WO2022224896A1 - Cultivation system and method for controlling same - Google Patents

Cultivation system and method for controlling same Download PDF

Info

Publication number
WO2022224896A1
WO2022224896A1 PCT/JP2022/017742 JP2022017742W WO2022224896A1 WO 2022224896 A1 WO2022224896 A1 WO 2022224896A1 JP 2022017742 W JP2022017742 W JP 2022017742W WO 2022224896 A1 WO2022224896 A1 WO 2022224896A1
Authority
WO
WIPO (PCT)
Prior art keywords
cultivation
moisture
space
solar panel
air
Prior art date
Application number
PCT/JP2022/017742
Other languages
French (fr)
Japanese (ja)
Inventor
雄太 竹ノ内
和也 藤岡
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2022224896A1 publication Critical patent/WO2022224896A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/02Treatment of plants with carbon dioxide
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/18Greenhouses for treating plants with carbon dioxide or the like
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/42Cooling means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Definitions

  • the present invention relates to a cultivation device and its control method.
  • Patent Literature 1 discloses that power generated using a solar power generation device is supplied to a carbon dioxide supply device and a cold heat supply device, and used for various controls in a cultivation room.
  • the solar panel-equipped soil cultivation system disclosed in Patent Document 2 shows a technique for managing the cultivation environment for crops under the solar panel.
  • the ridges of a plurality of frame sections that support solar panels are connected by roof members, and the outer peripheral surface is integrally surrounded by a cover section to construct a cultivation house using the frame sections as pillars.
  • a translucent area is provided on the solar panel, and a translucent member is used for the roof member, so that the crops are cultivated by the light passing through the translucent area and the roof member. Cultivation of this crop is carried out in a cultivation tank filled with soil, and an appropriate cultivation nutrient solution is supplied through supply means.
  • the present invention has been made in view of the above circumstances, and its object is to effectively utilize solar panels for artificially cultivating plants, and to efficiently grow plants with a relatively small environmental load and running costs.
  • An object of the present invention is to provide a cultivation device capable of cultivating and a control method thereof.
  • the cultivation apparatus and the control method thereof are characterized by the following (1) to (12).
  • a cultivation apparatus having a cultivation chamber for cultivating plants formed in a closed space isolated from the outside air, an artificial light source capable of emitting light required by plants in the cultivation room; an air environment adjustment unit that adjusts the air environment in the cultivation room to a state suitable for plant growth; a solar panel having a power generation unit that generates power using sunlight; a hygroscopic material arranged at a position adjacent to and facing the back surface of the solar panel; a moisture supply unit capable of supplying moisture generated in the cultivation chamber, air containing the moisture, or outside air to the space where the hygroscopic material exists; one or more connecting portions connecting the cultivation chamber and the space where the moisture absorbing material exists; Cultivation device.
  • the connecting portion is a first connecting portion that connects the cultivating chamber and the hygroscopic material in a state in which moisture generated in the cultivating chamber or air containing the moisture can be supplied to the space in which the hygroscopic material exists. having a spatial connection, The cultivation apparatus according to (1) above.
  • a third space connecting portion that connects the inner space of the moisture absorbent cover and the space of the cultivation chamber in a state in which moisture in the inner space of the moisture absorbent cover can flow, The cultivation apparatus according to (3) or (4) above.
  • the hygroscopic material includes an adsorption/desorption material capable of adsorbing and desorbing carbon dioxide according to temperature changes, a first state in which the inner space of the moisture absorbent cover is isolated from the space of the cultivation chamber and outside air flows through the inner space; and a first state in which the inner space of the moisture absorbent cover is isolated from the outside air and the inner space and the cultivation chamber.
  • a path switching unit capable of switching to a second state in which the space of The cultivation apparatus according to (3) above.
  • a power control unit that supplies power obtained by power generation of the solar panel to at least the artificial light source as a power supply, The cultivation apparatus according to any one of (1) to (6) above.
  • the cultivation apparatus includes an expansion space formed by covering the moisture absorbing material with a cover and isolated from the outside air, dehumidifying the air in the cultivation chamber by introducing dry air through the expansion space into the cultivation chamber when the external environment is at any time of the night; A control method for a cultivation apparatus according to (8) or (9) above.
  • the cultivation apparatus includes an expansion space formed by covering the moisture absorbing material with a cover and isolated from the outside air, collecting the water formed in the expansion space into the cultivation room when the external environment is in the daytime, and reusing the water as a nutrient solution for cultivating plants; A control method for a cultivation apparatus according to (8) or (9) above.
  • the cultivation apparatus includes an expansion space formed by covering the perimeter of the hygroscopic material with a cover, and as at least part of the hygroscopic material, an adsorption/desorption material capable of adsorbing and desorbing carbon dioxide according to temperature changes.
  • an adsorption/desorption material capable of adsorbing and desorbing carbon dioxide according to temperature changes.
  • the moisture in the cultivation room can be supplied to and absorbed by the hygroscopic material.
  • the moisture absorbed by the hygroscopic material absorbs heat of vaporization when it evaporates as the temperature of the solar panel rises due to solar radiation, so that the solar panel can be cooled. This can prevent the power generation efficiency of the solar panel from deteriorating.
  • this cultivation apparatus uses an artificial light source, it is not necessary to introduce sunlight into the cultivation room, so that temperature rise in the cultivation room can be suppressed.
  • Solar panels can also be used as power sources for artificial light sources.
  • the term "closed space” means a space that is isolated from the outside air and substantially closed, and is a concept that includes completely closed spaces and semi-closed spaces.
  • the cultivation apparatus having the configuration (2) above, when the humidity in the cultivation room becomes high at night, it is possible to supply and absorb the moisture in the cultivation room into the hygroscopic material. This can reduce the energy required to dehumidify the air in the cultivation room.
  • a special space can be formed inside the moisture absorbent cover.
  • This space can be used as an expanded space in which the cultivation room is expanded, and can be used to introduce outside air as necessary, or to hold carbon dioxide, dry air, recovered moisture, etc. is also possible.
  • the space of the cultivation room can be expanded while passing through the inner space of the moisture absorbent cover. Allows air to circulate. Thereby, the air can be dehumidified using the hygroscopic material, and the dried air can be returned to the space of the cultivation room.
  • the moisture evaporated in the inner space of the moisture absorbent cover can be recovered by returning it to water, and returned to the cultivation chamber for reuse in plant cultivation. Thereby, discharge of water from the cultivation apparatus can be reduced. In addition, it is possible to prevent external invasion of bacteria and microorganisms that adversely affect the growth of plants.
  • the carbon dioxide taken in by the adsorption/desorption material from the outside air is supplied to the space of the cultivation room, for example, by utilizing the temperature change of the solar panel due to the difference between day and night. It becomes possible to Plant growth can be promoted by supplying carbon dioxide into the cultivation chamber to increase its concentration. In addition, there is no need to prepare facilities such as cylinders for supplying carbon dioxide.
  • the cultivation apparatus having the configuration of (7) above, since the power generated by the solar panel is used to generate the artificial light necessary for the photosynthesis of the plants in the closed cultivation room, power supply from the outside is not required. can be eliminated or reduced. This facilitates realization of a relatively small-scale cultivation apparatus.
  • the synergistic effect of the combination of the solar panel and the cultivation room can be used to reduce the external energy supply required for operating the cultivation apparatus.
  • the hygroscopic material can absorb moisture supplied from the cultivation room or moisture from the outside air, which has become highly humid due to transpiration from the plants in the external environment during any time of the night (nighttime).
  • the temperature of the solar panel rises during the daytime (daytime) in the external environment, the solar panel is cooled by the heat of vaporization of the moisture released by evaporation from the moisture absorbing material. Therefore, a decrease in power generation efficiency of the solar panel is suppressed.
  • “external environment” means the environment outside the cultivation room.
  • the power generated by the solar panel is used during the daytime to provide the plants cultivated in the cultivation apparatus with the energy necessary for photosynthesis. Artificial light can be applied. Therefore, it is no longer necessary to take in sunlight into the cultivation room, and the temperature rise in the cultivation room due to solar energy is suppressed, so that a synergistic effect can be obtained by combining the solar panel and the cultivation room of the cultivation apparatus.
  • the air passing through the expansion space can be dehumidified by utilizing the moisture absorption and evaporation in the moisture absorbing material, and the dry air is introduced into the cultivation chamber. can.
  • the energy required for dehumidifying the air in the cultivation room can be reduced, and the environmental load of the cultivation apparatus can be reduced.
  • the water discharged from the cultivation chamber along with the cultivation of the plant is used in the expansion space and then circulated back to the cultivation chamber. It becomes possible to reuse. Thereby, the discharge of water from the cultivation apparatus to the outside can be reduced. In addition, it is possible to prevent external invasion of bacteria and microorganisms that adversely affect the growth of plants.
  • the carbon dioxide taken in by the adsorption/desorption material from the outside air is removed from the space of the cultivation room by using the temperature change of the solar panel due to the difference between day and night.
  • can be supplied to Plant growth can be promoted by supplying carbon dioxide into the cultivation chamber to increase its concentration.
  • facilities such as cylinders for supplying carbon dioxide.
  • the cultivation apparatus and its control method of the present invention make effective use of solar panels for artificially cultivating plants, and can be useful for efficiently cultivating plants with a relatively small environmental load and running costs.
  • FIG. 1 is a longitudinal sectional view showing an arrangement example of main components in a plant factory according to the first embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing changes in the state of the hygroscopic material during nighttime and daytime.
  • FIG. 3 is a flow chart outlining the process of change occurring at night and day in the plant factory shown in FIG.
  • FIG. 4 is a vertical cross-sectional view showing the main components in the plant factory in the second embodiment of the present invention at night.
  • FIG. 5 is a longitudinal sectional view showing the main components in the same plant factory as in FIG. 4 in the daytime situation.
  • FIG. 6 is a flow chart outlining the process of change occurring at night and day in the plant factory shown in FIGS. 4 and 5, respectively.
  • FIG. 7 is a state transition diagram showing an overview of the configuration and state changes of the plant factory in the third embodiment of the present invention.
  • FIG. 8 is a flow chart outlining the process of change that occurs in the plant factory shown in FIG. 7 at night
  • FIG. 1 shows an arrangement example of main components in the plant factory 100 according to the first embodiment of the present invention.
  • Plant factory 100 is an example of a cultivation apparatus.
  • a plant factory 100 shown in FIG. 1 includes a cultivation room 10 for cultivating plants 13 and a solar panel 20 installed on the roof 10a of the building.
  • a moisture absorbing material 30 is attached along the back surface of the solar panel 20 .
  • the hygroscopic material 30 is attached along the surface of the solar panel 20 opposite to the sunlight receiving surface in the thickness direction.
  • the place where the solar panel 20 is installed can be changed to various positions as necessary as long as it is in the vicinity of the cultivation room 10 .
  • the thermal load of the cultivation room 10 due to sunlight can be greatly reduced.
  • sunlight can be received more efficiently by arranging the solar panel 20 in a slightly inclined state as shown in FIG.
  • the installation angle of the solar panel 20 is not limited to the illustrated one, and is appropriately adjusted according to the installation environment.
  • the installation angle of the solar panel 20 is the angle between the horizontal plane and the light receiving surface of the solar panel 20 .
  • the cultivation room 10 forms a closed space 11 that is isolated from the outside air, like the interior of a general building, and is surrounded by walls made of a material such as heat insulating material. . The same applies to the ceiling and floor. Therefore, the cultivation room 10 has airtightness to some extent, and forms an air environment in which the temperature, humidity, carbon dioxide concentration, etc. are different from the outside air.
  • the closed space 11 may be a completely closed space that is completely shut off from the outside air, or a semi-closed space that is shut off from the outside air except for a part necessary for environmental control.
  • a lighting unit 14 capable of irradiating the light 16 necessary for photosynthesis of the plants 13 is installed on the lower surface of the cultivation shelf 15B above the closed space 11 .
  • a light source of the lighting unit 14 is composed of a large number of LED (light emitting diode) elements.
  • the light source of the lighting unit 14 is inside the cultivation room 10, but the light source is arranged outside the cultivation room 10, and the light from the light source is transmitted by a light guide plate or an optical fiber.
  • You may comprise so that it may guide
  • the cultivation container 12 is arranged on the cultivation shelf 15A installed in the cultivation room 10.
  • the cultivation container 12 forms a pool filled with a nutrient solution necessary for hydroponic cultivation of plants 13.
  • a plurality of plants 13 are arranged horizontally at regular intervals above the pool. is supported and fixed.
  • An air conditioner 17, a dehumidifier 18, and a fan 19 are installed inside the cultivation room 10 shown in FIG.
  • the air conditioner 17 is used to maintain the temperature in the cultivation room 10 at a temperature suitable for growing the plants 13 .
  • the dehumidifier 18 dehumidifies the inside of the cultivation room 10 in order to maintain the inside of the cultivation room 10 at a humidity suitable for growing the plants 13 . That is, the humidity in the cultivation room 10 increases due to transpiration from the plants 13 cultivated in the cultivation room 10, which adversely affects the growth of the plants 13. Therefore, it is necessary to dehumidify and dry the inside of the cultivation room 10.
  • the fan 19 circulates the air in the cultivation room 10 and controls the air environment so that the temperature, humidity, carbon dioxide concentration, etc. are uniform in the cultivation room 10 .
  • the solar panel 20 has a power generation unit that generates power using sunlight.
  • the solar panel 20 is configured by arranging a large number of solar cells on the same plane in the vertical direction and the horizontal direction in the same manner as a general solar panel, and each cell is electrically connected to each other.
  • one hygroscopic material 30 having an area equivalent to almost the entire rear surface of the solar panel 20 is attached to the solar panel 20 .
  • the hygroscopic materials 30 are arranged in contact or close to each other so that the thermal resistance between them and the solar panel 20 is reduced.
  • the thickness of the hygroscopic material 30 is, for example, about 0.1 to several centimeters, and is appropriately changed according to the hygroscopic performance of the hygroscopic material 30 and the conditions required by the plant factory 100 .
  • a plurality of divided moisture absorbing materials 30 may be arranged vertically and horizontally and attached to the solar panel 20, or a plurality of moisture absorbing materials 30 divided for each solar cell or for each module combining a plurality of cells may be used. can be
  • the main components of the hygroscopic material 30 are made of a temperature-responsive polymer material. It has reversible physical properties that release moisture. Therefore, this hygroscopic material 30 can be used, for example, to absorb and dehumidify moisture from the air, and can also be used to desorb the absorbed moisture. In this embodiment, the hygroscopic material 30 is used to cool the solar panel 20 as described later.
  • the inside of the cultivation room 10 and the moisture absorbing material 30 are connected via, for example, one or more ducts 39, so that the moisture 41 in the cultivation room 10 can move to the moisture absorbing material 30 side.
  • the moisture absorbed and separated by the dehumidifier 18 in the cultivation room 10 can be supplied to the hygroscopic material 30 .
  • the hygroscopic material 30 exists in a higher place than the cultivation room 10 as shown in FIG.
  • the power generated by the solar panel 20 by receiving sunlight during the daytime is supplied to the power control unit 42 and used as at least part of the power supply for the lighting unit 14 under the control of the power control unit 42 .
  • An input of the power control unit 42 is connected to an external power source such as a commercial power source in addition to the solar panel 20 .
  • the power supply control unit 42 supplies at least the power supply power of the lighting unit 14 from the power generated by the solar panel 20 as the power necessary for the plant factory 100 to operate.
  • the power generated by the solar panel 20 is insufficient, the shortage of power is supplied by the power of the external power supply.
  • the power control unit 42 supplies the surplus power to the external power supply.
  • FIG. 2 shows changes in the state of the hygroscopic material 30 during nighttime and daytime. That is, the nighttime state and the daytime state shown in FIG. 2 are alternately switched approximately every half day, and the plant factory 100 shown in FIG. 1 operates while repeating this change every day.
  • the temperature of the solar panel 20 and the moisture absorbing material 30 is normal temperature of about 25°C or less.
  • the hygroscopic material 30 can absorb the moisture 31 supplied from the cultivation chamber 10 side and accumulate it inside.
  • the temperature of the hygroscopic material 30 attached to the back side of the solar panel 20 rises together with the solar panel 20 during the daytime hours.
  • the moisture 31 retained inside the moisture absorbing material 30 is desorbed from the moisture absorbing material 30 and released to the surroundings.
  • the moisture 31 evaporates.
  • the moisture 31 absorbs the heat of vaporization 32 from the surroundings, so that the surrounding hygroscopic material 30 and the solar panel 20 can be cooled.
  • the temperature rise of the solar panel 20 is suppressed, and a decrease in power generation efficiency is prevented.
  • the hygroscopic material 30 of the plant factory 100 shown in FIG. 1 various kinds of materials can be appropriately selected according to the conditions required by the plant factory 100.
  • Other categories of such materials include hydrogels, hard coatings, and nanofibers.
  • Specific materials include inorganic salts such as CaCl 2 and LiCl, polysaccharides such as sodium alginate, hydrophilic polymers such as polypyrrole derivatives, and metal organic frameworks (MOF).
  • MIL-101(Cr) There is MIL-101(Cr). Binders also include polyacrylamides, silicates, and polyacrylnitrile.
  • the desorption form of the hygroscopic material 30 includes the form of water or steam.
  • a temperature-responsive gel such as that disclosed in International Publication No. WO2018/117165 can be used as the hygroscopic material 30 .
  • FIG. 3 shows an overview of the process of change occurring at night and day in the plant factory 100 shown in FIG. The process of Figure 3 is described below.
  • step S11 Such control is performed automatically based on the time of day, or manually.
  • step S12 the electric power required for maintaining the temperature in the cultivation room 10 at an appropriate temperature using the air conditioner 17 increases, for example.
  • step S13 since the humidity in the cultivation room 10 rises at night, excess moisture generated here is supplied from the cultivation room 10 to the moisture absorbing material 30 to absorb the moisture (step S13).
  • the moisture separated in the cultivation room 10 by the dehumidifying operation of the dehumidifier 18 is supplied to the moisture absorbing material 30 through a duct or the like.
  • high-humidity air is supplied to the hygroscopic material 30 through a duct or the like.
  • the temperature of the solar panel 20 and the hygroscopic material 30 drops to, for example, 25°C or less. Therefore, the hygroscopic material 30 can efficiently absorb the moisture 41 supplied from the cultivation room 10 in a relatively low temperature environment and expands (step S14).
  • step S22 the sun starts supplying energy such as light
  • step S22 the solar panel 20 starts generating electricity, but at the same time, it is heated by the solar energy, so the temperature of the solar panel 20 and the hygroscopic material 30 rises (step S23).
  • the hygroscopic material 30 When the temperature of the hygroscopic material 30 rises, for example, to about 60°C due to the heating of the solar panel 20 by solar energy, the hygroscopic material 30 releases the retained moisture to the outside. Then, when this moisture evaporates, it takes heat of vaporization from the surroundings (step S24).
  • the temperature rise is suppressed because the solar panel 20 is cooled by the heat of vaporization taken by the moisture of the hygroscopic material 30 (step S25).
  • the temperature rise of the solar panel 20 is suppressed and the power generation efficiency is improved (step S26).
  • the power generated by the solar panel 20 with improved power generation efficiency is supplied to the lighting unit 14 and the like via the power control unit 42 (step S27). Therefore, power supply electric power which must be supplied to the lighting unit 14 grade
  • FIG. 4 shows the nighttime situation of the main components in the plant factory 100A in the second embodiment of the present invention
  • FIG. 5 shows the daytime situation.
  • 100 A of plant factories are examples of a cultivation apparatus.
  • a plant factory 100A shown in FIGS. 4 and 5 has a cultivation room 10 having substantially the same configuration as in FIG. Also in this plant factory 100A, a solar panel 20 is installed on the roof 10a of the cultivation room 10, and a hygroscopic material 30 is mounted on the rear surface of the solar panel 20. As shown in FIG.
  • the moisture absorbent material 30 is covered with a moisture absorbent cover 35 slightly larger than the outer shape of the moisture absorbent material 30 .
  • the hygroscopic material cover 35 has a certain degree of airtightness and watertightness, and forms an expansion space 35a inside thereof isolated from the outside air.
  • the hygroscopic material 30 is present in this expansion space 35a.
  • the expansion space 35a and the cultivation room 10 are connected via ducts 36, 37, and 38. Therefore, the expansion space 35a can be used as a part of the plant factory 100A in a form as if the closed space 11 in the cultivation room 10 was expanded.
  • a blower (not shown) can blow air, and the duct 36 can be used to send high-humidity air 43 from the cultivation room 10 toward the expansion space 35a. Moreover, since the hygroscopicity of the hygroscopic material 30 increases at night when the temperature is low, the air in the expansion space 35a becomes dry. This dried air 44 can be returned into the cultivation room 10 via the duct 37 .
  • the hygroscopic material 30 releases the retained moisture as the temperature rises, so that moisture 45 accumulates in the expansion space 35a after cooling.
  • the duct 38 is used to return the water 45 to the cultivation container 12 of the cultivation room 10, and the water 45 can be reused.
  • the water content 45 in the expansion space 35a is exaggerated in FIG.
  • Moisture 45 will accumulate at the connection position of 38 .
  • FIG. 6 shows an overview of the process of change occurring at night and day in the plant factory 100A shown in FIGS. The process of Figure 6 is described below.
  • step S13A since the humidity in the cultivation room 10 rises at night, the high-humidity air generated in the cultivation room 10 is sent to the expansion space 35a through the duct 36 and supplied to the hygroscopic material 30 (step S13A).
  • the temperature of the solar panel 20 and the hygroscopic material 30 drops to, for example, 25°C or less. Therefore, in a low-temperature environment, the hygroscopic material 30 efficiently absorbs moisture from the high-humidity air supplied from the cultivation room 10 and expands (step S14).
  • the air in the expansion space 35a is dried and the humidity is lowered.
  • This dried air is supplied from the expansion space 35a through the duct 37 into the cultivation room 10 (step S15). That is, in the situation shown in FIG. 4, the air in the cultivation room 10 circulates through the duct 36, the expansion space 35a, and the duct 37 so as to return to the cultivation room 10, and this air circulates. It is dehumidified in the expansion space 35a on the way. Therefore, the load on the dehumidifier 18 can be reduced at night.
  • the lighting unit 14 of the plant factory 100A is switched to the lighting state at dawn, for example, in the plant factory 100A of FIG. 5 (step S21).
  • the plants 13 start photosynthesis due to the irradiation of the light 16 from the lighting unit 14 even in the cultivation room 10 where the sunlight is not irradiated.
  • step S22 the sun starts supplying energy such as light
  • step S22 the solar panel 20 starts generating electricity, but at the same time, it is heated by the solar energy, so the temperature of the solar panel 20 and the hygroscopic material 30 rises (step S23).
  • the hygroscopic material 30 When the temperature of the hygroscopic material 30 rises, for example, to about 60°C due to the heating of the solar panel 20 by solar energy, the hygroscopic material 30 releases the retained moisture to the outside. Then, when this moisture evaporates, it takes heat of vaporization from the surroundings (step S24).
  • the temperature rise is suppressed because the solar panel 20 is cooled by the heat of vaporization taken by the moisture of the hygroscopic material 30 (step S25).
  • the temperature rise of the solar panel 20 is suppressed and the power generation efficiency is improved (step S26).
  • the power generated by the solar panel 20 with improved power generation efficiency is supplied to the lighting unit 14 and the like via the power control unit 42 (step S27). Therefore, the power supply electric power which must be supplied to the lighting unit 14 grade
  • the water vapor released from the hygroscopic material 30 in a high-temperature environment is cooled in the expansion space 35a and collected as water (step S28). Furthermore, the water collected in the expansion space 35a returns to the cultivation room 10 through the duct 38, and is reused, for example, as the water in the nutrient solution in the cultivation container 12 (step S29).
  • the water circulating through the expansion space 35a is isolated from the outside air, it is possible to avoid contamination of the water with microorganisms and bacteria that adversely affect the growth of the plants 13. water can be efficiently reused.
  • FIG. 7 shows an overview of the configuration and state changes of the plant factory 100B in the third embodiment of the present invention.
  • the upper side represents the state of the plant factory 100B during the night
  • the lower side represents the state of the plant factory 100B during the day.
  • Plant factory 100B is an example of a cultivation apparatus.
  • the cultivation room 10, the solar panel 20, and the absorbent cover 35 are the same as in the second embodiment.
  • the hygroscopic material 30A of the plant factory 100B is composed of an adsorption/desorption material capable of adsorbing and desorbing carbon dioxide in addition to moisture.
  • the adsorption/desorption material that constitutes the hygroscopic material 30A can repeat the adsorption/desorption operation due to temperature changes. That is, the adsorption/desorption material adsorbs carbon dioxide contained in the air by coming into contact with the supplied air such as air at normal temperature (first temperature, eg, 0° C. to 40° C.) such as room temperature. Also, the adsorbing/desorbing material is heated to a predetermined temperature (second temperature, eg, 50° C. to 70° C.) to desorb adsorbed carbon dioxide and moisture.
  • first temperature eg, 0° C. to 40° C.
  • second temperature eg, 50° C. to 70° C.
  • this adsorption/desorption material By desorbing carbon dioxide and moisture, this adsorption/desorption material can adsorb carbon dioxide again, so it can be reused any number of times by repeating the same operation.
  • the adsorption/desorption material adsorbs carbon dioxide in the air supplied at atmospheric pressure (first pressure), and the pressure inside the container containing the adsorption/desorption material is reduced (second pressure, for example, 10000 Pa). , carbon dioxide and moisture can also be desorbed.
  • adsorption/desorption material examples include metal carbonates such as potassium carbonate and calcium carbonate, liquid amines such as monoamine aqueous solutions, porous bodies filled with amine liquid, and porous body surfaces modified with amine monomers. It is preferred to use solid amines such as amine polymers.
  • an ion exchange resin such as a quaternary amine-containing ion exchange resin, or a single metal organic framework (MOF) or an amine-modified MOF can be used.
  • the ducts 36, 37 and 38 are provided with opening/closing valves 64, 65 and 66 as shown in the upper side of FIG.
  • on-off valves 62 and 63 are arranged at locations where outside air flows 71 and 72 flow, respectively, and a blower 61 is provided to introduce outside air into the expansion space 35a.
  • FIG. 8 shows an overview of the process of change occurring in the plant factory 100B shown in FIG. 7 at night and during the day. The process of Figure 8 is described below.
  • step S31 After closing the on-off valves 64, 65, and 66 shown in the upper part of FIG. is introduced into the expansion space 35a as the airflow 71 (step S31). Also, the introduced outside air is discharged as an air flow 72 .
  • the temperature of the solar panel 20 and the hygroscopic material 30A is normal, for example, about 25° C. or less. (step S32).
  • the lighting unit 14 of the plant factory 100B is switched to the lighting state at dawn, for example (step S42).
  • the plants 13 start photosynthesis due to the irradiation of the light 16 from the lighting unit 14 even in the cultivation room 10 where the sunlight is not irradiated.
  • step S43 the sun starts supplying energy such as light
  • step S44 the solar panel 20 starts generating electricity, but at the same time, it is heated by the solar energy, so the temperature of the solar panel 20 and the moisture absorbing material 30A rises (step S44).
  • the hygroscopic material 30A When the temperature of the hygroscopic material 30A rises to, for example, about 60° C. by heating the solar panel 20 with solar energy, the hygroscopic material 30A releases the retained moisture and carbon dioxide into the expansion space 35a (steps S45 and S47). .
  • the carbon dioxide 74 released from the hygroscopic material 30A into the expansion space 35a is supplied to the cultivation chamber 10 through the duct 37 as shown in the lower side of FIG. 7 (step S48). Also, the air 73 in the cultivation room 10 having a relatively low carbon dioxide concentration is supplied to the expansion space 35a through the duct 36 (step S49).
  • the carbon dioxide concentration in the cultivation room 10 can be increased by the carbon dioxide released by the hygroscopic material 30A.
  • the carbon dioxide concentration in the cultivation room 10 is promoted.
  • step S50 Electric power obtained by power generation by the solar panel 20 with improved power generation efficiency is supplied to the lighting unit 14 and the like via the power control unit 42 (step S51). Therefore, power supply electric power which must be supplied to the lighting unit 14 grade
  • step S52 the moisture released as water vapor from the hygroscopic material 30A is cooled and collected in the expansion space 35a (step S52). Furthermore, the moisture 75 in the expansion space 35a is supplied to the cultivation container 12 in the cultivation room 10 through the duct 38 as shown in the lower side of FIG. 7 (step S53).
  • the daytime and nighttime temperature changes in the solar panel 20 are used to release the carbon dioxide and moisture adsorbed from the outside air during the daytime. can be supplied to Thereby, the carbon dioxide concentration in the cultivation room 10 increases and the growth of the plant 13 is promoted.
  • the connecting portion is a first connecting portion that connects the cultivating chamber and the hygroscopic material in a state in which moisture generated in the cultivating chamber or air containing the moisture can be supplied to the space in which the hygroscopic material exists. having a spatial connection (duct 39), The cultivation apparatus according to [1] above.
  • the cultivation apparatus according to [1] or [2] above.
  • a second space connecting portion (duct 37) that connects the inner space (extended space 35a) of the hygroscopic material cover and the space of the cultivation chamber in a state in which air can circulate,
  • the cultivation apparatus according to [3] above.
  • a third space connecting portion (duct 38) that connects the inner space of the hygroscopic material cover and the space of the cultivation chamber in a state in which moisture in the inner space can flow,
  • the cultivation apparatus according to the above [3] or [4].
  • the hygroscopic material (30A) includes an adsorption/desorption material capable of adsorbing and desorbing carbon dioxide according to temperature changes, A first state (the upper state in FIG. 7) in which the inner space of the moisture absorbent cover is isolated from the space of the cultivation chamber and outside air flows through the inner space (upper state in FIG. 7), and the inner space of the moisture absorbent cover is isolated from the outside air.
  • a path switching unit (on-off valves 62 to 66) capable of switching between a second state (lower state in FIG. 7) in which the inner space and the space of the cultivation room communicate with each other.
  • the cultivation apparatus plant factory 100B) according to the above [3].
  • a cultivation device plant factory 100 comprising: When the external environment is at any time of the night, high-humidity air in the cultivation room or outside air is supplied to the hygroscopic material to cause the hygroscopic material to absorb moisture (steps S13 and S14); When the external environment is in the daytime, the solar panel is cooled by utilizing heat of vaporization of moisture released from the moisture absorbing material as the temperature of the solar panel rises (step S24, S25), A control method for a cultivation device.
  • step S27 Supplying the power obtained by the power generation of the solar panel as a power source to the artificial light source of the cultivation apparatus (step S27); The method for controlling the cultivation apparatus according to [8] above.
  • the cultivating apparatus includes an expansion space (35a) formed by covering the hygroscopic material with a cover (hygroscopic material cover 35) and isolated from the outside air, dehumidifying the air in the cultivation room by introducing dry air (44) through the expansion space into the cultivation room when the external environment is at any time of the night (step S15); A control method for a cultivation apparatus according to the above [8] or [9].
  • the cultivation apparatus includes an expansion space (35a) formed by covering the moisture absorbing material with a cover (hygroscopic material cover 35) and isolated from the outside air, When the external environment is in the daytime, the water (45) formed in the expansion space is collected into the cultivation room and reused as a nutrient solution for plant cultivation (step S28). , S29), A control method for a cultivation apparatus according to the above [8] or [9].
  • the cultivation apparatus includes an expansion space (35a) formed by covering the perimeter of the hygroscopic material with a cover (hygroscopic material cover 35). has an adsorption/desorption material capable of adsorption and desorption of When the external environment is at any time of the night, outside air is circulated through the expansion space to adsorb carbon dioxide in the air with the adsorption/desorption material (steps S31 and S32); Supplying carbon dioxide desorbed from the adsorption/desorption material into the cultivation room from the expansion space during any time period in which the external environment is in the daytime (steps S47 to S49), A control method for a cultivation apparatus according to the above [8] or [9].
  • the lighting unit 14 is turned off at night and turned on during the day. It may be turned off or turned on.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Botany (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Greenhouses (AREA)

Abstract

A cultivation system (plant factory (100)) comprises a cultivation room (10), an artificial light source (lighting unit (14)), an air environment control unit (air conditioner (17) and dehumidifier (18)), a solar panel (20), a moisture absorbent (30), and a moisture supply unit and connection unit (duct (39)). The moisture absorbent (30) is positioned adjacent to the solar panel (20) so as to face the back side thereof. The moisture supply unit (duct (39)) is capable of supplying moisture generated in the cultivation room (10), air containing the moisture, or outside air to the space where the moisture absorbent (30) is present. The connection unit (duct (39)) connects the inside of the cultivation room (10) to the space where the moisture absorbent (30) is present.

Description

栽培装置およびその制御方法Cultivation device and its control method
 本発明は、栽培装置およびその制御方法に関する。 The present invention relates to a cultivation device and its control method.
 植物工場などの栽培装置において植物の育成を人工的に促進したり管理するためには、植物の光合成に必要な光を十分な光量で照射したり、十分な濃度の二酸化炭素(CO)を供給することが重要である。また、安定して植物を生産するためには適切な温度管理や湿度管理がされた栽培室の環境を用意する必要がある。また、そのような植物の育成に適した環境を維持するために、通常の栽培装置を稼働させる場合には比較的大きなエネルギーを必要とし、ランニングコストが増大する傾向がある。したがって、植物の栽培に伴うコストの低減や環境への負荷を小さくすることを目的として様々な技術開発が行われている。 In order to artificially promote and manage the growth of plants in a cultivation apparatus such as a plant factory, it is necessary to irradiate the light necessary for photosynthesis of plants with a sufficient amount of light, or to provide a sufficient concentration of carbon dioxide (CO 2 ). supply is important. In addition, in order to stably produce plants, it is necessary to prepare an environment of a cultivation room in which temperature and humidity are appropriately controlled. In order to maintain an environment suitable for growing such plants, a relatively large amount of energy is required to operate a normal cultivation apparatus, which tends to increase running costs. Therefore, various technical developments have been made for the purpose of reducing the cost and reducing the burden on the environment associated with plant cultivation.
 例えば、特許文献1に開示された植物工場においては、一般的な工場の廃熱を有効利用するために、一般的な工場と植物工場とを併設した構成を用いている。また、この植物工場の栽培室は太陽光を採り入れる採光部を有している。また、特許文献1は、太陽光発電装置を用いて発電した電力を、二酸化炭素供給装置及び冷熱供給装置に供給したり、栽培室内での種々の制御に用いることを示している。 For example, in the plant factory disclosed in Patent Document 1, a configuration in which a general factory and a plant factory are installed side by side is used in order to effectively utilize the waste heat of the general factory. Moreover, the cultivation room of this plant factory has a lighting part which takes in sunlight. In addition, Patent Literature 1 discloses that power generated using a solar power generation device is supplied to a carbon dioxide supply device and a cold heat supply device, and used for various controls in a cultivation room.
 また、特許文献2に開示された太陽光パネル付土耕栽培システムは、太陽光パネル下における農作物の栽培環境を管理するための技術を示している。このシステムにおいては、太陽光パネルを支持する複数のフレーム部の棟間を屋根部材で連結し、さらにその外周面をカバー部で一体的に囲い、フレーム部を支柱とした栽培ハウスを構築する。そして、太陽光パネルには透光領域を設けるとともに、屋根部材に透光性の部材を用いて、透光領域及び屋根部材を通過した光により農作物の栽培を行う。この農作物の栽培は用土が入れられた栽培槽で行うとともに、供給手段を介して適切な栽培養液を供給する。 In addition, the solar panel-equipped soil cultivation system disclosed in Patent Document 2 shows a technique for managing the cultivation environment for crops under the solar panel. In this system, the ridges of a plurality of frame sections that support solar panels are connected by roof members, and the outer peripheral surface is integrally surrounded by a cover section to construct a cultivation house using the frame sections as pillars. A translucent area is provided on the solar panel, and a translucent member is used for the roof member, so that the crops are cultivated by the light passing through the translucent area and the roof member. Cultivation of this crop is carried out in a cultivation tank filled with soil, and an appropriate cultivation nutrient solution is supplied through supply means.
日本国再表2012/043381号公報Japan Retable 2012/043381 日本国再表2018/011966号公報Japan retable 2018/011966
 しかしながら、例えば屋内の閉鎖された空間に配置された栽培室を利用する栽培装置の場合には、栽培室内の温度や湿度を植物の育成に適した環境に調節するために必要とするエネルギーが大きい。したがって、例えば特許文献1のように植物工場と併設した他の工場の廃熱を使うことが想定されるので、比較的規模の小さい栽培装置の実現は困難である。また、特許文献1のように採光部から栽培室に太陽光を採り入れる場合には、太陽光と共に栽培室に供給される熱の影響があるので、栽培室内の温度を下げるために比較的大きいエネルギーが必要になる。 However, in the case of a cultivation apparatus that utilizes a cultivation room arranged in a closed indoor space, for example, a large amount of energy is required to adjust the temperature and humidity in the cultivation room to an environment suitable for growing plants. . Therefore, it is assumed that the waste heat of another plant installed side by side with the plant factory is used, as in Patent Document 1, for example, so it is difficult to realize a relatively small-scale cultivation apparatus. In addition, when sunlight is taken into the cultivation room from the lighting unit as in Patent Document 1, there is an effect of heat supplied to the cultivation room together with the sunlight. is required.
 また、特許文献2の栽培システムの場合は、透光領域以外に遮光される領域も存在するので、太陽光パネルを取り付けた分だけ植物に照射される太陽光が減ることになる。つまり、一般的な屋外における植物の栽培環境と比べると植物に供給される光の光量が減少し、光合成が十分に行われない可能性がある。 In addition, in the case of the cultivation system of Patent Document 2, since there are areas that are shaded in addition to the translucent areas, the amount of sunlight that irradiates the plants is reduced by the amount that the solar panels are attached. In other words, there is a possibility that the amount of light supplied to the plant is reduced compared to a general outdoor plant cultivation environment, and photosynthesis is not sufficiently performed.
 また、一般的な太陽光パネルは、温度が25℃以上の場合は温度上昇に伴って発電効率が低下する傾向がある。したがって、単に日射量が多くても太陽光パネルから十分な効率で電力を取り出せない状況が発生する。 In addition, general solar panels tend to reduce their power generation efficiency as the temperature rises when the temperature is 25°C or higher. Therefore, a situation arises in which power cannot be extracted from the solar panel with sufficient efficiency even if the amount of solar radiation is simply high.
 本発明は、上記の状況に鑑みてなされたものであり、その目的は、植物を人工的に栽培するために太陽光パネルを有効活用し、比較的小さい環境負荷やランニングコストで植物を効率よく栽培することが可能な栽培装置およびその制御方法を提供することである。 The present invention has been made in view of the above circumstances, and its object is to effectively utilize solar panels for artificially cultivating plants, and to efficiently grow plants with a relatively small environmental load and running costs. An object of the present invention is to provide a cultivation device capable of cultivating and a control method thereof.
 前述した目的を達成するために、本発明に係る栽培装置およびその制御方法は、下記(1)~(12)を特徴としている。
(1) 外気と隔離された閉鎖空間内に形成された、植物を栽培するための栽培室が形成された栽培装置であって、
 前記栽培室内で植物が必要とする光を出射可能な人工光源と、
 前記栽培室内における空気環境を植物の育成に適した状態に調整する空気環境調整部と、
 太陽光により発電する発電部を有する太陽光パネルと、
 前記太陽光パネルの裏面と対向する状態で隣接する位置に配置された吸湿材料と、
 前記栽培室内で発生した水分、又はその水分を含む空気、若しくは外気を前記吸湿材料が存在する空間に供給可能な水分供給部と、
 前記栽培室内と前記吸湿材料が存在する空間とを接続する1つ以上の接続部と、
 を備える栽培装置。
In order to achieve the above object, the cultivation apparatus and the control method thereof according to the present invention are characterized by the following (1) to (12).
(1) A cultivation apparatus having a cultivation chamber for cultivating plants formed in a closed space isolated from the outside air,
an artificial light source capable of emitting light required by plants in the cultivation room;
an air environment adjustment unit that adjusts the air environment in the cultivation room to a state suitable for plant growth;
a solar panel having a power generation unit that generates power using sunlight;
a hygroscopic material arranged at a position adjacent to and facing the back surface of the solar panel;
a moisture supply unit capable of supplying moisture generated in the cultivation chamber, air containing the moisture, or outside air to the space where the hygroscopic material exists;
one or more connecting portions connecting the cultivation chamber and the space where the moisture absorbing material exists;
Cultivation device.
(2) 前記接続部は、前記栽培室内で発生した水分、又はその水分を含む空気を前記吸湿材料が存在する空間に供給可能な状態で、前記栽培室内と前記吸湿材料とを接続する第1空間接続部を有する、
 上記(1)に記載の栽培装置。
(2) The connecting portion is a first connecting portion that connects the cultivating chamber and the hygroscopic material in a state in which moisture generated in the cultivating chamber or air containing the moisture can be supplied to the space in which the hygroscopic material exists. having a spatial connection,
The cultivation apparatus according to (1) above.
(3) 前記吸湿材料の周囲を覆い前記吸湿材料の近傍の周囲空間を外気から隔離する吸湿材カバーを備える、
 上記(1)又は(2)に記載の栽培装置。
(3) a moisture absorbent cover covering the periphery of the moisture absorbent material and isolating the surrounding space in the vicinity of the moisture absorbent material from the outside air;
The cultivation apparatus according to (1) or (2) above.
(4) 前記吸湿材カバーの内側空間の空気が流通可能な状態で、前記内側空間と前記栽培室の空間とを接続する第2空間接続部を備える、
 上記(3)に記載の栽培装置。
(4) A second space connecting portion that connects the inner space and the space of the cultivation room in a state in which the air in the inner space of the moisture absorbent cover can be circulated,
The cultivation apparatus according to (3) above.
(5) 前記吸湿材カバーの内側空間の水分が流通可能な状態で、前記内側空間と前記栽培室の空間とを接続する第3空間接続部を備える、
 上記(3)又は(4)に記載の栽培装置。
(5) A third space connecting portion that connects the inner space of the moisture absorbent cover and the space of the cultivation chamber in a state in which moisture in the inner space of the moisture absorbent cover can flow,
The cultivation apparatus according to (3) or (4) above.
(6) 前記吸湿材料は、温度変化に応じて二酸化炭素の吸着及び脱離が可能な吸脱着材を含み、
 前記吸湿材カバーの内側空間が前記栽培室の空間から隔離されて前記内側空間を外気が流通する第1状態と、前記吸湿材カバーの内側空間が外気から隔離されて前記内側空間と前記栽培室の空間とが連通する第2状態との切り替えが可能な経路切替部を備える、
 上記(3)に記載の栽培装置。
(6) The hygroscopic material includes an adsorption/desorption material capable of adsorbing and desorbing carbon dioxide according to temperature changes,
a first state in which the inner space of the moisture absorbent cover is isolated from the space of the cultivation chamber and outside air flows through the inner space; and a first state in which the inner space of the moisture absorbent cover is isolated from the outside air and the inner space and the cultivation chamber. A path switching unit capable of switching to a second state in which the space of
The cultivation apparatus according to (3) above.
(7) 前記太陽光パネルの発電により得られた電力を、少なくとも前記人工光源に電源として供給する電源制御部を備える、
 上記(1)から(6)のいずれかに記載の栽培装置。
(7) A power control unit that supplies power obtained by power generation of the solar panel to at least the artificial light source as a power supply,
The cultivation apparatus according to any one of (1) to (6) above.
(8) 外気と隔離された閉鎖空間内に形成された、植物を栽培するための栽培室が形成された栽培装置と、太陽光パネルと、前記太陽光パネルの裏面と対向する状態で隣接する位置に配置された吸湿材料と、を備えた栽培装置において、
 外部環境が夜の何れかの時間帯に、
前記栽培室内の高湿度空気、又は外気を前記吸湿材料に供給して前記吸湿材料を吸湿させ、
 前記外部環境が昼の何れかの時間帯に、前記太陽光パネルの温度上昇に伴って前記吸湿材料から放出される水分の気化熱を利用して、前記太陽光パネルを冷却する、
 栽培装置の制御方法。
(8) Adjacent to a solar panel in a state of facing the rear surface of the solar panel and a cultivation apparatus formed in a closed space isolated from the outside air, in which a cultivation chamber for cultivating plants is formed. a hygroscopic material positioned at a position; and
When the external environment is at any time of the night,
Supplying high-humidity air in the cultivation room or outside air to the hygroscopic material to make the hygroscopic material absorb moisture;
When the external environment is any time during the day, the solar panel is cooled by utilizing heat of vaporization of moisture released from the moisture absorbing material as the temperature of the solar panel rises.
A control method for a cultivation device.
(9) 前記太陽光パネルの発電により得られた電力を、前記栽培装置の人工光源に電源として供給する、
 上記(8)に記載の栽培装置の制御方法。
(9) supplying power obtained by power generation of the solar panel to an artificial light source of the cultivation apparatus as a power source;
The method for controlling the cultivation apparatus according to (8) above.
(10) 前記栽培装置は、前記吸湿材料の周囲をカバーで覆って形成され外気から隔離された拡張空間を備え、
 前記外部環境が夜の何れかの時間帯に、前記拡張空間を通過して乾燥した空気を前記栽培室内に導入して、前記栽培室内の空気を除湿する、
 上記(8)又は(9)に記載の栽培装置の制御方法。
(10) The cultivation apparatus includes an expansion space formed by covering the moisture absorbing material with a cover and isolated from the outside air,
dehumidifying the air in the cultivation chamber by introducing dry air through the expansion space into the cultivation chamber when the external environment is at any time of the night;
A control method for a cultivation apparatus according to (8) or (9) above.
(11) 前記栽培装置は、前記吸湿材料の周囲をカバーで覆って形成され外気から隔離された拡張空間を備え、
 前記外部環境が昼の何れかの時間帯に、前記拡張空間内で形成された水分を前記栽培室内に回収し、前記水分を植物栽培のための養液として再利用する、
 上記(8)又は(9)に記載の栽培装置の制御方法。
(11) The cultivation apparatus includes an expansion space formed by covering the moisture absorbing material with a cover and isolated from the outside air,
collecting the water formed in the expansion space into the cultivation room when the external environment is in the daytime, and reusing the water as a nutrient solution for cultivating plants;
A control method for a cultivation apparatus according to (8) or (9) above.
(12)
 前記栽培装置は、前記吸湿材料の周囲をカバーで覆って形成された拡張空間を備え、前記吸湿材料の少なくとも一部分として、温度変化に応じて二酸化炭素の吸着及び脱離が可能な吸脱着材を有し、
 前記外部環境が夜の何れかの時間帯に、外気を前記拡張空間に流通させて空気中の二酸化炭素を前記吸脱着材で吸着し、
 前記外部環境が昼の何れかの時間帯に、前記吸脱着材から脱離した二酸化炭素を前記拡張空間内から前記栽培室内に供給する、
 上記(8)又は(9)に記載の栽培装置の制御方法。
(12)
The cultivation apparatus includes an expansion space formed by covering the perimeter of the hygroscopic material with a cover, and as at least part of the hygroscopic material, an adsorption/desorption material capable of adsorbing and desorbing carbon dioxide according to temperature changes. have
When the external environment is at any time of the night, outside air is circulated through the expansion space to adsorb carbon dioxide in the air with the adsorption/desorption material,
Supplying carbon dioxide desorbed from the adsorption/desorption material into the cultivation room from the expansion space during any time period in the daytime when the external environment is
A control method for a cultivation apparatus according to (8) or (9) above.
 上記(1)の構成の栽培装置によれば、前記栽培室内等の水分を前記吸湿材料に供給し吸収させることができる。前記吸湿材料が吸収した水分は、日射による太陽光パネルの温度上昇に伴って蒸発する際に気化熱を奪うため、太陽光パネルを冷却することができる。これにより、太陽光パネルの発電効率が低下するのを防止できる。また、この栽培装置は人工光源を利用するので、栽培室内に太陽光を採り入れる必要がなく栽培室内の温度上昇を抑制できる。また、人工光源の電源として太陽光パネルを利用可能である。また、前記接続部を介して前記栽培室内と前記吸湿材料の空間とを接続するので、両者を連携させて相乗効果を得ることが可能になる。
 尚、本開示において、「閉鎖空間」は、外気から隔離され実質的に閉鎖された空間を意味し、完全閉鎖空間及び半閉鎖空間を含む概念である。
According to the cultivation apparatus having the configuration (1) above, the moisture in the cultivation room can be supplied to and absorbed by the hygroscopic material. The moisture absorbed by the hygroscopic material absorbs heat of vaporization when it evaporates as the temperature of the solar panel rises due to solar radiation, so that the solar panel can be cooled. This can prevent the power generation efficiency of the solar panel from deteriorating. In addition, since this cultivation apparatus uses an artificial light source, it is not necessary to introduce sunlight into the cultivation room, so that temperature rise in the cultivation room can be suppressed. Solar panels can also be used as power sources for artificial light sources. Moreover, since the cultivation chamber and the space of the hygroscopic material are connected via the connecting portion, it is possible to obtain a synergistic effect by linking the two.
In the present disclosure, the term "closed space" means a space that is isolated from the outside air and substantially closed, and is a concept that includes completely closed spaces and semi-closed spaces.
 上記(2)の構成の栽培装置によれば、夜間に栽培室が高湿度になる時に、栽培室中の水分を前記吸湿材料に供給して吸収させることが可能になる。これにより、栽培室中の空気を除湿するために必要なエネルギーを削減できる。 According to the cultivation apparatus having the configuration (2) above, when the humidity in the cultivation room becomes high at night, it is possible to supply and absorb the moisture in the cultivation room into the hygroscopic material. This can reduce the energy required to dehumidify the air in the cultivation room.
 上記(3)の構成の栽培装置によれば、前記吸湿材カバーの内側に特別な空間を形成できる。この空間は、栽培室内を拡張した拡張空間として利用することも可能であるし、必要に応じて外気を導入したり、二酸化炭素、乾燥した空気、回収した水分などを保持するために利用することも可能である。 According to the cultivation apparatus having the configuration (3) above, a special space can be formed inside the moisture absorbent cover. This space can be used as an expanded space in which the cultivation room is expanded, and can be used to introduce outside air as necessary, or to hold carbon dioxide, dry air, recovered moisture, etc. is also possible.
 上記(4)の構成の栽培装置によれば、前記第1空間接続部、及び前記第2空間接続部の利用により、前記吸湿材カバーの内側空間を通過する状態で、前記栽培室の空間の空気を循環させることが可能になる。これにより、前記吸湿材料を利用して空気の除湿を行い、乾燥した空気を前記栽培室の空間に戻すことができる。 According to the cultivation apparatus having the configuration of (4) above, by using the first space connection portion and the second space connection portion, the space of the cultivation room can be expanded while passing through the inner space of the moisture absorbent cover. Allows air to circulate. Thereby, the air can be dehumidified using the hygroscopic material, and the dried air can be returned to the space of the cultivation room.
 上記(5)の構成の栽培装置によれば、前記吸湿材カバーの内側空間で蒸発した水分を水に戻して回収し、再び前記栽培室に戻して植物栽培のために再利用できる。これにより、栽培装置からの水の排出を減らすことができる。また、植物の育成に悪影響を及ぼす細菌や微生物の外部からの侵入を防止できる。 According to the cultivation apparatus having the configuration (5) above, the moisture evaporated in the inner space of the moisture absorbent cover can be recovered by returning it to water, and returned to the cultivation chamber for reuse in plant cultivation. Thereby, discharge of water from the cultivation apparatus can be reduced. In addition, it is possible to prevent external invasion of bacteria and microorganisms that adversely affect the growth of plants.
 上記(6)の構成の栽培装置によれば、例えば昼夜の違いによる前記太陽光パネルの温度変化を利用して、外気から前記吸脱着材が取り込んだ二酸化炭素を、前記栽培室の空間に供給することが可能になる。前記栽培室内に二酸化炭素を供給してその濃度を上げることにより、植物の育成を促進できる。また、二酸化炭素を供給するためにボンベなどの設備を用意する必要がなくなる。 According to the cultivation apparatus having the configuration of (6) above, the carbon dioxide taken in by the adsorption/desorption material from the outside air is supplied to the space of the cultivation room, for example, by utilizing the temperature change of the solar panel due to the difference between day and night. it becomes possible to Plant growth can be promoted by supplying carbon dioxide into the cultivation chamber to increase its concentration. In addition, there is no need to prepare facilities such as cylinders for supplying carbon dioxide.
 上記(7)の構成の栽培装置によれば、閉鎖された栽培室内で植物の光合成に必要な人工光を生成するために前記太陽光パネルが発電した電力を利用するので、外部からの電力供給を不要にしたり削減することが可能になる。これにより、比較的規模の小さい栽培装置の実現が容易になる。 According to the cultivation apparatus having the configuration of (7) above, since the power generated by the solar panel is used to generate the artificial light necessary for the photosynthesis of the plants in the closed cultivation room, power supply from the outside is not required. can be eliminated or reduced. This facilitates realization of a relatively small-scale cultivation apparatus.
 上記(8)の手順の栽培装置の制御方法によれば、太陽光パネルと栽培室との組み合わせによる相乗効果を利用して、栽培装置の稼働に必要な外部からのエネルギー供給を削減できる。例えば、外部環境が夜の何れかの時間帯(夜間時間帯)に植物からの蒸散により高湿度になった栽培室内から供給する水分、又は外気の水分を前記吸湿材料に吸収させることができる。そして、外部環境が昼の何れかの時間帯(昼間時間帯)に前記太陽光パネルの温度が上昇すると、前記吸湿材料から蒸発して放出される水分の気化熱により前記太陽光パネルが冷却されるので、前記太陽光パネルの発電効率低下が抑制される。尚、本開示において「外部環境」とは、栽培室の外部の環境を意味する。 According to the cultivation apparatus control method of the procedure (8) above, the synergistic effect of the combination of the solar panel and the cultivation room can be used to reduce the external energy supply required for operating the cultivation apparatus. For example, the hygroscopic material can absorb moisture supplied from the cultivation room or moisture from the outside air, which has become highly humid due to transpiration from the plants in the external environment during any time of the night (nighttime). When the temperature of the solar panel rises during the daytime (daytime) in the external environment, the solar panel is cooled by the heat of vaporization of the moisture released by evaporation from the moisture absorbing material. Therefore, a decrease in power generation efficiency of the solar panel is suppressed. In addition, in this disclosure, "external environment" means the environment outside the cultivation room.
 上記(9)の手順の栽培装置の制御方法によれば、昼間の時間帯に、前記太陽光パネルの発電した電力を利用して、前記栽培装置内で栽培している植物に光合成に必要な人工光を照射することができる。したがって、栽培室内に太陽光を採り入れる必要がなくなり、太陽エネルギーによる栽培室内の温度上昇も抑制されるので、太陽光パネルと栽培装置の栽培室との組み合わせによる相乗効果が得られる。 According to the control method of the cultivation apparatus in the procedure of (9) above, the power generated by the solar panel is used during the daytime to provide the plants cultivated in the cultivation apparatus with the energy necessary for photosynthesis. Artificial light can be applied. Therefore, it is no longer necessary to take in sunlight into the cultivation room, and the temperature rise in the cultivation room due to solar energy is suppressed, so that a synergistic effect can be obtained by combining the solar panel and the cultivation room of the cultivation apparatus.
 上記(10)の手順の栽培装置の制御方法によれば、前記吸湿材料における吸湿および蒸発を利用して前記拡張空間を通過する空気を除湿することができ、乾燥した空気を前記栽培室内に導入できる。これにより、前記栽培室内の空気を除湿するために必要なエネルギーを削減でき、栽培装置の環境負荷を軽減できる。 According to the cultivation apparatus control method of the procedure (10) above, the air passing through the expansion space can be dehumidified by utilizing the moisture absorption and evaporation in the moisture absorbing material, and the dry air is introduced into the cultivation chamber. can. Thereby, the energy required for dehumidifying the air in the cultivation room can be reduced, and the environmental load of the cultivation apparatus can be reduced.
 上記(11)の手順の栽培装置の制御方法によれば、植物の栽培に伴って栽培室から排出される水分を、前記拡張空間内で使用した後、再び栽培室に戻すように循環させて再利用することが可能になる。これにより、栽培装置から外部への水の排出を減らすことができる。また、植物の育成に悪影響を及ぼす細菌や微生物の外部からの侵入を防止できる。 According to the control method of the cultivation apparatus of the procedure (11) above, the water discharged from the cultivation chamber along with the cultivation of the plant is used in the expansion space and then circulated back to the cultivation chamber. It becomes possible to reuse. Thereby, the discharge of water from the cultivation apparatus to the outside can be reduced. In addition, it is possible to prevent external invasion of bacteria and microorganisms that adversely affect the growth of plants.
 上記(12)の手順の栽培装置の制御方法によれば、昼夜の違いによる前記太陽光パネルの温度変化を利用して、外気から前記吸脱着材が取り込んだ二酸化炭素を、前記栽培室の空間に供給することが可能になる。前記栽培室内に二酸化炭素を供給してその濃度を上げることにより、植物の育成を促進できる。また、二酸化炭素を供給するためにボンベなどの設備を用意する必要がなくなる。 According to the control method of the cultivation apparatus of the above procedure (12), the carbon dioxide taken in by the adsorption/desorption material from the outside air is removed from the space of the cultivation room by using the temperature change of the solar panel due to the difference between day and night. can be supplied to Plant growth can be promoted by supplying carbon dioxide into the cultivation chamber to increase its concentration. In addition, there is no need to prepare facilities such as cylinders for supplying carbon dioxide.
 本発明の栽培装置およびその制御方法は、植物を人工的に栽培するために太陽光パネルを有効活用し、比較的小さい環境負荷やランニングコストで植物を効率よく栽培するために役立てることができる。 The cultivation apparatus and its control method of the present invention make effective use of solar panels for artificially cultivating plants, and can be useful for efficiently cultivating plants with a relatively small environmental load and running costs.
 以上、本発明について簡潔に説明した。更に、以下に説明される発明を実施するための最良の形態を添付の図面を参照して通読することにより、本発明の詳細は更に明確化されるであろう。 The above is a brief description of the present invention. Furthermore, the details of the present invention will be further clarified by reading the best mode for carrying out the invention described below with reference to the accompanying drawings.
図1は、本発明の第1実施形態における植物工場内の主要な構成要素の配置例を示す縦断面図である。FIG. 1 is a longitudinal sectional view showing an arrangement example of main components in a plant factory according to the first embodiment of the present invention. 図2は、夜間及び昼間における吸湿材料の状態変化を示す模式図である。FIG. 2 is a schematic diagram showing changes in the state of the hygroscopic material during nighttime and daytime. 図3は、図1に示した植物工場において夜間及び昼間にそれぞれ発生する変化のプロセスの概要を表すフローチャートである。FIG. 3 is a flow chart outlining the process of change occurring at night and day in the plant factory shown in FIG. 図4は、本発明の第2実施形態における植物工場内の主要な構成要素を夜間の状況について示す縦断面図である。FIG. 4 is a vertical cross-sectional view showing the main components in the plant factory in the second embodiment of the present invention at night. 図5は、図4と同じ植物工場内の主要な構成要素を昼間の状況について示す縦断面図である。FIG. 5 is a longitudinal sectional view showing the main components in the same plant factory as in FIG. 4 in the daytime situation. 図6は、図4及び図5に示した植物工場において夜間及び昼間にそれぞれ発生する変化のプロセスの概要を表すフローチャートである。FIG. 6 is a flow chart outlining the process of change occurring at night and day in the plant factory shown in FIGS. 4 and 5, respectively. 図7は、本発明の第3実施形態における植物工場の構成及び状態変化の概要を表す状態遷移図である。FIG. 7 is a state transition diagram showing an overview of the configuration and state changes of the plant factory in the third embodiment of the present invention. 図8は、図7に示した植物工場において夜間及び昼間にそれぞれ発生する変化のプロセスの概要を表すフローチャートである。FIG. 8 is a flow chart outlining the process of change that occurs in the plant factory shown in FIG. 7 at night and during the day.
 本発明に関する具体的な実施の形態について、各図を参照しながら以下に説明する。
<第1実施形態>
-<植物工場の構成>
 本発明の第1実施形態における植物工場100内の主要な構成要素の配置例を図1に示す。植物工場100は、栽培装置の一例である。
Specific embodiments of the present invention will be described below with reference to each drawing.
<First Embodiment>
- <Plant factory configuration>
FIG. 1 shows an arrangement example of main components in the plant factory 100 according to the first embodiment of the present invention. Plant factory 100 is an example of a cultivation apparatus.
 図1に示した植物工場100は、植物13を栽培するための栽培室10と、その建物の屋上10aに設置された太陽光パネル20とを備えている。また、太陽光パネル20の裏面に沿って吸湿材料30が装着されている。言い換えれば、太陽光パネル20における、太陽光の受光面と、厚み方向における反対側に位置する面に沿って、吸湿材料30が装着されている。 A plant factory 100 shown in FIG. 1 includes a cultivation room 10 for cultivating plants 13 and a solar panel 20 installed on the roof 10a of the building. A moisture absorbing material 30 is attached along the back surface of the solar panel 20 . In other words, the hygroscopic material 30 is attached along the surface of the solar panel 20 opposite to the sunlight receiving surface in the thickness direction.
 なお、太陽光パネル20を設置する場所については、栽培室10の近傍であれば、必要に応じて様々な位置に変更可能である。但し、図1のように栽培室10の屋上10aに太陽光パネル20を設置することで、日射による栽培室10の熱負荷を大幅に削減できるので、植物工場100全体の熱効率を上げるために、屋上10aに太陽光パネル20を設置することが望ましい。また、一般的には図1に示すように太陽光パネル20を多少傾斜させた状態で配置した方が効率よく太陽光を受光できる。尚、太陽光パネル20の設置角度は、図示のものに限定されず、設置環境に応じて適宜調整される。太陽光パネル20の設置角度は、水平面と太陽光パネル20の受光面とのなす角度である。 It should be noted that the place where the solar panel 20 is installed can be changed to various positions as necessary as long as it is in the vicinity of the cultivation room 10 . However, by installing the solar panel 20 on the roof 10a of the cultivation room 10 as shown in FIG. 1, the thermal load of the cultivation room 10 due to sunlight can be greatly reduced. It is desirable to install the solar panel 20 on the roof 10a. In general, sunlight can be received more efficiently by arranging the solar panel 20 in a slightly inclined state as shown in FIG. Incidentally, the installation angle of the solar panel 20 is not limited to the illustrated one, and is appropriately adjusted according to the installation environment. The installation angle of the solar panel 20 is the angle between the horizontal plane and the light receiving surface of the solar panel 20 .
 栽培室10は、例えば一般的な建物の屋内と同じように、外気から遮断された閉鎖空間11を形成しており、その周囲は断熱材のような材料で構成される壁面で囲まれている。天井、及び床面も同様である。したがって、栽培室10はある程度の気密性を有し、温度、湿度、二酸化炭素濃度等が外気とは異なる空気環境を形成している。閉鎖空間11は、外気から完全に遮断され閉鎖された完全閉鎖空間であってもよいし、環境調節のために必要な部位を除いて、外気から遮断された半閉鎖空間であってもよい。 The cultivation room 10 forms a closed space 11 that is isolated from the outside air, like the interior of a general building, and is surrounded by walls made of a material such as heat insulating material. . The same applies to the ceiling and floor. Therefore, the cultivation room 10 has airtightness to some extent, and forms an air environment in which the temperature, humidity, carbon dioxide concentration, etc. are different from the outside air. The closed space 11 may be a completely closed space that is completely shut off from the outside air, or a semi-closed space that is shut off from the outside air except for a part necessary for environmental control.
 また、栽培室10の天井面等は遮光性を有しているので、太陽光が栽培室10内に入射することはない。そのため、植物13の光合成に必要な光16を照射可能な照明ユニット14が閉鎖空間11の上方にある栽培棚15Bの下面に設置されている。照明ユニット14の光源は多数のLED(発光ダイオード)素子により構成されている。 In addition, since the ceiling surface and the like of the cultivation room 10 have a light-shielding property, sunlight does not enter the cultivation room 10 . Therefore, a lighting unit 14 capable of irradiating the light 16 necessary for photosynthesis of the plants 13 is installed on the lower surface of the cultivation shelf 15B above the closed space 11 . A light source of the lighting unit 14 is composed of a large number of LED (light emitting diode) elements.
 なお、図1の例では照明ユニット14の光源が栽培室10の内側にある場合を想定しているが、光源を栽培室10の外側に配置して、光源からの光を導光板あるいは光ファイバのような導光部材を利用して栽培室10の内部に導くように構成してもよい。すなわち、光源が発生する熱の影響で栽培室10内部の温度が上昇すると、栽培室10内を植物13の育成に適した温度に維持するために大きなエネルギーが必要になるので、熱源となる光源は栽培室10の外側に配置することが望ましい。 In the example of FIG. 1, it is assumed that the light source of the lighting unit 14 is inside the cultivation room 10, but the light source is arranged outside the cultivation room 10, and the light from the light source is transmitted by a light guide plate or an optical fiber. You may comprise so that it may guide|induce to the inside of the cultivation room 10 using a light guide member like. That is, when the temperature inside the cultivation chamber 10 rises due to the heat generated by the light source, a large amount of energy is required to maintain the temperature inside the cultivation chamber 10 at a temperature suitable for growing the plants 13. is desirably arranged outside the cultivation room 10 .
 栽培室10内に設置した栽培棚15Aの上に栽培容器12が配置されている。この栽培容器12は、植物13を水耕栽培するために必要な養液で満たされたプールを形成しており、このプールの上部に一定の間隔で水平方向に並べた状態で複数の植物13が支持され固定されている。 The cultivation container 12 is arranged on the cultivation shelf 15A installed in the cultivation room 10. The cultivation container 12 forms a pool filled with a nutrient solution necessary for hydroponic cultivation of plants 13. A plurality of plants 13 are arranged horizontally at regular intervals above the pool. is supported and fixed.
 図1に示した栽培室10の内部には、エアコン17、除湿器18、及びファン19が設置されている。エアコン17は、栽培室10内の温度を植物13の生育に適した温度に維持するために利用される。除湿器18は、栽培室10内を植物13の生育に適した湿度に維持するために、栽培室10内を除湿する。すなわち、栽培室10内で栽培している植物13からの蒸散により栽培室10内の湿度が上昇し、それが植物13の育成に悪影響を及ぼすので、除湿して栽培室10内を乾燥させる必要がある。ファン19は、栽培室10内の空気を循環させて、温度、湿度、二酸化炭素濃度等が栽培室10内で均一になるように空気環境を制御する。 An air conditioner 17, a dehumidifier 18, and a fan 19 are installed inside the cultivation room 10 shown in FIG. The air conditioner 17 is used to maintain the temperature in the cultivation room 10 at a temperature suitable for growing the plants 13 . The dehumidifier 18 dehumidifies the inside of the cultivation room 10 in order to maintain the inside of the cultivation room 10 at a humidity suitable for growing the plants 13 . That is, the humidity in the cultivation room 10 increases due to transpiration from the plants 13 cultivated in the cultivation room 10, which adversely affects the growth of the plants 13. Therefore, it is necessary to dehumidify and dry the inside of the cultivation room 10. There is The fan 19 circulates the air in the cultivation room 10 and controls the air environment so that the temperature, humidity, carbon dioxide concentration, etc. are uniform in the cultivation room 10 .
 太陽光パネル20は、太陽光により発電する発電部を有する。太陽光パネル20は、一般的な太陽光パネルと同様に多数の太陽電池セルを同じ平面上に縦方向及び横方向に並べて配置して構成してあり、各セルは互いに電気的に接続されている。図1に示した例では、太陽光パネル20の裏面のほぼ全域と同等の面積を有する大きさの1つの吸湿材料30が太陽光パネル20に装着されている。吸湿材料30は太陽光パネル20との間の熱抵抗が小さくなるように互いに接触又は接近した状態で配置してある。吸湿材料30の厚みは、例えば0.1~数cm程度であり、吸湿材料30の吸湿性能や植物工場100が必要とする条件に応じて適宜変更される。なお、複数に分割された吸湿材料30を縦横に並べて太陽光パネル20に装着しても良いし、太陽電池セル毎に、あるいは複数セルを組み合わせたモジュール毎に分割した複数の吸湿材料30を用いても良い。 The solar panel 20 has a power generation unit that generates power using sunlight. The solar panel 20 is configured by arranging a large number of solar cells on the same plane in the vertical direction and the horizontal direction in the same manner as a general solar panel, and each cell is electrically connected to each other. there is In the example shown in FIG. 1 , one hygroscopic material 30 having an area equivalent to almost the entire rear surface of the solar panel 20 is attached to the solar panel 20 . The hygroscopic materials 30 are arranged in contact or close to each other so that the thermal resistance between them and the solar panel 20 is reduced. The thickness of the hygroscopic material 30 is, for example, about 0.1 to several centimeters, and is appropriately changed according to the hygroscopic performance of the hygroscopic material 30 and the conditions required by the plant factory 100 . A plurality of divided moisture absorbing materials 30 may be arranged vertically and horizontally and attached to the solar panel 20, or a plurality of moisture absorbing materials 30 divided for each solar cell or for each module combining a plurality of cells may be used. can be
 吸湿材料30の主要な構成要素は、温度応答性高分子材料により構成され、例えば25℃程度の常温の領域では高い吸湿性を有し、例えば60℃程度の比較的高い温度環境下では急速に水分を放出する可逆的な物理特性を有している。したがって、この吸湿材料30は例えば空気中から水分を吸収して除湿するために利用でき、更に吸収した水分を脱離する用途でも利用できる。本実施形態では、後述するように太陽光パネル20を冷却するために吸湿材料30を利用している。 The main components of the hygroscopic material 30 are made of a temperature-responsive polymer material. It has reversible physical properties that release moisture. Therefore, this hygroscopic material 30 can be used, for example, to absorb and dehumidify moisture from the air, and can also be used to desorb the absorbed moisture. In this embodiment, the hygroscopic material 30 is used to cool the solar panel 20 as described later.
 栽培室10内部と吸湿材料30との間は、例えば1つ又は複数のダクト39などを介して接続されており、栽培室10内の水分41が吸湿材料30側に移動できるように構成されている。例えば、除湿器18が栽培室10内で吸湿し分離した水分を、吸湿材料30に供給することが可能である。なお、図1のように吸湿材料30が栽培室10よりも高所に存在する場合には、図示しないポンプなどを用いてダクト39から水分41を汲み上げて吸湿材料30に供給する必要がある。 The inside of the cultivation room 10 and the moisture absorbing material 30 are connected via, for example, one or more ducts 39, so that the moisture 41 in the cultivation room 10 can move to the moisture absorbing material 30 side. there is For example, the moisture absorbed and separated by the dehumidifier 18 in the cultivation room 10 can be supplied to the hygroscopic material 30 . In addition, when the hygroscopic material 30 exists in a higher place than the cultivation room 10 as shown in FIG.
 一方、水分41を含む高湿度の空気を栽培室10から吸湿材料30に供給する場合には、空気が流通可能な空間を吸湿材料30の周囲に形成し、栽培室10と吸湿材料30との間に往路と復路とを設ける。このとき、空気が外部に漏れないように、例えばSUS(Steel Use Stainless)のような気密性の高い素材で、吸湿材料30の周囲を覆い、往路及び復路の各ダクトを構成し、空気が外部に漏れることなく循環できるように構成することが好ましい。 On the other hand, when high-humidity air containing moisture 41 is supplied from the cultivation room 10 to the hygroscopic material 30, a space through which the air can flow is formed around the hygroscopic material 30, and the space between the cultivating room 10 and the hygroscopic material 30 is formed. An outward route and a return route are provided in between. At this time, in order to prevent the air from leaking to the outside, a highly airtight material such as SUS (steel use stainless) is used to cover the hygroscopic material 30 and configure each duct for the outward and return passages so that the air can escape to the outside. It is preferable to configure so that it can circulate without leaking.
 昼間の時間帯に太陽光を受光して太陽光パネル20が発電した電力は、電源制御部42に供給され、電源制御部42の制御により照明ユニット14の電源の少なくとも一部分として利用される。電源制御部42の入力には、太陽光パネル20の他に例えば商用電源のような外部電源が接続されている。電源制御部42は、植物工場100が稼働するために必要な電力として、少なくとも照明ユニット14の電源電力を太陽光パネル20の発電した電力により供給する。また、太陽光パネル20の発電した電力が不足する場合には、不足分の電力を外部電源の電力により供給する。また、太陽光パネル20の発電した電力に余剰分がある場合には、余剰電力を電源制御部42が外部電源に対して供給する。 The power generated by the solar panel 20 by receiving sunlight during the daytime is supplied to the power control unit 42 and used as at least part of the power supply for the lighting unit 14 under the control of the power control unit 42 . An input of the power control unit 42 is connected to an external power source such as a commercial power source in addition to the solar panel 20 . The power supply control unit 42 supplies at least the power supply power of the lighting unit 14 from the power generated by the solar panel 20 as the power necessary for the plant factory 100 to operate. In addition, when the power generated by the solar panel 20 is insufficient, the shortage of power is supplied by the power of the external power supply. Further, when the power generated by the solar panel 20 has surplus power, the power control unit 42 supplies the surplus power to the external power supply.
-<吸湿材料の状態変化>
 夜間及び昼間における吸湿材料30の状態変化を図2に示す。つまり、図2に示した夜間の状態と昼間の状態とがほぼ半日毎に交互に切り替わり、この変化を毎日繰り返しながら図1に示した植物工場100が稼働することになる。
- <Change in state of hygroscopic material>
FIG. 2 shows changes in the state of the hygroscopic material 30 during nighttime and daytime. That is, the nighttime state and the daytime state shown in FIG. 2 are alternately switched approximately every half day, and the plant factory 100 shown in FIG. 1 operates while repeating this change every day.
 図2の左側に示した夜間の状態では、太陽光パネル20及び吸湿材料30の温度が25℃以下程度の常温になる。この状態で、吸湿材料30は栽培室10側から供給される水分31を吸収し内部に蓄積することができる。  In the nighttime state shown on the left side of Fig. 2, the temperature of the solar panel 20 and the moisture absorbing material 30 is normal temperature of about 25°C or less. In this state, the hygroscopic material 30 can absorb the moisture 31 supplied from the cultivation chamber 10 side and accumulate it inside.
 また、図2の右側に示した昼間の状態では、太陽光33等の太陽からのエネルギーが太陽光パネル20の表面、すなわち受光面に供給されるので、太陽光パネル20が発電するが、それと同時に太陽光パネル20が加熱されて温度が上昇する。しかし、太陽光パネル20は温度が高くなると発電効率が低下する傾向があるので、温度上昇を抑制することが重要である。 In the daytime state shown on the right side of FIG. 2, energy from the sun such as sunlight 33 is supplied to the surface of the solar panel 20, that is, the light receiving surface, so that the solar panel 20 generates electricity. At the same time, the solar panel 20 is heated and the temperature rises. However, since the power generation efficiency of the solar panel 20 tends to decrease when the temperature rises, it is important to suppress the temperature rise.
 一方、太陽光パネル20の裏面側に装着されている吸湿材料30は、昼間の時間帯は太陽光パネル20と共に温度上昇する。そして所定以上の高温状態になると、吸湿材料30の内部に保持されている水分31が吸湿材料30から脱離してその周囲に放出される。また、周囲が比較的高温であるため、水分31が蒸発する。その際に水分31が周囲から気化熱32を奪うので、その周囲にある吸湿材料30及び太陽光パネル20を冷却することができる。これにより、太陽光パネル20の温度上昇が抑制され、発電効率の低下が防止される。 On the other hand, the temperature of the hygroscopic material 30 attached to the back side of the solar panel 20 rises together with the solar panel 20 during the daytime hours. When the temperature reaches a predetermined temperature or higher, the moisture 31 retained inside the moisture absorbing material 30 is desorbed from the moisture absorbing material 30 and released to the surroundings. Also, since the ambient temperature is relatively high, the moisture 31 evaporates. At that time, the moisture 31 absorbs the heat of vaporization 32 from the surroundings, so that the surrounding hygroscopic material 30 and the solar panel 20 can be cooled. As a result, the temperature rise of the solar panel 20 is suppressed, and a decrease in power generation efficiency is prevented.
-<吸湿材料の詳細>
 図1に示した植物工場100の吸湿材料30については、植物工場100が必要とする条件に合わせて様々な種類の材料を適宜選択することが可能である。また、このような材料のカテゴリとしては、ハイドロゲル、ハードコーティング、ナノファイバーなどがある。また、具体的な材料としては、CaCl、LiClのような無機塩、アルギン酸ナトリウムのような多糖類、ポリピロール誘導体のような親水性高分子、及び金属有機構造体 (MOF:Metal Organic Frameworks)のMIL-101(Cr)がある。また、バインダーとしてはポリアクリルアミド、シリケート、及びポリアクリルニトリルがある。また、吸湿材料30の脱着形態としては、水、又は水蒸気の形態がある。
 また、例えば国際公開番号WO2018/117165号公報に開示されているような温度応答性ゲルを吸湿材料30として利用可能である。
- <Details of moisture absorbing material>
As for the hygroscopic material 30 of the plant factory 100 shown in FIG. 1, various kinds of materials can be appropriately selected according to the conditions required by the plant factory 100. Other categories of such materials include hydrogels, hard coatings, and nanofibers. Specific materials include inorganic salts such as CaCl 2 and LiCl, polysaccharides such as sodium alginate, hydrophilic polymers such as polypyrrole derivatives, and metal organic frameworks (MOF). There is MIL-101(Cr). Binders also include polyacrylamides, silicates, and polyacrylnitrile. Moreover, the desorption form of the hygroscopic material 30 includes the form of water or steam.
Also, a temperature-responsive gel such as that disclosed in International Publication No. WO2018/117165 can be used as the hygroscopic material 30 .
-<プロセスの概要>
 図1に示した植物工場100において夜間及び昼間にそれぞれ発生する変化のプロセスの概要を図3に示す。図3のプロセスについて以下に説明する。
-<Overview of the process>
FIG. 3 shows an overview of the process of change occurring at night and day in the plant factory 100 shown in FIG. The process of Figure 3 is described below.
--<夜間の変化>
 図1に示した植物工場100においては、太陽光の影響を受けない栽培室10の内部においても、自然界で植物13を育成する場合と近い環境になるように、夜間は照明ユニット14を消灯して植物13への光の照射を停止する(ステップS11)。このような制御は、例えば時刻に基づいて自動的に、あるいは手動操作により実施する。
--<Night change>
In the plant factory 100 shown in FIG. 1, the lighting unit 14 is turned off at night so that the environment in the cultivation room 10, which is not affected by sunlight, is similar to that in which the plants 13 are grown in the natural world. to stop irradiating the plant 13 with light (step S11). Such control is performed automatically based on the time of day, or manually.
 光の照射が停止して光合成を行わない夜間においては、植物13の蒸散により水分が栽培室10内に放出されるので、栽培室10内の湿度が上昇する。この水分の潜熱により植物工場100の熱負荷が増大する(ステップS12)。したがって、例えばエアコン17を用いて栽培室10内の温度を適温に維持するために必要な電力が増大する。 At night when light irradiation is stopped and photosynthesis is not performed, water is released into the cultivation room 10 by transpiration of the plants 13, so the humidity inside the cultivation room 10 increases. The latent heat of this moisture increases the heat load of the plant factory 100 (step S12). Therefore, the electric power required for maintaining the temperature in the cultivation room 10 at an appropriate temperature using the air conditioner 17 increases, for example.
 図1の植物工場100においては、夜間に栽培室10内の湿度が上昇するので、ここで発生した余分な水分を栽培室10から吸湿材料30に供給して吸湿させる(ステップS13)。実際には、例えば除湿器18の除湿動作により栽培室10内で分離した水分をダクトなどを介して吸湿材料30に供給する。あるいは、高湿度の空気をダクトなどを介して吸湿材料30に供給する。 In the plant factory 100 of FIG. 1, since the humidity in the cultivation room 10 rises at night, excess moisture generated here is supplied from the cultivation room 10 to the moisture absorbing material 30 to absorb the moisture (step S13). Actually, for example, the moisture separated in the cultivation room 10 by the dehumidifying operation of the dehumidifier 18 is supplied to the moisture absorbing material 30 through a duct or the like. Alternatively, high-humidity air is supplied to the hygroscopic material 30 through a duct or the like.
 夜間は太陽からのエネルギー供給が停止するので、太陽光パネル20及び吸湿材料30の温度が例えば25℃以下程度まで低下する。したがって、吸湿材料30は、温度が比較的低い環境下で栽培室10から供給された水分41を効率よく吸収することができ膨張する(ステップS14)。 Since the supply of energy from the sun stops at night, the temperature of the solar panel 20 and the hygroscopic material 30 drops to, for example, 25°C or less. Therefore, the hygroscopic material 30 can efficiently absorb the moisture 41 supplied from the cultivation room 10 in a relatively low temperature environment and expands (step S14).
--<昼間の変化>
 例えば夜明けの時間帯になると、植物工場100の照明ユニット14は点灯状態に切り替わる(ステップS21)。これにより、太陽光が照射されない栽培室10内においても、照明ユニット14からの光16の照射により植物13が光合成を開始する。
--<Changes in the daytime>
For example, at dawn, the lighting unit 14 of the plant factory 100 switches to the lighting state (step S21). As a result, the plants 13 start photosynthesis due to the irradiation of the light 16 from the lighting unit 14 even in the cultivation room 10 where the sunlight is not irradiated.
 また、夜明けの時間帯になると、太陽から光などのエネルギー供給が開始される(ステップS22)。したがって、太陽光パネル20が発電を開始するが、同時に太陽のエネルギーで加熱されるので、太陽光パネル20及び吸湿材料30の温度が上昇する(ステップS23)。 Also, at dawn, the sun starts supplying energy such as light (step S22). Therefore, the solar panel 20 starts generating electricity, but at the same time, it is heated by the solar energy, so the temperature of the solar panel 20 and the hygroscopic material 30 rises (step S23).
 太陽エネルギーによる太陽光パネル20の加熱によって、例えば60℃程度まで吸湿材料30の温度が上昇すると、吸湿材料30は保持している水分を外部に放出する。そして、この水分が蒸発する際に周囲から気化熱を奪う(ステップS24)。 When the temperature of the hygroscopic material 30 rises, for example, to about 60°C due to the heating of the solar panel 20 by solar energy, the hygroscopic material 30 releases the retained moisture to the outside. Then, when this moisture evaporates, it takes heat of vaporization from the surroundings (step S24).
 吸湿材料30の水分が奪う気化熱により、太陽光パネル20は冷却されるため温度上昇が抑制される(ステップS25)。太陽光パネル20は、温度上昇が抑制されて発電効率が改善する(ステップS26)。 The temperature rise is suppressed because the solar panel 20 is cooled by the heat of vaporization taken by the moisture of the hygroscopic material 30 (step S25). The temperature rise of the solar panel 20 is suppressed and the power generation efficiency is improved (step S26).
 発電効率が改善した太陽光パネル20の発電により得られた電力は、電源制御部42を介して照明ユニット14などに供給される(ステップS27)。したがって、外部電源から植物工場100の照明ユニット14等に供給しなければならない電源電力を削減できる。しかも、夜間に植物13の蒸散により発生する余分な水分を、昼間に太陽光パネル20を冷却するために効果的に利用できる。 The power generated by the solar panel 20 with improved power generation efficiency is supplied to the lighting unit 14 and the like via the power control unit 42 (step S27). Therefore, power supply electric power which must be supplied to the lighting unit 14 grade|etc., of the plant factory 100 from an external power supply can be reduced. Moreover, excess moisture generated by transpiration of the plants 13 at night can be effectively used to cool the solar panel 20 during the day.
<第2実施形態>
-<植物工場の構成及び昼夜の状況変化>
 本発明の第2実施形態における植物工場100A内の主要な構成要素の夜間の状況を図4に示し、昼間の状況を図5に示す。植物工場100Aは、栽培装置の一例である。
<Second embodiment>
- <Composition of the plant factory and changes in day and night conditions>
FIG. 4 shows the nighttime situation of the main components in the plant factory 100A in the second embodiment of the present invention, and FIG. 5 shows the daytime situation. 100 A of plant factories are examples of a cultivation apparatus.
 図4及び図5に示した植物工場100Aは、図1とほぼ同じ構成の栽培室10を有している。また、この植物工場100Aにおいても栽培室10の屋上10aに太陽光パネル20が設置され、更に太陽光パネル20の裏面に吸湿材料30が装着されている。 A plant factory 100A shown in FIGS. 4 and 5 has a cultivation room 10 having substantially the same configuration as in FIG. Also in this plant factory 100A, a solar panel 20 is installed on the roof 10a of the cultivation room 10, and a hygroscopic material 30 is mounted on the rear surface of the solar panel 20. As shown in FIG.
 また、図4及び図5に示した植物工場100Aにおいては、吸湿材料30の周囲が吸湿材料30の外形よりも少し大きい吸湿材カバー35で覆われている。この吸湿材カバー35は、ある程度の気密性及び水密性を有する状態で、その内側に外気から隔離された拡張空間35aを形成している。この拡張空間35a内に吸湿材料30が存在している。 In addition, in the plant factory 100A shown in FIGS. 4 and 5, the moisture absorbent material 30 is covered with a moisture absorbent cover 35 slightly larger than the outer shape of the moisture absorbent material 30 . The hygroscopic material cover 35 has a certain degree of airtightness and watertightness, and forms an expansion space 35a inside thereof isolated from the outside air. The hygroscopic material 30 is present in this expansion space 35a.
 また、拡張空間35aと栽培室10との間が、ダクト36、37、及び38を介して接続されている。したがって、拡張空間35aは栽培室10内の閉鎖空間11を拡張したような形態で、植物工場100Aの一部分として利用可能である。 Also, the expansion space 35a and the cultivation room 10 are connected via ducts 36, 37, and 38. Therefore, the expansion space 35a can be used as a part of the plant factory 100A in a form as if the closed space 11 in the cultivation room 10 was expanded.
 図4に示した夜間の状態では、例えば図示しない送風機で送風し、ダクト36を利用して栽培室10内から拡張空間35aに向かって、湿度の高い空気43を送り込むことができる。また、温度が低い夜間は吸湿材料30の吸湿性が高くなるので、拡張空間35a内の空気は乾燥した状態になる。この乾燥した空気44を、ダクト37を介して栽培室10内に戻すことができる。 In the nighttime state shown in FIG. 4, for example, a blower (not shown) can blow air, and the duct 36 can be used to send high-humidity air 43 from the cultivation room 10 toward the expansion space 35a. Moreover, since the hygroscopicity of the hygroscopic material 30 increases at night when the temperature is low, the air in the expansion space 35a becomes dry. This dried air 44 can be returned into the cultivation room 10 via the duct 37 .
 また、図5に示したような昼間の状態では、温度の上昇により保持していた水分を吸湿材料30が放出するので、冷却後に拡張空間35a内に水分45が溜まる状態になる。この状態で、ダクト38を利用して水分45を栽培室10の栽培容器12内などに戻し、この水分45を再利用することができる。尚、図5においては、拡張空間35a中の水分45を誇張して表現しているが、実際には、太陽光パネル20の傾斜角度に応じて、拡張空間35a内の最も低い位置、すなわちダクト38の接続位置に水分45が溜まることとなる。
 上記以外の植物工場100Aの構成については図1の植物工場100と同様である。
In addition, in the daytime state as shown in FIG. 5, the hygroscopic material 30 releases the retained moisture as the temperature rises, so that moisture 45 accumulates in the expansion space 35a after cooling. In this state, the duct 38 is used to return the water 45 to the cultivation container 12 of the cultivation room 10, and the water 45 can be reused. Although the water content 45 in the expansion space 35a is exaggerated in FIG. Moisture 45 will accumulate at the connection position of 38 .
About the structure of 100 A of plant factories other than the above, it is the same as that of the plant factory 100 of FIG.
-<プロセスの概要>
 図4及び図5に示した植物工場100Aにおいて夜間及び昼間にそれぞれ発生する変化のプロセスの概要を図6に示す。図6のプロセスについて以下に説明する。
-<Overview of the process>
FIG. 6 shows an overview of the process of change occurring at night and day in the plant factory 100A shown in FIGS. The process of Figure 6 is described below.
--<夜間の変化>
 第1実施形態と同様に、図4の植物工場100Aにおいても、夜間は照明ユニット14を消灯して植物13への光の照射を停止する(ステップS11)。また、夜間は植物13の蒸散により水分が栽培室10内に放出されるので、栽培室10内の湿度が上昇する。この水分の潜熱により植物工場100の熱負荷が増大する(ステップS12)。
--<Night change>
Similarly to the first embodiment, in the plant factory 100A of FIG. 4 as well, the illumination unit 14 is turned off at night to stop irradiating the plants 13 with light (step S11). In addition, since water is released into the cultivation room 10 by transpiration of the plants 13 at night, the humidity inside the cultivation room 10 increases. The latent heat of this moisture increases the heat load of the plant factory 100 (step S12).
 図4の植物工場100Aにおいては、夜間に栽培室10内の湿度が上昇するので、栽培室10内で発生した高湿度の空気をダクト36で拡張空間35aに送り、吸湿材料30に供給する(ステップS13A)。 In the plant factory 100A of FIG. 4, since the humidity in the cultivation room 10 rises at night, the high-humidity air generated in the cultivation room 10 is sent to the expansion space 35a through the duct 36 and supplied to the hygroscopic material 30 ( step S13A).
 夜間は太陽からのエネルギー供給が停止するので、太陽光パネル20及び吸湿材料30の温度が例えば25℃以下程度まで低下する。したがって、温度が低い環境下で吸湿材料30は栽培室10から供給された高湿度の空気から水分を効率よく吸収し膨張する(ステップS14)。 Since the supply of energy from the sun stops at night, the temperature of the solar panel 20 and the hygroscopic material 30 drops to, for example, 25°C or less. Therefore, in a low-temperature environment, the hygroscopic material 30 efficiently absorbs moisture from the high-humidity air supplied from the cultivation room 10 and expands (step S14).
 吸湿材料30が空気中の水分を吸収するので、拡張空間35a内の空気が乾燥して湿度が低下する。この乾燥した空気が、拡張空間35aからダクト37を通って栽培室10内に供給される(ステップS15)。
 つまり、図4に示した状況では、栽培室10内の空気がダクト36、拡張空間35a、及びダクト37を通って再び栽培室10に戻るように循環することになり、この空気は循環しながら途中の拡張空間35aで除湿される。したがって、夜間に除湿器18の負荷を減らすことができる。
Since the hygroscopic material 30 absorbs moisture in the air, the air in the expansion space 35a is dried and the humidity is lowered. This dried air is supplied from the expansion space 35a through the duct 37 into the cultivation room 10 (step S15).
That is, in the situation shown in FIG. 4, the air in the cultivation room 10 circulates through the duct 36, the expansion space 35a, and the duct 37 so as to return to the cultivation room 10, and this air circulates. It is dehumidified in the expansion space 35a on the way. Therefore, the load on the dehumidifier 18 can be reduced at night.
--<昼間の変化>
 第1実施形態と同様に、図5の植物工場100Aにおいても例えば夜明けの時間帯になると、植物工場100Aの照明ユニット14が点灯状態に切り替わる(ステップS21)。これにより、太陽光が照射されない栽培室10内においても、照明ユニット14からの光16の照射により植物13が光合成を開始する。
--<Changes in the daytime>
Similarly to the first embodiment, the lighting unit 14 of the plant factory 100A is switched to the lighting state at dawn, for example, in the plant factory 100A of FIG. 5 (step S21). As a result, the plants 13 start photosynthesis due to the irradiation of the light 16 from the lighting unit 14 even in the cultivation room 10 where the sunlight is not irradiated.
 また、夜明けの時間帯になると、太陽から光などのエネルギー供給が開始される(ステップS22)。したがって、太陽光パネル20が発電を開始するが、同時に太陽のエネルギーで加熱されるので、太陽光パネル20及び吸湿材料30の温度が上昇する(ステップS23)。 Also, at dawn, the sun starts supplying energy such as light (step S22). Therefore, the solar panel 20 starts generating electricity, but at the same time, it is heated by the solar energy, so the temperature of the solar panel 20 and the hygroscopic material 30 rises (step S23).
 太陽エネルギーによる太陽光パネル20の加熱によって、例えば60℃程度まで吸湿材料30の温度が上昇すると、吸湿材料30は保持している水分を外部に放出する。そして、この水分が蒸発する際に周囲から気化熱を奪う(ステップS24)。 When the temperature of the hygroscopic material 30 rises, for example, to about 60°C due to the heating of the solar panel 20 by solar energy, the hygroscopic material 30 releases the retained moisture to the outside. Then, when this moisture evaporates, it takes heat of vaporization from the surroundings (step S24).
 吸湿材料30の水分が奪う気化熱により、太陽光パネル20は冷却されるため温度上昇が抑制される(ステップS25)。太陽光パネル20は、温度上昇が抑制されて発電効率が改善する(ステップS26)。 The temperature rise is suppressed because the solar panel 20 is cooled by the heat of vaporization taken by the moisture of the hygroscopic material 30 (step S25). The temperature rise of the solar panel 20 is suppressed and the power generation efficiency is improved (step S26).
 発電効率が改善した太陽光パネル20の発電により得られた電力は、電源制御部42を介して照明ユニット14などに供給される(ステップS27)。したがって、外部電源から植物工場100Aの照明ユニット14等に供給しなければならない電源電力を削減できる。しかも、夜間に植物13の蒸散により発生する余分な水分を、昼間に太陽光パネル20を冷却するために効果的に利用できる。 The power generated by the solar panel 20 with improved power generation efficiency is supplied to the lighting unit 14 and the like via the power control unit 42 (step S27). Therefore, the power supply electric power which must be supplied to the lighting unit 14 grade|etc., of 100 A of plant factories from an external power supply can be reduced. Moreover, excess moisture generated by transpiration of the plants 13 at night can be effectively used to cool the solar panel 20 during the day.
 また、高温の環境下で吸湿材料30から放出された水蒸気が拡張空間35a内で冷却され、水分として回収される(ステップS28)。更に、拡張空間35a内で回収された水分は、ダクト38を通って栽培室10内に戻り、例えば栽培容器12内の養液の水分として再利用される(ステップS29)。 Also, the water vapor released from the hygroscopic material 30 in a high-temperature environment is cooled in the expansion space 35a and collected as water (step S28). Furthermore, the water collected in the expansion space 35a returns to the cultivation room 10 through the duct 38, and is reused, for example, as the water in the nutrient solution in the cultivation container 12 (step S29).
 ここで、拡張空間35aを通って循環する水分は、外気とは隔離されているので、植物13の育成に悪影響を及ぼす微生物や細菌が水分に混入するのを避けることができ、栽培室10内の水分を効率よく再利用できる。 Here, since the water circulating through the expansion space 35a is isolated from the outside air, it is possible to avoid contamination of the water with microorganisms and bacteria that adversely affect the growth of the plants 13. water can be efficiently reused.
<第3実施形態>
-<植物工場の構成及び状態変化>
 本発明の第3実施形態における植物工場100Bの構成及び状態変化の概要を図7に示す。図7において上側は夜間の植物工場100Bの状態を表し、下側が昼間の植物工場100Bの状態を表している。植物工場100Bは、栽培装置の一例である。
<Third Embodiment>
- <Construction and state change of the plant factory>
FIG. 7 shows an overview of the configuration and state changes of the plant factory 100B in the third embodiment of the present invention. In FIG. 7, the upper side represents the state of the plant factory 100B during the night, and the lower side represents the state of the plant factory 100B during the day. Plant factory 100B is an example of a cultivation apparatus.
 図7に示した植物工場100Bにおいて、栽培室10、太陽光パネル20、及び吸湿材カバー35は第2実施形態と同様である。一方、植物工場100Bの吸湿材料30Aは、水分の他に二酸化炭素の吸着および脱離が可能な吸脱着材により構成されている。 In the plant factory 100B shown in FIG. 7, the cultivation room 10, the solar panel 20, and the absorbent cover 35 are the same as in the second embodiment. On the other hand, the hygroscopic material 30A of the plant factory 100B is composed of an adsorption/desorption material capable of adsorbing and desorbing carbon dioxide in addition to moisture.
 吸湿材料30Aを構成する吸脱着材は、温度変化により吸脱着動作の繰り返しが可能である。すなわち、吸脱着材は室温などの常温(第一温度、例えば0℃~40℃)において、供給された大気などの空気と接触することで空気中に含まれている二酸化炭素を吸着する。また、吸脱着材は所定温度(第二温度、例えば50℃~70℃)に加熱されることで、吸着した二酸化炭素及び水分を脱離させる。二酸化炭素及び水分の脱離により、この吸脱着材は再び二酸化炭素を吸着できるので、同じ動作の繰り返しで何回でも再利用できる。なお、吸脱着材は、大気圧(第一気圧)において供給された空気中の二酸化炭素を吸着し、吸脱着材を収容する容器内が減圧される(第二気圧、例えば10000 Pa)ことで、二酸化炭素及び水分を脱離させることもできる。 The adsorption/desorption material that constitutes the hygroscopic material 30A can repeat the adsorption/desorption operation due to temperature changes. That is, the adsorption/desorption material adsorbs carbon dioxide contained in the air by coming into contact with the supplied air such as air at normal temperature (first temperature, eg, 0° C. to 40° C.) such as room temperature. Also, the adsorbing/desorbing material is heated to a predetermined temperature (second temperature, eg, 50° C. to 70° C.) to desorb adsorbed carbon dioxide and moisture. By desorbing carbon dioxide and moisture, this adsorption/desorption material can adsorb carbon dioxide again, so it can be reused any number of times by repeating the same operation. In addition, the adsorption/desorption material adsorbs carbon dioxide in the air supplied at atmospheric pressure (first pressure), and the pressure inside the container containing the adsorption/desorption material is reduced (second pressure, for example, 10000 Pa). , carbon dioxide and moisture can also be desorbed.
 吸脱着材を構成する具体的な材料としては、炭酸カリウム、炭酸カルシウム等の金属炭酸塩、モノアミン水溶液等の液体アミン、又は、多孔体にアミン液体を充填したもの、多孔体表面にアミンモノマー修飾したもの、アミンポリマー等の固体アミンを用いることが好ましい。また、吸脱着材として、4級アミン含有イオン交換樹脂等のイオン交換樹脂、又は、金属有機構造体(MOF:Metal Organic Frameworks)単体もしくはアミン修飾MOFを用いることができる。 Specific materials that constitute the adsorption/desorption material include metal carbonates such as potassium carbonate and calcium carbonate, liquid amines such as monoamine aqueous solutions, porous bodies filled with amine liquid, and porous body surfaces modified with amine monomers. It is preferred to use solid amines such as amine polymers. As the adsorption/desorption material, an ion exchange resin such as a quaternary amine-containing ion exchange resin, or a single metal organic framework (MOF) or an amine-modified MOF can be used.
 一方、図7の植物工場100Bにおいては、吸湿材料30Aに二酸化炭素を吸着させるために、吸湿材料30Aの周囲の拡張空間35aに外気を流通させる必要がある。そのため、栽培室10内の空気と外気とが直接接触しないように、図7の上側に示すように各ダクト36、37、及び38に開閉弁64、65、及び66が設けてある。
 また、外気の空気流71及び72が流れる箇所にそれぞれ開閉弁62及び63を配置してあり、更に拡張空間35aに外気を導入するために送風機61が設けてある。
On the other hand, in the plant factory 100B of FIG. 7, it is necessary to circulate outside air through the expansion space 35a around the moisture absorbing material 30A in order to cause the moisture absorbing material 30A to adsorb carbon dioxide. Therefore, the ducts 36, 37 and 38 are provided with opening/ closing valves 64, 65 and 66 as shown in the upper side of FIG.
In addition, on-off valves 62 and 63 are arranged at locations where outside air flows 71 and 72 flow, respectively, and a blower 61 is provided to introduce outside air into the expansion space 35a.
-<プロセスの概要>
 図7に示した植物工場100Bにおいて夜間及び昼間にそれぞれ発生する変化のプロセスの概要を図8に示す。図8のプロセスについて以下に説明する。
-<Overview of the process>
FIG. 8 shows an overview of the process of change occurring in the plant factory 100B shown in FIG. 7 at night and during the day. The process of Figure 8 is described below.
--<夜間の変化>
 第2実施形態と同様に、図7の植物工場100Bにおいても、夜間は照明ユニット14を消灯して植物13への光の照射を停止する(ステップS11)。
--<Night change>
Similarly to the second embodiment, in the plant factory 100B of FIG. 7, the illumination unit 14 is turned off at night to stop irradiating the plants 13 with light (step S11).
 夜間は図7の上側に示した開閉弁64、65、及び66を閉じて拡張空間35aと栽培室10との連通を遮断した後、開閉弁62及び63を開き、送風機61を駆動して外気を空気流71として拡張空間35a内に導入する(ステップS31)。また、導入した外気は空気流72として排出する。 At night, after closing the on-off valves 64, 65, and 66 shown in the upper part of FIG. is introduced into the expansion space 35a as the airflow 71 (step S31). Also, the introduced outside air is discharged as an air flow 72 .
 夜間は太陽光パネル20及び吸湿材料30Aが例えば25℃以下程度の常温であるので、吸脱着材で構成される吸湿材料30Aは、拡張空間35a内を通過する外気中の二酸化炭素及び水分を吸着する(ステップS32)。 At night, the temperature of the solar panel 20 and the hygroscopic material 30A is normal, for example, about 25° C. or less. (step S32).
--<昼間の変化>
 昼間は拡張空間35aを栽培室10のために利用するので、拡張空間35aを外気から遮断する必要がある。したがって、開閉弁62及び63を閉じて外気を遮断した後、開閉弁64、65、及び66を開いて拡張空間35aを栽培室10と接続する(ステップS41)。
--<Changes in the daytime>
Since the expansion space 35a is used for the cultivation room 10 during the daytime, it is necessary to block the expansion space 35a from the outside air. Therefore, after closing the on-off valves 62 and 63 to cut off the outside air, the on-off valves 64, 65, and 66 are opened to connect the expansion space 35a to the cultivation room 10 (step S41).
 第2実施形態と同様に、図7の植物工場100Bにおいても例えば夜明けの時間帯になると、植物工場100Bの照明ユニット14が点灯状態に切り替わる(ステップS42)。これにより、太陽光が照射されない栽培室10内においても、照明ユニット14からの光16の照射により植物13が光合成を開始する。 Similarly to the second embodiment, also in the plant factory 100B of FIG. 7, the lighting unit 14 of the plant factory 100B is switched to the lighting state at dawn, for example (step S42). As a result, the plants 13 start photosynthesis due to the irradiation of the light 16 from the lighting unit 14 even in the cultivation room 10 where the sunlight is not irradiated.
 また、夜明けの時間帯になると、太陽から光などのエネルギー供給が開始される(ステップS43)。したがって、太陽光パネル20が発電を開始するが、同時に太陽のエネルギーで加熱されるので、太陽光パネル20及び吸湿材料30Aの温度が上昇する(ステップS44)。 Also, at dawn, the sun starts supplying energy such as light (step S43). Therefore, the solar panel 20 starts generating electricity, but at the same time, it is heated by the solar energy, so the temperature of the solar panel 20 and the moisture absorbing material 30A rises (step S44).
 太陽エネルギーによる太陽光パネル20の加熱によって、例えば60℃程度まで吸湿材料30Aの温度が上昇すると、吸湿材料30Aは保持している水分及び二酸化炭素を拡張空間35aに放出する(ステップS45、S47)。 When the temperature of the hygroscopic material 30A rises to, for example, about 60° C. by heating the solar panel 20 with solar energy, the hygroscopic material 30A releases the retained moisture and carbon dioxide into the expansion space 35a (steps S45 and S47). .
 吸湿材料30Aから放出される水分が蒸発する際に周囲から気化熱を奪う。そして、吸湿材料30Aの水分が奪う気化熱により、太陽光パネル20は冷却されるため温度上昇が抑制される(ステップS46)。 When the moisture released from the hygroscopic material 30A evaporates, it absorbs heat of vaporization from the surroundings. Then, the temperature rise is suppressed because the solar panel 20 is cooled by the heat of vaporization taken by the moisture of the hygroscopic material 30A (step S46).
 また、吸湿材料30Aから拡張空間35aに放出された二酸化炭素74は、図7の下側に示すようにダクト37を通り栽培室10に供給される(ステップS48)。また、比較的二酸化炭素濃度の低い栽培室10内の空気73は、ダクト36を通って拡張空間35aに供給される(ステップS49)。 Also, the carbon dioxide 74 released from the hygroscopic material 30A into the expansion space 35a is supplied to the cultivation chamber 10 through the duct 37 as shown in the lower side of FIG. 7 (step S48). Also, the air 73 in the cultivation room 10 having a relatively low carbon dioxide concentration is supplied to the expansion space 35a through the duct 36 (step S49).
 したがって、吸湿材料30Aが放出した二酸化炭素により栽培室10内の二酸化炭素濃度を上げることができる。二酸化炭素濃度を上げることで、栽培室10内の植物13の生育が促進される。 Therefore, the carbon dioxide concentration in the cultivation room 10 can be increased by the carbon dioxide released by the hygroscopic material 30A. By increasing the carbon dioxide concentration, the growth of the plants 13 in the cultivation room 10 is promoted.
 一方、太陽光パネル20は、冷却により温度上昇が抑制されて発電効率が改善する(ステップS50)。
 発電効率が改善した太陽光パネル20の発電により得られた電力は、電源制御部42を介して照明ユニット14などに供給される(ステップS51)。したがって、外部電源から植物工場100の照明ユニット14等に供給しなければならない電源電力を削減できる。
On the other hand, the temperature rise of the solar panel 20 is suppressed by cooling, and the power generation efficiency is improved (step S50).
Electric power obtained by power generation by the solar panel 20 with improved power generation efficiency is supplied to the lighting unit 14 and the like via the power control unit 42 (step S51). Therefore, power supply electric power which must be supplied to the lighting unit 14 grade|etc., of the plant factory 100 from an external power supply can be reduced.
 一方、吸湿材料30Aから水蒸気として放出された水分は、冷却されて拡張空間35a内で回収される(ステップS52)。更に、拡張空間35a内の水分75は、図7の下側に示すようにダクト38を通り栽培室10内の栽培容器12に供給される(ステップS53)。 On the other hand, the moisture released as water vapor from the hygroscopic material 30A is cooled and collected in the expansion space 35a (step S52). Furthermore, the moisture 75 in the expansion space 35a is supplied to the cultivation container 12 in the cultivation room 10 through the duct 38 as shown in the lower side of FIG. 7 (step S53).
<植物工場の利点>
 図1に示した植物工場100においては、植物13の蒸散により栽培室10で発生した水分を、夜間に吸湿材料30に吸着させて昼間の時間帯に放出させることができる。そして、吸湿材料30からの水分の放出に伴って太陽光パネル20が冷却されるので、発電効率の低下を避けることができる。また、栽培室10内の水分を吸湿材料30に吸湿させることで、栽培室10内の除湿に必要なエネルギーを削減できる。更に、栽培室10内で植物13を育成するために必要な光源の電力として、太陽光パネル20の発電した電力を利用できるので、植物工場100を稼働させるために外部から供給する電力等のエネルギーを削減できる。
<Advantages of plant factories>
In the plant factory 100 shown in FIG. 1, moisture generated in the cultivation room 10 by the transpiration of the plants 13 can be absorbed by the moisture absorbing material 30 at night and released during the daytime. Since the solar panel 20 is cooled as the moisture is released from the hygroscopic material 30, a decrease in power generation efficiency can be avoided. Moreover, the energy required for dehumidifying the cultivation room 10 can be reduced by causing the moisture-absorbing material 30 to absorb the moisture in the cultivation room 10 . Furthermore, since the power generated by the solar panel 20 can be used as power for the light source necessary for growing the plants 13 in the cultivation room 10, energy such as power supplied from the outside for operating the plant factory 100 can be used. can be reduced.
 また、図4及び図5に示した植物工場100Aにおいては、吸湿材料30及び拡張空間35aを利用して乾燥させた空気を栽培室10に供給できるので、夜間に栽培室10内の除湿を行うことができる。また、昼間の時間帯に吸湿材料30から放出され冷却された水分を回収して、栽培室10内で再利用することが可能になる。 In addition, in the plant factory 100A shown in FIGS. 4 and 5, since dried air can be supplied to the cultivation room 10 by using the hygroscopic material 30 and the expansion space 35a, the inside of the cultivation room 10 is dehumidified at night. be able to. In addition, it becomes possible to collect the water released from the moisture absorbing material 30 and cooled during the daytime and reuse it in the cultivation room 10 .
 また、図7に示した植物工場100Bにおいては、太陽光パネル20における昼夜の温度変化を利用して、夜間に外気から吸着した二酸化炭素や水分を、昼間の時間帯に放出して栽培室10に供給することができる。これにより、栽培室10内の二酸化炭素濃度が上がり、植物13の生育が促進される。 In addition, in the plant factory 100B shown in FIG. 7, the daytime and nighttime temperature changes in the solar panel 20 are used to release the carbon dioxide and moisture adsorbed from the outside air during the daytime. can be supplied to Thereby, the carbon dioxide concentration in the cultivation room 10 increases and the growth of the plant 13 is promoted.
<補足説明>
 ここで、上述した本発明に係る栽培装置およびその制御方法の実施形態の特徴をそれぞれ以下[1]~[12]に簡潔に纏めて列記する。
[1] 外気と隔離された閉鎖空間内に形成された、植物を栽培するための栽培室(10)と、
 前記栽培室内で植物(13)が必要とする光を出射可能な人工光源(照明ユニット14)と、
 前記栽培室内における空気環境を植物の育成に適した状態に調整する空気環境調整部(エアコン17、除湿器18)と、
 太陽光により発電する発電部を有する太陽光パネル(20)と、
 前記太陽光パネルの裏面と対向する状態で隣接する位置に配置された吸湿材料(30)と、
 前記栽培室内で発生した水分、又はその水分を含む空気、若しくは外気を前記吸湿材料が存在する空間に供給可能な水分供給部(ダクト39)と、
 前記栽培室内と前記吸湿材料が存在する空間とを接続する1つ以上の接続部(ダクト36、又は39)と、
 を備える栽培装置(植物工場100、100A、100B)。
<Supplementary explanation>
Here, the features of the embodiment of the cultivation apparatus and the control method thereof according to the present invention described above are briefly summarized in [1] to [12] below.
[1] A cultivation chamber (10) for cultivating plants formed in a closed space isolated from the outside air;
an artificial light source (illumination unit 14) capable of emitting light required by the plants (13) in the cultivation room;
An air environment adjustment unit (air conditioner 17, dehumidifier 18) that adjusts the air environment in the cultivation room to a state suitable for growing plants;
a solar panel (20) having a power generation unit that generates power using sunlight;
a hygroscopic material (30) disposed adjacent to and facing the back surface of the solar panel;
a moisture supply unit (duct 39) capable of supplying moisture generated in the cultivation chamber, air containing the moisture, or outside air to the space where the hygroscopic material exists;
one or more connections (ducts 36 or 39) that connect the cultivation chamber and the space where the moisture-absorbing material exists;
( Plant factory 100, 100A, 100B).
[2] 前記接続部は、前記栽培室内で発生した水分、又はその水分を含む空気を前記吸湿材料が存在する空間に供給可能な状態で、前記栽培室内と前記吸湿材料とを接続する第1空間接続部(ダクト39)を有する、
 上記[1]に記載の栽培装置。
[2] The connecting portion is a first connecting portion that connects the cultivating chamber and the hygroscopic material in a state in which moisture generated in the cultivating chamber or air containing the moisture can be supplied to the space in which the hygroscopic material exists. having a spatial connection (duct 39),
The cultivation apparatus according to [1] above.
[3] 前記吸湿材料の周囲を覆い前記吸湿材料の近傍の周囲空間を外気から隔離する吸湿材カバー(35)を備える、
 上記[1]又は[2]に記載の栽培装置。
[3] A hygroscopic material cover (35) that covers the perimeter of the hygroscopic material and isolates the surrounding space near the hygroscopic material from the outside air;
The cultivation apparatus according to [1] or [2] above.
[4] 前記吸湿材カバーの内側空間(拡張空間35a)の空気が流通可能な状態で、前記内側空間と前記栽培室の空間とを接続する第2空間接続部(ダクト37)を備える、
 上記[3]に記載の栽培装置。
[4] A second space connecting portion (duct 37) that connects the inner space (extended space 35a) of the hygroscopic material cover and the space of the cultivation chamber in a state in which air can circulate,
The cultivation apparatus according to [3] above.
[5] 前記吸湿材カバーの内側空間の水分が流通可能な状態で、前記内側空間と前記栽培室の空間とを接続する第3空間接続部(ダクト38)を備える、
 上記[3]又は[4]に記載の栽培装置。
[5] A third space connecting portion (duct 38) that connects the inner space of the hygroscopic material cover and the space of the cultivation chamber in a state in which moisture in the inner space can flow,
The cultivation apparatus according to the above [3] or [4].
[6] 前記吸湿材料(30A)は、温度変化に応じて二酸化炭素の吸着及び脱離が可能な吸脱着材を含み、
 前記吸湿材カバーの内側空間が前記栽培室の空間から隔離されて前記内側空間を外気が流通する第1状態(図7中の上側の状態)と、前記吸湿材カバーの内側空間が外気から隔離されて前記内側空間と前記栽培室の空間とが連通する第2状態(図7中の下側の状態)との切り替えが可能な経路切替部(開閉弁62~66)を備える、
 上記[3]に記載の栽培装置(植物工場100B)。
[6] The hygroscopic material (30A) includes an adsorption/desorption material capable of adsorbing and desorbing carbon dioxide according to temperature changes,
A first state (the upper state in FIG. 7) in which the inner space of the moisture absorbent cover is isolated from the space of the cultivation chamber and outside air flows through the inner space (upper state in FIG. 7), and the inner space of the moisture absorbent cover is isolated from the outside air. A path switching unit (on-off valves 62 to 66) capable of switching between a second state (lower state in FIG. 7) in which the inner space and the space of the cultivation room communicate with each other.
The cultivation apparatus (plant factory 100B) according to the above [3].
[7] 前記太陽光パネルの発電により得られた電力を、少なくとも前記人工光源に電源として供給する電源制御部(42)を備える、
 上記[1]から[6]のいずれかに記載の栽培装置。
[7] A power control unit (42) that supplies power obtained by power generation of the solar panel to at least the artificial light source as a power source,
The cultivation apparatus according to any one of [1] to [6] above.
[8] 外気と隔離された閉鎖空間(11)内に形成された、植物(13)を栽培するための栽培室(10)と、太陽光パネル(20)と、前記太陽光パネルの裏面と対向する状態で隣接する位置に配置された吸湿材料(30)と、を備えた栽培装置(植物工場100)において、
 外部環境が夜の何れかの時間帯に、前記栽培室内の高湿度空気、又は外気を前記吸湿材料に供給して前記吸湿材料を吸湿させ(ステップS13、S14)、
 前記外部環境が昼の何れかの時間帯に、前記太陽光パネルの温度上昇に伴って前記吸湿材料から放出される水分の気化熱を利用して、前記太陽光パネルを冷却する(ステップS24、S25)、
 栽培装置の制御方法。
[8] A cultivation room (10) for cultivating a plant (13) formed in a closed space (11) isolated from the outside air, a solar panel (20), and a back surface of the solar panel. In a cultivation device (plant factory 100) comprising:
When the external environment is at any time of the night, high-humidity air in the cultivation room or outside air is supplied to the hygroscopic material to cause the hygroscopic material to absorb moisture (steps S13 and S14);
When the external environment is in the daytime, the solar panel is cooled by utilizing heat of vaporization of moisture released from the moisture absorbing material as the temperature of the solar panel rises (step S24, S25),
A control method for a cultivation device.
[9] 前記太陽光パネルの発電により得られた電力を、前記栽培装置の人工光源に電源として供給する(ステップS27)、
 上記[8]に記載の栽培装置の制御方法。
[9] Supplying the power obtained by the power generation of the solar panel as a power source to the artificial light source of the cultivation apparatus (step S27);
The method for controlling the cultivation apparatus according to [8] above.
[10] 前記栽培装置は、前記吸湿材料の周囲をカバー(吸湿材カバー35)で覆って形成され外気から隔離された拡張空間(35a)を備え、
 前記外部環境が夜の何れかの時間帯に、前記拡張空間を通過して乾燥した空気(44)を前記栽培室内に導入して、前記栽培室内の空気を除湿する(ステップS15)、
 上記[8]又は[9]に記載の栽培装置の制御方法。
[10] The cultivating apparatus includes an expansion space (35a) formed by covering the hygroscopic material with a cover (hygroscopic material cover 35) and isolated from the outside air,
dehumidifying the air in the cultivation room by introducing dry air (44) through the expansion space into the cultivation room when the external environment is at any time of the night (step S15);
A control method for a cultivation apparatus according to the above [8] or [9].
[11] 前記栽培装置は、前記吸湿材料の周囲をカバー(吸湿材カバー35)で覆って形成され外気から隔離された拡張空間(35a)を備え、
 前記外部環境が昼の何れかの時間帯に、前記拡張空間内で形成された水分(45)を前記栽培室内に回収し、前記水分を植物栽培のための養液として再利用する(ステップS28、S29)、
 上記[8]又は[9]に記載の栽培装置の制御方法。
[11] The cultivation apparatus includes an expansion space (35a) formed by covering the moisture absorbing material with a cover (hygroscopic material cover 35) and isolated from the outside air,
When the external environment is in the daytime, the water (45) formed in the expansion space is collected into the cultivation room and reused as a nutrient solution for plant cultivation (step S28). , S29),
A control method for a cultivation apparatus according to the above [8] or [9].
[12]
 前記栽培装置は、前記吸湿材料の周囲をカバー(吸湿材カバー35)で覆って形成された拡張空間(35a)を備え、前記吸湿材料(30A)の少なくとも一部分として、温度変化に応じて二酸化炭素の吸着及び脱離が可能な吸脱着材を有し、
 前記外部環境が夜の何れかの時間帯に、外気を前記拡張空間に流通させて空気中の二酸化炭素を前記吸脱着材で吸着し(ステップS31、S32)、
 前記外部環境が昼の何れかの時間帯に、前記吸脱着材から脱離した二酸化炭素を前記拡張空間内から前記栽培室内に供給する(ステップS47~S49)、
 上記[8]又は[9]に記載の栽培装置の制御方法。
[12]
The cultivation apparatus includes an expansion space (35a) formed by covering the perimeter of the hygroscopic material with a cover (hygroscopic material cover 35). has an adsorption/desorption material capable of adsorption and desorption of
When the external environment is at any time of the night, outside air is circulated through the expansion space to adsorb carbon dioxide in the air with the adsorption/desorption material (steps S31 and S32);
Supplying carbon dioxide desorbed from the adsorption/desorption material into the cultivation room from the expansion space during any time period in which the external environment is in the daytime (steps S47 to S49),
A control method for a cultivation apparatus according to the above [8] or [9].
 本発明は前述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 例えば、前述した各実施形態では、夜間に照明ユニット14を消灯し、昼間に照明ユニット14を点灯したが、外部環境が夜又は昼のいずれの時間帯であるかにかかわらず、照明ユニット14を消灯又は点灯しても良い。
The present invention is not limited to the above-described embodiments, but can be modified in various ways within the scope of the claims, and can be obtained by appropriately combining technical means disclosed in different embodiments. is also included in the technical scope of the present invention.
For example, in each of the above-described embodiments, the lighting unit 14 is turned off at night and turned on during the day. It may be turned off or turned on.
 なお、本出願は、2021年4月21日出願の日本特許出願(特願2021-072072)に基づくものであり、その内容は本出願の中に参照として援用される。 This application is based on a Japanese patent application (Japanese Patent Application No. 2021-072072) filed on April 21, 2021, the contents of which are incorporated herein by reference.
 10 栽培室
 10a 屋上
 11 閉鎖空間
 12 栽培容器
 13 植物
 14 照明ユニット
 15A,15B 栽培棚
 16 光
 17 エアコン
 18 除湿器
 19 ファン
 20 太陽光パネル
 30,30A 吸湿材料
 31 水分
 32 気化熱
 33 太陽光
 35 吸湿材カバー
 35a 拡張空間
 36,37,38,39 ダクト
 41 水分
 42 電源制御部
 43,44 空気
 45 水分
 50 太陽
 51 月
 61 送風機
 62,63,64,65,66 開閉弁
 71,72 空気流
 73 空気
 74 二酸化炭素
 75 水分
 100,100A,100B 植物工場
10 Cultivation room 10a Rooftop 11 Closed space 12 Cultivation container 13 Plant 14 Lighting unit 15A, 15B Cultivation shelf 16 Light 17 Air conditioner 18 Dehumidifier 19 Fan 20 Solar panel 30, 30A Hygroscopic material 31 Moisture 32 Heat of vaporization 33 Sunlight 35 Moisture absorbent Cover 35a Expansion space 36, 37, 38, 39 Duct 41 Moisture 42 Power supply controller 43, 44 Air 45 Moisture 50 Sun 51 Moon 61 Blower 62, 63, 64, 65, 66 On-off valve 71, 72 Air flow 73 Air 74 Dioxide Carbon 75 Moisture 100, 100A, 100B Plant factory

Claims (12)

  1.  外気と隔離された閉鎖空間内に形成された、植物を栽培するための栽培室と、
     前記栽培室内で植物が必要とする光を出射可能な人工光源と、
     前記栽培室内における空気環境を植物の育成に適した状態に調整する空気環境調整部と、
     太陽光により発電する発電部を有する太陽光パネルと、
     前記太陽光パネルの裏面と対向する状態で隣接する位置に配置された吸湿材料と、
     前記栽培室内で発生した水分、又はその水分を含む空気、若しくは外気を前記吸湿材料が存在する空間に供給可能な水分供給部と、
     前記栽培室内と前記吸湿材料が存在する空間とを接続する1つ以上の接続部と、
     を備える栽培装置。
    a cultivation chamber for cultivating plants formed in a closed space isolated from the outside air;
    an artificial light source capable of emitting light required by plants in the cultivation room;
    an air environment adjustment unit that adjusts the air environment in the cultivation room to a state suitable for plant growth;
    a solar panel having a power generation unit that generates power using sunlight;
    a hygroscopic material arranged at a position adjacent to and facing the back surface of the solar panel;
    a moisture supply unit capable of supplying moisture generated in the cultivation chamber, air containing the moisture, or outside air to the space where the hygroscopic material exists;
    one or more connecting portions connecting the cultivation chamber and the space where the moisture absorbing material exists;
    Cultivation device.
  2.  前記接続部は、前記栽培室内で発生した水分、又はその水分を含む空気を前記吸湿材料が存在する空間に供給可能な状態で、前記栽培室内と前記吸湿材料とを接続する第1空間接続部を有する、
     請求項1に記載の栽培装置。
    The connection portion is a first space connection portion that connects the cultivation chamber and the hygroscopic material in a state in which moisture generated in the cultivating chamber or air containing the moisture can be supplied to the space in which the hygroscopic material exists. having
    The cultivation device according to claim 1.
  3.  前記吸湿材料の周囲を覆い前記吸湿材料の近傍の周囲空間を外気から隔離する吸湿材カバーを備える、
     請求項1又は請求項2に記載の栽培装置。
    a hygroscopic material cover that surrounds the hygroscopic material and isolates the surrounding space near the hygroscopic material from the outside air;
    The cultivation apparatus according to claim 1 or 2.
  4.  前記吸湿材カバーの内側空間の空気が流通可能な状態で、前記内側空間と前記栽培室の空間とを接続する第2空間接続部を備える、
     請求項3に記載の栽培装置。
    A second space connecting portion that connects the inner space of the moisture absorbent cover and the space of the cultivation chamber in a state in which the air in the inner space of the moisture absorbent cover can flow,
    The cultivation device according to claim 3.
  5.  前記吸湿材カバーの内側空間の水分が流通可能な状態で、前記内側空間と前記栽培室の空間とを接続する第3空間接続部を備える、
     請求項3又は請求項4に記載の栽培装置。
    a third space connecting portion that connects the inner space of the moisture absorbent cover and the space of the cultivation chamber in a state in which moisture in the inner space of the moisture absorbent cover can flow;
    The cultivation apparatus according to claim 3 or 4.
  6.  前記吸湿材料は、温度変化に応じて二酸化炭素の吸着及び脱離が可能な吸脱着材を含み、
     前記吸湿材カバーの内側空間が前記栽培室の空間から隔離されて前記内側空間を外気が流通する第1状態と、前記吸湿材カバーの内側空間が外気から隔離されて前記内側空間と前記栽培室の空間とが連通する第2状態との切り替えが可能な経路切替部を備える、
     請求項3に記載の栽培装置。
    The hygroscopic material includes an adsorption/desorption material capable of adsorbing and desorbing carbon dioxide according to temperature changes,
    a first state in which the inner space of the moisture absorbent cover is isolated from the space of the cultivation chamber and outside air flows through the inner space; and a first state in which the inner space of the moisture absorbent cover is isolated from the outside air and the inner space and the cultivation chamber. A path switching unit capable of switching to a second state in which the space of
    The cultivation device according to claim 3.
  7.  前記太陽光パネルの発電により得られた電力を、少なくとも前記人工光源に電源として供給する電源制御部を備える、
     請求項1から請求項6のいずれか1項に記載の栽培装置。
    A power control unit that supplies power obtained by power generation of the solar panel to at least the artificial light source as a power supply,
    The cultivation apparatus according to any one of claims 1 to 6.
  8.  外気と隔離された閉鎖空間内に形成された、植物を栽培するための栽培室と、太陽光パネルと、前記太陽光パネルの裏面と対向する状態で隣接する位置に配置された吸湿材料と、を備えた栽培装置において、
     外部環境が夜の何れかの時間帯に、前記栽培室内の高湿度空気、又は外気を前記吸湿材料に供給して前記吸湿材料を吸湿させ、
     前記外部環境が昼の何れかの時間帯に、前記太陽光パネルの温度上昇に伴って前記吸湿材料から放出される水分の気化熱を利用して、前記太陽光パネルを冷却する、
     栽培装置の制御方法。
    a cultivation chamber for cultivating plants formed in a closed space isolated from the outside air; a solar panel; In a cultivation device comprising
    When the external environment is at any time of the night, high-humidity air in the cultivation room or outside air is supplied to the hygroscopic material to cause the hygroscopic material to absorb moisture;
    When the external environment is any time during the day, the solar panel is cooled by utilizing heat of vaporization of moisture released from the moisture absorbing material as the temperature of the solar panel rises.
    A control method for a cultivation device.
  9.  前記太陽光パネルの発電により得られた電力を、前記栽培装置の人工光源に電源として供給する、
     請求項8に記載の栽培装置の制御方法。
    Supplying the power obtained by the power generation of the solar panel as a power source to the artificial light source of the cultivation apparatus;
    The control method of the cultivation apparatus according to claim 8.
  10.  前記栽培装置は、前記吸湿材料の周囲をカバーで覆って形成され外気から隔離された拡張空間を備え、
     前記外部環境が夜の何れかの時間帯に、前記拡張空間を通過して乾燥した空気を前記栽培室内に導入して、前記栽培室内の空気を除湿する、
     請求項8又は請求項9に記載の栽培装置の制御方法。
    The cultivation device includes an expansion space formed by covering the moisture absorbing material with a cover and isolated from the outside air,
    dehumidifying the air in the cultivation chamber by introducing dry air through the expansion space into the cultivation chamber when the external environment is at any time of the night;
    The method for controlling a cultivation apparatus according to claim 8 or 9.
  11.  前記栽培装置は、前記吸湿材料の周囲をカバーで覆って形成され外気から隔離された拡張空間を備え、
     前記外部環境が昼の何れかの時間帯に、前記拡張空間内で形成された水分を前記栽培室内に回収し、前記水分を植物栽培のための養液として再利用する、
     請求項8又は請求項9に記載の栽培装置の制御方法。
    The cultivation device includes an expansion space formed by covering the moisture absorbing material with a cover and isolated from the outside air,
    collecting the water formed in the expansion space into the cultivation room when the external environment is in the daytime, and reusing the water as a nutrient solution for cultivating plants;
    The method for controlling a cultivation apparatus according to claim 8 or 9.
  12.  前記栽培装置は、前記吸湿材料の周囲をカバーで覆って形成された拡張空間を備え、前記吸湿材料の少なくとも一部分として、温度変化に応じて二酸化炭素の吸着及び脱離が可能な吸脱着材を有し、
     前記外部環境が夜の何れかの時間帯に、外気を前記拡張空間に流通させて空気中の二酸化炭素を前記吸脱着材で吸着し、
     前記外部環境が昼の何れかの時間帯に、前記吸脱着材から脱離した二酸化炭素を前記拡張空間内から前記栽培室内に供給する、
     請求項8又は請求項9に記載の栽培装置の制御方法。
    The cultivation apparatus includes an expansion space formed by covering the perimeter of the hygroscopic material with a cover, and as at least part of the hygroscopic material, an adsorption/desorption material capable of adsorbing and desorbing carbon dioxide according to temperature changes. have
    When the external environment is at any time of the night, outside air is circulated through the expansion space to adsorb carbon dioxide in the air with the adsorption/desorption material,
    Supplying carbon dioxide desorbed from the adsorption/desorption material into the cultivation room from the expansion space during any time period in the daytime when the external environment is
    The method for controlling a cultivation apparatus according to claim 8 or 9.
PCT/JP2022/017742 2021-04-21 2022-04-13 Cultivation system and method for controlling same WO2022224896A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-072072 2021-04-21
JP2021072072 2021-04-21

Publications (1)

Publication Number Publication Date
WO2022224896A1 true WO2022224896A1 (en) 2022-10-27

Family

ID=83722983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017742 WO2022224896A1 (en) 2021-04-21 2022-04-13 Cultivation system and method for controlling same

Country Status (1)

Country Link
WO (1) WO2022224896A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05227661A (en) * 1992-02-18 1993-09-03 Shikoku Sogo Kenkyusho:Kk Air conditioner for greenhouse
JPH07166624A (en) * 1993-12-16 1995-06-27 Kajima Corp Energy conservation type curtain wall with built-in solar cell
JP2013149800A (en) * 2012-01-19 2013-08-01 Toyota Motor Corp Solar cell module
JP3202162U (en) * 2015-11-05 2016-01-21 株式会社ディーグラット Lighting equipment using LED light source for plant factory
US20170263789A1 (en) * 2016-03-11 2017-09-14 Alliance For Sustainable Energy, Llc Desiccant-based cooling of photovoltaic modules
JP2018191594A (en) * 2017-05-18 2018-12-06 株式会社サンパワー Photovoltaic power plant combined type vegetation factory
WO2020099950A1 (en) * 2018-11-15 2020-05-22 King Abdullah University Of Science And Technology System and method for cooling photovoltaic panel with atmospheric water

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05227661A (en) * 1992-02-18 1993-09-03 Shikoku Sogo Kenkyusho:Kk Air conditioner for greenhouse
JPH07166624A (en) * 1993-12-16 1995-06-27 Kajima Corp Energy conservation type curtain wall with built-in solar cell
JP2013149800A (en) * 2012-01-19 2013-08-01 Toyota Motor Corp Solar cell module
JP3202162U (en) * 2015-11-05 2016-01-21 株式会社ディーグラット Lighting equipment using LED light source for plant factory
US20170263789A1 (en) * 2016-03-11 2017-09-14 Alliance For Sustainable Energy, Llc Desiccant-based cooling of photovoltaic modules
JP2018191594A (en) * 2017-05-18 2018-12-06 株式会社サンパワー Photovoltaic power plant combined type vegetation factory
WO2020099950A1 (en) * 2018-11-15 2020-05-22 King Abdullah University Of Science And Technology System and method for cooling photovoltaic panel with atmospheric water

Similar Documents

Publication Publication Date Title
JP5325076B2 (en) Greenhouse air conditioner and method for operating the same
US20200182493A1 (en) Liquid desiccant air-conditioning systems and methods for greenhouses and growth cells
CN203435457U (en) Solar photovoltaic agriculture greenhouse
RU2407280C2 (en) Device and method for air drying in greenhouse and greenhouse
US20170231169A1 (en) Growing System
US20180288954A1 (en) Method of growing plants and system therefore
KR102036006B1 (en) Energy Saving Heat Pump Thermohygrostat for Plant Factory and its Control Method
KR102243811B1 (en) Electric heat pump apparatus for constant temperature and humidity using waste heat
CN212259975U (en) Sunlight greenhouse air regeneration governing system and sunlight greenhouse
US20180288949A1 (en) Method of growing plants, growing chamber and system therefore
WO2022224896A1 (en) Cultivation system and method for controlling same
CN111492869A (en) Sunlight greenhouse air regeneration governing system and sunlight greenhouse
JP2016189723A (en) Temperature adjustment system of house for agriculture
JP2016077169A (en) Energy supply apparatus for horticulture facility
KR102587349B1 (en) Moss green sound barrier with air purification and carbon reduction
KR20200012318A (en) Prefabricated Containerized Plant Growing System that can be moved and extended
WO2007079774A1 (en) Closed greenhouse with controlled humidity
KR102035865B1 (en) Carbon Dioxide Self Concentrating Type Heat Pump Thermohygrostat for Plant Factory and its Control Method
JP6746069B2 (en) Plant cultivation facility
JP2003219736A (en) Opened air conditioner for raising seedling
JP2008196817A (en) Air heat-collection type solar dehumidifying cooling system
JPH09223809A (en) Environment control equipment
WO2023233956A1 (en) Carbon dioxide supply device and method
JP7495552B2 (en) Carbon dioxide supply device and method
JP2023183785A (en) Carbon dioxide-containing gas supply system, and carbon dioxide-containing gas supply method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22791670

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22791670

Country of ref document: EP

Kind code of ref document: A1