JP2001330273A - Cooling system using solid absorbent - Google Patents

Cooling system using solid absorbent

Info

Publication number
JP2001330273A
JP2001330273A JP2000193568A JP2000193568A JP2001330273A JP 2001330273 A JP2001330273 A JP 2001330273A JP 2000193568 A JP2000193568 A JP 2000193568A JP 2000193568 A JP2000193568 A JP 2000193568A JP 2001330273 A JP2001330273 A JP 2001330273A
Authority
JP
Japan
Prior art keywords
air
cooling
temperature
heat
humidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000193568A
Other languages
Japanese (ja)
Inventor
Hisao Koizumi
尚夫 小泉
Hiroko Inagaki
弘子 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYO SOLAR SYSTEM KENKYUSHO KK
Original Assignee
TOYO SOLAR SYSTEM KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYO SOLAR SYSTEM KENKYUSHO KK filed Critical TOYO SOLAR SYSTEM KENKYUSHO KK
Priority to JP2000193568A priority Critical patent/JP2001330273A/en
Publication of JP2001330273A publication Critical patent/JP2001330273A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Air Conditioning (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Drying Of Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a cooling system for utilizing a solar heat to be simple and practical and besides excellent in performance. SOLUTION: By effecting a flow of hot air heated by a solar heat to a packed bed where air filled with solid absorbent particles, such as granular silica gel, can flow, solid absorbent particles are dehumidified and regenerated, and moisture in air is absorbed in an absorbent to reduce humidity in air. Since an absorption heat is generated when humidity is removed, an air temperature is increased. In reduction of the air temperature by supplying outside air having a low temperature at midnight, to a crushed stone heat storage device, the temperature of crushed stones is reduced. Through the feed of air with decreased humidity to the crushed stones of the decreased temperature, temperature in air is lowered. By humidifying low humidity air, a cooling effect is produced. In this system, since, after the solid absorbent is dehumidified and regenerated, the solid absorbent becomes a high temperature approximately equal to the temperature of hot air, dehumidification is impracticable unless temperature is decreased. As a result, the system cools the solid absorbent through the heat exchanger in a manner that a moisture content in air is not adsorbed when the solid absorbent is cooled by air.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】 本発明は太陽熱や低温度の廃熱
を利用した簡便な冷房システムである粒状固体吸湿剤の
を用いた除湿式冷房システム(デシカント式冷房システ
ム)の性能向上に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in the performance of a dehumidification type cooling system (desiccant type cooling system) using a particulate solid hygroscopic agent, which is a simple cooling system utilizing solar heat or low-temperature waste heat.

【0002】[0002]

【従来の技術】従来の住宅用の太陽熱利用の暖房・給湯
システムは保守、取り扱いの容易さ、耐久性の点から温
風集熱式が多く用いられるようになってきている。この
システムでは夏期には太陽エネルギーは給湯にだけ用い
られ、暖房用の集熱は不要であるので、設備の利用率が
悪く、したがってシステムの経済性の点からも問題であ
った。夏期においてこの暖房用の集熱を冷房に利用する
ことがいろいろ検討されてきた。しかし従来、太陽熱利
用の冷房システムは、臭化リチウム水溶液を用いた吸収
式冷房機が試験的にではあるが、主に用いられ、温風集
熱方式にはこのシステムは適用が困難である。この臭化
リチウム水溶液を用いた吸収式冷房機は石油やガスボイ
ラーによる冷房機として、従来から用いられてきた方式
であり、真空密閉容器の中で臭化リチウム水溶液を沸騰
あるいは、凝縮させて、作動するものであり、製造技術
の面でも、高度な技術を要するもので、太陽熱を利用の
場合は100℃以上の高温水集熱方式でなければ難しい
ものである。したがってコストの点から経済的に引き合
わず、実験的に用いられたに過ぎない。
2. Description of the Related Art In a conventional heating and hot water supply system utilizing solar heat for a house, a hot air collecting system is increasingly used from the viewpoint of maintenance, easiness of handling, and durability. In this system, solar energy is used only for hot water supply in summer, and heat collection for heating is not required. Therefore, the utilization rate of equipment is poor, and thus there is a problem from the viewpoint of economic efficiency of the system. In summer, various studies have been made to utilize the heat collection for heating for cooling. However, conventionally, as a cooling system using solar heat, although an absorption type cooling system using an aqueous solution of lithium bromide has been experimentally used, it is mainly used, and it is difficult to apply this system to a hot air collecting system. This absorption type air conditioner using an aqueous solution of lithium bromide is a method conventionally used as an air-conditioner using an oil or gas boiler, and boils or condenses an aqueous solution of lithium bromide in a vacuum sealed container. It operates and requires advanced technology in terms of manufacturing technology, and it is difficult to utilize solar heat unless a high-temperature water collecting system of 100 ° C. or higher is used. Therefore, it was not economically justified in terms of cost and was only used experimentally.

【0003】これに対し、空気中の湿分を吸収する吸湿
剤を用いたデシカント式冷房システムは比較的簡単な装
置で冷房ができるとして、太陽エネルギーなど自然エネ
ルギー利用の冷房システムとして、よりふさわしいもの
として研究がなされてきた。従来、試験的に作られたデ
シカント式冷房システムは、吸湿剤を担持させたダンボ
ール紙を軸に巻きつけて円板状の吸湿ローターを作り、
そのローターを直径で半分に区分けして、片側には温風
を流し、吸湿剤の再生行程とし、もう片側には常温空気
を流して、空気中の湿度を取る除湿行程とするものであ
る。そのローターを1分間に1回転ぐらいの速度で回転
させて、再生行程と除湿行程が交互に入れ替わって行く
方式である。
[0003] On the other hand, a desiccant type cooling system using a moisture absorbent that absorbs moisture in the air is said to be capable of cooling with a relatively simple device, and is more suitable as a cooling system utilizing natural energy such as solar energy. Research has been done as. Conventionally, a desiccant cooling system experimentally made is made of a disc-shaped moisture-absorbing rotor by wrapping cardboard paper carrying a moisture-absorbing agent around a shaft.
The rotor is divided in half by diameter, and hot air is flown to one side to perform a regenerating process of the hygroscopic agent, and normal temperature air is flown to the other side to perform a dehumidifying process of removing humidity in the air. In this method, the rotor is rotated at a speed of about one rotation per minute, and the regeneration process and the dehumidification process are alternately performed.

【0004】[0004]

【発明が解決しようとする課題】デシカント冷房の前記
方式は、除湿剤の再生行程と除湿冷房行程が同時に行わ
れるので、冷房ができるのは再生用の温風が得られると
き、つまり太陽熱を集熱中だけである。集熱時でないと
きに冷房をできるようにするには、蓄熱装置が必要であ
り、コストの面で引き合わなくなる。
In the above desiccant cooling method, the regeneration step of the dehumidifier and the dehumidification cooling step are performed at the same time, so that cooling can be performed when hot air for regeneration is obtained, that is, solar heat is collected. Only enthusiastic. In order to be able to perform cooling when it is not collecting heat, a heat storage device is required, which is not attractive in terms of cost.

【0005】また除湿剤を通して空気中の湿度を減じて
温度が上昇した空気の温度を下げるには、一般に外気が
用いられるが、この冷却温度をできるだけ低くすること
が、デシカント冷房の効果を大きくするのに最も重要で
ある。したがって外気による冷却の場合は、外気温度が
高い最も冷房の必要なときに冷房効果が劣るという問題
があった。
Outside air is generally used to reduce the temperature of air whose temperature has risen by reducing the humidity in the air through a dehumidifying agent. However, lowering the cooling temperature as much as possible increases the effect of desiccant cooling. Most important to. Therefore, in the case of cooling by outside air, there is a problem that the cooling effect is inferior when the cooling needs to be the highest when the outside air temperature is high.

【0006】エネルギー問題、炭酸ガス排出削減の問題
は世界的な政治課題になっており、民生用のエネルギー
消費削減の技術の中で、太陽エネルギーの給湯・暖房へ
の利用は比較的容易で、その普及促進政策がわが国で行
われてすでに久しい。給湯への太陽エネルギー利用は、
わが国ではすでにかなり普及しているが、暖房への利用
は、窓から入る日射でも十分な暖房効果得られることは
誰でもが経験していることであり、給湯よりもさらに容
易に利用できるはずであるが、窓からの日射以上の太陽
エネルギー利用の暖房システムの普及は極めてわずかで
ある。しかし太陽熱温風集熱方式の住宅用暖房・給湯シ
ステムを設置したソーラーハウスは20年以上前から少
数ではあるが、建設されており技術的にはほぼ確立され
て、数が増えればコスト低減も見込める状況にある。
[0006] The problem of energy and the problem of reducing carbon dioxide emissions have become global political issues, and among technologies for reducing energy consumption for consumer use, it is relatively easy to use solar energy for hot water supply and heating. It has been a long time since its spread promotion policy has been implemented in Japan. Use of solar energy for hot water supply
Although it is already quite common in Japan, everyone has experienced that solar radiation from windows can provide a sufficient heating effect, and it should be easier to use than hot water supply. However, the use of solar heating systems beyond solar radiation through windows is very rare. However, the number of solar houses equipped with a solar heating and hot air system for home heating and hot water supply has been small for more than 20 years, but they have been constructed and are almost technically established. It is in a situation where it can be expected.

【0007】ただ暖房システムは冬期しか利用できない
ので、その点で経済性で不利になることも普及を妨げる
要因になっている。そこで暖房システムに少しの要素を
追加すると冷房もできるような簡便な太陽熱冷房システ
ムの開発が要望される。
[0007] However, since the heating system can be used only in winter, the disadvantage in terms of economy in that respect is also a factor that hinders its spread. Therefore, there is a demand for the development of a simple solar cooling system that can perform cooling by adding a few elements to the heating system.

【0008】[0008]

【課題を解決するための手段】図1は前記の温風集熱式
の住宅用太陽熱利用の暖房・給湯システムの構成図であ
る。1は集熱屋根で空気を太陽熱で加熱して温風を得る
もので、4のファンを運転することにより、2の開口か
ら3で示す3角ダクトに温風が取出され、5の給湯熱交
換器、6の集熱ダクトを通って7の砕石式蓄熱装置に導
かれる。また空調ファン8により、温風は分配ダクトを
通って天井吹き出し口10より室内に吹き出され、部屋
の暖房がなされる。温風が7の砕石式蓄熱装置を通ると
き砕石7aに熱を与えて、常温空気になり、戻りダクト
11を経て集熱屋根1には入り一巡する。蓄熱装置7に
蓄えられた熱は日射がないときに空調ファン8により、
室内空気が戻りガラリ12から砕石内を通って暖められ
て、温風となって10の天井吹き出し口から吹き出さ
れ、暖房に使われる。
FIG. 1 is a block diagram of a heating / hot water supply system utilizing the solar heat for a house of the above-mentioned hot air collecting type using a hot air collecting system. 1 is a heat collecting roof for heating the air with solar heat to obtain warm air. By operating a fan 4, warm air is taken out from an opening 2 to a triangular duct indicated by 3, and a hot water supply heat of 5 The heat is guided to the crushed stone heat storage device 7 through the heat exchanger and the heat collection duct 6. In addition, warm air is blown into the room from the ceiling outlet 10 through the distribution duct by the air-conditioning fan 8, thereby heating the room. When the hot air passes through the crushed stone heat storage device 7, it applies heat to the crushed stone 7 a to become room temperature air, and enters the heat collecting roof 1 via the return duct 11 to make a full round. The heat stored in the heat storage device 7 is controlled by the air conditioning fan 8 when there is no solar radiation.
The indoor air returns from the slab 12 and is heated through the crushed stones, and becomes warm air, which is blown out from the 10 ceiling outlets and used for heating.

【0009】このような温風集熱式ソーラーハウスにお
いて、夏期は集熱屋根から取り出された温風は給湯熱交
換器5を通って給湯を加熱した後は、集熱ダンパー13
の制御により排気口14より外部に排出され、利用され
ない。この夏期に無駄に捨てられる温風を利用して冷房
行う原理を示したものが図2である。(a)図は吸湿剤
を太陽熱による温風で、再生する行程を示しており、断
熱箱15に入れられた吸湿剤粒子16の中を温風が通り
抜ける際に吸湿剤を加熱、脱湿させ、排気口17より排
出される。
In such a hot air collecting solar house, the hot air taken out of the heat collecting roof in the summer passes through the hot water supply heat exchanger 5 to heat the hot water, and then the heat collecting damper 13 is used.
Is discharged outside through the exhaust port 14 and is not used. FIG. 2 shows the principle of cooling using the hot air that is wasted in the summer. (A) shows the process of regenerating the desiccant with the warm air of the solar heat, and heats and dehumidifies the desiccant when the warm air passes through the desiccant particles 16 placed in the heat insulating box 15. Are discharged from the exhaust port 17.

【0010】(b)図は冷房行程を示したもので、室内
空気を吸湿剤粒子16の中を通して除湿して、吸着熱で
温度が上昇した空気を砕石蓄熱装置7で冷却し、さらに
その空気に加湿器20で加湿して蒸発潜熱で温度が低下
した空気が、吹出し口19から室内に吹出される。図3
は図2(b)の冷房サイクルを湿り空気線図を用いて示
したもので、横軸が空気温度、縦軸は空気の絶対湿度、
45°ぐらいの右下がりの線は空気の等エンタルピーを
示す線である。図3の中の点Aは室内空気状態26℃、
相対湿度60%の点であり、この状態の空気が吸湿剤の
中を通って除湿される過程は等エンタルピー変化であ
り、吸湿剤出口の空気は図3のB点の状態、温度45
℃、相対湿度8%となり、砕石に入る。砕石で30℃ま
で絶対湿度が変化せずに冷却されるとすると、図3のC
点、30℃、相対湿度19%になり、加湿器に入る。加
湿行程は等エンタルピー変化で相対湿度90%まで加湿
されると、加湿器出口状態は図3のD点17℃になり、
絶対湿度も室内空気状態図3のA点より低く、良好な冷
房がなされることが分かる。
FIG. 2 (b) shows a cooling process, in which indoor air is dehumidified by passing through the absorbent particles 16, and the air whose temperature has risen due to heat of adsorption is cooled by the crushed stone heat storage device 7, and the air is further cooled. The air whose temperature has been reduced by the latent heat of vaporization after being humidified by the humidifier 20 is blown into the room through the blowout port 19. FIG.
FIG. 2B shows the cooling cycle of FIG. 2B using a psychrometric chart, where the horizontal axis represents the air temperature, the vertical axis represents the absolute humidity of the air,
The downward-sloping line of about 45 ° is a line indicating isenthalpy of air. The point A in FIG.
The relative humidity is a point of 60%, and the process of dehumidifying the air in this state through the desiccant is an isenthalpy change. The air at the outlet of the desiccant is in the state of point B in FIG.
° C, relative humidity 8% and enters crushed stone. Assuming that the crushed stone cools down to 30 ° C. without changing the absolute humidity, FIG.
The temperature reaches 30 ° C. and a relative humidity of 19% and enters the humidifier. When the humidification process is humidified to a relative humidity of 90% by an isenthalpy change, the humidifier outlet state becomes the D point 17 ° C. in FIG.
The absolute humidity is also lower than the point A in FIG. 3 of the indoor air condition, and it can be seen that good cooling is performed.

【0011】このサイクル図で重要なことは、吸湿剤を
通って低湿度で温度の上がった空を30℃ぐらいの温度
まで冷却することであり、熱交換器を使って外気で冷却
する場合は30℃まで冷却できないことが多い。砕石を
深夜の外気で予め冷やしておくことで良好な冷房が可能
になる。
What is important in this cycle diagram is to cool the sky, which has risen in low humidity to a temperature of about 30 ° C., through a desiccant, and to cool it with outside air using a heat exchanger. Often it cannot be cooled down to 30 ° C. Good cooling is possible by pre-cooling the crushed stones in the open air at midnight.

【0012】また、図2(a)の再生行程から(b)図
の冷房行程に移る際に、吸湿剤が再生行程の高温のまま
であると吸湿がなされない。この問題を解決する手段と
して吸湿剤充填層の中に吸湿剤を空気によって冷却する
冷却板を挿入することにより解決するのが本発明の主要
な点である。
[0012] Further, when shifting from the regeneration step of FIG. 2 (a) to the cooling step of FIG. 2 (b), if the moisture absorbent remains at the high temperature of the regeneration step, moisture is not absorbed. As a means for solving this problem, a main point of the present invention is to solve the problem by inserting a cooling plate for cooling the moisture absorbent by air in the moisture absorbent packed layer.

【実施例】【Example】

【0013】図4は本発明の1実施例のシステム構成図
である。記号1〜13は図1と同様であり、21は吸湿
剤粒子、22は吸湿剤を空気によって冷却するための冷
却板である。夏期の深夜に外気温度が低下する例えば深
夜の0時から、朝の5時まで集熱ファン4をタイマー制
御で運転して、外気取入れ口23から外気を取入れ、集
熱器を通して砕石蓄熱装置に送り、砕石を冷却させる。
砕石を出た空気は風圧式排気ダンパー24より外部に放
出される。
FIG. 4 is a system configuration diagram of one embodiment of the present invention. Symbols 1 to 13 are the same as those in FIG. 1, reference numeral 21 denotes hygroscopic particles, and reference numeral 22 denotes a cooling plate for cooling the hygroscopic agent by air. When the outside air temperature drops at midnight in summer, for example, from midnight at midnight to 5:00 in the morning, the heat collection fan 4 is operated under timer control to take in outside air from the outside air intake 23 and to the crushed stone heat storage device through the heat collector. Send and let the crushed stone cool.
The air that has come out of the crushed stone is discharged to the outside from a wind-type exhaust damper 24.

【0014】集熱屋根に日射が当たって集熱板温度が1
00℃以上に達したことが図示しない集熱板温度センサ
ーで検知されると、集熱ファン4が運転される。夏期に
は集熱ダンパー28は右側に倒され、集熱屋根からの温
風は蓄熱装置には行かず、ダンパー29が開いて集熱温
風の一部は給湯熱交換器27を加熱して32の入り口3
角ダクトに戻り、再び集熱屋根に吸込まれる。給湯熱交
換器27には貯湯槽33からポンプ34により水が循環
され、熱交換器でお湯になって貯湯槽の上部に戻り、貯
湯槽上部からお湯が貯まっていく。
When the solar radiation hits the heat collecting roof and the temperature of the heat collecting plate becomes 1
When the temperature reaches 00 ° C. or higher is detected by a heat collecting plate temperature sensor (not shown), the heat collecting fan 4 is operated. In summer, the heat collecting damper 28 is tilted to the right, the hot air from the heat collecting roof does not go to the heat storage device, the damper 29 opens, and a part of the heat collecting hot air heats the hot water supply heat exchanger 27. 32 entrances 3
It returns to the square duct and is sucked into the heat collecting roof again. In the hot water supply heat exchanger 27, water is circulated from the hot water storage tank 33 by the pump 34, turned into hot water in the heat exchanger, returned to the upper part of the hot water storage tank, and stored from the upper part of the hot water storage tank.

【0015】また集熱温風の他の部分はダンパー29が
開いて、吸湿剤である例えば球状シリカゲル層21を通
って排気口30より排出される。温風がシリカゲル層を
通過することにより、シリカゲルに吸着されている水分
が脱着され、再生される。シリカゲルの槽は二つあり、
シリカゲル層の下部まで脱着されるとダンパー29が閉
まり、もう片方の第2シリカゲル槽のダンパー29が開
いて、再生がなされる。
The other portion of the collected hot air is discharged from an exhaust port 30 through a damper 29, for example, a spherical silica gel layer 21 which is a moisture absorbent. As the hot air passes through the silica gel layer, moisture adsorbed on the silica gel is desorbed and regenerated. There are two silica gel tanks,
When the lower part of the silica gel layer is detached, the damper 29 is closed, and the damper 29 of the other second silica gel tank is opened to perform regeneration.

【0016】再生が終わった方のシリカゲル槽の冷却板
22に図4には図示しないファンにより送風され、シリ
カゲルが冷却される。図5はシリカゲル槽の断面を示し
たもので(a)は図4と同じ断面を示している。3〜5
mm直径の球状シリカゲル粒子21の中に22で示すア
ルミ薄板をダンボール状に接着したハニカム構造の冷却
板が空気流れ方向に20〜30mmの間隔で並べられて
いる。(b)は(a)図に示すB−B断面を示したもの
で、冷却ファン39の運転により空気がアルミダンボー
ル冷却板22の隙間を流れて、シリカゲルを熱伝導で冷
却させる。
A fan (not shown in FIG. 4) blows air to the cooling plate 22 of the silica gel tank where regeneration has been completed, thereby cooling the silica gel. FIG. 5 shows a cross section of the silica gel tank, and (a) shows the same cross section as FIG. 3-5
In the spherical silica gel particles 21 having a diameter of 25 mm, cooling plates having a honeycomb structure in which aluminum thin plates indicated by 22 are bonded in a cardboard shape are arranged at intervals of 20 to 30 mm in the air flow direction. (B) shows a cross section taken along the line BB shown in (a), and the air flows through the gap of the aluminum cardboard cooling plate 22 by operating the cooling fan 39 to cool the silica gel by heat conduction.

【0017】図5(a)において、アルミ冷却板への通
風によりシリカゲル温度が40〜30℃ぐらいに冷却さ
れた後、37のダンパーが開き、ファン35が運転され
て、室内空気がのガラリから吸込まれ、シリカゲル充填
層を下から上へ突き通して流れる間に、空気中の湿分ガ
シリカゲルに吸収されて、乾燥空気になって、ダンパー
37から図4に示す戻りダクト11に入る。戻りダクト
に入った乾燥空気はさらに空調ファン8により吸引され
て深夜外気によって冷却されている砕石蓄熱装置7を通
って冷却される。空調ファン8のから加湿器20で加湿
されて温度が下がり、分配ダクト9を通って天井吹出し
口10から室内に吹出だされ冷房がなされる。
In FIG. 5 (a), after the temperature of the silica gel is cooled to about 40 to 30 ° C. by ventilation to the aluminum cooling plate, the damper 37 is opened, the fan 35 is operated, and the room air is discharged While being sucked and flowing through the silica gel packed bed from the bottom to the top, it is absorbed by moisture in the air and becomes dry air and enters the return duct 11 shown in FIG. The dry air that has entered the return duct is further sucked by the air conditioning fan 8 and cooled through the crushed stone heat storage device 7 that is cooled by the outside air at midnight. The temperature of the air-conditioning fan 8 is lowered by being humidified by the humidifier 20, and the air is blown out from the ceiling outlet 10 into the room through the distribution duct 9 to be cooled.

【0018】図5(a)においてアルミダンボール冷却
板22はシリカゲル充填層より少し上まで伸び出してい
る。冷却ファン39で継続的に冷却していると、除湿さ
れてシリカゲル層を出た空気を冷却板でさらに冷却する
ことができる。この冷却板に除湿運転中も継続しての冷
却空気を流す効果を図3の線図により説明すると、室内
空気状態Aからシリカゲル層で除湿する過程はA−Bの
等エンタルピー過程であるが、冷却板に冷却空気を流し
ながらの除湿過程はAからB’のようになり、さらに砕
石で冷却して加湿して吹出し口ではD’点、温度15.
6℃、湿度90%と冷却板に通風しないときより冷房効
果大きくなることが分かる。
In FIG. 5 (a), the aluminum cardboard cooling plate 22 extends slightly above the silica gel packed bed. When the cooling is continuously performed by the cooling fan 39, the air that has been dehumidified and has exited the silica gel layer can be further cooled by the cooling plate. The effect of continuously flowing the cooling air through the cooling plate during the dehumidifying operation will be described with reference to the diagram of FIG. 3. The process of dehumidifying the indoor air condition A with the silica gel layer is an isenthalpy process of AB, The dehumidification process while cooling air is flowing through the cooling plate changes from A to B ', and is further cooled and humidified with crushed stone, and at the outlet D' point, temperature 15.
At 6 ° C. and 90% humidity, it can be seen that the cooling effect is greater than when no air is passed through the cooling plate.

【0019】除湿行程の後に、砕石で冷却しないで加湿
行程に入る場合を考えると、冷却板22を稼動していな
いと、除湿して加湿すると図3でAからBになり、また
Aに戻るだけで冷房効果は全く得られない。しかし冷却
板22を稼動している場合は、前記のように除湿後は
B’となり、B’から加湿するとE点、温度18.3
℃、湿度90%となり、砕石による冷却がなくてもかな
りの冷房効果が得られることが分かる。このようにシリ
カゲル層内に冷却板を設置する効果は単に再生行程の後
のシリカゲルの冷却だけではなく、冷房性能を向上させ
る。図5(a)の22の冷却板がシリカゲル層より延び
出している効果は、砕石による冷却がない場合にも砕石
による冷却と同様の効果を有するものである。勿論、深
夜の外気によって冷却された砕石による冷却には劣るの
は止むを得ない。
Considering the case where the humidification step is started without cooling with crushed stones after the dehumidification step, if the cooling plate 22 is not operated, dehumidification by humidification changes from A to B in FIG. No cooling effect is obtained at all. However, when the cooling plate 22 is operating, the temperature becomes B 'after dehumidification as described above, and when humidified from B', the point E and the temperature are 18.3.
It was found that the temperature was 90 ° C. and the humidity was 90%, and a considerable cooling effect could be obtained without cooling by crushed stone. As described above, the effect of installing the cooling plate in the silica gel layer not only cools the silica gel after the regeneration step but also improves the cooling performance. The effect that the cooling plate 22 of FIG. 5A extends from the silica gel layer has the same effect as the cooling by the crushed stone even when there is no cooling by the crushed stone. Needless to say, it is inferior to cooling by crushed stone cooled by outside air at midnight.

【0020】[0020]

【発明の効果】従来の温風集熱式ソーラーハウスのシス
テムや要素はそのままで、シリカゲル槽とダンパー、フ
ァンなどの追加設置により、夏期に捨てていた温風を利
用して、冷房が行える。太陽エネルギーを利用した冷房
は、これまで種々研究がなされてきたが、太陽電池発電
で通常のエアコンを運転する以外は、経済性の面からほ
とんど望みが断たれている現状である。本発明の方式
は、太陽熱の暖房への利用の促進にも寄与すと同時に、
太陽熱冷房の新たなる開発研究にも望みを与えるもので
ある。
According to the present invention, cooling and cooling can be performed by using the hot air thrown away in the summer by additionally installing a silica gel tank, a damper, a fan, etc. while keeping the conventional system and elements of the hot air collecting solar house. Although various studies have been made on cooling using solar energy, hope has been almost cut off in terms of economy except for operating a normal air conditioner by solar cell power generation. The method of the present invention contributes to promoting the use of solar heat for heating,
It also gives hope to new research on solar cooling.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)従来の温風集熱式太陽熱利用暖房・給湯
システム構成図
FIG. 1 (a) is a configuration diagram of a conventional heating / hot water supply system utilizing solar heat utilizing a hot air collecting system.

【図1】(b)集熱屋根断面図FIG. 1B is a sectional view of a heat collecting roof.

【図2】温風集熱太陽熱利用システムおける冷房の原理
説明図
FIG. 2 is a diagram illustrating the principle of cooling in a hot air collecting solar heat utilization system.

【図2】(a)除湿剤の再生行程説明図FIG. 2A is an explanatory view of a regeneration process of a dehumidifier.

【図2】(b)冷房行程説明図FIG. 2B is an explanatory diagram of a cooling process.

【図3】湿り空気線図上のデシカント冷房サイクルFIG. 3 Desiccant cooling cycle on psychrometric chart

【図4】本発明の1実施例の温風式太陽熱利用冷暖房・
給湯システム構成図
FIG. 4 shows a hot air type solar heating / cooling / heating system according to an embodiment of the present invention.
Hot water supply system configuration diagram

【図5】(a)本発明の1実施例のシリカゲル槽縦断面
FIG. 5 (a) Longitudinal sectional view of a silica gel tank according to one embodiment of the present invention.

【図5】(b)本発明の1実施例のシリカゲル槽横断面
FIG. 5 (b) Cross-sectional view of a silica gel tank according to one embodiment of the present invention.

【記号の説明】[Explanation of symbols]

1 集熱屋根 2 集熱屋根からの温風出口 3 集熱3角ダクト 4 集熱ファン 5 給湯熱交換器 6 集熱ダクト 7 砕石蓄熱装置 7a 砕石 8 空調ファン 9 空調分配ダクト 10 空調空気吹出し口 11 戻りダクト 12 空調空気戻りガラリ 13 集熱ダンパー 14 夏期排気ダクト 15 吸湿剤槽 16 吸湿剤粒子 17 再生温風排気口 18 室内空気吸込み口 19 冷房空気吹出し口 20 加湿器 21 シリカゲル粒子 22 シリカゲル粒子冷却板 23 外気取入れ口 24 風圧式排気ダンパー 25 吸気切替えダンパー 26 給湯加熱分岐ダクト制御ダンパー 27 給湯熱交換器 28 集熱ダンパー 29 シリカゲル再生温風制御ダンパー 30 再生温風排気口 31 冷房空気吸込み制御ダンパー 32 戻り3角ダクト 33 貯湯槽 34 集熱循環ポンプ 35 冷房用ファン 37 冷房用ダンパー 38 冷房空気吸込み口 39 冷却ファン DESCRIPTION OF SYMBOLS 1 Heat collecting roof 2 Hot air outlet from heat collecting roof 3 Heat collecting triangle duct 4 Heat collecting fan 5 Hot water supply heat exchanger 6 Heat collecting duct 7 Crushed stone heat storage device 7a Crushed stone 8 Air conditioning fan 9 Air conditioning distribution duct 10 DESCRIPTION OF SYMBOLS 11 Return duct 12 Air-conditioning air return gusset 13 Heat collection damper 14 Summer exhaust duct 15 Hygroscopic tank 16 Hygroscopic particle 17 Regeneration hot air exhaust port 18 Indoor air intake port 19 Cooling air outlet port 20 Humidifier 21 Silica gel particle 22 Silica gel particle cooling Plate 23 Outside air intake 24 Wind pressure type exhaust damper 25 Intake switching damper 26 Hot water supply heating branch duct control damper 27 Hot water supply heat exchanger 28 Heat collection damper 29 Silica gel regeneration hot air control damper 30 Regeneration hot air exhaust outlet 31 Cooling air suction control damper 32 Return triangular duct 33 Hot water storage tank 34 Heat collection and circulation pump 3 5 Cooling fan 37 Cooling damper 38 Cooling air inlet 39 Cooling fan

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F24J 2/04 F ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F24J 2/04 F

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 粒状の固体吸湿剤の充填層と、その固体
吸湿剤の充填層に温風を流すことにより、その固体吸湿
剤を脱湿再生するための温風発生システムと、前記固体
吸湿剤充填層に空気を流すことにより、空気中の湿分を
固体吸湿剤に吸着させて、空気中の湿度を低下させるた
めの送風系と、前記湿度の低減された空気を冷やすシス
テムと、該湿度低減の後に、冷却された空気に加湿する
ことにより水分の蒸発潜熱により、冷房効果を得る固体
吸着剤を用いた冷房システムにおいて、前記湿度の低減
された空気を冷やす砕石蓄熱装置が設置され、前記固体
吸着剤充填層の中に前記固体吸着剤を冷却させる空気流
による冷却板が、前記再生温風の流れ方向に平行に間隔
を置いて並べて挿入されており、前記砕石蓄熱装置の砕
石を予め、深夜の外気により冷却して置くことができる
ことを特徴とする固体吸湿剤を用いた冷房システム。
1. A warm air generating system for dehumidifying and regenerating the solid moisture absorbent by flowing hot air through the packed bed of the particulate solid moisture absorbent and the solid moisture absorbent, and the solid moisture absorbent By blowing air through the agent-filled layer, adsorbing moisture in the air to the solid desiccant and reducing the humidity in the air, a system for cooling the air with the reduced humidity, After the humidity reduction, the cooling system using a solid adsorbent that obtains a cooling effect by evaporating latent heat of water by humidifying the cooled air, a crushed stone heat storage device that cools the air with the reduced humidity is installed, A cooling plate by an air flow for cooling the solid adsorbent is inserted into the solid adsorbent packed bed at intervals in parallel to the flow direction of the regenerated hot air, and the crushed stone of the crushed stone heat storage device is inserted. In advance, late at night A cooling system using a solid desiccant, which can be cooled by air.
JP2000193568A 2000-05-24 2000-05-24 Cooling system using solid absorbent Pending JP2001330273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000193568A JP2001330273A (en) 2000-05-24 2000-05-24 Cooling system using solid absorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000193568A JP2001330273A (en) 2000-05-24 2000-05-24 Cooling system using solid absorbent

Publications (1)

Publication Number Publication Date
JP2001330273A true JP2001330273A (en) 2001-11-30

Family

ID=18692539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000193568A Pending JP2001330273A (en) 2000-05-24 2000-05-24 Cooling system using solid absorbent

Country Status (1)

Country Link
JP (1) JP2001330273A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1313784C (en) * 2005-07-28 2007-05-02 上海交通大学 Solar energy composite energy system based on solid adsorption refrigerator
KR100752018B1 (en) 2005-11-03 2007-08-28 주식회사 강남 System of heating using solar power
CN102954545A (en) * 2012-10-26 2013-03-06 上海交通大学 Solar dehumidifying air conditioner system with energy storage effect
CN103210261A (en) * 2010-09-03 2013-07-17 弗朗霍夫应用科学研究促进协会 Apparatus and method for removing dust and other particulate contaminants from a device for collecting solar radiation
CN107525133A (en) * 2017-08-11 2017-12-29 成都新力佳科技有限公司 A kind of solar air purification device
JP2018524540A (en) * 2015-06-24 2018-08-30 テルモテラ エルティーディー Harvesting energy from humidity fluctuations

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1313784C (en) * 2005-07-28 2007-05-02 上海交通大学 Solar energy composite energy system based on solid adsorption refrigerator
KR100752018B1 (en) 2005-11-03 2007-08-28 주식회사 강남 System of heating using solar power
CN103210261A (en) * 2010-09-03 2013-07-17 弗朗霍夫应用科学研究促进协会 Apparatus and method for removing dust and other particulate contaminants from a device for collecting solar radiation
CN103210261B (en) * 2010-09-03 2015-06-10 弗朗霍夫应用科学研究促进协会 Apparatus and method for removing dust and other particulate contaminants from a device for collecting solar radiation
CN102954545A (en) * 2012-10-26 2013-03-06 上海交通大学 Solar dehumidifying air conditioner system with energy storage effect
CN102954545B (en) * 2012-10-26 2015-01-21 上海交通大学 Solar dehumidifying air conditioner system with energy storage effect
JP2018524540A (en) * 2015-06-24 2018-08-30 テルモテラ エルティーディー Harvesting energy from humidity fluctuations
JP7038551B2 (en) 2015-06-24 2022-03-18 テルモテラ エルティーディー Harvesting energy from humidity fluctuations
CN107525133A (en) * 2017-08-11 2017-12-29 成都新力佳科技有限公司 A kind of solar air purification device

Similar Documents

Publication Publication Date Title
US7305849B2 (en) Sorptive heat exchanger and related cooled sorption process
JP5325076B2 (en) Greenhouse air conditioner and method for operating the same
US6622508B2 (en) Method for heat and humidity exchange between two air streams and apparatus therefor
KR100773434B1 (en) Dehumidified cooling device for district heating
CN100494793C (en) Two-stage rotating wheel dehumidification air conditioner device capable of using low-grade heat source
JP2009530586A (en) Dehumidifying and cooling system for district heating
KR100795101B1 (en) Desiccant appartus, air conditioning apparatus and system having the same
JP4340756B2 (en) Dehumidifying air conditioner
JP2022034876A (en) Dehumidification method and dehumidification system
JP2011143358A (en) Moisture absorption filter and humidifier
CN201255472Y (en) Energy accumulation type air conditioning dehumidification system
JP4258930B2 (en) Dehumidifying / humidifying device, dehumidifying / humidifying device and air conditioner
JPS62297647A (en) Dehumidification system of building
JP2006207872A (en) Dehumidifying air-conditioning system
JP2001330273A (en) Cooling system using solid absorbent
JP4230038B2 (en) Dehumidifying air conditioner
KR101420595B1 (en) Desiccant air conditioner
JP4341848B2 (en) Air-collecting solar dehumidification cooler system
JP2002054838A (en) Dehumidifying air conditioning apparatus
JP3161636B2 (en) Air cooling device using moisture absorbent
JP2002282641A (en) Dehumidifying air conditioner
JP2002166124A (en) Adsorption type dehumidifier
JP5917787B2 (en) Air conditioning system
JP2019184170A (en) Humidification controller
CN221526769U (en) Humidity adjusting device for PTC heating of coating