WO2022225082A1 - 웨어러블 생체 진단 시스템, 장치 및 방법 - Google Patents
웨어러블 생체 진단 시스템, 장치 및 방법 Download PDFInfo
- Publication number
- WO2022225082A1 WO2022225082A1 PCT/KR2021/005086 KR2021005086W WO2022225082A1 WO 2022225082 A1 WO2022225082 A1 WO 2022225082A1 KR 2021005086 W KR2021005086 W KR 2021005086W WO 2022225082 A1 WO2022225082 A1 WO 2022225082A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sensing signal
- section
- wearable
- noise
- lung
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 53
- 238000003745 diagnosis Methods 0.000 title claims abstract description 28
- 230000029058 respiratory gaseous exchange Effects 0.000 claims abstract description 80
- 208000037656 Respiratory Sounds Diseases 0.000 claims abstract description 50
- 210000000056 organ Anatomy 0.000 claims abstract description 25
- 230000002159 abnormal effect Effects 0.000 claims abstract description 22
- 210000004072 lung Anatomy 0.000 claims description 61
- 238000002555 auscultation Methods 0.000 claims description 39
- 238000001914 filtration Methods 0.000 claims description 39
- 230000008602 contraction Effects 0.000 claims description 33
- 241001465754 Metazoa Species 0.000 claims description 22
- 230000000241 respiratory effect Effects 0.000 claims description 18
- 208000019693 Lung disease Diseases 0.000 claims description 10
- 208000024172 Cardiovascular disease Diseases 0.000 claims description 7
- 241000282412 Homo Species 0.000 claims description 5
- 238000001514 detection method Methods 0.000 abstract description 8
- 230000000875 corresponding effect Effects 0.000 description 21
- 238000010586 diagram Methods 0.000 description 12
- 238000004891 communication Methods 0.000 description 11
- 230000005236 sound signal Effects 0.000 description 10
- 210000000038 chest Anatomy 0.000 description 5
- 208000024891 symptom Diseases 0.000 description 5
- 230000006870 function Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000000523 sample Substances 0.000 description 3
- 206010037423 Pulmonary oedema Diseases 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 210000000876 intercostal muscle Anatomy 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 208000005333 pulmonary edema Diseases 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 241000282326 Felis catus Species 0.000 description 1
- 206010039109 Rhonchi Diseases 0.000 description 1
- 206010042241 Stridor Diseases 0.000 description 1
- 206010047924 Wheezing Diseases 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000002612 cardiopulmonary effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000003862 health status Effects 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 210000002429 large intestine Anatomy 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000000541 pulsatile effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 210000000813 small intestine Anatomy 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 210000000115 thoracic cavity Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/08—Detecting, measuring or recording devices for evaluating the respiratory organs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B7/00—Instruments for auscultation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B7/00—Instruments for auscultation
- A61B7/02—Stethoscopes
- A61B7/04—Electric stethoscopes
Definitions
- the present invention relates to a wearable biodiagnostic system, apparatus, and method, and more particularly, acquiring biosignals through a respiration sensor and auscultation sensor, and sensing obtained from auscultation sensor based on the sensing signal obtained from the respiration sensor.
- the present invention relates to a wearable biodiagnostic system, apparatus and method capable of accurately diagnosing lung sounds regardless of the size and type of a subject by specifying a signal.
- a stethoscope is used to check the health status of the examinee by listening to biological sounds generated inside the subject.
- a conventional stethoscope is composed of a collection unit that collects biological sounds generated from the human body, an earpiece that can listen to the collected biological sounds, and a connecting tube that connects the collection unit and the earpiece to deliver biological sounds.
- the doctor places the stethoscope on the body of the subject (patient, etc.) and listens to the stethoscope sound.
- the sound of the heart or breathing which is the source of the sound, has a very low frequency level between 20 Hz and 800 Hz, and it is difficult to hear because it is hidden in the fat and muscle surrounding the subject and under the ribs.
- the sound output through the stethoscope is a mixture of heart sound (heart sound) and breathing sound (lung sound), it is difficult to distinguish between heart sound and lung sound in audible signals, so highly skilled know-how is required.
- a stethoscope equipped with a scale meter such as a hearing aid, or an electronic stethoscope equipped with an amplifier capable of measuring biological sound inside a living body even when the subject is not naked
- the electronic stethoscope collects a biological sound signal generated from a subject, converts it into an electrical signal, amplifies it, and outputs it to a speaker, transmits it to an external device, or records it and then reproduces it if necessary.
- an electronic stethoscope having a microphone that passes through an air layer such as a condenser microphone, or a dynamic microphone using Faraday's law is known.
- the range of a bio-sound signal that can be detected is extremely limited as in the conventional general stethoscope.
- an electronic stethoscope having a microphone that passes through an air layer such as a condenser microphone
- an electronic stethoscope equipped with a dynamic microphone using Faraday's law it is not suitable for measuring a biological sound signal having a pulsatile waveform due to a response characteristic of a low sensitivity to a biological sound signal in a low frequency range.
- Patent Publication No. 10-2020-0019413 discloses a method and apparatus for acquiring a cardiopulmonary sound signal.
- the technique includes acquiring a heart sound and/or lung sound according to a measurement position of a probe for measuring the heart sound and/or lung sound of a patient, and analyzing the heart sound and/or lung sound according to the measurement position to determine the target measurement position of the probe determining, and providing a target measurement location of the probe.
- the size of the subject is small, for example, when the subject is small, such as a companion animal (including a pet dog, a pet cat, etc.), as the density of the heart, lungs and other living organs increases, the lungs and The heart is located in close proximity, and it is difficult to specify the location of the heart or the location of the lungs with respect to the characteristics of the subject.
- a companion animal including a pet dog, a pet cat, etc.
- the above technique is a donut-shaped plate-shaped support having a circular hole formed in the center, and vertically protruding along the circumference to one side and the other side of the circular hole on the support, and a toothed gear is formed in a plurality of layers on the inside
- a wearable device having a stethoscope fixing part and a medical adhesive pad attached to the lower part of the support and attached to the human body while pressing with a predetermined force so that the skin of the human body protrudes from the circular hole; and inserted into the stethoscope fixing part of the wearable device and mounted by pressing, the toothed gear formed to a predetermined length along the outer circumference of the cylindrical body part and composed of a plurality of layers is fixed by meshing with the toothed gear of the stethoscope fixing part
- a wireless stethoscope that receives and amplifies the heart sound, lung sound, or bowel sound generated in the human body through a piezo sensor installed on the lower surface of the body part that is in close
- the technique is to interview the skin with a stethoscope in a state where the adhesive pad is attached to the skin, and may be suitable for the human body without the hair of the subject, but is not suitable for application to animals with hairy skin such as companion animals.
- the conventional apparatus (or system) for detecting heart sounds and lung sounds has the following problems.
- the location of the heart and lungs are separated so that the detection location can be specified and detected separately, whereas in the case of companion animals, the heart and lung sounds are located close to each other, so the heart and lung sounds Since (lung sounds) are mixed and detected, it is difficult to distinguish between heart sounds and lung sounds.
- the present invention was created to solve the problems of the prior art as described above, and the problem to be solved in the present invention is a wearable biometric diagnostic system that can precisely detect heart and lung sounds in companion animals in which biological organs are densely gathered, To provide an apparatus and method.
- Another object of the present invention is to provide a wearable biodiagnostic system, apparatus, and method capable of discriminating and detecting heart sound and lung sound without a complex algorithm for distinguishing between heart sound and lung sound.
- Another object of the present invention is to provide a wearable biodiagnostic system, apparatus, and method that can be applied not only to companion animals but also to the human body (human) to detect heart sounds and lung sounds.
- Another object of the present invention is to provide a wearable biodiagnostic system, apparatus, and method capable of reducing a feeling of rejection due to wearing of the wearable device.
- Another object of the present invention is to provide a wearable biometric diagnostic system, apparatus, and method that can be easily worn without measures such as hair removal according to wearing of the wearable device.
- a wearable biodiagnostic system for solving the above problems includes a wearable member, a respiration sensor mounted on the wearable member to detect respiration, and auscultation sensor for detecting the sound of a living organ wearable devices; and a diagnostic device for determining an abnormal state of the subject using the first sensing signal of the respiration sensor and the second sensing signal of the auscultation sensor transmitted by the wearable device.
- the diagnosis apparatus includes a filtering module for removing noise from the second sensing signal using the first sensing signal, and an abnormal state of the subject using the second sensing signal from which the noise has been removed. It includes an analysis module to determine.
- the filtering module of the diagnosis apparatus specifies a section of the second sensing signal corresponding to at least one section of the first sensing signal, and considers a section other than the specified section as noise, so as to perform the second sensing It is characterized in that it is removed from the signal.
- the filtering module of the diagnostic apparatus includes a first section of the second sensing signal corresponding to a section from the start of lung relaxation of the first sensing signal to a preset first time point, and lung contraction of the first sensing signal.
- the remaining section excluding the second section of the second sensing signal corresponding to the section from the start time to the preset second time point is regarded as noise and is removed from the second sensing signal.
- the second sensing signal is a signal related to a lung sound
- the analysis module of the diagnosis apparatus considers the first sensing signal and the second sensing signal from which the noise is removed together to determine the lung disease of the subject. Characterized in determining the type.
- the diagnostic apparatus may further include an alarm module for notifying an abnormal state when it is determined by the analysis module that the respiratory cycle (respiration rate) of the lungs exceeds 20%.
- the second sensing signal is a signal related to a heart sound
- the analysis module of the diagnosis apparatus considers both the first sensing signal and the second sensing signal from which the noise is removed, thereby causing cardiovascular disease of the subject. Characterized in determining the type.
- a wearable biodiagnostic apparatus includes a wearable member; a respiration sensor that is mounted on the wearable member and senses respiration; auscultation sensor mounted on the wearable member and detecting a sound of a living organ; and a diagnostic unit for determining an abnormal state of the subject by using the first sensing signal of the respiration sensor and the second sensing signal of the auscultation sensor.
- the diagnosis unit includes a filtering module that removes noise from the second sensing signal using the first sensing signal, and detects an abnormal state of the subject using the second sensing signal from which the noise is removed. It includes an analysis module to judge.
- the biodiagnostic method determines an abnormal state of a subject using a first sensing signal of a respiration sensor for detecting respiration and a second sensing signal of a auscultation sensor detecting a sound of a living organ a filtering step of removing noise from the second sensing signal using the first sensing signal; and an analysis step of determining an abnormal state of the subject by using the second sensing signal from which the noise has been removed.
- the filtering step may include a section specifying step of specifying a section of the second sensing signal corresponding to at least one section of the first sensing signal; and a noise removing step of removing the remaining sections from the second sensing signal by considering the sections other than the specified section as noise.
- the section specifying step may include a first section specifying step of specifying a first section of the second sensing signal corresponding to the section from the lung relaxation start time of the first sensing signal to a preset first time point; and a second section specifying step of specifying a second section of the second sensing signal corresponding to a section from the start of lung contraction of the first sensing signal to a preset second time point, wherein the noise removing step includes The remaining sections except for the first section and the second section are regarded as noise and are removed from the second sensing signal.
- the second sensing signal is a signal related to lung sound
- the type of lung disease of the subject is determined by considering the first sensing signal and the second sensing signal from which the noise is removed. It may further include the step of
- the method further includes an alarm step of notifying the user's mobile terminal.
- the second sensing signal is a signal related to a heart sound
- the type of cardiovascular disease of the subject is determined by considering the first sensing signal and the second sensing signal from which the noise is removed. It is characterized in that it further comprises the step of
- the present invention can be applied not only to companion animals in which biological organs are densely gathered but also to the human body, and by accurately detecting heart and lung sounds based on the relaxation and contraction of the lungs by inhalation and exhalation, a precise diagnosis of the subject can be performed. There are advantages to doing it.
- the wearable device can be worn without compromising the appearance of the subject, and an abnormality in the subject can be diagnosed at an early stage based on previously input biometric information of the subject or average biometric information of the subject There is this.
- FIG. 1 is a block diagram of a wearable biometric diagnostic system according to a first embodiment of the present invention.
- FIG. 2 is a block diagram showing the detailed configuration of each component constituting the system of FIG. 1 .
- FIG. 3 is a block diagram of a wearable biometric diagnostic system according to another embodiment of the present invention.
- FIG. 4 is an output waveform of a first sensing signal detected by a respiration sensor applied to the wearable biodiagnostic system according to the present invention.
- FIG. 5 is an output waveform of a second sensing signal detected by the auscultation sensor applied to the wearable biodiagnostic system according to the present invention.
- FIG. 6 is a diagram for specifying the first section and the second section of the second sensing signal corresponding to the section selected from the first sensing signal detected by the respiration sensor applied to the wearable biodiagnostic system according to the present invention.
- FIG. 7 is a graph of a second sensing signal before filtering detected through the auscultation sensor, a first sensing signal detected through a respiration sensor, and a second sensing signal after filtering.
- FIG. 8 is a graph showing waveforms of lung sounds according to various types of respiratory symptoms.
- FIG. 9 is a block diagram of a wearable biometric diagnostic apparatus according to a second embodiment of the present invention.
- FIG. 10 is a block diagram illustrating a detailed configuration of each component constituting the device of FIG. 9 .
- FIG. 11 is a flowchart of a biodiagnostic method according to an embodiment of the present invention.
- MODULE means a unit that processes a specific function or operation, which may mean hardware or software or a combination of hardware and software.
- the present invention acquires a bio-signal through a respiration sensor and auscultation sensor, and specifies the sensing signal obtained from the auscultation sensor based on the sensing signal obtained from the respiration sensor, irrespective of the size and type of the subject.
- the present invention relates to a wearable biodiagnostic system, apparatus, and method capable of accurately diagnosing.
- Embodiment 1 relates to a system that detects a biosignal from a wearable device worn on the body and transmits the biosignal to the diagnosis device, and the diagnosis device determines whether an object is abnormal based on the received biosignal.
- FIG. 1 is a configuration diagram of a wearable biodiagnostic system according to Embodiment 1 of the present invention
- FIG. 2 is a block diagram illustrating detailed configurations of components constituting the system of FIG. 1 .
- a wearable biometric diagnosis system 10 includes a wearable device 100 and a diagnosis device 200 .
- the wearable device 100 includes a wearable member 110 , a breathing sensor 120 , auscultation sensor 130 , and a communication module 140 .
- the wearable member 110 may be implemented in the form of a band to be worn on the subject.
- a coupling member is provided at both ends of the band to facilitate wearing and release.
- Velcro Velcro
- a buckle As the coupling member, Velcro, a buckle, or a snap button may be used.
- the band can provide a comfortable fit according to the body type of the subject by being implemented to have elasticity or to be able to adjust the length.
- variously deformed bands may be employed, and specific examples thereof include a belt-shaped straight band, an X-shaped band, and a double band.
- FIG. 3 is a block diagram of a wearable biodiagnostic system according to another embodiment of the present invention.
- the wearable member 110 may be implemented as a clothing type such as a T-shirt and underwear.
- the wearable member 110 is a stretchable member that can be worn on the body of the subject, it does not matter if it is implemented in any shape.
- the wearable member may be understood as the same concept.
- the wearable member 110 is equipped with a breathing sensor 120 and auscultation sensor 130 .
- the respiration sensor 120 performs a function of detecting the respiration of a subject by using an element that converts a mechanical signal according to relaxation and contraction into an electrical signal, and includes a substrate and an electrode.
- a voltage signal corresponding thereto is output according to the degree of relaxation or contraction of the substrate, and may be output in the form of an analog signal or a digital signal according to the type of the sensor 120 .
- Any one of a stretch sensor or a strain gauge may be used as the respiration sensor 120 .
- the stretch sensor detects the degree of relaxation and contraction of an elastic band or fabric, and generates a signal by measuring a change in resistance according to expansion.
- the strain gauge generates a signal using the principle that electrical resistance changes when an external force is applied using a piezoelectric material whose electrical characteristics change due to internal polarization when pressure (or stress) is applied and the strain gauge is deformed.
- respiration can be divided into inhalation and exhalation.
- the intercostal muscles contract and the ribs are lifted, and the diaphragm also contracts as the diaphragm contracts and the volume of the thoracic cage increases. Conversely, during expiration, the intercostal muscles relax and the ribs descend, and the diaphragm relaxes and rises, reducing the volume of the chest cavity.
- respiration may be defined in a broad sense of detecting inspiration and exhalation. Alternatively, it may mean expansion and contraction of the rib cage in a narrow sense, and may mean expansion and contraction of the lungs in a narrower sense. That is, in the present invention, the definition of respiration is interpreted as a meaning encompassing the expansion and contraction of the chest or lungs as well as a comprehensive meaning of inspiration and expiration.
- the respiration sensor 120 detects the expansion and contraction of the lungs or rib cage caused by breathing of a subject, for example, a human body or a companion animal.
- the respiration sensor 120 may be separately attached to the wearable member 110 or implemented as a part of the wearable member 110 .
- the wearable device 100 be worn so as to cover the lung region (chest) of the subject.
- the body itself is rather small compared to humans, so there is a difference in degree, but the relaxation and contraction of the lungs can be detected in almost all parts of the body. Therefore, it does not matter if the wearable device 100 is worn in a position other than the lungs as long as it is within the body of the companion animal.
- the auscultation sensor 130 is mounted on the wearable member 110 and detects the sound of a living organ of the subject.
- the living organ sounds include heart sounds and lung sounds, and other organs sounds or ambient noises may be included.
- the auscultation sensor 130 includes a tube, a microphone that converts the sound collected through the tube into an electrical signal, a signal amplifier that amplifies the electrical signal converted through the microphone, and the signal amplified by the signal amplifier. It may be configured to include an output terminal.
- the wearable device 100 detects the first sensing signal for relaxation and contraction of the lungs caused by the breathing of the subject using the respiration sensor 120 , and uses the auscultation sensor 130 to detect the first sensing signal of the subject. A second sensing signal for the sound of a living organ is detected. In addition, the wearable device 100 transmits the first sensing signal and the second sensing signal to the diagnosis device 200 by wire or wirelessly through the communication module 140 .
- the communication module 140 is configured to perform Bluetooth, RFID, Radio Frequency Identification, Infrared Data Association (IrDA), Short-range wireless communication such as Ultra Wideband (UWB), ZigBee, Wireless Sensor Network (WSN), Wireless LAN or Wifi (WLAN), and Ultra Wideband (UWB) may be supported.
- IrDA Infrared Data Association
- UWB Ultra Wideband
- WSN Wireless Sensor Network
- WLAN Wireless LAN or Wifi
- UWB Ultra Wideband
- Bluetooth-based BLE beacon protocol it is also possible to support broadcasting-type information transmission.
- the communication module 140 is a mobile communication protocol such as 2G, 3G, 4G, 5G, Wibro (Wireless broadband), Wimax (World Interoperability for Microwave Access), HSDPA (High Speed Downlink Packet Access) mobile communication protocols such as may support
- the communication module 140 may be transmitted as an AM or FM RF signal.
- the communication module 140 may support a wired communication protocol such as RS-232C or USB in a wired manner.
- the diagnosis apparatus 200 includes a filtering module 210 , an analysis module 220 , and an alarm module 230 as shown in FIG. 2 .
- the filtering module 210 removes the noise of the second sensing signal detected by the auscultation sensor 130 by using the first sensing signal detected by the respiration sensor 120 .
- the term 'noise' refers to a signal related to a sound other than a target sound signal to be detected.
- the target acoustic signal is a lung sound
- all organs other than the lungs, that is, sounds of the heart or stomach, or other noises introduced from the external environment may be regarded as 'noise'.
- FIG. 4 is an output waveform of a first sensing signal detected by a respiration sensor applied to the wearable biodiagnostic system according to the present invention.
- the waveform of the first sensing signal detected by the respiration sensor 120 appears in response to relaxation and contraction of the lungs according to the respiration of the subject.
- lung relaxation starts (start of in-breath) at the lowest point and inhalation to the highest point.
- the exhalation may be divided into an exhalation section, and the inhalation and exhalation are continuously repeated.
- an even waveform may be repeated depending on the body condition of the subject, and as shown in FIG. 4 , a somewhat uneven waveform may be repeated.
- FIG. 5 is an output waveform of the second sensing signal detected by the auscultation sensor applied to the wearable biodiagnostic system according to the present invention.
- the signal waveforms of various sounds are mixed in the second sensing signal. That is, since the second sensing signal includes various biological organ sounds such as heart sound (heart sound), lung sound (lung sound), small and large intestine sound (intestine sound), breathing sound, and voice, At least six or more peak waveforms are detected.
- heart sound heart sound
- lung sound lung sound
- small and large intestine sound intestine sound
- breathing sound breathing sound
- voice voice
- the filtering module 210 specifies at least one section in the first sensing signal of the respiration sensor, and specifies the section of the second sensing signal of the auscultation sensor corresponding to the specified section of the first sensing signal.
- the remaining section except for the specified section is regarded as noise, and the second sensing signal is filtered in such a way that the signal of the section regarded as noise is removed from the second sensing signal.
- FIG. 6 is a diagram for specifying the first section and the second section of the second sensing signal corresponding to the section selected from the first sensing signal detected by the respiration sensor applied to the wearable biodiagnostic system according to the present invention.
- a first section is the second sensing signal corresponding to a section from a lung relaxation start time of the first sensing signal to a preset first time point
- a second section is the first sensing signal is the second sensing signal corresponding to a section from the start time of lung contraction to a preset second time point.
- the first section is the second sensing signal corresponding to the section from the point in time when the inhalation starts in the inhalation section to before the inhalation is completely terminated (a preset first time point)
- the second section is the point in time when the exhalation starts in the exhalation section. It is a second sensing signal corresponding to the section before the end of exhalation from (a preset second time point).
- the filtering module 210 regards the remaining sections of the second sensing signal as noise and removes them except for the first section and the second section.
- first section and the second section are set based on a time line, they may be set based on the highest point of the detected sensing signal. That is, normal respiration can specify the first section and the second section with a preset time, but in the case of abnormal respiration, because the respiration rate is increased, the first section is based on the highest and lowest points of the first sensing signal rather than the time standard. And it may be better to set the second section.
- the first section is set to a time prior to the time when the inhalation peak is reached at the time when the lung relaxation starts when the inhalation of the first sensing signal starts
- the second section is the time when the exhalation of the first sensing signal starts
- the exhalation may be set to a time prior to the time of reaching the nadir.
- the first section may be viewed as a section in which lung relaxation by respiration (inhalation) is vigorously performed, and the second section as a section in which lung contraction is actively performed by respiration (exhalation). Therefore, it is not unreasonable to define the first section and the second section of the second sensing signal as a signal related to a lung sound.
- a section other than the first section and the second section in the second sensing signal may be defined as a section in which the relaxation and contraction of the lungs are temporarily stopped or weakly performed.
- other organs for example, heart sounds
- a section other than the first section and the second section of the second sensing signal can be defined as a signal related to heart sound. have.
- FIG. 7 is a graph of the second sensing signal before filtering detected through the auscultation sensor, the first sensing signal detected through the respiration sensor, and the graph of the second sensing signal after filtering.
- FIG. 7 is a second sensing signal detected by the auscultation sensor 130, (b) is a first sensing signal detected by the respiration sensor 12, (c) is a filtering module 210 ) through which noise is removed from the second sensing signal using the first sensing signal.
- the second sensing signal detected by the auscultation sensor 130 has a complex waveform with lung sounds, heart sounds, and other noises mixed.
- the first sensing signal detected by the respiration sensor 12 can confirm that inhalation and exhalation are performed relatively regularly.
- the filtering module 210 specifies a section of the second sensing signal corresponding to at least one section of the first sensing signal, and removes the section other than the specified section as noise and removes it from the second sensing signal By doing so, the lung sounds are specified.
- a section is specified for relaxation and contraction of the respiration sensor 120, and the second of the auscultation sensor 130 is based on the specified section.
- the remaining section is regarded as noise and the excluded waveform can be checked. It can be seen that one cycle includes two peak waveforms in the waveform of FIG. .
- the analysis module 220 considers the first sensing signal and the second sensing signal from which the noise is removed to determine whether an abnormal state has occurred in the lung of the subject and/or a specific type of lung disease.
- the 'abnormal state' of the lung may be defined in advance by various criteria.
- the analysis module 220 when the respiration cycle (respiration rate) detected from the filtered second sensing signal is calculated to exceed 20% of the normal state, in an embodiment of the present invention, the analysis module 220 is a precursor to a serious state that is difficult to reverse. It can be regarded as an 'abnormal condition' or as a serious 'pulmonary edema'. here. Pre-stored information about the subject (respiration cycle or respiration rate in a normal state) may be used as a target for comparative judgment with respect to the respiration cycle (respiration rate).
- data constructed on a normal respiratory cycle can be used according to the species, sex/male, age and weight of the companion animal, and when the subject is a human (human body), male/female Construction data for a normal respiratory cycle according to , age and weight, etc. may be used.
- an average respiratory cycle for a predetermined time for the subject may be used.
- the analysis module 220 may determine a specific lung disease name by comparing the filtered second sensing signal with various predefined lung disease waveforms.
- FIG. 8 is a graph showing waveforms of lung sounds according to various types of respiratory symptoms.
- waveforms such as Tracheal Sound, Normal Lung Sound, Bronchial Breathing, Stridor, Wheeze, and Rhonchus are derived differently. do.
- the analysis module 220 compares the similarity with the waveform for each respiratory symptom of FIG. 8 based on the filtered second sensing signal, and when there is a waveform with a predetermined similarity or higher, the type of lung disease of the corresponding respiratory symptom is specifically determined.
- the filtering module 210 appropriately redefines the first section and the second section of the first sensing signal or the second sensing signal, so that sounds of organs other than lung sounds, for example, heart sounds ) may be filtered, and the analysis module 220 may also determine an abnormal state of the heart and/or a specific type of cardiovascular disease.
- the alarm module 230 when it is determined by the analysis module 200 that the respiratory cycle (respiration rate) of the lungs exceeds 20%, a warning sound alarm, a warning phrase output on the display, the flashing of the light emitting element, the user The user is notified of the abnormal state by at least one method of transmitting a message to the mobile terminal.
- Embodiment 2 relates to a case in which a wearable device worn on the body performs both detection of a biosignal and determination of whether an object is abnormal based on the sensed biosignal.
- FIG. 9 is a configuration diagram of a wearable biodiagnostic apparatus according to a second embodiment of the present invention
- FIG. 10 is a block diagram illustrating detailed configurations of components constituting the device of FIG. 9 .
- the wearable member represents a biodiagnostic device configured in a belt type, but the wearable member may be implemented as a garment type as well as a silk belt type.
- the wearable biodiagnostic apparatus 20 includes a wearable member 310 , a respiration sensor 320 , auscultation sensor 330 , and a diagnosis unit 340 .
- the wearable member 310, the respiration sensor 320 and the auscultation sensor 330 have almost the same configuration as the wearable member 110, the respiration sensor 120, and the auscultation sensor 130 of Example 1, so they overlap A description is omitted.
- the wearable member 310, the breathing sensor 320, the auscultation sensor 330, and the diagnosis unit 340 include a board circuit or They differ in that they are electrically connected via a bus and are configured to communicate with each other.
- the diagnostic unit 340 includes a filtering module 341 , an analysis module 342 , and an alarm module 343 , and the filtering module 341 , the analysis module 342 and the alarm module 343 are each of the first embodiment. It has the same configuration as the filtering module 210 , the analysis module 220 , and the alarm module 230 .
- Embodiment 3 relates to a biodiagnostic method performed by a hardware diagnostic device or a software diagnostic program.
- FIG. 11 is a flowchart of a biodiagnostic method according to an embodiment of the present invention.
- the biodiagnostic method includes a filtering step (S10), an analysis step (S20), and an alarm step (S30).
- the filtering step S10 is a step of removing noise from the second sensing signal using the first sensing signal.
- the first sensing signal is detected through a respiration sensor detecting contraction and relaxation of the lungs, and the second sensing signal is detected through an auscultation sensor detecting a sound of a living organ.
- the respiration sensor may be attached to a band of the wearable device or configured as a part of the band. Alternatively, it may be attached to stretchable clothing (underwear, etc.) worn by the subject, and any one may be used as long as the degree of elongation according to the relaxation and contraction of the lungs can be detected by breathing of the subject.
- the auscultation sensor may be attached to the wearable device or directly attached to the body of the subject. Alternatively, it may be attached to the vicinity of the lungs of the subject or may be attached to clothing (underwear, etc.), and any one may be used as long as it is capable of detecting a lung sound (lung sound) by breathing of the subject.
- the filtering step (S10) includes a section specifying step (S11) and a noise removal step (S12).
- the section specifying step S11 is a step of specifying a section of the second sensing signal corresponding to at least one section of the first sensing signal.
- the second sensing signal detected by the auscultation sensor includes many noises. It is difficult to detect an abnormality in the lungs only with the second sensing signal containing noise, and there is a problem in that it may be misdiagnosed.
- the first sensing signal detected by the respiration sensor and the second sensing signal detected by the auscultation sensor are aligned in the same time domain, and the section of the second sensing signal is specified through the first sensing signal will do
- the section specifying step (S11) is a first section specifying step of specifying a first section of the second sensing signal corresponding to the section from the start of lung relaxation of the first sensing signal to a preset first time point and a second section specifying step of specifying a second section of the second sensing signal corresponding to a section from the start of lung contraction of the first sensing signal to a preset second time point.
- the first section specifying step is a section from the start of lung relaxation to the first time point when a predetermined time has elapsed, and is a step of specifying lung sounds generated by the relaxation of the lungs to the inhalation of the subject.
- the second section specifying step is a section from the start of lung contraction to the second time point when a predetermined time has elapsed, and is a step of specifying lung sounds generated by lung contraction with respect to the exhalation of the subject.
- the noise removing step (S12) is a step of considering the remaining sections except for the section specified in the section specifying step (S11) as noise, and removing the section regarded as noise from the second sensing signal.
- relaxation and contraction of the respiration sensor are highly correlated with respiration of the lungs, and the signal generated during relaxation from the first sensing signal detected through the respiration sensor is compared with the second sensing signal detected through the auscultation sensor, Comparing the signal generated during contraction in the first sensing signal with the second sensing signal detected through the auscultation sensor, a section of the second sensing signal corresponding to relaxation and contraction of the lung can be specified, and the specified section is excluded In this case, the second sensing signal of the specified section may be regarded as a lung sound signal.
- the analysis step S20 is a step of determining an abnormal state of the subject by using the second sensing signal from which the noise has been removed in the filtering step S10.
- the section other than the specified section is regarded as noise in the section specifying step S11 and the section regarded as noise is removed from the second sensing signal, it can be regarded as a signal related to lung sound.
- the remaining sections (sections considered as noise) other than the specified section may be regarded as signals related to heart sounds.
- the second sensing signal corresponding to the specified section of the first sensing signal detected by the respiration sensor may be determined as the lung sound, and the remaining section of the specified section may be determined as the heart sound.
- the lung sound and heart sound are separated and the lung sound signal and the heart sound signal are considered together to determine the type of lung disease of the subject or the type of cardiovascular disease of the subject. .
- the alarm step (S30) is a step of notifying the user mobile terminal when it is determined that the respiratory cycle (respiration rate) of the lungs exceeds 20% as a result of the analysis of the analysis step (S20).
- the user's mobile terminal is a laptop computer, a smart phone, a tablet PC, a personal digital assistant (PDA), an enterprise digital assistant (EDA), and a mobile Internet device (MID). ) and an e-book (e-Book).
- PDA personal digital assistant
- EDA enterprise digital assistant
- MID mobile Internet device
- e-Book e-book
- All or partial functions of the wearable biodiagnostic system, apparatus, and method described above may be provided by being stored in a computer-readable recording medium by tangibly implementing a program of instructions for implementing the same.
- the computer-readable recording medium includes program instructions, data files, data structures, etc. alone or in combination. Examples of the computer-readable recording medium include magnetic media such as hard disks, floppy disks and magnetic tapes, optical media such as CD-ROMs and DVDs, and floppy disks. magneto-optical media, and hardware devices specially configured to store and carry out program instructions, such as ROM, RAM, flash memory, USB memory, and the like.
- the computer-readable recording medium may be a transmission medium such as an optical or metal wire or waveguide including a carrier wave for transmitting a signal designating a program command, a data structure, and the like.
- Examples of program instructions include high-level language codes that can be executed by a computer using an interpreter or the like, in addition to machine language codes such as those generated by a compiler.
- the hardware device may be configured to operate as one or more software modules to perform the operations of the present invention.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Acoustics & Sound (AREA)
- Pulmonology (AREA)
- Physiology (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
본 발명은 웨어러블 생체 진단 시스템, 장치 및 방법에 관한 것으로서, 더욱 상세하게는 호흡감지센서와 청진센서를 통해 생체 신호를 취득하고, 호흡감지센서에서 취득된 센싱신호에 근거하여 청진센서에서 취득된 센싱신호를 특정함으로써, 피검체의 크기 및 종류에 상관없이 폐음을 정확하게 진단할 수 있는 웨어러블 생체 진단 시스템, 장치 및 방법에 관한 것이다. 위의 과제를 해결하기 위한 본 발명의 일 실시 예에 따른 웨어러블 생체 진단 시스템은 웨어러블 부재와, 상기 웨어러블 부재에 장착되며 호흡을 감지하는 호흡감지센서와, 생체 장기의 소리를 감지하는 청진센서를 포함하는 웨어러블 장치; 및 상기 웨어러블 장치가 전송한 상기 호흡감지센서의 제1센싱신호와 상기 청진센서의 제2센싱신호를 이용하여 피검체의 이상 상태(abnormal)를 판단하는 진단 장치를 포함한다.
Description
본 발명은 웨어러블 생체 진단 시스템, 장치 및 방법에 관한 것으로서, 더욱 상세하게는 호흡감지센서와 청진센서를 통해 생체 신호를 취득하고, 호흡감지센서에서 취득된 센싱신호에 근거하여 청진센서에서 취득된 센싱신호를 특정함으로써, 피검체의 크기 및 종류에 상관없이 폐음을 정확하게 진단할 수 있는 웨어러블 생체 진단 시스템, 장치 및 방법에 관한 것이다.
일반적으로 청진기는 피검체 내부에서 발생하는 생체음을 청취하여 피진찰자의 건강 상태를 체크하는 데 사용된다. 종래의 청진기는 인체에서 발생하는 생체음을 모아주는 채집부와, 채집된 생체음을 청취할 수 있는 이어피스부와, 상기 채집부 및 이어피스부를 연결하여 생체음을 전달하는 연결튜브로 구성되는 것이 일반적이다. 기존의 아날로그형 청진기는 의사가 피검체(환자 등)의 몸에 청진기를 대고 청진음을 듣는다. 이때 소리의 원천이 되는 심장소리나 호흡소리는 소리 자체가 20㎐~800㎐ 사이로 주파수 레벨이 워낙 낮고, 피검체를 둘러싸고 있는 지방과 근육 그리고 갈비뼈 아래 부분에 숨겨져 있어 잘 들리지 않는다. 더욱이, 청진기를 통해 출력되는 소리는 심장음(심음)과 호흡소리(폐음)이 혼합되기 때문에 가청신호에서 심음과 폐음을 구분하기 어려워 고도의 숙달된 노하우가 요구된다.
이러한 문제점을 해결하기 위해, 보청기와 같은 측미음계를 장착한 청진기나 피검체가 옷을 벗지 않은 상태에서도 생체 내부의 생체음 측정을 가능케 하는 증폭기를 구비한 전자 청진기 등이 개발되어 있다. 상기 전자 청진기는 피검체에서 발생되는 생체음 신호를 수집하여 전기적 신호로 변환한 후 이를 증폭하여 스피커로 출력하거나 외부 기기로 송신하거나 녹음된 후 필요한 경우에 재생할 수 있다.
종래의 전자 청진기로는, 콘덴서 마이크로폰과 같이 공기층을 통과하는 마이크로폰을 구비하거나 패러데이 법칙을 이용한 다이나믹 마이크로폰을 구비한 전자 청진기가 알려져 있다.
그러나 이와 같은 전자 청진기기에 있어서도 상기한 종래의 일반적인 청진기와 마찬가지로 감지할 수 있는 생체음 신호의 범위가 극히 제한적이다. 예컨대, 콘덴서 마이크로폰과 같이 공기층을 통과하는 마이크로폰을 구비한 전자 청진기의 경우, 낮은 주파수 대역의 생리적 음향 신호 대부분을 제대로 검출하지 못하기 때문에 30Hz 미만의 생체음 신호를 측정하기에 부적합하다. 한편, 패러데이 법칙을 이용한 다이나믹 마이크로폰이 구비된 전자 청진기의 경우에도 낮은 주파수 범위의 생체음 신호에 대한 감도가 떨어지는 응답 특성 때문에 맥박성의 파형을 갖는 생체음 신호를 측정하는 데 부적합하다.
공개특허공보 제10-2020-0019413호에 심폐음 신호 획득 방법 및 장치가 개시되었다.
상기 기술은 환자의 심음 및/또는 폐음을 측정하기 위한 프로브의 측정 위치에 따라 심음 및/또는 폐음을 획득하는 단계, 상기 측정 위치에 따른 심음 및/또는 폐음을 분석하여 상기 프로브의 타겟 측정 위치를 결정하는 단계, 및 상기 프로브의 타겟 측정 위치를 제공하는 단계를 포함한다.
그러나 피검체의 크기가 작은 경우, 예를 들면 피검체가 반려동물(애완견, 애완 고양이 등을 포함) 등과 같이 몸체의 크기가 작은 경우에는 심장, 폐 및 기타 생체 장기들의 밀집도가 높아짐에 따라 폐와 심장이 근접하여 위치하게 되며, 이러한 피검체의 특성에 대해 심장의 위치 또는 폐의 위치를 특정하기 어렵다.
또한, 등록특허공보 제10-1957110호에 무선 청진기를 포함하는 웨어러블 장치가 개시되었다.
상기 기술은 중앙에 원형 구멍이 형성된 도우넛 모양의 판상의 지지대와, 상기 지지대 상의 상기 원형 구멍의 일측 및 타측에 원둘레를 따라 소정의 길이로 수직으로 돌출 형성되고 내측에 톱니기어가 복수의 층으로 형성된 청진기 고정부와, 상기 지지대의 하부에 부착되며 상기 원형 구멍에 인체의 피부가 돌출되게 소정의 힘으로 압박하면서 인체에 부착하는 의료용 점착성 패드를 구비한 웨어러블 장치; 및 상기 웨어러블 장치의 청진기 고정부에 삽입하여 눌러서 장착하되, 원통형의 몸체부의 외주면 둘레를 따라 소정의 길이로 형성되고 복수의 층으로 구성된 톱니기어가 상기 청진기 고정부의 톱니기어와의 치합에 의해 고정되면서 인체에 눌러서 고정되며, 상기 인체를 압박하면서 밀착된 상기 몸체부의 하면에 설치된 피에조 센서를 통해 상기 인체에서 발생하는 심음, 폐음 또는 장음을 수신하여 증폭한 후 블루투스 통신으로 전송하는 무선 청진기로 구성된 것을 특징으로 한다.
그러나 상기 기술은 점착성 패드를 피부에 부착한 상태에서 청진기를 피부에 면접시키는 것으로서, 피검체의 털이 없는 인체에 적합할 수 있으나, 반려동물 등과 같이 피부에 털이 많은 동물에는 적용하기가 부적합하다.
즉, 종래의 심음 및 폐음을 검출하는 장치(또는 시스템)는 다음과 같은 문제점이 있다.
1. 종래 청진기(전자 청진기 포함)는 인체의 특징에 제한되어 구성되기 때문에 반려동물 등에 적용하기가 곤란하다.
2. 인체의 경우 심장 및 폐의 위치가 구분되어 검출 위치를 특정하여 분리 검출할 수 있는 것인 반면, 반려동물인 경우 심장과 폐의 위치가 근접하여 배치됨에 따라 심장소리(심음)와 폐소리(폐음)가 혼재되어 검출되기 때문에, 심음과 폐음을 구분하기가 어렵다.
3. 인체, 즉 피검체가 사람인 경우에는 심음 및 폐음을 검출하는 과정에서 의사소통이 원할하여 피검체가 의식적으로 검출하는 시간동안 신체를 제어할 수 있으나, 반려동물의 경우 의식적인 검출환경을 제공할 수 없다.
4. 반려동물 중 일부는 특유의 소리를 발생하여 특유의 소리와 심음 및 폐음과 구분하기 어렵다.
5. 반려동물에 웨어러블 장치를 착용시키기가 어렵고, 착용시킨다 하더라도 지속적인 착용상태를 유지하기가 어렵다.
본 발명은 위와 같은 종래 기술이 갖는 문제점을 해결하고자 창출된 것으로서, 본 발명에서 해결하고자 하는 과제는 생체 기관들이 조밀하게 모여 있는 반려동물에서 심음 및 폐음을 정밀하게 검출할 수 있는 웨어러블 생체 진단 시스템, 장치 및 방법을 제공하는 데 있다.
또한, 심음 및 폐음을 구분하기 위한 복잡한 알고리즘 없이도 심음 및 폐음을 구분하여 검출할 수 있는 웨어러블 생체 진단 시스템, 장치 및 방법을 제공하는 데 있다.
또한, 반려동물 뿐만 아니라 인체(사람)에도 적용하여 심음 및 폐음을 검출할 수 있는 웨어러블 생체 진단 시스템, 장치 및 방법을 제공하는 데 있다.
또한, 웨어러블 장치의 착용에 따른 거부감을 감소시킬 수 있는 웨어러블 생체 진단 시스템, 장치 및 방법을 제공하는 데 있다.
또한, 웨어러블 장치의 착용에 따른 제모 등의 조치 없이도 쉽게 착용할 수 있는 웨어러블 생체 진단 시스템, 장치 및 방법을 제공하는 데 있다.
또한, 검출된 생체 정보에 근거하여 생체의 위험상황을 미리 예측할 수 있는 웨어러블 생체 진단 시스템, 장치 및 방법을 제공하는 데 있다.
위의 과제를 해결하기 위한 본 발명의 일 실시 예에 따른 웨어러블 생체 진단 시스템은 웨어러블 부재와, 상기 웨어러블 부재에 장착되며 호흡을 감지하는 호흡감지센서와, 생체 장기의 소리를 감지하는 청진센서를 포함하는 웨어러블 장치; 및 상기 웨어러블 장치가 전송한 상기 호흡감지센서의 제1센싱신호와 상기 청진센서의 제2센싱신호를 이용하여 피검체의 이상 상태(abnormal)를 판단하는 진단 장치를 포함한다.
여기서, 상기 진단 장치는 상기 제1센싱신호를 이용하여 상기 제2센싱신호에서 잡음(noise)을 제거하는 필터링 모듈과, 잡음이 제거된 제2센싱신호를 이용하여 피검체의 이상 상태(abnormal)를 판단하는 분석 모듈을 포함한다.
또한, 상기 진단 장치의 필터링 모듈은 상기 제1센싱신호의 적어도 하나의 구간에 대응하는 상기 제2센싱신호의 구간을 특정하고, 상기 특정된 구간을 제외한 나머지 구간을 잡음으로 간주하여 상기 제2센싱신호에서 제거하는 것을 특징으로 한다.
또한, 상기 진단 장치의 필터링 모듈은 상기 제1센싱신호의 폐 이완 시작 시점에서 미리 설정된 제1시점까지의 구간에 대응하는 상기 제2센싱신호의 제1구간과, 상기 제1센싱신호의 폐 수축 시작 시점에서 미리 설정된 제2시점까지의 구간에 대응하는 상기 제2센싱신호의 제2구간을 제외한 나머지 구간을 잡음으로 간주하여 제2센싱신호에서 제거하는 것을 특징으로 한다.
이때, 상기 제2센싱신호는 폐음(lung sound)에 관한 신호이고, 상기 진단 장치의 분석 모듈은, 상기 제1센싱신호 및 상기 잡음이 제거된 제2센싱신호를 함께 고려하여 피검체의 폐질환 종류를 판별하는 것을 특징으로 한다.
또한, 상기 진단 장치는 상기 분석 모듈에 의해 폐의 호흡주기(호흡수)가 20%를 초과한 것으로 판단되는 경우 이상 상태를 통지하는 알람 모듈을 더 포함할 수 있다.
이때, 상기 제2센싱신호는 심음(heart sound)에 관한 신호이고, 상기 진단 장치의 분석 모듈은, 상기 제1센싱신호 및 상기 잡음이 제거된 제2센싱신호를 함께 고려하여 피검체의 심혈관질환 종류를 판별하는 것을 특징으로 한다.
본 발명에 따른 웨어러블 생체 진단 장치는 웨어러블 부재; 상기 웨어러블 부재에 장착되며 호흡을 감지하는 호흡감지센서; 상기 웨어러블 부재에 장착되며 생체 장기의 소리를 감지하는 청진센서; 및 상기 호흡감지센서의 제1센싱신호와 상기 청진센서의 제2센싱신호를 이용하여 피검체의 이상 상태(abnormal)를 판단하는 진단부를 포함한다.
여기서, 상기 진단부는 상기 제1센싱신호를 이용하여 상기 제2센싱신호에서 잡음(noise)을 제거하는 필터링 모듈과, 잡음이 제거된 제2센싱신호를 이용하여 피검체의 이상 상태(abnormal)를 판단하는 분석 모듈을 포함한다.
본 발명에 따른 생체 진단 방법은 호흡을 을 감지하는 호흡감지센서의 제1센싱신호와, 생체 장기의 소리를 감지하는 청진센서의 제2센싱신호를 이용하여 피검체의 이상 상태(abnormal)를 판단하는 것으로서, 상기 제1센싱신호를 이용하여 상기 제2센싱신호에서 잡음(noise)을 제거하는 필터링 단계; 및 상기 잡음이 제거된 제2센싱신호를 이용하여 피검체의 이상 상태(abnormal)를 판단하는 분석 단계를 포함한다.
여기서, 상기 필터링 단계는 상기 제1센싱신호의 적어도 하나의 구간에 대응하는 상기 제2센싱신호의 구간을 특정하는 구간 특정 단계; 및 상기 특정된 구간을 제외한 나머지 구간을 잡음으로 간주하여 상기 제2센싱신호에서 제거하는 잡음제거 단계를 포함한다.
또한, 상기 구간 특정 단계는 상기 제1센싱신호의 폐 이완 시작 시점에서 미리 설정된 제1시점까지의 구간에 대응하는 상기 제2센싱신호의 제1구간을 특정하는 제1구간 특정 단계; 및 상기 제1센싱신호의 폐 수축 시작 시점에서 미리 설정된 제2시점까지의 구간에 대응하는 상기 제2센싱신호의 제2구간을 특정하는 제2구간 특정 단계를 포함하고, 상기 잡음제거 단계는 상기 제1구간 및 제2구간을 제외한 나머지 구간을 잡음으로 간주하여 제2센싱신호에서 제거하는 것을 특징으로 한다.
또한, 상기 제2센싱신호는 폐음(lung sound)에 관한 신호이고, 상기 분석 단계는, 상기 제1센싱신호와 상기 잡음이 제거된 제2센싱신호를 함께 고려하여 피검체의 폐질환 종류를 판별하는 단계를 더 포함할 수 있다.
또한, 상기 분석 단계의 분석 결과, 폐의 호흡주기(호흡수)가 20%를 초과한 것으로 판단되는 경우 사용자 이동단말기로 통지하는 알람 단계를 더 포함한다.
또한, 상기 제2센싱신호는 심음(heart sound)에 관한 신호이고, 상기 분석 단계는, 상기 제1센싱신호 및 상기 잡음이 제거된 제2센싱신호를 함께 고려하여 피검체의 심혈관질환 종류를 판별하는 단계를 더 포함하는 것을 특징으로 한다.
본 발명에 의하면, 생체 기관이 조밀하게 모여 있는 반려동물 뿐만 아니라 인체에도 적용 가능하고, 들숨과 날숨에 의한 폐의 이완 및 축소에 근거하여 심음 및 폐음을 정확하게 검출함으로써, 피검체에 대한 정밀진단을 수행할 수 있는 장점이 있다.
또한, 반려동물 뿐만 아니라 인체(사람)에도 적용 가능하여, 피검체의 종에 상관없이 범용적으로 사용할 수 있고, 착용에 따른 거부감을 감소시켜 지속적으로 심음 및 폐음을 검출함으로써, 피검체의 생체정보를 정밀하게 검출할 수 있는 장점이 있다.
또한, 정밀진단과 지속검출이 가능함에 따라 중증의 피검체 또는 수술 전후의 피검체에 대한 생체정보를 검출하여 위급상황에 신속히 대응할 수 있는 여건을 제공할 수 있다.
또한, 피검체의 외모를 훼손하지 않고도 웨어러블 장치를 착용할 수 있고, 기 입력된 피검체의 생체정보 또는 피검체의 평균 생체정보에 근거하여 피검체에 대한 이상여부를 조기에 진단할 수 있는 장점이 있다.
도 1은 본 발명의 실시예 1에 따른 웨어러블 생체 진단 시스템의 구성도이다.
도 2는 도 1의 시스템을 구성하는 각 구성요소들의 세부 구성을 나타낸 블록도이다.
도 3은 본 발명의 다른 실시예에 따른 웨어러블 생체 진단 시스템의 구성도이다.
도 4는 본 발명에 따른 웨어러블 생체 진단 시스템에 적용된 호흡감지센서로 검출된 제1센싱신호의 출력 파형이다.
도 5는 본 발명에 따른 웨어러블 생체 진단 시스템에 적용된 청진센서로 검출된 제2센싱신호의 출력 파형이다.
도 6은 본 발명에 따른 웨어러블 생체 진단 시스템에 적용된 호흡감지센서로 검출된 제1센싱신호에서 선택된 구간에 대응하는 제2센싱신호의 제1구간 및 제2구간을 특정하기 위한 도면이다.
도 7은 청진센서를 통해 검출된 필터링 전의 제2센싱신호와, 호흡감지센서를 통해 검출된 제1센싱신호와, 필터링 후의 제2센싱신호의 그래프이다.
도 8은 다양한 종류의 호흡기 증상에 따른 폐음의 파형을 나타낸 그래프이다.
도 9은 본 발명의 실시예 2에 따른 웨어러블 생체 진단 장치의 구성도이다.
도 10은 도 9의 장치를 구성하는 각 구성요소들의 세부 구성을 나타낸 블록도이다.
도 11은 본 발명의 일 실시 예에 따른 생체 진단 방법의 흐름도이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시 예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수 있다고 이해되어야 할 것이다.
반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 명세서에서 사용되는 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 공정, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 공정, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미가 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미가 있는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
본 명세서에서 기재한 모듈(MODULE)이란 용어는 특정한 기능이나 동작을 처리하는 하나의 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합을 의미할 수 있다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정하여 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다. 또한, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다. 다음에 소개되는 도면들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 발명은 이하 제시되는 도면들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 또한, 명세서 전반에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다. 도면들 중 동일한 구성요소들은 가능한 한 어느 곳에서든지 동일한 부호들로 나타내고 있음에 유의해야 한다.
본 발명은 호흡감지센서와 청진센서를 통해 생체 신호를 취득하고, 호흡감지센서에서 취득된 센싱신호에 근거하여 청진센서에서 취득된 센싱신호를 특정함으로써, 피검체의 크기 및 종류에 상관없이 폐음을 정확하게 진단할 수 있는 웨어러블 생체 진단 시스템, 장치 및 방법에 관한 것이다.
<실시예 1>
실시예 1은 신체에 착용된 웨어러블 장치에서 생체신호를 감지하여 진단장치로 송신하면, 진단장치는 수신된 생체신호를 기초로 피검체의 이상 여부를 판단하는 시스템에 관한 것이다.
도 1은 본 발명의 실시예 1에 따른 웨어러블 생체 진단 시스템의 구성도이고, 도 2는 도 1의 시스템을 구성하는 각 구성요소들의 세부 구성을 나타낸 블록도이다.
첨부된 도 1을 참조하면, 본 발명의 일 실시 예에 따른 웨어러블 생체 진단 시스템(10)은 웨어러블 장치(100) 및 진단장치(200)를 포함한다.
상기 웨어러블 장치(100)는 웨어러블 부재(110), 호흡감지센서(120), 청진센서(130) 및 통신 모듈(140)을 포함하여 이루어진다.
상기 웨어러블 부재(110)는 피검체에 착용 가능하도록 밴드의 형태로 구현될 수 있다. 밴드의 양 끝단에는 결합부재가 구비되어 착용 및 해제를 용이하게 할 수 있다. 상기 결합부재로는 벨크로, 버클 또는 스냅 단추 등이 사용될 수 있다. 또한, 상기 밴드는 신축성을 가지거나 길이를 조절할 수 있도록 구현됨으로써 피검체의 체형에 따라 편안한 착용감을 제공할 수 있다.
웨어러블 부재(110)로 다양하게 변형된 형태의 밴드가 채택될 수 있으며, 구체적인 예로서 벨트 형상의 일자형 밴드, X자형 밴드, 이중 밴드 등을 들 수 있다.
도 3은 본 발명의 다른 실시예에 따른 웨어러블 생체 진단 시스템의 구성도를 나타낸 것이다.
웨어러블 부재(110)는 티셔츠 및 속옷과 같은 의복형으로 구현될 수도 있다.
결국, 웨어러블 부재(110)는 피검체의 신체에 착용 가능한 신축성 부재라면 어떠한 형태로 구현되더라도 문제되지 않는다. 이하 본 명세서에 언급된 모든 실시예에 있어서 웨어러블 부재는 동일한 컨셉으로 이해될 수 있다.
웨어러블 부재(110)에는 호흡감지센서(120) 및 청진센서(130)가 장착된다.
호흡감지센서(120)는 이완과 수축에 따른 기계적신호를 전기적신호로 변환하는 소자를 이용하여 피검체의 호흡을 감지하는 기능을 수행하는 것으로서, 기판 및 전극을 포함하여 구성된다. 기판이 이완 또는 수축하는 정도에 따라 그에 상응하는 전압 신호가 출력되는데, 센서(120)의 종류에 따라 아날로그 신호 또는 디지털 신호의 형태로 출력될 수 있다.
이러한 상기 호흡감지센서(120)로 스트레치센서(stretch sensor) 또는 스트레인 게이지(strain guage) 중 어느 하나가 사용될 수 있다.
스트레치센서는 신축성밴드 또는 직물 등의 이완 및 수축 정도를 감지하는 것으로서, 팽창에 따른 저항값의 변화를 측정하여 신호를 생성한다.
스트레인게이지는 압력(또는 스트레스)이 가해지면 내부 분극에 의해 전기적 특성이 변하는 압전체 등을 이용하여 외부 힘이 가해져 변형이 되면 전기저항이 변하는 원리를 이용하여 신호를 생성한다. 한편, 호흡은 흡기와 호기로 구분될 수 있다.
흡기(Inspiration) 과정에서는 늑간근(Intercostal muscle)이 수축하여 늑골(Rib)이 들리고, 횡격막(Diaphragm) 역시 수축함에 따라 내려가 흉강(Thoracic cage)의 부피가 늘어난다. 반대로, 호기(Expiration) 과정에서는 늑간근이 이완하여 늑골이 내려가고, 횡격막도 이완하여 올라가 흉강의 부피가 줄어든다.
본 발명에서 호흡은 흡기와 호기를 검출하는 광범위한 의미로 정의될 수 있다. 또는 좁은 의미로 흉곽의 팽창과 수축을 의미할 수 있으며, 더 좁은 의미로 폐의 팽창과 수축을 의미할 수 있다. 즉, 본 발명에서 호흡이라는 정의는 흡기와 호기를 포괄적인 의미뿐만 아니라 흉곽 또는 폐의 팽창과 수축을 아우르는 의미로 해석된다.
본 발명에서 호흡감지센서(120)는 피검체, 예를 들면, 인체 또는 반려동물 등의 검사 대상체의 호흡에 의해 발생되는 폐 또는 흉곽의 팽창과 수축을 검출한다.
호흡감지센서(120)는 웨어러블 부재(110)에 별도로 부착되거나 웨어러블 부재(110)의 일부로서 구현될 수 있다.
호흡감지센서(120)가 원활하게 동작하기 위해 웨어러블 장치(100)는 피검체의 폐 부위(흉부)를 감싸도록 착용될 것이 권장된다. 또한, 피검체가 호흡함에 따라 폐를 심하게 압박하지 않는 범위 내에서 적절한 텐션을 가진 상태로 착용되는 것이 바람직하다. 다만 반드시 장착 위치를 폐 부위로 한정할 필요는 없으며 폐의 이완과 수축을 검출할 수 있다면 신체의 어느 부위라도 장착 가능하다. 특히 반려동물의 경우 신체 자체가 인간에 비해 작은 편이므로 정도의 차이가 있을 뿐 몸통의 거의 모든 부위에서 폐의 이완과 수축을 감지할 수 있다. 따라서 반려동물의 몸통 부위 내라면 웨어러블 장치(100)를 굳이 폐부가 아닌 다른 위치에 착용해도 상관 없다.
청진센서(130)는 상기 웨어러블 부재(110)에 장착되고, 피검체의 생체 장기 소리를 감지한다. 여기서, 생체 장기 소리에는 심음과 폐음이 포함되며, 그 외에 다른 장기의 소리나 주변의 잡음이 포함될 수 있다.
청진센서(130)는 튜브와, 상기 튜브를 통해서 모아진 음향을 전기적인 신호로 바꾸어주는 마이크로폰과, 상기 마이크로폰을 통해서 변환된 전기신호를 증폭시키는 신호증폭기와, 상기 신호증폭기에서 증폭된 신호를 출력하는 출력단자를 포함하여 구성될 수 있다.
이와 같이, 웨어러블 장치(100)는 호흡감지센서(120)을 이용하여 피검체의 호흡에 의한 폐의 이완 및 수축에 대한 제1센싱신호를 검출하고, 청진센서(130)를 이용하여 피검체의 생체 장기 소리에 대한 제2센싱신호를 검출한다. 그리고 웨어러블 장치(100)는 상기 제1센싱신호와 상기 제2센싱신호를 통신 모듈(140)을 통해 유선 또는 무선으로 진단장치(200)에 송신한다. 제1센싱신호와 상기 제2센싱신호가 디지털 신호로 송신될 경우, 상기 통신 모듈(140)은 블루투스(Bluetooth), 알에프아이디(RFID, Radio Frequency Identification), 적외선 통신(IrDA, infrared Data Association), UWB(Ultra Wideband), ZigBee, WSN(Wireless Sensor Network), WLAN (Wireless LAN or Wifi) 및 UWB(Ultra Wideband) 등과 같은 근거리 무선통신을 지원할 수 있다. 특히 블루투스(Bluetooth) 계열의 BLE 비콘(beacon) 프로토콜 지원으로 브로드캐스팅 방식의 정보 전송을 지원할 수도 있다. 또한 통신 모듈(140)은 2G, 3G, 4G, 5G와 같은 이동 통신 프로토콜이나, Wibro(Wireless broadband), Wimax(World Interoperability for Microwave Access), HSDPA(High Speed Downlink Packet Access) 등의 이동통신 프로토콜을 지원할 수도 있다.
제1센싱신호와 상기 제2센싱신호가 아날로그 신호로 송신될 경우, 통신 모듈(140)은 AM이나 FM방식의 RF신호로 전송될 수 있다.
또한 통신 모듈(140)은 유선방식으로 RS-232C나 USB와 같은 유선통신 프로토콜을 지원할 수도 있다.
진단장치(200)는 도 2에 도시된 바와 같이, 필터링 모듈(210), 분석 모듈(220) 및 알람 모듈(230)을 포함한다.
필터링 모듈(210)은 호흡감지센서(120)에서 검출된 제1센싱신호를 이용하여 청진센서(130)에서 검출된 제2센싱신호의 잡음(noise)을 제거한다.
본 명세서에서 '잡음(noise)'라 함은 검출하고자 하는 타겟 음향 신호 외의 다른 음향에 관한 신호를 지칭한다. 예를 들어, 타겟 음향 신호가 폐음이라면 폐를 제외한 다른 장기 즉, 심장 또는 위장의 소리나 그 외에 외부 환경에서 유입되는 잡소리는 모두 '잡음'으로 간주될 수 있다.
도 4는 본 발명에 따른 웨어러블 생체 진단 시스템에 적용된 호흡감지센서로 검출된 제1센싱신호의 출력 파형이다.
첨부된 도 4를 참조하면, 상기 호흡감지센서(120)에서 검출되는 제1센싱신호의 파형은 피검체의 호흡에 따라 폐의 이완 및 수축에 대응하여 나타난다.
호흡에 따른 제1센싱신호를 살펴보면, 최저점에서 폐 이완 시작(들숨의 시작)되어 최고점까지 숨을 들이키는 들숨구간(inhalation)과, 들숨구간 경과 후 폐 수축 시작(날숨의 시작)되어 최저점까지 숨을 내뱉는 날숨구간(exhalation)으로 구분될 수 있고, 상기 들숨과 날숨은 연속적으로 반복된다.
들숨과 날숨은 연속적으로 반복되긴 하지만 피검체의 몸 상태에 따라 고른 형태의 파형이 반복될 수도 있고, 도 4에서 보듯, 다소 고르지 못한 파형이 반복될 수도 있다.
다음으로, 도 5는 본 발명에 따른 웨어러블 생체 진단 시스템에 적용된 청진센서로 검출된 제2센싱신호의 출력 파형이다.
첨부된 도면의 도 5를 참조하면, 제2센싱신호에는 다양한 소리의 신호 파형이 혼재되어 있음을 알 수 있다. 즉, 제2센싱신호에는 심장 소리(심음), 폐의 소리(폐음), 소장과 대장의 소리(장음), 호흡음 및 음성 등의 다양한 생체 장기 소리가 함께 포함됨으로 인해 한 주기의 출력 파형에서 적어도 6개 이상의 피크(peak) 파형이 검출된다.
따라서 타겟팅하는 특정 장기의 진단을 위해서는 다양한 소리가 포함된 제2센싱신호로부터 상기 특정 장기의 소리와 그 외의 소리를 분리해 낼 필요가 있다.
이에, 필터링 모듈(210)은 호흡감지센서의 제1센싱신호에서 적어도 하나의 구간을 특정하고, 특정된 제1센싱신호의 구간에 대응하는 청진센서의 제2센싱신호의 구간을 특정한다. 그리고 제2센싱신호에서 상기 특정된 구간을 제외한 나머지 구간을 잡음으로 간주하며, 상기 제2센싱신호에서 잡음으로 간주된 구간의 신호를 제거하는 방식으로 제2센싱신호를 필터링한다.
이하, 도 6을 참고하여 필터링 모듈의 필터링 원리를 상세히 설명한다.
도 6은 본 발명에 따른 웨어러블 생체 진단 시스템에 적용된 호흡감지센서로 검출된 제1센싱신호에서 선택된 구간에 대응하는 제2센싱신호의 제1구간 및 제2구간을 특정하기 위한 도면이다.
첨부된 도 6을 참조하면, 제1구간은 상기 제1센싱신호의 폐 이완 시작 시점에서 미리 설정된 제1시점까지의 구간에 대응하는 상기 제2센싱신호이고, 제2구간은 상기 제1센싱신호의 폐 수축 시작 시점에서 미리 설정된 제2시점까지의 구간에 대응하는 상기 제2센싱신호이다.
즉, 제1구간은 들숨구간에서 들숨이 시작되는 시점부터 들숨이 완전히 종료되기 전(미리 설정된 제1시점) 구간에 대응하는 제2센싱신호이고, 제2구간은 날숨구간에서 날숨이 시작되는 시점부터 날숨이 완전히 종료되기 전(미리 설정된 제2시점) 구간에 대응하는 제2센싱신호이다.
필터링 모듈(210)은 상기 제2센싱신호의 제1구간 및 제2구간을 제외한 나머지 구간은 잡음으로 간주하여 제거한다.
상기에서 제1구간 및 제2구간은 시간(time line)을 기준으로 설정하였으나, 검출된 센싱 신호의 최고점을 기준으로 설정될 수도 있다. 즉, 정상적인 호흡은 미리 설정된 시간으로 제1구간 및 제2구간을 특정할 수 있으나, 비정상적인 호흡인 경우에는 호흡수가 증가되기 때문에 시간 기준보다는 제1센싱신호의 최고점과 최저점을 기준으로 상기 제1구간 및 제2구간을 설정하는 것이 더 나을 수 있다.
예를 들면, 상기 제1구간은 상기 제1센싱신호의 들숨이 시작되는 폐 이완 시작 시점에서 들숨이 최고점 도달 시간보다 이전시간으로 설정하고, 제2구간은 상기 제1센싱신호의 날숨이 시작되는 폐 수축 시작 시점에서 날숨이 최저점 도달 시간보다 이전 시간으로 설정될 수 있다.
상기 제1구간은 호흡(들숨)에 의한 폐의 이완이 왕성하게 이루어지는 구간이고, 제2구간은 호흡(날숨)에 의한 폐의 수축이 왕성하게 이루어지는 구간으로 볼 수 있다. 따라서, 제2센싱신호의 상기 제1구간 및 제2구간은 폐음(lung sound)에 관한 신호로 정의해도 무리가 없다.
또한, 제2센싱신호에서 상기 제1구간 및 제2구간을 제외한 구간은 폐의 이완과 수축이 잠시 멈추거나 약하게 이루어지는 구간으로 정의될 수 있다. 이때에는 폐음보다는 그 외에 다른 장기, 예를 들면 심음이 상대적으로 클 수 있으므로 따라서, 제2센싱신호의 상기 제1구간 및 제2구간을 제외한 구간은 심음(heart sound)에 관한 신호로 정의할 수 있다. 다만 이것은 예시에 불과하며 제1센싱신호 또는 제2센싱신호에서 제1구간과 제2구간을 다양한 기준에 의해 설정함으로써, 제2센싱신호에서 필터링된 잔여 구간의 신호는 심장, 위, 장 등 신체의 특정 장기에 관한 소리 신호로 정의할 수 있다.
이상에서 설명한 필터링 모듈의 동작 원리를 필터링 전과 후의 청진 신호를 참고하여 개괄적으로 설명하면 다음과 같다.
도 7은 청진센서를 통해 검출된 필터링 전의 제2센싱신호와, 호흡감지센서를 통해 검출된 제1센싱신호와, 필터링 후의 제2센싱신호의 그래프를 동시에 도시한 것이다.
첨부된 도 7의 (a)는 청진센서(130)에서 검출된 제2센싱신호이고, (b)는 호흡감지센서(12)로 검출된 제1센싱신호이며, (c)는 필터링 모듈(210)을 통해 상기 제1센싱신호를 이용하여 상기 제2센싱신호에서 잡음이 제거된 상태의 신호이다.
첨부된 도 7의 (a)에 보인 바와 같이, 청진센서(130)에서 검출된 제2센싱신호에는 폐음, 심음 및 기타 잡음이 혼재되어 복잡한 파형을 보이고 있다.
도 7의 (b)에서 보듯, 호흡감지센서(12)로 검출된 제1센싱신호는 비교적 규칙적으로 들숨과 날숨이 이루어지는 모습을 확인할 수 있다.
필터링 모듈(210)은 상기 제1센싱신호의 적어도 하나의 구간에 대응하는 상기 제2센싱신호의 구간을 특정하고, 상기 특정된 구간을 제외한 나머지 구간을 잡음으로 간주하여 상기 제2센싱신호에서 제거함으로써 폐음을 특정한다.
따라서 첨부된 도 7의 (c)를 참조하면, 도 7의 (b)에서 호흡감지센서(120)의 이완 및 수축에 구간을 특정하고, 특정된 구간에 근거하여 청진센서(130)의 제2센싱신호에서 특정된 구간을 제외한 나머지 구간을 잡음으로 간주하여 제외된 파형을 확인할 수 있다. 도 7의 (c)의 파형에서 하나의 주기는 2개의 피크 파형을 포함하는 것을 볼 수 있는데, 첫 번째 피크 파형은 들숨의 폐음을 가리키고 두 번째 피크 파형은 날숨의 폐음을 가리키는 것으로 해석될 수 있다.
분석 모듈(220)은 상기 제1센싱신호 및 상기 잡음이 제거된 제2센싱신호를 함께 고려하여 피검체의 폐에 이상 상태가 발생했는지 여부 및/또는 구체적인 폐질환 종류를 판별한다.
본 발명에서 폐의 '이상 상태'라 함은 다양한 기준에 의해 사전에 정의될 수 있다.
일 예로, 폐에 체액이 차서 발생하는 폐부종의 경우, 폐에 소정 기준 이상의 체액이 차면 더 이상 돌이킬 수 없는 심각한 상황이 발생하므로 그 이전에 전조 증상을 미리 감지하는 것이 매우 중요하다.
따라서 본 발명의 일 실시 예에서 분석 모듈(220)은 필터링된 제2센싱신호로부터 검출된 호흡주기(호흡수)가 정상상태의 20%를 초과하는 것으로 계산되면, 돌이키기 어려운 심각 상태의 전조 단계로 간주하여 '이상 상태'로 판단하거나 심각한 '폐부종'으로 판단할 수 있다. 여기서. 호흡주기(호흡수)에 대한 비교판단 대상으로 피검체에 대한 미리 저장된 정보(정상 상태의 호흡주기 또는 호흡수)가 이용될 수 있다.
즉, 피검체가 반려동물일 경우, 반려동물의 종, 암/수, 나이 및 몸무게 등에 따라 정상적인 호흡주기에 대한 구축 데이터가 이용될 수 있고, 피검체가 사람(인체)인 경우는 남/녀, 나이 및 몸무게 등에 따라 정상적인 호흡주기에 대한 구축 데이터가 이용될 수 있다.
만약 피검체에 대한 미리 저장된 호흡주기가 없는 경우에는 피검체에 대한 미리 정해진 시간 동안의 평균 호흡주기가 이용될 수 있다.
본 발명의 다른 실시 예에서 분석 모듈(220)은 필터링된 제2센싱신호를 미리 정의된 다양한 폐질환 파형과 비교함으로써 구체적인 폐질환 이름을 판별해 낼 수도 있다.
도 8은 다양한 종류의 호흡기 증상에 따른 폐음의 파형을 나타낸 그래프이다.
첨부된 도 8을 참조하면, 기관음(Tracheal Sound), 폐음(Normal Lung Sound), 기관지음(Bronchial Breathing), 협착음(Stridor), 천명음(Wheeze) 및 나음(Rhonchus) 등의 파형은 다르게 도출된다.
따라서, 분석 모듈(220)은 필터링된 제2센싱신호에 근거하여 도 8의 호흡기 증상별 파형과 유사도를 비교함으로써 미리 정해진 유사도 이상의 파형이 존재하면 해당 호흡기 증상의 폐질환 종류를 구체적으로 판별한다.
한편, 전술한 바와 같이, 필터링 모듈(210)은 제1센싱신호 또는 제2센싱신호의 제1구간 및 제2구간을 적절히 재정의 함으로써 폐음이 아닌 다른 장기의 소리 예를 들어, 심음(heart sound)에 관한 신호를 필터링할 수 있고, 또한 분석 모듈(220)은 심장의 이상 상태 및/또는 구체적인 심혈관질환의 종류를 판단할 수도 있다.
알람 모듈(230)은 분석 모듈(200)에 의해 폐의 호흡주기(호흡수)가 20%를 초과한 것으로 판단되는 경우, 경고 소리 알람, 경고 문구를 디스플레이 상에 출력, 발광소자의 점멸, 사용자 이동단말기로 메시지 전송 중 적어도 하나의 방법으로 사용자에게 이상 상태를 통지한다.
<실시예 2>
실시예 2는 신체에 착용된 웨어러블 장치에서 생체신호의 감지와 감지된 생체신호를 기초로 피검체의 이상 여부 판단을 모두 수행하는 경우에 관한 것이다.
도 9은 본 발명의 실시예 2에 따른 웨어러블 생체 진단 장치의 구성도이고, 도 10은 도 9의 장치를 구성하는 각 구성요소들의 세부 구성을 나타낸 블록도이다.
첨부된 도면의 도 9에서 웨어러블 부재는 벨트 형으로 구성된 생체 진단 장치를 나타낸 것이나, 웨어러블 부재는 비단 벨트형 뿐만 아니라 의복형으로도 구현될 수 있다.
첨부된 도 9를 참조하면, 제2 실시예의 웨어러블 생체 진단 장치(20)는 웨어러블 부재(310), 호흡감지센서(320), 청진센서(330) 및 진단부(340)를 포함하여 구성된다.
웨어러블 부재(310), 호흡감지센서(320) 및 청진센서(330)는 실시예 1의 웨어러블 부재(110), 호흡감지센서(120) 및 청진센서(130)와 거의 동일한 구성을 가지므로 중복되는 설명은 생략한다. 단지 실시예 2의 생체 진단 장치(20)는 실시예 1의 통신 모듈(140) 대신 웨어러블 부재(310), 호흡감지센서(320), 청진센서(330) 및 진단부(340)가 기판 회로 또는 버스(bus)를 통해 전기적으로 연결 및 서로 통신하도록 구성되는 점이 상이하다.
진단부(340)는 필터링 모듈(341), 분석 모듈(342) 및 알람 모듈(343)을 포함하고, 필터링 모듈(341), 분석 모듈(342) 및 알람 모듈(343)은 각각 실시예 1의 필터링 모듈(210), 분석 모듈(220) 및 알람 모듈(230)과 동일한 구성을 가진다.
<실시예 3>
실시예 3은 하드웨어적인 진단 장치나 소프트웨어적인 진단 프로그램에 의해 수행되는 생체 진단 방법에 관한 것이다.
도 11은 본 발명의 일 실시 예에 따른 생체 진단 방법의 흐름도를 나타낸 것이다.
첨부된 도 11을 참조하면, 본 발명의 일 실시 예에 따른 생체 진단 방법은 필터링 단계(S10), 분석단계(S20) 및 알람단계(S30)를 포함한다.
1. 필터링 단계(S10)
필터링 단계(S10)는 제1센싱신호를 이용하여 제2센싱신호에서 잡음(noise)을 제거하는 단계이다.
상기 필터링 단계(S10)에서 상기 제1센싱신호는 폐의 수축과 이완을 감지하는 호흡감지센서를 통해 검출되고, 상기 제2센싱신호는 생체 장기의 소리를 감지하는 청진센서를 통해 검출된다.
상기 호흡감지센서는 웨어러블 장치에의 밴드에 부착되거나 밴드의 일부로 구성될 수 있다. 또는 피검체가 착용한 신축 가능한 의류(속옷 등)에 부착될 수 있으며, 피검체의 호흡에 의해 폐의 이완 및 수축에 따른 신장정도를 검출할 수 있는 것이면 어느 것이라도 무방하다.
상기 청진센서는 웨어러블 장치에 부착되어거나 피검체의 신체에 직접 부착될 수 있다. 또는 피검체의 폐 부근에 부착되거나 의류(속옷 등)에 부착될 수 있으며, 피검체의 호흡에 의해 폐의 소리(폐음)을 검출할 수 있는 것이라면 어느 것이라도 무방하다.
상기 필터링 단계(S10)는 구간 특정 단계(S11) 및 잡음제거 단계(S12)를 포함한다.
1-1. 구간 특정 단계(S11)
구간 특정 단계(S11)는 상기 제1센싱신호의 적어도 하나의 구간에 대응하는 상기 제2센싱신호의 구간을 특정하는 단계이다.
청진센서를 통해 검출되는 제2센싱신호에는 많은 잡은 포함되어 있다. 잡음이 포함된 제2센싱신호만으로는 폐의 이상을 검출하기 어려우며, 자칫 오진할 수 있는 문제점이 있다.
이에, 본 발명에서는 호흡감지센서를 통해 검출되는 제1센싱신호와 청진센서를 통해 검출되는 제2센싱신호를 동일한 시간 도메인에 정렬하고, 상기 제1센싱신호를 통해 제2센싱신호의 구간을 특정하게 된다.
구체적으로, 상기 구간 특정 단계(S11)는 상기 제1센싱신호의 폐 이완 시작 시점에서 미리 설정된 제1시점까지의 구간에 대응하는 상기 제2센싱신호의 제1구간을 특정하는 제1구간 특정 단계 및 상기 제1센싱신호의 폐 수축 시작 시점에서 미리 설정된 제2시점까지의 구간에 대응하는 상기 제2센싱신호의 제2구간을 특정하는 제2구간 특정 단계를 포함한다.
즉, 상기 제1구간 특정단계는 폐 이완 시작 시점에서 소정의 시간이 경과된 제1시점까지의 구간으로서, 피검체의 들숨에 대한 폐의 이완에 의해 발생된 폐음을특정하는 단계이다.
또한, 상기 제2구간 특정단계는 폐 수축 시작 시점에서 소정의 시간이 경과된 제2시점까지의 구간으로서, 피검체의 날숨에 대한 폐의 수축에 의해 발생된 폐음을 특정하는 단계이다.
1-2. 잡음제거 단계(S12)
잡음제거 단계(S12)는 상기 구간 특정 단계(S11)에서 상기 특정된 구간을 제외한 나머지 구간을 잡음으로 간주하고, 잡음으로 간주된 구간을 상기 제2센싱신호에서 제거하는 단계이다.
즉, 호흡감지센서의 이완 및 수축은 폐의 호흡과 연관성이 높고, 호흡감지센서를 통해 검출된 제1센싱신호에서 이완시 발생된 신호와 청진센서를 통해 검출된 제2셍싱신호를 비교하고, 제1센싱신호에서 수축시 발생된 신호와 청진센서를 통해 검출된 제2셍싱신호를 비교하면, 폐의 이완 및 수축에 대응되는 제2센싱신호의 구간을 특정할 수 있고, 특정된 구간을 제외하면 상기 특정된 구간의 제2센싱신호는 폐음 신호로 간주할 수 있다.
2. 분석단계(S20)
분석단계(S20)는 상기 필터링 단계(S10)에서 잡음이 제거된 제2센싱신호를 이용하여 피검체의 이상 상태(abnormal)를 판단하는 단계이다.
상기 구간 특정 단계(S11)에서 상기 특정된 구간을 제외한 나머지 구간을 잡음으로 간주하고, 잡음으로 간주된 구간을 상기 제2센싱신호에서 제거하면, 폐음에 관한 신호로 간주될 수 있다. 반대로, 상기 특정된 구간을 제외한 나머지 구간(잡음으로 간주된 구간)은 심음(heart sound)에 관한 신호로 간주될 수 있다.
즉, 호흡감지센서에서 검출된 제1센싱신호의 특정된 구간에 대응되는 제2센싱신호는 폐음으로 판단하고, 상기 특정된 구간의 나머지 구간은 심음으로 판단할 수 있다.
따라서, 상기 분석단계(S20)는 폐음과 심음을 각각 구분하여 검출된 폐음에 관한 신호와 심음에 관한 신호를 함께 고려하여 피검체의 폐질환 종류를 판별하거나 피검체의 심혈관질환 종류를 판별하게 된다.
3. 알람단계(S30)
알람단계(S30)는 상기 분석 단계(S20)의 분석 결과, 폐의 호흡주기(호흡수)가 20%를 초과한 것으로 판단되는 경우 사용자 이동단말기로 통지하는 단계이다.
이때, 사용자 이동단말기는 랩탑 컴퓨터(Laptop Computer), 스마트 폰(Smart Phone), 태블릿(Tablet) PC, PDA(Personal Digital Assistant), EDA(Enterprise Digital Assistant), 모바일 인터넷 장치(Mobile Internet Device(MID)) 및 e-북(e-Book) 중에서 하나일 수 있다.
이상에서 설명한 웨어러블 생체 진단 시스템, 장치 및 방법의 전체 또는 부분적 기능들은 이를 구현하기 위한 명령어들의 프로그램이 유형적으로 구현됨으로써 컴퓨터를 통해 판독될 수 있는 기록매체에 저장되어 제공될 수 있다. 상기 컴퓨터 판독 가능한 기록매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합한 것을 포함한다. 상기 컴퓨터 판독 가능한 기록매체의 예는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광 기록매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리, USB 메모리 등과 같이 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 상기 컴퓨터 판독 가능한 기록매체는 프로그램 명령, 데이터 구조 등을 지정하는 신호를 전송하는 반송파를 포함하는 광 또는 금속선, 도파관 등의 전송 매체일 수도 있다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드 외에도, 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기 하드웨어 장치는 본 발명의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있다.
본 발명은 위에서 설명한 실시예들에 한정되지 아니하며, 적용범위가 다양함은 물론이고 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 다양한 변형 실시가 가능하다.
Claims (24)
- 웨어러블 부재와, 상기 웨어러블 부재에 장착되며 폐의 이완과 수축을 감지하는 호흡감지센서와, 생체 장기 들의 소리를 감지하는 청진센서를 포함하는 웨어러블 장치; 및상기 웨어러블 장치가 전송한 상기 호흡감지센서의 제1센싱신호를 이용하여 상기 청진센서의 제2센싱신호에서 진단 대상의 장기에 관한 타겟 음향 신호 외의 다른 신호인 잡음(noise)을 제거하는 필터링 모듈과, 상기 잡음이 제거된 제2센싱신호를 이용하여 피검체의 이상 상태(abnormal)를 판단하는 분석 모듈을 포함하는 진단 장치를 포함하는 웨어러블 생체 진단 시스템.
- 제1항에 있어서,상기 진단 장치의 필터링 모듈은,상기 제1센싱신호의 적어도 하나의 구간에 대응하는 상기 제2센싱신호의 구간을 특정하고, 상기 특정된 구간을 제외한 나머지 구간을 잡음으로 간주하여 상기 제2센싱신호에서 제거하는 것을 특징으로 하는 웨어러블 생체 진단 시스템.
- 제1항에 있어서,상기 진단 장치의 필터링 모듈은,상기 제1센싱신호의 폐 이완 시작 시점에서 미리 설정된 제1시점까지의 구간에 대응하는 상기 제2센싱신호의 제1구간과, 상기 제1센싱신호의 폐 수축 시작 시점에서 미리 설정된 제2시점까지의 구간에 대응하는 상기 제2센싱신호의 제2구간을 제외한 나머지 구간을 잡음으로 간주하여 제2센싱신호에서 제거하는 것을 특징으로 하는 웨어러블 생체 진단 시스템.
- 제2항에 있어서,상기 제2센싱신호는 폐음(lung sound)에 관한 신호인 것을 특징으로 하는 웨어러블 생체 진단 시스템.
- 제4항에 있어서,상기 진단 장치의 분석 모듈은, 상기 제1센싱신호 및 상기 잡음이 제거된 제2센싱신호를 함께 고려하여 피검체의 폐질환 종류를 판별하는 것을 특징으로 하는 웨어러블 생체 진단 시스템.
- 제4항에 있어서,상기 진단 장치는,상기 분석 모듈에 의해 폐의 호흡주기가 미리 저장된 호흡주기의 20%를 초과한 것으로 판단되는 경우 이상 상태를 통지하는 알람 모듈을 더 포함하는 것을 특징으로 하는 웨어러블 생체 진단 시스템.
- 제2항에 있어서,상기 제2센싱신호는 심음(heart sound)에 관한 신호인 것을 특징으로 하는 웨어러블 생체 진단 시스템.
- 제7항에 있어서,상기 진단 장치의 분석 모듈은, 상기 제1센싱신호 및 상기 잡음이 제거된 제2센싱신호를 함께 고려하여 피검체의 심혈관질환 종류를 판별하는 것을 특징으로 하는 웨어러블 생체 진단 시스템.
- 웨어러블 부재;상기 웨어러블 부재에 장착되며 폐의 이완과 수축을 감지하는 호흡감지센서;상기 웨어러블 부재에 장착되며 생체 장기의 소리를 감지하는 청진센서; 및상기 호흡감지센서의 제1센싱신호를 이용하여 상기 청진센서의 제2센싱신호에서 진단 대상의 장기에 관한 타겟 음향 신호 외의 다른 신호인 잡음(noise)을 제거하는 필터링 모듈과, 상기 잡음이 제거된 제2센싱신호를 이용하여 피검체의 이상 상태(abnormal)를 판단하는 분석 모듈을 포함하는 진단부를 포함하는 웨어러블 생체 진단 장치.
- 제9항에 있어서,상기 필터링 모듈은,상기 제1센싱신호의 적어도 하나의 구간에 대응하는 상기 제2센싱신호의 구간을 특정하고, 상기 특정된 구간을 제외한 나머지 구간을 잡음으로 간주하여 상기 제2센싱신호에서 제거하는 것을 특징으로 하는 웨어러블 생체 진단 장치.
- 제9항에 있어서,상기 필터링 모듈은,상기 제1센싱신호의 폐 이완 시작 시점에서 미리 설정된 제1시점까지의 구간에 대응하는 상기 제2센싱신호의 제1구간과, 상기 제1센싱신호의 폐 수축 시작 시점에서 미리 설정된 제2시점까지의 구간에 대응하는 상기 제2센싱신호의 제2구간을 제외한 나머지 구간을 잡음으로 간주하여 제2센싱신호에서 제거하는 것을 특징으로 하는 웨어러블 생체 진단 장치.
- 제11항에 있어서,상기 제2센싱신호는 폐음(lung sound)에 관한 신호인 것을 특징으로 하는 웨어러블 생체 진단 장치.
- 제12항에 있어서,상기 진단 장치의 분석 모듈은, 상기 제1센싱신호와 상기 잡음이 제거된 제2센싱신호를 함께 고려하여 피검체의 폐질환 종류를 판별하는 것을 특징으로 하는 웨어러블 생체 진단 장치.
- 제12항에 있어서,상기 진단부는,상기 분석 모듈에 의해 폐의 호흡주기가 미리 저장된 호흡주기의 20%를 초과한 것으로 판단되면 무선으로 연결된 사용자 이동단말기로 통지하는 알람 모듈을 더 포함하는 것을 특징으로 하는 웨어러블 생체 진단 장치.
- 제11항에 있어서,상기 제2센싱신호는 심음(heart sound)에 관한 신호인 것을 특징으로 하는 웨어러블 생체 진단 장치.
- 제15항에 있어서,상기 진단 장치의 분석 모듈은, 상기 제1센싱신호와 상기 잡음이 제거된 제2센싱신호를 함께 고려하여 피검체의 심혈관질환 종류를 판별하는 것을 특징으로 하는 웨어러블 생체 진단 장치.
- 폐의 이완과 수축을 감지하는 호흡감지센서의 제1센싱신호와, 생체 장기 들의 소리를 감지하는 청진센서의 제2센싱신호를 이용하여 피검체의 이상 상태(abnormal)를 판단하는 진단장치의 생체 진단 방법에 있어서,필터링모듈이 상기 제1센싱신호를 이용하여 상기 제2센싱신호에서 진단 대상의 장기에 관한 타겟 음향 신호 외의 다른 신호인 잡음(noise)을 제거하는 필터링 단계; 및분석모듈이 상기 잡음이 제거된 제2센싱신호를 이용하여 피검체의 이상 상태(abnormal)를 판단하는 분석 단계를 포함하는 사람을 제외한 동물의 생체 진단 방법.
- 제17항에 있어서,상기 필터링 단계는,상기 제1센싱신호의 적어도 하나의 구간에 대응하는 상기 제2센싱신호의 구간을 특정하는 구간 특정 단계; 및상기 특정된 구간을 제외한 나머지 구간을 잡음으로 간주하여 상기 제2센싱신호에서 제거하는 잡음제거 단계를 포함하는 것을 특징으로 하는 사람을 제외한 동물의 생체 진단 방법.
- 제18항에 있어서,상기 구간 특정 단계는,상기 제1센싱신호의 폐 이완 시작 시점에서 미리 설정된 제1시점까지의 구간에 대응하는 상기 제2센싱신호의 제1구간을 특정하는 제1구간 특정 단계; 및상기 제1센싱신호의 폐 수축 시작 시점에서 미리 설정된 제2시점까지의 구간에 대응하는 상기 제2센싱신호의 제2구간을 특정하는 제2구간 특정 단계를 포함하고,상기 잡음제거 단계는,상기 제1구간 및 제2구간을 제외한 나머지 구간을 잡음으로 간주하여 제2센싱신호에서 제거하는 것을 특징으로 하는 사람을 제외한 동물의 생체 진단 방법.
- 제18항에 있어서,상기 제2센싱신호는 폐음(lung sound)에 관한 신호인 특징으로 하는 사람을 제외한 동물의 생체 진단 방법.
- 제20항에 있어서,상기 분석 단계는, 상기 제1센싱신호와 상기 잡음이 제거된 제2센싱신호를 함께 고려하여 피검체의 폐질환 종류를 판별하는 단계를 더 포함하는 특징으로 하는 사람을 제외한 동물의 생체 진단 방법.
- 제20항에 있어서,상기 분석 단계의 분석 결과, 폐의 호흡주기가 미리 저장된 호흡주기의 20%를 초과한 것으로 판단되는 경우 사용자 이동단말기로 통지하는 알람 단계를 더 포함하는 것을 특징으로 하는 사람을 제외한 동물의 생체 진단 방법.
- 제18항에 있어서,상기 제2센싱신호는 심음(heart sound)에 관한 신호인 것을 특징으로 하는 사람을 제외한 동물의 생체 진단 방법.
- 제23항에 있어서,상기 분석 단계는, 상기 제1센싱신호 및 상기 잡음이 제거된 제2센싱신호를 함께 고려하여 피검체의 심혈관질환 종류를 판별하는 단계를 더 포함하는 것을 특징으로 하는 사람을 제외한 동물의 생체 진단 방법.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2021/005086 WO2022225082A1 (ko) | 2021-04-22 | 2021-04-22 | 웨어러블 생체 진단 시스템, 장치 및 방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2021/005086 WO2022225082A1 (ko) | 2021-04-22 | 2021-04-22 | 웨어러블 생체 진단 시스템, 장치 및 방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022225082A1 true WO2022225082A1 (ko) | 2022-10-27 |
Family
ID=83723066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2021/005086 WO2022225082A1 (ko) | 2021-04-22 | 2021-04-22 | 웨어러블 생체 진단 시스템, 장치 및 방법 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022225082A1 (ko) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011047207A2 (en) * | 2009-10-15 | 2011-04-21 | Masimo Corporation | Acoustic respiratory monitoring sensor having multiple sensing elements |
WO2012021900A1 (en) * | 2010-08-13 | 2012-02-16 | Respiratory Motion, Inc. | Devices and methods for respiratory variation monitoring by measurement of respiratory volumes, motion and variability |
WO2014035056A1 (ko) * | 2012-08-30 | 2014-03-06 | 주식회사 비트컴퓨터 | 하의 부착형 센서 유닛을 가지는 수면 장애 검출 시스템 |
KR20150115028A (ko) * | 2014-04-02 | 2015-10-14 | (주)블루노바 | 애완동물 건강관리 시스템 및 그 제어방법 |
KR20170007286A (ko) * | 2014-05-15 | 2017-01-18 | 더 리전트 오브 더 유니버시티 오브 캘리포니아 | 멀티 센서 생리적 모니터링 시스템 및 방법 |
KR20210125913A (ko) * | 2020-04-09 | 2021-10-19 | 젠트리 주식회사 | 웨어러블 생체 진단 시스템, 장치 및 방법 |
-
2021
- 2021-04-22 WO PCT/KR2021/005086 patent/WO2022225082A1/ko active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011047207A2 (en) * | 2009-10-15 | 2011-04-21 | Masimo Corporation | Acoustic respiratory monitoring sensor having multiple sensing elements |
WO2012021900A1 (en) * | 2010-08-13 | 2012-02-16 | Respiratory Motion, Inc. | Devices and methods for respiratory variation monitoring by measurement of respiratory volumes, motion and variability |
WO2014035056A1 (ko) * | 2012-08-30 | 2014-03-06 | 주식회사 비트컴퓨터 | 하의 부착형 센서 유닛을 가지는 수면 장애 검출 시스템 |
KR20150115028A (ko) * | 2014-04-02 | 2015-10-14 | (주)블루노바 | 애완동물 건강관리 시스템 및 그 제어방법 |
KR20170007286A (ko) * | 2014-05-15 | 2017-01-18 | 더 리전트 오브 더 유니버시티 오브 캘리포니아 | 멀티 센서 생리적 모니터링 시스템 및 방법 |
KR20210125913A (ko) * | 2020-04-09 | 2021-10-19 | 젠트리 주식회사 | 웨어러블 생체 진단 시스템, 장치 및 방법 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019108044A1 (ko) | 심전도 측정 장치 | |
KR102309022B1 (ko) | 인공지능 기반의 생체 신호 원격 모니터링 시스템 | |
WO2017192010A1 (en) | Apparatus and method for extracting cardiovascular characteristic | |
US20070112277A1 (en) | Apparatus and method for the measurement and monitoring of bioelectric signal patterns | |
US11426083B2 (en) | Equipment for monitoring blood flow and respiratory flow | |
WO2014123345A1 (ko) | 연속적 자동 맥파 측정 장치 및 혈압 측정 방법 | |
WO2018135692A1 (ko) | 동작 인식 및 제어를 위한 웨어러블 장치 및 이를 이용한 동작 인식 제어 방법 | |
EP3288447A1 (en) | Apparatus and method for extracting cardiovascular characteristic | |
WO2016024724A1 (ko) | 호흡 측정 장치 및 그를 이용한 호흡 측정 방법 | |
WO2022173103A1 (ko) | 웨어러블 다중 생체 신호 측정장치 및 이를 이용한 인공지능 기반의 원격 모니터링 시스템 | |
JP2013009980A (ja) | 呼吸数又は心拍数測定装置及び測定システム | |
CN101883518A (zh) | 用于检测晕厥的装置和方法 | |
WO2014107017A1 (ko) | 장시간 심전도획득 및 스트레스 분석장치 및 방법 | |
WO2015076462A1 (ko) | 생체 신호를 측정하는 방법 및 장치 | |
KR102333364B1 (ko) | 웨어러블 생체 진단 시스템, 장치 및 방법 | |
WO2018093163A1 (ko) | 신생아 무호흡 측정장치 및 그 동작 방법과, 신생아 무호흡 측정 시스템 | |
EP1364614B1 (en) | Voltage measuring device comprising fixing member, electrode and transmitter | |
WO2019132115A1 (ko) | 혈압 모니터링을 위한 이어폰 및 이를 이용한 혈압 모니터링 방법 | |
JPH10295695A (ja) | 無呼吸検出器 | |
WO2022225082A1 (ko) | 웨어러블 생체 진단 시스템, 장치 및 방법 | |
WO2020231064A1 (ko) | 혈압 측정 시스템 및 이를 이용한 혈압 측정 방법 | |
JP2006247075A (ja) | 生体電気信号測定装置、及び電極装置 | |
US20200253473A1 (en) | Flexible printed circuit board module for smart band | |
WO2022164178A1 (ko) | 복수의 전극들을 이용하여 신호를 측정하는 전자 장치 및 그 제어 방법 | |
WO2020204639A1 (ko) | 소화관 스캔 장치, 인체 스캔 장치 및 그 인체 스캔방법, 음향 기반 소화기관 모니터링 시스템 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21938000 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21938000 Country of ref document: EP Kind code of ref document: A1 |