴传输层、有机发光层、电子传输层和电子注入层等。多个发光像素41可以排列成矩阵状。可以理解,本申请的像素定义层30上还设置有间隔垫PS。间隔垫PS用于在蒸镀发光像素41时起支撑作用。
封装层50设置于发光像素层40远离像素定义层30的一侧。在一种实施方式中,封装层50为薄膜封装层 (Thin-Film Encapsulation,TFE)。薄膜封装层50包括交替层叠设置的至少一无机层和至少一有机层。无机层可以选自氧化铝、氧化硅、氮化硅、氮氧化硅、碳化硅、氧化钛、氧化锆、氧化锌等的无机材料。有机层选自环氧树脂、聚酰亚胺、聚对苯二甲酸乙二醇酯、聚碳酸酯、聚乙烯(PE)、聚丙烯酸酯等的透明有机材料。
触控模组60为DOT(英文全称:Direct on-cell touch,内置触控)模组。触控模组60可以为自容式触控模组,也可以为互容式触控模组。触控模组60位于主显示区100b。
彩膜层70设置于封装层50远离触控模组60的一侧。彩膜层70包括红色(R)、绿色(G)以及蓝色(B)彩膜71。基于OLED自发光的特点,每一彩膜分别与OLED的红、绿和蓝的发光像素41对应设置。相邻两个彩膜71之间具有间隙70a。需要说明的是,在透明显示区域100a,相邻两个彩膜71之间的间隙70a中不设置黑矩阵BM。像素定义层30的每一像素定义部301对应于相邻两个彩膜71之间的间隙70a设置。现有技术中,位于两个彩膜之间的黑矩阵对视角产生遮挡,并使其光学性能,例如色匹配度变差。本申请利用像素定义层30替代黑矩阵,可以提升视角以及光学性能,并省略一道黑矩阵制程。彩膜层70还包括黑矩阵BM。黑矩阵BM位于主显示区100b,并填充于相邻两个彩膜71之间的间隙70a。触控模组60一般由金属网格构成,容易反射环境光,造成显示品质下降。因此,在本申请中,透明显示区100a中不设置触控模组60,仅在主显示区100b设置触控模组60。在透明显示区100a中,由于不存在触控模组60,不需要在彩膜71之间设置遮光用的黑矩阵BM。而在主显示区100b,为了防止触控模组60的反光,在彩膜71之间设置遮光用的黑矩阵BM。
平坦化层80覆盖于彩膜层70远离封装层50的一侧。在透明显示区域100a,平坦化层80填充于彩膜层70的间隙70a中。在透明显示区域100a,彩膜层70与平坦化层80共同构成本申请的去偏光片结构,代替偏光片发挥作用。平坦化层80的材料为有机材料,例如丙烯酸树脂(acrylic resin)或者全氟烷氧基树脂(PFA)。在主显示区100b,平坦化层80覆盖于彩膜71于黑矩阵BM上。此外,在弯折区100c还设置有开孔ODH,开孔ODH中填充有平坦化层80。
感光模组101设置于基板10远离驱动电路层20的一侧。具体地,感光模组101包括指纹识别传感器、摄像头、结构光传感器、飞行时间传感器、距离传感器等,以使所述传感器可以通过所述显示透光区采集信号,从而使所述显示装置100实现屏下指纹识别、屏下摄像头、屏下面部识别、屏下距离感知等屏下传感方案。
本申请的显示装置包括透明显示区域和主显示区域。主显示区域和透明显示区域相邻设置。显示装置包括基板、像素定义层和发光像素。像素定义层设置于基板上。像素定义层中开设有开口。像素定义层包括第一像素定义层和第二像素定义层。第一像素定义层位于透明显示区域。第二像素定义层位于主显示区域。其中,第一像素定义层的吸光度小于第二像素定义层的吸光度。发光像素设置于开口中。本申请的显示装置通过降低透明显示区域的像素定义层的吸光度,提高了透明显示区域的透光率,从而改善了感光模组的性能。
请参考图8,图8为本申请的显示装置的制造方法的流程图。显示装置的制造方法包括以下步骤:
101:提供一基板,基板包括第一区域和第二区域,第一区域和第二区域相邻设置;
102:在基板上形成遮光材料层,对遮光材料层进行图案化得到像素定义层,像素定义层中开设有开口,像素定义层包括第一像素定义层和第二像素定义层,第一像素定义层位于第一区域,第二像素定义层位于第二区域中,其中,第一像素定义层的吸光度小于第二像素定义层的吸光度。
在步骤102中,遮光材料层的材料采用本领域中常用的黑矩阵材料。像素定义层30的材料主要由热敏、光敏型聚合物以及黑色填料组成;其中,热敏和光敏型聚合物可以是丙烯酸树脂或甲基丙烯酸树脂,黑色填料可以是炭黑、有机吸光材料等。请参考图3,第一像素定义层31的吸光度小于第二像素定义层32的吸光度。进一步地,第一像素定义层31的吸光度与第二像素定义层32的吸光度的比值范围为三分之一至四分之三。具体地,第一像素定义层31的吸光度与第二像素定义层32的吸光度的比值范围为三分之一、二分之一、三分之二或者四分之三。在一个实施方式中,感光模组101为摄像头。当第一像素定义层31的吸光度与第二像素定义层32的吸光度的比值范围为二分之一至三分之二。为了同时满足POL-less和屏下传感技术的要求,第一像素定义层31的反射率与第二像素定义层32的反射率之差小于或者等于百分之二。
为了解决透明显示区100a透光率低的问题,可以通过设置第一像素定义层31的厚度h1和第二像素定义层32的厚度h2来调节第一像素定义层31和第二像素定义层32的吸光度和反射率。在一个实施方式中,第一像素定义层31与第二像素定义层32的材料相同,第一像素定义层31的厚度h1小于第二像素定义层32的厚度h2。进一步地,第一像素定义层31的厚度h1与第二像素定义层32的厚度h2的比值范围为三分之一至四分之三。具体地,第一像素定义层31的厚度h1与第二像素定义层32的厚度h2的比值范围为三分之一、二分之一、三分之二或者四分之三。在这种实施方式中,可以利用半色调掩模或者灰阶掩膜对遮光材料层进行图案化。
在本申请又一个实施方式中,可以通过选择第一像素定义层31和第二像素定义层32的材料来调节第一像素定义层31和第二像素定义层32的吸光度和反射率。为了使第一像素定义层31的吸光度小于第二像素定义层32的吸光度,第一像素定义层31与第二像素定义层32的材料不同,第一像素定义层31的材料的吸光度小于第二像素定义层32的材料的吸光度。具体地,第一像素定义层31与第二像素定义层32的厚度可以相同,也可以不同。请参考图5,图5为本申请另一实施方式的显示装置的部分剖面示意图。为了简化制程,第一像素定义层31与第二像素定义层32的厚度相同。
在本申请再一个实施方式中,可以通过设计第一像素定义层31的结构来调节第一像素定义层31的吸光度和反射率。为了使第一像素定义层31的吸光度小于第二像素定义层32的吸光度,像素定义层30包括多个像素定义部301。像素定义部301包括在基板10上排列设置的第一像素定义部301a和第二像素定义部301b。其中,第二像素定义部301b的吸光度小于第一像素定义部301a的吸光度。第二像素定义部301b和第二像素定义层32的吸光度可以相同,也可以不同。为了简化制程,第二像素定义部301b与第二像素定义层32的吸光度相同。本申请不限定第一像素定义部301a和第二像素定义部301b的排列方式。为了透光和显示均匀,第一像素定义部301a和第二像素定义部301b可以在第一方向D1上交替排列成行,相邻两行在第二方向D2上间隔排列,形成矩阵状。
在一个具体的实施方式中,为了简化制程,第一像素定义部301a、第二像素定义部301b以及第二像素定义层32为相同材料。第二像素定义层32的厚度h2与第一像素定义部301a的厚度h3相同。第二像素定义部301b的厚度h4小于第一像素定义部301a的厚度h3。第二像素定义层32的厚度h2等于第一像素定义部301a的厚度h3。或者,第一像素定义部301a和第二像素定义部301b为不同材料。第二像素定义部301b的吸光度小于第一像素定义部301a的吸光度。第一像素定义部301a的厚度h3与第二像素定义部301b的厚度h4可以相同也可以不同。为了简化制程,第一像素定义部301a的厚度h3与第二像素定义部301b的厚度h4相同。并且,第二像素定义部301b和第二像素定义层32的材料和厚度相同,吸光度相同。同样地,可以利用半色调掩膜或者灰阶掩膜得到厚度不同的第一像素定义部301a、第二像素定义部301b。
103:在开口中形成发光像素。
请参考图9(a)和图9(b),图9(a)和图9(b)为本申请的显示装置的制造方法的一个具体例子的示意图。显示装置的制造方法包括以下步骤:
201:提供一预备基板100’,预备基板100’包括第一区域101’和第二区域102’,第一区域101’和第二区域102’相邻设置。第一区域101’对应于显示装置的透明显示区100a,第二区域102’对应于主显示区100b。预备基板100’包括基板10和驱动电路层20以及有机发光二极管器件的阳极层。
基板10和驱动电路层20的结构请参考图1的实施方式。其中,第一聚酰亚胺层11的厚度为10微米。阻隔层12的厚度为500纳米。第二聚酰亚胺层13的厚度为6微米。缓冲层BL的厚度为500纳米。有源层CL的厚度为45纳米。第一栅极绝缘层GI1的厚度为130纳米。第一栅极GE1的厚度为250纳米。第二栅极绝缘层GI2的厚度为130纳米。第二栅极GE2的厚度为250纳米。层间绝缘层IL的厚度为500纳米。源极SE以及漏极DE的厚度为600纳米,材料为Ti/Al/Ti的叠层金属。阳极层的厚度为140纳米。开孔ODH的深度为1.5微米。
202:在预备基板100’上形成遮光材料层200,对遮光材料层200进行图案化得到像素定义层30,像素定义层30中开设有开口30a,像素定义层30包括第一像素定义层31和第二像素定义层32,第一像素定义层位于第一区域101’,第二像素定义层32位于第二区域102’中,其中,第一像素定义层31的吸光度小于第二像素定义层32的吸光度。
具体地,遮光材料层200的厚度可以为1.5微米。利用掩模300对遮光材料层200进行曝光并显影形成像素定义层30。其中,掩模300包括遮光区301、半透光区302和透光区303。半透光区302对应于透明显示区100a。
203:通过涂布、曝光、显影工艺,形成间隔垫PS。
204:请参考图2,在像素定义层30和间隔垫PS上形成发光像素层40、封装层50以及触控模组60。触控模组60可以包括第一绝缘层,材料为氮化硅,厚度为300纳米;第一金属层,材料为Ti/Al/Ti ,厚度为50/200/80纳米;第二绝缘层,材料为氮化硅,厚度为300纳米;第二金属层,材料为Ti/Al/Ti,厚度为50/200/50纳米。
205:在触控模组60表面均匀涂布一层低温红色色阻材料,通过曝光、显影工艺,形成红色色阻;采用同样的方法,依次形成绿色色阻和蓝色色阻,得到彩膜层70。在彩膜层70的表面均匀涂覆一层低温有机材料,通过曝光、显影工艺,得到平坦化层80。
通过本申请的显示装置的制造方法通过降低透明显示区域的像素定义层的吸光度,提高了透明显示区域的透光率,从而改善了感光模组的性能。
以上对本申请实施方式提供了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施方式的说明只是用于帮助理解本申请。同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种显示装置,其特征在于,包括透明显示区域和主显示区域,所述主显示区域和所述透明显示区域相邻设置,所述显示装置包括:
    基板;
    像素定义层,设置于所述基板上,所述像素定义层中开设有开口,所述像素定义层包括第一像素定义层和第二像素定义层,所述第一像素定义层位于所述透明显示区域,所述第二像素定义层位于所述主显示区域,其中,所述第一像素定义层的吸光度小于所述第二像素定义层的吸光度;以及
    发光像素,设置于所述开口中。
  2. 如权利要求1所述的显示装置,其特征在于,所述第一像素定义层的吸光度与所述第二像素定义层的吸光度的比值范围为二分之一至三分之二。
  3. 如权利要求2所述的显示装置,其特征在于,所述第一像素定义层的反射率与所述第二像素定义层的反射率的差值的绝对值小于或者等于百分之二。
  4. 如权利要求1所述的显示装置,其特征在于,所述第一像素定义层的厚度小于所述第二像素定义层的厚度。
  5. 如权利要求4所述的显示装置,其特征在于,所述第一像素定义层的厚度与所述第二像素定义层的厚度的比值范围为二分之一至三分之二。
  6. 如权利要求1所述的显示装置,其特征在于,所述第一像素定义层与所述第二像素定义层的材料不同,所述第一像素定义层的材料的吸光度小于所述第二像素定义层的材料的吸光度。
  7. 如权利要求1所述的显示装置,其特征在于,所述第一像素定义层包括设置在所述基板上的第一像素定义部和第二像素定义部,所述第二像素定义部的吸光度小于所述第一像素定义部的吸光度。
  8. 如权利要求7所述的显示装置,其特征在于,所述第二像素定义层的吸光度与所述第一像素定义部的吸光度相同。
  9. 如权利要求1所述的显示装置,其特征在于,所述显示装置还包括:
    封装层,设置于所述发光像素远离像素定义层的一侧;
    彩膜层,设置于所述封装层远离所述发光像素的一侧,所述彩膜层包括多个彩膜,所述像素定义层包括多个像素定义部,每一所述像素定义部对应于相邻两个所述彩膜之间的间隙设置;以及
    平坦化层,覆盖于所述彩膜层远离所述封装层的一侧,在所述透明显示区域,所述平坦化层填充于所述间隙中。
  10. 如权利要求9所述的显示装置,其特征在于,所述显示装置还包括触控模组,所述触控模组位于所述主显示区,并设置于所述封装层与所述彩膜层之间,所述彩膜层还包括黑矩阵,所述黑矩阵位于所述主显示区,并填充于相邻两个所述彩膜之间的间隙。
  11. 一种显示装置的制造方法,其特征在于,包括以下步骤:
    提供一基板,所述基板包括第一区域和第二区域,所述第一区域和所述第二区域相邻设置;
    在所述基板上形成遮光材料层,对所述遮光材料层进行图案化形成遮光像素定义层,所述遮光像素定义层中开设有开口,所述遮光像素定义层包括第一像素定义层和第二像素定义层,所述第一像素定义层位于所述第一区域,所述第二像素定义层位于所述第二区域,其中,所述第一像素定义层的吸光度小于所述第二像素定义层的吸光度;以及
    在所述开口中形成发光像素,得到所述显示装置。
  12. 如权利要求11所述的显示装置的制造方法,其特征在于,所述第一像素定义层的吸光度与所述第二像素定义层的吸光度的比值范围为二分之一至三分之二。
  13. 如权利要求12所述的显示装置的制造方法,其特征在于,所述第一像素定义层的反射率与所述第二像素定义层的反射率的差值的绝对值小于或者等于百分之二。
  14. 如权利要求11所述的显示装置的制造方法,其特征在于,所述在所述基板上形成遮光材料层,对所述遮光材料层进行图案化形成遮光像素定义层,所述遮光像素定义层中开设有开口,所述遮光像素定义层包括第一像素定义层和第二像素定义层,所述第一像素定义层位于所述第一区域,所述第二像素定义层位于所述第二区域,其中,所述第一像素定义层的吸光度小于所述第二像素定义层的吸光度包括:
    利用半色调掩膜或者灰阶掩膜得到厚度不同的第一像素定义层、第二像素定义层,其中,所述第一像素定义层的厚度小于所述第二像素定义层的厚度。
  15. 如权利要求14所述的显示装置的制造方法,其特征在于,所述第一像素定义层的厚度与所述第二像素定义层的厚度的比值范围为二分之一至三分之二。
  16. 如权利要求11所述的显示装置的制造方法,其特征在于,所述第一像素定义层与所述第二像素定义层的材料不同,所述第一像素定义层的材料的吸光度小于所述第二像素定义层的材料的吸光度。
  17. 如权利要求11所述的显示装置的制造方法,其特征在于,所述第一像素定义层包括设置在所述基板上的第一像素定义部和第二像素定义部,所述第二像素定义部的吸光度小于所述第一像素定义部的吸光度。
  18. 如权利要求17所述的显示装置的制造方法,其特征在于,所述第二像素定义层的吸光度与所述第一像素定义部的吸光度相同。
  19. 如权利要求11所述的显示装置的制造方法,其特征在于,所述在所述开口中形成发光像素之后还包括:
    在所述发光像素远离像素定义层的一侧形成封装层;
    在所述封装层远离所述发光像素的一侧形成彩膜层,所述彩膜层包括多个彩膜,所述像素定义层包括多个像素定义部,每一所述像素定义部对应于相邻两个所述彩膜之间的间隙设置;以及
    在所述彩膜层远离所述封装层的一侧形成平坦化层,在所述第一区域,所述平坦化层填充于所述间隙中。
  20. 如权利要求19所述的显示装置的制造方法,其特征在于,
    所述在所述发光像素远离像素定义层的一侧形成封装层之前,所述在所述封装层远离所述发光像素的一侧形成彩膜层之后还包括:
    在所述第一区域形成触控模组,所述触控模组设置于所述封装层与所述彩膜层之间。
PCT/CN2021/092814 2021-04-25 2021-05-10 显示装置以及显示装置的制造方法 WO2022227114A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/417,443 US20220359626A1 (en) 2021-04-25 2021-05-10 Display device and manufacturing method of display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110447513.7 2021-04-25
CN202110447513.7A CN113193020B (zh) 2021-04-25 2021-04-25 显示装置

Publications (1)

Publication Number Publication Date
WO2022227114A1 true WO2022227114A1 (zh) 2022-11-03

Family

ID=76978709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092814 WO2022227114A1 (zh) 2021-04-25 2021-05-10 显示装置以及显示装置的制造方法

Country Status (3)

Country Link
US (1) US20220359626A1 (zh)
CN (1) CN113193020B (zh)
WO (1) WO2022227114A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109742111B (zh) * 2019-01-07 2020-12-29 京东方科技集团股份有限公司 一种显示面板和显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110707132A (zh) * 2019-09-06 2020-01-17 武汉华星光电半导体显示技术有限公司 Oled显示面板及其制作方法
CN110767720A (zh) * 2019-06-05 2020-02-07 昆山国显光电有限公司 显示基板、显示面板及显示装置
CN110767686A (zh) * 2018-10-31 2020-02-07 昆山国显光电有限公司 显示屏及显示终端
CN111430426A (zh) * 2020-04-03 2020-07-17 武汉华星光电半导体显示技术有限公司 一种显示面板及制程方法
CN111834432A (zh) * 2020-07-16 2020-10-27 昆山国显光电有限公司 显示面板及其制作方法、显示装置
CN111863900A (zh) * 2020-07-21 2020-10-30 武汉华星光电半导体显示技术有限公司 一种显示面板及其制备方法、显示装置
US20200357871A1 (en) * 2018-10-05 2020-11-12 Samsung Display Co., Ltd. Display device
CN112259580A (zh) * 2020-10-15 2021-01-22 武汉华星光电半导体显示技术有限公司 显示面板及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210085977A (ko) * 2019-12-31 2021-07-08 엘지디스플레이 주식회사 디스플레이 장치
CN111834417A (zh) * 2020-05-12 2020-10-27 昆山国显光电有限公司 显示面板及显示装置
KR20220019202A (ko) * 2020-08-07 2022-02-16 삼성디스플레이 주식회사 표시 패널, 이를 포함하는 표시 장치, 및 표시 패널의 제조 방법
KR20220053756A (ko) * 2020-10-22 2022-05-02 삼성디스플레이 주식회사 표시 장치

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200357871A1 (en) * 2018-10-05 2020-11-12 Samsung Display Co., Ltd. Display device
CN110767686A (zh) * 2018-10-31 2020-02-07 昆山国显光电有限公司 显示屏及显示终端
CN110767720A (zh) * 2019-06-05 2020-02-07 昆山国显光电有限公司 显示基板、显示面板及显示装置
CN110707132A (zh) * 2019-09-06 2020-01-17 武汉华星光电半导体显示技术有限公司 Oled显示面板及其制作方法
CN111430426A (zh) * 2020-04-03 2020-07-17 武汉华星光电半导体显示技术有限公司 一种显示面板及制程方法
CN111834432A (zh) * 2020-07-16 2020-10-27 昆山国显光电有限公司 显示面板及其制作方法、显示装置
CN111863900A (zh) * 2020-07-21 2020-10-30 武汉华星光电半导体显示技术有限公司 一种显示面板及其制备方法、显示装置
CN112259580A (zh) * 2020-10-15 2021-01-22 武汉华星光电半导体显示技术有限公司 显示面板及其制备方法

Also Published As

Publication number Publication date
US20220359626A1 (en) 2022-11-10
CN113193020B (zh) 2022-10-04
CN113193020A (zh) 2021-07-30

Similar Documents

Publication Publication Date Title
US10916592B2 (en) Organic light-emitting diode display device
US11508176B2 (en) Display substrate and method for manufacturing the same, display apparatus
US11380875B2 (en) Display apparatus and method of manufacturing the same
CN111682048B (zh) 透光显示面板和显示面板
WO2019233267A1 (zh) 薄膜晶体管及制作方法、显示装置
US11139356B2 (en) Array substrate and manufacturing method thereof, display panel and display device
WO2021143366A1 (zh) 显示面板及显示装置
US20210134899A1 (en) Display panel, manufacturing method thereof, and display device
US11563064B2 (en) Array substrate, display device, and method for fabricating an array substrate
US11436949B2 (en) OLED display apparatus including flexible substrate having insulation layer with an inclined top surface
WO2020056803A1 (zh) 显示面板及其制作方法、显示模组
US11974481B2 (en) Display panel and display apparatus including the same
CN111785760B (zh) 一种显示基板及其制备方法、显示装置
WO2022052686A1 (zh) 显示面板、其制作方法及显示装置
KR20210103037A (ko) 표시 장치 및 전자 기기
WO2020199535A1 (zh) 显示装置及其oled显示面板
WO2020206901A1 (en) Transparent display substrate, transparent display apparatus and method of fabricating transparent display substrate
KR20220006689A (ko) 표시 장치 및 표시 장치의 제조방법
WO2024017343A1 (zh) 显示面板及其制作方法、显示装置
US20210359047A1 (en) Display apparatus and method of manufacturing the same
WO2022227114A1 (zh) 显示装置以及显示装置的制造方法
US20240147779A1 (en) Terminal device, display apparatus, and display panel and manufacturing method therefor
CN216213464U (zh) 显示基板、显示装置
US11974455B2 (en) Display device and method of manufacturing the same
WO2023030110A1 (zh) 显示基板、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21938587

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21938587

Country of ref document: EP

Kind code of ref document: A1