WO2022226774A1 - 一种用于研究波浪下海床底部海底隧道特性的实验装置和实验方法 - Google Patents

一种用于研究波浪下海床底部海底隧道特性的实验装置和实验方法 Download PDF

Info

Publication number
WO2022226774A1
WO2022226774A1 PCT/CN2021/090213 CN2021090213W WO2022226774A1 WO 2022226774 A1 WO2022226774 A1 WO 2022226774A1 CN 2021090213 W CN2021090213 W CN 2021090213W WO 2022226774 A1 WO2022226774 A1 WO 2022226774A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave
test system
making
water level
main control
Prior art date
Application number
PCT/CN2021/090213
Other languages
English (en)
French (fr)
Inventor
武科
罗浩天
郝冬雪
徐嘉祥
陈榕
邢志豪
孙纪正
Original Assignee
山东大学
东北电力大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学, 东北电力大学 filed Critical 山东大学
Publication of WO2022226774A1 publication Critical patent/WO2022226774A1/zh
Priority to US18/460,357 priority Critical patent/US11959890B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M10/00Hydrodynamic testing; Arrangements in or on ship-testing tanks or water tunnels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/56Investigating resistance to wear or abrasion
    • G01N3/567Investigating resistance to wear or abrasion by submitting the specimen to the action of a fluid or of a fluidised material, e.g. cavitation, jet abrasion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/082Investigating permeability by forcing a fluid through a sample
    • G01N15/0826Investigating permeability by forcing a fluid through a sample and measuring fluid flow rate, i.e. permeation rate or pressure change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/0005Repeated or cyclic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0042Pneumatic or hydraulic means
    • G01N2203/0048Hydraulic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0676Force, weight, load, energy, speed or acceleration

Definitions

  • the invention belongs to the technical field of marine geotechnical engineering experiments, in particular to an experimental device and an experimental method for studying the characteristics of a submarine tunnel at the bottom of the seabed under waves.
  • a submarine tunnel test device is generally constructed to simulate the characteristics of the submarine tunnel.
  • the conventional subsea tunnel test device in the prior art is large in size, high in energy consumption, and has less simulation of wave environment, especially in the study of nonlinear complex waves, and less consideration is given to the joint action of seabed and waves. Therefore, in view of the shortcomings of the existing submarine tunnel test device, the present invention proposes an experimental device for studying the characteristics of the submarine tunnel at the bottom of the seabed under waves, and then discusses its operation method in detail.
  • the present invention provides an experimental device for studying the characteristics of the submarine tunnel at the bottom of the seabed under waves, which can simulate the influence of nonlinear and complex waves on the submarine tunnel under small experimental equipment, At the same time, the interaction between the wave and the seabed is considered, and the water level can be adjusted at the same time.
  • the present invention adopts the following technical solutions:
  • An experimental device for studying the characteristics of a submarine tunnel at the bottom of the seabed under waves including a main control system, a wave-making test system, a geotechnical confining pressure test system and a water level adjustment test system, wherein the bottom of the geotechnical confining pressure test system and the water level adjustment test
  • the bottom of the wave-making test system is connected with the geotechnical confining pressure test system, and the wave-making test system, the geotechnical confining pressure test system and the water level adjustment test system are all electrically connected with the main control system.
  • the wave-making test system includes symmetrically arranged glass plates, a first bottom plate and a second bottom plate are respectively provided on the left and right sides between the two opposite glass plates, and the wave-making test system is connected to the geotechnical
  • the confining pressure test system is isolated by the first bottom plate and the second bottom plate;
  • a telescopic motor spring is arranged at the bottom of the left side between the two glass plates, the top of the telescopic motor spring is connected with the wave-making bottom plate, and the wave-making bottom plate is The top is connected with the wave-making box, and the top of the wave-making box is connected with the wave-making upper plate through the rotating shaft;
  • the left side of the upper end of the glass plate is provided with a first water inlet, and the glass plate is vertically embedded with a pressure plate. sense meter.
  • the wave-making base plate is in an inverted L shape, and a vertical baffle and a horizontal baffle are arranged on the right side of the upper end of the glass plate, and the vertical baffle and the horizontal baffle are arranged on the second base plate at unequal intervals.
  • the end of the second bottom plate is provided with a wave-absorbing slope with tooth-like protrusions.
  • the water level adjustment test system includes a water tank arranged at the bottom, a second water inlet is arranged on the water tank, a siphon is vertically arranged on the right side of the water tank through a siphon fixing frame, and the water inlet at the right end of the siphon It is located in the lower part of the water tank, the drain port at the left end of the siphon is located in the upper part of the water tank, the siphon pipe on the left side is evenly provided with a plurality of water outlets along the height direction, and the water outlets are all provided with solenoid valves, and the solenoid valves are all Electrical connection with the main control system.
  • the geotechnical confining pressure test system includes a test assembly block disposed above the water tank, a test tunnel is disposed in the center of the test assembly block, and steel reaction forces are respectively set on the left and right sides of the test assembly block A rack and a small hydraulic press, the bottom of the small hydraulic press is provided with a counterweight.
  • a water level detector is vertically disposed on the test assembly block, and a plurality of small hydraulic presses are evenly disposed on the right end of the test assembly block along the height direction.
  • the main control system includes a controller, the wave-making test system, the geotechnical confining pressure test system and the water level adjustment test system are all electrically connected to a controller, and the controller can control the wave-making test system, The operation of the geotechnical confining pressure test system and the water level adjustment test system, and the equipment can be self-checked.
  • the invention also discloses an experimental method for studying the characteristics of a submarine tunnel at the bottom of the seabed under waves.
  • the experiment is carried out by using any of the above-mentioned experimental devices, which specifically includes the following steps:
  • the main control system controls the start of the geotechnical confining pressure system and the water level adjustment system at the same time, the small hydraulic press begins to apply pressure gradually, and the main control system controls the solenoid valves at the water outlets of multiple siphon pipes to open at the same time.
  • the The small hydraulic press maintains the corresponding pressure.
  • the main control system controls the solenoid valve at the water outlet of the siphon to close;
  • the main control system controls to open the first water inlet of the wave-making test system. After reaching the predetermined water level through the pressure sensor, it controls to close the first water inlet.
  • the main control system drives the wave-making box to move up and down by controlling the telescopic motor spring.
  • the wave-making upper plate rotates around the axis, and the nonlinear complex waveform is simulated by two different wave-making methods.
  • the wave quality and condition are detected by the pressure sensor. When the wave passes through the vertical baffle and the horizontal baffle, turbulence will occur. Combined with a wave-absorbing slope with tooth-like protrusions, the waves are reduced, so that the reflected waves do not affect the subsequent tests.
  • the invention discloses an experimental device for studying the characteristics of a submarine tunnel at the bottom of the seabed under waves.
  • the experimental device can not only simulate the situation of a submarine tunnel under nonlinear and complex waves under a small experimental device, but also consider the seabed and waves. At the same time, it can adjust different water levels and different soil pressures, with perfect functions, and effectively explore the impact of various aspects on the submarine tunnel.
  • the experimental device also has the advantages of less energy consumption and environmental protection (for example, using a siphon, no external force such as an additional water pump is required).
  • Fig. 1 the front view of a kind of experimental device used for studying the characteristics of the submarine tunnel at the bottom of the seabed under waves according to Embodiment 1 of the present utility model;
  • Figure 2 a top view of an experimental device for studying the characteristics of a submarine tunnel at the bottom of the seabed under waves according to Embodiment 1 of the present utility model;
  • Figure 3 a front view of the detail of the vertical baffle according to Embodiment 1 of the present invention.
  • Figure 4 a detailed front view of the horizontal baffle according to Embodiment 1 of the present utility model
  • Fig. 5 The flow chart of the experimental method for studying the characteristics of the submarine tunnel at the bottom of the seabed under waves according to Embodiment 2 of the present utility model;
  • an experimental device used to study the characteristics of submarine tunnels at the bottom of the seabed under waves includes a main control system, a wave-making test system, a rock-soil confining pressure test system and a water level adjustment test system.
  • the bottom of the pressure test system is connected with the water level adjustment test system, and the bottom of the wave-making test system is connected with the geotechnical confining pressure test system.
  • the wave making system includes a first water inlet 1, a glass plate 3, a pressure sensor 2, a first base plate 4, a second base plate 01, a wave making upper plate 5, a wave making box 6, a wave making base plate 7, a telescopic motor spring 9,
  • the wave test system is isolated from the geotechnical confining pressure test system.
  • the wave-making upper plate 5 is installed on the upper part of the wave-making box 6, and the wave-making box 6 is installed on the wave-making bottom plate 7.
  • the wave-making bottom plate 7 is L-shaped, which can ensure the wave-making time. Liquid sealing, the wave-making base plate 7 is installed on the telescopic motor spring 9, the vertical baffle 15 and the horizontal baffle 25 are installed on the second base plate 17 at unequal intervals, and the wave-absorbing slope 16 is installed at the end of the second base plate 17;
  • the geotechnical confining pressure system includes a test assembly block 12, a test tunnel 11, a small hydraulic press 18, a steel reaction frame 8 and a counterweight 24, wherein the test assembly block 12 is installed on the water tank 13, and the test tunnel 11 is placed on the test assembly block In the center of 12, the small hydraulic press 18 and the steel reaction force frame 8 are distributed and fixed on both sides of the test assembly block 12, and the counterweight block 24 is fixed at the lower part of the small hydraulic press 18;
  • the water level adjustment test system includes a water level detector 10, a water tank 13, a second water inlet 14, a siphon 19, a siphon outlet 20, a siphon holder 21, a siphon drain 22 and a siphon inlet 23, wherein the water level detector 10 is vertically pendulum It is placed at the corner of the test assembly block 12.
  • the siphon water inlet 23 and the siphon water outlet 22 are installed on the upper part of the water tank 13.
  • the siphon 19 and the water level detector 10 are diagonally opposite to each other.
  • the siphon fixing frame 21 fixes the siphon 19. On the siphon 19, the opening and closing are adjusted with the main control system.
  • the main control system opens the first water inlet 1 and closes the first water inlet 1 after sensing the predetermined water level through the pressure sensor 2 .
  • start to make waves drive the wave box 6 to move up and down through the telescopic motor spring 9, and rotate around the axis through the wave-making upper plate 5.
  • the nonlinear and complex waveforms can be simulated by two different wave-making methods, which are detected by the pressure sensor 2.
  • the waves passing through the vertical baffles 15 and the horizontal baffles 25 will cause turbulence and other phenomena.
  • the waves will be reduced, so that the reflected waves will not affect the subsequent tests.
  • another test system can be operated under the operation of any test system.
  • the geotechnical confining pressure test system can be changed to carry out relevant test analysis.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Fluid Mechanics (AREA)
  • Dispersion Chemistry (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明属于海洋岩土工程实验技术领域,尤其涉及一种用于研究波浪下海床底部海底隧道特性的实验装置,包括主控系统、造波试验系统、岩土围压试验系统与水位调节试验系统,其中岩土围压试验系统底部与水位调节试验系统相连,造波试验系统底部与岩土围压试验系统相连,造波试验系统、岩土围压试验系统与水位调节试验系统均与主控系统电联接。该实验装置不仅可以在较小的实验装置下,模拟非线性复杂波浪下海底隧道情况,还可以考虑海床与波浪的共同作用,同时可以调节不同水位,不同土压,功能完善,有效探究多方面对海底隧道的影响。

Description

一种用于研究波浪下海床底部海底隧道特性的实验装置和实验方法 技术领域
本发明属于海洋岩土工程实验技术领域,尤其涉及一种用于研究波浪下海床底部海底隧道特性的实验装置和实验方法。
背景技术
目前,随着海洋资源与交通的开发,海底隧道的建设成为新的热点。然而作为海底隧道,不但具有承载上部荷载、静态抗渗性等常规隧道的要求,还需要时时刻刻承受上部波浪动荷载的周期性冲击,导致海床的承载力变化,同时水压的变化也会使海浪对海底隧道的渗透作用变化明显。为了便于对海底隧道的特性进行研究,一般会构建海底隧道试验装置,以实现对海底隧道特性的模拟研究。
现有技术中常规的海底隧道试验装置体型大,耗能高,对波浪环境的模拟较少,特别是在非线性复杂波浪下的研究,同时较少的考虑海床与波浪共同作用。为此,针对现有海底隧道试验装置的不足,本发明提出了一种用于研究波浪下海床底部海底隧道特性的实验装置,进而详细论述了其运行方法。
发明内容
为解决上述现有技术中存在的问题,本发明提供了一种用于研究波浪下海床底部海底隧道特性的实验装置,能够在较小的试验设备下模拟非线性复杂波浪对海底隧道的影响,同时考虑了波浪与海床的互相作用,并可同时调节水位情况。
为实现上述目的,本发明采用如下技术方案:
一种用于研究波浪下海床底部海底隧道特性的实验装置,包括主控系统、造波试验系统、岩土围压试验系统与水位调节试验系统,其中岩土围压试验系统底部与水位调节试验系统相连,造波试验系统底部与岩土围压试验系统相连,造波试验系统、岩土围压试验系统与水位调节试验系统均与主控系统电联接。
优选的,所述造波试验系统包括对称设置的玻璃板,在相对的两玻璃板之间的左、右两侧分别设置有第一底板和第二底板,所述造波试验系统与岩土围压试验系统通过第一底板和第二底板进行隔离;在两玻璃板之间左侧的底部设置有伸缩电机弹簧,所述伸缩电机弹簧的顶端与造波底板连接,所述造波底板的顶端与造波箱连接,所述造波箱的顶端通过转轴转动连接有造波上板;所述玻璃板上端的左侧设置有第一进水口,所述玻璃板上竖向嵌设有压感计。
优选的,所述造波底板呈倒L型,所述玻璃板上端的右侧设置有竖直挡板和水平挡板,所述竖直挡板和水平挡板非等间距设置在第二底板上,所述第二底板末端设置有带有齿状凸起的消波坡。
优选的,所述水位调节试验系统包括设置在底部的水箱,所述水箱上设置有第二进水口,所述水箱的右侧通过虹吸管固定架竖向设置有虹吸管,所述虹吸管右端的进水口位于水箱下部,所述虹吸管左端的排水口位于水箱上部,所述左侧的虹吸管上沿高度方向均匀设置有多个出水口,所述出水口处均设置有电磁阀,且所述电磁阀均与主控系统电联接。
优选的,所述岩土围压试验系统包括设置在水箱上方的试验装配块,所述试验装配块的中心处设置有试验隧洞,所述试验装配块的左、右两侧分别设置钢反力架和小型液压机,所述小型液压机的底部设置有配重块。
优选的,所述试验装配块上竖向设置有水位检测计,所述试验装配块的右端沿高度方向均匀设置有多个小型液压机。
优选的,所述主控系统包括控制器,所述造波试验系统、岩土围压试验系统与水位调节试验系统均与控制器电联接,所述控制器可以控制所述造波试验系统、岩土围压试验系统与水位调节试验系统的运行,并且能对设备进行自检。
本发明还公开了一种研究波浪下海床底部海底隧道特性的实验方法,利用上述任一所述的实验装置进行实验,具体包括以下步骤:
(1)先将试验隧洞与试验装配块放置完毕,然后通过对主控系统设定相应任务,主控系统对任务进行分析规划,对设备进行自检,确认设备准备充分;
(2)主控系统同时控制岩土围压系统与水位调节系统的启动,小型液压机开始逐渐施加压力,主控系统控制多个虹吸管出水口处的电磁阀同时开启, 当达到预定围压后,小型液压机维持对应压力,当水位检测计检测水位到预定水位后,主控系统控制虹吸管出水口处的电磁阀关闭;
(3)主控系统控制打开造波试验系统的第一进水口,通过压感计感应到达预定水位后,控制关闭第一进水口,主控系统通过控制伸缩电机弹簧带动造波箱上下移动,同时造波上板绕轴旋转,通过两种不同造波方式模拟出非线性复杂波形,通过压感计检测波浪质量与情况,波浪通过竖直挡板与水平挡板时会出现紊流现象,结合带有齿状凸起的消波坡将波浪消减,使反射波浪不影响后续试验。
有益效果
本发明公开了一种用于研究波浪下海床底部海底隧道特性的实验装置,该实验装置不仅可以在较小的实验装置下,模拟非线性复杂波浪下海底隧道情况,还可以考虑海床与波浪的共同作用,同时可以调节不同水位,不同土压,功能完善,有效探究多方面对海底隧道的影响。其次,该实验装置还具有耗能少、环保的优点(比如采用虹吸管,不需要额外的水泵等外力)。
附图说明
图1:本实用新型实施例1所述的一种用于研究波浪下海床底部海底隧道特性的实验装置的正面图;
图2:本实用新型实施例1所述的一种用于研究波浪下海床底部海底隧道特性的实验装置的俯视图;
图3:本实用新型实施例1所述的竖直挡板的细部正面图;
图4:本实用新型实施例1所述的水平挡板的细部正面图;
图5:本实用新型实施例2所述用于研究波浪下海床底部海底隧道特性的实验方法的流程图;
图中,1第一进水口、2压感计、3玻璃板、4第一底板、5造波上板、6造波箱、7造波底板、8钢反力架、9伸缩电机弹簧、10水位检测计、11试验隧洞、12试验装配块、13水箱、14第二进水口、15竖直挡板、16消波坡、17第二底板、18小型液压机、19虹吸管、20虹吸管出水口、21虹吸管固定架、22虹吸管排水口、23虹吸管进水口、24配重块、25水平挡板。
具体实施方式
以下,将详细地描述本发明。在进行描述之前,应当理解的是,在本说明书和所附的权利要求书中使用的术语不应解释为限制于一般含义和字典含义,而应当在允许发明人适当定义术语以进行最佳解释的原则的基础上,根据与本发明的技术方面相应的含义和概念进行解释。因此,这里提出的描述仅仅是出于举例说明目的的优选实例,并非意图限制本发明的范围,从而应当理解的是,在不偏离本发明的精神和范围的情况下,可以由其获得其他等价方式或改进方式。
以下实施例仅是作为本发明的实施方案的例子列举,并不对本发明构成任何限制,本领域技术人员可以理解在不偏离本发明的实质和构思的范围内的修改均落入本发明的保护范围。除非特别说明,以下实施例中使用的试剂和仪器均为市售可得产品。
实施例1
如图1-4所示,一种用于研究波浪下海床底部海底隧道特性的实验装置,包括主控系统、造波试验系统、岩土围压试验系统与水位调节试验系统,其中岩土围压试验系统底部与水位调节试验系统相连,造波试验系统底部与岩土围压试验系统相连。
造波系统包括第一进水口1、玻璃板3、压感计2、第一底板4、第二底板01、造波上板5、造波箱6、造波底板7、伸缩电机弹簧9、竖直挡板15、水平挡板25、消波坡16,其中第一进水口1位于玻璃板3上部,压感计2嵌入在玻璃板3中,第一底板4与第二底板17将造波试验系统与岩土围压试验系统隔离,造波上板5安装在造波箱6上部,造波箱6安装在造波底板7上,造波底板7呈L型,可保证造波时液体密封,造波底板7安装在伸缩电机弹簧9上,竖直挡板15与水平挡板25非等间距安装在第二底板17上,消波坡16安装在第二底板17末端;
岩土围压系统包括试验装配块12、试验隧洞11、小型液压机18、钢反力架8和配重块24,其中试验装配块12安装在水箱13之上,试验隧洞11安置在试验装配块12中心,小型液压机18与钢反力架8分布在试验装配块12两边 固定,配重块24固定于小型液压机18下部;
水位调节试验系统包括水位检测计10、水箱13、第二进水口14、虹吸管19、虹吸管出水口20、虹吸管固定架21、虹吸管排水口22和虹吸管进水口23,其中水位检测计10竖直摆放于试验装配块12角落处,虹吸管进水口23与虹吸管排水口22安装在水箱13上部,虹吸管19与水位检测计10为斜对面,虹吸管固定架21将虹吸管19固定,虹吸管出水口20分布于虹吸管19上,随着主控系统调节开启与闭合。
实施例2
一种用于研究波浪下海床底部海底隧道特性的实验方法,利用实施例1所述的试验装置,运行流程如图5所示,先将试验隧洞11与试验装配块12放置完毕,然后通过对主控系统设定相应任务,主控系统对任务进行分析规划,对设备进行自检,确认设备准备充分后,同时进行岩土围压系统与水位调节系统的启动,小型液压机18开始逐渐施加适当压力,对应位置的虹吸管出水口20(从下至上多个同时)开启,当达到预定围压后,小型液压机18维持对应压力,当水位检测计10检测水位到预定水位后,虹吸管出水口20关闭。
随后主控系统打开第一进水口1,通过压感计2感应到达预定水位后,关闭第一进水口1。开始造波,通过伸缩电机弹簧9带动造波箱6上下移动,同时通过造波上板5绕轴旋转,通过两种不同方式造波方法可模拟出非线性复杂波形,通过压感计2检测波浪质量与情况,波浪通过竖直挡板15与水平挡板25会出现紊流等现象,结合带有齿状的消波坡16将波浪消减,使反射波浪不影响后续试验。同时可在任一试验系统运作下进行另一试验系统运作,列如在造波试验系统下,改变岩土围压试验系统,进行相关试验分析。
以上实施例仅用以说明本发明的技术方案,而非对其进行限制;尽管参照前述实施例对本发明进行了详细的说明,对于本领域的普通技术人员来说,依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明所要求保护的技术方案的精神和范围。

Claims (8)

  1. 一种用于研究波浪下海床底部海底隧道特性的实验装置,其特征在于:包括主控系统、造波试验系统、岩土围压试验系统与水位调节试验系统,其中岩土围压试验系统底部与水位调节试验系统相连,造波试验系统底部与岩土围压试验系统相连,造波试验系统、岩土围压试验系统与水位调节试验系统均与主控系统电联接。
  2. 根据权利要求1所述的用于研究波浪下海床底部海底隧道特性的实验装置,其特征在于,所述造波试验系统包括对称设置的玻璃板,在相对的两玻璃板之间的左、右两侧分别设置有第一底板和第二底板,所述造波试验系统与岩土围压试验系统通过第一底板和第二底板进行隔离;在两玻璃板之间左侧的底部设置有伸缩电机弹簧,所述伸缩电机弹簧的顶端与造波底板连接,所述造波底板的顶端与造波箱连接,所述造波箱的顶端通过转轴转动连接有造波上板;所述玻璃板上端的左侧设置有第一进水口,所述玻璃板上竖向嵌设有压感计。
  3. 根据权利要求2所述的用于研究波浪下海床底部海底隧道特性的实验装置,其特征在于,所述造波底板呈倒L型,所述玻璃板上端的右侧设置有竖直挡板和水平挡板,所述竖直挡板和水平挡板非等间距设置在第二底板上,所述第二底板末端设置有带有齿状凸起的消波坡。
  4. 根据权利要求1所述的用于研究波浪下海床底部海底隧道特性的实验装置,其特征在于,所述水位调节试验系统包括设置在底部的水箱,所述水箱上设置有第二进水口,所述水箱的右侧通过虹吸管固定架竖向设置有虹吸管,所述虹吸管右端的进水口位于水箱下部,所述虹吸管左端的排水口位于水箱上部,所述左侧的虹吸管上沿高度方向均匀设置有多个出水口,所述出水口处均设置有电磁阀,且所述电磁阀均与主控系统电联接。
  5. 根据权利要求4所述的用于研究波浪下海床底部海底隧道特性的实验装置,其特征在于,所述岩土围压试验系统包括设置在水箱上方的试验装配块,所述试验装配块的中心处设置有试验隧洞,所述试验装配块的左、右两侧分别设置钢反力架和小型液压机,所述小型液压机的底部设置有配重块。
  6. 根据权利要求5所述的用于研究波浪下海床底部海底隧道特性的实验装置, 其特征在于,所述试验装配块上竖向设置有水位检测计,所述试验装配块的右端沿高度方向均匀设置有多个小型液压机。
  7. 根据权利要求1所述的用于研究波浪下海床底部海底隧道特性的实验装置,其特征在于,所述主控系统包括控制器,所述造波试验系统、岩土围压试验系统与水位调节试验系统均与控制器电联接,所述控制器可以控制所述造波试验系统、岩土围压试验系统与水位调节试验系统的运行,并且能对设备进行自检。
  8. 一种研究波浪下海床底部海底隧道特性的实验方法,其特征在于,利用权利要求1-7任一所述的实验装置进行实验,具体包括以下步骤:
    (1)先将试验隧洞与试验装配块放置完毕,然后通过对主控系统设定相应任务,主控系统对任务进行分析规划,对设备进行自检,确认设备准备充分;
    (2)主控系统同时控制岩土围压系统与水位调节系统的启动,小型液压机开始逐渐施加压力,主控系统控制多个虹吸管出水口处的电磁阀同时开启,当达到预定围压后,小型液压机维持对应压力,当水位检测计检测水位到预定水位后,主控系统控制虹吸管出水口处的电磁阀关闭;
    (3)主控系统控制打开造波试验系统的第一进水口,通过压感计感应到达预定水位后,控制关闭第一进水口,主控系统通过控制伸缩电机弹簧带动造波箱上下移动,同时造波上板绕轴旋转,通过两种不同造波方式模拟出非线性复杂波形,通过压感计检测波浪质量与情况,波浪通过竖直挡板与水平挡板时会出现紊流现象,结合带有齿状凸起的消波坡将波浪消减,使反射波浪不影响后续试验。
PCT/CN2021/090213 2021-04-26 2021-04-27 一种用于研究波浪下海床底部海底隧道特性的实验装置和实验方法 WO2022226774A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/460,357 US11959890B2 (en) 2021-04-26 2023-09-01 Experimental apparatus and experimental method for researching characteristics of subsea tunnel at bottom of seabed under wave

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110452856.2 2021-04-26
CN202110452856.2A CN113155660B (zh) 2021-04-26 2021-04-26 一种用于研究波浪下海床底部海底隧道特性的实验装置和实验方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/460,357 Continuation US11959890B2 (en) 2021-04-26 2023-09-01 Experimental apparatus and experimental method for researching characteristics of subsea tunnel at bottom of seabed under wave

Publications (1)

Publication Number Publication Date
WO2022226774A1 true WO2022226774A1 (zh) 2022-11-03

Family

ID=76870756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/090213 WO2022226774A1 (zh) 2021-04-26 2021-04-27 一种用于研究波浪下海床底部海底隧道特性的实验装置和实验方法

Country Status (3)

Country Link
US (1) US11959890B2 (zh)
CN (1) CN113155660B (zh)
WO (1) WO2022226774A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114136793B (zh) * 2021-10-19 2024-01-12 中国铁路设计集团有限公司 隧道穿越双断层的实验方法及实验装置
CN114935444B (zh) * 2022-07-25 2022-10-28 自然资源部第一海洋研究所 一种海洋数据分析实验研究震荡辅助装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000249623A (ja) * 1999-02-26 2000-09-14 Hitachi Zosen Corp 風と波の実験装置
CN106706266A (zh) * 2017-01-25 2017-05-24 浙江大学 一种模拟波浪荷载作用下海底隧道动态响应模型试验装置
CN109556826A (zh) * 2019-01-23 2019-04-02 中国工程物理研究院总体工程研究所 一种超重力场下的并行导向式波浪模拟发生装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105424466A (zh) * 2015-11-19 2016-03-23 中国石油天然气集团公司 一种评价波浪作用下砂土对埋置海底管线抗力的方法
CN107702875A (zh) * 2017-11-10 2018-02-16 福州大学 水‑海床‑海底隧道动力反应试验方法及振动台装置
CN109186937B (zh) * 2018-10-10 2023-09-12 浙江大学 超重力条件下的液压驱动式推板造波试验装置
CN111877401B (zh) * 2020-07-28 2022-03-08 杜同 一种水中交通隧道
CN111707443A (zh) * 2020-07-30 2020-09-25 青岛理工大学 一种模拟海上结构物多场耦合作用的水槽试验系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000249623A (ja) * 1999-02-26 2000-09-14 Hitachi Zosen Corp 風と波の実験装置
CN106706266A (zh) * 2017-01-25 2017-05-24 浙江大学 一种模拟波浪荷载作用下海底隧道动态响应模型试验装置
CN109556826A (zh) * 2019-01-23 2019-04-02 中国工程物理研究院总体工程研究所 一种超重力场下的并行导向式波浪模拟发生装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YING HONG-WEI , SUN-WEI, ZHU CHENG-WEI: "Experiment Research on Response of Excess Pore Pressure To Wave Around Near-Sea Excavation", ROCK AND SOIL MECHANICS, vol. 37, no. S2, 31 October 2016 (2016-10-31), pages 187 - 195, XP055980770, ISSN: 1000-7598, DOI: 10.16285/j.rsm.2016.S2.022 *

Also Published As

Publication number Publication date
US11959890B2 (en) 2024-04-16
CN113155660A (zh) 2021-07-23
CN113155660B (zh) 2022-03-29
US20230408392A1 (en) 2023-12-21

Similar Documents

Publication Publication Date Title
WO2022226774A1 (zh) 一种用于研究波浪下海床底部海底隧道特性的实验装置和实验方法
WO2022021586A1 (zh) 一种模拟海上结构物多场耦合作用的水槽试验系统
WO2022021587A1 (zh) 一种用于模拟海上风电嵌岩桩多场耦合作用的试验系统
JP3230500U (ja) 風波流動の完全連成動力の模擬実験システム
CN102794577B (zh) 一种模拟中压液体或气体环境的焊接实验舱
CN110553939B (zh) 模拟海洋多相荷载耦合作用的室内试验平台
CN104502047A (zh) 验证球形储罐抗震设计的实验装置及实验方法
CN202216883U (zh) 一种超音速气固两相流冲刷磨损试验装置
CN108180400A (zh) 一种水下气相管道泄漏与扩散实验装置
CN105758687A (zh) 一种深海沉积物原位培植及密封采样机构
CN107702875A (zh) 水‑海床‑海底隧道动力反应试验方法及振动台装置
CN107290501B (zh) 裂隙断层型地质构造内部充填介质渗透失稳突水实验装置与方法
WO2024104334A1 (zh) 一种高水压Trapdoor模型试验装置及使用方法
CN109946027A (zh) 一种盾构隧道管片接缝防水性能试验方法
CN213022171U (zh) 一种用于阀门检测的装置
CN102288506A (zh) 超音速气固两相流冲刷磨损试验装置
CN115200815A (zh) 一种海底吸力式三桶基础的动力响应测试装置及其测试方法
WO2021212951A1 (zh) 基于地质雷达的河床沉积物分布的探测装置、系统及方法
CN212674935U (zh) 一种水下灌浆质量检测试验装置
CN207456720U (zh) 水-海床-海底隧道动力反应振动台装置
CN104390863B (zh) 一种柔性防渗体接缝结构水力动态试验仪及试验方法
CN110296881A (zh) 一种适用于岩土边坡、路基路堤的土体模型试验系统及方法
CN104458556A (zh) 一种混凝土硫酸盐腐蚀的试验装置及试验方法
CN115083255A (zh) 一种建筑排水管道系统水、气流动状态观察演示装置
CN204287005U (zh) 一种混凝土硫酸盐腐蚀的试验装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21938261

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21938261

Country of ref document: EP

Kind code of ref document: A1