WO2022226806A1 - 电池单体、电池、用电装置、制备电池单体的方法和装置 - Google Patents

电池单体、电池、用电装置、制备电池单体的方法和装置 Download PDF

Info

Publication number
WO2022226806A1
WO2022226806A1 PCT/CN2021/090337 CN2021090337W WO2022226806A1 WO 2022226806 A1 WO2022226806 A1 WO 2022226806A1 CN 2021090337 W CN2021090337 W CN 2021090337W WO 2022226806 A1 WO2022226806 A1 WO 2022226806A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
extension
tab
battery cell
battery
Prior art date
Application number
PCT/CN2021/090337
Other languages
English (en)
French (fr)
Inventor
陈新祥
郑于炼
陈文伟
徐良帆
王鹏
金海族
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202180070816.XA priority Critical patent/CN116491019A/zh
Priority to PCT/CN2021/090337 priority patent/WO2022226806A1/zh
Publication of WO2022226806A1 publication Critical patent/WO2022226806A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular, to a battery cell, a battery, an electrical device, and a method and device for preparing a battery cell.
  • battery technology is widely used in various fields, especially in the field of transportation such as electric vehicles.
  • the service life of the battery is directly related to the performance of the vehicle, such as mileage and ease of use.
  • Embodiments of the present application provide a battery cell, a battery, an electrical device, and a method and device for preparing a battery cell, which can improve the service life of the battery.
  • a battery cell comprising: a cover plate with an insulating part and an electrode assembly on its inner surface, the electrode assembly including a main body part, and the main body part including a diaphragm; wherein, the inner surface of the insulating part is provided with a groove, and the groove Capable of containing the electrolyte, the electrode assembly further includes at least one extension extending from the diaphragm, the extension being at least partially located in the groove to absorb the electrolyte in the groove.
  • the technical solution of the embodiment of the present application uses the extension extending from the diaphragm to absorb the electrolyte in the groove, which can reduce the probability of shortening the service life of the battery cell due to insufficient absorption of the electrolyte by the electrode assembly, thereby improving the overall performance of the battery. Use performance.
  • the end of the extension abuts the bottom wall of the groove. In this way, the electrolyte accumulated in the groove can be absorbed to the maximum extent.
  • the extension length of the extension portion is greater than the distance between the surface of the body portion facing the insulating portion and the bottom wall of the groove.
  • the gap between the diaphragms is irregularly curved while the gap becomes smaller, so as to promote the occurrence of capillary phenomenon and facilitate the absorption of electrolyte.
  • the extension length of the extension portion is 1-20 mm greater than the distance between the surface of the body portion facing the insulating portion and the bottom wall of the groove.
  • the assembly of the electrode assembly and the plate body can be avoided because the extension part is pressed too little or too much.
  • the cover plate is provided with a pressure relief mechanism
  • the insulating portion is provided with an exhaust hole
  • the exhaust hole communicates with the pressure relief mechanism
  • the part of the groove abutting on the extension part is staggered from the exhaust hole.
  • the part of the groove abutting the extension part is staggered from the exhaust hole, which can avoid covering the exhaust hole when the end of the extension part abuts the bottom wall of the groove, ensuring smooth exhaust and improving the safety of the battery.
  • the vent hole is provided on one side or both sides of the portion of the groove that abuts the extension portion.
  • the insulating portion includes a flange extending toward the main body portion, the extending portion is provided with an escape groove corresponding to the flange, and the flange is placed in the escape groove.
  • the flange is beneficial to improve the stability of the electrode assembly after assembly, so that it will not loosen, avoid the setting of the groove, and avoid the mutual extrusion and interference of the flange and the extension part.
  • the depth of the escape groove is less than or equal to the extension length of the extension.
  • the depth of the escape groove is less than or equal to the extension length of the extension part, so that the flange does not contact the main body part, but the flange and the extension part abut and squeeze the extension part to make the extension part bend to a certain extent , can promote the occurrence of capillary phenomenon, which is beneficial to the absorption of electrolyte.
  • the flange is located on the insulating part at a position corresponding to the pressure relief mechanism, and the flange is a hollow structure that communicates with the pressure relief mechanism, and along the width direction of the cover plate, the exhaust holes are arranged on two sides of the flange end.
  • the hollow flange can be used as a channel for the vent hole to communicate with the pressure relief mechanism, and the vent hole can be provided at both ends of the flange to reduce the probability that the vent hole is blocked by the extension portion.
  • the electrode assembly further includes a tab extending from the main body portion, the tab and the extending portion are located on the same side of the main body portion, and the tab and the extending portion are arranged in a staggered position.
  • the dislocation of the tab and the extension part reduces the degree of mutual interference between the extension part and the tab, and reduces the overlapping part of the extension part and the tab to make full use of the space inside the housing.
  • a misalignment slot is formed between the tab and the extension.
  • the misalignment slot can avoid the overlapping of the extension portion and the electrode tab due to the misalignment of the multi-layer structure of the electrode tab during the winding process, further preventing the extension portion from interfering with the electrode tab or damaging the structure of the extension portion during welding.
  • the width of the offset groove is 3-20 mm.
  • the width of the dislocation groove is too small, the structure of the extension part is easily damaged when the tabs are welded, and if the width of the dislocation groove is too large, the absorption efficiency of the electrolyte will be affected.
  • the electrode assembly further includes a tab extending from the main body portion, the tab includes a first tab and a second tab with different polarities, and the first tab and the second tab are disposed on the main body portion. On the same side, the extension is located between the first tab and the second tab.
  • the space between the tabs can be used to set the extension part, and at the same time, the extension part arranged in the middle of the tab is closer to the center of the electrode assembly, which is conducive to replenishing the electrolyte solution to the center of the electrode assembly.
  • a battery comprising: at least one battery cell of the first aspect.
  • an electrical device comprising: the battery of the second aspect, the battery is used to provide electrical energy.
  • a method for preparing a battery cell comprising: providing a cover plate, the inner surface of the cover plate has an insulating portion, and the inner surface of the insulating portion is provided with grooves; providing an electrode assembly, the electrode assembly includes a main body portion, and the main body portion includes a diaphragm and at least one extension extending from the diaphragm; placing the extension in the groove so that the groove accommodates the extension.
  • an apparatus for preparing a battery cell including: providing a module for: providing a cover plate, the inner surface of the cover plate has an insulating part, and the inner surface of the insulating part is provided with a groove; providing an electrode assembly, the electrode assembly includes The main body part includes a diaphragm and at least one extension part extending from the diaphragm; the installation module is used for placing the extension part in the groove, so that the groove accommodates the extension part.
  • FIG. 1 is a schematic structural diagram of a vehicle according to some embodiments of the present application.
  • FIG. 2 is a schematic structural diagram of a battery according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a battery module according to an embodiment of the present application.
  • FIG. 4 is an exploded view of a battery cell according to an embodiment of the application.
  • FIG. 5 is an exploded view of a cover plate according to an embodiment of the application.
  • FIG. 6A is a schematic diagram of an electrode assembly according to an embodiment of the present application.
  • 6B is a schematic diagram of a winding structure of the main body portion of an electrode assembly according to an embodiment of the present application.
  • FIG. 7A is an axonometric view of a battery cell according to some embodiments of the present application.
  • FIG. 7B is a cross-sectional view along the A-A direction in FIG. 7A;
  • Fig. 7C is a partial enlarged view at K in Fig. 7B;
  • FIG. 8A is a cross-sectional view along the B-B direction in FIG. 7A;
  • Fig. 8B is a partial enlarged view at P in Fig. 8A;
  • 9A is an exploded view of a cover plate according to another embodiment of the application.
  • Fig. 9B is a partial enlarged view at Q in Fig. 9A;
  • FIG. 9C is a top view of the insulating part in FIG. 9A , which shows the part of the groove abutting the extension part;
  • 10A is a schematic diagram of assembling an electrode assembly and a cover plate according to an embodiment of the application.
  • Fig. 10B is a partial enlarged view of M in Fig. 10A;
  • 11A is an exploded view of a cover plate according to another embodiment of the application.
  • Fig. 11B is a partial enlarged view of G in Fig. 11A;
  • FIG. 12 is a schematic diagram of a winding structure of an electrode assembly according to an embodiment of the application.
  • FIG. 13A is a schematic structural diagram of an electrode assembly according to an embodiment of the present application.
  • Fig. 13B is a partial enlarged view of N in Fig. 13A;
  • FIG. 14 is a schematic flowchart of a method for preparing a battery cell according to an embodiment of the present application.
  • FIG. 15 is a schematic block diagram of an apparatus for preparing a battery cell according to an embodiment of the present application.
  • cover plate 21a, plate body; 211, insulating part; 211a, groove; 211b, flange; 211c, exhaust hole; 211d, first protrusion; 211e, second protrusion; 211f, row Air passage; 2111, the bottom wall; 2112, the part on the groove and the extension part abutting; 212, the pressure relief mechanism;
  • electrode assembly 221, main body; 221a, diaphragm; 221b, first pole piece; 221c, second pole piece; 222, extension part; 222a, escape groove; 223, pole lug; 223a, first pole lug; 223b, the second tab; 224, the dislocation groove;
  • the coordinate systems shown in the following drawings are defined the same, wherein the x direction in the coordinate system is the length direction of the battery cell, the y direction is the width direction of the battery cell, and the z direction is the height direction of the battery cell.
  • the x-direction, y-direction and z-direction have the same meaning as in the above definition.
  • Power batteries are not only used in energy storage power systems such as water, fire, wind and solar power plants, but also in electric vehicles such as electric bicycles, electric motorcycles, and electric vehicles, as well as military equipment and aerospace and other fields. . With the continuous expansion of the application field of power batteries, the market demand is also constantly expanding.
  • the power supply system composed of power batteries replaces the fuel tank in a certain sense. Since electric vehicles such as electric vehicles usually have high power, when they are in use, the voltage and current in the internal power supply system are also usually large values. Therefore, in order to ensure that it can be used safely, the power supply system is usually arranged in a position that is not easily exposed, such as in the vehicle body, which also makes the replacement of the power supply system more troublesome. In order to ensure that the electric vehicle can be in normal use for a long time, the power supply system needs to have a correspondingly high service life, in order to reduce the number of replacements of the power supply system.
  • the service life of the battery as a whole is also related to the service life of a single battery cell, and the service life of a single battery cell is related to the amount of electrolyte absorbed by the electrode assembly inside the battery cell.
  • the electrolyte in the electrode assembly When the electrolyte in the electrode assembly is insufficient, it may lead to insufficient liquid absorption of the positive electrode and insufficient liquid absorption of the negative electrode.
  • the positive electrode absorbs insufficient liquid not enough lithium ions can be deintercalated from the positive electrode; when the negative electrode absorbs insufficient liquid, the lithium ions provided by the positive electrode cannot be fully embedded in the negative electrode, so the negative electrode produces lithium precipitation.
  • the battery will eventually show low capacitance, high internal resistance, low platform, and low cycle, which will further lead to the degradation of the battery's service life.
  • the requirements for the design of the battery case or end cap may include uneven structures such as grooves, protrusions, etc. , the uneven side with grooves or protrusions may be at the bottom, and, in this state, the electrolyte will gather at the lower part of the bottom due to gravity, but the electrode assembly will abut the higher part of the bottom As a result, the electrolyte cannot be touched, which eventually leads to insufficient absorption of the electrolyte by the electrode assembly, which affects the service life of the battery.
  • the applicant has designed a battery cell including a plate body and an electrode assembly.
  • the inner surface of the plate body has an insulating portion, and the inner surface of the insulating portion is provided with a groove for accommodating the electrolyte.
  • the electrode assembly is provided with an extension, at least part of which is located in the groove to absorb the electrolyte in the groove.
  • a battery cell disclosed in the embodiments of the present application includes an extension portion for absorbing electrolyte, which can be used, but not limited to, in electrical devices such as vehicles, ships, or aircraft.
  • electrical devices such as electric vehicles or hybrid electric vehicles
  • the diversification of battery cell placement methods can bring new design ideas to the layout of the power system in the above-mentioned electrical devices, making the layout of the power system more flexible. Therefore, the battery cells disclosed in the present application and the battery modules and battery packs having the battery cell structure disclosed in the present application can be used to form the power supply system of the electrical device.
  • an electric device according to an embodiment of the present application is a vehicle 1 as an example for description.
  • FIG. 1 is a schematic structural diagram of a vehicle 1 according to some embodiments of the present application.
  • the interior of the vehicle 1 is provided with a battery 100 , and the battery 100 may be provided at the bottom or the head or the rear of the vehicle 1 .
  • the battery 100 can be used for power supply of the vehicle 1 , for example, the battery 100 can be used as an operation power source of the vehicle 1 .
  • the vehicle 1 may also include a controller 300 and a motor 400 for controlling the battery 100 to supply power to the motor 400 , eg, for starting, navigating, and driving the vehicle 1 for work power requirements.
  • the battery 10 can not only be used as the operating power source of the vehicle 1 , but can also be used as the driving power source of the vehicle 1 to provide driving power for the vehicle 1 instead of or partially instead of fuel or natural gas.
  • FIG. 2 is a schematic structural diagram of a battery 100 according to an embodiment of the present application.
  • the battery 100 may include a plurality of battery cells 20 .
  • a plurality of battery cells 20 can be connected in series or in parallel or in a mixed connection to meet different power demands.
  • the battery 100 may further include a case body 10 , the interior of the case body 10 is a hollow structure, and a plurality of battery cells 20 are accommodated in the case body 10 .
  • the box 10 may include two parts, referred to herein as a first part 11 and a second part 12 respectively, and the first part 11 and the second part 12 are snapped together.
  • the shapes of the first part 11 and the second part 12 may be determined according to the combined shape of the plurality of battery cells 20 , and each of the first part 11 and the second part 12 may have an opening.
  • both the first part 11 and the second part 12 may be hollow rectangular parallelepipeds and each has only one surface that is an open surface, the opening of the first part 11 and the opening of the second part 12 are arranged opposite to each other, and the first part 11 and the second part 12 are interlocked with each other.
  • a plurality of battery cells 20 are placed in a box formed after the first part 11 and the second part 12 are buckled together after being combined in parallel or in series or in a mixed connection.
  • the number of battery cells 20 can be set to any value.
  • a plurality of battery cells 20 can be connected in series, in parallel or in a mixed manner to achieve larger capacity or power.
  • a plurality of battery cells 20 can also be connected in series or in parallel or in a mixed connection to form a battery module, and then a plurality of battery modules can be connected in series, in parallel or in a mixed connection to form a battery 100 . That is to say, the plurality of battery cells 20 may directly form the battery 100 , or may form a battery module first, and the battery module then forms the battery 100 and is accommodated in the box.
  • FIG. 3 is a schematic structural diagram of a battery module 200 according to an embodiment of the present application.
  • each battery 100 may include a large number of battery cells 20 , in order to facilitate installation, the battery cells 20 may be arranged in groups, and each group of battery cells 20 constitutes a battery module 200 .
  • the battery 100 may include a plurality of battery modules 200, and the battery modules 200 may be connected in series, parallel or mixed connection.
  • FIG. 4 is an exploded view of a battery cell 20 according to an embodiment of the present application.
  • the battery cell 20 includes a cover plate 21 , an electrode assembly 22 and a case 23 .
  • the case 23 is used for accommodating the electrode assembly 22 in the case 23 .
  • the casing 23 may be of various shapes and sizes. Specifically, the shape of the casing 23 may be determined according to the specific shape and size of one or more electrode assemblies 22 .
  • the housing 23 is a hollow cuboid. In other embodiments, the housing 23 may be cylindrical or other shapes.
  • One end of the casing 23 is an opening, and the cover plate 21 covers the opening and is connected with the casing 23 to form a closed cavity in which the electrode assembly 22 is placed.
  • the cavity may be filled with electrolyte.
  • electrode terminals may be provided on the cover plate 21 , and the electrode terminals may be used for electrical connection with the electrode assembly 22 for outputting electric energy of the battery cells 20 .
  • Each electrode terminal may be provided with a current collecting member correspondingly, and the current collecting member may be located between the cover plate 21 and the electrode assembly 22, so that the electrode terminal and the electrode assembly 22 can be electrically connected through the current collecting member.
  • the cover plate 21 may also be provided with other functional components, for example, a pressure relief mechanism for releasing the internal pressure when the internal pressure or temperature of the battery cells 20 reaches a threshold value.
  • the materials of the casing 23 and the cover plate 21 can be various, for example, copper, iron, aluminum, stainless steel, aluminum alloy, plastic and so on.
  • an embodiment of the present application provides a battery cell 20 .
  • the battery cell 20 includes a cover plate 21 and an electrode assembly 22 .
  • the inner surface of the cover plate 21 has an insulating portion 211, and the inner surface of the insulating portion 211 is provided with a groove 211a capable of accommodating the electrolyte.
  • the electrode assembly 22 includes a main body 221 including a diaphragm 221a and at least one extension 222 extending from the diaphragm 221a.
  • the extension 222 is at least partially located in the groove 211a to absorb the electrolyte in the groove 211a.
  • the inner surface of the cover plate 21 may be provided with an insulating portion 211 , and the insulating portion 211 may be used to prevent the electrode assembly 22 from being connected to the cover.
  • the board 21 is in direct contact and a short circuit occurs.
  • an insulating portion 211 attached to the metal plate body 21a may be provided on one side of the metal plate body 21a of the cover plate 21, such as an aluminum plate, and the insulating portion 211 and the metal plate body 21a may be fitted, bonded or otherwise way to attach.
  • the plate body 21a of the cover plate 21 can also be made of insulating material, and the insulating portion 211 can be provided separately from the insulating plate body 21a. Therefore, the material of the insulating portion 211 can be the same as that of the insulating plate body 21a. It may be different, and the insulating part 211 may be attached to the inner surface of the insulating plate body 21a.
  • the cover plate 21 may be integrally formed of insulating material, and the insulating portion 211 may be a part of the inner surface of the cover plate 21 .
  • two electrode lead-out holes respectively corresponding to the two electrode terminals may be provided on the insulating portion 211 .
  • the electrode assembly 22 is a wound electrical functional component.
  • the electrode assembly 22 includes a main body portion 221 , and the main body portion 221 refers to the portion of the electrode assembly 22 that does not include the extension portion 222 and the tab 223 .
  • FIG. 6B shows a schematic diagram of the winding structure of the main body portion 221 of an electrode assembly 22 .
  • the main body portion 221 may be formed by winding the first pole piece 221b, the second pole piece 221c and the diaphragm 221a around the rod core.
  • the diaphragm 221a may be located between the adjacent first and second pole pieces 221b and 221c, so that the diaphragm 221a is used to separate the first and second pole pieces 221b and 221c to prevent internal short circuits .
  • the polarities of the first pole piece 221b and the second pole piece 221c are opposite. For example, when the first pole piece 221b is a positive pole piece, the second pole piece 221c is a negative pole piece.
  • the negative electrode piece may be formed of a plate-like metal foil made of copper or nickel, and includes a negative electrode coating portion formed by coating an active material containing transition metal oxide on both surfaces of the negative electrode piece.
  • the positive electrode sheet may be formed of a plate-like metal foil made of aluminum, and includes a positive electrode coating portion formed by coating an active material including a transition metal oxide on both surfaces of the positive electrode sheet.
  • the electrode assembly 22 can also be made into other different sizes or shapes according to different design requirements, which are not limited to those shown in FIGS. 6A and 6B .
  • FIG. 7A is an axonometric view of a battery cell 20 provided by some embodiments of the present application
  • FIG. 7B is a cross-sectional view along the A-A direction in FIG. 7A
  • FIG. 7C is a partial enlarged view of K in FIG. 7B picture.
  • the inner surface of the insulating portion 211 is provided with a groove 211a, and the groove 211a can accommodate the electrolyte.
  • the groove 211a refers to a partial area formed by the surface of the insulating part 211 facing the main body part 221 being recessed in a direction away from the main body part 221 to form a space capable of accommodating the electrolyte.
  • the insulating portion 211 generally includes a protruding structure for abutting against the main body portion 221 , without limitation, it can be considered that, relative to this portion of the protruding structure, other regions of the insulating portion 211 that are farther from the main body portion 221 are grooves 211 a .
  • the electrode assembly 22 is above the cover plate 21, that is, when the battery cell 20 in FIG. 7B is in an inverted state, the electrolyte in the battery cell 20 will flow to the groove 211a, and the groove 211a can make a part of The electrolyte stays in the area in or near the groove 211a.
  • the electrode assembly 22 further includes at least one extension portion 222 extending from the diaphragm 221a, and the extension portion 222 is used for absorbing the electrolyte in the groove 211a.
  • the extension portion 222 refers to a structure formed by extending the diaphragm 221a along the winding axis direction, and the winding axis direction here is the same as the z direction.
  • each extension portion 222 may be formed by a portion extending from each layer of the membrane 221a forming the winding structure, or may be formed by extending a portion of several layers thereof.
  • the extension portion 222 may be integrally formed with the diaphragm 221a, specifically, it may be formed by die-cutting the diaphragm 221a; without limitation, the extension portion 222 and the diaphragm 221a may also be provided separately, and the processed extension portion 222 may be formed by gluing or the like.
  • the extension 222 can be made of the same material as the diaphragm 221a, or can be made of a material different from the diaphragm 221a, such as other materials with good water absorption, for example,
  • the extension portion 222 can be a double-layer polypropylene composite film, or a double-layer or three-layer composite film made of polypropylene and polyethylene.
  • the extension portion 222 is at least partially located in the groove 211 a of the insulating portion 211 .
  • the electrolyte can be absorbed into the electrode assembly 22 by the extension 222, so that the electrode assembly 22 can alleviate the state of insufficient absorption of the electrolyte, thereby reducing the
  • the small electrode assembly 22 absorbs the impact of insufficient electrolyte on the overall life.
  • the cover plate 21 when the battery cell 20 is inverted, that is, the electrode assembly 22 and the cover plate 21 are inverted, the cover plate 21 will be located below the main body portion 221, and the groove 211a will be located below the main body portion 221.
  • the part 221 cannot come into contact with the electrolyte. It is easy to occur that the electrode assembly 22 is insufficient in absorbing the electrolyte.
  • the embodiment of the present application discloses a battery cell 20.
  • the battery cell 20 is provided with an extension portion 222 for absorbing electrolyte, and at least part of the extension 222 is located in a groove 211a containing electrolyte.
  • the probability of shortening the service life of the battery cell due to insufficient absorption of the electrolyte by the electrode assembly can be reduced, thereby improving the overall performance of the battery.
  • it can break the existing position limitations of electrode components and electrolytes, and provide new ideas for the design of future battery structures.
  • the end of the extension portion 222 is in abutment with the bottom wall 2111 of the groove 211a.
  • the end of the extension part 222 refers to the end of the extension part 222 away from the main body part 221, and the bottom wall 2111 of the groove 211a refers to the surface of the bottom of the groove 211a. It refers to a region of the insulating portion 211 that is farther from the main body portion 221 than the protruding structure.
  • the length of the extension part 222 is equal to the distance between the main body 221 and the bottom wall 2111 of the groove 211a, and the end of the extension part 222 contacts the groove 211a.
  • the bottom wall 2111 of the groove 211a can absorb the electrolyte stored in the groove 211a to the maximum extent, thereby effectively improving the service life of the battery cells.
  • FIG. 8A is a cross-sectional view along the B-B direction in FIG. 7A
  • FIG. 8B is a partial enlarged view at P in FIG. 8A
  • the extension length of the extension part 222 is greater than the distance L between the surface of the main body part 221 facing the insulating part 211 and the bottom wall 2111 of the groove 211a.
  • the extension length of the extension portion 222 refers to the length of the extension portion 222 extending along the z direction without being bent when the electrode assembly 22 is not assembled with the cover plate 21 .
  • the extension length of the extension portion 222 is greater than the distance L between the surface of the main body portion 221 facing the insulating portion 211 and the bottom wall 2111 of the groove 211a, the bottom wall of the groove 211a will be squeezed.
  • the extension part 222 is pressed, after the extension part 222 is squeezed, the gap between the adjacent layers in the extension part 222 is irregularly curved, so that the gap becomes smaller, which can promote the occurrence of capillary phenomenon and is conducive to the absorption of electrolyte. .
  • the extension length of the extension part 222 is greater than the distance L between the surface of the main body part 221 facing the insulating part 211 and the bottom wall 2111 of the groove 211 a 1-20mm.
  • the difference between the extension length of the extension part 222 and the distance L between the surface of the main body part 221 facing the insulating part 211 and the bottom wall 2111 of the groove 211a is less than 1 mm, the extension part 222 is squeezed too little, and the extension part 222 The curvature is too small, and the gap between adjacent layers in the extension 222 does not vary much.
  • extension length of the extension part 222 When the difference between the extension length of the extension part 222 and the distance L between the surface of the main body part 221 facing the insulating part 211 and the bottom wall 2111 of the groove 211a is greater than 20 mm, the extension length of the extension part 222 is too large, which will affect the electrode assembly 22 Assembly with cover plate 21.
  • FIG. 9A is an exploded view of the cover plate 21 according to another embodiment of the present application
  • FIG. 9B is a partial enlarged view of Q in FIG. 9A
  • FIG. 9C is a top view of the insulating portion 211 in FIG. 9A , which shows the portion 2112 on the groove 211a abutting against the extending portion 222 .
  • the cover plate 21 may be provided with a pressure relief mechanism 212, the insulating portion 211 is provided with an exhaust hole 211c, the exhaust hole 211c communicates with the pressure relief mechanism 212 on the cover plate 21, and the part of the groove 211a that is in contact with the extension portion 222 2112 is staggered from the exhaust hole 211c.
  • the cover plate 21 is provided with a pressure relief mechanism 212, and the pressure relief mechanism 212 may take the form of an explosion-proof valve, an air valve, a pressure relief valve, or a safety valve, which is not limited in this embodiment of the present application.
  • An exhaust hole 211c for exhausting the gas in the casing 23 to the pressure relief mechanism 212 may be formed on the insulating portion 211, and the exhaust hole 211c may be provided at a position on the insulating portion 211 corresponding to the pressure relief mechanism 212 to directly It communicates with the pressure relief mechanism 212 ; without limitation, it can also be arranged at other positions and an exhaust passage is provided to communicate with the exhaust hole 211 c and the pressure relief mechanism 212 .
  • the exhaust hole 211c can be disposed in the area of the insulating part 211 that is staggered from the abutting area of the extension part 222, so as to avoid covering the exhaust hole when the end of the extension part 222 abuts against the bottom wall of the groove 211a 211c to ensure smooth exhaust and improve battery safety.
  • the exhaust hole 211 c is provided on one side or both sides of the portion 2112 on the groove 211 a that abuts against the extending portion 222 .
  • the width direction of the insulating portion 211 corresponds to the y direction, which is the width direction of the battery cell 20 .
  • the exhaust holes 211c are arranged on one side or both sides of the portion 2112 on the groove 211a that is in contact with the extension portion 222. As shown in FIG.
  • the exhaust holes 211c are arranged at both ends of the insulating portion 211 in the width direction, and there are The middle area between the two ends of the exhaust hole 211c is reserved to abut the extension part 222, so that the probability that the extension part 222 covers the exhaust hole 211c can be reduced, and the distance between the exhaust hole 211c and the pressure relief mechanism 212 can be minimized , to improve the exhaust effect.
  • the reserved abutting area may be the shaded portion shown in the figure, and along the width direction of the insulating portion 211 , the shaded portion may be set away from the liquid injection hole to avoid disturbing the liquid injection.
  • the shaded portion also needs to avoid the position (not shown) on the insulating portion 211 corresponding to the transition piece, so as to avoid interfering with the installation of the transition piece.
  • FIG. 10A is a schematic diagram of assembling the electrode assembly 22 and the cover plate 21 according to an embodiment of the present application, and FIG. Partial enlargement.
  • the insulating portion 211 includes a flange 211b extending toward the main body portion 221.
  • the extending portion 222 is provided with an escape groove 222a corresponding to the flange 211b, and the flange 211b is placed in the escape groove 222a.
  • the pressure relief mechanism 212 is usually disposed between the two pole ears, so that the exhaust process of the pressure relief mechanism 212 is not disturbed by the pole ears.
  • the insulating portion 211 can be formed with a flange 211b protruding toward the main body portion 221 in a region corresponding to the pressure relief mechanism 212 .
  • the flange 211b may be a solid structure for abutting against the electrode assembly 22, so as to increase the stability of the electrode assembly 22 in the housing 23 and reduce the probability of its loosening and shaking.
  • the flange 211b may also be a hollow structure, and specifically, the cross-sectional shape of the flange 211b may be a "mouth" shape or an inverted "ji" shape.
  • an escape groove 222a can also be provided at the position corresponding to the extension part 222 and the flange 211b, and the flange 211b can be extended into the escape groove 222a, so that excessive extrusion of the flange 211b and the extension part 222 can be avoided. , causing interference.
  • a first protruding portion 211d and a second protruding portion 211e formed to protrude toward the main body portion 221 may be further provided at both ends of the insulating portion 211 along the x direction. The first protruding portion 211d and the second protruding portion 211e are respectively used for abutting with the main body portion 221 at both ends of the insulating portion 211, which can reduce the loosening of the electrode assembly 22 after assembly.
  • the depth of the avoidance groove 222 a is less than or equal to the extension length of the extension portion 222 .
  • the depth of the avoidance groove 222a refers to the depth of the avoidance groove 222a along the z direction.
  • the depth of the avoidance groove 222a is less than or equal to the extension length of the extension portion 222 , so that the flange 211b does not abut with the main body portion 221 , but abuts against the extension portion 222 . catch.
  • Abutting the extension portion 222 with the flange 211b can also cause the extension portion 222 to be bent to a certain extent, and finally, the gap between the membranes in the extension portion 222 is irregularly curved, and the gap becomes smaller. It can promote the occurrence of capillary phenomenon and is conducive to the absorption of electrolyte.
  • FIG. 11A is an exploded view of a cover plate according to another embodiment of the present application
  • FIG. 11B is a partial enlarged view of G in FIG. 11A
  • the flange 211b is located on the insulating portion 211 at a position corresponding to the pressure relief mechanism 212
  • the flange 211b is a hollow structure communicating with the pressure relief mechanism 212 , along the width direction of the cover plate 21 , the exhaust hole 211c is provided on both ends of the flange 211b.
  • the flange 211b is formed into a hollow structure that communicates with the pressure relief mechanism 212 to serve as the exhaust passage 211f, and the exhaust passage 211f communicates with the pressure relief mechanism 212.
  • the flange 211b may be provided with an exhaust hole 211c to communicate with the interior of the housing 23 , preferably, exhaust holes 211c can be provided at both ends of the flange 211b, so that the probability that the extension part 222 blocks the exhaust holes 211c can be reduced, so as to improve the smoothness of the exhaust.
  • FIG. 12 is a schematic diagram of a winding structure of an electrode assembly 22 according to an embodiment of the present application.
  • the electrode assembly 22 further includes a tab 223 extending from the main body portion 221 , the tab 223 and the extending portion 222 are located on the same side of the main body portion 221 , and the tab 223 and the extending portion 222 are arranged in a staggered position.
  • the dislocation of the tab 223 and the extension portion 222 here means that the projection of the tab 223 along the y direction and the projection of the extension portion 222 along the y direction are misaligned, wherein the y direction is the same as the width direction of the main body portion 221 .
  • the tab 223 has a first tab 223a and a second tab 223b, and the first tab 223a and the second tab 223b extend from the first pole piece 221b and the second pole piece 221c, respectively.
  • the extension 222 extending from the diaphragm 221a is staggered from the first tab 223a and the second tab 223b, so that the extension 222 does not completely overlap with the first tab 223a or the second tab 223b, which can reduce the number of extensions.
  • the extension 222 interferes with the first tab 223 or the second tab 223b when folded; the extension 222 and the first tab 223a or the second tab 223b can also be completely misaligned, that is, the extension 222 and the first tab 223a A space is reserved between the extension portion 222 and the second tab 223b, so that the extended portion 222 after being rolled can be prevented from overlapping and interfering with the first tab 223a and the second tab 223b. In this way, when the first tab 223a and the second tab 223b are welded with the current collecting member, the extending portion 222 can be prevented from being burned.
  • FIG. 13A is a schematic structural diagram of the electrode assembly 22 according to an embodiment of the present application
  • FIG. 13B is a partial enlarged view of N in FIG. 13A
  • a dislocation groove 224 is formed between the tab 223 and the extension portion 222 .
  • the dislocation of the extension portion 222 and the first and second tabs 223a and 223b can form a dislocation groove 224 between the extension 222 and the first and second tabs 223a and 223b.
  • the misalignment slot 224 means that when the tab 223 and the extension part 222 are located on the same side of the main body part 221, a gap is reserved between the projection of the tab 223 along the y direction and the projection of the extension part 222 along the y direction. Offset slot 224 . In this way, the overlapping of the extension portion 222 and the tab 223 caused by the misalignment of the multi-layered structure of the tab 223 during the winding process can be avoided, further preventing the extension portion 222 from interfering with the folding tab 223 or causing the tab 223 to interfere with the extension portion during welding. 222's structure caused damage.
  • misalignment groove 224 is used to reduce the mutual interference between the misalignment of the tab 223 and the extension portion 222 , there may be a part of the tab 223 or the extension portion 222 irregularly protruding from the side wall in the misalignment groove 224 .
  • the width W of the dislocation groove 224 is 3-20 mm.
  • the width W of the misalignment slot 224 refers to the size of the space reserved between the projection of the tab 223 along the y direction and the projection of the extension 222 along the y direction, that is, the first tab 223a and the second tab 223b and the extension 222 The distance between projections along the y direction.
  • the width W of the offset groove 224 is less than 3 mm, the gap between the first tab 223a and the second tab 223b and the extension part 222 is too small, and the first tab 223a and the second tab 223b are easily welded to the extension part. 222's structure caused damage.
  • the width W of the dislocation groove 224 is greater than 20 mm, the larger space in the groove 211a is not provided with the extension 222, which affects the absorption efficiency of the electrolyte and is not conducive to the absorption of the electrolyte.
  • the electrode assembly 23 further includes a tab 223 extending from the main body portion 221 , and the tab 223 includes a first tab 223 a with different polarities and the second tab 223b, the first tab 223a and the second tab 223b are disposed on the same side of the main body portion 221, and the extension portion 222 is located between the first tab 223a and the second tab 223b.
  • the polarities of the first tab 223a and the second tab 223b may be opposite. For example, when the first tab 223a is a positive tab, the second tab 223b is a negative tab.
  • the first tabs 223a of the one or more electrode assemblies 22 are connected to one electrode terminal through one current collecting member, and the second tabs 223b of the one or more electrode assemblies 22 are connected to another electrode terminal through another current collecting member.
  • the first tab 223a and the second tab 223b may be arranged on the same side of the main body portion 221, the number of the extension portions 222 may be one or more, and a plurality of extension portions 222 may be arranged on the first tab 223a and/or One side of the second tab 223b may also be disposed on both sides of the first tab 223a and/or the second tab 223b, respectively.
  • the extension 222 may be disposed on the first tab 223a and the second tab 223b.
  • the space between the first tab 223a and the second tab 223b is relatively large, and arranging the extension portion 222 here can make the extension portion 222 have a larger length along the x-direction, absorbing The effect of the electrolyte is better; on the other hand, the extension 222 disposed between the first tab 223a and the second tab 223b is relatively close to the center of the electrode assembly 22, which is beneficial for the extension 222 to absorb the electrolyte to the The center of the electrode assembly 22 .
  • first tabs 223a and the second tabs 223b may be respectively disposed on both sides of the main body portion 221, and the number of the extension portions 222 is multiple, which are respectively disposed on the first tabs 223a and the second tabs 223b. One or both sides of the diode tab 223b.
  • An embodiment of the present application further provides a battery 100 , the battery 100 includes at least one battery cell 20 in the foregoing embodiments.
  • the battery 100 includes at least one battery cell 20 in the foregoing embodiments.
  • each component in the battery 100 reference may be made to the foregoing embodiments, which are not repeated here for brevity.
  • An embodiment of the present application also provides an electrical device, where the electrical device includes the battery 100 in the foregoing embodiment.
  • the electrical device may be a vehicle 1, a ship or a spacecraft, or the like.
  • FIG. 14 is a schematic flowchart of a method 300 for preparing a battery according to an embodiment of the present application. As shown in Figure 14, the method 300 includes:
  • the inner surface of the cover plate 21 has an insulating portion 211, and the inner surface of the insulating portion 211 is provided with a groove 211a;
  • the electrode assembly 22 includes a main body portion 221, and the main body portion 221 includes a diaphragm 221a and at least one extension portion 222 extending from the diaphragm 221a;
  • FIG. 15 is a schematic block diagram of an apparatus 400 for preparing a battery according to an embodiment of the present application.
  • the apparatus 400 for preparing a battery includes: a provision module 410 and an installation module 420 .
  • a module 410 is provided for: providing a cover plate 21, the inner surface of the cover plate 21 has an insulating portion 211, and the inner surface of the insulating portion 211 is provided with a groove 211a; providing an electrode assembly 22, the electrode assembly 22 includes a main body portion 221, the The main body portion 221 includes a diaphragm 221a and at least one extension portion 222 extending from the diaphragm 221a;
  • the installation module 420 is used for placing the extension part 222 in the groove 211 a so that the groove 211 a accommodates the extension part 222 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

本申请实施例提供一种电池单体、电池、用电装置、制备电池单体的方法和装置。所述电池单体,包括:盖板,所述盖板内表面具有绝缘部;和电极组件,其包括主体部,所述主体部包括隔膜;其中,所述绝缘部内表面设置有凹槽,所述凹槽能够容纳电解液,所述电极组件还包括从所述隔膜延伸出的至少一个延伸部,所述延伸部至少部分位于所述凹槽中以吸收所述凹槽中的电解液。本申请实施例的技术方案,能够有效提高电池的使用寿命。

Description

电池单体、电池、用电装置、制备电池单体的方法和装置 技术领域
本申请涉及电池技术领域,特别是涉及一种电池单体、电池、用电装置、制备电池单体的方法和装置。
背景技术
随着经济发展,电池技术被广泛地应用于各个领域,尤其是交通工具领域如电动汽车领域。在电池技术中,电池的使用寿命直接关系到车辆的行驶里程、使用便利性等性能。
当电池的使用寿命过低,就容易影响车辆的高速移动,最终影响其实用性。因此,研究提高电池的寿命具有重大的意义和价值。
发明内容
本申请实施例提供一种电池单体、电池、用电装置、制备电池单体的方法和装置,能够提高电池的使用寿命。
第一方面,提供了一种电池单体,包括:盖板,其内表面具有绝缘部和电极组件,电极组件包括主体部,主体部包括隔膜;其中,绝缘部内表面设置有凹槽,凹槽能够容纳电解液,电极组件还包括从隔膜延伸出的至少一个延伸部,延伸部至少部分位于凹槽中以吸收凹槽中的电解液。
本申请实施例的技术方案,利用从隔膜延伸出的延伸部来吸收凹槽中的电解液,可以降低由于电极组件吸收电解液不足从而缩短电池单体使用寿命的概率,以此改善电池整体的使用性能。
在一些实施例中,延伸部的端部与凹槽的底壁抵接。这样,能够 最大限度地吸收凹槽中积存的电解液。
在一些实施例中,延伸部的延伸长度大于主体部上朝向绝缘部的表面与凹槽的底壁的距离。
使得延伸部在受到凹槽的底壁挤压后,在空隙变小的同时,其隔膜之间的空隙呈不规则的弯曲状,以促进毛细现象的发生,有利于电解液的吸收。
在一些实施例中,延伸部的延伸长度比主体部上朝向绝缘部的表面与凹槽的底壁的距离大1-20mm。
当凹槽的底壁挤压延伸部时,避免因延伸部受到挤压程度太小或太大而影响电极组件和板体的装配。
在一些实施例中,盖板设置有泄压机构,绝缘部设置有排气孔,排气孔与泄压机构连通,凹槽上和延伸部抵接的部分与排气孔错开。
凹槽上和延伸部抵接的部分与排气孔错开,能够避免延伸部的端部抵接凹槽的底壁时遮盖住排气孔,保证排气通畅,提高电池的安全性。
在一些实施例中,沿绝缘部的宽度方向,排气孔设置于凹槽上和延伸部抵接的部分的一侧或两侧。
将排气孔设置在沿绝缘部的宽度方向一侧或两侧,在避免延伸部的端部抵接凹槽的底壁时遮盖住排气孔时,使排气孔与泄压机构的距离尽量减小,便于排气。
在一些实施例中,绝缘部包括有向主体部延伸形成的凸缘,延伸部设置有与凸缘对应的避让槽,凸缘置于避让槽中。
凸缘有利于提高电极组件装配后的稳定性,使其不会松动,避让槽的设置,避免了凸缘与延伸部的相互过度挤压、产生干扰。
在一些实施例中,避让槽的深度小于或等于延伸部的延伸长度。
这样,利用避让槽的深度小于或等于延伸部的延伸长度,使凸缘 不与主体部抵接,而是利用凸缘与延伸部抵接并挤压延伸部而使延伸部产生一定的弯折,能够促进毛细现象的发生,有利于电解液的吸收。
在一些实施例中,凸缘位于绝缘部上与泄压机构对应的位置,并且,凸缘为与泄压机构连通的中空结构,沿盖板的宽度方向,排气孔设置于凸缘的两端。
这样,能够将中空的凸缘作为排气孔连通泄压机构的通道,并将排气孔设置于凸缘的两端以降低排气孔被延伸部遮挡的概率。
在一些实施例中,电极组件还包括从主体部延伸出来的极耳,极耳与延伸部位于主体部的同一侧,极耳与延伸部错位设置。
利用极耳与延伸部错位设置,降低了延伸部与极耳相互干扰的程度,并且,减少延伸部和极耳重叠的部分以充分利用壳体内部的空间。
在一些实施例中,极耳和延伸部之间形成有错位槽。
错位槽可以避免由于卷绕的过程中极耳的多层结构错位而导致的延伸部与极耳重叠,进一步避免延伸部对极耳形成干扰或焊接时对延伸部的结构造成损坏。
在一些实施例中,错位槽的宽度为3-20mm。
错位槽的宽度太小时,极耳焊接时容易对延伸部的结构造成损坏,而错位槽的宽度太大时,影响电解液的吸收效率。
在一些实施例中,电极组件还包括从主体部延伸出来的极耳,极耳包括极性不同的第一极耳和第二极耳,第一极耳和第二极耳设置于主体部的同一侧,延伸部位于第一极耳和第二极耳之间。
这样,可以利用极耳间的空隙设置延伸部,同时,在极耳中间布置的延伸部与电极组件的中心较近,有利于向电极组件的中心补充电解液。
第二方面,提供了一种电池,包括:至少一个第一方面的电池单体。
第三方面,提供了一种用电装置,包括:第二方面的电池,所述电池用于提供电能。
第四方面,提供了一种制备电池单体的方法,包括:提供盖板,盖板内表面具有绝缘部,绝缘部内表面设置有凹槽;提供电极组件,电极组件包括主体部,主体部包括隔膜和从隔膜延伸出的至少一个延伸部;将延伸部置于凹槽,使凹槽容纳延伸部。
第五方面,提供了一种制备电池单体的装置,包括:提供模块,用于:提供盖板,盖板内表面具有绝缘部,绝缘部内表面设置有凹槽;提供电极组件,电极组件包括主体部,主体部包括隔膜和从隔膜延伸出的至少一个延伸部;安装模块,用于将延伸部置于凹槽,使凹槽容纳延伸部。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一些实施例的车辆的结构示意图;
图2是本申请一个实施例的电池的结构示意图;
图3是本申请一个实施例的电池模块的结构示意图;
图4为本申请一个实施例的电池单体的爆炸图;
图5为本申请一个实施例的盖板的爆炸图;
图6A为本申请一个实施例的电极组件的示意图;
图6B为本申请一个实施例的电极组件主体部卷绕结构的示意图;
图7A为本申请一些实施例的电池单体的轴测图;
图7B为图7A中沿A-A向的剖视图;
图7C为图7B中K处的局部放大图;
图8A为图7A中沿B-B向的剖视图;
图8B为图8A中P处的局部放大图;
图9A为本申请另一个实施例的盖板的爆炸图;
图9B为图9A中Q处的局部放大图;
图9C为图9A中绝缘部的俯视图,其中示出了凹槽上和延伸部抵接的部分;
图10A为本申请一个实施例的电极组件与盖板进行装配的示意图;
图10B为图10A中M处的局部放大图;
图11A为本申请又一个实施例的盖板的爆炸图;
图11B为图11A中G处的局部放大图;
图12为本申请一个实施例的电极组件的卷绕结构的示意图;
图13A为本申请一个实施例的电极组件的结构示意图;
图13B为图13A中N处的局部放大图;
图14为本申请一个实施例的制备电池单体的方法的示意性流程图;
图15为本申请一个实施例的制备电池单体的装置的示意性框图。
在附图中,附图并未按照实际的比例绘制。
标记说明:
1、车辆;
10、箱体;11、第一部分;12、第二部分;
20、电池单体;
21、盖板;21a、板体;211、绝缘部;211a、凹槽;211b、凸缘;211c、排气孔;211d、第一凸出部;211e、第二凸出部;211f、排气通道;2111、底壁;2112、凹槽上和延伸部抵接的部分;212、泄压机构;
22、电极组件;221、主体部;221a、隔膜;221b、第一极片;221c、第二极片;222、延伸部;222a、避让槽;223、极耳;223a、第一极耳;223b、第二极耳;224、错位槽;
23、壳体;
100、电池;200、电池模块;300、控制器;400、马达;
401、提供模块;
402、安装模块。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
下述附图中所示的坐标系定义相同,其中,坐标系中的x方向为电池单体的长度方向,y方向为电池单体的宽度方向,z方向为电池单体 的高度方向。对于下述描述中出现x方向、y方向和z方向均与上述限定中的含义相同。
目前,从市场形势的发展来看,动力电池的应用越加广泛。动力电池不仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。随着动力电池应用领域的不断扩大,其市场的需求量也在不断地扩增。
在如电动汽车等电动载具领域,动力电池组成的电源系统在一定意义上替代了燃油油箱。由于电动汽车等电动载具通常具有较高的功率,当其处于使用状态时,内部的电源系统中的电压以及电流也通常为较大的数值。因此,为保证其能够被安全使用,通常将电源系统设置于不易暴露的位置如车身中,这样一样,也使得电源系统的更换较为麻烦。为保证电动汽车可以长期处于正常使用的状态中,电源系统需要相应地具备有较高的使用寿命,以期减少对电源系统的更换次数。
申请人发现,电池使用寿命的长短会受电池使用过程中的许多因素影响。其中,电池整体的寿命还与单个的电池单体的使用寿命相关,单个电池单体的使用寿命又与电池单体内部的电极组件所吸收的电解液的液量相关。
当电极组件内的电解液不足时,可能会导致正极吸液不足和负极吸液不足等情况发生。当正极吸液不足时,没有足够的锂离子能够从正极脱嵌;当负极吸液不足时,正极提供的锂离子无法全部嵌入负极,于是负极产生析锂。但是,不论是哪种情况,都会导致电池最终表现为低容、高内阻、低平台、低循环,进一步导致电池的使用寿命衰减。
由于电池单体的结构设计较为灵活,电池壳体或者端盖应设计的需求可能包含有凹凸不平整的结构如凹槽、凸起等,这就导致当电池单体处于某种放置状态下时,具有凹槽或者凸起等不平整的一面可能处于底部,并且,在这种状态下,由于重力的原因电解液会聚集于底部的低处,但电极组件会与底部的较高处相抵接从而无法触及到电解液,最终导致电极组件吸收电解液不足的情况发生,影响电池的使用寿命。
基于以上考虑,申请人设计了一种电池单体,该电池单体包括有板体和电极组件。其中,板体的内表面具有绝缘部,在绝缘部的内表面设置有用于容纳电解液的凹槽。电极组件设置有延伸部,延伸部的至少部分位于凹槽中以吸收凹槽中的电解液。本申请的设计的电池单体结构,能够降低由于电极组件吸收电解液不足从而缩短电池使用寿命的概率,起到改善电池性能的作用。
本申请实施例公开的一种电池单体,该电池单体包括有用于吸收电解液的延伸部,可以但不限用于车辆、船舶或飞行器等用电装置中。尤其在电动车辆或混合电动车辆等用电装置中,电池单体放置方式的多样化可以为上述用电装置中的布局电源系统带来新的设计思路,使电源系统的布局手段更加灵活。因此,可以使用本申请公开的电池单体以及具备本申请公开的电池单体结构的电池模组、电池包等组成该用电装置的电源系统。
以下实施例为了方便说明,以本申请一实施例的一种用电装置为车辆1为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆1的结构示意图。车辆1的内部设置有电池100,电池100可以设置在车辆1的底部或头部或尾部。电池100可以用于车辆1的供电,例如,电池100可以作为车辆1的操作电源。车辆1还可以包括控制器300和马达400,控制器300用来控制电池100为马达400供电,例如,用于车辆1的启动、导航和行驶时的工作用电需求。在本申请一些实施例中,电池10不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,代替或部分地代替燃油或天然气为车辆1提供驱动动力。
请参照图2,图2所示为本申请一个实施例的电池100的结构示意图。如图2所示,电池100可以包括多个电池单体20。多个电池单体20之间可以串联或并联或混联,以满足不同的电力需求。电池100还可以包括箱体10,箱体10内部为中空结构,多个电池单体20容纳于箱体10内。箱体10可以包括两部分,这里分别称为第一部分11和第二部分12,第一部分11和第二部分12扣合在一起。第一部分11和第二部分12的形状可以根据多个电池单体20组合的形状而定,第一部分11和第二部分12 可以均具有一个开口。例如,第一部分11和第二部分12均可以为中空长方体且各自只有一个面为开口面,第一部分11的开口和第二部分12的开口相对设置,并且第一部分11和第二部分12相互扣合形成具有封闭腔室的箱体。多个电池单体20相互并联或串联或混联组合后置于第一部分11和第二部分12扣合后形成的箱体内。
根据不同的电力需求,电池单体20的数量可以设置为任意数值。多个电池单体20可通过串联、并联或混联的方式连接以实现较大的容量或功率。多个电池单体20还可以先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联组成电池100。也就是说,多个电池单体20可以直接组成电池100,也可以先组成电池模块,电池模块再组成电池100,并容纳于箱体内。
请参照图3,图3为本申请实施例提供的一种电池模块200的结构示意图。如图3所示,由于每个电池100中包括的电池单体20的数量可能较多,为了便于安装,可以将电池单体20分组设置,每组电池单体20组成电池模块200。电池100可以包括多个电池模块200,这些电池模块200可通过串联、并联或混联的方式进行连接。
请参照图4,图4所示为本申请一个实施例的电池单体20的爆炸图。电池单体20包括盖板21、电极组件22和壳体23。壳体23用于将电极组件22容纳于壳体23内。壳体23可以是多种形状和多种尺寸的,具体地,壳体23的形状可以根据一个或多个电极组件22的具体形状和尺寸大小来确定。在一些实施例中,壳体23为中空的长方体。在另一些实施例中,壳体23可以是圆柱形或其他形状。壳体23的一端为开口,盖板21覆盖该开口并且与壳体23连接,形成放置电极组件22的封闭的腔体。腔体内可以填充有电解液。在一些实施例中,盖板21上可以设置有电极端子,电极端子可以用于与电极组件22电连接,以用于输出电池单体20的电能。每个电极端子可以对应设置有集流构件,可以使该集流构件位于盖板21和电极组件22之间,以使电极端子和电极组件22可以通过集流构件实现电连接。盖板21还可以设置有其他功能性部件,例如,用于在电池单体20的内部压力或温度达到阈值时泄放内部压力的泄压机构。壳体 23和盖板21的材质可以是多种,比如,铜、铁、铝、不锈钢、铝合金、塑胶等。
请参照图5-图7C,本申请实施例提供了一种电池单体20,该电池单体20包括盖板21和电极组件22。盖板21的内表面具有绝缘部211,绝缘部211的内表面设置有能够容纳电解液的凹槽211a。电极组件22包括有主体部221,主体部221包括隔膜221a和从隔膜221a延伸出的至少一个延伸部222,延伸部222至少部分位于凹槽211a中以吸收凹槽211a中的电解液。
请参照图5,在一些实施例中,当盖板21的板体21a为金属材质制成时,盖板21内表面可以设置有绝缘部211,绝缘部211可以用于避免电极组件22与盖板21直接接触而发生短路现象。具体地,可以在盖板21的金属板体21a如铝板的一侧设置有附接于金属板体21a的绝缘部211,绝缘部211和金属板体21a可以以嵌合、粘合或是其他方式附接。在另一些实施例中,盖板21的板体21a还可以采用绝缘材质制成,绝缘部211可以与绝缘板体21a分开提供,由此,绝缘部211的材质可以与绝缘板体21a相同也可以不同,并且,绝缘部211可以附接于绝缘板体21a的内表面。在另一些实施例中,盖板21可以为绝缘材料一体成型,绝缘部211可以是盖板21内表面的一部分。不限地,可以在绝缘部211上设置分别与两个电极端子对应的两个电极引出孔。
电极组件22是卷绕而成的电功能部件。请参照图6A,电极组件22包括有主体部221,主体部221是指电极组件22的中不包含延伸部222和极耳223的部分。请参照图6B,图6B中示出了一个电极组件22的主体部221的卷绕结构示意图。主体部221可以是由第一极片221b、第二极片221c以及隔膜221a围绕棒芯卷绕而成的。在主体部221中,隔膜221a可以位于相邻的第一极片221b和第二极片221c之间,以将隔膜221a用于隔开第一极片221b和第二极片221c以防止内部短路。并且,第一极片221b和第二极片221c的极性相反。例如,当第一极片221b为正极极片时,第二极片221c为负极极片。在这种结构的电极组件22内部,第一极片221b、第二极片221c与隔膜221a之间有缝隙,电解液能够通过缝隙进入电极组 件22内部,浸润隔膜221a、第一极片221b和第二极片221c。其中,负极极片可以由铜、或镍制成的板状金属箔形成,并且,包括通过在负极极片的两个表面上涂覆包含过渡金属氧化物的活性物质形成的负极涂覆部分。正极极片可以由铝制成的板状金属箔形成,并且,包括通过在正极极片的两个表面上涂覆包括过渡金属氧化物的活性物质形成的正极涂覆部分。电极组件22还可以依据不同的设计需求被制成其他不同的尺寸或形状,不限于图6A和图6B所示。
请参见图7A-图7C,图7A为本申请一些实施例提供的电池单体20的轴测图,图7B为图7A中沿A-A向的剖视图,图7C为图7B中K处的局部放大图。如图7C,绝缘部211内表面设置有凹槽211a,凹槽211a能够容纳电解液。凹槽211a是指由绝缘部211上朝向主体部221的表面向远离主体部221的方向凹陷形成的局部区域,以形成能够容纳电解液的空间。由于绝缘部211通常包括有用于抵接主体部221的凸起结构,不限地,可以认为,相对于这部分凸起结构,绝缘部211上其他距离主体部221较远的区域为凹槽211a。当电极组件22处于盖板21的上方时,也就是图7B中的电池单体20处于倒置状态时,电池单体20中的电解液会流至凹槽211a处,凹槽211a就可以使一部分的电解液停留在凹槽211a中或附近的区域。
请继续参见图7C,电极组件22还包括从隔膜221a延伸出的至少一个延伸部222,延伸部222用于吸收凹槽211a中的电解液。延伸部222是指隔膜221a沿卷绕轴线方向延伸形成的结构,这里的卷绕轴线方向与z方向一致。不限地,每一个延伸部222都可以是由形成卷绕结构的每一层隔膜221a伸出一部分形成,也可以是由其中数层伸出一部分形成。延伸部222可以与隔膜221a为一体形成,具体地,可以通过模切隔膜221a形成;不限地,延伸部222与隔膜221a还可以是分开提供的,加工好的延伸部222可以通过胶粘等连接方式被连接至隔膜221a上,在这种方式下,延伸部222可以采用与隔膜221a相同的材质制成,也可以采用与隔膜221a不同的材质如其他吸水性良好的材质制成,例如,延伸部222可以采用双层聚丙烯复合膜、还可以采用聚丙烯和聚乙烯制成的双层或三层复合膜等。
在电极组件22与盖板21、壳体23装配后,使延伸部222至少部分位于绝缘部211的凹槽211a内。当凹槽211a中容纳有部分的电解液时,在毛细原理的作用下,电解液可以被延伸部222吸收至电极组件22中,这样,可以缓解电极组件22吸收电解液不足的状态,从而减小电极组件22吸收电解液不足对整体寿命造成的影响。尤其当电池单体20倒置即电极组件22与盖板21倒置时,盖板21将处于主体部221的下方,凹槽211a位于主体部221的下方,凹槽211a中会积存电解液,而主体部221无法接触到电解液。就容易发生电极组件22吸收电解液不足的情况。
本申请实施例公开了一种电池单体20,该电池单体20设置有用于吸收电解液的延伸部222,并且,至少部分的延伸部222位于容纳有电解液的凹槽211a中。这样,一方面,对于现有的电池单体结构,可以降低由于电极组件吸收电解液不足从而缩短电池单体使用寿命的概率,以此改善电池整体的使用性能。另一方面,可以打破现有的电极组件与电解液的位置限定,为未来电池结构的设计提供新思路。
根据本申请的一个实施例,可选地,请继续参见图7C,延伸部222的端部与凹槽211a的底壁2111抵接。延伸部222的端部是指延伸部222上远离主体部221的一端,凹槽211a的底壁2111是指凹槽211a底部的表面,不限地,还可以认为凹槽211a的底壁2111是指绝缘部211上相对于凸起结构距离主体部221较远的区域。当延伸部222的端部与凹槽211a的底壁2111刚好抵接时,延伸部222的长度与主体部221与凹槽211a的底壁2111的距离相等,延伸部222的端部接触到凹槽211a的底壁2111,能够最大限度地吸收凹槽211a中积存的电解液,有效提高电池单体的使用寿命。
根据本申请的一个实施例,可选地,请参见图8A和图8B,图8A为图7A中沿B-B向的剖视图,图8B为图8A中P处的局部放大图。延伸部222的延伸长度大于主体部221上朝向绝缘部211的表面与凹槽211a的底壁2111的距离L。延伸部222的延伸长度是指电极组件22在没有与盖板21进行装配时,延伸部222沿z方向延伸而不弯曲的长度。在电极组件22与盖板21进行装配时,由于延伸部222的延伸长度大于主体部221 上朝向绝缘部211的表面与凹槽211a的底壁2111的距离L,凹槽211a的底壁会挤压延伸部222,在延伸部222受到挤压后,延伸部222中的相邻层之间的空隙呈不规则弯曲状,使得空隙变小,能够促进毛细现象的发生,有利于电解液的吸收。
根据本申请的一个实施例,可选地,请继续参见图8A和图8B,延伸部222的延伸长度比主体部221上朝向绝缘部211的表面与凹槽211a的底壁2111的距离L大1-20mm。当延伸部222的延伸长度和主体部221上朝向绝缘部211的表面与凹槽211a的底壁2111的距离L的差值小于1mm时,延伸部222受到挤压程度太小,延伸部222的弯曲度太小,延伸部222中的相邻层之间的空隙变化不大。而当延伸部222的延伸长度与主体部221上朝向绝缘部211的表面与凹槽211a的底壁2111的距离L的差值大于20mm时,延伸部222的延伸长度过大,会影响电极组件22与盖板21的装配。
根据本申请的一个实施例,可选地,请参见图9A-图9C,图9A为本申请另一个实施例的盖板21的爆炸图,图9B为图9A中Q处的局部放大图,图9C为图9A中绝缘部211的俯视图,其中示出了凹槽211a上和延伸部222抵接的部分2112。盖板21上可以设置有泄压机构212,绝缘部211设置有排气孔211c,排气孔211c与盖板21上的泄压机构212连通,凹槽211a上和延伸部222抵接的部分2112与排气孔211c错开。在该实施例中,盖板21上设置有泄压机构212,泄压机构212可以采用诸如防爆阀、气阀、泄压阀或安全阀等的形式,本申请实施例对此并不限定。在绝缘部211上可以形成有用于将壳体23内的气体排至泄压机构212处的排气孔211c,排气孔211c可以设置在绝缘部211上与泄压机构212对应的位置以直接连通泄压机构212;不限地,也可以设置在其他的位置并另设排气通道以连通排气孔211c和泄压机构212。优选地,可以将排气孔211c设置于绝缘部211上与延伸部222抵接区域错开的区域,这样,可以避免延伸部222的端部抵接凹槽211a的底壁时遮盖住排气孔211c,保证排气通畅,提高电池的安全性。
根据本申请的一个实施例,可选地,请参见图9C,沿绝缘部211 的宽度方向,排气孔211c设置于凹槽211a上和延伸部222抵接的部分2112的一侧或两侧。绝缘部211的宽度方向与电池单体20的宽度方向即y方向一致。排气孔211c设置于凹槽211a上和延伸部222抵接的部分2112的一侧或两侧,如图9C,将排气孔211c设置在绝缘部211沿宽度方向的两端,将设有排气孔211c的两端的中间区域预留以抵接延伸部222,这样,可以降低延伸部222遮盖住排气孔211c的概率,并使排气孔211c与泄压机构212的距离尽量减小,以改善排气效果。预留的抵接区域可以如图中示出的阴影部分,沿绝缘部211的宽度方向,阴影部分可以避开注液孔设置以避免干扰注液。沿绝缘部211的长度方向,阴影部分还需要避开绝缘部211上对应转接片的位置(图中未示出),以避免干扰转接片的安装。
根据本申请的一个实施例,可选地,请参见图10A和图10B,图10A为本申请一个实施例的电极组件22与盖板21进行装配的示意图,图10B为图10A中M处的局部放大图。绝缘部211包括有向主体部221延伸形成的凸缘211b,延伸部222设置有与凸缘211b对应的避让槽222a,凸缘211b置于避让槽222a中。泄压机构212通常设置于两极耳之间,以使泄压机构212排气过程不受极耳的干扰。将延伸部222设置于两极耳之间即泄压机构212的下方时,可以使绝缘部211在对应泄压机构212的区域形成向主体部221凸出的凸缘211b。具体地,凸缘211b可以为实心结构,用于抵接电极组件22,以增加电极组件22在壳体23中的稳定性,降低其松动晃动的概率。凸缘211b也可以为空心结构,具体地,凸缘211b的截面形状可以为“口”字形或倒置的“几”字形。此外,在延伸部222与凸缘211b对应的位置,还可以设置有避让槽222a,并使凸缘211b伸入避让槽222a中,这样,可以避免凸缘211b与延伸部222的相互过度挤压、产生干扰。在绝缘部211沿x方向的两端还可以设置向主体部221凸出形成的第一凸出部211d和第二凸出部211e。第一凸出部211d和第二凸出部211e分别用于在绝缘部211两端的位置与主体部221抵接,可以减少电极组件22在装配后松动的情况。
根据本申请的一个实施例,可选地,请继续参见图10B,避让槽222a的深度小于或等于延伸部222的延伸长度。避让槽222a的深度是指 避让槽222a沿z方向的深度,避让槽222a的深度小于或等于延伸部222的延伸长度,使凸缘211b不与主体部221抵接,而是与延伸部222抵接。使延伸部222与凸缘211b抵接也可以使得延伸部222产生一定的弯折,最终使得延伸部222内部膜间的空隙呈不规则的弯曲状,空隙变小。能够促进毛细现象的发生,有利于电解液的吸收。
根据本申请的一个实施例,可选地,请参见图11A和图11B,图11A为本申请又一个实施例的盖板的爆炸图,图11B为图11A中G处的局部放大图。如图11A,凸缘211b位于绝缘部211上与泄压机构212对应的位置,并且,凸缘211b为与泄压机构212连通的中空结构,沿盖板21的宽度方向,排气孔211c设置于凸缘211b的两端。使凸缘211b形成与泄压机构212连通的中空结构以作为排气通道211f,排气通道211f与泄压机构212连通,凸缘211b上可以设置有排气孔211c以连通壳体23的内部,优选地,可以在凸缘211b的两端设置排气孔211c,这样,可以降低延伸部222遮挡排气孔211c的概率,以提高排气的通畅程度。
根据本申请的一个实施例,可选地,请参见图12,图12为本申请一个实施例的电极组件22的卷绕结构的示意图。电极组件22还包括从主体部221延伸出来的极耳223,极耳223和延伸部222位于主体部221的同一侧,极耳223与延伸部222错位设置。这里的极耳223与延伸部222错位设置,是指极耳223沿y方向的投影和延伸部222沿y方向的投影错位,其中y方向与主体部221的宽度方向相同。极耳223具有第一极耳223a和第二极耳223b,第一极耳223a和第二极耳223b分别从第一极片221b、第二极片221c延伸出来。将隔膜221a延伸出的延伸部222与第一极耳223a和第二极耳223b错位设置,可以使延伸部222与第一极耳223a或第二极耳223b不完全重合,这样可以减少延伸部222对第一极耳223或第二极耳223b折叠时的干涉;也可以使延伸部222与第一极耳223a或第二极耳223b完全不重合,即延伸部222与第一极耳223a和第二极耳223b之间预留有空隙,这样,可以避免卷绕后延伸部222与第一极耳223a和第二极耳223b发生重合、相互干扰。这样,当第一极耳223a和第二极耳223b与集流构件进行焊接时,可以避免烧伤延伸部222。
根据本申请的一个实施例,可选地,请参见图13A和图13B,图13A为本申请一个实施例的电极组件22的结构示意图,图13B为图13A中N处的局部放大图。如图13A,极耳223和延伸部222之间形成有错位槽224。延伸部222与第一极耳223a和第二极耳223b的错位设置,可以使延伸部222与第一极耳223a和第二极耳223b之间形成错位槽224。错位槽224是指当极耳223和延伸部222位于主体部221的同一侧时,在极耳223沿y方向的投影和延伸部222沿y方向的投影之间预留有空隙,空隙形成了错位槽224。这样,可以避免由于卷绕的过程中极耳223的多层结构错位而导致的延伸部222与极耳223重叠,进一步避免延伸部222对折极耳223形成干扰或极耳223焊接时对延伸部222的结构造成损坏。由于错位槽224是用于降低极耳223错位与延伸部222的相互干涉的,因此,错位槽224可能存在有部分的极耳223或延伸部222不规律地突出于侧壁。
根据本申请的一个实施例,可选地,请参见图13B,错位槽224的宽度W为3-20mm。错位槽224的宽度W是指极耳223沿y方向的投影和延伸部222沿y方向的投影之间预留有空隙的大小,也就是第一极耳223a和第二极耳223b与延伸部222沿y方向的投影之间的距离。当错位槽224的宽度W小于3mm时,第一极耳223a和第二极耳223b与延伸部222之间的间隙太小,第一极耳223a和第二极耳223b焊接时容易对延伸部222的结构造成损坏。当错位槽224的宽度W大于20mm时,会造成凹槽211a中较大的空间没有设置延伸部222,影响电解液的吸收效率,不利于电解液的吸收。
根据本申请的一个实施例,可选地,请继续参见图13A和图13B,电极组件23还包括从主体部221延伸出来的极耳223,极耳223包括极性不同的第一极耳223a和第二极耳223b,第一极耳223a和第二极耳223b设置于主体部221的同一侧,延伸部222位于第一极耳223a和第二极耳223b之间。第一极耳223a可以和第二极耳223b的极性相反。例如,当第一极耳223a为正极极耳时,第二极耳223b为负极极耳。一个或多个电极组件22的第一极耳223a通过一个集流构件与一个电极端子连接,一个或多个电极组件22的第二极耳223b通过另一个集流构件与另一个电极端子连接。 可以将第一极耳223a和第二极耳223b设置于主体部221的同一侧,延伸部222的数量可以是一个或多个,多个延伸部222可以设置在第一极耳223a和/或第二极耳223b的一侧,也可以分别设置在第一极耳223a和/或第二极耳223b的两侧,优选地,延伸部222可以设置在第一极耳223a和第二极耳223b之间,一方面,第一极耳223a和第二极耳223b之间的空间较大,将延伸部222设置于此,可以使得延伸部222在沿x方向上具有较大的长度,吸收电解液的效果较好;另一方面,设置于第一极耳223a和第二极耳223b之间的延伸部222与电极组件22的中心距离较近,有利于延伸部222将电解液吸收至电极组件22的中心。在另一些实施例中,第一极耳223a和第二极耳223b可以分别设置于所述主体部221的两侧,延伸部222的数量为多个,分别设置在第一极耳223a和第二极耳223b的一侧或两侧。
本申请的一个实施例还提供一种电池100,该电池100包括至少一个前述各实施例中的电池单体20。关于电池100中各部件的描述可以参见前述各实施例,为了简洁,在此不再赘述。
本申请的一个实施例还提供了一种用电装置,该用电装置包括前述实施例中的电池100。可选地,用电装置可以为车辆1、船舶或航天器等。
上文描述了本申请实施例的电池单体、电池和用电装置,以下说明本申请实施例的制备电池单体的方法和装置,其中未详细描述的部分可参见前述各实施例。
图14所示为本申请一个实施例的制备电池的方法300的示意性流程图。如图14所示,该方法300包括:
S310,提供盖板21,该盖板21内表面具有绝缘部211,该绝缘部211内表面设置有凹槽211a;
S320,提供电极组件22,该电极组件22包括主体部221,该主体部221包括隔膜221a和从隔膜221a延伸出的至少一个延伸部222;
S330,将延伸部222置于凹槽211a,使该凹槽211a容纳延伸部222。
图15所示为本申请一个实施例的制备电池的装置400的示意性框 图。如图15所示,制备电池的装置400包括:提供模块410和安装模块420。
提供模块410,用于:提供盖板21,该盖板21内表面具有绝缘部211,该绝缘部211内表面设置有凹槽211a;提供电极组件22,该电极组件22包括主体部221,该主体部221包括隔膜221a和从隔膜221a延伸出的至少一个延伸部222;
安装模块420,用于将延伸部222置于凹槽211a,使该凹槽211a容纳延伸部222。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (17)

  1. 一种电池单体,包括:
    盖板,所述盖板内表面具有绝缘部;和
    电极组件,其包括主体部,所述主体部包括隔膜;
    其中,
    所述绝缘部内表面设置有凹槽,所述凹槽能够容纳电解液,
    所述电极组件还包括从所述隔膜延伸出的至少一个延伸部,所述延伸部至少部分位于所述凹槽中以吸收所述凹槽中的电解液。
  2. 根据权利要求1所述的电池单体,其中,所述延伸部的端部与所述凹槽的底壁抵接。
  3. 根据权利要求1-2中任一项所述的电池单体,其中,所述延伸部的延伸长度大于所述主体部上朝向所述绝缘部的表面与所述凹槽的底壁的距离。
  4. 根据权利要求3所述的电池单体,其中,所述延伸部的延伸长度比所述主体部上朝向所述绝缘部的表面与所述凹槽的底壁的距离大1-20mm。
  5. 根据权利要求1-4中任一项所述的电池单体,其中,所述盖板设置有泄压机构,所述绝缘部设置有排气孔,所述排气孔与所述泄压机构连通,所述凹槽上和所述延伸部抵接的部分与所述排气孔错开。
  6. 根据权利要求5所述的电池单体,沿所述绝缘部的宽度方向,所述排气孔设置于所述凹槽上和所述延伸部抵接的部分的一侧或两侧。
  7. 根据权利要求1-6中任一项所述的电池单体,其中,所述绝缘部包括有向所述主体部延伸形成的凸缘,所述延伸部设置有与所述凸缘对应的避让槽,所述凸缘置于所述避让槽中。
  8. 根据权利要求7所述的电池单体,其中,所述避让槽的深度小于或 等于所述延伸部的延伸长度。
  9. 根据权利要求7-8中任一项所述的电池单体,其特征在于,所述凸缘位于所述绝缘部上与所述泄压机构对应的位置,并且,所述凸缘为与所述泄压机构连通的中空结构,沿所述盖板的宽度方向,所述排气孔设置于所述凸缘的两端。
  10. 根据权利要求1-9中任一项所述的电池单体,其中,所述电极组件还包括从所述主体部延伸出来的极耳,所述极耳与所述延伸部位于所述主体部的同一侧,所述极耳与所述延伸部错位设置。
  11. 根据权利要求10所述的电池单体,其中,所述极耳和所述延伸部之间形成有错位槽。
  12. 根据权利要求11所述的电池单体,其中,所述错位槽的宽度为3-20mm。
  13. 根据权利要求1-12中任一项所述的电池单体,其中,所述电极组件还包括从所述主体部延伸出来的极耳,所述极耳包括极性不同的第一极耳和第二极耳,所述第一极耳和第二极耳设置于所述主体部的同一侧,所述延伸部位于所述第一极耳和所述第二极耳之间。
  14. 一种电池,包括:至少一个根据权利要求1至13中任一项所述的电池单体。
  15. 一种用电装置,包括:根据权利要求14所述的电池,其中,所述电池用于提供电能。
  16. 一种制备电池单体的方法,包括:
    提供盖板,所述盖板内表面具有绝缘部,所述绝缘部内表面设置有凹槽;
    提供电极组件,所述电极组件包括主体部,所述主体部包括隔膜和从所述隔膜延伸出的至少一个延伸部;
    将所述延伸部置于所述凹槽,使所述凹槽容纳所述延伸部。
  17. 一种制备电池单体的装置,包括:
    提供模块,用于:
    提供盖板,所述盖板内表面具有绝缘部,所述绝缘部内表面设置有凹槽;
    提供电极组件,所述电极组件包括主体部,所述主体部包括隔膜和从所述隔膜延伸出的至少一个延伸部;
    安装模块,用于将所述延伸部置于所述凹槽,使所述凹槽容纳所述延伸部。
PCT/CN2021/090337 2021-04-27 2021-04-27 电池单体、电池、用电装置、制备电池单体的方法和装置 WO2022226806A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180070816.XA CN116491019A (zh) 2021-04-27 2021-04-27 电池单体、电池、用电装置、制备电池单体的方法和装置
PCT/CN2021/090337 WO2022226806A1 (zh) 2021-04-27 2021-04-27 电池单体、电池、用电装置、制备电池单体的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/090337 WO2022226806A1 (zh) 2021-04-27 2021-04-27 电池单体、电池、用电装置、制备电池单体的方法和装置

Publications (1)

Publication Number Publication Date
WO2022226806A1 true WO2022226806A1 (zh) 2022-11-03

Family

ID=83847701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/090337 WO2022226806A1 (zh) 2021-04-27 2021-04-27 电池单体、电池、用电装置、制备电池单体的方法和装置

Country Status (2)

Country Link
CN (1) CN116491019A (zh)
WO (1) WO2022226806A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115764150A (zh) * 2022-12-09 2023-03-07 厦门海辰储能科技股份有限公司 储能装置及用电设备
CN115986284A (zh) * 2023-01-18 2023-04-18 宁德新能源科技有限公司 电池和用电设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004139843A (ja) * 2002-10-17 2004-05-13 Fdk Corp アルカリ電池
CN1575526A (zh) * 2001-10-26 2005-02-02 永备电池有限公司 具有加强隔板的电化学电池
JP2018006120A (ja) * 2016-06-30 2018-01-11 株式会社豊田自動織機 蓄電装置
CN110797503A (zh) * 2018-08-01 2020-02-14 宁德时代新能源科技股份有限公司 二次电池
CN110797478A (zh) * 2018-08-01 2020-02-14 宁德时代新能源科技股份有限公司 二次电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1575526A (zh) * 2001-10-26 2005-02-02 永备电池有限公司 具有加强隔板的电化学电池
JP2004139843A (ja) * 2002-10-17 2004-05-13 Fdk Corp アルカリ電池
JP2018006120A (ja) * 2016-06-30 2018-01-11 株式会社豊田自動織機 蓄電装置
CN110797503A (zh) * 2018-08-01 2020-02-14 宁德时代新能源科技股份有限公司 二次电池
CN110797478A (zh) * 2018-08-01 2020-02-14 宁德时代新能源科技股份有限公司 二次电池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115764150A (zh) * 2022-12-09 2023-03-07 厦门海辰储能科技股份有限公司 储能装置及用电设备
CN115764150B (zh) * 2022-12-09 2024-02-23 厦门海辰储能科技股份有限公司 储能装置及用电设备
CN115986284A (zh) * 2023-01-18 2023-04-18 宁德新能源科技有限公司 电池和用电设备

Also Published As

Publication number Publication date
CN116491019A (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
CN216085053U (zh) 电池和用电设备
WO2022226806A1 (zh) 电池单体、电池、用电装置、制备电池单体的方法和装置
CN216250906U (zh) 电池单体、电池和用电设备
CN115425372B (zh) 电极极片、电极组件、电池单体、电池和用电设备
CN213692281U (zh) 电池单体、电池以及用电装置
CN219303812U (zh) 电池单体、电池及用电装置
WO2024021293A1 (zh) 热管理部件、电池以及用电装置
CN216872133U (zh) 一种电池和用电设备
US20230335845A1 (en) Battery, power consuming apparatus, and method and apparatus for manufacturing battery
CN218548747U (zh) 绝缘膜、电池和用电装置
CN217468711U (zh) 电极组件、电池单体、电池及用电装置
JP7506172B2 (ja) 電池の筐体、電池、電力使用機器、電池を製造する方法と機器
WO2023138416A1 (zh) 电池单体及其制作方法、电池、用电装置
JP7484016B2 (ja) 電池、電力消費機器、電池を製造する方法と機器
US20230026926A1 (en) Battery, power consumption device, and method and device for producing battery
CN218498319U (zh) 电池单体、电池及用电设备
CN219123424U (zh) 电池单体、电池、用电设备和焊接设备
CN220984663U (zh) 端盖组件、电池单体、电池以及用电装置
EP4106087B1 (en) Battery cell, battery and power-consuming device
CN221327910U (zh) 外壳组件、电池单体、电池和用电装置
CN218827694U (zh) 电池单体的转接部件、电池单体、电池及用电装置
WO2024031353A1 (zh) 极片、电极组件、电池单体、电池及用电设备
CN219873752U (zh) 电池单体、电池及用电装置
CN220934350U (zh) 电池单体和具有其的电池及用电设备
CN220774454U (zh) 电池单体、电池及用电设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21938292

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180070816.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21938292

Country of ref document: EP

Kind code of ref document: A1