WO2022021587A1 - 一种用于模拟海上风电嵌岩桩多场耦合作用的试验系统 - Google Patents

一种用于模拟海上风电嵌岩桩多场耦合作用的试验系统 Download PDF

Info

Publication number
WO2022021587A1
WO2022021587A1 PCT/CN2020/116880 CN2020116880W WO2022021587A1 WO 2022021587 A1 WO2022021587 A1 WO 2022021587A1 CN 2020116880 W CN2020116880 W CN 2020116880W WO 2022021587 A1 WO2022021587 A1 WO 2022021587A1
Authority
WO
WIPO (PCT)
Prior art keywords
water tank
rock
main body
wind power
offshore wind
Prior art date
Application number
PCT/CN2020/116880
Other languages
English (en)
French (fr)
Inventor
刘俊伟
郑东生
凌贤长
辛公锋
张玉香
于秀霞
杨忠年
付长春
苏雷
朱娜
代邢可
陈健伟
陈水月
Original Assignee
青岛理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛理工大学 filed Critical 青岛理工大学
Publication of WO2022021587A1 publication Critical patent/WO2022021587A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M10/00Hydrodynamic testing; Arrangements in or on ship-testing tanks or water tunnels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/06Multidirectional test stands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
    • G01N3/12Pressure testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • G01N3/36Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces generated by pneumatic or hydraulic means

Definitions

  • the invention relates to the technical field of test equipment for construction, in particular to a test system for simulating the multi-field coupling effect of rock-socketed piles of offshore wind power.
  • the main disadvantages are:
  • the purpose of the present invention is to provide a test system for simulating the multi-field coupling effect of offshore wind power rock-socketed piles, which can realize the simulation of all loads, and can realize 180-degree real-time transformation simulation of typhoon wind direction. Realize the collaborative work between the water tank, the shaking table and the geotechnical test chamber.
  • the embodiments of the present invention provide a test system for simulating the multi-field coupling effect of offshore wind power rock-socketed piles, including a water tank main body, and an offshore wind power rock-socketed pile for simulating the seabed is arranged inside the water tank main body.
  • the wind power rock-socketed pile is placed in the geotechnical test box, and the geotechnical test box is placed on the seismic simulation system; a variable-direction wind field simulation system is installed on one side of the offshore wind power rock-socketed pile, and the variable-direction wind field simulation system can provide 180° spatial variation
  • a wave-making system is installed inside the main body of the water tank, a water supply and drainage system is installed on the side of the main body of the water tank, and a flow-making system is installed at the bottom of the main body of the water tank.
  • a first wave eliminator is installed on one side of the wave making system, and the first wave eliminator is located at one end of the water tank main body; and the other end of the water tank main body is installed with a second wave eliminator.
  • variable-direction wind field simulation system includes a combined wind source, the combined wind source is slidably connected to the vertical sliding guide rail, and the vertical sliding guide rail is slidably connected to the steering sliding guide rail; the steering sliding guide rail is installed on the triangle side of the truss.
  • the triangular truss is arranged above the water tank main body and can move along the water tank main body; the cross section of the triangular truss is semicircular.
  • the earthquake simulation system includes a shaking table and a third console, the shaking table is arranged below the geotechnical test box, and the shaking table is connected to the third console.
  • the water supply and drainage system is provided with two groups, which are respectively distributed on both sides of the water tank main body.
  • the water pump and the water tank drain pump are installed on the side of the water tank main body; the water tank water supply pump and the water tank drain pump are respectively connected to the water tank through water pipes; the water tank supply pump is used to penetrate the water from the water tank into the water tank main body, and the water tank drain pump is used to drain the water. Drain from the sink body.
  • the geotechnical test chamber is connected to the test chamber water supply pump through the water inlet valve, and the test chamber water supply pump is installed on the side of the reservoir through the valve; the geotechnical test chamber is connected to the floor drain through the water outlet valve, and the geotechnical test chamber The top is sealed to the bottom of the sink body.
  • the flow-making system includes two flow-equalizing boxes, which are connected with the water tank main body through a water grate; the two flow-equalizing boxes are connected by a main pipeline, and one side of the main pipeline has a branch pipe The branch pipeline is connected to one of the flow equalization boxes to realize the circulation of water flow.
  • a bidirectional flow pump is installed at the connecting ends of the main pipeline, the branch pipeline and the equalizing tank, and the bidirectional flow pump is connected to the fourth console.
  • the offshore wind power rock-socketed pile is detachably installed with a cofferdam in the circumferential direction, a water pipe is connected between the cofferdam and the water tank main body, and a cofferdam drainage pump is installed on the water pipe.
  • One or more embodiments of the present invention can realize the cooperative work among the water tank, the shaking table and the geotechnical test box, and change the current load simulation of the existing offshore wind turbine to be the combination of the water tank and the shaking table, only The simulation of the upper structure of the fan can be realized; or the combination of the water tank and the geotechnical test box can only realize the simulation of the seabed, but cannot apply the seismic load; the present invention can realize the seabed, typhoon load, tidal load, current load, wave load. Simultaneous simulation of load and earthquake load;
  • test water tank in one or more embodiments of the present invention is larger, reducing the size effect in the test
  • the wave-making system of one or more embodiments of the present invention is controlled in real time through digitalization, and idealized waveforms and field-measured waveforms can be input by using the console, so as to simulate the wave action of the rock-socketed piles at sea as realistically as possible;
  • One or more embodiments of the present invention solve the problem that the direction of the typhoon in the traditional test is mostly set to a single direction, but the spatial trajectory of the real typhoon action is relatively changeable.
  • the typhoon simulation system of the present invention can realize 180° simulation, Real-time control of typhoon running space trajectory and wind force, more realistic simulation of typhoon effect on offshore rock-socketed piles;
  • the flow building system of one or more embodiments of the present invention can realize the overall flow building of the whole pool and wide range, and simulate the situation of the ocean flow field more realistically;
  • One or more embodiments of the present invention can simultaneously simulate the coupling effects of typhoons, waves, tides, currents, earthquakes, etc., which are suffered by offshore wind power rock-socketed piles, and all are digitally controlled to make the simulation effect more realistic. A quantification of the applied load is achieved, which also makes the obtained test results more convincing.
  • FIG. 1 is a schematic diagram of the overall structure of the present invention according to one or more embodiments.
  • FIG. 2 is a top plan view of the present invention in accordance with one or more embodiments
  • FIG 3 is an A-A cross-sectional view of the present invention in accordance with one or more embodiments.
  • FIG. 4 is a schematic structural diagram of a wave-making system according to one or more embodiments of the present invention.
  • Fig. 5(a)-Fig. 5(b) are schematic structural diagrams of wave eliminators according to one or more embodiments of the present invention.
  • FIG. 6 is a schematic structural diagram of a wind field simulation system for changing directions according to one or more embodiments of the present invention.
  • FIG. 7(a) is a schematic structural diagram of a seismic simulation system according to one or more embodiments of the present invention.
  • FIG. 7(b) is a cross-sectional view of a geotechnical test chamber according to one or more embodiments of the present invention.
  • FIG. 8 is a schematic structural diagram of a flow making system according to one or more embodiments of the present invention.
  • FIG. 9 is a schematic structural diagram of a water supply and drainage system according to one or more embodiments of the present invention.
  • FIG. 10 is a schematic diagram of the structure of a cofferdam according to one or more embodiments of the present invention.
  • FIG. 11 is a schematic diagram of the structure of a rock-socketed pile for offshore wind power according to one or more embodiments of the present invention.
  • This embodiment provides a test system for simulating the multi-field coupling effect of offshore wind power rock-socketed piles, as shown in Figures 1 to 11, including a water tank main body 1, a wave-making system, a wind field simulation system with variable directions, and an earthquake simulation system.
  • System, flow-making system, water supply and drainage system, truss car system, offshore wind power rock-socketed pile 31, the earthquake simulation system is installed under the main body 1 of the water tank, and the variable-direction wind field simulation system and the truss car system are installed above the main body of the water tank 1 to create waves.
  • the system, the flow-making system, and the offshore wind power rock-socketed pile 31 are located inside the water tank main body 1 .
  • the water tank main body 1 is a cuboid structure with an open top, and its size can be set according to actual test requirements and test conditions.
  • the size of the water tank main body 1 is: length 30.0m ⁇ width 10.0m ⁇ depth 2.5m, the maximum working water depth is 2.0m, and the minimum working water depth is 0.2m.
  • Several viewing windows 2 are installed on both sides of the water tank main body 1 along the length direction to observe the dynamic changes of the offshore wind power rock-socketed piles 31 during the test.
  • the viewing window 2 is made of a support structure and transparent glass filled in the support structure, and the support structure is a rectangular frame.
  • the support structure is welded by rectangular steel pipes with a section of length 200mm*width 100mm*6mm thick; there are 11 spans in total, the middle span is 3m long, and the other spans are 2m long; the thickness of the transparent glass is 19mm+19mm of laminated glass.
  • the support structure of the viewing window 2 can also be of other sizes, and the transparent glass can also be of other thicknesses, as long as it can match the size of the sink body 1 .
  • the wave making system includes a wave making machine 3 and a first console 7
  • the first console 7 is a digital console for controlling the action of the wave making machine 3
  • the wave maker 3 is arranged at one end inside the water tank main body 1
  • the first console 7 is arranged outside the water tank main body 1 .
  • the wave generator 3 is a push plate type wave generator, including a wave generator 4, a ball screw pair 5, a servo motor 6, etc., and the servo motor 6 is connected to the first console 7 through a control circuit;
  • the servo motor 6 is connected to the wave making plate 4 through the ball screw pair 5, and the first console 7 controls the wave making machine 3 to generate regular waves and irregular waves.
  • the regular wave is generated:
  • the wave signal measured by the wave height meter is collected and processed.
  • Wave period range 0.4 to 2 seconds
  • the formula characteristic parameters of the wave spectrum to be generated are sent to the computer to calculate the motion signal of the wave-making plate, and then control the servo system to drive the wave-making plate to generate Irregular waves, the expected spectrum is obtained.
  • the variation range of the mean wave period is 0.4 to 2 seconds
  • the designed wave height is 0.02m-0.15m, and the experimental period is in the range of 0.4-2s.
  • a first wave eliminator 8 is provided on the rear side of the wave maker 3 (the installation side away from the wave maker 3 is the front), and the first wave eliminator 8 is located at one end of the water tank main body 1 and the other end of the water tank main body 1 A second wave eliminator 9 is provided.
  • the first wave absorber 8 is a tubular wave absorber (vertical type) formed by welding a plurality of parallel square steels, and the surface of the square steel is provided with blind ditch material.
  • the second wave absorber 9 is welded with a plurality of parallel square steels to form a tubular wave absorber (inclined type) with an inclined set angle, and the surface of the square steel is provided with blind groove material.
  • the included angle between the plane where the square steel of the second wave eliminator 9 is located and the horizontal plane is 30°.
  • the offshore wind power rock-socketed pile 31 is arranged in the middle of the water tank main body 1 , and the variable-direction wind field simulation system is used for typhoon simulation, and is set on one side of the offshore wind power rock-socketed pile 31 .
  • the variable-direction wind field simulation system includes a combined wind source, a triangular truss 12, a vertical sliding guide 13, and a steering sliding guide 15; the triangular truss 12 is arranged above the water tank main body 1, and the cross section of the triangular truss 12 is It is semi-circular, and its arc direction faces the offshore wind power rock-socketed pile 31 .
  • the height of the triangular truss 12 is set to 3m.
  • Two ends of the triangular truss 12 are respectively connected with first pillars 16 , and the first pillars 16 are fixed to the outside of the water tank main body 1 .
  • the bottom of the triangular truss 12 is supported by the supporting plate 18, and the two ends of the supporting plate 18 are respectively connected to the second pillar 17, and the second pillar 17 is fixed to the outside of the water tank main body 1;
  • the outside of the water tank main body 1 is symmetrically installed with a first linear guide 19 along the length direction, and the first pillar 16 and the second pillar 17 are respectively slidingly connected with the first linear guide 19, so that the wind source can be placed in a suitable place during the test. After the test, move the wind field simulation system of changing direction to one side of the main body of the water tank to facilitate the loading and unloading of the fan 10 and the soil.
  • a steering sliding guide rail 15 is installed on the inner side of the triangular truss 12 .
  • the vertical sliding guide rail 13 is slidably connected to the steering sliding guide rail 15
  • the vertical sliding guide rail 13 is a linear guide rail arranged along the vertical direction.
  • the combined wind source is slidably connected to the vertical sliding guide rail 13, and the combined wind source can move up and down along the vertical sliding guide rail 13 to simulate the change of the typhoon wind field caused by the change of sea level.
  • the combined wind source and the vertical sliding guide 13 can move along the steering sliding guide 15, that is, the combined wind source rotates within 180° to simulate the temporal and spatial evolution of each wind field during the typhoon process.
  • the combined air source is connected to the vertical sliding guide rail 13 through the slider, the vertical sliding guide rail 13 is connected to the steering sliding guide 15 through the sliding block, and the sliding rail mechanism formed by the slider and the vertical sliding guide 13 (steering sliding guide 15) passes through the motor. drive.
  • the motor is connected to the second console 14 through a control circuit, and the second console 14 controls the size of the wind source, the up-down change and the wind direction change.
  • the lifting range of the combined wind source is ⁇ 1.5m.
  • the second console 14 can realize the curve fitting of the input wind field calibration parameters, and perform real-time control of the wind field according to the calibration curve and the fitted wind speed time-history curve output by the wind speed simulation program, which can maximize the improvement of the wind field control efficiency. precision.
  • the fans of the combined air source 10 may also adopt other numbers and other arrangements.
  • the parameters of a single fan are: the rated air volume is 4500m 3 /h, the motor power is 150w, and the motor speed is 1600r/min.
  • an air duct 11 is arranged at the outlet of the wind farm. Further, in this embodiment, the diameter of a single hole of the air duct 11 is 25 mm, and the length is 70 mm.
  • the earthquake simulation system includes a shaking table 21 and a third console 30 .
  • the shaking table 21 is arranged below the geotechnical test box 20
  • the offshore wind power rock-socketed pile 31 is arranged in the geotechnical test box 20 .
  • the soil mass 25 and the rock mass 26 are sequentially arranged in the geotechnical test box 20 from top to bottom.
  • the geotechnical test box 20 is a cuboid structure with an open top.
  • the size of the geotechnical test box 20 is 3.0m long x 3.0m wide x 2.0m high, as shown in Figure 7(b), the box wall is made of 20 layers of square steel pipes 22 (section size of 100mm ⁇ 100mm) are superimposed to obtain a layered shearing effect; a rubber film is arranged on the inside of the box wall to achieve the effect of sealing and water-stopping. A sponge is arranged between the inner wall of the geotechnical test box 20 and the rubber membrane to weaken the reflection or scattering of seismic waves on the boundary.
  • a rectangular opening is provided at the position where the bottom of the water tank main body 1 is connected to the geotechnical test box 20, and the top of the geotechnical test box 20 is sealedly connected to the rectangular opening.
  • the geotechnical test box 20 and the water tank main body 1 are connected by a large deformation elastic rubber.
  • the geotechnical test box 20 is provided with a water inlet valve 23 and a water outlet valve 24 near the bottom position, so that the soil body 25 and the rock mass 26 inside the geotechnical test box 20 can be immersed in water before the test. saturation.
  • the water inlet valve 23 is connected to the water supply pump of the test box through the water pipe, and the water outlet valve 24 is connected to the floor drain 29 through the water pipe, and the water to be discharged from the geotechnical test box 20 is transported to the drainage ditch through the water pipe.
  • the vibrating table 21 is rigidly connected to the geotechnical test box 20.
  • the size of the table is 3.5m in length and 3.5m in width. It can excite one-way vibration in the same direction as the main body of the water tank, and can also realize two-way vibration.
  • the vibration table 21 is controlled by the third console 30, its working frequency is 0.1-40Hz, the maximum acceleration is 1.0g, and the maximum horizontal displacement is ⁇ 120mm, which can simulate designated seismic waves.
  • the above parameters can be selected according to test requirements.
  • a part of the vibrating table 21 is set below the ground during installation.
  • the offshore wind power rock-socketed pile 31 is statically pressed into the soil mass 25 and the rock mass 26 of the geotechnical test box 20 .
  • a water supply and drainage system is installed on the side of the water tank main body 1 .
  • the water tank water supply pump 38 and the water tank drain pump 39 are respectively connected to the water tank 28 through water pipes; the water tank supply pump 38 is used to pass water from the water tank 28 into the water tank main body, and the water tank drain pump 39 is used to discharge water from the water tank main body 1 .
  • test box water supply pump 27 is installed on the side of one of the reservoirs 28.
  • the test box water supply pump 27 is connected to the water inlet valve 23 through a water pipe. Saturation of 25 and rock 26.
  • the maximum working water depth of the reservoir 28 is 2m, and the minimum working water depth is 1m.
  • the flow making system includes two equalizing tanks 35 , two water grate subs 36 , a main pipeline 33 , a branch pipeline 34 , a fourth console 37 , and a two-way flow making pump 32 .
  • the equalizing tank 35 is arranged in the storage Above the pool 28 and below the water tank main body 1 .
  • the two equalizing tanks 35 are connected by a main pipeline 33 , and a branch pipeline 34 is provided on one side of the main pipeline 33 , and the branch pipeline 34 is connected to one of the equalizing tanks 35 .
  • a bidirectional flow pump 32 is installed on the connecting ends of the main pipeline 33 , the branch pipeline 34 and the equalizing tank 35 , and the bidirectional flow pump 32 is connected to the fourth console 37 .
  • the bidirectional flow pump 32 is equipped with a bidirectional variable frequency power supply, and is automatically controlled by the fourth console 37 to generate a bidirectional flow field.
  • the main pipeline 33 and the branch pipeline 34 are stainless steel pipelines.
  • the bottom surface of the water tank main body 1 corresponds to a water grate 36 installed above the equalizing box 35 .
  • the water grate 36 is arranged along the width direction of the water tank main body 1 .
  • the size of the water grate 36 is 10 m long ⁇ 1.5 m wide.
  • the size of the water grate 36 can also be adjusted according to actual test requirements.
  • the traditional water tank flow field is generated by the pump, but the water flow converted from the energy of the pump includes high-speed flow, large turbulent flow and velocity gradient. In nature, the flow formed by tidal motion and wind shear is generated in a large area, contains small velocity gradients and turbulence, and is relatively gentle.
  • the use of the equalizing box 35 and the water grate 36 can realize the overall flow creation of the whole tank and a wide range, and simulate the ocean flow field more realistically.
  • the trolley system includes a trolley 13 and a second linear guide 44 .
  • the second linear guide 44 is fixed above the water tank body 1 and installed along the length of the water tank body 1 ; the trolley 13 can move along the second linear guide 44 .
  • the trolley 13 is located on the other side of the offshore wind power rock-socketed pile 31 (the side opposite to the wind field simulation system with variable direction), and the trolley 13 can be controlled by a remote controller.
  • a plurality of high-definition cameras 45 are arranged on the side of the main body 1 of the water tank to record in real time. In this embodiment, three high-definition cameras 45 are provided.
  • the offshore wind power rock-socketed pile 31 takes the actual offshore wind turbine as the actual engineering prototype, and comprehensively considers factors such as geometric dimensions, marine hydrological conditions and laboratory equipment capabilities. According to the geometric similarity theory and elastic force-gravity similarity theory, the geometric scale is 30. . As shown in FIG. 11 , the offshore wind power rock-socketed pile 31 includes a fan 46 , a variable-section tower 47 , a transition section 48 , a constant-section pipe pile 49 and a wind power tower platform 50 , which are connected in sequence. The cross-section of the variable-section tower 47 gradually decreases from bottom to top.
  • the fan 46 of the offshore wind power rock-socketed pile 31, the variable-section tower 47, the constant-section pipe pile 49, and the model material of the wind tower platform 50 are all made of plexiglass, and the transition section 48 is made of aluminum alloy.
  • the amount is 3.85GPa, and the elastic modulus ratio is 53.5.
  • the prototype material of the offshore wind turbine support structure is steel, and the elastic modulus is 206GPa; considering factors such as geometric dimensions, marine hydrological conditions and laboratory equipment capabilities, the geometric scale is initially selected as 55.
  • a concave-shaped rail 41 is installed on the side wall of the water tank main body 1 , and the concave-shaped rail 41 is a rail with grooves. The inside of the groove is covered with nitrile rubber, which can effectively prevent the overflow of water flow.
  • a cofferdam 40 is provided inside the water tank main body 1 , and the cofferdam 40 is arranged in the circumferential direction of the wind power rock-socketed piles 31 along the coast. Further, the cofferdam 40 is a well-shaped cofferdam, and is installed in the upper part of the periphery of the connection between the water tank main body 1 and the geotechnical test box 20 .
  • the well-shaped cofferdam is composed of two long steel plates and two short steel plates.
  • the two long steel plates are connected to the main body 1 of the water tank through the concave track 41
  • the two short steel plates are connected to the sides of the two long steel plates through the concave track 41 .
  • the rock and soil test box 20 is loaded with 1m high rock by the truss car system, and then the 1m high test soil is loaded, and the soil body 25 is placed in layers, 200mm each time, and placed in 5 times , each layer is compacted. After the soil body 25 is placed, it is allowed to consolidate under its own weight for 3 days. Then the rock and soil are saturated with water through the water inlet valve 23 and the water outlet valve 24 in the geotechnical test chamber 20 . After the rock and soil mass is saturated, the valve is closed, and the water required for the test is injected into the water tank main body 1 through the water tank water supply pump 38 .
  • Laser displacement sensors are installed on the pile foundation and tower respectively to measure the inclination and deformation of the pile foundation and tower.
  • An acceleration sensor is installed on the offshore wind power rock-socketed pile 31 and the variable-section tower 47 to measure the fundamental frequency and mode shape of the pile foundation and the tower.
  • Miniature pore water pressure sensors are installed on the offshore wind power rock-socketed pile 31 and the lower part of the variable-section tower 47 to measure the change of pore water pressure during the test.
  • the offshore wind power rock-socketed pile 31 is penetrated into the soil and rock of the geotechnical test box 20 through the static pressure device provided in the laboratory. Then, the transition section 48, the variable-section tower 47 and the fan 46 on the upper part of the offshore wind power rock-socketed pile 31 are installed respectively.
  • a laser displacement sensor is installed on the offshore wind power rock-socketed pile 31 to measure the displacement of the top of the pile and the height change of the soil plug in the pile during the pile driving process.
  • An acoustic Doppler current meter is installed on the water surface around the offshore wind power rock-socketed pile 31 for data collection of global water flow characteristics, and timely feedback to the console of the flow generation system to provide real-time data feedback for water flow settings.
  • a water pressure sensor is installed on the water surface around the offshore wind power rock-socketed pile 31 to measure the hydrodynamic load.
  • Wind speed sensors are installed on the variable-direction wind farm simulation system to measure real-time changes in wind speed.
  • An acceleration sensor is installed on the shaking table 21 for measuring the seismic frequency.
  • the cofferdam 40 is placed in the water tank main body 1 by the trolley system, and the water in the upper part of the geotechnical test box 20 is transported to other positions of the water tank main body 1 by the cofferdam drainage pump 42 . Then, the rock mass 26 and the soil mass 25 in the geotechnical test box 20 are replaced by the trolley system. After the replacement, the cofferdam 40 is taken out, and then the next set of tests are performed according to steps (2)-(7).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

本发明公开了一种用于模拟海上风电嵌岩桩多场耦合作用的试验系统,其技术方案为:包括水槽主体,水槽主体内部设置海上风电嵌岩桩,海上风电嵌岩桩置于岩土试验箱中,岩土试验箱置于地震模拟系统上;海上风电嵌岩桩一侧设置变向风场模拟系统,变向风场模拟系统能够提供180°空间变化的风场;水槽主体内部安装造波系统,水槽主体侧面安装供排水系统,水槽主体底部设有造流系统。本发明可实现全部荷载的模拟,能够实现台风风向180度实时变换模拟,可以实现水槽、振动台和岩土试验箱三者之间的协同工作。

Description

一种用于模拟海上风电嵌岩桩多场耦合作用的试验系统 技术领域
本发明涉及建筑用试验设备技术领域,尤其涉及一种用于模拟海上风电嵌岩桩多场耦合作用的试验系统。
背景技术
极端海况下桩-土界面的动力荷载传递十分复杂,台风强度大、湍流度高且时空变异性显著;台风以及其诱发的极端波浪水平作用于桩上的同时,还直接作用于海床,从而引起附加压应力和超静孔压;地震作用下海床也将产生超静孔压,与桩基间存在非线性动力耦合;其次海洋环境中的水流同样对嵌岩桩具有重要的影响。嵌岩桩在这些荷载效应耦合下的动力响应特征还未能得以全面揭示,且此对于海上嵌岩桩的工程应用具有极其重要的现实意义。试验研究是明确嵌岩桩-海床体系动力响应的最直观手段。然而,由于海上环境恶劣使得现场试验难度极大,数值模拟所得结果受参数设置的影响较大,室内模型试验可重复性高,试验条件可控,操作方便,数据可靠,成为试验研究的一种重要手段。其中,水下振动台是进行海洋结构动力耦合分析的最有效的试验装备,但目前所有的水下振动台是直接将海工构造物置于振动台上,此无法模拟真实的工况。
发明人发现,目前现有的海上风机荷载模拟多为水槽与振动台的结合,只可实现风机上部结构的模拟;或者水槽与岩土试验箱的结合,只可实现海床的模拟,无法进行地震荷载的施加。其缺点主要有:
(1)在试验中对真实海上风电嵌岩桩所承担的台风、波浪、潮汐、水流、地震等多个荷载只可进行某个或某几个荷载的模拟,无法进行全部荷载的模拟。
(2)在试验中对桩基所受台风的模拟大多施加在某一固定不变的方向,只改变台风的大小和频率,然而真实的台风其方向随时间不断变化。
(3)传统岩土试验箱四壁多为刚性连接的钢板,无法实现层剪效果,对桩基的约束较大,尺寸效应亦很明显。
发明内容
针对现有技术存在的不足,本发明的目的是提供一种用于模拟海上风电嵌岩桩多场耦合作用的试验系统,可实现全部荷载的模拟,能够实现台风风向180度实时变换模拟,可以实现水槽、振动台和岩土试验箱三者之间的协同工作。
为了实现上述目的,本发明是通过如下的技术方案来实现:
第一方面,本发明的实施例提供了一种用于模拟海上风电嵌岩桩多场耦合作用的试验系统,包括水槽主体,水槽主体内部设置用于模拟海床的海上风电嵌岩桩,海上风电嵌岩桩置于岩土试验箱中,岩土试验箱置于地震模拟系统上;海上风电嵌岩桩一侧设置变向风场模拟系统,变向风场模拟系统能够提供180°空间变化的风场;水槽主体内部安装造波系统,水槽主体侧面安装供排水系统,水槽主体底部设有造流系统。
作为进一步的实现方式,所述造波系统一侧安装第一消波器,第一消波器位于水槽主体一端;水槽主体另一端安装第二消波器。
作为进一步的实现方式,所述变向风场模拟系统包括组合风源,所述组合风源与竖直滑动导轨滑动连接,垂直滑动导轨与转向滑动导轨滑动连接;所述转向滑动导轨安装于三角桁架一侧。
作为进一步的实现方式,所述三角桁架设置于水槽主体上方,且能够沿水槽主体移动;三角桁架的横截面呈半圆形。
作为进一步的实现方式,所述地震模拟系统包括振动台和第三控制台,所述振动台设置于岩土试验箱下方,且振动台与第三控制台相连。
作为进一步的实现方式,所述供排水系统设置两组,分别分布于水槽主体的两侧,每组供排水系统均包括一个蓄水池、一个水槽供水泵和一个水槽排水泵,所述水槽供水泵和水槽排水泵安装于水槽主体侧面;水槽供水泵和水槽排水泵分别通过水管连接蓄水池;其中水槽供水泵用于将水从蓄水池贯入水槽主体,水槽排水泵用于将水从水槽主体排出。
作为进一步的实现方式,所述岩土试验箱通过入水阀门连接试验箱供水泵,试验箱供水泵通过阀门安装于蓄水池的侧面;岩土试验箱通过出水阀门连接地漏,且岩土试验箱顶部与水槽主体底部密封连接。
作为进一步的实现方式,所述造流系统包括两个均流箱,均流箱与水槽主体之间通过水篦子连通;两个均流箱之间通过主管路相连,主管路一侧具有分支管路;所述分支管路连接至其中一个均流箱,用以实现水流的循环。
作为进一步的实现方式,所述主管路、分支管路与均流箱的连接端安装有双向造流泵,所述双向造流泵连接第四控制台。
作为进一步的实现方式,所述海上风电嵌岩桩周向可拆卸安装有围堰,围堰与水槽主体之间连接水管,且水管上安装围堰排水泵。
上述本发明的实施例的有益效果如下:
(1)本发明的一个或多个实施方式可以实现水槽、振动台和岩土试验箱三者之间的协同工作,改变目前现有的海上风机荷载模拟多为水槽与振动台的结合,只可实现风机上部结构的模拟;或者水槽与岩土试验箱的结合,只可实现海床的模拟,无法进行地震荷载的施加;本发明可实现海床、台风荷载、潮汐荷载、 水流荷载、波浪荷载、地震荷载的同时模拟;
(2)本发明的一个或多个实施方式的试验水槽尺寸较大,减小试验中的尺寸效应;
(3)本发明的一个或多个实施方式的造波系统通过数字化实时控制,利用控制台可输入理想化波形和现场实测波形,尽可能真实模拟海上嵌岩桩所受波浪作用;
(4)本发明的一个或多个实施方式解决了传统试验中台风方向多设置为单一方向,但真实台风行动的空间轨迹较为多变的问题,本发明的台风模拟系统可实现180°模拟、实现台风运行空间轨迹和风力大小的实时控制,更为真实的模拟海上嵌岩桩所受台风作用;
(5)本发明的一个或多个实施方式的造流系统,加入水篦子和均流箱,可实现全池宽范围的整体造流,更真实的模拟海洋流场情况;
(6)本发明的一个或多个实施方式可同时模拟海上风电嵌岩桩所受的台风、波浪、潮汐、水流、地震等多场耦合作用,并全部进行数字化控制,使模拟效果更加真实,实现所施加荷载的量化型,这也使得所得试验结果更具有说服力。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1是本发明根据一个或多个实施方式的整体结构示意图;
图2是本发明根据一个或多个实施方式的俯视图;
图3是本发明根据一个或多个实施方式的A-A剖视图;
图4是本发明根据一个或多个实施方式的造波系统结构示意图;
图5(a)-图5(b)是本发明根据一个或多个实施方式的消波器结构示意图;
图6是本发明根据一个或多个实施方式的变向风场模拟系统结构示意图;
图7(a)是本发明根据一个或多个实施方式的地震模拟系统结构示意图;
图7(b)是本发明根据一个或多个实施方式的岩土试验箱剖视图;
图8是本发明根据一个或多个实施方式的造流系统结构示意图;
图9是本发明根据一个或多个实施方式的供排水系统结构示意图;
图10是本发明根据一个或多个实施方式的围堰结构示意图;
图11是本发明根据一个或多个实施方式的海上风电嵌岩桩结构示意图;
其中,1-水槽主体;2-可视窗;3-造波机;4-造波板;5-滚珠丝杠副;6-伺服电机;7-第一控制台;8-第一消波器;9-第二消波器;10-组合风源;11-导风管;12-三角桁架;13-垂直滑动导轨;14-第二控制台;15-转向滑动导轨;16-第一支柱;17-第二支柱;18-托板;19-第一直线导轨;20-岩土试验箱;21-振动台;22-方形钢管;23-入水阀门;24-出水阀门;25-土体;26-岩体;27-试验箱供水泵;28-蓄水池;29-地漏;30-第三控制台;31-海上风电嵌岩桩;32-双向造流泵;33-主管路;34-分支管路;35-均流箱;36-水篦子;37-第四控制台;38-水槽供水泵;39-水槽排水泵;40-围堰;41-凹字形轨道;42-围堰排水泵;43-桁车;44-第二直线导轨;45-高清摄像机;46-风机;47-变截面塔筒;48-过渡段;49-等截面管桩;50-风力塔筒平台。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合;
为了方便叙述,本申请中如果出现“上”、“下”、“左”“右”字样,仅表示与附图本身的上、下、左、右方向一致,并不对结构起限定作用,仅仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的设备或元件必须具有特定的方位,以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”、“第四”仅用于描述目的,而不能理解为指示或暗示相对重要性。
术语解释部分:本申请中的术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或为一体;可以是直接连接,也可以是通过中间媒介间接相连,可以是两个元件内部连接,或者两个元件的相互作用关系,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明的具体含义。
实施例一:
本实施例提供了一种用于模拟海上风电嵌岩桩多场耦合作用的试验系统,如图1-图11所示,包括水槽主体1、造波系统、变向风场模拟系统、地震模拟系统、造流系统、供排水系统、桁车系统、海上风电嵌岩桩31,地震模拟系统设置于水槽主体1下方,变向风场模拟系统、桁车系统安装于水槽主体1上方,造波系统、造流系统、海上风电嵌岩桩31位于水槽主体1内侧。
具体的,如图1所示,水槽主体1为顶部开口的长方体结构,其尺寸可根据实际试验要求、试验条件设置。在本实施例中,水槽主体1的尺寸为:长30.0m×宽10.0m×深2.5m,最大工作水深为2.0m,最低工作水深为0.2m。水槽主体1沿长度方向的两侧安装若干可视窗2,以观察试验过程中海上风电嵌岩桩31的动态变化。
进一步的,可视窗2由支撑结构和填充于支撑结构内的透明玻璃制成,所述支撑结构为矩形框。在本实施例中,支撑结构由截面为长200mm*宽100mm*厚6mm的矩形钢管焊接而成;共11跨,中间一跨长3m,其余各跨长2m;透明玻璃选用厚度为19mm+19mm的夹胶玻璃。当然,在其他实施例中,可视窗2的支撑结构也可以采用其他尺寸,透明玻璃也可以选用其他厚度,只要能够与水槽主体1尺寸相匹配即可。
造波系统包括造波机3和第一控制台7,第一控制台7为数字化控制台,用于控制造波机3的动作。造波机3设置于水槽主体1内部一端,第一控制台7设置于水槽主体1外侧。如图4所示,所述造波机3为推板式造波机,包括造波板4、滚珠丝杠副5、伺服电机6等,伺服电机6通过控制线路连接第一控制台7;所述伺服电机6通过滚珠丝杠副5连接造波板4,第一控制台7控制造波机3生成规则波和不规则波。
其中,规则波生成:
由计算机和信号源控制,产生规则波。并对波高仪所测波浪信号进行数据采集处理。
技术指标(无反射时):
(1)波周期范围:0.4~2秒;
(2)波高范围:0.02~0.15m;
(3)波高横向误差:
Figure PCTCN2020116880-appb-000001
(4)波高稳定性:
Figure PCTCN2020116880-appb-000002
(5)波高重复性:
Figure PCTCN2020116880-appb-000003
(6)周期的稳定性和重复性:
Figure PCTCN2020116880-appb-000004
注:以上指标在很小周期(<1.0s)或较大周期(>2.0s)时,误差指标允许适当降低。
不规则波的生成:
将要生成的波谱(包括P-M谱、B谱、J谱、海港水文规范谱及自定义波谱)公式特征参数送入计算机,计算出推波板运动信号,进而控制伺服系统驱动造波板产生不规则波,得到期望谱。
技术指标:
(1)平均波周期变化范围为0.4~2秒;
(2)有效波高变化范围为0.02~0.08m;
(3)有效波高的重复性:△Hs/H s≤3%;
(4)最大波高的重复性:△H max/H max≤3%;
(5)平均周期和谱峰周期的稳定性和重复性:△T/T≤3%;
(6)有效波高误差:△H s/H s≤4%;
(7)谱峰周期误差:△T p/T p≤4%;
(8)总能量误差:△M 0/M 0≤6%;
(9)波谱密度误差:△S(ω)/S(ω)≤10%。
在本实施例中,设计波高为0.02m-0.15m,实验周期范围为0.4-2s。为了 消除波浪反射,造波机3后侧(以远离造波机3的安装侧为前)设有第一消波器8,第一消波器8位于水槽主体1一端,水槽主体1另一端设置第二消波器9。如图5(b)所示,第一消波器8为多个相互平行的方钢焊接而成的管式消波器(竖直式),方钢表面设有盲沟材料。如图5(a)所示,第二消波器9由多个相互平行的方钢焊接形成倾斜设定角度的管式消波器(倾斜式),方钢表面设有盲沟材料。优选地,第二消波器9的方钢所在平面与水平面的夹角为30°。
海上风电嵌岩桩31设置于水槽主体1中间位置,变向风场模拟系统用于进行台风的模拟,其设置于海上风电嵌岩桩31一侧。如图6所示,变向风场模拟系统包括组合风源、三角桁架12、垂直滑动导轨13、转向滑动导轨15;所述三角桁架12设置于水槽主体1上方,三角桁架12的横截面呈半圆形,其圆弧方向朝向海上风电嵌岩桩31。在本实施例中,三角桁架12高度设置为3m。
三角桁架12的两端分别连接第一支柱16,所述第一支柱16固定于水槽主体1外侧。三角桁架12底部通过托板18支撑,托板18的两端分别连接第二支柱17,第二支柱17固定于水槽主体1外侧;通过三角桁架12提高变向风场模拟系统的稳定性。所述水槽主体1外侧沿长度方向对称安装第一直线导轨19,所述第一支柱16、第二支柱17分别与第一直线导轨19滑动连接,便于试验时将风源放置在合适的位置,试验结束后将变向风场模拟系统移动到水槽主体的一侧,便于风机10和土体的装卸。
三角桁架12内侧安装转向滑动导轨15,所述转向滑动导轨15呈180°圆弧形,其弧度与三角桁架12相适配。所述垂直滑动导轨13与转向滑动导轨15滑动连接,垂直滑动导轨13为沿竖直方向设置的直线导轨。组合风源与垂直滑动导轨13滑动连接,组合风源能够沿垂直滑动导轨13上下移动,以模拟海平面高 低变化导致的台风风场变化。组合风源与垂直滑动导轨13能够沿转向滑动导轨15内移动,即组合风源在180°内旋转,以模拟台风过程中各风场的时空演化。
进一步的,组合风源通过滑块与垂直滑动导轨13连接,垂直滑动导轨13通过滑块与转向滑动导轨15连接,滑块与垂直滑动导轨13(转向滑动导轨15)构成的滑轨机构通过电机带动。所述电机通过控制线路连接第二控制台14,通过第二控制台14控制风源的大小以及上下变化及风向变化。在本实施例中,组合风源的升降范围为±1.5m。第二控制台14可实现输入的风场标定参数的曲线拟合,并依据标定曲线和风速模拟程序输出的拟合风速时程曲线进行风场的实时控制,能够最大化的提高风场控制的精度。
在本实施例中,为了保证模拟风场的输出精度和稳定性,采用2×3阵列方式布置6台风扇组成组合风源10,对应风场的有效覆盖面积为2m×3m。可以理解的,在其他实施例中,组合风源10的风扇也可以采用其他个数、其他排布方式。单个风扇参数为:额定风量4500m 3/h,电机功率150w,电机转速1600r/min。为了保证风场质量,在风场出口位置布置导风管11。进一步的,在本实施例中,导风管11单个孔的直径为25mm,长度为70mm。
地震模拟系统包括振动台21和第三控制台30,振动台21设置于岩土试验箱20下方,海上风电嵌岩桩31设置于岩土试验箱20中。如图2所示,岩土试验箱20内从上到下依次设置为土体25和岩体26。岩土试验箱20为顶部开口的长方体结构,在本实施例中,岩土试验箱20的尺寸为长3.0m×宽3.0m×高2.0m,如图7(b)所示,箱壁由20层方形钢管22(截面尺寸为100mm×100mm)叠合而成,以此获得层状剪切效果;箱壁内侧布置橡胶膜,达到密封止水效果。岩土试验箱20内壁与橡胶膜之间设置海绵,以削弱边界上地震波的反射或散射。
进一步的,水槽主体1底部连接岩土试验箱20的位置设置矩形开口,岩土试验箱20顶部与矩形开口密封连接。为了实现岩土试验箱20水平向自由震动,又保证密封不漏水,所述岩土试验箱20与水槽主体1之间采用大变形弹性橡胶连接。如图7(a)所示,岩土试验箱20靠近底部位置分别设有入水阀门23和出水阀门24,可在试验前提前对岩土试验箱20内部的土体25和岩体26进行浸水饱和。入水阀门23通过水管连接试验箱供水泵,出水阀门24通过水管连接地漏29,将岩土试验箱20中需要排出的水通过水管输送到排水沟中。
振动台21与岩土试验箱20刚性连接,其台面尺寸为长3.5m×宽3.5m,可激发与水槽主体1波流同向的单向震动,也可实现双向振动。在本实施例中,振动台21由第三控制台30控制,其工作频率为0.1-40Hz,最大加速度为1.0g,最大水平位移为±120mm,可实现模拟指定地震波。当然,在其他实施例中,上述参数可以根据试验要求选择。为了节省空间和提高振动台稳定性,安装时,振动台21一部分设置在地面以下。试验时将海上风电嵌岩桩31静压到岩土试验箱20的土体25和岩体26中。
如图2和图9所示,水槽主体1侧面安装有供排水系统,所述供排水系统共有两组,分别分布于水槽主体1的两侧,每组供排水系统均包括一个蓄水池28、一个水槽供水泵38和一个水槽排水泵39,所述水槽供水泵38和水槽排水泵39安装于水槽主体1侧面。水槽供水泵38和水槽排水泵39分别通过水管连接蓄水池28;其中水槽供水泵38用于将水从蓄水池28贯入水槽主体,水槽排水泵39用于将水从水槽主体1排出。
其中一个蓄水池28侧面安装有试验箱供水泵27,所述试验箱供水泵27通过水管连接入水阀门23,蓄水池28中的水通过水管输送到岩土试验箱20中,实现 土体25和岩石26的饱和。在本实施例中,蓄水池28最大工作水深2m,最小工作水深1m。
如图8所示,造流系统包括两个均流箱35、两水篦子36、主管路33、分支管路34、第四控制台37、双向造流泵32,均流箱35设置于蓄水池28上方、水槽主体1下方。两个均流箱35之间通过主管路33相连,且主管路33一侧具有分支管路34,所述分支管路34连接至其中一个均流箱35。所述主管路33、分支管路34与均流箱35的连接端安装有双向造流泵32,所述双向造流泵32连接第四控制台37。双向造流泵32配备双向变频电源,用第四控制台37自动控制产生双向流场。在本实施例中,主管路33、分支管路34采用不锈钢管路。
所述水槽主体1的底面对应于均流箱35上方安装水篦子36,通过水篦子36实现均流箱35与水槽主体1贯通。如图2所示,水篦子36沿水槽主体1的宽度方向设置,在本实施例中,水篦子36的尺寸为长10m×宽1.5m。当然,在其他实施例中,水篦子36的尺寸也可以根据实际试验要求调整。传统水槽流场由水泵产生,但水泵能量转化出的水流包括高速流、较大的湍流和速度梯度。自然界中由潮汐运动和风的剪切形成的流是在大范围内产生,包含较小的速度梯度和湍流,较为平缓。均流箱35和水篦子36的使用可实现全池宽范围的整体造流,更真实的模拟海洋流场情况。
桁车系统包括桁车13和第二直线导轨44,第二直线导轨44固定于水槽主体1上方且沿水槽主体1长度方向上安装;桁车13能够沿第二直线导轨44移动。所述桁车13位于海上风电嵌岩桩31另一侧(与变向风场模拟系统相对一侧),桁车13可通过遥控器控制。为了记录海上风电嵌岩桩31和水流的变化情况,在水槽主体1一侧设置多台高清摄像机45进行实时录像。本实施例中,设置三台 高清摄像机45。
海上风电嵌岩桩31以实际海上风机为实际工程原型,综合考虑几何尺寸、海洋水文条件和实验室设备能力等因素,根据几何相似理论和弹性力-重力相似理论初步选定几何比尺为30。如图11所示,海上风电嵌岩桩31包括依次连接的风机46、变截面塔筒47、过渡段48、等截面管桩49和风电塔筒平台50。变截面塔筒47自下向上截面逐渐变小。
海上风电嵌岩桩31的风机46、变截面塔筒47、等截面管桩49、风力塔筒平台50的模型材料均采用有机玻璃,过渡段48采用铝合金,通过材料试验得到其动弹性模量为3.85GPa,可得弹模比尺为53.5。海上风机支撑结构原型材料为钢材,弹性模量为206GPa;综合考虑几何尺寸、海洋水文条件和实验室设备能力等因素,初步选定几何比尺为55。
水槽主体1的侧壁安装有凹字形轨道41,凹字形轨道41为具有凹槽的轨道。凹槽内部铺设有丁腈橡胶,可有效防止水流的溢出。如图10所示,水槽主体1内部设置围堰40,且围堰40沿海上风电嵌岩桩31的周向布置。进一步的,围堰40为井字形围堰,在水槽主体1内部与岩土试验箱20连接处的周围的上部安装。井字形围堰由两块长钢板和两块短钢板组成,两块长钢板通过凹字形轨道41与水槽主体1连接,两块短钢板通过凹字形轨道41连接在两块长钢板侧面。岩土试验箱20需要更换土体25时,将井字形围堰安装上,然后用水管连接围堰排水泵42,将围堰中心位置的水排到水槽主体1中,用以方便岩土试验箱20内土体的更换。
本实施例的试验方法为:
(1)首先利用桁车系统将岩土试验箱20中装入1m高的岩石,再装入1m高 的试验土体,土体25进行分层放入,每次放置200mm,分5次放置,每一层都进行夯实。土体25放置结束后让其在自重状态下固结3天。然后通过岩土试验箱20中的入水阀门23和出水阀门24将岩石和土体进行浸水饱和。待岩土体饱和后关闭阀门,通过水槽供水泵38向水槽主体1中注入试验所需要的水量。
(2)在海上风电嵌岩桩31上安装管线光栅传感器,以测量桩体侧摩阻力;并在海上风电嵌岩桩31上安装微型土压传感器,以测量桩侧土压力变化。有机玻璃具有一定的透明性,采用高清摄像机45的摄像头进行桩-土界面细观变化的记录。
在桩基和塔架上分别安装激光位移传感器,以测量桩基和塔架的倾斜和变形。在海上风电嵌岩桩31和变截面塔筒47上安装加速度传感器,以测量桩基和塔筒的基频和振型。在海上风电嵌岩桩31上和变截面塔筒47下部位置安装微型空隙水压力传感器,以测量试验过程中孔隙水压力的变化。
通过实验室自带的静压装置将海上风电嵌岩桩31贯入到岩土试验箱20的土岩中。然后将海上风电嵌岩桩31上部的过渡段48、变截面塔筒47和风机46分别进行安装。在海上风电嵌岩桩31上安装激光位移传感器,测量在沉桩过程中桩顶位移和桩体内土塞高度变化。
(3)待海上风电嵌岩桩31安装完成后,安装其他测量仪器。通过高清摄像机45记录海床形态的实时变化、波浪场的特征及海上风电嵌岩桩31的位移变化。在海上风电嵌岩桩31四周水面上安装浪高仪,用于测量波面信息并及时反馈到造波系统的控制台,为波浪的设置提供实时数据反馈。
在海上风电嵌岩桩31四周水面上安装声学多普勒流速仪,用于全局水流特征的数据采集,并及时反馈到造流系统的控制台中,为水流的设置提供实时数据 反馈。在海上风电嵌岩桩31四周水面上安装水压力传感器,用于测量水动力荷载。在变向风场模拟系统上安装风速传感器,以测量风速的实时变化。在振动台21上安装加速度传感器,用于测量地震频率。
(4)所有传感器安装结束后,将变向风场模拟系统通过数字化控制台移动到试验所需位置,并通过数字化控制台将组合风源根据试验需要进行位置的实时变换。
(5)进行目标波普、目标流速、目标风速、目标地震波的校准。
(6)根据校准结果,按照试验要求对波普、流速、风速、地震波进行施加,开始正式试验。在试验过程中实时测量所需试验数据。
(7)第一组试验结束后,利用桁车系统将围堰40放置在水槽主体1中,利用围堰排水泵42将岩土试验箱20上部的水输送到水槽主体1其他位置。然后利用桁车系统对岩土试验箱20中的岩体26、土体25进行更换,更换后取出围堰40,然后按照步骤(2)-(7)进行下一组试验。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种用于模拟海上风电嵌岩桩多场耦合作用的试验系统,其特征在于,包括水槽主体,水槽主体内部设置海上风电嵌岩桩,海上风电嵌岩桩置于岩土试验箱中,岩土试验箱置于地震模拟系统上;海上风电嵌岩桩一侧设置变向风场模拟系统,变向风场模拟系统能够提供180°空间变化的风场;水槽主体内部安装造波系统,水槽主体侧面安装供排水系统,水槽主体底部设有造流系统。
  2. 根据权利要求1所述的一种用于模拟海上风电嵌岩桩多场耦合作用的试验系统,其特征在于,所述造波系统一侧安装第一消波器,第一消波器位于水槽主体一端;水槽主体另一端安装第二消波器。
  3. 根据权利要求1所述的一种用于模拟海上风电嵌岩桩多场耦合作用的试验系统,其特征在于,所述变向风场模拟系统包括组合风源,所述组合风源与竖直滑动导轨滑动连接,垂直滑动导轨与转向滑动导轨滑动连接;所述180°转向滑动导轨安装于三角桁架内侧。
  4. 根据权利要求3所述的一种用于模拟海上风电嵌岩桩多场耦合作用的试验系统,其特征在于,所述三角桁架设置于水槽主体上方,且能够沿水槽主体移动;三角桁架的横截面呈半圆形。
  5. 根据权利要求1所述的一种用于模拟海上风电嵌岩桩多场耦合作用的试验系统,其特征在于,所述地震模拟系统包括振动台和第三控制台,所述振动台设置于岩土试验箱下方,且振动台与第三控制台相连。
  6. 根据权利要求1所述的一种用于模拟海上风电嵌岩桩多场耦合作用的试验系统,其特征在于,所述供排水系统设置两组,分别分布于水槽主体的两侧,每组供排水系统均包括一个蓄水池、一个水槽供水泵和一个水槽排水泵,所述水槽供水泵和水槽排水泵安装于水槽主体侧面;水槽供水泵和水槽排水泵分别通过 水管连接蓄水池。
  7. 根据权利要求6所述的一种用于模拟海上风电嵌岩桩多场耦合作用的试验系统,其特征在于,所述岩土试验箱通过入水阀门连接试验箱供水泵,试验箱供水泵通过阀门安装于蓄水池的侧面;岩土试验箱通过出水阀门连接地漏,且岩土试验箱顶部与水槽主体底部密封连接。
  8. 根据权利要求1所述的一种用于模拟海上风电嵌岩桩多场耦合作用的试验系统,其特征在于,所述造流系统包括两个均流箱,均流箱与水槽主体之间通过水篦子连通;两个均流箱之间通过主管路相连,主管路一侧具有分支管路;所述分支管路连接至其中一个均流箱,用以实现水流的循环。
  9. 根据权利要求8所述的一种用于模拟海上风电嵌岩桩多场耦合作用的试验系统,其特征在于,所述主管路、分支管路与均流箱的连接端安装有双向造流泵,所述双向造流泵连接控制台。
  10. 根据权利要求1所述的一种用于模拟海上风电嵌岩桩多场耦合作用的试验系统,其特征在于,所述海上风电嵌岩桩周向可拆卸安装有围堰,围堰与水槽主体之间连接水管,且水管上安装围堰排水泵。
PCT/CN2020/116880 2020-07-30 2020-09-22 一种用于模拟海上风电嵌岩桩多场耦合作用的试验系统 WO2022021587A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010752173.4A CN111735608A (zh) 2020-07-30 2020-07-30 一种用于模拟海上风电嵌岩桩多场耦合作用的试验系统
CN202010752173.4 2020-07-30

Publications (1)

Publication Number Publication Date
WO2022021587A1 true WO2022021587A1 (zh) 2022-02-03

Family

ID=72658025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116880 WO2022021587A1 (zh) 2020-07-30 2020-09-22 一种用于模拟海上风电嵌岩桩多场耦合作用的试验系统

Country Status (2)

Country Link
CN (1) CN111735608A (zh)
WO (1) WO2022021587A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114852279A (zh) * 2022-04-20 2022-08-05 浙江海洋大学 一种可调节流速的多功能循环水槽
CN115358128A (zh) * 2022-08-24 2022-11-18 哈尔滨工业大学(深圳) 一种海上风机的基准状态空间模型构建方法
CN116105967A (zh) * 2023-04-17 2023-05-12 四川省农业机械研究设计院 一种用于作物抗倒伏测试实验的风场实验平台
CN117419891A (zh) * 2023-12-19 2024-01-19 天津大学 一种波浪水槽试验系统
CN117454725A (zh) * 2023-12-26 2024-01-26 浙江远算科技有限公司 基于超单元凝聚的海上风电基础地震载荷仿真方法和设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114112303B (zh) * 2021-11-30 2022-07-05 天津大学 一种海上浮岛-防波-锚固系统实验室模拟装置和方法
CN114646482B (zh) * 2022-03-21 2023-01-17 山东大学 一种海上风机一体化多向加载模型试验装置
CN116558792B (zh) * 2023-03-30 2024-02-13 同济大学 用于海上风机地震-波浪耦合作用的测试装置及测试方法
CN116818267A (zh) * 2023-06-07 2023-09-29 中国科学院力学研究所 用于模拟风浪流与海上风机全耦合作用的水槽试验系统
CN117723247B (zh) * 2024-02-18 2024-04-16 安徽省交通控股集团有限公司 一种用于公路桩板式结构的抗震性能检测装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61226629A (ja) * 1985-03-30 1986-10-08 Okumura Constr Co Ltd 振動実験用水槽
CN103234733A (zh) * 2013-05-07 2013-08-07 清华大学 巨型海工离心机
CN203178061U (zh) * 2013-03-22 2013-09-04 上海理工大学 风波流试验水池
CN103278304A (zh) * 2013-06-17 2013-09-04 清华大学 海工振动台装置
CN103472205A (zh) * 2013-09-03 2013-12-25 中国长江三峡集团公司 复合极端气象条件下坡面水土流失实验装置及方法
CN203606260U (zh) * 2013-10-29 2014-05-21 浙江建设职业技术学院 一种海洋环境中钢筋混凝土构件的服役模拟装置
CN104020007A (zh) * 2014-06-24 2014-09-03 大连理工大学 一种模拟地震、波浪、海流联合作用的大型模拟试验系统
CN104655393A (zh) * 2015-03-18 2015-05-27 中国电建集团华东勘测设计研究院有限公司 一种简易风场模拟系统
CN105040755A (zh) * 2015-08-12 2015-11-11 河海大学 一种基于透明岩体的嵌岩桩模型试验装置及其使用方法
CN107167296A (zh) * 2017-06-22 2017-09-15 交通运输部天津水运工程科学研究所 实验室水面溢油运动规律测定方法和装置
CN110553939A (zh) * 2019-08-07 2019-12-10 同济大学 模拟海洋多相荷载耦合作用的室内试验平台
CN110657073A (zh) * 2019-10-30 2020-01-07 中国海洋大学 测试风浪作用下海上风机动力参数演化的试验装置及方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61226629A (ja) * 1985-03-30 1986-10-08 Okumura Constr Co Ltd 振動実験用水槽
CN203178061U (zh) * 2013-03-22 2013-09-04 上海理工大学 风波流试验水池
CN103234733A (zh) * 2013-05-07 2013-08-07 清华大学 巨型海工离心机
CN103278304A (zh) * 2013-06-17 2013-09-04 清华大学 海工振动台装置
CN103472205A (zh) * 2013-09-03 2013-12-25 中国长江三峡集团公司 复合极端气象条件下坡面水土流失实验装置及方法
CN203606260U (zh) * 2013-10-29 2014-05-21 浙江建设职业技术学院 一种海洋环境中钢筋混凝土构件的服役模拟装置
CN104020007A (zh) * 2014-06-24 2014-09-03 大连理工大学 一种模拟地震、波浪、海流联合作用的大型模拟试验系统
CN104655393A (zh) * 2015-03-18 2015-05-27 中国电建集团华东勘测设计研究院有限公司 一种简易风场模拟系统
CN105040755A (zh) * 2015-08-12 2015-11-11 河海大学 一种基于透明岩体的嵌岩桩模型试验装置及其使用方法
CN107167296A (zh) * 2017-06-22 2017-09-15 交通运输部天津水运工程科学研究所 实验室水面溢油运动规律测定方法和装置
CN110553939A (zh) * 2019-08-07 2019-12-10 同济大学 模拟海洋多相荷载耦合作用的室内试验平台
CN110657073A (zh) * 2019-10-30 2020-01-07 中国海洋大学 测试风浪作用下海上风机动力参数演化的试验装置及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG WENHUA: "Fully Coupled Analysis and Vibration Control of Bottom Fixed Offshore Wind Turbine under Earthquakes", CHINESE DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, 1 March 2018 (2018-03-01), pages 1 - 253, XP055890225, ISSN: 1674-022X *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114852279A (zh) * 2022-04-20 2022-08-05 浙江海洋大学 一种可调节流速的多功能循环水槽
CN115358128A (zh) * 2022-08-24 2022-11-18 哈尔滨工业大学(深圳) 一种海上风机的基准状态空间模型构建方法
CN116105967A (zh) * 2023-04-17 2023-05-12 四川省农业机械研究设计院 一种用于作物抗倒伏测试实验的风场实验平台
CN117419891A (zh) * 2023-12-19 2024-01-19 天津大学 一种波浪水槽试验系统
CN117419891B (zh) * 2023-12-19 2024-03-05 天津大学 一种波浪水槽试验系统
CN117454725A (zh) * 2023-12-26 2024-01-26 浙江远算科技有限公司 基于超单元凝聚的海上风电基础地震载荷仿真方法和设备
CN117454725B (zh) * 2023-12-26 2024-03-29 浙江远算科技有限公司 基于超单元凝聚的海上风电基础地震载荷仿真方法和设备

Also Published As

Publication number Publication date
CN111735608A (zh) 2020-10-02

Similar Documents

Publication Publication Date Title
WO2022021587A1 (zh) 一种用于模拟海上风电嵌岩桩多场耦合作用的试验系统
WO2022021586A1 (zh) 一种模拟海上结构物多场耦合作用的水槽试验系统
Zhang et al. Hydrodynamic performance of a floating breakwater as an oscillating-buoy type wave energy converter
Wang et al. Centrifuge modeling of lateral bearing behavior of offshore wind turbine with suction bucket foundation in sand
Welzel et al. Scour development around a jacket structure in combined waves and current conditions compared to monopile foundations
CN110553939B (zh) 模拟海洋多相荷载耦合作用的室内试验平台
CN210953316U (zh) 一种风浪流全耦合动力实验系统
CN109580168B (zh) 一种波流强耦合模拟试验水池及其试验方法
CN105716960A (zh) 复杂地下水环境下的基坑开挖模型试验装置
CN110879126A (zh) 一种风浪流全耦合动力实验系统
Jakobsen et al. Characterization of loads on a hemispherical point absorber wave energy converter
Nielsen et al. Sinking of armour layer around a vertical cylinder exposed to waves and current
Guo et al. Performance evaluation of a submerged tidal energy device with a single mooring line
Luo et al. Numerical simulation of dynamic response of submerged floating tunnel under regular wave conditions
CN109357829A (zh) 一种适用于模拟水下多点地震输入的波-流耦合试验装置
Ma et al. An investigation into the lateral loading response of shallow bucket foundations for offshore wind turbines through centrifuge modeling in sand
CN206231580U (zh) 一种水利工程管理用智能测量装置
CN113218621A (zh) 固体运移与波流耦合下悬浮隧道动力响应试验装置及方法
CN205719795U (zh) 复杂地下水环境下的基坑开挖模型试验装置
CN113432997A (zh) 越江海盾构隧道掌子面土体三维破坏模式测试装置及方法
CN108387710A (zh) 一种可模拟矩形水头边界作用土体的试验装置及方法
CN205720219U (zh) 潜水位和承压水头协同升降的基坑开挖模型试验装置
CN217810768U (zh) 一种泥石流沟床冲刷缩尺模型实验装置
CN116818267A (zh) 用于模拟风浪流与海上风机全耦合作用的水槽试验系统
CN115346427B (zh) 一种波浪作用下沙质海岸岸滩演变物理模型试验方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20946752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20946752

Country of ref document: EP

Kind code of ref document: A1