JP2008196817A - Air heat-collection type solar dehumidifying cooling system - Google Patents

Air heat-collection type solar dehumidifying cooling system Download PDF

Info

Publication number
JP2008196817A
JP2008196817A JP2007034338A JP2007034338A JP2008196817A JP 2008196817 A JP2008196817 A JP 2008196817A JP 2007034338 A JP2007034338 A JP 2007034338A JP 2007034338 A JP2007034338 A JP 2007034338A JP 2008196817 A JP2008196817 A JP 2008196817A
Authority
JP
Japan
Prior art keywords
air
desiccant
temperature
cooling
desiccant module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007034338A
Other languages
Japanese (ja)
Other versions
JP4341848B2 (en
Inventor
Hyunwoo Roh
▲玄▼佑 盧
Yasushi Suzuki
康司 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OM KEIKAKU KK
Original Assignee
OM KEIKAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OM KEIKAKU KK filed Critical OM KEIKAKU KK
Priority to JP2007034338A priority Critical patent/JP4341848B2/en
Publication of JP2008196817A publication Critical patent/JP2008196817A/en
Application granted granted Critical
Publication of JP4341848B2 publication Critical patent/JP4341848B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Central Air Conditioning (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air heat-collection type solar system in which air is heated by solar energy to obtain heating, performing cooling at a high temperature time such as in summer, and not using chlorofluoricarbon gas to be suitable for protecting the environment, utilizing the heating system equipment for cooling equipment to be inexpensive and energy-saving, and simply and surely obtaining the air from which better coolness is obtained as the air has lower temperature and medium humidity as the air sent to the interior of a room. <P>SOLUTION: This air heat-collection type solar dehumidifying cooling system includes: a first desiccant module 50; a cooling coil 51; a second desiccant module 52; and two sets of handling boxes 5A, 5B as a desiccant air conditioner in which a fan 7 is assembled, wherein regenerative operation and dehumidifying operation are simultaneously performed by a batch system in which regenerative operation and dehumidifying operation are switched. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、屋根面を太陽熱集熱部としその直下で集熱した空気を、屋根裏空間である小屋裏に設置したダンパー、ファンを設けたハンドリングボックスを介して立下りダクトにより床下に送り、蓄熱し、また、室内に吹き出すことにより、太陽エネルギーで空気を加熱して暖房が得られる空気集熱式ソーラーシステムで、除湿涼房機能を加えた空気集熱式ソーラー除湿涼房システムに関するものである。   The present invention uses a roof surface as a solar heat collecting part, and collects the air collected immediately below the floor by a falling duct through a handling box provided with a damper and a fan installed in the attic space, which is an attic space, to store heat. In addition, the present invention relates to an air-collecting solar dehumidifying and cooling system with a dehumidifying and cooling function, which is an air-collecting solar system that heats air with solar energy to obtain heating by blowing it into the room. .

太陽エネルギーで空気を加熱して暖房が得られる空気集熱式ソーラーシステムで、夏季等高温時に冷房ができるものとして下記特許文献のソーラーシステムハウスがある。その冷房設備は、フロンガスを使用しないので、環境保全に適した快適な冷房であり、さらに、かかる冷房設備として暖房のシステム設備を利用するので安価かつ省エネルギー的なものである。
特許第2731993号公報 特開平6−313632号公報
There is a solar system house described in the following patent document as an air-collecting solar system in which air is heated by solar energy to obtain heating and can be cooled at a high temperature such as summer. Since the cooling equipment does not use Freon gas, it is a comfortable cooling suitable for environmental preservation, and furthermore, since the heating system equipment is used as such cooling equipment, it is inexpensive and energy saving.
Japanese Patent No. 2731993 JP-A-6-313632

図14についてその内容を説明する。これらは太陽エネルギーで空気を加熱して暖房が得られる空気集熱機構として、屋根板1の直下に屋根勾配を有する空気流路2を形成し、その下面はグラスウール等の断熱材を配した断熱層として構成する。この空気流路2の一端は軒先下面または小屋裏換気のための小屋裏空間に外気取入口3として開口し、他端は断熱材による集熱ボックスとしての棟ダクト4に連通させる。   The contents will be described with reference to FIG. As an air heat collecting mechanism that heats air with solar energy and obtains heating, an air flow path 2 having a roof gradient is formed immediately below the roof plate 1, and the lower surface thereof is insulated with a heat insulating material such as glass wool. Configure as a layer. One end of the air flow path 2 is opened as an outside air inlet 3 in an underside of the eaves or in a shed space for shed ventilation, and the other end is communicated with a ridge duct 4 as a heat collection box made of a heat insulating material.

入口ダンパー6、ファン7及び出口ダンパー8を設けたハンドリングボックス5を第1のハンドリングボックスとして屋根裏空間に設置するとともに、このハンドリングボックス5の入口ダンパー6の流入側を前記棟ダクト4に連通させ、出口ダンパー8の流出側の一方は立下りダクト10の上端に接続する。立下りダクト10の下端は蓄熱土間コンクリート11と床パネル12との間の空気流通空間13に開口し、該空気流通空間13から室内への吹出口14を設けた。前記屋根板1の頂上部近傍は金属板の上方にガラス板25を設ける。   The handling box 5 provided with the inlet damper 6, the fan 7 and the outlet damper 8 is installed in the attic space as a first handling box, and the inflow side of the inlet damper 6 of the handling box 5 is communicated with the ridge duct 4. One of the outlet side of the outlet damper 8 is connected to the upper end of the falling duct 10. The lower end of the falling duct 10 opened to the air circulation space 13 between the thermal storage soil concrete 11 and the floor panel 12, and an air outlet 14 from the air circulation space 13 to the room was provided. In the vicinity of the top of the roof plate 1, a glass plate 25 is provided above the metal plate.

前記ハンドリングボックス5の入口ダンパー6の流入側は前記のごとく、棟ダクト4に接続されるが、この入口ダンパー6の流入側は天井等で吸込口23により室内に開口する循環用ダクト22にも接続され、該入口ダンパー6はこの棟ダクト4側と循環用ダクト22側との流路を切り換える流路切り換えダンパーとして構成した。   As described above, the inflow side of the inlet damper 6 of the handling box 5 is connected to the ridge duct 4, and the inflow side of the inlet damper 6 is also connected to the circulation duct 22 that opens into the room through the suction port 23 on the ceiling or the like. The inlet damper 6 is connected and configured as a channel switching damper that switches the channel between the ridge duct 4 side and the circulation duct 22 side.

第2のハンドリングボックスとして、ファン26を内蔵したハンドリングボックス27を屋根裏空間に設置する。前記循環用ダクト22を分岐して第2のハンドリングボックス27の流入側に接続し、また、外気取入れダクト28もこの第2のハンドリングボックス27の流入側に接続し、第2のハンドリングボックス27内に循環用ダクト22との接続部と外気取入れダクト28の接続部の流入量を調整する流入量調整ダンパー29を設けた。   As a second handling box, a handling box 27 incorporating a fan 26 is installed in the attic space. The circulation duct 22 is branched and connected to the inflow side of the second handling box 27, and the outside air intake duct 28 is also connected to the inflow side of the second handling box 27. Further, an inflow amount adjusting damper 29 for adjusting the inflow amount of the connection portion with the circulation duct 22 and the connection portion of the outside air intake duct 28 is provided.

図中、30,31はシリカゲル、ゼオドライト、活性炭などの巨大な表面積を持った、つまり、無数の細孔を有する物質である吸着剤32を充填した吸着剤充填容器であり、この吸着剤充填容器30,31はダクトで流入側相互、流出側相互を接続して並列に接続した。この吸着剤充填容器30,31相互の接続中点にはサイクル切り換えダンパー33,34を配設するが、これら吸着剤充填容器30,31の流入側のサイクル切り換えダンパー33を配設した合流部には第1のハンドリングボックス5の出口ダンパー8の流出側の他の一方と、第2のハンドリングボックス27の流出側を該サイクル切り換えダンパー33で切り換え可能に接続する。   In the figure, reference numerals 30 and 31 denote adsorbent-filled containers filled with an adsorbent 32 having a large surface area such as silica gel, zeolite, activated carbon or the like, that is, a substance having innumerable pores. Nos. 30 and 31 are ducts which are connected in parallel by connecting the inflow side and the outflow side. Cycle switching dampers 33 and 34 are arranged at the midpoint of connection between the adsorbent filling containers 30 and 31, but at the junction where the cycle switching dampers 33 on the inflow side of the adsorbent filling containers 30 and 31 are arranged. Is connected to the other side of the outlet side of the outlet damper 8 of the first handling box 5 and the outlet side of the second handling box 27 so as to be switchable by the cycle switching damper 33.

一方、吸着剤充填容器30,31の流出側のサイクル切り換えダンパー34を配設した合流部には吸着剤充填容器30,31の流出側と立下りダクト10の上部とを連結する送気ダクト35と排気ダクト36とを該サイクル切り換えダンパー34で切り換え可能に接続する。   On the other hand, an air supply duct 35 that connects the outflow side of the adsorbent filling containers 30 and 31 and the upper part of the falling duct 10 at the junction where the outflow side cycle switching damper 34 is disposed on the adsorbent filling containers 30 and 31. And the exhaust duct 36 are connected to be switchable by the cycle switching damper 34.

送気ダクト35の途中に、外気に放熱する放熱コイル37との冷媒水の循環をポンプ39で行う冷却コイル38と散水設備40とを吸着剤充填容器30,31側から見て順次配設した。   In the middle of the air supply duct 35, a cooling coil 38 for circulating the coolant water with the heat radiating coil 37 that radiates heat to the outside air and the watering equipment 40 are sequentially arranged as viewed from the adsorbent filling containers 30 and 31 side. .

前記排気ダクト36に給湯コイル15を設け、この給湯コイル15は図示は省略するが、循環配管で貯湯槽と連結し、該貯湯槽には、追焚き用の補助ボイラーを途中へ設けて、風呂や洗面所、台所へとつながる給湯配管を接続する。   A hot water supply coil 15 is provided in the exhaust duct 36. Although not shown, the hot water supply coil 15 is connected to a hot water storage tank by a circulation pipe, and an auxiliary boiler for reheating is provided in the hot water tank in the middle of the bath. Connect hot water supply pipes that lead to the bathroom, washroom, and kitchen.

また、第1のハンドリングボックス5内で、入口ダンパー6とファン7との間に補助暖房コイル41を設け、この補助暖房コイル41は補助ボイラーに組込む暖房専用ボイラーに接続させる。   Moreover, in the 1st handling box 5, the auxiliary heating coil 41 is provided between the inlet damper 6 and the fan 7, and this auxiliary heating coil 41 is connected to the boiler only for heating built in an auxiliary boiler.

次に、使用法について説明する。夏季等高温時に冷房を行う場合には、第1のハンドリングボックス5の入口ダンパー6は該ハンドリングボックス5の流入側を前記棟ダクト4に連通させ、循環用ダクト22側を閉じる。また、出口ダンパー8は立下りダクト10側を閉じる。さらに、吸着剤充填容器30,31は例えば図示のごとく吸着剤充填容器31の流入側を第1のハンドリングボックス5に接続し、吸着剤充填容器30の流入側を第2のハンドリングボックス27に接続するようにサイクル切り換えダンパー33を設定し、吸着剤充填容器31の流出側を排気ダクト36に接続し、吸着剤充填容器30の流出側を送気ダクト35に接続するようにサイクル切り換えダンパー34を設定する。   Next, usage will be described. When cooling is performed at a high temperature such as in summer, the inlet damper 6 of the first handling box 5 communicates the inflow side of the handling box 5 with the ridge duct 4 and closes the circulation duct 22 side. Moreover, the exit damper 8 closes the falling duct 10 side. Further, the adsorbent filling containers 30, 31 are connected to the first handling box 5 on the inflow side of the adsorbent filling container 31 and connected to the second handling box 27 on the inflow side of the adsorbent filling container 30, for example. The cycle switching damper 33 is set so that the outflow side of the adsorbent filling container 31 is connected to the exhaust duct 36, and the outflow side of the adsorbent filling container 30 is connected to the air supply duct 35. Set.

このようにして、第2のハンドリングボックス27に内蔵したファン26を駆動すれば、室内に開口する循環用ダクト22からの室内の空気と外気取入れダクト28からの外気が流入量調整ダンパー29で調整されて第2のハンドリングボックス27内に入り、ここから吸着剤充填容器30に送られる。該吸着剤充填容器30では吸着剤32により室内や屋外からの湿った空気は乾燥済の吸着剤32の吸着作用で除湿される。   When the fan 26 built in the second handling box 27 is driven in this way, the indoor air from the circulation duct 22 that opens to the room and the outside air from the outside air intake duct 28 are adjusted by the inflow adjustment damper 29. Then, it enters the second handling box 27 and is sent to the adsorbent filling container 30 from here. In the adsorbent filling container 30, moist air from the inside or outside is dehumidified by the adsorbent 32 by the adsorbing action of the dried adsorbent 32.

吸着という現象は、吸着剤32のごとき巨大な表面積を持った、つまり、無数の細孔を有する物質に分子が物理的に取り込まれる現象であり、温度を上げ、あるいは真空にすると吸着された分子は飛び出す。これが脱着である。空気中にある水分子、すなわち水蒸気は激しく運動しているので、運動エネルギー(潜熱)を有する。水分子が吸着剤32に吸着されて動けなくなると潜熱を放出し、空気温度が上がるが、この原理を利用したのが吸着式除湿冷房である。   The phenomenon of adsorption is a phenomenon in which molecules are physically taken into a substance having an enormous surface area such as the adsorbent 32, that is, innumerable pores, and the molecules adsorbed when the temperature is raised or vacuumed. Jump out. This is desorption. Since water molecules in the air, that is, water vapor, move violently, they have kinetic energy (latent heat). When water molecules are adsorbed by the adsorbent 32 and cannot move, latent heat is released and the air temperature rises. Adsorption-type dehumidification cooling uses this principle.

除湿され温度が上がった空気は、吸着剤充填容器30から出て送気ダクト35を流れ、外気に放熱する放熱コイル37との冷媒水の循環をポンプ39で行う冷却コイル38を通過してある程度温度を下げる。相対湿度はこの温度降下にともない多少上昇するが、まだ、乾燥空気である。   The dehumidified air whose temperature has risen exits the adsorbent filling container 30 and flows through the air supply duct 35 and passes through the cooling coil 38 where the coolant 39 circulates with the heat radiating coil 37 that radiates heat to the outside air by the pump 39 to some extent. Reduce the temperature. Relative humidity increases somewhat with this temperature drop, but is still dry air.

次いで、散水設備40で水を噴霧して加湿することで、この空気は冷風となり、立下りダクト10内を流下し、蓄熱土間コンクリート11と床パネル12との間の空気流通空間13へ入る。この空気流通空間13では加冷熱空気が床パネルを介して直接床面下を冷やすのと、蓄熱土間コンクリート11に蓄冷熱させるのと、吹出口14から冷風として直接室内へ吹き出されるのとの3通りの冷房作用を行う。   Next, water is sprayed and humidified by the watering equipment 40, so that the air becomes cold air, flows down in the falling duct 10, and enters the air circulation space 13 between the thermal storage soil concrete 11 and the floor panel 12. In this air circulation space 13, the heated hot air cools directly under the floor surface through the floor panel, stores the cold in the heat storage soil concrete 11, and is blown out directly into the room as cold air from the air outlet 14. Performs three types of cooling.

このようにして、吸着剤充填容器30では吸着剤32の全体が湿ってきた場合には、吸着剤充填容器30の流入側を第1のハンドリングボックス5に接続するようにサイクル切り換えダンパー33を切り換え、吸着剤充填容器30の流出側を排気ダクト36に接続するようにサイクル切り換えダンパー34を切り換える。これにより、吸着剤充填容器31が今度は前記吸着を行うようになる。   In this way, when the entire adsorbent 32 is wetted in the adsorbent filling container 30, the cycle switching damper 33 is switched so that the inflow side of the adsorbent filling container 30 is connected to the first handling box 5. The cycle switching damper 34 is switched so that the outflow side of the adsorbent filling container 30 is connected to the exhaust duct 36. As a result, the adsorbent-filled container 31 now performs the adsorption.

そして、第1のハンドリングボックス5のファン7を駆動すれば、金属板である屋根板1が屋根板の直下で屋根勾配を有する空気流路2へ入った外気(温度約30℃、湿度約75%)を温め、温度約80℃、湿度約10%以下の高温の超乾燥した空気にする。   And if the fan 7 of the 1st handling box 5 is driven, the outside air (temperature about 30 degreeC, humidity about 75) which the roof board 1 which is a metal plate entered into the air flow path 2 which has a roof gradient just under a roof board. %) To a high temperature ultra-dry air with a temperature of about 80 ° C. and a humidity of about 10% or less.

この超乾燥空気は、棟ダクト4に集められてからファン7により第1のハンドリングボックス5に入り、この第1のハンドリングボックス5から吸着剤充填容器30に入り、湿っている吸着剤32を該吸着剤32の脱着作用で乾燥させる。   The super dry air is collected in the ridge duct 4 and then enters the first handling box 5 by the fan 7, enters the adsorbent filling container 30 from the first handling box 5, and removes the wet adsorbent 32 from the first handling box 5. It is dried by the desorption action of the adsorbent 32.

このように湿った吸着剤32を脱着して自分が加湿される時は超乾燥空気は、絶対湿度が上がるとともに潜熱をうばわれて温度が下がり、湿った空気として排気ダクト36から排出される。これにより吸着剤充填容器30内の吸着剤32は乾燥したものとなり、次の吸着に備える。   When the wet adsorbent 32 is desorbed and humidified as described above, the ultra-dry air is discharged from the exhaust duct 36 as moist air as the absolute humidity increases and the temperature is lowered due to latent heat. As a result, the adsorbent 32 in the adsorbent filling container 30 is dried, and is prepared for the next adsorption.

なお、前記排気ダクト36から排出される空気はまだ高温のものであり、給湯コイル15で、ここに循環配管を介して貯湯槽(図示せず)から送り込まれる水が加熱され、湯として貯湯槽へ蓄えられ、さらにここから必要に応じて追焚き用の補助ボイラーで再加熱されて給湯配管から各所へ給湯される。   Note that the air discharged from the exhaust duct 36 is still hot, and water fed from a hot water storage tank (not shown) through the circulation pipe is heated by the hot water supply coil 15 to form hot water as hot water. From here, it is further reheated by an auxiliary boiler for reheating as needed, and hot water is supplied from the hot water supply pipes to various places.

このように2つの吸着剤充填容器30,31が交互に吸着と脱着を繰り返すが、脱着乾燥した吸着剤32はその水分量だけエネルギーを失ったことになるが、吸着時にこの失ったエネルギーを回収する。   As described above, the two adsorbent-filled containers 30 and 31 alternately repeat the adsorption and desorption, but the desorbed and dried adsorbent 32 loses energy by the amount of water, but recovers the lost energy during adsorption. To do.

しかし、この図14に示すソーラーシステムハウスでは、吸着塔で除湿され温度が上がった空気は、冷却コイルを通過してある程度温度を下げるが、まだ、乾燥空気であり、低温中湿となった空気を得るには、散水設備で水を噴霧して加湿することが必要となる。   However, in the solar system house shown in FIG. 14, the air that has been dehumidified by the adsorption tower and has risen in temperature passes through the cooling coil and lowers the temperature to some extent. In order to obtain the above, it is necessary to spray the water with a watering facility and humidify it.

このような散水設備を設けなければならないのでは、水回りその他の配慮が必要となり、また、場所も取るし、面倒でもある。   If such water sprinkling facilities must be provided, it is necessary to consider the water environment and other considerations, and it also takes up space and is troublesome.

本発明の目的は前記従来例の不都合を解消し、太陽エネルギーで空気を加熱して暖房が得られる空気集熱式ソーラーシステムで、夏季等高温時に冷房ができるものであり、しかも、フロンガスを使用しない環境保全に適した冷房であり、かかる冷房設備として暖房のシステム設備を利用するので安価かつ省エネルギー的であり、室内に送る空気として低温中湿となったほど良い涼感が得られる空気を得ることを簡単かつ確実にできる空気集熱式ソーラー除湿涼房システムを提供することにある。   The object of the present invention is an air collecting solar system that eliminates the inconveniences of the above-mentioned conventional examples and heats the air with solar energy to obtain heating, and is capable of cooling at high temperatures such as in summer, and also uses Freon gas. It is a cooling system suitable for environmental protection, and since it uses heating system equipment as such cooling equipment, it is inexpensive and energy-saving, and obtains air that can get a cool feeling as it becomes low-temperature, medium-humidity as air sent to the room It is an object of the present invention to provide an air-collecting solar dehumidifying and cooling system that can easily and reliably achieve this.

前記目的を達成するため、請求項1記載の本発明は、太陽熱集熱部に接続して室内に空気を送る空調機として、前後にダンパーボックスを設け、第1デシカントモジュール、冷却コイル、第2デシカントモジュール、ファンを組み込んだハンドリングボックスタイプのデシカント空調機の2組からなり、再生運転と除湿運転を切り換えるバッチ方式で再生運転と除湿運転を同時に行うもので、再生運転時には高温低湿の集熱空気が第1デシカントモジュールを乾燥させた後、中温中湿となり、この中温中湿の空気は冷却コイルにより冷却され、低温高湿となって第2デシカントモジュールに水分を吸着させてから排気され、除湿運転時には低温高湿の外気を取り入れて第1デシカントモジュールで除湿し、中温低湿となった空気を冷却コイルで冷却し、さらに再生運転時に第2デシカントモジュールに吸着させておいた水分を用いて気化冷却を行い、低温中湿となった空気を室内に送り、これら再生運転と除湿運転の切替運転は、再生運転時のデシカント空調機の第1デシカントモジュールと第2デシカントモジュールとのいずれかのデシカントモジュールの出口湿度が設定値に達する時間と切替設定時間を比べて、どちらかが設定値に達すれば行うことを要旨とするものである。 In order to achieve the above object, the present invention according to claim 1 is provided with a damper box at the front and rear as an air conditioner that is connected to a solar heat collector and sends air into the room, and includes a first desiccant module, a cooling coil, It consists of two sets of a desiccant module and a handling box type desiccant air conditioner that incorporates a fan. The regenerative operation and the dehumidifying operation are performed simultaneously in a batch system that switches between the regenerating operation and the dehumidifying operation. After the first desiccant module is dried, it becomes medium-temperature medium-humidity, and this medium-temperature medium-humidity air is cooled by the cooling coil, becomes low-temperature high-humidity, and is exhausted after adsorbing moisture to the second desiccant module. During operation, low temperature and high humidity outside air is taken in and dehumidified by the first desiccant module. Cooling and further subjected to evaporative cooling using water which had been adsorbed to the second desiccant module during regeneration operation, Ri feed air becomes wet during cold in the room, the switching operation of the regeneration operation and the dehumidifying operation, When the outlet humidity of the desiccant module of either the first desiccant module or the second desiccant module of the desiccant air conditioner at the time of the regeneration operation is compared with the switching set time, it is performed when either reaches the set value. This is the gist.

請求項1記載の本発明によれば、デシカント空調機は第1デシカントモジュール、冷却コイル、第2デシカントモジュールと2組のデシカントモジュールを組み込むことに特徴があり、再生運転時のデシカント空調機では、高温低湿の集熱空気が第1デシカントモジュールを乾燥させた後、中温中湿となり、この中温中湿の空気は冷却コイルにより冷却され、低温高湿となって第2デシカントモジュールに水分を吸着させる。   According to the first aspect of the present invention, the desiccant air conditioner is characterized by incorporating a first desiccant module, a cooling coil, a second desiccant module and two desiccant modules. In the desiccant air conditioner during regeneration operation, After the first desiccant module is dried by the high-temperature and low-humidity collected air, it becomes medium-temperature and medium-humidity, and this medium-temperature and medium-humidity air is cooled by the cooling coil, and becomes low-temperature and high-humidity to adsorb moisture to the second desiccant module. .

除湿運転時のデシカント空調機では、低温高湿の外気を取り入れて第1デシカントモジュールで除湿し、中温低湿となった空気を冷却コイルで冷却するが、空気を室内に送る前に、再生運転時に第2デシカントモジュールに吸着させておいた水分を用いて気化冷却を行い、ほど良い涼感が得られる低温中湿となった空気を室内に送ることができる。   In the desiccant air conditioner during dehumidifying operation, low-temperature and high-humidity outside air is taken in and dehumidified by the first desiccant module, and the air that has become intermediate-temperature and low-humidity is cooled by the cooling coil. Evaporative cooling is performed using the moisture adsorbed on the second desiccant module, and air that has become low-temperature, medium-humidity that provides a moderate cool feeling can be sent indoors.

また、再生運転と除湿運転を切り換えるバッチ方式で再生運転と除湿運転を同時に行う2組からなり、同一機構のものを使用できるとともに、前後にダンパーボックスを設けることで、コンパクトなハンドリングボックスとして形成でき、別途に配管上にファンやダンパーを設けることで配管を複雑にするようなことを防止できる。   Moreover, it consists of two sets that perform regeneration operation and dehumidification operation at the same time in a batch system that switches between regeneration operation and dehumidification operation. The same mechanism can be used, and it can be formed as a compact handling box by providing a damper box at the front and back. By separately providing a fan and a damper on the pipe, it is possible to prevent the pipe from becoming complicated.

さらに、第1デシカントモジュール、第2デシカントモジュールの再生運転と除湿運転の切替運転は、いずれかのデシカントモジュールの出口湿度が設定値に達する時間と切替設定時間を比べて、どちらかが設定値に達すれば行うことにより、第1デシカントモジュール、第2デシカントモジュールの再生運転と除湿運転の切替運転を確実に行うことができる。   Furthermore, in the switching operation between the regeneration operation and the dehumidifying operation of the first desiccant module and the second desiccant module, the time when the outlet humidity of one of the desiccant modules reaches the set value is compared with the switch set time, and either is set to the set value. By performing if it reaches, the switching operation between the regeneration operation and the dehumidification operation of the first desiccant module and the second desiccant module can be performed reliably.

以上述べたように本発明の空気集熱式ソーラー除湿涼房システムおよびそれに使用するハンドリングボックスおよび空気集熱式ソーラー除湿涼房方法は、太陽エネルギーで空気を加熱して暖房が得られる空気集熱式ソーラーシステムで、夏季等高温時に冷房ができるものであり、しかも、フロンガスを使用しない環境保全に適した冷房であり、かかる冷房設備として暖房のシステム設備を利用するので安価かつ省エネルギー的であり、室内に送る空気として低温中湿となったほど良い涼感が得られる空気を得ることを簡単かつ確実にできるものである。   As described above, the air-collecting solar dehumidifying and cooling system of the present invention, the handling box used therefor, and the air-collecting solar dehumidifying and cooling method of the present invention are an air-collecting system in which heating is performed by heating air with solar energy. It is a solar system that can be cooled at high temperatures such as in the summer, and is suitable for environmental conservation that does not use chlorofluorocarbons, and since it uses heating system equipment as such cooling equipment, it is inexpensive and energy-saving, As air to be sent indoors, it is possible to easily and surely obtain air that has a cool feeling as it becomes low temperature and humidity.

以下、図面について本発明の実施の形態を詳細に説明する。図1、図2は本発明の空気集熱式ソーラー除湿涼房システムの1実施形態を示す説明図で、夏季の動きの状態を示す。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 and FIG. 2 are explanatory views showing an embodiment of the air heat collecting solar dehumidifying and cooling system of the present invention, and show the state of movement in summer.

先に、空気集熱式ソーラーシステムの概要を図5について説明すると、太陽熱集熱部として、屋根板1の直下に屋根勾配を有する空気流路2を形成し、その下面はグラスウール等の断熱材を配した断熱層として構成する。この空気流路2の一端は軒先下面または小屋裏換気のための小屋裏空間に外気取入口3として開口し、他端は断熱材による集熱ボックスとしての棟ダクト4に連通させる。前記屋根1の頂上部近傍は金属板の上方にガラス板25を設けた。棟ダクト4には温度センサー61を設ける。   First, the outline of the air heat collecting solar system will be described with reference to FIG. 5. As a solar heat collecting portion, an air flow path 2 having a roof gradient is formed immediately below the roof plate 1, and its lower surface is a heat insulating material such as glass wool. It constitutes as a heat insulation layer which arranged. One end of the air flow path 2 is opened as an outside air inlet 3 in an underside of the eaves or in a shed space for shed ventilation, and the other end is communicated with a ridge duct 4 as a heat collection box made of a heat insulating material. Near the top of the roof 1, a glass plate 25 is provided above the metal plate. A temperature sensor 61 is provided in the building duct 4.

屋根部での集熱空気温度は金属板による屋根板1の太陽熱取得と同時に屋根板1を通しての外気への熱損失の結果として、屋根板1のみの集熱面での上昇温度には限界があるが、屋根板1の上を更にガラス板25で覆うことにより、集熱空気温度の上昇限界を上昇させさらに高温の集熱が可能となり、また外部の風による集熱温度への影響を少なくすることができる。   The temperature of the heat collection air at the roof is limited as a result of the heat loss to the outside air through the roof plate 1 at the same time as the solar heat acquisition of the roof plate 1 by the metal plate, and the rising temperature at the heat collecting surface of the roof plate 1 alone. However, by further covering the top of the roof plate 1 with the glass plate 25, the rising limit of the temperature of the heat collecting air can be raised to enable higher temperature heat collecting, and the influence of the external wind on the heat collecting temperature is reduced. can do.

棟ダクト4に棟温度センサー61を設け、室内に室温センサー62を設け、屋外に外気温センサー63を設ける。   A building temperature sensor 61 is provided in the building duct 4, a room temperature sensor 62 is provided indoors, and an outside temperature sensor 63 is provided outdoors.

図中5A,5Bは、太陽熱集熱部に接続して室内に空気を送る空調機としてのハンドリングボックスであり、図6、図7にその詳細を示すように、前後に入口ダンパー6と出口ダンパー8をそれぞれ内蔵したダンパーボックス6a,8aを設け、第1デシカントモジュール50、冷却コイル51、第2デシカントモジュール52、ファン7を組み込んだ。   In the figure, 5A and 5B are handling boxes as air conditioners that are connected to the solar heat collector and send air into the room. As shown in detail in FIGS. Damper boxes 6a and 8a each including 8 are provided, and a first desiccant module 50, a cooling coil 51, a second desiccant module 52, and a fan 7 are incorporated.

第1デシカントモジュール50、第2デシカントモジュール52は、メッシュ材により偏平かご状に形成した容器に吸着材を収めたものであり、図示の例では相互の下端が結合するようにV型に配置されるものとしたが、他の実施形態として平行に斜めに配置するなど他の配置も可能である。   The first desiccant module 50 and the second desiccant module 52 are obtained by storing an adsorbent in a container formed in a flat cage shape with a mesh material. In the illustrated example, the first desiccant module 50 and the second desiccant module 52 are arranged in a V shape so that their lower ends are coupled. However, as another embodiment, other arrangements such as an oblique arrangement in parallel are possible.

吸着材にはシリカゲルを使用し、第1デシカントモジュールと第2デシカントモジュールに充填した。   Silica gel was used as the adsorbent and filled in the first desiccant module and the second desiccant module.

冷却水は井戸水を想定して冷却コイル51と井戸(図示せず)の内部に配置する放熱コイルとを、冷媒水の循環をポンプで行う循環配管で連結してもよいが、井戸の代わりにクーリングタワー冷却した水を代用してもよい。   The cooling water may be connected to the cooling coil 51 and the heat dissipating coil arranged inside the well (not shown) assuming circulation of the well with a circulation pipe that circulates the coolant with a pump. Cooling tower cooled water may be substituted.

ハンドリングボックス5A,5Bの出口ダンパー8の流出側の一方は排気ダクト9により屋外に開口し、他を立下りダクト10の上端に連結する。立下りダクト10の下端は蓄熱土間コンクリート11と床パネル12との間の空気流通空間13に開口し、該空気流通空間13から室内への吹出口14を設けた。   One of the handling box 5A, 5B on the outlet side of the outlet damper 8 is opened to the outside by an exhaust duct 9 and the other is connected to the upper end of the falling duct 10. The lower end of the falling duct 10 opened to the air circulation space 13 between the thermal storage soil concrete 11 and the floor panel 12, and an air outlet 14 from the air circulation space 13 to the room was provided.

ハンドリングボックス5A,5Bの入口ダンパー6側の流入側の一方を接続ダクト53を介して前記棟ダクト4に連通させ、他方は立下りダクト54の上端に連結する。ハンドリングボックス5Aに接続する立下りダクト54と、ハンドリングボックス5Bに接続する立下りダクト54とは、いずれか一方を他方の途中に合流させてもよい。   One of the inflow sides of the handling boxes 5A, 5B on the inlet damper 6 side is communicated with the ridge duct 4 via the connection duct 53, and the other is connected to the upper end of the falling duct 54. Either one of the falling duct 54 connected to the handling box 5A and the falling duct 54 connected to the handling box 5B may be joined in the middle of the other.

本実施形態では、前記蓄熱土間コンクリート11の下に免震ピット55を有する床下2層構造のものであり、前記立下りダクト54の下端はこの免震ピット55に開口させた。   In the present embodiment, the floor has a two-layer structure having a seismic isolation pit 55 under the thermal storage interstitial concrete 11, and the lower end of the falling duct 54 is opened to the seismic isolation pit 55.

なお、前記立下りダクト54の下端は免震ピット55ではなく、空気流通空間55aに開口させることも考えられる。   Note that the lower end of the falling duct 54 may be opened not in the seismic isolation pit 55 but in the air circulation space 55a.

図中56は余剰集熱時の排気ダクトで、一端は棟ダクト4に接続し、他端は屋外に開口する。排気ダクト56同士は途中で合流させ、その先に強制排気ファン57を設けた。   In the figure, 56 is an exhaust duct at the time of excess heat collection, one end is connected to the ridge duct 4 and the other end is opened outdoors. The exhaust ducts 56 were joined together, and a forced exhaust fan 57 was provided at the end.

棟ダクト4からハンドリングボックス5Aへの接続ダクト53の途中を分岐し、この分岐ダクト60の途中にモーターダンパ58aを設けてその先を、棟ダクト4からハンドリングボックス5Bへの接続ダクト53の途中に合流させる。なお、この分岐ダクト60とモーターダンパ58aは棟ダクト4と連絡させることで省略できる。   The connection duct 53 from the ridge duct 4 to the handling box 5A is branched in the middle, and a motor damper 58a is provided in the middle of the branch duct 60, and the tip is placed in the middle of the connection duct 53 from the ridge duct 4 to the handling box 5B. Merge. The branch duct 60 and the motor damper 58a can be omitted by communicating with the ridge duct 4.

排気ダクト56の途中にも、モーターダンパ58b、58cを設けた。この場合も棟ダクト4と連絡させることでモーターダンパ58cを無くすことができ、排気ダクト56も複雑にすることを防止できる。   Motor dampers 58 b and 58 c are also provided in the middle of the exhaust duct 56. Also in this case, the motor damper 58c can be eliminated by communicating with the ridge duct 4, and the exhaust duct 56 can be prevented from being complicated.

次に、使用法について説明すると、図4に示すように、冬の集熱時にはモーターダンパ58aは閉じ、入口ダンパー6は立下りダクト54の接続口を閉じ、棟ダクト4へ連結する接続ダクト53の接続口を開く。また、出口ダンパー8は排気ダクト9の接続口を閉鎖し、ファン7と立下りダクト10の接続口を連通させる。冷却コイル51は作用させない。   Next, the usage will be described. As shown in FIG. 4, the motor damper 58 a is closed at the time of collecting heat in winter, and the inlet damper 6 closes the connection port of the falling duct 54 and connects to the building duct 4. Open the connection port. Further, the outlet damper 8 closes the connection port of the exhaust duct 9 and allows the connection port of the fan 7 and the falling duct 10 to communicate with each other. The cooling coil 51 does not act.

金属板である屋根板1が空気流路2へ入った外気を温め、この温められた空気は勾配に沿って上昇して棟ダクト4に集められてからファン7によりハンドリングボックス5A,5Bに入り、ハンドリングボックス5A,5Bから立下りダクト10内を流下し、蓄熱土間コンクリート11と床パネル12との間の空気流通空間13へ入る。この空気流通空間13では加熱空気が床パネル12を介して直接床面下を温めるのと、蓄熱土間コンクリート11に蓄熱させるのと、吹出口14から温風として直接室内へ吹き出されるのとの3通りの暖房作用を行う。   The roof plate 1, which is a metal plate, warms the outside air that has entered the air flow path 2, and the warmed air rises along the gradient and is collected in the ridge duct 4 before entering the handling boxes 5A and 5B by the fan 7. Then, it flows down from the handling boxes 5 </ b> A and 5 </ b> B through the falling duct 10 and enters the air circulation space 13 between the thermal storage soil concrete 11 and the floor panel 12. In this air circulation space 13, heated air directly warms under the floor surface via the floor panel 12, stores heat in the heat storage soil concrete 11, and blows out directly into the room as hot air from the blowout port 14. Performs 3 types of heating.

棟ダクト4の温度センサー61が30℃以上で前記集熱運転を行う。   The heat collection operation is performed when the temperature sensor 61 of the building duct 4 is 30 ° C. or higher.

夏季では、ハンドリングボックス5A,5Bのいずれか一方、図1ではハンドリングボックス5Aが除湿運転を行い、免震ピット55の空気を吸い込み、低温高湿の空気を取り入れて第1デシカントモジュール50で除湿し、中温低湿となった空気を冷却コイル51で冷却し、さらに再生運転時に第2デシカントモジュール52に吸着させておいた水分を用いて気化冷却を行い、低温中湿となった空気を立下りダクト10を介して床下空間を経由して室内に送る。 In summer, on the other hand the handling box 5A, 5B either performs operation dehumidification handling box 5A in FIG. 1, the suction air seismic isolation pit 55, dehumidification in the first desiccant module 50 incorporates low temperature high-humidity air Then, the air that has become intermediate temperature and low humidity is cooled by the cooling coil 51, and further, evaporative cooling is performed using the moisture adsorbed by the second desiccant module 52 during the regeneration operation, and the air that has become low temperature and intermediate humidity falls. It is sent into the room through the duct 10 via the underfloor space.

もう一つのハンドリングボックス5Bは、再生運転を行い、金属板である屋根板1が空気流路2へ入った外気を温め、この温められた空気は勾配に沿って上昇して棟ダクト4に集められた高温低湿の集熱空気がハンドリングボックス5Bに入り、第1デシカントモジュール50を乾燥させた後、中温中湿となる。   The other handling box 5B performs the regeneration operation, and the roof plate 1 which is a metal plate warms the outside air that has entered the air flow path 2, and this warmed air rises along the gradient and collects in the ridge duct 4. The collected high-temperature and low-humidity collected air enters the handling box 5B, and after the first desiccant module 50 is dried, it becomes medium-temperature and medium-humidity.

この中温中湿の空気は冷却コイル51により冷却され、低温高湿となって第2デシカントモジュール52に水分を吸着させてから排気ダクト9により排気される。   This medium-temperature medium-humidity air is cooled by the cooling coil 51, becomes low temperature and high humidity, adsorbs moisture to the second desiccant module 52, and is then exhausted by the exhaust duct 9.

以上の除湿涼房運転は棟温≧40℃の時に行い、棟温≧90℃になると、棟温度が上がり過ぎないように、モーターダンパ58b、58cを開き、強制排気ファン57で排気ダクト56から屋外に排気する。   The above dehumidifying cooling operation is performed when the building temperature ≧ 40 ° C., and when the building temperature ≧ 90 ° C., the motor dampers 58 b and 58 c are opened and the forced exhaust fan 57 is used to prevent the building temperature from rising excessively. Exhaust outdoors.

デシカントが水蒸気を吸着できなくなったら、図2に示すようにハンドリングボックス5A,5Bの除湿運転と再生運転とを交代させる。乾燥したデシカントは、水蒸気を吸着して除湿冷却する動作になり、飽和したデシカントは集熱空気で乾燥再生する動作になる。   When the desiccant cannot adsorb water vapor, the dehumidifying operation and the regeneration operation of the handling boxes 5A and 5B are alternated as shown in FIG. The dried desiccant is operated to adsorb water vapor and dehumidify and cool, and the saturated desiccant is operated to dry and regenerate with the collected air.

夏季の夜間は図3に示すように、外気取り込み運転となる。棟温≦室温−2℃かつ外気温≦室温−3℃の時である。ただし、室温≦23℃になると外気取り込み運転は停止する。   As shown in FIG. 3, the outside air intake operation is performed at night in summer. This is when the building temperature ≦ room temperature−2 ° C. and the outside air temperature ≦ room temperature−3 ° C. However, when the room temperature ≦ 23 ° C., the outside air intake operation stops.

このような運転フローについては、再生運転時の第1デシカントモジュール50と第2デシカントモジュール52のいずれか、例えば第1デシカントモジュール50の出口湿度と時間による切り替え制御を行う。   For such an operation flow, switching control is performed according to the outlet humidity and time of either the first desiccant module 50 or the second desiccant module 52 during the regeneration operation, for example, the first desiccant module 50.

第1デシカントモジュール50の出口湿度が設定値に達する時間と切替設定時間を比べて、どちらかが設定値に達すれば、切替運転を行う。   The time when the outlet humidity of the first desiccant module 50 reaches the set value is compared with the switch set time, and if either reaches the set value, the switching operation is performed.

第1デシカントモジュール50の出口湿度は湿度センサーによる測定値を用いる方法と第1デシカントモジュールの入口温度・出口温度・外気温湿度から第1デシカントモジュール50の出口湿度を求める計算値を用いる方法がある。測定値を用いる方法は測定値をそのまま制御に使える便利さはあるが、高性能の湿度センサーは高価であり、1年毎にセンサー部分の補正が必要で相当なメンテナンスー費用が発生する弱点がある。計算値を用いる方法の特徴は安価で半永久的な温度センサーで制御を行うことである。   As the outlet humidity of the first desiccant module 50, there are a method using a measured value by a humidity sensor and a method using a calculated value for obtaining the outlet humidity of the first desiccant module 50 from the inlet temperature, the outlet temperature and the outside air temperature humidity of the first desiccant module. . The method using measured values has the convenience of being able to control the measured values as they are, but the high-performance humidity sensor is expensive, and the sensor part needs to be corrected every year, resulting in considerable maintenance costs. is there. The feature of the method using the calculated value is that it is controlled by an inexpensive and semi-permanent temperature sensor.

以下に本発明の効果を確認するための実験結果について説明する。運転方法としては、集熱空気の温度によりソーラー除湿涼房システムを作動するが、再生運転と除湿運転の切換はデシカント空調機のデシカントモジュールを少しでも再生したら除湿涼房に使う方法(除湿涼房優先)と完全に再生してから除湿涼房に使う方法(再生優先)が考えられる。   The experimental results for confirming the effects of the present invention will be described below. As a method of operation, the solar dehumidification cooling system is operated according to the temperature of the collected air, but switching between regeneration operation and dehumidification operation is a method that uses the desiccant module of the desiccant air conditioner to regenerate the dehumidification cooler even a little (dehumidification cooler). Priority) and a method of completely regenerating and using it for dehumidification cooling (regeneration priority) can be considered.

実験では棟温(集熱空気温度)が40℃以上であれば、ソーラー除湿涼房システムを稼動させ、除湿涼房優先として30分の時間間隔で切換運転を行うことと、再生優先として第1デシカントモジュールの出口相対湿度が10%まで低下したら、再生完了と判断し切換運転を行うことの2種類の実験を行った。   In the experiment, if the ridge temperature (collected air temperature) is 40 ° C. or higher, the solar dehumidifying cooling system is operated, switching operation is performed at a time interval of 30 minutes as the dehumidifying cooling priority, and the regeneration priority is the first. When the relative humidity at the outlet of the desiccant module decreased to 10%, two types of experiments were performed in which it was determined that regeneration was complete and switching operation was performed.

図8と図9に除湿涼房優先の実験と再生優先の実験の気象データを示す。両方とも概ね晴天日であり、気温と相対湿度の気象条件が類似している。図10と図11に除湿涼房優先の実験結果を示す。朝7時20分頃に棟温が40℃に達し運転開始となり、17時30分頃に棟温が40℃未満になり運転停止となった。切換運転はハンドリングボックス5Aが除湿運転から、ハンドリングボックス5Bが再生運転からの開始となり、30分毎に交代で再生運転と除湿運転を行っている。棟温は11時前後に局所的な雲の影響で急激に低下するものの、徐々に上昇し90℃まで達している。12時10分〜20分の間に棟温が90℃で上下変動するのは、棟温が90℃以上になると、オーバーヒート防止対策用の強制排気ファン57を稼動するように制御したためである。   FIG. 8 and FIG. 9 show the meteorological data of the dehumidifying cooler priority experiment and the regeneration priority experiment. Both are mostly sunny days, and the weather conditions of temperature and relative humidity are similar. FIG. 10 and FIG. 11 show the experimental results giving priority to dehumidification cooling. Around 7:20 in the morning, the ridge temperature reached 40 ° C and the operation started. At around 17:30, the ridge temperature became less than 40 ° C and the operation was stopped. In the switching operation, the handling box 5A starts from the dehumidifying operation and the handling box 5B starts from the regeneration operation, and the regeneration operation and the dehumidifying operation are performed alternately every 30 minutes. Although the temperature of the building suddenly decreases around 11:00 due to the influence of local clouds, it gradually increases and reaches 90 ° C. The reason why the building temperature fluctuates up and down at 90 ° C. between 12:10 and 20 minutes is that when the building temperature reaches 90 ° C. or higher, the forced exhaust fan 57 for preventing overheating is controlled to operate.

再生運転時のハンドリングボックス5Aの入口・出口空気の温度差は朝から昼にかけて大きくなり、昼から夕方にかけて小さくなっている。これは図10b)と図11b)の第1デシカントモジュール50の出口相対湿度の変動からもわかる。第1デシカントモジュール50ように、朝から再生と除湿の切換運転をしながら昼頃に再生完了の状態に近づいたことと夕方に棟温が低下するからであると考えられる。除湿運転時の第1デシカントモジュール50の入口・出口空気の温度差は朝から徐々に大きくなり、夕方に運転が停止するまでその差が朝より大きい。   The temperature difference between the inlet and outlet air of the handling box 5A during the regeneration operation increases from morning to noon and decreases from noon to evening. This can also be seen from the variation of the outlet relative humidity of the first desiccant module 50 in FIGS. 10b) and 11b). This is considered to be because, as in the first desiccant module 50, the regeneration and dehumidification switching operations were started in the morning and the regeneration was approached in the middle of the day, and the building temperature decreased in the evening. The temperature difference between the inlet and outlet air of the first desiccant module 50 during the dehumidifying operation gradually increases from the morning, and the difference is larger than the morning until the operation stops in the evening.

第2デシカントモジュール52の入口・出口空気の温度差は再生運転時と除湿運転時とともにほぼ同じであり、再生運転時に吸着された分が除湿運転時にそのまま使われていることがわかる。また、朝方は除湿運転時に第1デシカントモジュール50の入口・出口空気の温度差と第2デシカントモジュール52の入口・出口空気の温度差の差が小さい。この結果、図10c)と図11c)のハンドリングボックス5A,5Bの入口・出口絶対湿度の変動からわかるように、11時までシステム全体の除湿効果はほとんど見られなかった。   The temperature difference between the inlet and outlet air of the second desiccant module 52 is substantially the same during the regeneration operation and during the dehumidification operation, and it can be seen that the amount adsorbed during the regeneration operation is used as it is during the dehumidification operation. In the morning, the difference between the temperature difference between the inlet and outlet air of the first desiccant module 50 and the temperature difference between the inlet and outlet air of the second desiccant module 52 is small during the dehumidifying operation. As a result, as can be seen from the fluctuations in the absolute humidity at the inlet and outlet of the handling boxes 5A and 5B in FIGS. 10c) and 11c), almost no dehumidifying effect of the entire system was observed until 11:00.

図12と図13に再生優先の実験結果を示す。朝7時30分頃に運転開始となり、17時30分頃に運転停止となった。朝方はシステム全体の除湿効果が見られなかった除湿涼房優先の実験結果を踏まえて、1組のハンドリングボックス5A,5Bの第1デシカントモジュール50をしっかり再生してから除湿運転を開始することにしたため、ハンドリングボックス5Aが再生運転時にハンドリングボックス5Bは運転停止となっている。   FIG. 12 and FIG. 13 show the results of the reproduction priority experiment. Operation started at around 7:30 in the morning and stopped at around 17:30. In the morning, based on the results of the dehumidifying cooler priority experiment in which the dehumidifying effect of the entire system was not observed, the first desiccant module 50 of the pair of handling boxes 5A and 5B was firmly regenerated before dehumidifying operation was started. Therefore, the handling box 5B is stopped during the regeneration operation.

その後からは再生運転と除湿運転を同時に行うが、再生運転のハンドリングボックスが再生完了となったら、運転の切換を行った。図12に示すように、ハンドリングボックス5Aは7時30分から10時まで約2時間30分で第1デシカントモジュール50の出口の相対湿度が約40%から10%となり、再生完了となったが、特に9時から10時にかけて第1デシカントモジュール50の出口の空気温度が急上昇し、相対湿度は急降下している。   After that, the regeneration operation and the dehumidifying operation are performed at the same time, but when the regeneration operation handling box is completely regenerated, the operation was switched. As shown in FIG. 12, in the handling box 5A, the relative humidity at the outlet of the first desiccant module 50 was changed from about 40% to 10% in about 2 hours and 30 minutes from 7:30 to 10:00. In particular, the air temperature at the outlet of the first desiccant module 50 rises rapidly from 9:00 to 10:00, and the relative humidity drops rapidly.

しっかり再生してから除湿運転を開始したため、ハンドリングボックス5Aの入口・出口絶対湿度の変動からわかるように、10時からシステム全体の除湿効果が見られる。再生運転から除湿運転に切り換わった時の10時に予想外の実測値を示しているのは、5分ほどハンドリングボックス5Aのファンが停止していたからである。   Since the dehumidifying operation was started after the regeneration, the dehumidifying effect of the entire system can be seen from 10 o'clock as can be seen from the fluctuations in the absolute humidity at the inlet and outlet of the handling box 5A. The reason why the unexpected measured value at 10:00 when the regeneration operation is switched to the dehumidifying operation is because the fan of the handling box 5A has stopped for about 5 minutes.

図13に示すように、ハンドリングボックス5Bは再生運転開始から棟温が高かったため、10時から約1時間で再生が完了している。11時から15時30分までは約30〜50分で再生完了となるが、その後は第1デシカントモジュール50の出口の相対湿度が10%となるまで再生することが困難であることと、夕方は再生能力が低下しても除湿能力は高いことを除湿涼房優先の実験結果でわかったため、1時間毎に切換運転を行った。   As shown in FIG. 13, the handling box 5B has been regenerated in about 1 hour from 10:00 because the building temperature has been high since the start of the regeneration operation. Regeneration is completed in about 30-50 minutes from 11:00 to 15:30, but after that, it is difficult to regenerate until the relative humidity at the outlet of the first desiccant module 50 becomes 10%, Since the experiment results prioritizing dehumidification cooling showed that the dehumidification capacity was high even when the regeneration capacity was reduced, switching operation was performed every hour.

その結果、図12c)と図13c)のハンドリングボックス5A,5B入口・出口絶対湿度の変動からわかるように、棟温が40℃未満となり運転が停止するまでシステム全体の除湿効果が見られた。運転停止中である10時までにハンドリングボックス5Bに除湿効果が見られるのは、換気扇により24時間換気を行っており、外気が空調対象室内の換気口からだけではなくハンドリングボックスを通過して導入されるからである。   As a result, the dehumidifying effect of the entire system was observed until the temperature of the building was lower than 40 ° C. and the operation was stopped, as can be seen from the fluctuations in the absolute humidity of the handling boxes 5A and 5B in FIGS. 12c) and 13c). The dehumidifying effect of the handling box 5B can be seen by 10 o'clock when the operation is stopped. Ventilation fans are used for 24 hours ventilation, and outside air is introduced not only from the ventilation opening in the air-conditioned room but also through the handling box. Because it is done.

また、オーバーヒート防止対策用の強制排気ファン57は弱(棟温90℃以上)・中(棟温95℃以上)・強(棟温100℃以上)の3段階の制御をしており、11時〜12時30分に棟温が3段階の動きとなっている。   In addition, the forced exhaust fan 57 for preventing overheating is controlled in three stages: weak (building temperature of 90 ° C or higher), medium (building temperature of 95 ° C or higher), and strong (building temperature of 100 ° C or higher). The building temperature is moving in three stages at ~ 12: 30.

本発明の空気集熱式ソーラー除湿涼房システムを試作し、除湿涼房優先(時間間隔による制御)と再生優先(デシカントモジュール出口相対湿度による制御)の運転実験を行い、しっかり再生を行ってから除湿運転を開始する再生優先の運転方法がより有効であることがわかった。また、オーバーヒート防止対策用の強制排気ファン57が制御の通りに作動することが確認できた。   Prototype the air heat collection type solar dehumidification cooler system of the present invention, and after carrying out the operation experiment of dehumidification cooler priority (control by time interval) and regeneration priority (control by desiccant module outlet relative humidity) It was found that the regeneration-priority operation method of starting the dehumidification operation is more effective. Further, it was confirmed that the forced exhaust fan 57 for preventing overheating operates as controlled.

本発明の空気集熱式ソーラー除湿涼房システムの1実施形態を示す夏季の昼間の動きの除湿涼房その1の説明図である。It is explanatory drawing of the dehumidification cooler 1 of the motion of the daytime of the summer which shows one Embodiment of the air heat collection type | formula solar dehumidification cooler system of this invention. 本発明の空気集熱式ソーラー除湿涼房システムの1実施形態を示す夏季の昼間の動きの除湿涼房その2の説明図である。It is explanatory drawing of the dehumidification cooler 2 of the motion of the daytime of the summer which shows one Embodiment of the air heat collection type | formula solar dehumidification cooler system of this invention. 本発明の空気集熱式ソーラー除湿涼房システムの1実施形態を示す夏季の夜間の動きの説明図である。It is explanatory drawing of the motion at night of the summer which shows one Embodiment of the air heat collection type | formula solar dehumidification cooling system of this invention. 本発明の空気集熱式ソーラー除湿涼房システムの1実施形態を示す冬季の動きの説明図である。It is explanatory drawing of the motion in winter which shows one Embodiment of the air heat collection type | formula solar dehumidification cooling system of this invention. 空気集熱式ソーラーの概要を示す説明図である。It is explanatory drawing which shows the outline | summary of the air heat collection type | formula solar. ハンドリングボックスの側面図である。It is a side view of a handling box. ハンドリングボックスの平面図である。It is a top view of a handling box. 実験結果の気象データその1を示すグラフである。It is a graph which shows the weather data 1 of an experimental result. 実験結果の気象データその2を示すグラフである。It is a graph which shows the weather data 2 of an experimental result. 実験結果その3を示すグラフである。It is a graph which shows the experimental result No. 3. 実験結果その4を示すグラフである。It is a graph which shows the experimental result No. 4. 実験結果その5を示すグラフである。It is a graph which shows the experimental result No. 5. 実験結果その6を示すグラフである。It is a graph which shows the experimental result 6th. 従来例を示す説明図である。It is explanatory drawing which shows a prior art example.

符号の説明Explanation of symbols

1…屋根板 2…空気流路
3…外気取入口 4…棟ダクト
5…ハンドリングボックス 5A,5B…ハンドリングボックス
6…入口ダンパー 6a…ダンパーボックス
7…ファン 8…出口ダンパー
8a…ダンパーボックス 9…排気ダクト
10…立下りダクト 11…蓄熱土間コンクリート
12…床パネル 13…空気流通空間
14…吹出口 15…給湯コイル
22…循環用ダクト 23…吸込口
25…ガラス板 26…ファン
27…ハンドリングボックス 28…外気取入れダクト
29…流入量調整ダンパー 30,31…吸着剤充填容器
32…吸着剤 33,34…サイクル切り換えダンパー
35…送気ダクト 36…排気ダクト
37…放熱コイル 38…冷却コイル
39…ポンプ 40…散水設備
41…補助暖房コイル
50…第1デシカントモジュール 51…冷却コイル
52…第2デシカントモジュール 53…接続ダクト
54…立下りダクト 55…免震ピット
55a…空気流通空間
56…排気ダクト 57…強制排気ファン
58a,58b,58c…モーターダンパ
60…分岐ダクト 61…棟温度センサー
62…室温センサー 63…外気温センサー
DESCRIPTION OF SYMBOLS 1 ... Roof board 2 ... Air flow path 3 ... Outside air inlet 4 ... Building duct 5 ... Handling box 5A, 5B ... Handling box 6 ... Inlet damper 6a ... Damper box 7 ... Fan 8 ... Outlet damper 8a ... Damper box 9 ... Exhaust Duct 10 ... Falling duct 11 ... Thermal storage soil concrete 12 ... Floor panel 13 ... Air circulation space 14 ... Air outlet 15 ... Hot water supply coil 22 ... Circulation duct 23 ... Suction port 25 ... Glass plate 26 ... Fan 27 ... Handling box 28 ... Outside air intake duct 29 ... Inflow rate adjusting damper 30, 31 ... Adsorbent filling container 32 ... Adsorbent 33, 34 ... Cycle switching damper 35 ... Air supply duct 36 ... Exhaust duct 37 ... Radiation coil 38 ... Cooling coil 39 ... Pump 40 ... Watering equipment 41 ... auxiliary heating coil 50 ... first desiccant module 51 Cooling coil 52 ... second desiccant module 53 ... connecting duct 54 ... falling duct 55 ... seismic isolation pit 55a ... air circulation space 56 ... exhaust duct 57 ... forced exhaust fans 58a, 58b, 58c ... motor damper 60 ... branch duct 61 ... Building temperature sensor 62 ... Room temperature sensor 63 ... Outside air temperature sensor

Claims (3)

太陽熱集熱部に接続して室内に空気を送る空調機として、第1デシカントモジュール、冷却コイル、第2デシカントモジュール、ファンを組み込んだデシカント空調機の2組からなり、再生運転と除湿運転を切り換えるバッチ方式で再生運転と除湿運転を同時に行うもので、再生運転時には高温低湿の集熱空気が第1デシカントモジュールを乾燥させた後、中温中湿となり、この中温中湿の空気は冷却コイルにより冷却され、低温高湿となって第2デシカントモジュールに水分を吸着させてから排気され、除湿運転時には低温高湿の外気を取り入れて第1デシカントモジュールで除湿し、中温低湿となった空気を冷却コイルで冷却し、さらに再生運転時に第2デシカントモジュールに吸着させておいた水分を用いて気化冷却を行い、低温中湿となった空気を室内に送ることを特徴とした空気集熱式ソーラー除湿涼房システム。   As an air conditioner that connects to the solar heat collector and sends air into the room, it consists of two sets: a first desiccant module, a cooling coil, a second desiccant module, and a desiccant air conditioner that incorporates a fan, and switches between regeneration operation and dehumidification operation. Regeneration operation and dehumidification operation are performed simultaneously in a batch system. During regeneration operation, the high-temperature and low-humidity collected air dries the first desiccant module, then becomes intermediate-temperature and intermediate-humidity, and this intermediate-temperature and intermediate-humidity air is cooled by the cooling coil. The low desiccant module is exhausted after moisture is adsorbed to the second desiccant module. During the dehumidifying operation, the low temperature and high humidity outside air is taken in and dehumidified by the first desiccant module, and the air that has become intermediate temperature and low humidity is cooled by the cooling coil. Cooling at the same time, evaporative cooling is performed using the moisture adsorbed on the second desiccant module during the regeneration operation. Air heat collector to become air was characterized by sending to the indoor type solar dehumidification Ryobo system. 太陽熱集熱部に接続して室内に空気を送る空調機としてのハンドリングボックスであり、前後にダンパーボックスを設け、第1デシカントモジュール、冷却コイル、第2デシカントモジュール、ファンを組み込んだことを特徴とする空気集熱式ソーラー除湿涼房システムに使用するハンドリングボックス。   It is a handling box as an air conditioner that sends air into the room connected to the solar heat collector, and is characterized by a damper box at the front and rear, and a first desiccant module, cooling coil, second desiccant module, and fan. The handling box used for the solar heat collection solar dehumidification cooling system. 請求項1の空気集熱式ソーラー除湿涼房システムにおいて、第1デシカントモジュール、第2デシカントモジュールの再生運転と除湿運転の切替運転は、いずれかのデシカントモジュールの出口湿度が設定値に達する時間と切替設定時間を比べて、どちらかが設定値に達すれば行うことを特徴とする空気集熱式ソーラー除湿涼房方法。 In the air heat collecting solar dehumidification cooling system according to claim 1, the switching operation between the regeneration operation and the dehumidification operation of the first desiccant module and the second desiccant module is performed when the outlet humidity of any of the desiccant modules reaches a set value. An air heat collecting solar dehumidifying and cooling method characterized by comparing the switching set times and performing either one of the set values.
JP2007034338A 2007-02-15 2007-02-15 Air-collecting solar dehumidification cooler system Active JP4341848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007034338A JP4341848B2 (en) 2007-02-15 2007-02-15 Air-collecting solar dehumidification cooler system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007034338A JP4341848B2 (en) 2007-02-15 2007-02-15 Air-collecting solar dehumidification cooler system

Publications (2)

Publication Number Publication Date
JP2008196817A true JP2008196817A (en) 2008-08-28
JP4341848B2 JP4341848B2 (en) 2009-10-14

Family

ID=39755920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007034338A Active JP4341848B2 (en) 2007-02-15 2007-02-15 Air-collecting solar dehumidification cooler system

Country Status (1)

Country Link
JP (1) JP4341848B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163629A (en) * 2010-02-08 2011-08-25 Toyota Home Kk Ventilating facility in building
CN101694314B (en) * 2009-10-23 2012-07-25 清华大学 Air handling device with natural heating and humidity control
CN102954545A (en) * 2012-10-26 2013-03-06 上海交通大学 Solar dehumidifying air conditioner system with energy storage effect
CN108644866A (en) * 2018-06-12 2018-10-12 大连理工大学 A kind of solar energy Coupling Water-source Heat Pump heat supply heating system and application method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0464841A (en) * 1990-07-02 1992-02-28 Matsushita Electric Ind Co Ltd Humidifier device
JPH07280316A (en) * 1994-04-06 1995-10-27 Matsushita Seiko Co Ltd Multi-function ventilator
JPH0875227A (en) * 1994-09-08 1996-03-19 Matsushita Electric Ind Co Ltd Humidifier and air-conditioning machine provided with humidifying function
JP2731993B2 (en) * 1991-11-21 1998-03-25 株式会社 オーエム研究所 Solar system house
JP2000205599A (en) * 1999-01-08 2000-07-25 Takasago Thermal Eng Co Ltd Desiccant air-conditioning system
JP2001162131A (en) * 1999-12-07 2001-06-19 Denso Corp Adsorption type air-conditioner
JP2001173992A (en) * 1999-12-14 2001-06-29 Denso Corp Air-conditioning method and air-conditioner
JP2004093013A (en) * 2002-08-30 2004-03-25 Fuji Silysia Chemical Ltd Refrigeration device
JP2004177074A (en) * 2002-11-29 2004-06-24 Daikin Ind Ltd Air-conditioning system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0464841A (en) * 1990-07-02 1992-02-28 Matsushita Electric Ind Co Ltd Humidifier device
JP2731993B2 (en) * 1991-11-21 1998-03-25 株式会社 オーエム研究所 Solar system house
JPH07280316A (en) * 1994-04-06 1995-10-27 Matsushita Seiko Co Ltd Multi-function ventilator
JPH0875227A (en) * 1994-09-08 1996-03-19 Matsushita Electric Ind Co Ltd Humidifier and air-conditioning machine provided with humidifying function
JP2000205599A (en) * 1999-01-08 2000-07-25 Takasago Thermal Eng Co Ltd Desiccant air-conditioning system
JP2001162131A (en) * 1999-12-07 2001-06-19 Denso Corp Adsorption type air-conditioner
JP2001173992A (en) * 1999-12-14 2001-06-29 Denso Corp Air-conditioning method and air-conditioner
JP2004093013A (en) * 2002-08-30 2004-03-25 Fuji Silysia Chemical Ltd Refrigeration device
JP2004177074A (en) * 2002-11-29 2004-06-24 Daikin Ind Ltd Air-conditioning system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101694314B (en) * 2009-10-23 2012-07-25 清华大学 Air handling device with natural heating and humidity control
JP2011163629A (en) * 2010-02-08 2011-08-25 Toyota Home Kk Ventilating facility in building
CN102954545A (en) * 2012-10-26 2013-03-06 上海交通大学 Solar dehumidifying air conditioner system with energy storage effect
CN102954545B (en) * 2012-10-26 2015-01-21 上海交通大学 Solar dehumidifying air conditioner system with energy storage effect
CN108644866A (en) * 2018-06-12 2018-10-12 大连理工大学 A kind of solar energy Coupling Water-source Heat Pump heat supply heating system and application method

Also Published As

Publication number Publication date
JP4341848B2 (en) 2009-10-14

Similar Documents

Publication Publication Date Title
AU2019226049B2 (en) Cooling, heating and humidity stabilization using humidity fluctuations
US4786301A (en) Desiccant air conditioning system
KR101434563B1 (en) Desiccant air conditioner
JP7038551B2 (en) Harvesting energy from humidity fluctuations
KR20190030843A (en) Dehumidification and ventilation system of photovoltaic-thermal system and control method there of
JP2004212038A (en) Air conditioning ventilation system for building
KR20200092221A (en) An air conditioning system
JP4341848B2 (en) Air-collecting solar dehumidification cooler system
JP2002267227A (en) Air-feed apparatus
JP2524299B2 (en) Handling box for solar system house
JP2668665B2 (en) Solar system house
Hauer et al. Open absorption systems for air conditioning and thermal energy storage
JP4230038B2 (en) Dehumidifying air conditioner
CN114413356B (en) Layered temperature control system of atrium building
JP2000257911A (en) Dehumidifying air conditioner, and its control method
CN115507463A (en) Step dehumidification window of installation on room wall
JP7036491B2 (en) Humidity control device
JP2001330273A (en) Cooling system using solid absorbent
JP3066456B2 (en) Solar system house
JP2731993B2 (en) Solar system house
JP2704244B2 (en) Solar system house
CN113959019B (en) Dehumidification air conditioning system based on resin desiccant electroosmosis regeneration
JP2003106562A (en) Indoor humidity control system using solar heat
CN218060860U (en) Solar phase-change basement heat supply ventilation and cold air application wall system
CN116293964A (en) Passive building enclosure system with dehumidification, cooling and heat collection functions and application

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4341848

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250