WO2022224934A1 - Adhesive composition and method for producing connection structure - Google Patents

Adhesive composition and method for producing connection structure Download PDF

Info

Publication number
WO2022224934A1
WO2022224934A1 PCT/JP2022/018049 JP2022018049W WO2022224934A1 WO 2022224934 A1 WO2022224934 A1 WO 2022224934A1 JP 2022018049 W JP2022018049 W JP 2022018049W WO 2022224934 A1 WO2022224934 A1 WO 2022224934A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
adhesive composition
compound
acid diester
connection
Prior art date
Application number
PCT/JP2022/018049
Other languages
French (fr)
Japanese (ja)
Inventor
将司 大越
由佳 伊藤
俊輔 高木
真弓 佐藤
健太 菊地
弘行 伊澤
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to JP2023515463A priority Critical patent/JPWO2022224934A1/ja
Publication of WO2022224934A1 publication Critical patent/WO2022224934A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits

Definitions

  • the present invention relates to a method for manufacturing an adhesive composition and a connection structure.
  • Patent Literature 1 discloses an anisotropically conductive adhesive containing conductive particles.
  • connection of electronic members using an adhesive is performed by pressing (thermocompression bonding) the electronic members while heating them with the adhesive interposed between the electronic members.
  • a connection structure is obtained in which the electronic members are joined to each other and the connection portions of the electronic members are electrically connected to each other.
  • a main object of one aspect of the present invention is to provide an adhesive composition capable of reducing connection resistance between opposing connection portions in a connection structure using an electronic member.
  • An adhesive composition containing a polymerizable compound, a polymerization initiator, and a dicarboxylic acid diester compound.
  • [3] Contains at least one compound selected from the group consisting of succinic acid diester, glutaric acid diester, adipic acid diester, pimelic acid diester, suberic acid diester, malic acid diester and phthalic acid diester as the dicarboxylic acid diester compound
  • connection structure comprising a step of electrically connecting the first connection portion and the second connection portion to each other by thermocompression bonding the first electronic member and the second electronic member with an object interposed therebetween. body manufacturing method.
  • connection structure having sufficiently low connection resistance between opposing connection portions can be obtained.
  • an adhesive composition that reduces connection resistance between opposing connection portions in a connection structure using electronic members.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of the connection structure.
  • 2A to 2D are schematic cross-sectional views showing a method of manufacturing the connection structure of FIG.
  • FIG. 3 is a schematic cross-sectional view showing another embodiment of the connection structure.
  • (meth)acrylate means at least one of acrylate and its corresponding methacrylate.
  • a or B may include either one of A and B, or may include both.
  • room temperature means 25°C.
  • each component in the composition means the total amount of the plurality of substances present in the composition unless otherwise specified when there are multiple substances corresponding to each component in the composition.
  • a numerical range indicated using "-" indicates a range including the numerical values described before and after "-" as the minimum and maximum values, respectively.
  • the upper limit value or lower limit value of the numerical range at one step may be replaced with the upper limit value or lower limit value of the numerical range at another step.
  • the upper and lower limits of the numerical ranges may be replaced with the values shown in the examples.
  • the upper limit value and the lower limit value described individually can be combined arbitrarily.
  • the adhesive composition of one embodiment comprises a polymerizable compound (hereinafter also referred to as "(A) component”), a polymerization initiator (hereinafter also referred to as “(B) component”), and a dicarboxylic acid diester compound (hereinafter referred to as “(B) component”). , Also referred to as “(C) component”).
  • the polymerization initiator can also be called a curing agent in one aspect.
  • the adhesive composition of the present embodiment may be used for connecting electronic members.
  • the adhesive composition of the present embodiment is interposed between a first electronic member having a first connection portion and a second electronic member having a second connection portion, and the first electronic member and the second electronic member are crimped (for example, thermocompression) to electrically connect the first connecting portion and the second connecting portion to each other.
  • the electronic member is, for example, a circuit member. That is, the adhesive composition of the present embodiment may be a circuit-connecting adhesive composition used for connecting circuit members.
  • the adhesive composition of the present embodiment it is possible to reduce the connection resistance between the opposing connection portions in the connection structure using the electronic member. Moreover, according to the adhesive composition of the present embodiment, there is a tendency to obtain a connected structure having excellent connection reliability. That is, the bonded structure obtained using the adhesive composition of the present embodiment does not cause problems such as peeling even when exposed to a high-temperature and high-humidity atmosphere (for example, 85° C., 85% RH) for a long period of time. Therefore, it tends to be able to maintain a sufficiently low connection resistance even in a temperature cycle test.
  • a high-temperature and high-humidity atmosphere for example, 85° C., 85% RH
  • the adhesive composition of the present embodiment may further contain conductive particles (hereinafter also referred to as "(D) component").
  • adhesive components are referred to as adhesive components.
  • the component (A) is a polymerizable compound, for example, a compound polymerized by active species (radicals, cations, anions, etc.) generated by the polymerization initiator (component (B)).
  • the component (A) may be a radically polymerizable compound, a cationically polymerizable compound, or an anionically polymerizable compound.
  • the component (A) may be a cationically polymerizable compound from the viewpoint of improving the heat resistance after curing and making it easier to obtain a connected structure with excellent connection reliability.
  • a cationic polymerization initiator is used as the component (B).
  • Component (A) may be a monomer, oligomer or polymer. As the component (A), one type of compound may be used alone, or multiple types of compounds may be used in combination.
  • radically polymerizable compounds examples include (meth)acrylate compounds, maleimide compounds, citraconimide compounds, and nadimide compounds.
  • (meth)acrylate compounds include methyl (meth)acrylate, ethyl (meth)acrylate, isopropyl (meth)acrylate, isobutyl (meth)acrylate, ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, tetramethylolmethane tetra(meth)acrylate, 2-hydroxy-1,3-di(meth)acryloxypropane, 2,2-bis[4-((meth)acryloxymethoxy) Phenyl]propane, 2,2-bis[4-((meth)acryloxypolyethoxy)phenyl]propane, dicyclopentenyl (meth)acrylate, tricyclodecanyl (meth)acrylate, tris((meth)acryloyloxyethyl ) isocyanurate, isocyanuric acid EO-modified di(meth)acryl
  • the radically polymerizable compound may have a crosslinked structure such as a tricyclodecane structure or a norbornane structure from the viewpoint of facilitating good fluidity and further reducing connection resistance.
  • a (meth)acrylate compound having a tricyclodecane structure is used, there is a tendency for the above effects to be remarkably obtained.
  • Examples of cationic polymerizable compounds include compounds having a cyclic ether group such as epoxy compounds and oxetane compounds.
  • Examples of epoxy compounds include glycidyl ether type epoxy compounds and alicyclic epoxy compounds.
  • As the cationic polymerizable compound at least one compound selected from the group consisting of alicyclic epoxy compounds and oxetane compounds is used from the viewpoint of further improving the effect of reducing the connection resistance and from the viewpoint of further improving the connection reliability of the connection structure. good.
  • a glycidyl ether type epoxy compound having two or more epoxy groups in one molecule is preferable because it has a high crosslink density when cured.
  • glycidyl ether type epoxy compounds examples include bisphenol type epoxy resins derived from epichlorohydrin and bisphenol compounds (bisphenol A, bisphenol F, etc.); polyglycidyl ethers; novolacs such as cresol novolac type epoxy resins and phenol novolac type epoxy resins type epoxy compounds; biphenyl diglycidyl ether, glycidyl alkyl isocyanurate, polyglycidyl methacrylate, copolymers of glycidyl methacrylate and vinyl monomers copolymerizable therewith, and the like. Glycidyl ether type epoxy compounds may be used singly or in combination.
  • An alicyclic epoxy compound is a compound having an alicyclic epoxy group.
  • the number of alicyclic epoxy groups in one molecule of the alicyclic epoxy compound may be one or two or more. When the number of alicyclic epoxy groups in one molecule of the alicyclic epoxy compound is two or more, the crosslink density after curing tends to be high.
  • the number of alicyclic epoxy groups in one molecule of the alicyclic epoxy compound may be, for example, 6 or less.
  • Alicyclic epoxy compounds include compounds obtained by oxidizing compounds having an alicyclic structure such as cyclohexene and cyclopentene (for example, compounds having cyclohexene oxide, cyclopentene oxide, etc.).
  • alicyclic epoxy compounds include 2-(3,4-epoxycyclohexyl-5,5-spiro-3,4-epoxy)cyclohexane-methodioxane, 3,4-epoxy-1-methylcyclohexyl-3 ,4-epoxy-1-methylhexanecarboxylate, 3,4-epoxy-3-methylcyclohexylmethyl-3,4-epoxy-3-methylcyclohexanecarboxylate, 3,4-epoxy-5-methylcyclohexylmethyl-3 ,4-epoxy-5-methylcyclohexanecarboxylate, 3,4-epoxy-6-methylcycloexylcarboxylate, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 6-methyl-3, 4-epoxycyclohexylmethyl-6-methyl-3,4-epoxycyclohexanecarboxylate, ethylenebis(3,4-e
  • Examples of commercially available alicyclic epoxy compounds include EHPE3150, EHPE3150CE, CEL (Celoxide) 8010, CEL (Celoxide) 2021P, CEL (Celoxide) 2081, and GT401 manufactured by Daicel Corporation.
  • the epoxy equivalent of the alicyclic epoxy compound may be, for example, 100-300 g/eq from the viewpoint of adhesive strength. Epoxy equivalent is determined according to JIS K 7236.
  • the content of the alicyclic epoxy compound is 5% by mass or more, 10% by mass or more, or 15% by mass, based on the total amount of the adhesive components, from the viewpoint of improving the curability of the adhesive composition. or more.
  • the content of the alicyclic epoxy compound is 50% by mass or less, 40% by mass or less, or 30% by mass, based on the total amount of the adhesive components, from the viewpoint that the film-forming property of the adhesive composition is more excellent. % or less. From these viewpoints, the content of the alicyclic epoxy compound may be 5 to 50% by mass, 10 to 40% by mass, or 15 to 30% by mass based on the total amount of the adhesive components.
  • An oxetane compound is a compound having an oxetanyl group.
  • the number of oxetanyl groups in one molecule of the oxetane compound may be one or two or more.
  • the number of oxetanyl groups in one molecule of the oxetane compound is two or more, the crosslink density after curing tends to be even higher, and a synergistic effect is likely to be obtained in combination with the alicyclic epoxy compound.
  • the number of oxetanyl groups in one molecule of the oxetane compound may be, for example, 6 or less.
  • oxetane compounds include xylylenebisoxetane, 2-ethylhexyloxetane, 3-hydroxymethyl-3-methyloxetane, 3-hydroxymethyl-3-ethyloxetane, 3-hydroxymethyl-3-propyloxetane, 3-hydroxy methyl-3-n-butyloxetane, 3-hydroxymethyl-3-phenyloxetane, 3-hydroxymethyl-3-benzyloxetane, 3-hydroxyethyl-3-methyloxetane, 3-hydroxyethyl-3-ethyloxetane, 3- Hydroxyethyl-3-propyloxetane, 3-hydroxyethyl-3-phenyloxetane, 3-hydroxypropyl-3-methyloxetane, 3-hydroxypropyl-3-ethyloxetane, 3-hydroxypropyl-3-propyloxetane, 3-hydroxypropyl-3-propyloxetane, 3- Hydroxypropyl-3-phen
  • oxetane compounds include, for example, ETERNACOLL OXBP (4,4'-bis[(3-ethyl-3-oxetanyl)methoxymethyl]biphenyl) manufactured by Ube Industries, OXSQ and OXT manufactured by Toagosei Co., Ltd. -121, OXT-221, OXT-101 and OXT-212.
  • the content of the oxetane compound is 5% by mass or more, 10% by mass or more, or 15% by mass or more based on the total amount of the adhesive components, from the viewpoint that the curability of the adhesive composition is more excellent. you can The content of the oxetane compound is 50% by mass or less, 40% by mass or less, or 30% by mass or less based on the total amount of the adhesive components, from the viewpoint that the film-forming property of the adhesive composition is more excellent. It's okay. From these viewpoints, the content of the oxetane compound may be 5 to 50% by mass, 10 to 40% by mass, or 15 to 30% by mass based on the total amount of the adhesive components.
  • the mass ratio of the content of the oxetane compound to the content of the alicyclic epoxy compound improves the reactivity of the oxetane compound, and the synergistic effect of the combination with the alicyclic epoxy compound is obtained. From the viewpoint of being easily obtained, it may be 0.2 or more, 0.5 or more, or 0.8 or more, and may be 5.0 or less, 2.0 or less, or 1.2 or less, and 0.2 to 5 .0, 0.5-2.0 or 0.8-1.2.
  • anionically polymerizable compound compounds having a cyclic ether group such as the epoxy compounds and oxetane compounds described above can be used.
  • the content of the component (A) is 10% by mass or more, 15% by mass or more, or 20% by mass or more, based on the total amount of the adhesive components, from the viewpoint of improving the curability of the adhesive composition.
  • the content of component (A) is 60% by mass or less, 50% by mass or less, or 45% by mass, based on the total amount of the adhesive components, from the viewpoint that the film-forming property of the adhesive composition is more excellent.
  • the component (B) may be a thermal polymerization initiator that generates active species upon heating, or a photopolymerization initiator that generates active species upon irradiation with light (active energy rays).
  • the adhesive composition has thermosetting properties.
  • the adhesive composition has photocurability.
  • the component (B) may be a radical polymerization initiator, a cationic polymerization initiator, or an anionic polymerization initiator.
  • Component (B) can be appropriately selected according to the type of component (A).
  • (B) component may be used individually by 1 type, and may be used in combination of multiple types.
  • thermal radical polymerization initiator known thermal radical polymerization initiators such as organic peroxides and azo compounds can be used.
  • thermal radical polymerization initiators include 1,1,3,3-tetramethylbutyl peroxyneodecanoate, di(4-t-butylcyclohexyl)peroxydicarbonate, di(2-ethylhexyl)per Oxydicarbonate, cumyl peroxyneodecanoate, dilauroyl peroxide, 1-cyclohexyl-1-methylethyl peroxyneodecanoate, t-hexyl peroxyneodecanoate, t-butyl peroxyneodecano ate, t-butyl peroxypivalate, 1,1,3,3-tetramethylbutyl peroxy-2-ethylhexanoate, 2,5-dimethyl-2,5-di(2-ethylhexanoyl peroxy ) Hexane, t-hexylperoxy-2-ethylhexanoate, t-butyl
  • a thermal cationic polymerization initiator is, for example, a salt compound composed of a cation and an anion.
  • Thermal cationic polymerization initiators include, for example, BF 4 ⁇ , BR 4 ⁇ (R represents a phenyl group substituted with two or more fluorine atoms or two or more trifluoromethyl groups), PF 6 ⁇ , SbF.
  • Onium salts such as sulfonium salts, phosphonium salts, ammonium salts, diazonium salts and iodonium salts having anions such as 6 ⁇ , AsF 6 ⁇ and the like can be mentioned.
  • onium salts having an anion containing boron as a constituent element tend to improve rapid curability.
  • a preferred specific example of an anion containing boron as a constituent element is tetrakis(pentafluorophenyl)borate.
  • the cation of the onium salt may be a sulfonium salt or an ammonium salt from the viewpoint of easily obtaining a lower connection resistance. This tendency is stronger when ammonium salts (especially anilinium salts) are used.
  • ammonium salt cations are N-benzyl-N,N-dimethylanilinium ion, N-(4-nitrobenzyl)-N,N-dimethylanilinium ion, N- (4-methoxybenzyl)-N,N-dimethylanilinium ion, N-( ⁇ -phenylbenzyl)-N,N-dimethylanilinium ion, N-( ⁇ -methylbenzyl)-N,N-dimethylanilinium ions, N-(1-naphthylmethyl)-N,N-dimethylanilinium ions or N-cinnamyl-N,N-dimethylanilinium ions.
  • thermal anionic polymerization initiator known thermal anionic polymerization initiators such as dicyandiamide, amine salts, and modified imidazole compounds can be used. From the viewpoint of extending the pot life, the thermal anionic polymerization initiator may be microencapsulated by being coated with a polyurethane-based or polyester-based polymer compound or the like.
  • Photoradical polymerization initiators include oxime ester structure, bisimidazole structure, acridine structure, ⁇ -aminoalkylphenone structure, aminobenzophenone structure, N-phenylglycine structure, acylphosphine oxide structure, benzyldimethylketal structure, ⁇ -hydroxy
  • a known photopolymerization initiator having a structure such as an alkylphenone structure can be used.
  • photocationic polymerization initiators include onium salts that release Lewis acids when irradiated with light.
  • onium salts include aromatic sulfonium salts of Group VIIa elements, aromatic onium salts of Group VIa elements, and aromatic onium salts of Group Va elements.
  • triarylsulfonium hexafluoroantimonate triphenylphenacylphosphonium tetrafluoroborate, triphenylsulfonium hexafluoroantimonate, bis-[4-(diphenylsulfonio)phenyl]sulfide bisdihexa Fluoroantimonate, bis-[4-(di4'-hydroxyethoxyphenylsulfonio)phenyl]sulfide bisdihexafluoroantimonate, bis-[4-(diphenylsulfonio)phenyl]sulfide bisdihexafluorophos phate, and diphenyliodonium tetrafluoroborate.
  • a known photoanionic polymerization initiator can be used as the photoanionic polymerization initiator.
  • the content of component (B) may be 1 part by mass or more, 3 parts by mass or more, or 5 parts by mass or more with respect to 100 parts by mass of component (A) from the viewpoint of improving the effect of reducing the connection resistance.
  • the content of component (B) may be 20 parts by mass or less, 15 parts by mass or less, or 10 parts by mass or less with respect to 100 parts by mass of component (A) from the viewpoint of improving the effect of reducing the connection resistance. From these viewpoints, the content of component (B) may be 1 to 20 parts by mass, 3 to 15 parts by mass, or 5 to 10 parts by mass per 100 parts by mass of component (A).
  • Component (C) is a compound having two carboxylic acid ester groups.
  • a carboxylic acid ester group is represented, for example, by —COOR 1 (R 1 represents a monovalent hydrocarbon group).
  • R 1 represents a monovalent hydrocarbon group.
  • the two carboxylic acid ester groups may be the same or different from each other.
  • the hydrocarbon group represented by R 1 is, for example, a monovalent hydrocarbon group having 1 to 6 carbon atoms. That is, the two carboxylic acid ester groups (-COOR 1 ) of component (C) may have a monovalent hydrocarbon group having 1 to 6 carbon atoms as the hydrocarbon group R 1 .
  • the hydrocarbon group may be either an aliphatic hydrocarbon group or an aromatic hydrocarbon group.
  • the aliphatic hydrocarbon group may be linear or cyclic, and saturated or unsaturated.
  • the chain aliphatic hydrocarbon group may be linear or branched.
  • the hydrocarbon group represented by R 1 may be an alkyl group having 1 to 6 carbon atoms from the viewpoint of further improving the connection resistance reducing effect. That is, the two carboxylic acid ester groups (--COOR 1 ) of component (C) may have an alkyl group having 1 to 6 carbon atoms as the hydrocarbon group R 1 .
  • alkyl groups having 1 to 6 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, isobutyl group, pentyl group, cyclopentyl group, hexyl group and cyclohexyl group. etc.
  • the hydrocarbon group represented by R 1 is a methyl group or an ethyl group, the effect of reducing the connection resistance tends to be remarkably obtained.
  • the molecular weight of the component (C) may be 500 or less, 400 or less, or 300 or less from the viewpoint of easily obtaining good compatibility with other components.
  • the molecular weight of component (C) may be, for example, 100 or more from the viewpoint of handling and weighing.
  • the component (C) may be liquid from the viewpoint of facilitating the acquisition of good compatibility with other components.
  • liquid means having fluidity at normal temperature and normal pressure (1 atm, 25° C.).
  • Component (C) includes, for example, compounds represented by the following formula (I).
  • R 1 represents a monovalent hydrocarbon group and R 2 represents a single bond or a divalent hydrocarbon group.
  • R 1 has the same definition as R 1 in the carboxylic acid ester group described above. Two R 1s may be the same or different.
  • the hydrocarbon group represented by R 2 is, for example, a divalent hydrocarbon group having 1 to 6 carbon atoms.
  • the hydrocarbon group may be either an aliphatic hydrocarbon group or an aromatic hydrocarbon group.
  • the aliphatic hydrocarbon group may be linear or cyclic, and saturated or unsaturated.
  • the chain aliphatic hydrocarbon group may be linear or branched.
  • the hydrocarbon group may have a substituent. For example, at least one hydrogen in the hydrocarbon group may be substituted with a hydroxyl group.
  • the hydrocarbon group represented by R 2 is an optionally substituted alkylene group (alkanediyl group) having 1 to 6 carbon atoms or a phenylene group from the viewpoint of improving the effect of reducing the connection resistance. good.
  • alkylene group having 1 to 6 carbon atoms include methylene group, ethylene group, propane-1,3-diyl group, butane-1,4-diyl group, pentane-1,5-diyl group, hexane-1,6 - diyl group and the like.
  • the phenylene group may be o(ortho)-phenylene group, m(meth)-phenylene group or p(para)-phenylene group.
  • the hydrocarbon group represented by R 2 is an ethylene group, 1-hydroxy-1,2-ethanediyl group, propane-1,3-diyl group, butane-1,4-diyl group or o-phenylene group. , there is a tendency that the effect of reducing the connection resistance is remarkably obtained.
  • Specific examples of the compound represented by formula (I) include succinic acid diester, glutaric acid diester, adipic acid diester, pimelic acid diester, suberic acid diester, malic acid diester, phthalic acid diester, isophthalic acid diester, and terephthalic acid diester. , 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid and the like.
  • the connection resistance is reduced.
  • At least one compound selected from the group consisting of succinic acid diesters, glutaric acid diesters, adipic acid diesters, malic acid diesters and phthalic acid diesters tends to further improve the effect and the connection reliability of the connection structure.
  • the effect of reducing the connection resistance is particularly improved, and the connection reliability of the connection structure tends to be particularly improved.
  • the content of component (C) is 0.01 part by mass or more, 0.1 part by mass or more, relative to 100 parts by mass of component (A) (polymerizable compound), from the viewpoint of improving the effect of reducing the connection resistance. It may be 1 part by mass or more, 3 parts by mass or more, 6 parts by mass or more, or 10 parts by mass or more.
  • the content of the component (C) is 40 parts by mass or less and 31 parts by mass or less with respect to 100 parts by mass of the component (A) (polymerizable compound) from the viewpoint of easily obtaining a connected structure having excellent connection reliability. , 22 parts by mass or less, 20 parts by mass or less, 16 parts by mass or less, 10 parts by mass or less, or 5 parts by mass or less.
  • component (C) is 0.01 to 40 parts by mass, 0.01 to 20 parts by mass, 0.1 to 40 parts by mass, relative to 100 parts by mass of component (A) (polymerizable compound). It may be 10 parts by mass, 1 to 5 parts by mass, 3 to 40 parts by mass, 3 to 31 parts by mass, 3 to 22 parts by mass, 3 to 16 parts by mass, or 3 to 10 parts by mass.
  • the component (D) is particles having electrical conductivity.
  • component (D) for example, metal particles composed of metals such as gold, silver, palladium, nickel, copper, solder, etc., and conductive carbon particles composed of conductive carbon can be used.
  • Component (D) is a coated conductive particle comprising a core containing non-conductive glass, ceramic, plastic (such as polystyrene), etc., and a coating layer containing the above metal or conductive carbon and covering the core. good.
  • solder particles When solder particles are used as the (D) component, there is a tendency for the (C) component to significantly reduce the connection resistance.
  • the solder particles contain, for example, at least one selected from the group consisting of tin, tin alloys, indium, and indium alloys.
  • tin alloy for example, In—Sn alloy, In—Sn—Ag alloy, Sn—Au alloy, Sn—Bi alloy, Sn—Bi—Ag alloy, Sn—Ag—Cu alloy, Sn—Cu alloy, etc. are used. be able to. Specific examples of these tin alloys include the following examples.
  • the indium alloy for example, an In--Bi alloy, an In--Ag alloy, or the like can be used. Specific examples of these indium alloys include the following examples. ⁇ In-Bi (In66.3% by mass, Bi33.7% by mass, melting point 72° C.) ⁇ In-Bi (In 33.0% by mass, Bi 67.0% by mass, melting point 109 ° C.) ⁇ In-Ag (97.0% by mass of In, 3.0% by mass of Ag, melting point 145°C) Note that the indium alloy containing tin described above is classified as a tin alloy.
  • Solder particles from the viewpoint of obtaining higher connection reliability, In-Bi alloy, In-Sn alloy, In-Sn-Ag alloy, Sn-Au alloy, Sn-Bi alloy, Sn-Bi-Ag alloy, Sn -At least one selected from the group consisting of Ag--Cu alloys and Sn--Cu alloys.
  • the melting point of the solder particles may be lower than the connection temperature.
  • the melting point of the solder particles may be, for example, 280° C. or less, 220° C. or less, 180° C. or less, 160° C. or less, or 140° C. or less.
  • the melting point of the solder particles may be, for example, 100° C. or higher.
  • the average particle size of component (D) may be 1.0 ⁇ m or more, 2.0 ⁇ m or more, 2.5 ⁇ m or more, or 5.0 ⁇ m or more from the viewpoint of excellent dispersibility and conductivity. From the viewpoint of ensuring insulation between adjacent electrodes, the average particle size of the component (D) is 30.0 ⁇ m or less, 25.0 ⁇ m or less, 20.0 ⁇ m or less, 15.0 ⁇ m or less, 10.0 ⁇ m or less. It may be 0 ⁇ m or less or 5.0 ⁇ m or less. From these viewpoints, the average particle size of component (D) may be 1.0 to 30.0 ⁇ m, 2.0 to 20.0 ⁇ m, 2.5 to 20.0 ⁇ m, or 5.0 to 20.0 ⁇ m. .
  • the average particle size of component (D) is the particle size obtained by measuring the particle size of 300 conductive particles contained in the adhesive composition by observation using a scanning electron microscope (SEM). is the average value of When the conductive particles are not spherical, the particle diameter of the conductive particles is the diameter of a circle circumscribing the conductive particles in the SEM observation image.
  • SEM scanning electron microscope
  • the content of component (D) may be 3% by mass or more, 5% by mass or more, or 8% by mass or more based on the total mass of the adhesive composition, from the viewpoint of obtaining better connection resistance. From the viewpoint of ensuring insulation between adjacent electrodes, the content of component (D) is 30% by mass or less, 20% by mass or less, or 15% by mass or less based on the total mass of the adhesive composition. good. From these viewpoints, the content of component (D) may be 3 to 30% by mass, 5 to 20% by mass, or 8 to 15% by mass based on the total mass of the adhesive composition.
  • the adhesive composition may further contain components (other components) other than the components described above.
  • Other components include, for example, thermoplastic resins, coupling agents, fillers, and the like. These components are included in the adhesive component.
  • thermoplastic resin contributes to the improvement of the film formability of the adhesive composition.
  • thermoplastic resins include phenoxy resins, polyester resins, polyamide resins, polyurethane resins, polyester urethane resins, acrylic rubbers, and epoxy resins (solid at 25°C). These may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the weight average molecular weight (Mw) of the thermoplastic resin may be, for example, 5,000 to 200,000, 10,000 to 100,000, 20,000 to 80,000, or 40,000 to 60,000.
  • the weight average molecular weight of the thermoplastic resin means a value measured by gel permeation chromatography (GPC) and converted using a standard polystyrene calibration curve.
  • the content of the thermoplastic resin may be 1% by mass or more, 5% by mass or more, 10% by mass or more, or 15% by mass or more, based on the total amount of the adhesive components. It's okay.
  • the content of the thermoplastic resin may be 50% by mass or less, 40% by mass or less, 30% by mass or less, or 20% by mass or less based on the total amount of the adhesive components. It's okay.
  • the content of the thermoplastic resin may be 1 to 50% by mass, may be 5 to 40% by mass, may be 10 to 30% by mass, and may be 15 to 50% by mass, based on the total amount of the adhesive component. It may be 20% by mass.
  • a coupling agent contributes to the improvement of adhesion.
  • the coupling agent may be, for example, a silane coupling agent.
  • Examples of coupling agents include vinyltrimethoxysilane, vinyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-(meth)acryloxypropylmethyldimethoxysilane.
  • the content of the coupling agent may be 0.1% by mass or more, 0.5% by mass or more, or 1.0% by mass or more based on the total amount of the adhesive components. , 1.5% by mass or more.
  • the content of the coupling agent may be 10% by mass or less, 8.0% by mass or less, or 5.0% by mass or less, based on the total amount of the adhesive components. 0% by mass or less.
  • the content of the coupling agent may be 0.1 to 10% by mass, 0.5 to 8.0% by mass, or 1.0 to 5.0% by mass, based on the total amount of the adhesive components. It may be 0% by mass, or 1.5 to 3.0% by mass.
  • Filling material contributes to the improvement of connection reliability.
  • Fillers include non-conductive fillers (eg, non-conductive particles).
  • the filler may be either an inorganic filler or an organic filler.
  • inorganic fillers include metal oxide particles such as silica particles, alumina particles, silica-alumina particles, titania particles, and zirconia particles; and metal nitride particles. These may be used individually by 1 type, and may be used in combination of 2 or more types.
  • organic fillers examples include silicone particles, methacrylate/butadiene/styrene particles, acrylic/silicone particles, polyamide particles, and polyimide particles. These may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the filler may be an inorganic filler from the viewpoint of improving the film formability and the reliability of the connection structure. This effect tends to be significantly obtained when the filler contains silica particles.
  • the silica particles may be crystalline silica particles or amorphous silica particles. These silica particles may be synthetic.
  • a method for synthesizing silica particles may be a dry method or a wet method.
  • Silica particles may contain at least one selected from the group consisting of fumed silica particles and sol-gel silica particles.
  • the silica particles may be surface-treated silica particles from the viewpoint of excellent dispersibility in the adhesive component.
  • the surface-treated silica particles may be, for example, silica particles surface-treated with a silane compound such as an alkoxysilane compound, a disilazane compound, or a siloxane compound, or may be silica particles surface-treated with a silane coupling agent.
  • the surface-treated silica particles are obtained, for example, by hydrophobizing the hydroxyl groups on the surfaces of silica particles with a silane compound or a silane coupling agent.
  • the content of the filler may be 0.1% by mass or more, 1.0% by mass or more, or 5.0% by mass or more, based on the total amount of the adhesive components, It may be 10% by mass or more.
  • the content of the filler may be 50% by mass or less, 40% by mass or less, 30% by mass or less, or 20% by mass or less based on the total amount of the adhesive components. you can
  • the content of the filler may be 0.1 to 50% by mass, 1.0 to 40% by mass, or 5.0 to 30% by mass, based on the total amount of the adhesive components. may be from 10 to 20% by mass.
  • the adhesive composition contains a compound having a carboxyl group
  • curing inhibition of the adhesive composition tends to occur, and the connection reliability of the connection structure decreases.
  • the adhesive composition has cationic curability (that is, when the polymerizable compound is a cationic polymerizable compound and the polymerization initiator is a cationic polymerization initiator). Therefore, the content of the compound having a carboxyl group in the adhesive composition may be 0 to 0.05 parts by mass, or may be 0 parts by mass, with respect to 100 parts by mass of the polymerizable compound.
  • the adhesive composition described above may be formed into a film.
  • the film-like adhesive composition may have anisotropic conductivity.
  • anisotropic conductivity means that it conducts in the pressurized direction and maintains insulation in the non-pressurized direction.
  • the particle density of component (D) in the adhesive film may be, for example, 100-100000 particles/mm 2 , 1000-50000 particles/mm 2 or 3000-30000 particles/mm 2 .
  • the adhesive film may be a single layer or may have a multi-layer structure in which multiple layers are laminated.
  • the content of each of the above components in each layer may be within the above range of content based on the total mass of each layer.
  • the adhesive film can be prepared, for example, by the following method. First, the above components (A), (B), (C), and, if necessary, (D) and other components are stirred, mixed, and kneaded in an organic solvent. to prepare a varnish composition (varnish-like adhesive composition). Then, the obtained varnish composition is applied onto the release-treated substrate using a knife coater, roll coater, applicator, comma coater, die coater, or the like, and the organic solvent is volatilized by heating. Thereby, an adhesive film can be formed on the substrate. At this time, the thickness of the adhesive film can be adjusted by adjusting the coating amount of the varnish composition. The thickness of the adhesive film may be, for example, 5 ⁇ m or more, or 10 ⁇ m or more, and may be 40 ⁇ m or less, 30 ⁇ m or less, or 20 ⁇ m or less.
  • the organic solvent used in the preparation of the varnish composition is not particularly limited as long as it has the property of dissolving or dispersing each component substantially uniformly.
  • organic solvents include toluene, acetone, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, propyl acetate, butyl acetate and the like. These organic solvents can be used alone or in combination of two or more.
  • Stirring and mixing or kneading during preparation of the varnish composition can be performed using, for example, a stirrer, a kneader, a three-roll mill, a ball mill, a bead mill, a homodisper, or the like.
  • the base material is not particularly limited as long as it has heat resistance that can withstand the heating conditions when volatilizing the organic solvent.
  • substrates include oriented polypropylene (OPP), polyethylene terephthalate (PET), polyethylene naphthalate, polyethylene isophthalate, polybutylene terephthalate, polyolefin, polyacetate, polycarbonate, polyphenylene sulfide, polyamide, polyimide, cellulose, Substrates (for example, films) made of ethylene-vinyl acetate copolymer, polyvinyl chloride, polyvinylidene chloride, synthetic rubber, liquid crystal polymer, or the like can be used.
  • the heating conditions for volatilizing the organic solvent from the varnish composition applied to the substrate can be appropriately set according to the organic solvent used.
  • the heating conditions may be, for example, 40-120° C. for 0.1-10 minutes.
  • a part of the solvent may remain in the adhesive film without being removed.
  • the solvent content in the adhesive film may be, for example, 0 to 10% by weight based on the total weight of the adhesive film.
  • the adhesive film may be provided in a state in which the adhesive film is releasably attached to a substrate (for example, the substrate used in the above production), that is, as an adhesive film with a substrate.
  • a substrate for example, the substrate used in the above production
  • FIG. 1 is a schematic cross-sectional view showing a bonded structure obtained using an adhesive composition containing conductive particles.
  • a connection structure 10A shown in FIG. 1 includes a first electronic member 1 and a second electronic member 2 facing each other, and a first electronic member and a connection member 3A that connects the first electronic member 2 and the second electronic member 2 .
  • the first electronic member 1 and the second electronic member 2 are, for example, members formed with connecting portions (wiring, bumps, electrodes, etc.) that require electrical connection such as circuit members.
  • the first electronic member 1 includes a first substrate 11 and a first connection portion 12 formed on the main surface 11 a of the first substrate 11 .
  • the second electronic member 2 includes a second substrate 21 and a second connection portion 22 formed on the main surface 21 a of the second substrate 21 .
  • the first electronic member 1 and the second electronic member 2 may be the same or different.
  • the first electronic member 1 and the second electronic member 2 may be, for example, a glass substrate or plastic substrate on which electrodes are formed, a printed wiring board, a ceramic wiring board, a flexible wiring board, an IC chip, or the like.
  • the first substrate 11 and the second substrate 21 may be made of inorganic materials such as semiconductors, glass, and ceramics, organic materials such as polyimide and polycarbonate, composite materials such as glass/epoxy, and the like.
  • the first connection portion 12 and the second connection portion 22 are gold, silver, tin, ruthenium, rhodium, palladium, osmium, iridium, platinum, copper, aluminum, molybdenum, titanium, indium tin oxide (ITO), indium It may be formed of zinc oxide (IZO), indium gallium zinc oxide (IGZO), or the like.
  • connection member 3A is made of the cured adhesive composition of the above embodiment.
  • the cured product contains the conductive particles P and the cured product 31 of the adhesive component. At least part of the conductive particles P is interposed between the first connection portion 12 and the second connection portion 22 (in contact with both the first connection portion 12 and the second connection portion 22). The one connection portion 12 and the second connection portion 22 are electrically connected to each other.
  • FIG. 2 is a schematic cross-sectional view showing a manufacturing method of the connection structure 10A.
  • the adhesive composition 5 is placed on the main surface 11a of the first electronic member 1 (see FIG. 2(a)).
  • the adhesive composition 5 side (adhesive film side) of the base material should face the first electronic member 1.
  • a laminate comprising the adhesive composition 5 and the substrate is placed on the first electronic member 1 .
  • pressurization may be performed, or heating may be performed together with the pressurization.
  • the second connection portion 22 side is directed toward the first electronic member 1 (that is, the first connection portion 12 and the second connection part 22 are arranged opposite to each other), and the adhesive composition 5 is placed between the first electronic member 1 and the second electronic member 2 intervene (see FIG. 2(b)).
  • the laminate 8 shown in FIG. 2(b) is obtained.
  • the second electronic member 2 is placed on the adhesive composition 5 after the base material is peeled off.
  • the laminate 8 as a whole is heated and pressed (thermocompression bonded) in the direction indicated by the arrow in FIG. 2(b).
  • the first connection portion 12 and the second connection portion 22 are electrically connected to each other.
  • the adhesive composition 5 is thermosetting
  • the adhesive composition 5 is cured by the above operation, and the first connection portion 12 and the second connection portion 22 are bonded by the connection member 3A. be done.
  • the adhesive composition 5 is photocurable, the adhesive composition 5 is cured by irradiating light (for example, ultraviolet rays) in parallel with the thermocompression bonding, or before or after the thermocompression bonding.
  • the one connecting portion 12 and the second connecting portion 22 are bonded together by the connecting member 3A.
  • a connection structure 10A as shown in FIG. 1 is obtained.
  • the temperature and thermocompression bonding time during thermocompression bonding can be adjusted as appropriate, and when the adhesive composition 5 is thermosetting, the adhesive composition 5 is sufficiently cured to bond the first electronic member 1 and The temperature and time for thermocompression bonding may be appropriately adjusted so that the second electronic member 2 can be adhered.
  • the temperature during thermocompression bonding (maximum temperature reached by the adhesive composition) may be, for example, 80 to 300°C.
  • the thermocompression bonding time may be, for example, 0.5 seconds to 3 hours.
  • Light irradiation when the adhesive composition 5 is thermosetting can be performed using, for example, a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a xenon lamp, a metal halide lamp, an LED light source, or the like. can.
  • the integrated amount of light irradiation can be appropriately set, and may be, for example, 500 to 3000 mJ/cm 2 .
  • FIG. 3 is a schematic cross-sectional view showing a connected structure obtained using an adhesive composition containing no conductive particles.
  • the connection structure 10B is electrically connected by the connection member 3B containing no conductive particles and the first connection portion 12 and the second connection portion 22 being in contact with each other.
  • the connection structure 10B can be manufactured in the same manner as the connection structure 10A, except that an adhesive composition containing no conductive particles is used as the adhesive composition 5.
  • Thermoplastic resin D-1 FX293 (biphenylfluorene type phenoxy resin, weight average molecular weight: 45000, glass transition temperature: 158 ° C., manufactured by Nippon Steel Chemical & Materials Co., Ltd., trade name (methyl ethyl ketone, non-volatile content 40 mass used diluted in %))
  • ⁇ D-2 ZX1356-2 (bisphenol A type and bisphenol F type copolymerized phenoxy resin, weight average molecular weight: 70000, glass transition temperature: 71 ° C., manufactured by Nippon Steel Chemical & Materials Co., Ltd., trade name (methyl ethyl ketone Use the one diluted to 50% by mass of non-volatile content))
  • PKHC phenoxy resin, manufactured by Union Carbide
  • F Filler F-1: SE2050 (silica fine particles, manufactured by Admatechs Co., Ltd., trade name)
  • ⁇ F-2 R104 (silica fine particles, manufactured by Nippon Aerosil Co., Ltd., average particle size (primary particle size): 12 nm)
  • G Conductive particles G-1: STC-7 (Sn-Ag-Cu solder fine particles, manufactured by Mitsui Mining & Smelting Co., Ltd., trade name, average particle size: 8 ⁇ m, melting point: 219 ° C.)
  • G-2 Type 5 (Sn72Bi28 solder fine particles, manufactured by Mitsui Mining & Smelting Co., Ltd., average particle size: 20 ⁇ m, melting point: 139 ° C.)
  • the weight average molecular weight of polyurethane acrylate (UA1) was 15,000.
  • the weight average molecular weight was measured using a standard polystyrene calibration curve from gel permeation chromatography (GPC) under the following conditions.
  • Examples 1 to 15 and Comparative Example 1> [Preparation of adhesive film] After mixing the materials shown in Tables 1 and 2 with an organic solvent, the resulting mixture (varnish-like adhesive composition) was applied onto a release-treated PET (polyethylene terephthalate) film. Methyl ethyl ketone was used as the organic solvent. The materials shown in Tables 1 and 2 were blended so as to have the composition ratios shown in Tables 1 and 2 (the numerical values in the tables mean the non-volatile content). The coating was carried out so that the film-like adhesive composition (adhesive film) obtained after drying had a thickness of 24 to 26 ⁇ m. Then, by removing the organic solvent by drying, adhesive films of Examples 1 to 15 and Comparative Example 1 containing each component shown in Tables 1 and 2 were obtained.
  • Example 1 in which a dicarboxylic acid diester compound was added showed a good calorific value reduction rate comparable to Comparative Example 1 in which no dicarboxylic acid diester compound was added. No side reaction (effect on curing reaction) due to the addition of the compound was confirmed.
  • an IC chip with gold bumps having a pitch of 20 ⁇ m and a bump height of 1.5 ⁇ m first electronic member
  • a glass substrate with an ITO electrode second electronic member
  • ITO amorphous indium tin oxide
  • a strip-shaped adhesive film slit to a width of 0.6 mm was arranged on the first electronic member.
  • a heating tool with a width of 0.8 mm is used.
  • connection resistance (conduction resistance) of the fabricated connection structure was measured by the four-probe method at the initial stage (immediately after fabrication), after the high-temperature and high-humidity test, and after the cycle test.
  • a constant current power supply R-6145 manufactured by Advantest Co., Ltd. is used to apply a constant current (1 mA) to the first connection portion (circuit electrode) and the second connection portion (circuit electrode) of the connection structure. was applied between The potential difference between the connecting portions when the current was applied was measured using a digital multimeter (R-6557 manufactured by Advantest Co., Ltd.).
  • the average value of the potential difference was converted into a connection resistance value, and the initial connection resistance value, the connection resistance value after the high temperature and high humidity test, and the connection resistance value after the cycle test were measured.
  • the high-temperature and high-humidity test was performed by storing the connected structure for 500 hours in a constant temperature and humidity chamber at a temperature of 85° C. and a humidity of 85% RH.
  • the connection structure was placed in a cycle tester, and 100 cycles, 250 cycles, and 500 cycles were performed with the following (1) to (4) as one cycle.
  • the rate of temperature rise and temperature drop during each cycle was about 15°C/min.
  • connection resistance value is evaluated based on the criteria shown below. did. The results are shown in Tables 4-5.

Abstract

Provided is an adhesive composition containing a polymerizable compound, a thermal polymerization initiator, and a dicarboxylic acid diester compound.

Description

接着剤組成物及び接続構造体の製造方法ADHESIVE COMPOSITION AND CONNECTED STRUCTURE MANUFACTURING METHOD
 本発明は、接着剤組成物及び接続構造体の製造方法に関する。 The present invention relates to a method for manufacturing an adhesive composition and a connection structure.
 近年、半導体、液晶ディスプレイ等の分野において、電子部材の接続(例えば半導体チップと基板との接続)を行うための接続材料として、各種の接着剤が使用されている。例えば、特許文献1には、導電粒子を含有する異方導電性の接着剤が開示されている。 In recent years, in the fields of semiconductors, liquid crystal displays, etc., various adhesives have been used as connecting materials for connecting electronic members (for example, connecting semiconductor chips and substrates). For example, Patent Literature 1 discloses an anisotropically conductive adhesive containing conductive particles.
 接着剤を用いた電子部材の接続は、電子部材間に接着剤を介在させた状態で、加熱しながら電子部材同士を圧着(熱圧着)することにより行われる。これにより、電子部材同士が接合されるとともに、電子部材の接続部同士が互いに電気的に接続された接続構造体が得られる。 The connection of electronic members using an adhesive is performed by pressing (thermocompression bonding) the electronic members while heating them with the adhesive interposed between the electronic members. As a result, a connection structure is obtained in which the electronic members are joined to each other and the connection portions of the electronic members are electrically connected to each other.
特開平1-251787号公報JP-A-1-251787
 本発明の一側面は、電子部材を用いた接続構造体における対向する接続部間の接続抵抗を低減することができる接着剤組成物を提供することを主な目的する。 A main object of one aspect of the present invention is to provide an adhesive composition capable of reducing connection resistance between opposing connection portions in a connection structure using an electronic member.
 本発明のいくつかの側面は、下記[1]~[7]を提供する。 Some aspects of the present invention provide the following [1] to [7].
[1] 重合性化合物と、重合開始剤と、ジカルボン酸ジエステル化合物と、を含有する、接着剤組成物。 [1] An adhesive composition containing a polymerizable compound, a polymerization initiator, and a dicarboxylic acid diester compound.
[2] 前記重合開始剤が熱重合開始剤である、[1]に記載の接着剤組成物。 [2] The adhesive composition according to [1], wherein the polymerization initiator is a thermal polymerization initiator.
[3] 前記ジカルボン酸ジエステル化合物として、コハク酸ジエステル、グルタル酸ジエステル、アジピン酸ジエステル、ピメリン酸ジエステル、スベリン酸ジエステル、リンゴ酸ジエステル及びフタル酸ジエステルからなる群より選択される少なくとも一種の化合物を含有する、[1]又は[2]に記載の接着剤組成物。 [3] Contains at least one compound selected from the group consisting of succinic acid diester, glutaric acid diester, adipic acid diester, pimelic acid diester, suberic acid diester, malic acid diester and phthalic acid diester as the dicarboxylic acid diester compound The adhesive composition according to [1] or [2].
[4] 前記ジカルボン酸ジエステル化合物の含有量が、重合性化合物100質量部に対して、0.01~40質量部である、[1]~[3]のいずれかに記載の接着剤組成物。 [4] The adhesive composition according to any one of [1] to [3], wherein the content of the diester dicarboxylic acid compound is 0.01 to 40 parts by mass with respect to 100 parts by mass of the polymerizable compound. .
[5] 導電粒子を更に含有する、[1]~[4]のいずれかに記載の接着剤組成物。 [5] The adhesive composition according to any one of [1] to [4], further containing conductive particles.
[6] 回路接続用である、[1]~[5]のいずれかに記載の接着剤組成物。 [6] The adhesive composition according to any one of [1] to [5], which is for circuit connection.
[7] 第一の接続部を有する第一の電子部材と、第二の接続部を有する第二の電子部材との間に、[1]~[6]のいずれかに記載の接着剤組成物を介在させ、前記第一の電子部材及び前記第二の電子部材を熱圧着して、前記第一の接続部及び前記第二の接続部を互いに電気的に接続する工程を備える、接続構造体の製造方法。 [7] Between the first electronic member having the first connection portion and the second electronic member having the second connection portion, the adhesive composition according to any one of [1] to [6] A connection structure comprising a step of electrically connecting the first connection portion and the second connection portion to each other by thermocompression bonding the first electronic member and the second electronic member with an object interposed therebetween. body manufacturing method.
 上記[1]~[6]のいずれかに記載の接着剤組成物によれば、電子部材を用いた接続構造体における対向する接続部間の接続抵抗を低減することができる。 According to the adhesive composition described in any one of [1] to [6] above, it is possible to reduce the connection resistance between opposing connection portions in a connection structure using an electronic member.
 上記[7]に記載の製造方法によれば、対向する接続部間の接続抵抗が充分に低い接続構造体が得られる。 According to the manufacturing method described in [7] above, a connection structure having sufficiently low connection resistance between opposing connection portions can be obtained.
 本発明の一側面によれば、電子部材を用いた接続構造体における対向する接続部間の接続抵抗を低減する接着剤組成物を提供することができる。 According to one aspect of the present invention, it is possible to provide an adhesive composition that reduces connection resistance between opposing connection portions in a connection structure using electronic members.
図1は、接続構造体の一実施形態を示す模式断面図である。FIG. 1 is a schematic cross-sectional view showing one embodiment of the connection structure. 図2は、図1の接続構造体の製造方法を示す模式断面図である。2A to 2D are schematic cross-sectional views showing a method of manufacturing the connection structure of FIG. 図3は、接続構造体の他の一実施形態を示す模式断面図である。FIG. 3 is a schematic cross-sectional view showing another embodiment of the connection structure.
 本明細書において、「(メタ)アクリレート」とは、アクリレート、及び、それに対応するメタクリレートの少なくとも一方を意味する。「(メタ)アクリル」、「(メタ)アクリロイル」等の他の類似の表現においても同様である。また、「A又はB」とは、A及びBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。また、「室温」とは、25℃を意味する。 As used herein, "(meth)acrylate" means at least one of acrylate and its corresponding methacrylate. The same applies to other similar expressions such as "(meth)acryl" and "(meth)acryloyl". Moreover, "A or B" may include either one of A and B, or may include both. Also, "room temperature" means 25°C.
 以下で例示する材料は、特に断らない限り、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。また、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書中に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。また、個別に記載した上限値及び下限値は任意に組み合わせ可能である。 Unless otherwise specified, the materials exemplified below may be used singly or in combination of two or more. The content of each component in the composition means the total amount of the plurality of substances present in the composition unless otherwise specified when there are multiple substances corresponding to each component in the composition. Further, a numerical range indicated using "-" indicates a range including the numerical values described before and after "-" as the minimum and maximum values, respectively. In the numerical ranges described stepwise in this specification, the upper limit value or lower limit value of the numerical range at one step may be replaced with the upper limit value or lower limit value of the numerical range at another step. Moreover, in the numerical ranges described in this specification, the upper and lower limits of the numerical ranges may be replaced with the values shown in the examples. Moreover, the upper limit value and the lower limit value described individually can be combined arbitrarily.
 以下、本発明の実施形態について説明するが、本発明はこれらの実施形態に何ら限定されるものではない。 Embodiments of the present invention will be described below, but the present invention is not limited to these embodiments.
<接着剤組成物>
 一実施形態の接着剤組成物は、重合性化合物(以下、「(A)成分」ともいう)と、重合開始剤(以下、「(B)成分」ともいう)と、ジカルボン酸ジエステル化合物(以下、「(C)成分」ともいう)と、を含有する。重合開始剤は、一態様において、硬化剤ということもできる。
<Adhesive composition>
The adhesive composition of one embodiment comprises a polymerizable compound (hereinafter also referred to as "(A) component"), a polymerization initiator (hereinafter also referred to as "(B) component"), and a dicarboxylic acid diester compound (hereinafter referred to as "(B) component"). , Also referred to as "(C) component"). The polymerization initiator can also be called a curing agent in one aspect.
 本実施形態の接着剤組成物は、電子部材の接続に用いられてよい。本実施形態の接着剤組成物は、例えば、第一の接続部を有する第一の電子部材と、第二の接続部を有する第二の電子部材との間に介在させ、第一の電子部材及び第二の電子部材を圧着(例えば熱圧着)して、第一の接続部及び第二の接続部を互いに電気的に接続するために用いられる。電子部材は例えば回路部材である。すなわち、本実施形態の接着剤組成物は、回路部材同士の接続に用いられる回路接続用接着剤組成物であってよい。 The adhesive composition of the present embodiment may be used for connecting electronic members. For example, the adhesive composition of the present embodiment is interposed between a first electronic member having a first connection portion and a second electronic member having a second connection portion, and the first electronic member and the second electronic member are crimped (for example, thermocompression) to electrically connect the first connecting portion and the second connecting portion to each other. The electronic member is, for example, a circuit member. That is, the adhesive composition of the present embodiment may be a circuit-connecting adhesive composition used for connecting circuit members.
 本実施形態の接着剤組成物によれば、電子部材を用いた接続構造体における対向する接続部間の接続抵抗を低減することができる。また、本実施形態の接着剤組成物によれば、接続信頼性に優れる接続構造体が得られる傾向がある。すなわち、本実施形態の接着剤組成物を用いて得られた接続構造体は、高温高湿雰囲気(例えば85℃、85%RH)に長期間さらされた場合でも、剥離等の不具合を生じがたく、充分に低い接続抵抗を維持できる傾向があり、また、温度サイクル試験においても充分に低い接続抵抗を維持できる傾向がある。 According to the adhesive composition of the present embodiment, it is possible to reduce the connection resistance between the opposing connection portions in the connection structure using the electronic member. Moreover, according to the adhesive composition of the present embodiment, there is a tendency to obtain a connected structure having excellent connection reliability. That is, the bonded structure obtained using the adhesive composition of the present embodiment does not cause problems such as peeling even when exposed to a high-temperature and high-humidity atmosphere (for example, 85° C., 85% RH) for a long period of time. Therefore, it tends to be able to maintain a sufficiently low connection resistance even in a temperature cycle test.
 本実施形態の接着剤組成物は、導電粒子「以下、(D)成分」ともいう)を更に含有してよい。 The adhesive composition of the present embodiment may further contain conductive particles (hereinafter also referred to as "(D) component").
 以下、本実施形態の接着剤組成物に含まれる各成分について説明する。なお、以下では、接着剤組成物中の導電粒子以外の成分を接着剤成分と称する。 Each component contained in the adhesive composition of the present embodiment will be described below. Hereinafter, components other than the conductive particles in the adhesive composition are referred to as adhesive components.
[(A)重合性化合物]
 (A)成分は、重合性を有する化合物であり、例えば、重合開始剤((B)成分)が発生させた活性種(ラジカル、カチオン、アニオン等)により重合する化合物である。(A)成分は、ラジカル重合性化合物であってよく、カチオン重合性化合物であってもよく、アニオン重合性化合物であってもよい。硬化後の耐熱性が向上し、接続信頼性に優れる接続構造体が得られやすくなる観点では、(A)成分はカチオン重合性化合物であってよい。この場合、(B)成分としてカチオン重合開始剤が用いられる。(A)成分は、モノマー、オリゴマー又はポリマーのいずれであってもよい。(A)成分として、一種の化合物を単独で用いてよく、複数種の化合物を組み合わせて用いてもよい。
[(A) polymerizable compound]
The component (A) is a polymerizable compound, for example, a compound polymerized by active species (radicals, cations, anions, etc.) generated by the polymerization initiator (component (B)). The component (A) may be a radically polymerizable compound, a cationically polymerizable compound, or an anionically polymerizable compound. The component (A) may be a cationically polymerizable compound from the viewpoint of improving the heat resistance after curing and making it easier to obtain a connected structure with excellent connection reliability. In this case, a cationic polymerization initiator is used as the component (B). Component (A) may be a monomer, oligomer or polymer. As the component (A), one type of compound may be used alone, or multiple types of compounds may be used in combination.
 ラジカル重合性化合物としては、(メタ)アクリレート化合物、マレイミド化合物、シトラコンイミド化合物、ナジイミド化合物等が挙げられる。 Examples of radically polymerizable compounds include (meth)acrylate compounds, maleimide compounds, citraconimide compounds, and nadimide compounds.
 (メタ)アクリレート化合物の具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、イソブチル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、2-ヒドロキシ-1,3-ジ(メタ)アクリロキシプロパン、2,2-ビス[4-((メタ)アクリロキシメトキシ)フェニル]プロパン、2,2-ビス[4-((メタ)アクリロキシポリエトキシ)フェニル]プロパン、ジシクロペンテニル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、トリス((メタ)アクリロイルオキシエチル)イソシアヌレート、イソシアヌル酸EO変性ジ(メタ)アクリレート、イソシアヌル酸EO変性トリ(メタ)アクリレート、ウレタン(メタ)アクリレート等が挙げられる。 Specific examples of (meth)acrylate compounds include methyl (meth)acrylate, ethyl (meth)acrylate, isopropyl (meth)acrylate, isobutyl (meth)acrylate, ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, tetramethylolmethane tetra(meth)acrylate, 2-hydroxy-1,3-di(meth)acryloxypropane, 2,2-bis[4-((meth)acryloxymethoxy) Phenyl]propane, 2,2-bis[4-((meth)acryloxypolyethoxy)phenyl]propane, dicyclopentenyl (meth)acrylate, tricyclodecanyl (meth)acrylate, tris((meth)acryloyloxyethyl ) isocyanurate, isocyanuric acid EO-modified di(meth)acrylate, isocyanuric acid EO-modified tri(meth)acrylate, urethane (meth)acrylate and the like.
 ラジカル重合性化合物は、良好な流動性が得られやすくなり、接続抵抗をさらに低減しやすくなる観点から、トリシクロデカン構造、ノルボルナン構造等の架橋構造を有していてよい。中でも、トリシクロデカン構造を有する(メタ)アクリレート化合物を用いる場合、上記効果が顕著に得られる傾向がある。 The radically polymerizable compound may have a crosslinked structure such as a tricyclodecane structure or a norbornane structure from the viewpoint of facilitating good fluidity and further reducing connection resistance. Among them, when a (meth)acrylate compound having a tricyclodecane structure is used, there is a tendency for the above effects to be remarkably obtained.
 カチオン重合性化合物としては、例えば、エポキシ化合物、オキセタン化合物等の環状エーテル基を有する化合物が挙げられる。エポキシ化合物としては、グリシジルエーテル型エポキシ化合物、脂環式エポキシ化合物等が挙げられる。カチオン重合性化合物としては、接続抵抗の低減効果が更に向上する観点及び接続構造体の接続信頼性により優れる観点では、脂環式エポキシ化合物及びオキセタン化合物からなる群より選ばれる少なくとも1種を用いてよい。 Examples of cationic polymerizable compounds include compounds having a cyclic ether group such as epoxy compounds and oxetane compounds. Examples of epoxy compounds include glycidyl ether type epoxy compounds and alicyclic epoxy compounds. As the cationic polymerizable compound, at least one compound selected from the group consisting of alicyclic epoxy compounds and oxetane compounds is used from the viewpoint of further improving the effect of reducing the connection resistance and from the viewpoint of further improving the connection reliability of the connection structure. good.
 グリシジルエーテル型エポキシ化合物としては、分子中にグリシジルエーテル基を有する化合物であって、硬化剤の存在下又は非存在下で活性光線の照射又は加 熱によって硬化するものであればよく、公知のものを使用できる。中でも、1分子中に2個以上のエポキシ基を有するグリシジルエーテル型エポキシ化合物は、硬化させた際の架橋密度が高くなるので好ましい。グリシジルエーテル型エポキシ化合物としては、例えば、エピクロルヒドリンとビスフェノール化合物(ビスフェノールA、ビスフェノールF等)とから誘導されるビスフェノール型エポキシ樹脂;ポリグリシジルエーテル;クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂等のノボラック型エポキシ化合物;ビフェニルジグリシジルエーテル、グリシジルアルキルイソシアヌレート、ポリグリシジルメタクリレート、グリシジルメタクリレートとこれと共重合可能なビニル単量体との共重合体等が挙げられる。グリシジルエーテル型エポキシ化合物は、1種単独で用いてもよく、複数種を併用することもできる。 As the glycidyl ether-type epoxy compound, any compound having a glycidyl ether group in the molecule, which is cured by irradiation with actinic rays or by heating in the presence or absence of a curing agent, is known. can be used. Among them, a glycidyl ether type epoxy compound having two or more epoxy groups in one molecule is preferable because it has a high crosslink density when cured. Examples of glycidyl ether type epoxy compounds include bisphenol type epoxy resins derived from epichlorohydrin and bisphenol compounds (bisphenol A, bisphenol F, etc.); polyglycidyl ethers; novolacs such as cresol novolac type epoxy resins and phenol novolac type epoxy resins type epoxy compounds; biphenyl diglycidyl ether, glycidyl alkyl isocyanurate, polyglycidyl methacrylate, copolymers of glycidyl methacrylate and vinyl monomers copolymerizable therewith, and the like. Glycidyl ether type epoxy compounds may be used singly or in combination.
 脂環式エポキシ化合物は、脂環式エポキシ基を有する化合物である。脂環式エポキシ化合物1分子中の脂環式エポキシ基の数は1つであっても2つ以上であってもよい。脂環式エポキシ化合物1分子中の脂環式エポキシ基の数が2つ以上である場合、硬化後の架橋密度が高くなる傾向がある。脂環式エポキシ化合物1分子中の脂環式エポキシ基の数は、例えば、6つ以下であってよい。 An alicyclic epoxy compound is a compound having an alicyclic epoxy group. The number of alicyclic epoxy groups in one molecule of the alicyclic epoxy compound may be one or two or more. When the number of alicyclic epoxy groups in one molecule of the alicyclic epoxy compound is two or more, the crosslink density after curing tends to be high. The number of alicyclic epoxy groups in one molecule of the alicyclic epoxy compound may be, for example, 6 or less.
 脂環式エポキシ化合物としては、シクロヘキセン、シクロペンテン等の脂環構造を有する化合物を酸化して得られる化合物(例えば、シクロヘキセンオキシド、シクロペンテンオキシド等を有する化合物)が挙げられる。 Alicyclic epoxy compounds include compounds obtained by oxidizing compounds having an alicyclic structure such as cyclohexene and cyclopentene (for example, compounds having cyclohexene oxide, cyclopentene oxide, etc.).
 脂環式エポキシ化合物の具体例としては、2-(3,4-エポキシシクロヘキシル-5,5-スピロ-3,4-エポキシ)シクロヘキサン-メタジオキサン、3,4-エポキシ-1-メチルシクロヘキシル-3,4-エポキシ-1-メチルヘキサンカルボキシレート、3,4-エポキシ-3-メチルシクロヘキシルメチル-3,4-エポキシ-3-メチルシクロヘキサンカルボキシレート、3,4-エポキシ-5-メチルシクロヘキシルメチル-3,4-エポキシ-5-メチルシクロヘキサンカルボキシレート、3,4-エポキシ-6-メチルシクロエキシルカルボキシレート、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、6-メチル-3,4-エポキシシクロヘキシルメチル-6-メチル-3,4-エポキシシクロヘキサンカルボキシレート、エチレンビス(3,4-エポキシシクロヘキサンカルボキシレート)、ジシクロペンタジエンジエポキシド、ビス(3,4-エポキシシクロヘキシルメチル)アジペート、メチレンビス(3,4-エポキシシクロヘキサン)、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、(3,3’、4,4’-ジエポキシ)ビシクロヘキシル、水添ビスフェノールA型エポキシ樹脂、水添ビスフェノールF型エポキシ樹脂、ε-カプロラクトンで修飾されていてよいブタンテトラカルボン酸テトラ(3,4-エポキシシクロヘキシルメチル)等が挙げられる。これらの脂環式エポキシ化合物は1種を単独で用いてよく、複数種を組み合わせて用いてもよい。 Specific examples of alicyclic epoxy compounds include 2-(3,4-epoxycyclohexyl-5,5-spiro-3,4-epoxy)cyclohexane-methodioxane, 3,4-epoxy-1-methylcyclohexyl-3 ,4-epoxy-1-methylhexanecarboxylate, 3,4-epoxy-3-methylcyclohexylmethyl-3,4-epoxy-3-methylcyclohexanecarboxylate, 3,4-epoxy-5-methylcyclohexylmethyl-3 ,4-epoxy-5-methylcyclohexanecarboxylate, 3,4-epoxy-6-methylcycloexylcarboxylate, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 6-methyl-3, 4-epoxycyclohexylmethyl-6-methyl-3,4-epoxycyclohexanecarboxylate, ethylenebis(3,4-epoxycyclohexanecarboxylate), dicyclopentadiene diepoxide, bis(3,4-epoxycyclohexylmethyl)adipate, Methylenebis(3,4-epoxycyclohexane), 3,4-epoxycyclohexylmethyl (meth)acrylate, (3,3',4,4'-diepoxy)bicyclohexyl, hydrogenated bisphenol A type epoxy resin, hydrogenated bisphenol F type epoxy resin, butanetetracarboxylic acid tetra(3,4-epoxycyclohexylmethyl) which may be modified with ε-caprolactone, and the like. One of these alicyclic epoxy compounds may be used alone, or two or more of them may be used in combination.
 脂環式エポキシ化合物の市販品としては、例えば、株式会社ダイセル製のEHPE3150、EHPE3150CE、CEL(セロキサイド)8010、CEL(セロキサイド)2021P、CEL(セロキサイド)2081、GT401等が挙げられる。 Examples of commercially available alicyclic epoxy compounds include EHPE3150, EHPE3150CE, CEL (Celoxide) 8010, CEL (Celoxide) 2021P, CEL (Celoxide) 2081, and GT401 manufactured by Daicel Corporation.
 脂環式エポキシ化合物のエポキシ当量は、例えば、接着強度の観点から、100~300g/eqであってよい。エポキシ当量は、JIS K 7236に準拠して決定される。 The epoxy equivalent of the alicyclic epoxy compound may be, for example, 100-300 g/eq from the viewpoint of adhesive strength. Epoxy equivalent is determined according to JIS K 7236.
 脂環式エポキシ化合物の含有量は、接着剤組成物の硬化性がより優れたものとなる観点から、接着剤成分の合計量を基準として、5質量%以上、10質量%以上又は15質量%以上であってよい。脂環式エポキシ化合物の含有量は、接着剤組成物のフィルム形成性がより優れたものとなる観点から、接着剤成分の合計量を基準として、50質量%以下、40質量%以下又は30質量%以下であってよい。これらの観点から、脂環式エポキシ化合物の含有量は、接着剤成分の合計量を基準として、5~50質量%、10~40質量%又は15~30質量%であってよい。 The content of the alicyclic epoxy compound is 5% by mass or more, 10% by mass or more, or 15% by mass, based on the total amount of the adhesive components, from the viewpoint of improving the curability of the adhesive composition. or more. The content of the alicyclic epoxy compound is 50% by mass or less, 40% by mass or less, or 30% by mass, based on the total amount of the adhesive components, from the viewpoint that the film-forming property of the adhesive composition is more excellent. % or less. From these viewpoints, the content of the alicyclic epoxy compound may be 5 to 50% by mass, 10 to 40% by mass, or 15 to 30% by mass based on the total amount of the adhesive components.
 オキセタン化合物は、オキセタニル基を有する化合物である。オキセタン化合物1分子中のオキセタニル基の数は1つであっても2つ以上であってもよい。オキセタン化合物1分子中のオキセタニル基の数が2つ以上である場合、硬化後の架橋密度がより一層高くなりやすく、また、脂環式エポキシ化合物との組み合わせによる相乗効果が得られやすくなる。オキセタン化合物1分子中のオキセタニル基の数は、例えば、6つ以下であってよい。 An oxetane compound is a compound having an oxetanyl group. The number of oxetanyl groups in one molecule of the oxetane compound may be one or two or more. When the number of oxetanyl groups in one molecule of the oxetane compound is two or more, the crosslink density after curing tends to be even higher, and a synergistic effect is likely to be obtained in combination with the alicyclic epoxy compound. The number of oxetanyl groups in one molecule of the oxetane compound may be, for example, 6 or less.
 オキセタン化合物としては、例えば、キシリレンビスオキセタン、2-エチルヘキシルオキセタン、3-ヒドロキシメチル-3-メチルオキセタン、3-ヒドロキシメチル-3-エチルオキセタン、3-ヒドロキシメチル-3-プロピルオキセタン、3-ヒドロキシメチル-3-ノルマルブチルオキセタン、3-ヒドロキシメチル-3-フェニルオキセタン、3-ヒドロキシメチル-3-ベンジルオキセタン、3-ヒドロキシエチル-3-メチルオキセタン、3-ヒドロキシエチル-3-エチルオキセタン、3-ヒドロキシエチル-3-プロピルオキセタン、3-ヒドロキシエチル-3-フェニルオキセタン、3-ヒドロキシプロピル-3-メチルオキセタン、3-ヒドロキシプロピル-3-エチルオキセタン、3-ヒドロキシプロピル-3-プロピルオキセタン、3-ヒドロキシプロピル-3-フェニルオキセタン、3-ヒドロキシブチル-3-メチルオキセタン、4,4’-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビフェニル、3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン等が挙げられる。これらのオキセタン化合物は1種を単独で用いてよく、複数種を組み合わせて用いてもよい。 Examples of oxetane compounds include xylylenebisoxetane, 2-ethylhexyloxetane, 3-hydroxymethyl-3-methyloxetane, 3-hydroxymethyl-3-ethyloxetane, 3-hydroxymethyl-3-propyloxetane, 3-hydroxy methyl-3-n-butyloxetane, 3-hydroxymethyl-3-phenyloxetane, 3-hydroxymethyl-3-benzyloxetane, 3-hydroxyethyl-3-methyloxetane, 3-hydroxyethyl-3-ethyloxetane, 3- Hydroxyethyl-3-propyloxetane, 3-hydroxyethyl-3-phenyloxetane, 3-hydroxypropyl-3-methyloxetane, 3-hydroxypropyl-3-ethyloxetane, 3-hydroxypropyl-3-propyloxetane, 3- Hydroxypropyl-3-phenyloxetane, 3-hydroxybutyl-3-methyloxetane, 4,4′-bis[(3-ethyl-3-oxetanyl)methoxymethyl]biphenyl, 3-ethyl-3{[(3-ethyl oxetane-3-yl)methoxy]methyl}oxetane and the like. These oxetane compounds may be used individually by 1 type, and may be used in combination of multiple types.
 オキセタン化合物の市販品としては、例えば、宇部興産株式会社製のETERNACOLL OXBP(4,4’-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビフェニル)、東亜合成株式会社製のOXSQ、OXT-121、OXT-221、OXT-101及びOXT-212等が挙げられる。 Commercially available oxetane compounds include, for example, ETERNACOLL OXBP (4,4'-bis[(3-ethyl-3-oxetanyl)methoxymethyl]biphenyl) manufactured by Ube Industries, OXSQ and OXT manufactured by Toagosei Co., Ltd. -121, OXT-221, OXT-101 and OXT-212.
 オキセタン化合物の含有量は、接着剤組成物の硬化性がより優れたものとなる観点から、接着剤成分の合計量を基準として、5質量%以上、10質量%以上又は15質量%以上であってよい。オキセタン化合物の含有量は、接着剤組成物のフィルム形成性がより優れたものとなる観点から、接着剤成分の合計量を基準として、50質量%以下、40質量%以下又は30質量%以下であってよい。これらの観点から、オキセタン化合物の含有量は、接着剤成分の合計量を基準として、5~50質量%、10~40質量%又は15~30質量%であってよい。 The content of the oxetane compound is 5% by mass or more, 10% by mass or more, or 15% by mass or more based on the total amount of the adhesive components, from the viewpoint that the curability of the adhesive composition is more excellent. you can The content of the oxetane compound is 50% by mass or less, 40% by mass or less, or 30% by mass or less based on the total amount of the adhesive components, from the viewpoint that the film-forming property of the adhesive composition is more excellent. It's okay. From these viewpoints, the content of the oxetane compound may be 5 to 50% by mass, 10 to 40% by mass, or 15 to 30% by mass based on the total amount of the adhesive components.
 脂環式エポキシ化合物の含有量に対するオキセタン化合物の含有量の質量比率(オキセタン化合物/脂環式エポキシ化合物)は、オキセタン化合物の反応性を向上させ、脂環式エポキシ化合物との組み合わせによる相乗効果が得られやすくなる観点から、0.2以上、0.5以上又は0.8以上であってよく、5.0以下、2.0以下又は1.2以下であってよく、0.2~5.0、0.5~2.0又は0.8~1.2であってよい。 The mass ratio of the content of the oxetane compound to the content of the alicyclic epoxy compound (oxetane compound/alicyclic epoxy compound) improves the reactivity of the oxetane compound, and the synergistic effect of the combination with the alicyclic epoxy compound is obtained. From the viewpoint of being easily obtained, it may be 0.2 or more, 0.5 or more, or 0.8 or more, and may be 5.0 or less, 2.0 or less, or 1.2 or less, and 0.2 to 5 .0, 0.5-2.0 or 0.8-1.2.
 アニオン重合性化合物としては、上述したエポキシ化合物、オキセタン化合物等の環状エーテル基を有する化合物を用いることができる。 As the anionically polymerizable compound, compounds having a cyclic ether group such as the epoxy compounds and oxetane compounds described above can be used.
 (A)成分の含有量は、接着剤組成物の硬化性がより優れたものとなる観点から、接着剤成分の合計量を基準として、10質量%以上、15質量%以上、20質量%以上であってよい。(A)成分の含有量は、接着剤組成物のフィルム形成性がより優れたものとなる観点から、接着剤成分の合計量を基準として、60質量%以下、50質量%以下又は45質量%以下であってよい。これらの観点から、(A)成分の含有量は、接着剤成分の合計量を基準として、10~60質量%、15~50質量%又は20~45質量%であってよい。 The content of the component (A) is 10% by mass or more, 15% by mass or more, or 20% by mass or more, based on the total amount of the adhesive components, from the viewpoint of improving the curability of the adhesive composition. can be The content of component (A) is 60% by mass or less, 50% by mass or less, or 45% by mass, based on the total amount of the adhesive components, from the viewpoint that the film-forming property of the adhesive composition is more excellent. may be: From these viewpoints, the content of component (A) may be 10 to 60% by mass, 15 to 50% by mass, or 20 to 45% by mass based on the total amount of adhesive components.
[(B)重合開始剤]
 (B)成分は、加熱により活性種を発生する熱重合開始剤であってよく、光(活性エネルギー線)の照射により活性種を発生する光重合開始剤であってもよい。(B)成分が熱重合開始剤である場合、接着剤組成物は熱硬化性を有する。(B)成分が光重合開始剤である場合、接着剤組成物は光硬化性を有する。
[(B) polymerization initiator]
The component (B) may be a thermal polymerization initiator that generates active species upon heating, or a photopolymerization initiator that generates active species upon irradiation with light (active energy rays). When the component (B) is a thermal polymerization initiator, the adhesive composition has thermosetting properties. When the component (B) is a photopolymerization initiator, the adhesive composition has photocurability.
 (B)成分は、ラジカル重合開始剤であってよく、カチオン重合開始剤であってもよく、アニオン重合開始剤であってもよい。(B)成分は、(A)成分の種類に応じて適宜選択することができる。(B)成分は1種を単独で用いてよく、複数種を組み合わせて用いてもよい。 The component (B) may be a radical polymerization initiator, a cationic polymerization initiator, or an anionic polymerization initiator. Component (B) can be appropriately selected according to the type of component (A). (B) component may be used individually by 1 type, and may be used in combination of multiple types.
 熱ラジカル重合開始剤としては、有機過酸化物、アゾ化合物等の公知の熱ラジカル重合開始剤を用いることができる。 As the thermal radical polymerization initiator, known thermal radical polymerization initiators such as organic peroxides and azo compounds can be used.
 熱ラジカル重合開始剤の具体例としては、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、ジ(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ(2-エチルヘキシル)パーオキシジカーボネート、クミルパーオキシネオデカノエート、ジラウロイルパーオキサイド、1-シクロヘキシル-1-メチルエチルパーオキシネオデカノエート、t-ヘキシルパーオキシネオデカノエート、t-ブチルパーオキシネオデカノエート、t-ブチルパーオキシピバレート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、2,5-ジメチル-2,5-ジ(2-エチルヘキサノイルパーオキシ)ヘキサン、t-ヘキシルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシネオヘプタノエート、t-アミルパーオキシ-2-エチルヘキサノエート、ジ-t-ブチルパーオキシヘキサヒドロテレフタレート、t-アミルパーオキシ-3,5,5-トリメチルヘキサノエート、3-ヒドロキシ-1,1-ジメチルブチルパーオキシネオデカノエート、t-アミルパーオキシネオデカノエート、ジ(3-メチルベンゾイル)パーオキサイド、ジベンゾイルパーオキサイド、ジ(4-メチルベンゾイル)パーオキサイド、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシマレイン酸、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシラウレート、2,5-ジメチル-2,5-ジ(3-メチルベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、t-ヘキシルパーオキシベンゾエート、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシベンゾエート、ジブチルパーオキシトリメチルアジペート、t-アミルパーオキシノルマルオクトエート、t-アミルパーオキシイソノナノエート、t-アミルパーオキシベンゾエート等の有機過酸化物;2,2’-アゾビス-2,4-ジメチルバレロニトリル、1,1’-アゾビス(1-アセトキシ-1-フェニルエタン)、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、4,4’-アゾビス(4-シアノバレリン酸)、1,1’-アゾビス(1-シクロヘキサンカルボニトリル)等のアゾ化合物などが挙げられる。 Specific examples of thermal radical polymerization initiators include 1,1,3,3-tetramethylbutyl peroxyneodecanoate, di(4-t-butylcyclohexyl)peroxydicarbonate, di(2-ethylhexyl)per Oxydicarbonate, cumyl peroxyneodecanoate, dilauroyl peroxide, 1-cyclohexyl-1-methylethyl peroxyneodecanoate, t-hexyl peroxyneodecanoate, t-butyl peroxyneodecano ate, t-butyl peroxypivalate, 1,1,3,3-tetramethylbutyl peroxy-2-ethylhexanoate, 2,5-dimethyl-2,5-di(2-ethylhexanoyl peroxy ) Hexane, t-hexylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate, t-butylperoxyneoheptanoate, t-amylperoxy-2-ethylhexanoate ate, di-t-butylperoxyhexahydroterephthalate, t-amylperoxy-3,5,5-trimethylhexanoate, 3-hydroxy-1,1-dimethylbutylperoxyneodecanoate, t-amyl peroxyneodecanoate, di(3-methylbenzoyl) peroxide, dibenzoyl peroxide, di(4-methylbenzoyl) peroxide, t-hexylperoxyisopropyl monocarbonate, t-butyl peroxymaleate, t -butylperoxy-3,5,5-trimethylhexanoate, t-butylperoxylaurate, 2,5-dimethyl-2,5-di(3-methylbenzoylperoxy)hexane, t-butylperoxy -2-ethylhexyl monocarbonate, t-hexylperoxybenzoate, 2,5-dimethyl-2,5-di(benzoylperoxy)hexane, t-butylperoxybenzoate, dibutylperoxytrimethyladipate, t-amylperoxy Organic peroxides such as normal octoate, t-amyl peroxyisononanoate, t-amyl peroxybenzoate; 2,2'-azobis-2,4-dimethylvaleronitrile, 1,1'-azobis (1 acetoxy-1-phenylethane), 2,2′-azobisisobutyronitrile, 2,2′-azobis(2-methylbutyronitrile), 4,4′-azobis(4-cyanovaleric acid), 1, 1′-azobis(1-cyclohexanecarbo nitrile) and other azo compounds.
 熱カチオン重合開始剤は、例えば、カチオンとアニオンとから構成される塩化合物である。熱カチオン重合開始剤としては、例えば、BF 、BR (Rは、2以上のフッ素原子又は2以上のトリフルオロメチル基で置換されたフェニル基を示す。)、PF 、SbF 、AsF 等のアニオンを有する、スルホニウム塩、ホスホニウム塩、アンモニウム塩、ジアゾニウム塩、ヨードニウム塩等のオニウム塩などが挙げられる。オニウム塩の中でも、構成元素としてホウ素を含むアニオン(例えば、BF 又はBR )を有するオニウム塩を用いる場合、速硬化性が向上する傾向がある。構成元素としてホウ素を含むアニオンの好適な具体例としては、テトラキス(ペンタフルオロフェニル)ボレートが挙げられる。 A thermal cationic polymerization initiator is, for example, a salt compound composed of a cation and an anion. Thermal cationic polymerization initiators include, for example, BF 4 , BR 4 (R represents a phenyl group substituted with two or more fluorine atoms or two or more trifluoromethyl groups), PF 6 , SbF. Onium salts such as sulfonium salts, phosphonium salts, ammonium salts, diazonium salts and iodonium salts having anions such as 6 , AsF 6 and the like can be mentioned. Among onium salts, onium salts having an anion containing boron as a constituent element (for example, BF 4 or BR 4 ) tend to improve rapid curability. A preferred specific example of an anion containing boron as a constituent element is tetrakis(pentafluorophenyl)borate.
 オニウム塩のカチオンは、より低い接続抵抗が得られやすい観点では、スルホニウム塩又はアンモニウム塩であってよい。かかる傾向は、アンモニウム塩(特にアニリニウム塩)を用いる場合に強くなる。 The cation of the onium salt may be a sulfonium salt or an ammonium salt from the viewpoint of easily obtaining a lower connection resistance. This tendency is stronger when ammonium salts (especially anilinium salts) are used.
 アンモニウム塩のカチオンは、更に低い接続抵抗が得られやすい観点では、N-ベンジル-N,N-ジメチルアニリニウムイオン、N-(4-ニトロベンジル)-N,N-ジメチルアニリニウムイオン、N-(4-メトキシベンジル)-N,N-ジメチルアニリニウムイオン、N-(α-フェニルベンジル)-N,N-ジメチルアニリニウムイオン、N-(α-メチルベンジル)-N,N-ジメチルアニリニウムイオン、N-(1-ナフチルメチル)-N,N-ジメチルアニリニウムイオン又はN-シンナミル-N,N-ジメチルアニリニウムイオンであってよい。 The ammonium salt cations are N-benzyl-N,N-dimethylanilinium ion, N-(4-nitrobenzyl)-N,N-dimethylanilinium ion, N- (4-methoxybenzyl)-N,N-dimethylanilinium ion, N-(α-phenylbenzyl)-N,N-dimethylanilinium ion, N-(α-methylbenzyl)-N,N-dimethylanilinium ions, N-(1-naphthylmethyl)-N,N-dimethylanilinium ions or N-cinnamyl-N,N-dimethylanilinium ions.
 熱アニオン重合開始剤としては、ジシアンジアミド、アミン塩、変性イミダゾール化合物等の公知の熱アニオン重合開始剤を用いることができる。熱アニオン重合開始剤は、可使時間を延長する観点から、ポリウレタン系又はポリエステル系の高分子化合物等で被覆されてマイクロカプセル化されていてもよい。 As the thermal anionic polymerization initiator, known thermal anionic polymerization initiators such as dicyandiamide, amine salts, and modified imidazole compounds can be used. From the viewpoint of extending the pot life, the thermal anionic polymerization initiator may be microencapsulated by being coated with a polyurethane-based or polyester-based polymer compound or the like.
 光ラジカル重合開始剤としては、オキシムエステル構造、ビスイミダゾール構造、アクリジン構造、α-アミノアルキルフェノン構造、アミノベンゾフェノン構造、N-フェニルグリシン構造、アシルフォスフィンオキサイド構造、ベンジルジメチルケタール構造、α-ヒドロキシアルキルフェノン構造等の構造を有する公知の光重合開始剤を用いることができる。 Photoradical polymerization initiators include oxime ester structure, bisimidazole structure, acridine structure, α-aminoalkylphenone structure, aminobenzophenone structure, N-phenylglycine structure, acylphosphine oxide structure, benzyldimethylketal structure, α-hydroxy A known photopolymerization initiator having a structure such as an alkylphenone structure can be used.
 光カチオン重合開始剤としては、光を照射したときにルイス酸を放出するオニウム塩が挙げられる。このようなオニウム塩の例としては、第VIIa族元素の芳香族スルホニウム塩、第VIa族元素の芳香族オニウム塩、第Va族元素の芳香族オニウム塩等を挙げることができる。具体的には、例えば、トリアリールスルホニウムヘキサフルオロアンチモネート、テトラフルオロホウ酸トリフェニルフェナシルホスホニウム、ヘキサフルオロアンチモン酸トリフェニルスルホニウム、ビス-[4-(ジフェニルスルフォニオ)フェニル]スルフィドビスジヘキサフルオロアンチモネート、ビス-[4-(ジ4’-ヒドロキシエトキシフェニルスルフォニォ)フェニル]スルフィドビスジヘキサフルオロアンチモネート、ビス-[4-(ジフェニルスルフォニォ)フェニル]スルフィドビスジヘキサフルオロフォスフェート、及びテトラフルオロホウ酸ジフェニルヨードニウムが挙げられる。 Examples of photocationic polymerization initiators include onium salts that release Lewis acids when irradiated with light. Examples of such onium salts include aromatic sulfonium salts of Group VIIa elements, aromatic onium salts of Group VIa elements, and aromatic onium salts of Group Va elements. Specifically, for example, triarylsulfonium hexafluoroantimonate, triphenylphenacylphosphonium tetrafluoroborate, triphenylsulfonium hexafluoroantimonate, bis-[4-(diphenylsulfonio)phenyl]sulfide bisdihexa Fluoroantimonate, bis-[4-(di4'-hydroxyethoxyphenylsulfonio)phenyl]sulfide bisdihexafluoroantimonate, bis-[4-(diphenylsulfonio)phenyl]sulfide bisdihexafluorophos phate, and diphenyliodonium tetrafluoroborate.
 光アニオン重合開始剤としては、公知の光アニオン重合開始剤を用いることができる。 A known photoanionic polymerization initiator can be used as the photoanionic polymerization initiator.
 (B)成分の含有量は、接続抵抗の低減効果を向上させる観点では、(A)成分100質量部に対して、1質量部以上、3質量部以上又は5質量部以上であってよい。(B)成分の含有量は、接続抵抗の低減効果を向上させる観点では、(A)成分100質量部に対して、20質量部以下、15質量部以下又は10質量部以下であってよい。これらの観点から、(B)成分の含有量は、(A)成分100質量部に対して、1~20質量部、3~15質量部又は5~10質量部であってよい。 The content of component (B) may be 1 part by mass or more, 3 parts by mass or more, or 5 parts by mass or more with respect to 100 parts by mass of component (A) from the viewpoint of improving the effect of reducing the connection resistance. The content of component (B) may be 20 parts by mass or less, 15 parts by mass or less, or 10 parts by mass or less with respect to 100 parts by mass of component (A) from the viewpoint of improving the effect of reducing the connection resistance. From these viewpoints, the content of component (B) may be 1 to 20 parts by mass, 3 to 15 parts by mass, or 5 to 10 parts by mass per 100 parts by mass of component (A).
[(C)ジカルボン酸ジエステル化合物]
 (C)成分は、カルボン酸エステル基を2つ有する化合物である。カルボン酸エステル基は、例えば、-COOR(Rは1価の炭化水素基を示す)で表される。2つのカルボン酸エステル基は、互いに同一であってもことなっていてもよい。
[(C) Dicarboxylic acid diester compound]
Component (C) is a compound having two carboxylic acid ester groups. A carboxylic acid ester group is represented, for example, by —COOR 1 (R 1 represents a monovalent hydrocarbon group). The two carboxylic acid ester groups may be the same or different from each other.
 Rで表される炭化水素基は、例えば炭素数が1~6の1価の炭化水素基である。すなわち、(C)成分が有する2つのカルボン酸エステル基(-COOR)は、炭化水素基Rとして、炭素数が1~6の1価の炭化水素基を有してよい。炭化水素基は、脂肪族炭化水素基であっても芳香族炭化水素基であってもよい。脂肪族炭化水素基は、鎖状又は環状のいずれであってもよく、飽和又は不飽和のいずれであってもよい。鎖状の脂肪族炭化水素基は、直鎖状又は分岐状のいずれであってもよい。 The hydrocarbon group represented by R 1 is, for example, a monovalent hydrocarbon group having 1 to 6 carbon atoms. That is, the two carboxylic acid ester groups (-COOR 1 ) of component (C) may have a monovalent hydrocarbon group having 1 to 6 carbon atoms as the hydrocarbon group R 1 . The hydrocarbon group may be either an aliphatic hydrocarbon group or an aromatic hydrocarbon group. The aliphatic hydrocarbon group may be linear or cyclic, and saturated or unsaturated. The chain aliphatic hydrocarbon group may be linear or branched.
 Rで表される炭化水素基は、接続抵抗の低減効果をさらに向上させる観点では、炭素数が1~6のアルキル基であってよい。すなわち、(C)成分が有する2つのカルボン酸エステル基(-COOR)は、炭化水素基Rとして、炭素数が1~6のアルキル基を有してよい。炭素数が1~6のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、イソブチル基、ペンチル基、シクロペンチル基、ヘキシル基、シクロヘキシル基等が挙げられる。これらの中でも、Rで表される炭化水素基がメチル基又はエチル基である場合に、接続抵抗の低減効果が顕著に得られる傾向がある。 The hydrocarbon group represented by R 1 may be an alkyl group having 1 to 6 carbon atoms from the viewpoint of further improving the connection resistance reducing effect. That is, the two carboxylic acid ester groups (--COOR 1 ) of component (C) may have an alkyl group having 1 to 6 carbon atoms as the hydrocarbon group R 1 . Examples of alkyl groups having 1 to 6 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, isobutyl group, pentyl group, cyclopentyl group, hexyl group and cyclohexyl group. etc. Among these, when the hydrocarbon group represented by R 1 is a methyl group or an ethyl group, the effect of reducing the connection resistance tends to be remarkably obtained.
 (C)成分の分子量は、他の成分との良好な相溶性が得られやすくなる観点では、500以下、400以下又は300以下であってよい。(C)成分の分子量は、取り扱い及び計量の観点では、例えば、100以上であってよい。 The molecular weight of the component (C) may be 500 or less, 400 or less, or 300 or less from the viewpoint of easily obtaining good compatibility with other components. The molecular weight of component (C) may be, for example, 100 or more from the viewpoint of handling and weighing.
 (C)成分は、他の成分との良好な相溶性が得られやすくなる観点では、液状であってよい。ここで、液状とは、常温常圧(1atm、25℃)で流動性を有することをいう。 The component (C) may be liquid from the viewpoint of facilitating the acquisition of good compatibility with other components. Here, the term “liquid” means having fluidity at normal temperature and normal pressure (1 atm, 25° C.).
 (C)成分としては、例えば、下記式(I)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000001
Component (C) includes, for example, compounds represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000001
 式(I)中、Rは1価の炭化水素基を示し、Rは単結合又は2価の炭化水素基を示す。Rは上述したカルボン酸エステル基におけるRと同義である。2つのRは互いに同一であっても異なっていてもよい。 In formula (I), R 1 represents a monovalent hydrocarbon group and R 2 represents a single bond or a divalent hydrocarbon group. R 1 has the same definition as R 1 in the carboxylic acid ester group described above. Two R 1s may be the same or different.
 Rで表される炭化水素基は、例えば炭素数が1~6の2価の炭化水素基である。炭化水素基は、脂肪族炭化水素基であっても芳香族炭化水素基であってもよい。脂肪族炭化水素基は、鎖状又は環状のいずれであってもよく、飽和又は不飽和のいずれであってもよい。鎖状の脂肪族炭化水素基は、直鎖状又は分岐状のいずれであってもよい。炭化水素基は置換基を有していてもよい。例えば、炭化水素基における水素の少なくとも1つが、水酸基で置換されていてもよい。 The hydrocarbon group represented by R 2 is, for example, a divalent hydrocarbon group having 1 to 6 carbon atoms. The hydrocarbon group may be either an aliphatic hydrocarbon group or an aromatic hydrocarbon group. The aliphatic hydrocarbon group may be linear or cyclic, and saturated or unsaturated. The chain aliphatic hydrocarbon group may be linear or branched. The hydrocarbon group may have a substituent. For example, at least one hydrogen in the hydrocarbon group may be substituted with a hydroxyl group.
 Rで表される炭化水素基は、接続抵抗の低減効果を向上させる観点では、置換基を有していてよい炭素数が1~6のアルキレン基(アルカンジイル基)又はフェニレン基であってよい。炭素数が1~6のアルキレン基としては、メチレン基、エチレン基、プロパン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基等が挙げられる。フェニレン基は、o(オルト)-フェニレン基、m(メタ)-フェニレン基及びp(パラ)-フェニレン基のいずれであってもよい。これらの中でも、Rで表される炭化水素基がエチレン基、1-ヒドロキシ-1,2-エタンジイル基、プロパン-1,3-ジイル基、ブタン-1,4-ジイル基又はo-フェニレン基である場合に、接続抵抗の低減効果が顕著に得られる傾向がある。 The hydrocarbon group represented by R 2 is an optionally substituted alkylene group (alkanediyl group) having 1 to 6 carbon atoms or a phenylene group from the viewpoint of improving the effect of reducing the connection resistance. good. Examples of the alkylene group having 1 to 6 carbon atoms include methylene group, ethylene group, propane-1,3-diyl group, butane-1,4-diyl group, pentane-1,5-diyl group, hexane-1,6 - diyl group and the like. The phenylene group may be o(ortho)-phenylene group, m(meth)-phenylene group or p(para)-phenylene group. Among these, the hydrocarbon group represented by R 2 is an ethylene group, 1-hydroxy-1,2-ethanediyl group, propane-1,3-diyl group, butane-1,4-diyl group or o-phenylene group. , there is a tendency that the effect of reducing the connection resistance is remarkably obtained.
 式(I)で表される化合物の具体例としては、コハク酸ジエステル、グルタル酸ジエステル、アジピン酸ジエステル、ピメリン酸ジエステル、スベリン酸ジエステル、リンゴ酸ジエステル、フタル酸ジエステル、イソフタル酸ジエステル、テレフタル酸ジエステル、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸等が挙げられる。これらの中でも、コハク酸ジエステル、グルタル酸ジエステル、アジピン酸ジエステル、ピメリン酸ジエステル、スベリン酸ジエステル、リンゴ酸ジエステル及びフタル酸ジエステルからなる群より選択される少なくとも一種の化合物を用いる場合、接続抵抗の低減効果がさらに向上し、接続構造体の接続信頼性がさらに向上する傾向があり、コハク酸ジエステル、グルタル酸ジエステル、アジピン酸ジエステル、リンゴ酸ジエステル及びフタル酸ジエステルからなる群より選択される少なくとも一種の化合物を用いる場合、接続抵抗の低減効果が特に向上し、接続構造体の接続信頼性が特に向上する傾向がある。 Specific examples of the compound represented by formula (I) include succinic acid diester, glutaric acid diester, adipic acid diester, pimelic acid diester, suberic acid diester, malic acid diester, phthalic acid diester, isophthalic acid diester, and terephthalic acid diester. , 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid and the like. Among these, when at least one compound selected from the group consisting of succinic acid diester, glutaric acid diester, adipic acid diester, pimelic acid diester, suberic acid diester, malic acid diester and phthalic acid diester is used, the connection resistance is reduced. At least one compound selected from the group consisting of succinic acid diesters, glutaric acid diesters, adipic acid diesters, malic acid diesters and phthalic acid diesters tends to further improve the effect and the connection reliability of the connection structure. When a compound is used, the effect of reducing the connection resistance is particularly improved, and the connection reliability of the connection structure tends to be particularly improved.
 (C)成分の含有量は、接続抵抗の低減効果を向上させる観点では、(A)成分(重合性化合物)100質量部に対して、0.01質量部以上、0.1質量部以上、1質量部以上、3質量部以上、6質量部以上又は10質量部以上であってよい。(C)成分の含有量は、接続信頼性に優れる接続構造体が得られやすくなる観点から、(A)成分(重合性化合物)100質量部に対して、40質量部以下、31質量部以下、22質量部以下、20質量部以下、16質量部以下、10質量部以下又は5質量部以下であってよい。これらの観点から、(C)成分の含有量は、(A)成分(重合性化合物)100質量部に対して、0.01~40質量部、0.01~20質量部、0.1~10質量部、1~5質量部、3~40質量部、3~31質量部、3~22質量部、3~16質量部又は3~10質量部等であってよい。 The content of component (C) is 0.01 part by mass or more, 0.1 part by mass or more, relative to 100 parts by mass of component (A) (polymerizable compound), from the viewpoint of improving the effect of reducing the connection resistance. It may be 1 part by mass or more, 3 parts by mass or more, 6 parts by mass or more, or 10 parts by mass or more. The content of the component (C) is 40 parts by mass or less and 31 parts by mass or less with respect to 100 parts by mass of the component (A) (polymerizable compound) from the viewpoint of easily obtaining a connected structure having excellent connection reliability. , 22 parts by mass or less, 20 parts by mass or less, 16 parts by mass or less, 10 parts by mass or less, or 5 parts by mass or less. From these viewpoints, the content of component (C) is 0.01 to 40 parts by mass, 0.01 to 20 parts by mass, 0.1 to 40 parts by mass, relative to 100 parts by mass of component (A) (polymerizable compound). It may be 10 parts by mass, 1 to 5 parts by mass, 3 to 40 parts by mass, 3 to 31 parts by mass, 3 to 22 parts by mass, 3 to 16 parts by mass, or 3 to 10 parts by mass.
[(D)導電粒子]
 (D)成分は、導電性を有する粒子である。(D)成分としては、例えば、金、銀、パラジウム、ニッケル、銅、はんだ等の金属で構成された金属粒子、導電性カーボンで構成された導電性カーボン粒子などを用いることができる。(D)成分は、非導電性のガラス、セラミック、プラスチック(ポリスチレン等)などを含む核と、上記金属又は導電性カーボンを含み、核を被覆する被覆層とを備える被覆導電粒子であってもよい。
[(D) Conductive particles]
The component (D) is particles having electrical conductivity. As component (D), for example, metal particles composed of metals such as gold, silver, palladium, nickel, copper, solder, etc., and conductive carbon particles composed of conductive carbon can be used. Component (D) is a coated conductive particle comprising a core containing non-conductive glass, ceramic, plastic (such as polystyrene), etc., and a coating layer containing the above metal or conductive carbon and covering the core. good.
 (D)成分としてはんだ粒子を用いる場合、(C)成分による接続抵抗の低減効果が顕著に得られる傾向がある。はんだ粒子は、例えば、スズ、スズ合金、インジウム及びインジウム合金からなる群より選択される少なくとも一種を含む。 When solder particles are used as the (D) component, there is a tendency for the (C) component to significantly reduce the connection resistance. The solder particles contain, for example, at least one selected from the group consisting of tin, tin alloys, indium, and indium alloys.
 スズ合金としては、例えば、In-Sn合金、In-Sn-Ag合金、Sn-Au合金、Sn-Bi合金、Sn-Bi-Ag合金、Sn-Ag-Cu合金、Sn-Cu合金等を用いることができる。これらのスズ合金の具体例としては、下記の例が挙げられる。
・In-Sn(In52質量%、Sn48質量% 融点118℃)
・In-Sn-Ag(In20質量%、Sn77.2質量%、Ag2.8質量% 融点175℃)
・Sn-Bi(Sn43質量%、Bi57質量% 融点138℃)
・Sn-Bi-Ag(Sn42質量%、Bi57質量%、Ag1質量% 融点139℃)・Sn-Ag-Cu(Sn96.5質量%、Ag3質量%、Cu0.5質量% 融点217℃)
・Sn-Cu(Sn99.3質量%、Cu0.7質量% 融点227℃)
・Sn-Au(Sn21.0質量%、Au79.0質量% 融点278℃)
As the tin alloy, for example, In—Sn alloy, In—Sn—Ag alloy, Sn—Au alloy, Sn—Bi alloy, Sn—Bi—Ag alloy, Sn—Ag—Cu alloy, Sn—Cu alloy, etc. are used. be able to. Specific examples of these tin alloys include the following examples.
・In-Sn (52% by mass of In, 48% by mass of Sn, melting point 118° C.)
・In-Sn-Ag (In20% by mass, Sn77.2% by mass, Ag2.8% by mass, melting point 175° C.)
・Sn-Bi (43% by mass of Sn, 57% by mass of Bi, melting point 138°C)
・Sn-Bi-Ag (Sn 42% by mass, Bi 57% by mass, Ag 1% by mass, melting point 139°C) ・Sn-Ag-Cu (Sn 96.5% by mass, Ag 3% by mass, Cu 0.5% by mass, melting point 217°C)
・Sn-Cu (Sn 99.3% by mass, Cu 0.7% by mass, melting point 227°C)
・Sn-Au (Sn21.0% by mass, Au79.0% by mass, melting point 278°C)
 インジウム合金としては、例えば、In-Bi合金、In-Ag合金等を用いることができる。これらのインジウム合金の具体例としては、下記の例が挙げられる。
・In-Bi(In66.3質量%、Bi33.7質量% 融点72℃)
・In-Bi(In33.0質量%、Bi67.0質量% 融点109℃)
・In-Ag(In97.0質量%、Ag3.0質量% 融点145℃)
 なお、上述したスズを含むインジウム合金は、スズ合金に分類されるものとする。
As the indium alloy, for example, an In--Bi alloy, an In--Ag alloy, or the like can be used. Specific examples of these indium alloys include the following examples.
・In-Bi (In66.3% by mass, Bi33.7% by mass, melting point 72° C.)
・ In-Bi (In 33.0% by mass, Bi 67.0% by mass, melting point 109 ° C.)
・In-Ag (97.0% by mass of In, 3.0% by mass of Ag, melting point 145°C)
Note that the indium alloy containing tin described above is classified as a tin alloy.
 はんだ粒子は、より高い接続信頼性が得られる観点から、In-Bi合金、In-Sn合金、In-Sn-Ag合金、Sn-Au合金、Sn-Bi合金、Sn-Bi-Ag合金、Sn-Ag-Cu合金及びSn-Cu合金からなる群より選択される少なくとも一種を含んでよい。 Solder particles, from the viewpoint of obtaining higher connection reliability, In-Bi alloy, In-Sn alloy, In-Sn-Ag alloy, Sn-Au alloy, Sn-Bi alloy, Sn-Bi-Ag alloy, Sn -At least one selected from the group consisting of Ag--Cu alloys and Sn--Cu alloys.
 はんだ粒子の融点は、接続温度よりも低い温度であってよい。はんだ粒子の融点は、例えば、280℃以下、220℃以下、180℃以下、160℃以下又は140℃以下であってよい。はんだ粒子の融点は、例えば、100℃以上であってよい。 The melting point of the solder particles may be lower than the connection temperature. The melting point of the solder particles may be, for example, 280° C. or less, 220° C. or less, 180° C. or less, 160° C. or less, or 140° C. or less. The melting point of the solder particles may be, for example, 100° C. or higher.
 (D)成分の平均粒子径は、分散性及び導電性に優れる観点から、1.0μm以上、2.0μm以上、2.5μm以上又は5.0μm以上であってよい。(D)成分の平均粒子径は、隣り合う電極間の絶縁性を確保する観点から、30.0μm以下、25.0μm以下、20.0μm以下、15.0μm以下、10.0μm以下、8.0μm以下又は5.0μm以下であってよい。これらの観点から、(D)成分の平均粒子径は、1.0~30.0μm、2.0~20.0μm、2.5~20.0μm又は5.0~20.0μmであってよい。なお、(D)成分の平均粒子径は、接着剤組成物に含まれる導電粒子300個について、走査型電子顕微鏡(SEM)を用いた観察により粒子径の測定を行うことで得られた粒子径の平均値である。導電粒子が球形ではない場合、導電粒子の粒子径は、SEMによる観察画像における導電粒子に外接する円の直径とする。 The average particle size of component (D) may be 1.0 μm or more, 2.0 μm or more, 2.5 μm or more, or 5.0 μm or more from the viewpoint of excellent dispersibility and conductivity. From the viewpoint of ensuring insulation between adjacent electrodes, the average particle size of the component (D) is 30.0 μm or less, 25.0 μm or less, 20.0 μm or less, 15.0 μm or less, 10.0 μm or less. It may be 0 μm or less or 5.0 μm or less. From these viewpoints, the average particle size of component (D) may be 1.0 to 30.0 μm, 2.0 to 20.0 μm, 2.5 to 20.0 μm, or 5.0 to 20.0 μm. . The average particle size of component (D) is the particle size obtained by measuring the particle size of 300 conductive particles contained in the adhesive composition by observation using a scanning electron microscope (SEM). is the average value of When the conductive particles are not spherical, the particle diameter of the conductive particles is the diameter of a circle circumscribing the conductive particles in the SEM observation image.
 (D)成分の含有量は、より優れた接続抵抗が得られる観点から、接着剤組成物の全質量を基準として、3質量%以上、5質量%以上又は8質量%以上であってよい。(D)成分の含有量は、隣り合う電極間の絶縁性を確保する観点から、接着剤組成物の全質量を基準として、30質量%以下、20質量%以下又は15質量%以下であってよい。これらの観点から、(D)成分の含有量は、接着剤組成物の全質量を基準として、3~30質量%、5~20質量%又は8~15質量%であってよい。 The content of component (D) may be 3% by mass or more, 5% by mass or more, or 8% by mass or more based on the total mass of the adhesive composition, from the viewpoint of obtaining better connection resistance. From the viewpoint of ensuring insulation between adjacent electrodes, the content of component (D) is 30% by mass or less, 20% by mass or less, or 15% by mass or less based on the total mass of the adhesive composition. good. From these viewpoints, the content of component (D) may be 3 to 30% by mass, 5 to 20% by mass, or 8 to 15% by mass based on the total mass of the adhesive composition.
[その他の成分]
 接着剤組成物は、上述した成分以外の成分(その他の成分)を更に含有してもよい。その他の成分としては、例えば、熱可塑性樹脂、カップリング剤、充填材等が挙げられる。これらの成分は、接着剤成分に含まれる。
[Other ingredients]
The adhesive composition may further contain components (other components) other than the components described above. Other components include, for example, thermoplastic resins, coupling agents, fillers, and the like. These components are included in the adhesive component.
-熱可塑性樹脂
 熱可塑性樹脂は、接着剤組成物のフィルム形成性の向上に寄与する。熱可塑性樹脂としては、フェノキシ樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリエステルウレタン樹脂、アクリルゴム、エポキシ樹脂(25℃で固形)等が挙げられる。これらは、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
- Thermoplastic resin The thermoplastic resin contributes to the improvement of the film formability of the adhesive composition. Examples of thermoplastic resins include phenoxy resins, polyester resins, polyamide resins, polyurethane resins, polyester urethane resins, acrylic rubbers, and epoxy resins (solid at 25°C). These may be used individually by 1 type, and may be used in combination of 2 or more types.
 熱可塑性樹脂の重量平均分子量(Mw)は、例えば、5000~200000であってよく、10000~100000であってよく、20000~80000であってよく、40000~60000であってよい。なお、熱可塑性樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で測定し、標準ポリスチレンによる検量線を用いて換算した値を意味する。 The weight average molecular weight (Mw) of the thermoplastic resin may be, for example, 5,000 to 200,000, 10,000 to 100,000, 20,000 to 80,000, or 40,000 to 60,000. The weight average molecular weight of the thermoplastic resin means a value measured by gel permeation chromatography (GPC) and converted using a standard polystyrene calibration curve.
 熱可塑性樹脂の含有量は、接着剤成分の合計量を基準として、1質量%以上であってよく、5質量%以上であってよく、10質量%以上であってよく、15質量%以上であってよい。熱可塑性樹脂の含有量は、接着剤成分の合計量を基準として、50質量%以下であってよく、40質量%以下であってよく、30質量%以下であってよく、20質量%以下であってよい。熱可塑性樹脂の含有量は、接着剤成分の合計量を基準として、1~50質量%であってよく、5~40質量%であってよく、10~30質量%であってよく、15~20質量%であってよい。 The content of the thermoplastic resin may be 1% by mass or more, 5% by mass or more, 10% by mass or more, or 15% by mass or more, based on the total amount of the adhesive components. It's okay. The content of the thermoplastic resin may be 50% by mass or less, 40% by mass or less, 30% by mass or less, or 20% by mass or less based on the total amount of the adhesive components. It's okay. The content of the thermoplastic resin may be 1 to 50% by mass, may be 5 to 40% by mass, may be 10 to 30% by mass, and may be 15 to 50% by mass, based on the total amount of the adhesive component. It may be 20% by mass.
-カップリング剤
 カップリング剤は、接着性の向上に寄与する。カップリング剤は、例えばシランカップリング剤であってよい。カップリング剤としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-(メタ)アクリロキシプロピルメチルジメトキシシラン、3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルメチルジエトキシシラン、3-(メタ)アクリロキシプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、及び、これらの縮合物が挙げられる。これらは、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
- Coupling agent A coupling agent contributes to the improvement of adhesion. The coupling agent may be, for example, a silane coupling agent. Examples of coupling agents include vinyltrimethoxysilane, vinyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-(meth)acryloxypropylmethyldimethoxysilane. , 3-(meth)acryloxypropyltrimethoxysilane, 3-(meth)acryloxypropylmethyldiethoxysilane, 3-(meth)acryloxypropyltriethoxysilane, N-2-(aminoethyl)-3-amino propylmethyldimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, and condensates thereof. . These may be used individually by 1 type, and may be used in combination of 2 or more types.
 カップリング剤の含有量は、接着剤成分の合計量を基準として、0.1質量%以上であってよく、0.5質量%以上であってよく、1.0質量%以上であってよく、1.5質量%以上であってよい。カップリング剤の含有量は、接着剤成分の合計量を基準として、10質量%以下であってよく、8.0質量%以下であってよく、5.0質量%以下であってよく、3.0質量%以下であってよい。カップリング剤の含有量は、接着剤成分の合計量を基準として、0.1~10質量%であってよく、0.5~8.0質量%であってよく、1.0~5.0質量%であってよく、1.5~3.0質量%であってよい。 The content of the coupling agent may be 0.1% by mass or more, 0.5% by mass or more, or 1.0% by mass or more based on the total amount of the adhesive components. , 1.5% by mass or more. The content of the coupling agent may be 10% by mass or less, 8.0% by mass or less, or 5.0% by mass or less, based on the total amount of the adhesive components. 0% by mass or less. The content of the coupling agent may be 0.1 to 10% by mass, 0.5 to 8.0% by mass, or 1.0 to 5.0% by mass, based on the total amount of the adhesive components. It may be 0% by mass, or 1.5 to 3.0% by mass.
-充填材
 充填材は、接続信頼性の向上に寄与する。充填材としては、非導電性のフィラー(例えば、非導電粒子)が挙げられる。充填材は、無機フィラー及び有機フィラーのいずれであってもよい。
-Filling material Filling material contributes to the improvement of connection reliability. Fillers include non-conductive fillers (eg, non-conductive particles). The filler may be either an inorganic filler or an organic filler.
 無機フィラーとしては、シリカ粒子、アルミナ粒子、シリカ-アルミナ粒子、チタニア粒子、ジルコニア粒子等の金属酸化物粒子;金属窒化物粒子などが挙げられる。これらは、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。 Examples of inorganic fillers include metal oxide particles such as silica particles, alumina particles, silica-alumina particles, titania particles, and zirconia particles; and metal nitride particles. These may be used individually by 1 type, and may be used in combination of 2 or more types.
 有機フィラーとしては、例えば、シリコーン粒子、メタアクリレート・ブタジエン・スチレン粒子、アクリル・シリコーン粒子、ポリアミド粒子、ポリイミド粒子等が挙げられる。これらは、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。 Examples of organic fillers include silicone particles, methacrylate/butadiene/styrene particles, acrylic/silicone particles, polyamide particles, and polyimide particles. These may be used individually by 1 type, and may be used in combination of 2 or more types.
 充填材は、フィルム成形性及び接続構造体の信頼性を向上させる観点では、無機フィラーであってよい。この効果は、充填材がシリカ粒子を含む場合に顕著に得られる傾向がある。シリカ粒子は、結晶性シリカ粒子又は非結晶性シリカ粒子であってよい。これらのシリカ粒子は合成品であってよい。シリカ粒子の合成方法は、乾式法又は湿式法であってよい。シリカ粒子は、ヒュームドシリカ粒子及びゾルゲルシリカ粒子からなる群より選ばれる少なくとも一種を含んでいてよい。 The filler may be an inorganic filler from the viewpoint of improving the film formability and the reliability of the connection structure. This effect tends to be significantly obtained when the filler contains silica particles. The silica particles may be crystalline silica particles or amorphous silica particles. These silica particles may be synthetic. A method for synthesizing silica particles may be a dry method or a wet method. Silica particles may contain at least one selected from the group consisting of fumed silica particles and sol-gel silica particles.
 シリカ粒子は、接着剤成分中での分散性に優れる観点から、表面処理されたシリカ粒子であってよい。表面処理されたシリカ粒子は、例えば、アルコキシシラン化合物、ジシラザン化合物、シロキサン化合物等のシラン化合物により表面処理されたシリカ粒子であってよく、シランカップリング剤により表面処理されたシリカ粒子であってよい。表面処理されたシリカ粒子は、例えば、シリカ粒子の表面の水酸基をシラン化合物又はシランカップリング剤により疎水化したものである。 The silica particles may be surface-treated silica particles from the viewpoint of excellent dispersibility in the adhesive component. The surface-treated silica particles may be, for example, silica particles surface-treated with a silane compound such as an alkoxysilane compound, a disilazane compound, or a siloxane compound, or may be silica particles surface-treated with a silane coupling agent. . The surface-treated silica particles are obtained, for example, by hydrophobizing the hydroxyl groups on the surfaces of silica particles with a silane compound or a silane coupling agent.
 充填材の含有量は、接着剤成分の合計量を基準として、0.1質量%以上であってよく、1.0質量%以上であってよく、5.0質量%以上であってよく、10質量%以上であってよい。充填材の含有量は、接着剤成分の合計量を基準として、50質量%以下であってよく、40質量%以下であってよく、30質量%以下であってよく、20質量%以下であってよい。充填材の含有量は、接着剤成分の合計量を基準として、0.1~50質量%であってよく、1.0~40質量%であってよく、5.0~30質量%であってよく、10~20質量%であってよい。 The content of the filler may be 0.1% by mass or more, 1.0% by mass or more, or 5.0% by mass or more, based on the total amount of the adhesive components, It may be 10% by mass or more. The content of the filler may be 50% by mass or less, 40% by mass or less, 30% by mass or less, or 20% by mass or less based on the total amount of the adhesive components. you can The content of the filler may be 0.1 to 50% by mass, 1.0 to 40% by mass, or 5.0 to 30% by mass, based on the total amount of the adhesive components. may be from 10 to 20% by mass.
 本発明者らの知見によれば、接着剤組成物がカルボキシル基を有する化合物を含有する場合、接着剤組成物の硬化阻害が生じやすくなる傾向があり、接続構造体の接続信頼性が低下する傾向がある。この傾向は、接着剤組成物がカチオン硬化性を有する場合(すなわち、重合性化合物がカチオン重合性化合物であり、重合開始剤がカチオン重合開始剤である場合)に顕著となる。そのため、接着剤組成物におけるカルボキシル基を有する化合物の含有量は、重合性化合物100質量部に対して、0~0.05質量部であってよく、0質量部であってもよい。 According to the findings of the present inventors, when the adhesive composition contains a compound having a carboxyl group, curing inhibition of the adhesive composition tends to occur, and the connection reliability of the connection structure decreases. Tend. This tendency is remarkable when the adhesive composition has cationic curability (that is, when the polymerizable compound is a cationic polymerizable compound and the polymerization initiator is a cationic polymerization initiator). Therefore, the content of the compound having a carboxyl group in the adhesive composition may be 0 to 0.05 parts by mass, or may be 0 parts by mass, with respect to 100 parts by mass of the polymerizable compound.
 以上説明した接着剤組成物は、フィルム状に形成されてよい。接着剤組成物が導電粒子を含有する場合、フィルム状の接着剤組成物(接着剤フィルム)は異方導電性を有していてよい。ここで、「異方導電性」とは、加圧方向には導通し、非加圧方向では絶縁性を保つという意味である。接着剤フィルムにおける(D)成分の粒子密度は、例えば、100~100000個/mm、1000~50000個/mm又は3000~30000個/mmであってよい。 The adhesive composition described above may be formed into a film. When the adhesive composition contains conductive particles, the film-like adhesive composition (adhesive film) may have anisotropic conductivity. Here, "anisotropic conductivity" means that it conducts in the pressurized direction and maintains insulation in the non-pressurized direction. The particle density of component (D) in the adhesive film may be, for example, 100-100000 particles/mm 2 , 1000-50000 particles/mm 2 or 3000-30000 particles/mm 2 .
 接着剤フィルムは、単層であってよく、複数の層が積層された多層構造を有するものであってもよい。接着剤フィルムが多層構造を有する場合、各層における上記の各成分の含有量は、各層の全質量を基準として、上記の含有量の範囲内であってよい。 The adhesive film may be a single layer or may have a multi-layer structure in which multiple layers are laminated. When the adhesive film has a multilayer structure, the content of each of the above components in each layer may be within the above range of content based on the total mass of each layer.
 接着剤フィルムは、例えば、以下の方法で調製することができる。まず、上述した(A)成分と、(B)成分と、(C)成分と、必要に応じて、(D)成分及びその他の成分とを、有機溶媒中で撹拌混合、混練等を行うことによって、溶解又は分散させ、ワニス組成物(ワニス状の接着剤組成物)を調製する。次いで、離型処理を施した基材上に、得られたワニス組成物をナイフコーター、ロールコーター、アプリケーター、コンマコーター、ダイコーター等を用いて塗布した後、加熱によって有機溶媒を揮発させる。これにより、基材上に接着剤フィルムを形成することができる。このとき、ワニス組成物の塗布量を調整することによって、接着剤フィルムの厚さを調整することができる。接着剤フィルムの厚さは、例えば、5μm以上又は10μm以上であってよく、40μm以下、30μm以下又は20μm以下であってよい。 The adhesive film can be prepared, for example, by the following method. First, the above components (A), (B), (C), and, if necessary, (D) and other components are stirred, mixed, and kneaded in an organic solvent. to prepare a varnish composition (varnish-like adhesive composition). Then, the obtained varnish composition is applied onto the release-treated substrate using a knife coater, roll coater, applicator, comma coater, die coater, or the like, and the organic solvent is volatilized by heating. Thereby, an adhesive film can be formed on the substrate. At this time, the thickness of the adhesive film can be adjusted by adjusting the coating amount of the varnish composition. The thickness of the adhesive film may be, for example, 5 μm or more, or 10 μm or more, and may be 40 μm or less, 30 μm or less, or 20 μm or less.
 ワニス組成物の調製において使用される有機溶媒は、各成分を略均一に溶解又は分散し得る特性を有するものであれば特に制限されない。このような有機溶媒としては、例えば、トルエン、アセトン、メチルエチルケトン、メチルイソブチルケトン、酢酸エチル、酢酸プロピル、酢酸ブチル等が挙げられる。これらの有機溶媒は、単独で又は2種以上を組み合わせて使用することができる。ワニス組成物の調製の際の撹拌混合又は混練は、例えば、撹拌機、らいかい機、3本ロール、ボールミル、ビーズミル、ホモディスパー等を用いて行うことができる。 The organic solvent used in the preparation of the varnish composition is not particularly limited as long as it has the property of dissolving or dispersing each component substantially uniformly. Examples of such organic solvents include toluene, acetone, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, propyl acetate, butyl acetate and the like. These organic solvents can be used alone or in combination of two or more. Stirring and mixing or kneading during preparation of the varnish composition can be performed using, for example, a stirrer, a kneader, a three-roll mill, a ball mill, a bead mill, a homodisper, or the like.
 基材は、有機溶媒を揮発させる際の加熱条件に耐え得る耐熱性を有するものであれば特に制限されない。このような基材としては、例えば、延伸ポリプロピレン(OPP)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート、ポリエチレンイソフタレート、ポリブチレンテレフタレート、ポリオレフィン、ポリアセテート、ポリカーボネート、ポリフェニレンサルファイド、ポリアミド、ポリイミド、セルロース、エチレン・酢酸ビニル共重合体、ポリ塩化ビニル、ポリ塩化ビニリデン、合成ゴム系、液晶ポリマー等からなる基材(例えば、フィルム)を用いることができる。 The base material is not particularly limited as long as it has heat resistance that can withstand the heating conditions when volatilizing the organic solvent. Examples of such substrates include oriented polypropylene (OPP), polyethylene terephthalate (PET), polyethylene naphthalate, polyethylene isophthalate, polybutylene terephthalate, polyolefin, polyacetate, polycarbonate, polyphenylene sulfide, polyamide, polyimide, cellulose, Substrates (for example, films) made of ethylene-vinyl acetate copolymer, polyvinyl chloride, polyvinylidene chloride, synthetic rubber, liquid crystal polymer, or the like can be used.
 基材へ塗布したワニス組成物から有機溶媒を揮発させる際の加熱条件は、使用する有機溶媒等に合わせて適宜設定することができる。加熱条件は、例えば、40~120℃で0.1~10分間であってよい。 The heating conditions for volatilizing the organic solvent from the varnish composition applied to the substrate can be appropriately set according to the organic solvent used. The heating conditions may be, for example, 40-120° C. for 0.1-10 minutes.
 接着剤フィルム中には、溶剤の一部が除去されずに残っていてもよい。接着剤フィルムにおける溶剤の含有量は、接着剤フィルムの全質量を基準として、例えば、0~10質量%であってよい。 A part of the solvent may remain in the adhesive film without being removed. The solvent content in the adhesive film may be, for example, 0 to 10% by weight based on the total weight of the adhesive film.
 接着剤フィルムは、接着剤フィルムが基材(例えば上記製造に使用した基材)上に剥離可能に貼付された状態で、すなわち、基材付き接着剤フィルムとして、提供されてよい。 The adhesive film may be provided in a state in which the adhesive film is releasably attached to a substrate (for example, the substrate used in the above production), that is, as an adhesive film with a substrate.
<接続構造体の製造方法>
 次に、図1及び図2を参照して、上記実施形態の接着剤組成物を用いた接続構造体の製造方法について説明する。図1は、導電粒子を含有する接着剤組成物を用いて得られる接続構造体を示す模式断面図である。図1に示す接続構造体10Aは、相互に対向する第一の電子部材1及び第二の電子部材2と、第一の電子部材1及び第二の電子部材2の間において第一の電子部材1及び第二の電子部材2を接続する接続部材3Aと、を備えている。
<Method for manufacturing connection structure>
Next, a method for manufacturing a bonded structure using the adhesive composition of the above embodiment will be described with reference to FIGS. 1 and 2. FIG. FIG. 1 is a schematic cross-sectional view showing a bonded structure obtained using an adhesive composition containing conductive particles. A connection structure 10A shown in FIG. 1 includes a first electronic member 1 and a second electronic member 2 facing each other, and a first electronic member and a connection member 3A that connects the first electronic member 2 and the second electronic member 2 .
 第一の電子部材1及び第二の電子部材2は、例えば、回路部材等の電気的接続を必要とする接続部(配線、バンプ、電極等)が形成された部材である。第一の電子部材1は、第一の基板11と、第一の基板11の主面11a上に形成された第一の接続部12とを備えている。第二の電子部材2は、第二の基板21と、第二の基板21の主面21a上に形成された第二の接続部22とを備えている。第一の電子部材1及び第二の電子部材2は、互いに同一であっても異なっていてもよい。 The first electronic member 1 and the second electronic member 2 are, for example, members formed with connecting portions (wiring, bumps, electrodes, etc.) that require electrical connection such as circuit members. The first electronic member 1 includes a first substrate 11 and a first connection portion 12 formed on the main surface 11 a of the first substrate 11 . The second electronic member 2 includes a second substrate 21 and a second connection portion 22 formed on the main surface 21 a of the second substrate 21 . The first electronic member 1 and the second electronic member 2 may be the same or different.
 第一の電子部材1及び第二の電子部材2は、例えば、電極が形成されているガラス基板又はプラスチック基板、プリント配線板、セラミック配線板、フレキシブル配線板、ICチップ等であってよい。第一の基板11及び第二の基板21は、半導体、ガラス、セラミック等の無機物、ポリイミド、ポリカーボネート等の有機物、ガラス/エポキシ等の複合物などで形成されていてよい。第一の接続部12及び第二の接続部22は、金、銀、錫、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金、銅、アルミ、モリブデン、チタン、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)、インジウムガリウム亜鉛酸化物(IGZO)等で形成されていてよい。 The first electronic member 1 and the second electronic member 2 may be, for example, a glass substrate or plastic substrate on which electrodes are formed, a printed wiring board, a ceramic wiring board, a flexible wiring board, an IC chip, or the like. The first substrate 11 and the second substrate 21 may be made of inorganic materials such as semiconductors, glass, and ceramics, organic materials such as polyimide and polycarbonate, composite materials such as glass/epoxy, and the like. The first connection portion 12 and the second connection portion 22 are gold, silver, tin, ruthenium, rhodium, palladium, osmium, iridium, platinum, copper, aluminum, molybdenum, titanium, indium tin oxide (ITO), indium It may be formed of zinc oxide (IZO), indium gallium zinc oxide (IGZO), or the like.
 接続構造体10Aでは、接続部材3Aが、上記実施形態の接着剤組成物の硬化物からなる。硬化物は、導電粒子Pと接着剤成分の硬化物31とを含んでいる。導電粒子Pの少なくとも一部は、第一の接続部12及び第二の接続部22の間に介在して(第一の接続部12及び第二の接続部22の双方に接触して)第一の接続部12及び第二の接続部22を互いに電気的に接続している。 In the connection structure 10A, the connection member 3A is made of the cured adhesive composition of the above embodiment. The cured product contains the conductive particles P and the cured product 31 of the adhesive component. At least part of the conductive particles P is interposed between the first connection portion 12 and the second connection portion 22 (in contact with both the first connection portion 12 and the second connection portion 22). The one connection portion 12 and the second connection portion 22 are electrically connected to each other.
 図2は、接続構造体10Aの製造方法を示す模式断面図である。接続構造体10Aの製造方法では、まず、接着剤組成物5を第一の電子部材1の主面11a上に配置する(図2の(a)参照)。接着剤組成物5がフィルム状であり、基材上に積層されている場合には、当該基材の接着剤組成物5側(接着剤フィルム側)を第一の電子部材1に向けるようにして、接着剤組成物5と基材とを備える積層体を第一の電子部材1上に配置する。この際、加圧を行ってよく、加圧とともに加熱を行ってもよい。 FIG. 2 is a schematic cross-sectional view showing a manufacturing method of the connection structure 10A. In the manufacturing method of the connection structure 10A, first, the adhesive composition 5 is placed on the main surface 11a of the first electronic member 1 (see FIG. 2(a)). When the adhesive composition 5 is in the form of a film and is laminated on the base material, the adhesive composition 5 side (adhesive film side) of the base material should face the first electronic member 1. Then, a laminate comprising the adhesive composition 5 and the substrate is placed on the first electronic member 1 . At this time, pressurization may be performed, or heating may be performed together with the pressurization.
 続いて、第一の電子部材1上に配置された接着剤組成物5上に、第二の接続部22側を第一の電子部材1に向けるようにして(すなわち、第一の接続部12と第二の接続部22とが対向配置される状態で)第二の電子部材2を更に配置し、第一の電子部材1と第二の電子部材2との間に接着剤組成物5を介在させる(図2の(b)参照)。これにより、図2の(b)に示す積層体8を得る。この際、接着剤組成物5が基材(図示せず)上に積層されている場合には、基材を剥離してから第二の電子部材2を接着剤組成物5上に配置する。 Subsequently, on the adhesive composition 5 placed on the first electronic member 1, the second connection portion 22 side is directed toward the first electronic member 1 (that is, the first connection portion 12 and the second connection part 22 are arranged opposite to each other), and the adhesive composition 5 is placed between the first electronic member 1 and the second electronic member 2 intervene (see FIG. 2(b)). Thereby, the laminate 8 shown in FIG. 2(b) is obtained. At this time, when the adhesive composition 5 is laminated on a base material (not shown), the second electronic member 2 is placed on the adhesive composition 5 after the base material is peeled off.
 そして、図2の(b)の矢印で示した方向に積層体8全体を加熱しながら加圧(熱圧着)する。これにより第一の接続部12と第二の接続部22とが互いに電気的に接続される。この際、接着剤組成物5が熱硬化性である場合には、上記操作によって接着剤組成物5が硬化され、第一の接続部12と第二の接続部22とが接続部材3Aによって接着される。接着剤組成物5が光硬化性である場合には、熱圧着と並行して、又は、熱圧着前若しくは後に光(例えば紫外線)を照射することで、接着剤組成物5が硬化され、第一の接続部12と第二の接続部22とが接続部材3Aによって接着される。その結果、図1に示すような接続構造体10Aが得られる。 Then, the laminate 8 as a whole is heated and pressed (thermocompression bonded) in the direction indicated by the arrow in FIG. 2(b). Thereby, the first connection portion 12 and the second connection portion 22 are electrically connected to each other. At this time, when the adhesive composition 5 is thermosetting, the adhesive composition 5 is cured by the above operation, and the first connection portion 12 and the second connection portion 22 are bonded by the connection member 3A. be done. When the adhesive composition 5 is photocurable, the adhesive composition 5 is cured by irradiating light (for example, ultraviolet rays) in parallel with the thermocompression bonding, or before or after the thermocompression bonding. The one connecting portion 12 and the second connecting portion 22 are bonded together by the connecting member 3A. As a result, a connection structure 10A as shown in FIG. 1 is obtained.
 熱圧着時の温度及び熱圧着時間は、適宜調整可能であり、接着剤組成物5が熱硬化性である場合には、接着剤組成物5を充分に硬化させ、第一の電子部材1と第二の電子部材2とを接着できるように、熱圧着時の温度及び熱圧着時間を適宜調整してよい。熱圧着時の温度(接着剤組成物の最高到達温度)は、例えば、80~300℃であってよい。熱圧着の時間は、例えば、0.5秒~3時間あってよい。 The temperature and thermocompression bonding time during thermocompression bonding can be adjusted as appropriate, and when the adhesive composition 5 is thermosetting, the adhesive composition 5 is sufficiently cured to bond the first electronic member 1 and The temperature and time for thermocompression bonding may be appropriately adjusted so that the second electronic member 2 can be adhered. The temperature during thermocompression bonding (maximum temperature reached by the adhesive composition) may be, for example, 80 to 300°C. The thermocompression bonding time may be, for example, 0.5 seconds to 3 hours.
 接着剤組成物5が熱硬化性である場合の光の照射は、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、キセノンランプ、メタルハライドランプ、LED光源等を使用して行うことができる。光照射の積算光量は、適宜設定することができるが、例えば、500~3000mJ/cmであってよい。 Light irradiation when the adhesive composition 5 is thermosetting can be performed using, for example, a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a xenon lamp, a metal halide lamp, an LED light source, or the like. can. The integrated amount of light irradiation can be appropriately set, and may be, for example, 500 to 3000 mJ/cm 2 .
 以上、一実施形態の接続構造体の製造方法について説明したが、接続構造体の製造方法は上記実施形態に限定されない。例えば、上記実施形態では、導電粒子を含有する接着剤組成物を用いる方法を説明したが、導電粒子を含有しない接着剤組成物を用いてもよい。図3は、導電粒子を含有しない接着剤組成物を用いて得られる接続構造体を示す模式断面図である。接続構造体10Bは、接続部材3Bが導電粒子を含まず、第一の接続部12及び第二の接続部22が互いに接触することで電気的に接続されている。接続構造体10Bは、接着剤組成物5として、導電粒子を含有しない接着剤組成物を用いる点を除き、接続構造体10Aと同様にして製造することができる。 Although the method for manufacturing the connection structure according to one embodiment has been described above, the method for manufacturing the connection structure is not limited to the above embodiment. For example, in the above embodiment, a method using an adhesive composition containing conductive particles has been described, but an adhesive composition that does not contain conductive particles may be used. FIG. 3 is a schematic cross-sectional view showing a connected structure obtained using an adhesive composition containing no conductive particles. The connection structure 10B is electrically connected by the connection member 3B containing no conductive particles and the first connection portion 12 and the second connection portion 22 being in contact with each other. The connection structure 10B can be manufactured in the same manner as the connection structure 10A, except that an adhesive composition containing no conductive particles is used as the adhesive composition 5.
 以下、実施例により本発明を具体的に説明する。但し、本発明は下記の実施例のみに限定されるものではない。 The present invention will be specifically described below with reference to examples. However, the present invention is not limited only to the following examples.
<材料の準備>
 接着剤組成物の作製のための材料として、下記に示す材料を準備した。
<Preparation of materials>
Materials shown below were prepared as materials for producing an adhesive composition.
(A)重合性化合物及び(B)重合開始剤
・AB-1:HX-3941HP(アニオン重合型潜在性硬化剤含有エポキシ樹脂、重合性化合物65質量%とイミダゾール系マイクロカプセル型硬化剤35質量%とを含有、旭化成ケミカルズ製、商品名)
・A-1:jER1032H60(トリフェノールメタン骨格含有多官能固形エポキシ、三菱ケミカル株式会社製、商品名(「jER」は登録商標))
・A-2:YL980(グリシジルエーテル型エポキシ化合物、ジャパンエポキシレジン株式会社、商品名)
・A-3:OXT-121(キシリレンビスオキセタン、東亜合成株式会社製、商品名)
・A-4:GT401(ブタンテトラカルボン酸テトラ(3,4-エポキシシクロヘキシルメチル) 修飾ε-カプロラクトン株式会社ダイセル製、商品名)
・A-5:DCP-A(トリシクロデカン骨格を有するジアクリレート、東亞合成株式会社製、商品名)
・A-6:以下に示す合成例1で合成したポリウレタンアクリレート(UA1)
・A-7:ライトエステルP-2M(2-メタクリロイルオキシエチルアシッドフォスフェート、共栄社化学株式会社製、商品名)
・B-1:CXC-1821(N-(4-メトキシベンジル)-N,N-ジメチルアニリウム テトラキス(ペンタフルオロフェニル)ボレート、King Industries社製、商品名)
・B-2:ナイパーBMT-K40(ベンゾイルパーオキサイド、日油株式会社製、商品名)
(A) Polymerizable compound and (B) polymerization initiator AB-1: HX-3941HP (epoxy resin containing anionic polymerization type latent curing agent, 65% by mass of polymerizable compound and 35% by mass of imidazole microcapsule type curing agent (Asahi Kasei Chemicals, trade name)
・ A-1: jER1032H60 (triphenolmethane skeleton-containing polyfunctional solid epoxy, manufactured by Mitsubishi Chemical Corporation, trade name (“jER” is a registered trademark))
・ A-2: YL980 (glycidyl ether type epoxy compound, Japan Epoxy Resin Co., Ltd., trade name)
・ A-3: OXT-121 (xylylene bisoxetane, manufactured by Toagosei Co., Ltd., trade name)
・ A-4: GT401 (tetra (3,4-epoxycyclohexylmethyl) butanetetracarboxylic acid modified ε-caprolactone manufactured by Daicel Co., Ltd., trade name)
· A-5: DCP-A (diacrylate having a tricyclodecane skeleton, manufactured by Toagosei Co., Ltd., trade name)
· A-6: Polyurethane acrylate (UA1) synthesized in Synthesis Example 1 shown below
・ A-7: Light ester P-2M (2-methacryloyloxyethyl acid phosphate, manufactured by Kyoeisha Chemical Co., Ltd., trade name)
B-1: CXC-1821 (N-(4-methoxybenzyl)-N,N-dimethylanilium tetrakis(pentafluorophenyl)borate, manufactured by King Industries, trade name)
・ B-2: Nyper BMT-K40 (benzoyl peroxide, manufactured by NOF Corporation, trade name)
(C)ジカルボン酸ジエステル化合物
・コハク酸ジメチル(東京化成工業株式会社製)
・グルタル酸ジメチル(東京化成工業株式会社製)
・アジピン酸ジメチル(東京化成工業株式会社製)
・フタル酸ジメチル(富士フイルム和光純薬株式会社製)
・グルタル酸ジエチル(東京化成工業株式会社製)
・DL-りんご酸ジメチル(東京化成工業株式会社製)
(C) Dicarboxylic acid diester compound, dimethyl succinate (manufactured by Tokyo Chemical Industry Co., Ltd.)
・Dimethyl glutarate (manufactured by Tokyo Chemical Industry Co., Ltd.)
・Dimethyl adipate (manufactured by Tokyo Chemical Industry Co., Ltd.)
・Dimethyl phthalate (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.)
・Diethyl glutarate (manufactured by Tokyo Chemical Industry Co., Ltd.)
・ DL-dimethyl malate (manufactured by Tokyo Chemical Industry Co., Ltd.)
(D)熱可塑性樹脂
・D-1:FX293(ビフェニルフルオレン型フェノキシ樹脂、重量平均分子量:45000、ガラス転移温度:158℃、日鉄ケミカル&マテリアル株式会社製、商品名(メチルエチルケトンで不揮発分40質量%に希釈したものを使用))
・D-2:ZX1356-2(ビスフェノールA型及びビスフェノールF型の共重合型フェノキシ樹脂、重量平均分子量:70000、ガラス転移温度:71℃、日鉄ケミカル&マテリアル株式会社製、商品名(メチルエチルケトンで不揮発分50質量%に希釈したものを使用))
・D-3:PKHC(フェノキシ樹脂、ユニオンカーバイド社製)
(D) Thermoplastic resin D-1: FX293 (biphenylfluorene type phenoxy resin, weight average molecular weight: 45000, glass transition temperature: 158 ° C., manufactured by Nippon Steel Chemical & Materials Co., Ltd., trade name (methyl ethyl ketone, non-volatile content 40 mass used diluted in %))
・ D-2: ZX1356-2 (bisphenol A type and bisphenol F type copolymerized phenoxy resin, weight average molecular weight: 70000, glass transition temperature: 71 ° C., manufactured by Nippon Steel Chemical & Materials Co., Ltd., trade name (methyl ethyl ketone Use the one diluted to 50% by mass of non-volatile content))
・ D-3: PKHC (phenoxy resin, manufactured by Union Carbide)
(E)カップリング剤
・E-1:SH-6040(3-グリシドキシプロピルトリメトキシシラン、東レ・ダウコーニング株式会社製、商品名)
・E-2:KBM503(3-メタクリロキシプロピルトリメトキシシラン、信越化学工業株式会社製、商品名)
(E) Coupling agent E-1: SH-6040 (3-glycidoxypropyltrimethoxysilane, manufactured by Dow Corning Toray Co., Ltd., trade name)
・ E-2: KBM503 (3-methacryloxypropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd., trade name)
(F)充填材
・F-1:SE2050(シリカ微粒子、株式会社アドマテックス製、商品名)
・F-2:R104(シリカ微粒子、日本アエロジル株式会社製、平均粒径(一次粒径):12nm)
(F) Filler F-1: SE2050 (silica fine particles, manufactured by Admatechs Co., Ltd., trade name)
・ F-2: R104 (silica fine particles, manufactured by Nippon Aerosil Co., Ltd., average particle size (primary particle size): 12 nm)
(G)導電粒子
・G-1:STC-7(Sn-Ag-Cuはんだ微粒子、三井金属鉱業株式会社製、商品名、平均粒径:8μm、融点:219℃)
・G-2:Type5(Sn72Bi28はんだ微粒子、三井金属鉱業株式会社製、平均粒径:20μm、融点:139℃)
(G) Conductive particles G-1: STC-7 (Sn-Ag-Cu solder fine particles, manufactured by Mitsui Mining & Smelting Co., Ltd., trade name, average particle size: 8 μm, melting point: 219 ° C.)
・G-2: Type 5 (Sn72Bi28 solder fine particles, manufactured by Mitsui Mining & Smelting Co., Ltd., average particle size: 20 μm, melting point: 139 ° C.)
(合成例1:ポリウレタンアクリレート(UA1)の合成)
 攪拌機、温度計、塩化カルシウム乾燥管を有する還流冷却管、及び、窒素ガス導入管を備えた反応容器に、ポリ(1,6-ヘキサンジオールカーボネート)(商品名:デュラノール T5652、旭化成ケミカルズ株式会社製、数平均分子量1000)2500質量部(2.50mol)と、イソホロンジイソシアネート(シグマアルドリッチ社製)666質量部(3.00mol)とを3時間かけて略均一に滴下した。次いで、反応容器に充分に窒素ガスを導入した後、反応容器内を70~75℃に加熱して反応させた。次に、反応容器に、ハイドロキノンモノメチルエーテル(シグマアルドリッチ社製)0.53質量部(4.3mmol)と、ジブチル錫ジラウレート(シグマアルドリッチ社製)5.53質量部(8.8mmol)とを添加した後、2-ヒドロキシエチルアクリレート(シグマアルドリッチ社製)238質量部(2.05mol)を加え、空気雰囲気下70℃で6時間反応させた。これにより、ポリウレタンアクリレート(UA1)を得た。ポリウレタンアクリレート(UA1)の重量平均分子量は15000であった。なお、重量平均分子量は、下記の条件に従って、ゲル浸透クロマトグラフ(GPC)より標準ポリスチレンによる検量線を用いて測定した。
(測定条件)
 装置:東ソー株式会社製 GPC-8020
 検出器:東ソー株式会社製 RI-8020
 カラム:日立化成株式会社製 Gelpack GLA160S+GLA150S
 試料濃度:120mg/3mL
 溶媒:テトラヒドロフラン
 注入量:60μL
 圧力:2.94×10Pa(30kgf/cm
 流量:1.00mL/min
(Synthesis Example 1: Synthesis of polyurethane acrylate (UA1))
Poly(1,6-hexanediol carbonate) (trade name: Duranol T5652, manufactured by Asahi Kasei Chemicals Co., Ltd.) was added to a reaction vessel equipped with a stirrer, a thermometer, a reflux condenser with a calcium chloride drying tube, and a nitrogen gas introduction tube. , number average molecular weight 1000) 2500 parts by mass (2.50 mol) and isophorone diisocyanate (manufactured by Sigma-Aldrich) 666 parts by mass (3.00 mol) were added dropwise substantially uniformly over 3 hours. Then, after introducing a sufficient amount of nitrogen gas into the reaction vessel, the inside of the reaction vessel was heated to 70 to 75° C. for reaction. Next, 0.53 parts by mass (4.3 mmol) of hydroquinone monomethyl ether (manufactured by Sigma-Aldrich) and 5.53 parts by mass (8.8 mmol) of dibutyltin dilaurate (manufactured by Sigma-Aldrich) were added to the reaction vessel. After that, 238 parts by mass (2.05 mol) of 2-hydroxyethyl acrylate (manufactured by Sigma-Aldrich) was added and reacted at 70° C. for 6 hours in an air atmosphere. This gave a polyurethane acrylate (UA1). The weight average molecular weight of polyurethane acrylate (UA1) was 15,000. The weight average molecular weight was measured using a standard polystyrene calibration curve from gel permeation chromatography (GPC) under the following conditions.
(Measurement condition)
Device: GPC-8020 manufactured by Tosoh Corporation
Detector: RI-8020 manufactured by Tosoh Corporation
Column: Gelpack GLA160S + GLA150S manufactured by Hitachi Chemical Co., Ltd.
Sample concentration: 120mg/3mL
Solvent: Tetrahydrofuran Injection volume: 60 μL
Pressure: 2.94×10 6 Pa (30 kgf/cm 2 )
Flow rate: 1.00mL/min
<実施例1~15及び比較例1>
[接着剤フィルムの作製]
 表1~2に示す材料と有機溶媒とを混合した後、得られた混合物(ワニス状の接着剤組成物)を離型処理されたPET(ポリエチレンテレフタレート)フィルムの上に塗工した。有機溶媒としては、メチルエチルケトンを使用した。表1~2に示す材料は、表1~2に示す組成比(表の数値は不揮発分量を意味する。)となるように配合した。塗工は、乾燥後に得られるフィルム状の接着剤組成物(接着剤フィルム)の厚さが24~26μmとなるように行った。次いで、乾燥により有機溶媒を除去することによって、表1~2に示す各成分を含有する、実施例1~15及び比較例1の接着剤フィルムを得た。
<Examples 1 to 15 and Comparative Example 1>
[Preparation of adhesive film]
After mixing the materials shown in Tables 1 and 2 with an organic solvent, the resulting mixture (varnish-like adhesive composition) was applied onto a release-treated PET (polyethylene terephthalate) film. Methyl ethyl ketone was used as the organic solvent. The materials shown in Tables 1 and 2 were blended so as to have the composition ratios shown in Tables 1 and 2 (the numerical values in the tables mean the non-volatile content). The coating was carried out so that the film-like adhesive composition (adhesive film) obtained after drying had a thickness of 24 to 26 μm. Then, by removing the organic solvent by drying, adhesive films of Examples 1 to 15 and Comparative Example 1 containing each component shown in Tables 1 and 2 were obtained.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<ジカルボン酸ジエステル化合物の添加による副反応の確認>
 実施例1及び比較例1の接着剤フィルムについて、DSC(示差走査熱量測定)を用いて、作製直後に熱硬化させたときの発熱量と、加速試験後に熱硬化させたときの発熱量を測定し、ジカルボン酸ジエステル化合物の添加による副反応の有無を確認した。測定は、40~250℃(昇温速度:10℃/分)で行った。加速試験は、接着剤フィルムを40℃に設定した恒温槽に15時間放置することにより行った。結果を表3に示す。
<Confirmation of Side Reaction by Addition of Dicarboxylic Acid Diester Compound>
For the adhesive films of Example 1 and Comparative Example 1, DSC (differential scanning calorimetry) was used to measure the amount of heat generated when thermally cured immediately after preparation and the amount of heat generated when thermally cured after the accelerated test. Then, the presence or absence of side reactions due to the addition of the dicarboxylic acid diester compound was confirmed. The measurement was performed at 40 to 250°C (heating rate: 10°C/min). The accelerated test was performed by leaving the adhesive film in a constant temperature bath set at 40° C. for 15 hours. Table 3 shows the results.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 上記結果に示されるように、ジカルボン酸ジエステル化合物を添加した実施例1は、ジカルボン酸ジエステル化合物を添加しなかった比較例1と同程度の良好な発熱量減少率を示しており、ジカルボン酸ジエステル化合物の添加による副反応(硬化反応への影響)は確認されなかった。 As shown in the above results, Example 1 in which a dicarboxylic acid diester compound was added showed a good calorific value reduction rate comparable to Comparative Example 1 in which no dicarboxylic acid diester compound was added. No side reaction (effect on curing reaction) due to the addition of the compound was confirmed.
<接続抵抗評価>
[接続構造体の作製]
 上記で得られた実施例1~15及び比較例1の接着剤フィルムを用いて接続構造体(回路接続構造体)を作製した。具体的には、まず、実施例1~12、14及び15並びに比較例1で用いる第一の電子部材(回路部材)及び第二の電子部材(回路部材)として、ピッチが200μm(ライン:スペース=1:1)で厚さが35μmの銅パターン(金/ニッケルめっき)を有するガラスエポキシプリント配線板(第一の電子部材)と、ピッチが200μm(ライン:スペース=1:1)で厚さが21μmの銅パターン(金/ニッケルめっき)を有するポリイミドフレキシブルプリント基板(第二の電子部材)とを用意した。また、実施例13で用いる第一の電子部材(回路部材)及び第二の電子部材(回路部材)として、ピッチが20μmでバンプ高さが1.5μmの金バンプ付きICチップ(第一の電子部材)と、ガラス基板上にピッチが20μmの非結晶酸化インジウム錫(ITO)からなる電極を備える、ITO電極付きガラス基板(第二の電子部材)とを用意した。次いで、第一の電子部材上に、0.6mm幅にスリットされた短冊状の接着剤フィルムを配置した。次いで、第一の電子部材の接続部(銅パターン又は金バンプ)と第二電子部材の接続部(銅パターン又はITO電極)との位置合わせを行った後、幅0.8mmの加熱ツールを用いて、緩衝材(厚さ200μmのシリコーンラバー)を介して、加熱加圧した。加熱加圧の条件は、実施例1~14並びに比較例1では180℃/2MPa/10秒とし、実施例15では、160℃/2MPa/10秒とした。以上の操作により、接着剤フィルムを介して第一の電子部材と第二の電子部材とを接着するとともに、第一の電子部材の接続部(第一の接続部である回路電極)と第二の電子部材の接続部(第二の接続部である回路電極)とを互いに電気的に接続し、接続構造体(回路接続構造体)を得た。
<Connection resistance evaluation>
[Production of connection structure]
Using the adhesive films of Examples 1 to 15 and Comparative Example 1 obtained above, connection structures (circuit connection structures) were produced. Specifically, first, as the first electronic member (circuit member) and the second electronic member (circuit member) used in Examples 1 to 12, 14 and 15 and Comparative Example 1, the pitch is 200 μm (line: space = 1: 1) and a glass epoxy printed wiring board (first electronic member) having a copper pattern (gold/nickel plating) with a thickness of 35 µm and a pitch of 200 µm (line: space = 1: 1) and a thickness A polyimide flexible printed board (second electronic member) having a copper pattern (gold/nickel plating) with a thickness of 21 μm was prepared. As the first electronic member (circuit member) and the second electronic member (circuit member) used in Example 13, an IC chip with gold bumps having a pitch of 20 μm and a bump height of 1.5 μm (first electronic member) and a glass substrate with an ITO electrode (second electronic member) having an electrode made of amorphous indium tin oxide (ITO) with a pitch of 20 μm on the glass substrate. Next, a strip-shaped adhesive film slit to a width of 0.6 mm was arranged on the first electronic member. Next, after aligning the connection portion (copper pattern or gold bump) of the first electronic member and the connection portion (copper pattern or ITO electrode) of the second electronic member, a heating tool with a width of 0.8 mm is used. It was heated and pressurized through a cushioning material (silicone rubber with a thickness of 200 μm). The heating and pressing conditions were 180° C./2 MPa/10 seconds for Examples 1 to 14 and Comparative Example 1, and 160° C./2 MPa/10 seconds for Example 15. By the above operation, the first electronic member and the second electronic member are adhered via the adhesive film, and the connecting portion (circuit electrode which is the first connecting portion) of the first electronic member and the second were electrically connected to each other (circuit electrodes, which are second connection portions) of the electronic member in (1) to obtain a connection structure (circuit connection structure).
[接続抵抗の評価]
 作製した接続構造体について、初期(作製直後)、高温高湿試験後及びサイクル試験後の接続抵抗(導通抵抗)を4端子法によって測定した。測定には、株式会社アドバンテスト製の定電流電源装置R-6145を用いて、一定電流(1mA)を接続構造体の第一の接続部(回路電極)と第二の接続部(回路電極)との間に印加した。電流の印加時における接続部間の電位差を、株式会社アドバンテスト製のデジタルマルチメーター(R-6557)を用いて測定した。電位差の平均値を接続抵抗値に換算し、初期の接続抵抗値、高温高湿試験後の接続抵抗値、及び、サイクル試験後の接続抵抗値を計測した。高温高湿試験は、温度85℃湿度85%RHの恒温恒湿槽にて接続構造体を500時間保管することにより行った。サイクル試験は、接続構造体をサイクル試験機に投入し、下記(1)~(4)を1サイクルとして、100サイクル、250サイクル及び500サイクル行った。各サイクル間の昇温及び降温速度は、約15℃/minとした。
(1)-40℃/30分→(2)25℃/5分→(3)100℃/30分→(4)25℃5分
 計測した接続抵抗値は、以下に示す基準を元に評価した。結果を表4~5に示す。
 A:0.25Ω以下
 B:0.25Ωより大きく0.3Ω未満
 C:0.3Ω以上
[Evaluation of connection resistance]
The connection resistance (conduction resistance) of the fabricated connection structure was measured by the four-probe method at the initial stage (immediately after fabrication), after the high-temperature and high-humidity test, and after the cycle test. For the measurement, a constant current power supply R-6145 manufactured by Advantest Co., Ltd. is used to apply a constant current (1 mA) to the first connection portion (circuit electrode) and the second connection portion (circuit electrode) of the connection structure. was applied between The potential difference between the connecting portions when the current was applied was measured using a digital multimeter (R-6557 manufactured by Advantest Co., Ltd.). The average value of the potential difference was converted into a connection resistance value, and the initial connection resistance value, the connection resistance value after the high temperature and high humidity test, and the connection resistance value after the cycle test were measured. The high-temperature and high-humidity test was performed by storing the connected structure for 500 hours in a constant temperature and humidity chamber at a temperature of 85° C. and a humidity of 85% RH. In the cycle test, the connection structure was placed in a cycle tester, and 100 cycles, 250 cycles, and 500 cycles were performed with the following (1) to (4) as one cycle. The rate of temperature rise and temperature drop during each cycle was about 15°C/min.
(1) -40°C/30 minutes → (2) 25°C/5 minutes → (3) 100°C/30 minutes → (4) 25°C 5 minutes The measured connection resistance value is evaluated based on the criteria shown below. did. The results are shown in Tables 4-5.
A: 0.25Ω or less B: More than 0.25Ω and less than 0.3Ω C: 0.3Ω or more
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 1…第一の電子部材、2…第二の電子部材、3A,3B…接続部材、5…接着剤組成物、8…積層体、11…第一の基板、12…第一の接続部、21…第二の基板、22…第二の接続部、P…導電粒子、10A,10B…接続構造体。 DESCRIPTION OF SYMBOLS 1... First electronic member, 2... Second electronic member, 3A, 3B... Connection member, 5... Adhesive composition, 8... Laminate, 11... First substrate, 12... First connection part, 21... Second substrate, 22... Second connection part, P... Conductive particles, 10A, 10B... Connection structure.

Claims (7)

  1.  重合性化合物と、重合開始剤と、ジカルボン酸ジエステル化合物と、を含有する、接着剤組成物。 An adhesive composition containing a polymerizable compound, a polymerization initiator, and a dicarboxylic acid diester compound.
  2.  前記重合開始剤が熱重合開始剤である、請求項1に記載の接着剤組成物。 The adhesive composition according to claim 1, wherein the polymerization initiator is a thermal polymerization initiator.
  3.  前記ジカルボン酸ジエステル化合物として、コハク酸ジエステル、グルタル酸ジエステル、アジピン酸ジエステル、ピメリン酸ジエステル、スベリン酸ジエステル、リンゴ酸ジエステル及びフタル酸ジエステルからなる群より選択される少なくとも一種の化合物を含有する、請求項1又は2に記載の接着剤組成物。 The dicarboxylic acid diester compound contains at least one compound selected from the group consisting of succinic acid diester, glutaric acid diester, adipic acid diester, pimelic acid diester, suberic acid diester, malic acid diester and phthalic acid diester. Item 3. The adhesive composition according to Item 1 or 2.
  4.  前記ジカルボン酸ジエステル化合物の含有量が、重合性化合物100質量部に対して、0.01~40質量部である、請求項1~3のいずれか一項に記載の接着剤組成物。 The adhesive composition according to any one of claims 1 to 3, wherein the content of the dicarboxylic acid diester compound is 0.01 to 40 parts by mass with respect to 100 parts by mass of the polymerizable compound.
  5.  導電粒子を更に含有する、請求項1~4のいずれか一項に記載の接着剤組成物。 The adhesive composition according to any one of claims 1 to 4, further comprising conductive particles.
  6.  回路接続用である、請求項1~5のいずれか一項に記載の接着剤組成物。 The adhesive composition according to any one of claims 1 to 5, which is for circuit connection.
  7.  第一の接続部を有する第一の電子部材と、第二の接続部を有する第二の電子部材との間に、請求項1~6のいずれか一項に記載の接着剤組成物を介在させ、前記第一の電子部材及び前記第二の電子部材を熱圧着して、前記第一の接続部及び前記第二の接続部を互いに電気的に接続する工程を備える、接続構造体の製造方法。

     
    The adhesive composition according to any one of claims 1 to 6 is interposed between a first electronic member having a first connection portion and a second electronic member having a second connection portion. and thermocompression bonding the first electronic member and the second electronic member to electrically connect the first connecting portion and the second connecting portion to each other. Method.

PCT/JP2022/018049 2021-04-19 2022-04-18 Adhesive composition and method for producing connection structure WO2022224934A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023515463A JPWO2022224934A1 (en) 2021-04-19 2022-04-18

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021070337 2021-04-19
JP2021-070337 2021-04-19

Publications (1)

Publication Number Publication Date
WO2022224934A1 true WO2022224934A1 (en) 2022-10-27

Family

ID=83723361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018049 WO2022224934A1 (en) 2021-04-19 2022-04-18 Adhesive composition and method for producing connection structure

Country Status (3)

Country Link
JP (1) JPWO2022224934A1 (en)
TW (1) TW202309224A (en)
WO (1) WO2022224934A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03237174A (en) * 1990-02-14 1991-10-23 Japan Carlit Co Ltd:The Adhesive composition
JPH0495310A (en) * 1990-08-02 1992-03-27 Sumitomo Bakelite Co Ltd Anisotropic conductive film
WO2002055625A1 (en) * 2001-01-15 2002-07-18 Sekisui Chemical Co., Ltd. Photoreactive hot-melt adhesive composition
JP2006199937A (en) * 2004-12-15 2006-08-03 Tamura Kaken Co Ltd Conductive adhesive and conductive part and electronic part module using the same
WO2014189028A1 (en) * 2013-05-23 2014-11-27 積水化学工業株式会社 Conductive material and connected structure
WO2016190361A1 (en) * 2015-05-26 2016-12-01 デンカ株式会社 Composition
JP2017061599A (en) * 2015-09-24 2017-03-30 横浜ゴム株式会社 An adhesive composition for optical communication
JP2021024894A (en) * 2019-07-31 2021-02-22 株式会社ダイセル Adhesive for glass and laminate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03237174A (en) * 1990-02-14 1991-10-23 Japan Carlit Co Ltd:The Adhesive composition
JPH0495310A (en) * 1990-08-02 1992-03-27 Sumitomo Bakelite Co Ltd Anisotropic conductive film
WO2002055625A1 (en) * 2001-01-15 2002-07-18 Sekisui Chemical Co., Ltd. Photoreactive hot-melt adhesive composition
JP2006199937A (en) * 2004-12-15 2006-08-03 Tamura Kaken Co Ltd Conductive adhesive and conductive part and electronic part module using the same
WO2014189028A1 (en) * 2013-05-23 2014-11-27 積水化学工業株式会社 Conductive material and connected structure
WO2016190361A1 (en) * 2015-05-26 2016-12-01 デンカ株式会社 Composition
JP2017061599A (en) * 2015-09-24 2017-03-30 横浜ゴム株式会社 An adhesive composition for optical communication
JP2021024894A (en) * 2019-07-31 2021-02-22 株式会社ダイセル Adhesive for glass and laminate

Also Published As

Publication number Publication date
JPWO2022224934A1 (en) 2022-10-27
TW202309224A (en) 2023-03-01

Similar Documents

Publication Publication Date Title
WO2011083824A1 (en) Circuit connecting adhesion film and circuit connecting structure
WO2020184583A1 (en) Adhesive film for circuit connection, manufacturing method thereof, manufacturing method of circuit connection structure, and adhesive film accommodating set
US9249294B2 (en) Conductive resin composition and cured product thereof
JP2017132919A (en) Anisotropic conductive adhesive composition, film-like adhesive, connection structure and semiconductor device
WO2017090659A1 (en) Adhesive composition for circuit connection, and structure
JP6044261B2 (en) Anisotropic conductive adhesive composition
JP2010077317A (en) Adhesive composition, adhesive film and usage thereof
JP7172991B2 (en) Adhesive composition and structure
WO2022224934A1 (en) Adhesive composition and method for producing connection structure
JP7124936B2 (en) Adhesive composition and structure
WO2023276889A1 (en) Adhesive film for connecting circuit, circuit connection structure, and method for manufacturing same
TW201921802A (en) Adhesive film for circuit connections and manufacturing method thereof, manufacturing method of circuit connection structure, and adhesive film housing set
JP2022020338A (en) Adhesive film for circuit connection and production method of the same, and method of producing circuit connection structure
CN108350341B (en) Adhesive composition and structure
JP6894221B2 (en) Anisotropic conductive films, laminated films containing them, and methods for manufacturing them.
WO2023195398A1 (en) Adhesive composition, adhesive film for circuit connection, circuit connection structure, and method of producing same
JPWO2018181536A1 (en) Adhesive composition and structure
JP6265242B2 (en) Anisotropic conductive adhesive composition
WO2020184584A1 (en) Circuit-connecting adhesive film and method for manufacturing same, circuit-connecting structure manufacturing method, and adhesive film housing set
JP2022048791A (en) Circuit connection adhesive film, as well as, circuit connection structure and manufacturing method thereof
TWI836720B (en) Adhesive compositions and structures for circuit connection
JP2022039384A (en) Adhesive film for circuit connection and method for producing the same, and method for producing circuit connection structure
JP2022133758A (en) Adhesive film for circuit connection, production method of circuit connection structure, and circuit connection structure
JP2022098985A (en) Adhesive film for circuit connection and method for producing the same, and method for producing circuit connection structure
JP2023134038A (en) Adhesive film for connecting circuits, and circuit connection structure and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22791705

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023515463

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE