WO2022224383A1 - 二元冷凍サイクル装置 - Google Patents

二元冷凍サイクル装置 Download PDF

Info

Publication number
WO2022224383A1
WO2022224383A1 PCT/JP2021/016204 JP2021016204W WO2022224383A1 WO 2022224383 A1 WO2022224383 A1 WO 2022224383A1 JP 2021016204 W JP2021016204 W JP 2021016204W WO 2022224383 A1 WO2022224383 A1 WO 2022224383A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant circuit
refrigerant
order
heat exchanger
compressor
Prior art date
Application number
PCT/JP2021/016204
Other languages
English (en)
French (fr)
Inventor
拓未 西山
智隆 石川
寛也 石原
崇憲 八代
誠 江上
裕弥 井内
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023515955A priority Critical patent/JPWO2022224383A1/ja
Priority to CN202180097075.4A priority patent/CN117120783A/zh
Priority to EP21937877.5A priority patent/EP4328523A4/en
Priority to PCT/JP2021/016204 priority patent/WO2022224383A1/ja
Publication of WO2022224383A1 publication Critical patent/WO2022224383A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/027Condenser control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • F25B2400/121Inflammable refrigerants using R1234
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Definitions

  • the present disclosure relates to a dual refrigeration cycle device.
  • Patent Literature 1 describes a dual refrigerating cycle apparatus having a first higher refrigerating cycle, a second higher refrigerating cycle, and a lower refrigerating cycle.
  • An object of the present disclosure is to provide a binary refrigerating cycle device capable of realizing flexible operation with a plurality of high-order refrigerating cycles according to changes in cooling capacity required for the load.
  • the binary refrigeration cycle device of the present disclosure includes a first high-order refrigerant circuit that circulates a first refrigerant, a second high-order refrigerant circuit that circulates a second refrigerant, a low-order refrigerant circuit that circulates a third refrigerant, A first cascade condenser that exchanges heat between the first refrigerant and the third refrigerant, a second cascade condenser that exchanges heat between the second refrigerant and the third refrigerant, and a control device.
  • the first high-level refrigerant circuit has a first compressor, a first heat exchanger, and a first expansion valve, and comprises the first compressor, the first heat exchanger, the first expansion valve, and the first cascade condenser. , and the first compressor in order.
  • the second high-level refrigerant circuit has a second compressor, a second heat exchanger, and a second expansion valve, and comprises the second compressor, the second heat exchanger, the second expansion valve, and the second cascade condenser. , and the second compressor in this order.
  • the low-voltage refrigerant circuit has a third compressor, a third heat exchanger, and a third expansion valve, the third compressor, the first cascade condenser, the second cascade condenser, the third expansion valve, the third A third refrigerant is circulated in the order of the heat exchanger and the third compressor.
  • the control device varies the cooling capacity of the high-order refrigeration cycle provided by the first high-order refrigerant circuit and the second high-order refrigerant circuit based on the state of the refrigeration cycle of the low-order refrigerant circuit.
  • a binary refrigerating cycle device capable of realizing flexible operation with a plurality of high-level refrigerating cycles according to changes in the cooling capacity required for the load.
  • FIG. 1 is a diagram showing a configuration of a binary refrigerating cycle apparatus according to Embodiment 1;
  • FIG. FIG. 4 is a diagram showing the arrangement relationship between the liquid receiver and the first and second cascade capacitors;
  • FIG. 4 is a diagram showing a comparative example of configurations of a first high-order refrigerant circuit, a second high-order refrigerant circuit, and a low-order refrigerant circuit;
  • FIG. 4 is a diagram showing Modification 1 of the binary refrigeration cycle apparatus according to Embodiment 1; It is a figure which shows the 5th heat exchanger which integrated the 1st heat exchanger and the 2nd heat exchanger.
  • FIG. 2 is a diagram showing an example in which an uninterruptible power supply is provided in the binary refrigerating cycle apparatus according to Embodiment 1; It is a figure which shows the example which provided the uninterruptible power supply in the binary refrigerating-cycle apparatus of the modification 1.
  • FIG. Fig. 1 is graph 1 showing the relationship between the frequency range and cooling capacity of a first high-order refrigeration cycle and the relationship between the frequency range and cooling capacity of a second high-order refrigeration cycle
  • Fig. 2 is graph 2 showing the relationship between the frequency range and cooling capacity of the first high-order refrigeration cycle and the relationship between the frequency range and cooling capacity of the second high-order refrigeration cycle
  • 4 is a flow chart showing the contents of control in an operation mode according to Embodiment 1.
  • FIG. 4 is a flowchart showing the contents of control in a stop operation mode; 4 is a flowchart showing the contents of control in a cooling operation mode; 4 is a graph showing the relationship between the set value of the evaporating temperature inside the refrigerator and the cooling capacity (Embodiment 1).
  • FIG. 6 is a diagram showing the configuration of a binary refrigeration cycle apparatus according to Embodiment 2; FIG.
  • FIG. 4 is a diagram showing the ratio of the heat transfer area of the first heat exchanger and the second heat exchanger to the heat transfer area of the fourth heat exchanger; It is a figure which shows the 6th heat exchanger which integrated the 1st heat exchanger, the 2nd heat exchanger, and the 4th heat exchanger. It is a figure which shows the 1st heat exchanger used in combination with the 7th heat exchanger which integrated the 2nd heat exchanger and the 4th heat exchanger, and the 7th heat exchanger.
  • 9 is a flow chart showing details of control in an operation mode according to Embodiment 2.
  • FIG. 9 is a flowchart showing the contents of control in cooling operation mode 2 according to Embodiment 2.
  • FIG. 9 is a flowchart showing the contents of control in cooling operation mode 2 according to Embodiment 2.
  • 9 is a graph showing the relationship between the set value of the evaporating temperature inside the refrigerator and the cooling capacity (Embodiment 2).
  • 9 is a graph showing the relationship between the frequency of the third compressor (Comp301) and the set value of the evaporating temperature inside the refrigerator (Embodiment 2).
  • 9 is a flow chart showing a modification of cooling operation mode 2 according to Embodiment 2.
  • FIG. 1 is a diagram showing the configuration of a binary refrigeration cycle device 51 according to Embodiment 1. As shown in FIG. Based on FIG. 1, the circuit configuration and operation of the binary refrigeration cycle device 51 will be described.
  • the binary refrigeration cycle device 51 includes a low-order refrigerant circuit 300 , a first high-order refrigerant circuit 100 , a second high-order refrigerant circuit 200 , and a control device 30 .
  • the first high-level refrigerant circuit 100 and the second high-level refrigerant circuit 200 are arranged in the outdoor unit 1 .
  • the low-concentration refrigerant circuit 300 is arranged across the outdoor unit 1 and the indoor unit 2 by the extension pipe 15 .
  • the control device 30 is arranged in the outdoor unit 1 or the indoor unit 2 .
  • the outdoor unit 1 is provided with a temperature sensor 20 that detects the outside air temperature.
  • the control device 30 may be arranged at a location other than the outdoor unit 1 and the indoor unit 2 .
  • the control device 30 may wirelessly communicate with a remote controller operated by a user.
  • a first refrigerant is sealed in the first high-level refrigerant circuit 100 .
  • a second refrigerant is sealed in the second high-level refrigerant circuit 200 .
  • a third refrigerant is sealed in the low-concentration refrigerant circuit 300 .
  • the outdoor unit 1 includes a first cascade condenser 104 for exchanging heat between the first refrigerant of the first high-order refrigerant circuit 100 and the third refrigerant of the low-order refrigerant circuit 300, and a second high-order refrigerant circuit.
  • a second cascade condenser 204 is provided for exchanging heat between the second refrigerant of 200 and the third refrigerant of the lower refrigerant circuit 300 .
  • the first cascade capacitor 104 may be included in the first high-order refrigerant circuit 100 or may be included in the low-order refrigerant circuit 300 .
  • the second cascade condenser 204 may be included in the second high-order refrigerant circuit 200 or may be included in the low-order refrigerant circuit 300 .
  • the first high-level refrigerant circuit 100 includes a first compressor 101 , a first heat exchanger 102 and a first expansion valve 103 .
  • the first compressor 101, the first heat exchanger 102, and the first expansion valve 103 are connected by a refrigerant pipe through which the first refrigerant flows.
  • the first heat exchanger 102 is provided with a first fan 1021 that facilitates heat exchange between the outside air and the first refrigerant.
  • the first high-level refrigerant circuit 100 is configured such that the first refrigerant circulates through the first compressor 101, the first heat exchanger 102, the first expansion valve 103, the first cascade condenser 104, and the first compressor 101 in this order. configured to Therefore, the first heat exchanger 102 functions as a condenser.
  • a microcomputer that operates in response to a command from the control device 30 is installed in the first high-level refrigerant circuit 100 . When the control device 30 activates the first high-order refrigerant circuit 100, the first high-order refrigeration cycle is started.
  • the second high-level refrigerant circuit 200 includes a second compressor 201 , a second heat exchanger 202 and a second expansion valve 203 .
  • the second compressor 201, the second heat exchanger 202, and the second expansion valve 203 are connected by a refrigerant pipe through which the second refrigerant flows.
  • the second heat exchanger 202 is provided with a second fan 2021 that promotes heat exchange between the outside air and the second refrigerant.
  • the second high-level refrigerant circuit 200 is configured such that the second refrigerant circulates through the second compressor 201, the second heat exchanger 202, the second expansion valve 203, the second cascade condenser 204, and the second compressor 201 in that order. configured to Therefore, the second heat exchanger 202 functions as a condenser.
  • the second high-level refrigerant circuit 200 is equipped with a microcomputer that operates in response to commands from the control device 30 .
  • the control device 30 activates the second high-order refrigerant circuit 200 to activate the second high-order refrigeration cycle.
  • first high-level refrigerant circuit 100 and second high-level refrigerant circuit 200 are configured to have different maximum cooling capacities.
  • the second compressor 201, the second heat exchanger 202, the second expansion circuit 201, the second heat exchanger 202, and the second expansion circuit 201 are arranged so that the maximum cooling capacity of the second high-order refrigerant circuit 200 is lower than the maximum cooling capacity of the first high-order refrigerant circuit 100.
  • At least one component of the valve 203 and the second cascade condenser 204 is connected to the first compressor 101 , the first heat exchanger 102 , the first expansion valve 103 and the first cascade condenser 104 of the first higher order refrigerant circuit 100 .
  • the low energy refrigerant circuit 300 includes a third compressor 301 , a third heat exchanger 302 , a third expansion valve 303 and a liquid receiver 304 .
  • the third heat exchanger 302 and the third expansion valve 303 are arranged in the indoor unit 2 .
  • the liquid receiver 304 is arranged in the outdoor unit 1 .
  • the third compressor 301, the third heat exchanger 302, the third expansion valve 303, and the receiver 304 are connected by refrigerant pipes through which the third refrigerant flows.
  • the third heat exchanger 302 is provided with a third fan 3021 that promotes heat exchange between the air inside the storage and the third refrigerant.
  • the third refrigerant is a third compressor 301, a first cascade condenser 104, a second cascade condenser 204, a liquid receiver 304, a third expansion valve 303, a third heat exchanger 302, and a third refrigerant.
  • the three compressors 301 are configured to circulate in order. Therefore, the third heat exchanger 302 functions as an evaporator that cools the inside of the refrigerator.
  • a microcomputer that operates in response to commands from the control device 30 is installed in the low-concentration refrigerant circuit 300 . When the control device 30 activates the low-concentration refrigerant circuit 300, the low-concentration refrigeration cycle is activated.
  • a pressure sensor 10 is provided in the refrigerant pipe located on the discharge side of the third compressor 301 .
  • the pressure sensor 10 may be provided at any position in the section from the discharge port of the third compressor 301 to the inlet of the first cascade condenser 104 .
  • the third compressor 301 circulates the third refrigerant in the low-concentration refrigerant circuit 300 by increasing the pressure of the third refrigerant.
  • the third compressor 301 changes its operating capacity according to the situation by controlling a motor (not shown) inside the third compressor 301 with an inverter.
  • the third compressor 301 controls the frequency of the third compressor 301 so that the temperature of the third refrigerant reaches the target outlet temperature set by the control device 30 .
  • the third expansion valve 303 adjusts the flow rate of the third refrigerant.
  • Third expansion valve 303 is, for example, an electronic expansion valve or a capillary.
  • the electronic expansion valve has a function of efficiently controlling the flow rate of the third refrigerant by adjusting the throttle opening.
  • the liquid receiver 304 stores high-pressure liquid refrigerant.
  • the liquid receiver 304 is arranged between the second cascade condenser 204 and the third expansion valve 303 in the low-concentration refrigerant circuit 300 .
  • the liquid receiver 304 is arranged downstream of the first cascade condenser 104 and the second cascade condenser 204 and upstream of the third expansion valve 303 .
  • the liquid receiver 304 and the second cascade condenser 204 are connected by the first refrigerant pipe 16 .
  • the liquid receiver 304 and the third expansion valve 303 are connected by the second refrigerant pipe 17 and the extension pipe 15 .
  • the first refrigerant pipe 16 is connected to the upper portion of the liquid receiver 304 .
  • the second refrigerant pipe 17 is connected to the lower portion of the liquid receiver 304 .
  • a return refrigerant pipe 18 is further connected to the upper portion of the liquid receiver 304 .
  • the return refrigerant pipe 18 connects the refrigerant pipe positioned between the first cascade condenser 104 and the second cascade condenser 204 and the liquid receiver 304 .
  • the return refrigerant pipe 18 is provided with a check valve 305 that prevents the first refrigerant from flowing into the liquid receiver 304 from the first cascade condenser 104 or the second cascade condenser 204 through the return refrigerant pipe 18 .
  • the control device 30 is equipped with a processor 31 and a memory 32 .
  • Processor 31 executes an operating system and application programs stored in memory 32 .
  • the processor 31 refers to various data stored in the memory 32 when executing the application program.
  • Processor 31 collects data indicating operating conditions from first high-order refrigerant circuit 100 , second high-order refrigerant circuit 200 , and low-order refrigerant circuit 300 according to an application program stored in memory 32 .
  • the processor 31 acquires the pressure of the third refrigerant based on the detection value of the pressure sensor 10.
  • the processor 31 acquires the outside air temperature based on the detection value of the temperature sensor 20 .
  • Processor 31 controls first high-order refrigerant circuit 100 , second high-order refrigerant circuit 200 , and low-order refrigerant circuit 300 according to application programs stored in memory 32 .
  • the control device 30 can switch the operation mode between the cooling operation mode and the stop operation mode.
  • the cooling operation mode is an operation mode for cooling the inside of the refrigerator where the third heat exchanger 302 is arranged.
  • the low temperature refrigerant circuit 300 and the second high temperature refrigerant circuit 200 operate.
  • the first high-order refrigerant circuit 100 may further operate depending on the operating conditions of the low-order refrigerant circuit 300 and the second high-order refrigerant circuit 200 .
  • the stop operation mode is an operation mode used when the inside of the refrigerator is not cooled. In the stop operation mode, the operation of the low-concentration refrigerant circuit 300 is stopped. In the stop operation mode, the second high-voltage refrigerant circuit 200 operates to prevent the pressure in the low-voltage refrigerant circuit 300 from abnormally increasing. In the stop operation mode, the first high-voltage refrigerant circuit 100 may be operated further.
  • the control device 30 can independently control the first high-order refrigerant circuit 100, the second high-order refrigerant circuit 200, and the low-order refrigerant circuit 300 in the cooling operation mode.
  • the control device 30 can select either the low-capacity operation mode or the high-capacity operation mode in the cooling operation mode.
  • the low capacity operation mode is a mode in which the first high-level refrigerant circuit 100 is stopped and the low-level refrigerant circuit 300 and the second high-level refrigerant circuit 200 are operated.
  • the high-capacity operation mode is a mode in which the first high-order refrigerant circuit 100, the second high-order refrigerant circuit 200, and the low-order refrigerant circuit 300 are operated.
  • the control device 30 is configured to be able to select an operation mode in which only the low-level refrigerant circuit 300 is operated among the first high-level refrigerant circuit 100, the second high-level refrigerant circuit 200, and the low-level refrigerant circuit 300. good too.
  • first high-level refrigerant circuit 100 ⁇ Operation of first high-order refrigerant circuit 100 and second high-order refrigerant circuit 200> The operation of the first high-level refrigerant circuit 100 will be described.
  • the high-temperature and high-pressure gaseous first refrigerant discharged from the first compressor 101 flows into the first heat exchanger 102 functioning as a condenser.
  • the first refrigerant changes from a gas state refrigerant to a liquid state refrigerant in the first heat exchanger 102 .
  • the first refrigerant that has flowed out of the first heat exchanger 102 flows into the first expansion valve 103 and is decompressed. As a result, the liquid state first refrigerant changes to a low-pressure two-phase refrigerant.
  • a low-pressure two-phase refrigerant flows from the first expansion valve 103 into the first cascade condenser 104 .
  • the first refrigerant flowing into the first cascade condenser 104 takes heat from the third refrigerant flowing through the low-concentration refrigerant circuit 300 .
  • the third refrigerant is condensed and the first refrigerant is gasified.
  • the gasified first refrigerant is sucked into the first compressor 101 .
  • the operation of the second high-level refrigerant circuit 200 is the same as the operation of the first high-level refrigerant circuit 100, so the description thereof will not be repeated here.
  • the difference between the first high-order refrigerant circuit 100 and the second high-order refrigerant circuit 200 is the maximum cooling capacity.
  • the first high-order refrigerant circuit 100 and the second high-order refrigerant circuit 200 have different capacities to condense the third refrigerant flowing through the low-order refrigerant circuit 300 .
  • the second higher order refrigerant circuit 200 is designed to be less capable of condensing the third refrigerant than the first higher order refrigerant circuit 100 .
  • ⁇ Operation of low-concentration refrigerant circuit 300 The operation of the low-concentration refrigerant circuit 300 will be described.
  • the high-temperature and high-pressure gaseous third refrigerant discharged from the third compressor 301 flows to the first cascade condenser 104 and the second cascade condenser 204 .
  • the first cascade condenser 104 functions as a condenser for the third refrigerant.
  • the second cascade condenser 204 functions as a condenser for the third refrigerant.
  • the third refrigerant thereby changes from a gas state refrigerant to a liquid state refrigerant.
  • the third refrigerant that has flowed out of the second cascade condenser 204 flows into the liquid receiver 304 .
  • the liquid state third refrigerant accumulated in the liquid receiver 304 is pushed out to the second refrigerant pipe 17 by the gas pressure in the liquid receiver 304 .
  • the third refrigerant flowing into the second refrigerant pipe 17 goes to the third expansion valve 303 via the extension pipe 15 .
  • the pressure of the third refrigerant that has flowed into the third expansion valve 303 is reduced by the third expansion valve 303 .
  • the liquid third refrigerant changes to a low-pressure two-phase refrigerant.
  • Low pressure two-phase refrigerant moves from the third expansion valve 303 to the third heat exchanger 302 .
  • the third heat exchanger 302 functions as an evaporator.
  • the third refrigerant that has flowed into the third heat exchanger 302 exchanges heat with the air inside the refrigerator. This cools the inside of the refrigerator.
  • the third refrigerant gasified inside the third heat exchanger 302 is sucked into the third compressor 301 .
  • the control device 30 adjusts the frequency of the third compressor 301 and the rotation speed of the third fan 3021 based on various parameters.
  • Parameters can include, for example, intake temperature, discharge temperature, heat exchanger temperature, air intake temperature, and humidity.
  • the control device 30 can acquire these parameters using the values of sensors arranged in the low-concentration refrigerant circuit 300 .
  • a temperature sensor may be provided at the discharge portion of the third compressor 301 to detect the discharge temperature of the third refrigerant.
  • the control device 30 sends a control signal to the low-concentration refrigerant circuit 300 based on the temperature difference between the detection result of the temperature sensor and the preset discharge temperature of the third compressor 301 .
  • the low-concentration refrigerant circuit 300 adjusts the rotation speed of the third compressor 301, the rotation speed of the third fan 3021, or the opening degree of the third expansion valve 303 based on the control signal. By this adjustment, the control device 30 can control the temperature of various devices provided in the low-concentration refrigerant circuit 300 so as not to rise above the heat-resistant temperature.
  • the condensation temperature may be estimated from the detected value of the pressure sensor 10 .
  • FIG. 2 is a diagram showing the arrangement relationship between the liquid receiver 304 and the first cascade capacitor 104 and the second cascade capacitor 204.
  • the liquid receiver 304 is arranged at a position lower than the first cascade capacitor 104 and the second cascade capacitor 204 in the vertical direction. Therefore, even when the low-concentration refrigerant circuit 300 is not activated, the third refrigerant cooled and liquefied by the first cascade condenser 104 or the second cascade condenser 204 falls to the liquid receiver 304 due to gravity. This is especially effective in the stop operation mode that controls when the low-order refrigerating cycle is not activated. The operation of the stop operation mode will be described in detail below with reference to FIGS. 1 and 2.
  • FIG. 1 The operation of the stop operation mode will be described in detail below with reference to FIGS. 1 and 2.
  • the control device 30 activates the high-order refrigeration cycle when the low-order refrigeration cycle is stopped. Such an operation mode is called a stop operation mode. By operating the binary refrigerating cycle device 51 in the stop operation mode, the control device 30 prevents the pressure increase due to the temperature increase of the third refrigerant staying in the low temperature refrigerant circuit 300 .
  • the control device 30 activates the high-level refrigeration cycle when the outside air temperature becomes equal to or higher than the reference temperature while the low-level refrigeration cycle is stopped.
  • the reference temperature is, for example, -5°C.
  • the pressure in the low-level refrigerant circuit 300 is equalized, and eventually the pressure becomes the pressure corresponding to the outside air temperature.
  • the average density of the third refrigerant is small. Therefore, the pressure decreases according to Boyle-Charles' law (P ⁇ T).
  • P ⁇ T Boyle-Charles' law
  • the third refrigerant in the low-level refrigerant circuit 300 evaporates by absorbing heat from the outside air. This increases the pressure in the low-concentration refrigerant circuit 300 .
  • the pressure depends on the relationship between pressure and temperature based on the type of refrigerant. becomes. For example, if the refrigerant is CO2 (carbon dioxide) and the temperature is 20° C., the pressure is 5.6 MPaG.
  • the third refrigerant can be forcibly cooled by activating the high-level refrigeration cycle when the low-level refrigeration cycle is stopped. As a result, the temperature of the third coolant is lower than the outside air. Then, the pressure of the third refrigerant in the low-concentration refrigerant circuit 300 decreases.
  • the high-level refrigeration cycle activated by the control device 30 in the stop operation mode is the second high-level refrigeration cycle.
  • the control device 30 controls the frequency of the second compressor 201 of the second high-order refrigerating cycle, the rotation speed of the second fan 2021, and the degree of opening of the second expansion valve 203 . If the abnormal rise in pressure in the low-order refrigerant circuit 300 cannot be suppressed only by starting the second high-order refrigeration cycle, the control device 30 starts the first high-order refrigeration cycle with higher condensing capacity.
  • the second cascade condenser 204 existing between the second high-order refrigerant circuit 200 and the low-order refrigerant circuit 300 becomes a condenser for the third refrigerant.
  • the third refrigerant in the second cascade condenser 204 is condensed.
  • the third refrigerant condensed by the second cascade condenser 204 is liquefied.
  • the liquefied third refrigerant passes through the first refrigerant pipe 16 and drips into the liquid receiver 304 .
  • the volume of the gas phase decreases.
  • the gaseous third refrigerant which is not easily affected by gravity, is sucked up to the upstream side of the second cascade condenser 204 via the return refrigerant pipe 18 .
  • the return refrigerant pipe 18 is connected to the upper part of the liquid receiver 304, so that the third refrigerant existing above the liquid receiver 304 can be naturally sucked.
  • the check valve 305 prevents the third refrigerant, which should flow from the first cascade condenser 104 to the second cascade condenser 204 , from flowing into the liquid receiver 304 via the return refrigerant pipe 18 .
  • the third refrigerant in the cooling operation mode, it is possible to prevent the third refrigerant from bypassing the second cascade condenser 204 and flowing into the liquid receiver 304 .
  • the vaporous third refrigerant sucked up to the upstream side of the second cascade condenser 204 is cooled by the second cascade condenser 204 and liquefied.
  • the liquefied third refrigerant drips into the liquid receiver 304 .
  • the low-concentration refrigeration cycle is not activated, but the third refrigerant flows through the low-concentration refrigerant circuit 300 due to such natural circulation.
  • the pressure rise in the low-concentration refrigerant circuit 300 can be effectively suppressed. Further, only the gas to be condensed can be allowed to flow through the return refrigerant pipe 18 in order to suppress the pressure from rising. Furthermore, by providing the second cascade condenser 204 , the liquid third refrigerant can be stored in the liquid receiver 304 without directly cooling the liquid receiver 304 .
  • Both the first cascade condenser 104 and the second cascade condenser 204 function as condensers for the third refrigerant and cool the third refrigerant before it flows into the liquid receiver 304 . Therefore, it is not necessary to provide the liquid receiver 304 with a cooling function.
  • the first cascade capacitor 104 and the second cascade capacitor 204 exhibit a cooling function even in the cooling operation mode. Therefore, the configuration of the liquid receiver 304 can be simplified compared to a configuration in which the liquid receiver 304 is provided with the function of cooling the third refrigerant during the cooling operation. This is because the liquid receiver 304 requires an evaporator when the third refrigerant is cooled in the liquid receiver 304 .
  • the volume of the liquid receiver 304 must be reduced. Further, when a heat transfer tube is provided around the container of the liquid receiver 304, there arises a problem that the contact portion is easily deteriorated due to thermal fatigue, and furthermore, the container has a complicated structure. According to this embodiment, the configuration of the liquid receiver 304 can be simplified, and the manufacturing cost can be reduced.
  • the binary refrigeration cycle device 51 activates at least the second high-order refrigeration cycle even when the low-order refrigeration cycle is stopped, and the second cascade condenser 204 supplies the low-order refrigerant circuit 300 with Cooling the staying third refrigerant.
  • the third refrigerant in the low-concentration refrigerant circuit 300 it is possible to effectively suppress the pressure increase due to the temperature increase of the third refrigerant.
  • This eliminates the need to set the design pressures of various devices such as the third compressor 301, the third heat exchanger 302, the third expansion valve 303, the liquid receiver 304, and the refrigerant pipes to high values. As a result, it is possible to reduce the cost of the equipment that constitutes the low-concentration refrigerant circuit 300 .
  • FIG. 3 is a diagram showing a comparative example of configurations of the first high-order refrigerant circuit 100, the second high-order refrigerant circuit 200, and the low-order refrigerant circuit 300.
  • first high-level refrigerant circuit 100 and second high-level refrigerant circuit 200 are configured to have different maximum cooling capacities. More specifically, the cooling capacity of the second high-order refrigerant circuit 200 is configured to be lower than the cooling capacity of the first high-order refrigerant circuit 100 .
  • numerical values relating to the capacity of the low-concentration refrigerant circuit 300 are omitted.
  • FIG. 3 shows an example in which the rated capacity of the first high-level refrigerant circuit 100 is 41 kW and the rated capacity of the second high-level refrigerant circuit 200 is 10 kW.
  • the high-side capacity (cooling capacity) is calculated as 51 kW by adding 41 kW and 10 kW.
  • the ratio of the rated capacity of the second higher-order refrigerant circuit 200 to 51 kW is approximately 20% as shown in FIG.
  • the maximum cooling capacity of the second high-level refrigerant circuit 200 should be less than 50% of the maximum cooling capacity of the first high-level refrigerant circuit 100 and the second high-level refrigerant circuit 200 . That is, the upper limit of the cooling capacity of the second high-order refrigerant circuit 200 may be less than 50% of the upper limit of the cooling capacity of the first high-order refrigerant circuit 100 and the second high-order refrigerant circuit 200 .
  • the upper limit of the cooling capacity of the second high-order refrigerant circuit 200 is preferably 35% or less of the upper limit of the cooling capacity of the first high-order refrigerant circuit 100 and the second high-order refrigerant circuit 200 .
  • the upper limit of the cooling capacity of the second high-order refrigerant circuit 200 is more preferably 20% or less of the upper limit of the cooling capacity of the first high-order refrigerant circuit 100 and the second high-order refrigerant circuit 200 .
  • the second compressor 201 of the second high-level refrigerant circuit 200, the second heat At least one component of the exchanger 202 , the second expansion valve 203 and the second cascade condenser 204 is connected to the first compressor 101 , the first heat exchanger 102 and the first expansion of the first high-level refrigerant circuit 100 .
  • the valve 103 and first cascade capacitor 104 may be configured with components having a smaller capacity than the corresponding components.
  • the size of the compressor has the greatest impact on the cost and cooling capacity of the refrigerant circuit. Therefore, by configuring the second compressor 201 with a compact compressor having a smaller capacity than the first compressor 101, the cooling capacity between the first high-level refrigerant circuit 100 and the second high-level refrigerant circuit 200 is increased. It is desirable to have a difference. By downsizing the second compressor 201, the cost of the second high-order refrigerant circuit 200 can also be reduced. By miniaturizing the second compressor 201, the material costs required for the second compressor 201 can be reduced. Moreover, since the volume of the second compressor 201 is reduced, the amount of refrigerant required for the second high-order refrigerant circuit 200 can be reduced.
  • second compressor 201 is composed of a compact compressor having a smaller capacity than first compressor 101 .
  • the refrigerant capacity of the second high-order refrigerant circuit 200 is smaller than that of the first high-order refrigerant circuit 100 .
  • the lower limit capacity of the first high-level refrigerant circuit 100 is 10 kW
  • the second high-level refrigerant circuit 100 has a lower limit capacity of 10 kW
  • the lower limit capability of circuit 200 is 2.5 kW.
  • the lower limit capacity is 25% of the rated capacity from the frequency range of the compressor.
  • the high-level refrigerating cycle is composed of a first high-level refrigerating cycle and a second high-level refrigerating cycle, and by providing a difference in the capacity of each cycle, the operating range is expanded. ing. Differentiating the rated capacity between the first high-order refrigerant circuit 100 and the second high-order refrigerant circuit 200 is effective both in the cooling operation mode and the stop operation mode.
  • control device 30 selects between the low-capacity operation mode and the high-capacity operation mode according to environmental conditions such as the set temperature in the refrigerator where the third heat exchanger 302 is arranged and the outside air temperature. Select one of the cooling operation modes.
  • the control device 30 activates the second high-level refrigerant circuit 200 having a lower cooling capacity than the first high-level refrigerant circuit 100 in the stop operation mode.
  • the cooling load is usually smaller than in the cooling mode of operation. This is because the purpose of the cooling operation mode is to cool the inside of the refrigerator, while the purpose of the stop operation mode is to suppress an abnormal increase in pressure in the low-concentration refrigerant circuit 300 .
  • the stop operation mode in which the cooling load is small if the higher capacity refrigerating cycle is started, the compressor on the higher refrigerating cycle side is frequently started and stopped.
  • the high-level refrigeration cycle is composed of a single refrigeration cycle.
  • the rated capacity of a single high-order refrigeration cycle is 51 kW.
  • the value of 51 kW is the sum of the rated capacity of the first high-level refrigerant circuit 100 and the rated capacity of the second high-level refrigerant circuit 200 shown in FIG.
  • the lower limit capacity is 13 kW.
  • a value of 13 kW may be too large for the cooling capacity required for the shutdown mode of operation.
  • the capacity of the high-order refrigeration cycle is too large for the required cooling capacity, so the suction pressure of the compressor of the high-order refrigeration cycle drops.
  • the compressor will repeat starting and stopping, which may reduce the reliability of the binary refrigeration cycle apparatus.
  • power consumption may increase.
  • two cycles form a high-level refrigeration cycle.
  • the operating range of 2.5 kW to 51 kW is ensured by dividing the capacity of the high-level refrigeration cycle into two.
  • the operating capacity of 2.5 kW which is the lower limit, can be realized by the second high-voltage refrigerant circuit 200 .
  • the upper limit of the operating capacity of 51 kW can be realized by the first high-order refrigerant circuit 100 and the second high-order refrigerant circuit 200 .
  • the second high-level refrigerant circuit 200 is activated. This prevents the compressor of the high-level refrigeration cycle from repeatedly starting and stopping in the stop operation mode.
  • the high-level refrigeration cycle side can demonstrate appropriate capacity according to needs, so the compressor of the high-level refrigeration cycle is prevented from repeatedly starting and stopping. be done. That is, in the present embodiment, the high-level refrigerating cycle is composed of a first high-level refrigerating cycle and a second high-level refrigerating cycle, and by providing a difference in the capacity of each cycle, the operating range is expanded. ing. It should be noted that the required cooling capacity in the stop operation mode is assumed to be approximately 1 kW to 4 kW, for example.
  • the present embodiment it is possible to prevent the first compressor 101 and the second compressor 201 on the high-level refrigerating cycle side from repeatedly starting and stopping. Therefore, energy saving can be improved. In particular, it is important that the compressor does not repeatedly start and stop because starting loss occurs when the compressor starts.
  • ⁇ Refrigerant type> Various combinations of refrigerant types to be sealed in the low-order refrigerant circuit 300, the first high-order refrigerant circuit 100, and the second high-order refrigerant circuit 200 can be determined.
  • the refrigerant in each refrigerant circuit may be the same refrigerant. Further, the same refrigerant is sealed in the first high-order refrigerant circuit 100 and the second high-order refrigerant circuit 200, and is sealed in the first high-order refrigerant circuit 100 and the second high-order refrigerant circuit 200 in the low-order refrigerant circuit 300.
  • a refrigerant different from the refrigerant may be used.
  • refrigerants differ in theoretical performance, GWP (Global-warming potential), combustibility, toxicity, etc., depending on the type.
  • refrigerants such as R290 and R32 have high theoretical performance, but high combustibility, toxicity, and global-warming potential (GWP). Therefore, considering flammability, toxicity, and GWP, it should be avoided to enclose a large amount of these refrigerants in the refrigerant circuit.
  • R1234yf and the like have a low ozone depletion potential and a low global warming potential, and are considered to be extremely environmentally friendly refrigerants.
  • Natural refrigerants such as CO2 have the advantage of significantly reducing the total GWP of equipment.
  • incombustible gas such as CO2 is desirably used in the indoor unit in consideration of possible refrigerant leakage.
  • the type of refrigerant is determined whether the refrigerant circuit to be enclosed is the low-level refrigerant circuit 300 passing through the indoor unit 2, or the first high-level refrigerant circuit 100 or the second high-level refrigerant circuit 200 used in the outdoor unit 1. It is conceivable to select from the viewpoint of whether Also, the type of refrigerant can be selected from the viewpoint of whether the refrigerant circuit to be enclosed is the first high-level refrigerant circuit 100 with high cooling performance or the second high-level refrigerant circuit 200 with low cooling performance. Conceivable. In the present embodiment, the refrigerant capacity of the second high-order refrigerant circuit 200 is smaller than that of the first high-order refrigerant circuit 100 .
  • FIG. 3 shows an example in which different refrigerants are sealed in the first high-order refrigerant circuit 100, the second high-order refrigerant circuit 200, and the low-order refrigerant circuit 300, respectively.
  • an appropriate refrigerant is selected in consideration of the characteristics of the refrigerant and the characteristics of the refrigerant circuit that encloses the refrigerant.
  • R1234yf which is friendly to the global environment, is enclosed in the high-capacity first high-level refrigerant circuit 100, and R32, which has high theoretical performance, is enclosed in the low-capacity second high-level refrigerant circuit 200, respectively. That is, the first refrigerant is R1234yf and the second refrigerant is R32.
  • the low-concentration refrigerant circuit 300 passing through the indoor unit 2 is filled with CO2, which is a non-combustible gas. That is, the first refrigerant is CO2.
  • R290 or R714 (ammonia) may be sealed in the second high-concentration refrigerant circuit 200 instead of R32.
  • the low-concentration refrigerant circuit 300 may contain hfc1132A instead of CO2.
  • Refrigerants such as R290 and R32 which have high theoretical performance but are concerned about being filled in large amounts in consideration of combustibility, toxicity, and high GWP, have a refrigerant capacity larger than that of the first high-level refrigerant circuit 100. It is enclosed in a small second high-order refrigerant circuit 200 . In this way, for the second high-order refrigerant circuit 200 having a small capacity, a refrigerant having higher theoretical performance or higher performance in practical use than the refrigerant to be enclosed in the first high-order refrigerant circuit 100 and the low-order refrigerant circuit 300 By enclosing , the COP (Coefficient Of Performance) of the system can be improved.
  • R1234yf which is extremely environmentally friendly refrigerant
  • the refrigerant in the second high-level refrigerant circuit 200 is R1234yf. It is desirable to change to R290, which has a higher theoretical performance.
  • a refrigerant such as R32 that has high theoretical performance but does not have high combustibility, toxicity, and GWP is used in the second high-order refrigerant circuit 200 that uses a small amount of refrigerant. .
  • a refrigerant such as R1234yf which is said to be friendly to the global environment, is used in the first high-level refrigerant circuit 100 that uses a large amount of refrigerant.
  • FIG. 3 shows an example of enclosing CO2 in the low-concentration refrigerant circuit 300 . Since the third refrigerant in the low-concentration refrigerant circuit 300 flows through the indoor unit 2 , it is preferable to use CO 2 , which is nonflammable and high-pressure refrigerant, as the third refrigerant in the low-concentration refrigerant circuit 300 . Since CO2 is a natural refrigerant, it can significantly reduce the total GWP of equipment.
  • the dual refrigerating cycle device 51 realizes two types of refrigerating cycles, a low-level refrigerating cycle and a high-level refrigerating cycle. Therefore, the condensation pressure on the low temperature side can be reduced in the high temperature refrigeration cycle. Therefore, even if CO2, which is a high-pressure refrigerant, is used in the low-concentration refrigerant circuit 300, the low-concentration refrigerant circuit 300 can be applied with refrigerant pipes and element devices with low pressure resistance. For this reason, it is possible to use element devices that could not be used conventionally in the low-concentration refrigerant circuit 300 .
  • the liquid receiver 304 only needs to be pressure resistant to Freon (R410A).
  • the portion of the first cascade capacitor 104 and the second cascade capacitor 204 through which the low-concentration refrigerant circuit 300 passes should also have pressure resistance against Freon. Since the low-concentration refrigerant circuit 300 is provided with a large number of element devices such as refrigerant pipes, it is possible to reduce costs by reducing the required pressure resistance.
  • a single-stage refrigeration cycle device or a two-stage refrigeration cycle device requires high pressure resistance, so there is no choice but to use expensive equipment with high pressure resistance.
  • the dual refrigerating cycle is adopted, such a need is eliminated.
  • the binary refrigerating cycle device 51 requires a lower pressure on the side of condensing CO2 than when CO2 is applied to a single-stage refrigerating cycle device or a two-stage refrigerating cycle device. The lower the pressure, the lower the density of the refrigerant.
  • the condenser volume is the same, the amount of CO2 required as a refrigerant can be reduced.
  • CO2 is applied to the low-level refrigerant circuit 300
  • R290 is applied to the first high-level refrigerant circuit 100 and the second high-level refrigerant circuit 200, respectively.
  • CO2 is applied to the low-level refrigerant circuit 300
  • R1234yf is applied to the first high-level refrigerant circuit 100 and the second high-level refrigerant circuit 200, respectively.
  • FIG. 4 is a diagram showing Modification 1 of the binary refrigeration cycle device 51 related to Embodiment 1.
  • the return refrigerant pipe 18 extending from the liquid receiver 304 is connected between the first cascade condenser 104 and the third compressor 301 . Therefore, the gasified third refrigerant flows from the liquid receiver 304 into the first cascade condenser 104 .
  • the third refrigerant flowing into the first cascade condenser 104 is cooled by the first cascade condenser 104 and then flows into the second cascade condenser 204 . Therefore, in comparison with the configuration shown in FIG. 1, in Modification 1, a further cooling effect for the third refrigerant can be obtained.
  • the position where the return refrigerant pipe 18 extending from the liquid receiver 304 is connected may be any position from the discharge portion of the third compressor 301 to the inlet portion of the first cascade condenser 104 . More preferably, the return refrigerant pipe 18 extending from the liquid receiver 304 is connected to the discharge portion of the third compressor 301 . This is because the pressure of the third refrigerant is highest at the discharge portion of the third compressor 301 .
  • FIG. 5 is a diagram showing a fifth heat exchanger 502 in which the first heat exchanger 102 and the second heat exchanger 202 are integrated.
  • the fifth heat exchanger 502 corresponds to an integrated structure of the components indicated by symbol A in FIG. 1 .
  • the fifth heat exchanger 502 is divided into the first high-level refrigerant circuit 100 in which the first refrigerant flows and the second high-level refrigerant circuit 200 in which the second refrigerant flows, and the first heat exchanger 102 and the second heat exchanger 502 are separated. It has a configuration in which it is integrated with the exchanger 202 .
  • a fifth fan 5021 is provided in the fifth heat exchanger 502 . However, a plurality of fans may be provided for the fifth heat exchanger 502 .
  • the space for arranging equipment can be effectively utilized. Further, by integrating the first heat exchanger 102 and the second heat exchanger 202, the cost can be reduced. Note that the integrated fifth heat exchanger 502 may be applied to Modification 1 shown in FIG.
  • FIG. 6 is a diagram showing an example in which an uninterruptible power supply 205 is provided in the binary refrigerating cycle device 51 according to Embodiment 1.
  • FIG. 6 As shown in FIG. 6 , the second high-voltage refrigerant circuit 200 is connected to an uninterruptible power supply 205 .
  • control device 30 may be connected to the uninterruptible power supply 205.
  • the uninterruptible power supply 205 and another uninterruptible power supply may be connected to the control device 30 .
  • the control device 30 can operate in the stop operation mode using the second high temperature refrigerant circuit 200 .
  • it is possible to prevent the pressure in the low-concentration refrigerant circuit 300 from abnormally increasing during a power failure. Therefore, it is not necessary to suppress the pressure rise by extracting the third refrigerant from the low-concentration refrigerant circuit 300 to the outside at the time of power failure. According to this configuration, it is possible to suppress the pressure rise accompanying the temperature rise of the low-order refrigeration cycle without lowering the reliability.
  • An uninterruptible power supply 205 may be provided in the first high-voltage refrigerant circuit 100 as well. However, it is preferable to preferentially provide the uninterruptible power supply 205 for the second high-order refrigerant circuit 200 of the first high-order refrigerant circuit 100 and the second high-order refrigerant circuit 200 . This is because the second high-level refrigerant circuit 200 is activated in the stop operation mode.
  • the capacity of the second high-order refrigerant circuit 200 is smaller than that of the first high-order refrigerant circuit 100, the power supply capacity required for the uninterruptible power supply 205 can be small. Therefore, it is more economical to provide the uninterruptible power supply 205 in the second high-order refrigerant circuit 200 than in the first high-order refrigerant circuit 100 . In addition, a small capacity uninterruptible power supply 205 can be used for the second high-level refrigerant circuit 200 .
  • FIG. 7 is a diagram showing an example in which an uninterruptible power supply 205 is provided in the binary refrigerating cycle device 51 of Modification 1. As shown in FIG. As shown in FIG. 7, the uninterruptible power supply 205 can be applied to Modification 1 as well as the configuration shown in FIG. The uninterruptible power supply 205 may be applied to the binary refrigerating cycle device 51 employing the integrated fifth heat exchanger 502 in the same manner as the configuration shown in FIG.
  • FIG. 8 is a graph 1 showing the relationship between the frequency range and cooling capacity of the first high-order refrigeration cycle and the relationship between the frequency range and cooling capacity of the second high-order refrigeration cycle.
  • L1a indicates the frequency range of the first compressor 101 that constitutes the first high-order refrigeration cycle.
  • L2a indicates the frequency range of the second compressor 201 that constitutes the second high-order refrigeration cycle.
  • the maximum cooling capacity of the first high-order refrigeration cycle is higher than that of the second high-order refrigeration cycle.
  • the second high-order refrigeration cycle has a lower minimum cooling capacity than the first high-order refrigeration cycle.
  • the lower limit frequency of the first higher refrigeration cycle is f1min
  • the upper limit frequency of the first higher refrigeration cycle is f1max.
  • the lower limit frequency of the second higher refrigeration cycle is f2min
  • the upper limit frequency of the second higher refrigeration cycle is f2max.
  • the cooling capacity that can be output at the upper limit frequency f2max of the second higher refrigeration cycle is designed to be greater than the cooling capacity that can be output at the lower limit frequency f1min of the first higher refrigeration cycle.
  • a range Ca is generated in which the cooling capacity of the first high-order refrigeration cycle and the cooling capacity of the second high-order refrigeration cycle overlap.
  • the cooling capacity range of the first high-order refrigeration cycle is designed to be 10 kW to 40 kW
  • the cooling capacity range of the second high-order refrigeration cycle is designed to be 2 kW to 10 kW.
  • the cooling capacities of both high-order refrigeration cycles are divided into lower capacities and upper capacities with 10 kW as the boundary.
  • the minimum cooling capacity when both high-level refrigeration cycles are activated is 12 kW.
  • the required capacity of the low-order refrigeration cycle is smaller than the cooling capacity of the high-order refrigeration cycle, the first high-order refrigeration cycle is stopped to reduce the cooling capacity, and only the second high-order refrigeration cycle is used as the high-order refrigeration cycle.
  • FIG. 9 is graph 2 showing the relationship between the frequency range and cooling capacity of the first high-order refrigeration cycle and the relationship between the frequency range and cooling capacity of the second high-order refrigeration cycle.
  • the lower limit frequency f1min of the first higher refrigerating cycle and the lower limit frequency f2min of the second higher refrigerating cycle match, and the upper limit frequency f1max of the first higher refrigerating cycle and the second higher refrigerating cycle It matches the upper limit frequency f2max of the high-order refrigerating cycle.
  • the cooling capacity of the first high-order refrigeration cycle and the cooling capacity of the second high-order refrigeration cycle are designed to overlap with each other. there is Therefore, similar to the example shown in FIG. 8, the above-described problems caused by the virtual example can be resolved.
  • the upper limit value of the cooling capacity of the first high-level refrigerant circuit 100 is greater than the upper limit value of the cooling capacity of the second high-level refrigerant circuit 200 .
  • the range of the cooling capacity of the first high-order refrigerant circuit 100 includes the upper limit of the cooling capacity of the second high-order refrigerant circuit 200 .
  • the frequency and cooling capacity of the high-level refrigerating cycle of the binary refrigerating cycle device 51 according to the first embodiment may be designed in either pattern shown in FIGS.
  • FIG. 10 is a flow chart showing the contents of the operation mode control according to the first embodiment.
  • the control device 30 switches the operation mode between the cooling operation mode and the stop operation mode by executing the processing based on this flowchart.
  • the control device 30 first determines whether or not the cooling operation has stopped (step S1). When the operation of the low-concentration refrigerant circuit 300 is stopped due to a power failure or other circumstances, the control device 30 determines YES in step S1, and shifts to the stop operation mode (step S2). When the operation of the low-concentration refrigerant circuit 300 has not stopped, the control device 30 determines NO in step S1, and shifts to the cooling operation mode (step S3).
  • the processing of the stop mode of operation is disclosed in FIG.
  • the processing of the cooling mode of operation is disclosed in FIG.
  • FIG. 11 is a flow chart showing the contents of control in the stop operation mode.
  • Control device 30 first determines whether P10 exceeds threshold value B (step S10).
  • P10 indicates the pressure of the low-concentration refrigerant circuit 300 .
  • Control device 30 specifies pressure P ⁇ b>10 based on the output value of pressure sensor 10 provided in low-concentration refrigerant circuit 300 .
  • the control device 30 controls the pressure P10 of the low-concentration refrigerant circuit 300 within a certain range in the stop operation mode.
  • a frame W10 in FIG. 11 shows the relationship between the pressure P10 and the threshold.
  • the control device 30 controls the pressure so that it does not exceed the threshold value B.
  • FIG. (1), (2), and (3) shown in frame W10 in FIG. 11 indicate the range of pressure P10 detected by pressure sensor 10. In FIG. Among (1) to (3), the reference range of pressure targeted by the control device 30 is (2).
  • the threshold A is preferably 3.38 MPaG. It is assumed that the pressure of CO2 is 3.38 MPaG when the saturation temperature of CO2 is 0°C. Threshold B is preferably 3.67 MPaG. It is assumed that the pressure of CO2 is 3.67 MPaG when the saturation temperature of CO2 is 3°C.
  • the threshold pressure range may be 3.38 MPaG to 4.15 MPaG. This corresponds to a saturation temperature of CO2 of 0°C to 7.7°C.
  • the threshold A may be a value corresponding to the temperature when the saturation temperature of CO2 is less than 0.degree.
  • step S10 When the control device 30 determines that P10 does not exceed the threshold B in step S10, the determination in step S10 is repeated until P10 exceeds the threshold B.
  • the control device 30 determines in step S10 that the pressure P10 exceeds the threshold value B, the control device 30 operates the second high-order refrigerating cycle (step S11). Thereby, the second high-level refrigerant circuit 200 is activated.
  • the second cascade condenser 204 cools the third refrigerant.
  • Step S101 is a process for adjusting the rotational speed of the second fan 2021 of the second heat exchanger 202 and the opening degree of the second expansion valve 203, and is composed of steps S12 and S13.
  • step S12 the control device 30 determines whether the current rotation speed of the second fan 2021 has reached the target condensation temperature (CT), and whether the current opening degree of the second expansion valve (LEV) 203 is It is determined whether the target degree of superheat (SH: superheat) has been achieved. When each target is achieved, the control device 30 proceeds to S14. If the respective targets are not achieved, the control device 30 resets the rotational speed of the second fan 2021 and the opening degree of the second expansion valve 203, and then proceeds to step S12 again.
  • CT target condensation temperature
  • SH target degree of superheat
  • step S101 the control device 30 determines whether the pressure P10 satisfies "pressure P10 ⁇ threshold B" and "pressure P10>threshold A" (step S14). That is, the control device 30 determines whether or not the pressure P10 is within the range (2) shown in the frame W10.
  • the control device 30 repeats the process of step S14.
  • the control device 30 determines whether the pressure P10 satisfies "pressure P10 ⁇ threshold A". Here, it is determined whether or not the pressure P10 is within the range (1) shown in the frame W10.
  • step S15 when the pressure P10 does not satisfy "pressure P10 ⁇ threshold A", the pressure P10 is within the range of (3) shown in the frame W10. Therefore, when the control device 30 determines NO in step S15, the frequency of the second compressor 201 (Comp 201) is increased by a constant value (step S16). After that, the control device 30 executes the same process as that of step S101 already described (step S17). After that, the control device 30 proceeds to the process of step S14.
  • step S15 when the pressure P10 satisfies "pressure P10 ⁇ threshold A", the pressure P10 is within the range (1) shown in the frame W10. In this case, it can be determined that the pressure in the low-concentration refrigerant circuit 300 is sufficiently low. In other words, it can be determined that the cooling capacity of the high-order refrigeration cycle is too high. In this case, it is necessary to lower the frequency of the second compressor 201 . However, there is a possibility that the frequency of the second compressor 201 has already reached the lower limit frequency.
  • control device 30 determines YES in step S15, it determines whether the frequency of the second compressor 201 (Comp 201) is the lower limit frequency and whether the outside air temperature is equal to or lower than the set temperature (step S20). Control device 30 identifies the outside air temperature based on the output value of temperature sensor 20 .
  • step S20 When the control device 30 determines NO in step S20, the frequency of the second compressor 201 (Comp 201) is lowered by a certain value (step S18). After that, the control device 30 executes the same process as that of step S101 already described (step S19). After that, the control device 30 proceeds to the process of step S14.
  • step S21 the control device 30 stops the second high-level refrigeration cycle (step S21). If the outside air temperature is equal to or less than the set temperature and the frequency of the second compressor 201 (Comp 201) is the lower limit frequency, it can be determined that there is no danger of the pressure of the low-level refrigerant circuit 300 suddenly rising. Therefore, the second high-level refrigeration cycle is stopped in step S21. After that, the processing of the stop operation mode is ended.
  • control device 30 controls first high-level refrigerant circuit 100 and second high-level refrigerant circuit 100 so that the pressure detected by pressure sensor 10 falls within the range of threshold A to threshold B in the stop operation mode.
  • the high-level refrigerant circuit 200 is controlled.
  • the second high-order refrigeration cycle prevents the pressure of the low-order refrigerant circuit 300 from abnormally increasing.
  • the first high-order refrigeration cycle may also be utilized in the stop operation mode. For example, in step S16 of FIG. 11, when the frequency of the second compressor 201 (Comp 201) has reached the upper limit frequency, it is conceivable to start the first high-order refrigeration cycle.
  • FIG. 12 is a flow chart showing the contents of control in the cooling operation mode.
  • the control device 30 first sets the target frequency of the third compressor 301 (Comp 301) from the outside air temperature and the evaporation temperature set in the indoor unit 2 (step S30).
  • Control device 30 identifies the outside air temperature based on the output value of temperature sensor 20 .
  • the control device 30 determines whether or not the frequency of the third compressor 301 (Comp 301) exceeds the threshold value X (step S31).
  • the threshold X is a value for determining the required operability of the high-order refrigeration cycle.
  • controller 30 determines that the frequency of third compressor 301 (Comp 301) exceeds threshold value X
  • controller 30 operates the first and second high-order refrigeration cycles (step S32).
  • the control device 30 determines that the frequency of the third compressor 301 (Comp 301) does not exceed the threshold value X, it operates the second high-order refrigerating cycle (step S34).
  • control device 30 determines the timing of starting the first high-order refrigerant circuit 100 and the second high-order refrigerant circuit 200 based on the frequency set when starting the third compressor 301 (Comp 301). Control.
  • FIG. 13 is a graph showing the relationship between the set value of the evaporation temperature inside the refrigerator and the cooling capacity.
  • the threshold value X will be described with reference to FIG. 13 .
  • the horizontal axis indicates the condensation temperature (ET: Evaporation Temperature) set in the indoor unit 2 arranged in the refrigerator.
  • the vertical axis indicates the compressor frequency (Hz) corresponding to the cooling capacity.
  • the required cooling capacity varies depending on the outside air temperature AT (Outside Air Temperature).
  • FIG. 13 shows an example in which the outside air temperature is 20.degree. C. and -15.degree.
  • the threshold X is set to 60 Hz based on this graph. However, this value is only an example.
  • step S32 When the first and second high-order refrigerating cycles are operated in step S32, the control device 30 performs the same process as in step S101 already described in the first and second high-order refrigerating cycles (step S33).
  • the control device 30 executes the high capacity operation mode.
  • the processing of the high capacity mode of operation is disclosed in FIG.
  • step S34 When the second high-level refrigerating cycle is operated in step S34, the control device 30 performs the same processing as in step S101 already described in the second high-level refrigerating cycle (step S35). Thereby, in the second high-voltage refrigerant circuit 200, the rotational speed of the second fan 2021 of the second heat exchanger 202 and the opening degree of the second expansion valve 203 are adjusted as necessary. After step S35, the control device 30 executes the low capacity operation mode. The processing of the low capacity mode of operation is disclosed in FIG.
  • FIG. 14 is a flow chart showing the contents of control in the high capacity operation mode.
  • the control device 30 first determines whether or not the pressure P10 satisfies "P10 ⁇ threshold B" and "P10 ⁇ threshold A" (step S40). As already explained using FIG. 11 , P10 indicates the pressure of the low-concentration refrigerant circuit 300 .
  • Control device 30 specifies pressure P ⁇ b>10 based on the output value of pressure sensor 10 provided in low-concentration refrigerant circuit 300 . The relationship between pressure P10 and threshold A and threshold B is shown in frame W10 in FIG.
  • control device 30 determines whether the pressure P10 satisfies "P10 ⁇ threshold A" (step S41).
  • step S41 when the pressure P10 satisfies "P10 ⁇ threshold A", the pressure P10 is within the range (1) indicated by the frame W10 in FIG. At this time, the pressure P10 is a value lower than the lower threshold A. In this case, it can be determined that the pressure in the low-concentration refrigerant circuit 300 is sufficiently low. In other words, it can be determined that the cooling capacity of the high-order refrigeration cycle is too high. In this case, it is necessary to lower the frequency of the compressor on the high-order refrigerating cycle side. However, there is a possibility that both the frequencies of the first compressor 101 and the second compressor 201 on the high-order refrigerating cycle side have already reached the lower limit frequency.
  • control device 30 determines YES in step S41, it determines whether or not the frequencies of the first compressor 101 (Comp 101) and the second compressor 201 (Comp 201) both reach the lower limit frequency (step S43).
  • control device 30 When determining NO in step S43, the control device 30 reduces the frequency of the compressor of the high-level refrigeration cycle (step S52). In step S52, control device 30 preferentially lowers the frequency of first compressor 101 (Comp101) out of first compressor 101 (Comp101) and second compressor 201 (Comp201).
  • step S53 if the frequency of the first compressor 101 (Comp 101) has reached the lower limit and the frequency of the second compressor 201 (Comp 201) has not reached the lower After lowering the frequency of the compressor 201 (Comp 201) by a constant value, the process proceeds to step S53.
  • step S53 the control device 30 executes the same process as in step S101 already described in the first and second high-level refrigeration cycles.
  • control device 30 returns the process to step S40.
  • step S43 the frequencies of both the first compressor 101 (Comp101) and the second compressor 201 (Comp201) may eventually reach the lower limit.
  • the controller 30 determines YES in step S43. At this time, the cooling capacity of the high-order refrigeration cycle when both the first and second high-order refrigeration cycles are activated reaches the lower limit.
  • step S43 the control device 30 stops the first high-level refrigeration cycle (step S54), and then switches the operation mode from the high-capacity operation mode to the low-capacity operation mode.
  • step S41 when the pressure P10 does not satisfy "P10 ⁇ threshold A", the pressure P10 is within the range (3) indicated by the frame W10 in FIG. At this time, the pressure P10 has a value exceeding the upper limit threshold B.
  • step S41 determines in step S41 that the pressure P10 does not satisfy "P10 ⁇ threshold A"
  • the frequencies of the first compressor 101 (Comp101) and the second compressor 201 (Comp201) are both upper limit values. is reached (step S42).
  • control device 30 When determining NO in step S42, the control device 30 increases the frequency of the compressor of the high-level refrigeration cycle (step S44). In step S44, control device 30 preferentially increases the frequency of second compressor 201 (Comp 201) out of first compressor 101 (Comp 101) and second compressor 201 (Comp 201).
  • step S45 when the frequency of the second compressor 201 (Comp 201) has not reached the upper limit, the frequency of the second compressor 201 (Comp 201) is increased by a certain value, and then the process proceeds to the next step S45. At this time, the frequency of the first compressor 101 (Comp101) is not increased.
  • step S42 when the frequency of the second compressor 201 (Comp 201) has reached the upper limit and the frequency of the first compressor 101 (Comp 101) has not reached the upper limit, in step S44, the control device 30 controls the first After increasing the frequency of the compressor 101 (Comp 101) by a constant value, the process proceeds to step S45.
  • step S45 the control device 30 executes the same process as in step S101 already described in the first and second high-level refrigerating cycles.
  • control device 30 returns the process to step S40.
  • step S44 the frequencies of both the first compressor 101 (Comp101) and the second compressor 201 (Comp201) may eventually reach the upper limits.
  • the control device 30 determines YES in step S42. At this time, the cooling capacity of the high-level refrigeration cycle has reached its upper limit.
  • control device 30 If it is determined YES in step S42, the control device 30 notifies the user of the lack of ability (step S46).
  • the control device 30 displays, for example, a message indicating insufficient capacity on a remote controller for operating the indoor unit 2 .
  • step S46 the control device 30 lowers the frequency of the third compressor 301 (Comp 301) constituting the low-concentration refrigerant circuit 300 by a certain value (step S47).
  • Control device 30 performs the same processing as step S101 already described for each refrigerating cycle (step S48). After that, the control device 30 determines whether or not the pressure P10 satisfies "P10 ⁇ threshold B" (step S49).
  • step S49 if the pressure P10 does not satisfy "P10 ⁇ threshold B", the control device 30 returns the process to step S46.
  • step S49 when pressure P10 satisfies "P10 ⁇ threshold B", control device 30 determines whether or not a user's operation to stop the low-order refrigeration cycle has been detected (step S50). Control device 30 continues the processing of step S50 until the user's operation for stopping the low-order refrigeration cycle is detected. A user's operation is input to the control device 30 from, for example, a remote controller corresponding to the indoor unit 2 . Note that, when the control device 30 determines NO in step S50, the control device 30 may return the processing to step S46 and notify the user of the lack of ability again.
  • control device 30 When the control device 30 detects the user's operation in step S50, it stops the low-level refrigerating cycle and the first high-level refrigerating cycle (step S51). Next, the control device 30 switches the operation mode to the stop operation mode. By switching the operation mode to the stop operation mode, the pressure of the low-concentration refrigerant circuit 300 is prevented from increasing abnormally.
  • control device 30 controls first high-level refrigerant circuit 100 and second high-level refrigerant circuit 100 so that the pressure detected by pressure sensor 10 falls within the range of threshold A to threshold B in the high-capacity operation mode. It controls the two-level refrigerant circuit 200 .
  • FIG. 15 is a flowchart showing the details of control in the low capacity operation mode.
  • the control device 30 first determines whether or not the pressure P10 satisfies "P10 ⁇ threshold B" and "P10 ⁇ threshold A" (step S70). As already explained using FIG. 11 , P10 indicates the pressure of the low-concentration refrigerant circuit 300 .
  • Control device 30 specifies pressure P ⁇ b>10 based on the output value of pressure sensor 10 provided in low-concentration refrigerant circuit 300 . The relationship between pressure P10 and threshold A and threshold B is shown in frame W10 in FIG.
  • control device 30 determines whether the pressure P10 satisfies "P10 ⁇ threshold A" (step S71).
  • step S71 when the pressure P10 satisfies "P10 ⁇ threshold A", the pressure P10 is within the range (1) indicated by the frame W10 in FIG. At this time, the pressure P10 is a value lower than the lower threshold A. In this case, it can be determined that the pressure in the low-concentration refrigerant circuit 300 is sufficiently low. In other words, it can be determined that the cooling capacity of the high-order refrigeration cycle is too high. In this case, it is necessary to lower the frequency of the second compressor 201 activated on the high-order refrigerating cycle side. However, there is a possibility that the frequency of the second compressor 201 has already reached the lower limit frequency.
  • control device 30 determines YES in step S71, it determines whether or not the frequency of the second compressor 201 (Comp 201) has reached the lower limit frequency (step S73).
  • control device 30 When determining NO in step S73, the control device 30 reduces the frequency of the second compressor 201 (Comp 201) by a constant value (step S76). After that, in step S77, control device 30 performs the same process as in step S101 already described in the second high-order refrigeration cycle. After step S77, control device 30 returns the process to step S70.
  • step S76 the frequency of the second compressor 201 (Comp 201) may eventually reach the lower limit.
  • the control device 30 determines YES in step S73. At this time, the cooling capacity of the second high-order refrigeration cycle has reached its lower limit.
  • control device 30 When determining YES in step S73, the control device 30 increases the target degree of superheat (SH) by adjusting the degree of opening of the third expansion valve 303 that constitutes the low-concentration refrigerant circuit 300 (step S78). After that, in step S79, control device 30 performs the same process as in step S101 already described in the low-order refrigeration cycle. Specifically, control device 30 adjusts the rotation speed of third fan 3021 of third heat exchanger 302 .
  • SH target degree of superheat
  • step S79 the control device 30 determines whether or not the pressure P10 satisfies "P10 ⁇ threshold B" and "P10 ⁇ threshold A” (step S80). If the pressure P10 does not satisfy "P10 ⁇ threshold B" and "P10 ⁇ threshold A”, the control device 30 again adjusts the target degree of superheat (SH) of the third expansion valve 303 (step S81). Thereafter, control device 30 executes the same process as step S79 (step S82), and returns the process to step S70.
  • SH target degree of superheat
  • step S83 the control device 30 determines whether or not the user's stop operation has been detected.
  • the user for example, operates the remote controller to stop the low-level refrigeration cycle.
  • step S83 the control device 30 returns the process to step S70.
  • step S84 control device 30 stops the low-order refrigeration cycle (step S84). After that, the control device 30 switches the operation mode to the stop operation mode.
  • step S71 if the pressure P10 does not satisfy "P10 ⁇ threshold A", the pressure P10 is within the range (3) indicated by the frame W10 in FIG. At this time, the pressure P10 has a value exceeding the upper limit threshold B.
  • step S71 determines whether the frequency of the second compressor 201 (Comp 201) has reached the upper limit (step S72).
  • step S72 the control device 30 increases the frequency of the second compressor 201 (Comp 201) by a constant value (step S74). After that, the control device 30 executes the same process as the already described step S101 in the second high-level refrigerating cycle (step S75). After step S75, control device 30 returns the process to step S70.
  • step S74 the frequency of the second compressor 201 (Comp 201) may eventually reach the upper limit.
  • the controller 30 determines YES in step S72 and switches the operation mode to the high capacity operation mode. By switching the operation mode to the high-capacity operation mode, the second high-level refrigerating cycle is activated and the refrigerating capacity of the high-level refrigerating cycle increases.
  • control device 30 controls first high-level refrigerant circuit 100 and second high-level refrigerant circuit 100 so that the pressure detected by pressure sensor 10 falls within the range of threshold A to threshold B in the low capacity operation mode. It controls the two-level refrigerant circuit 200 .
  • the control device 30 switches the operation mode between the stop operation mode and the cooling operation mode depending on the situation. More specifically, in both the stop operation mode and the cooling operation mode, the control device 30 controls the pressure detected by the pressure sensor 10 to fall within the range of the threshold A to the threshold B.
  • the high-order refrigerant circuit 100 and the second high-order refrigerant circuit 200 are controlled. Note that the threshold may be varied according to each mode.
  • the control device 30 operates in the low capacity operation mode or in the high capacity operation mode based on the frequency set when starting the third compressor 301 (Comp 301). decide whether to In particular, in the high-capacity operation mode, both the first and second high-order refrigeration cycles are activated on the high-order side. On the other hand, in the low capacity operation mode, only the second high-order refrigeration cycle is started on the high-order side. Therefore, the control device 30 controls the timing of starting the first high-order refrigerant circuit 100 and the second high-order refrigerant circuit 200 based on the frequency set when starting the third compressor 301 .
  • control device 30 switches the cooling operation mode between the low-capacity operation mode and the high-capacity operation mode according to the degree of required cooling capacity. switch.
  • control device 30 changes the cooling capacity of the high-level refrigeration cycle provided by the first high-level refrigerant circuit 100 and the second high-level refrigerant circuit 200 based on the state of the refrigeration cycle of the low-level refrigerant circuit 300.
  • the high-level refrigeration cycle is designed so that the cooling capacity of the first high-level refrigeration cycle and the cooling capacity of the second high-level refrigeration cycle overlap. is effective when the starting high-side refrigeration cycle changes in this way.
  • the cooling capacity that can be output at the upper limit frequency of the second higher refrigeration cycle is set to be greater than the cooling capacity that can be output at the lower limit frequency of the first higher refrigeration cycle.
  • the operation can be switched smoothly from the second high-order refrigeration cycle to the first high-order refrigeration cycle. Therefore, the required cooling capacity can be obtained without excessively lowering the frequency of the second compressor 201 .
  • the compressor motor may burn out.
  • it is not necessary to excessively lower the frequency of the second compressor 201 it is possible to prevent the motor of the second compressor 201 from burning out due to lack of refrigerating machine oil. reliability can be improved.
  • FIG. 16 is a diagram showing the configuration of a dual refrigeration cycle device 52 according to the second embodiment.
  • the binary refrigerating cycle device 52 according to the second embodiment has a fourth heat exchanger 402 added to the configuration of the binary refrigerating cycle device 51 according to the first embodiment.
  • the fourth heat exchanger 402 is provided with a fourth fan 4021 that facilitates heat exchange between the outside air and the third refrigerant.
  • a fourth heat exchanger 402 is provided in the low-concentration refrigerant circuit 300 .
  • a fourth heat exchanger 402 is connected between the first cascade condenser 104 and the first compressor 101 .
  • the high-temperature and high-pressure gaseous third refrigerant discharged from the first compressor 101 is input to the fourth heat exchanger 402 .
  • the fourth heat exchanger 402 radiates the heat of the third refrigerant discharged from the first compressor 101 to the air. Therefore, the fourth heat exchanger 402 functions as a condenser.
  • the binary refrigerating cycle device 51 related to Embodiment 1 already described has two cooling operation modes, a low-capacity operation mode and a high-capacity operation mode. In these two modes, the high order refrigeration cycle is activated and the third refrigerant of the low order refrigeration cycle is cooled.
  • the binary refrigeration cycle device 52 according to Embodiment 2 cools the third refrigerant by the fourth heat exchanger 402 without starting the high-capacity refrigeration cycle in addition to the low-capacity operation mode and the high-capacity operation mode. have a mode.
  • this mode will be referred to as a "low cooling mode”.
  • the cooling operation mode of the second embodiment has a larger number of switchable modes than the cooling operation mode of the first embodiment.
  • the latter cooling operation mode may be particularly referred to as "cooling operation mode 2".
  • rotation of the fourth fan 4021 corresponding to the fourth heat exchanger 402 cools the third refrigerant flowing through the low temperature refrigerant circuit 300 .
  • the binary refrigerating cycle device 52 may control the rotation speed of the fourth fan 4021 based on the output value of the pressure sensor 10 in order to keep the pressure of the third refrigerant proper.
  • the binary refrigeration cycle device 52 switches the operation mode from the low-primary cooling mode to the low-capacity operation mode.
  • the content of the low capacity operation mode is the same as that of the first embodiment.
  • the fourth heat exchanger 402 also continues to function as a condenser. Therefore, in the low capacity operation mode related to Embodiment 2, the fourth fan 4021 corresponding to the fourth heat exchanger 402 is rotating. Therefore, the low capacity operation mode according to the second embodiment has a higher maximum cooling capacity than the low capacity operation mode according to the first embodiment.
  • control device 30 controls the rotation speed of fourth fan 4021 based on the output value of pressure sensor 10 in order to keep the pressure of the third refrigerant appropriate. good too.
  • the binary refrigeration cycle device 52 switches the operation mode from the low-capacity operation mode to the high-capacity operation mode.
  • the content of the high capacity operation mode is the same as that of the first embodiment.
  • the fourth heat exchanger 402 also continues to function as a condenser. Therefore, in the low capacity operation mode related to Embodiment 2, the fourth fan 4021 corresponding to the fourth heat exchanger 402 is rotating. Therefore, the high capacity operation mode according to the second embodiment has a higher maximum cooling capacity than the low capacity operation mode according to the first embodiment.
  • control device 30 controls the rotation speed of fourth fan 4021 based on the output value of pressure sensor 10 in order to keep the pressure of the third refrigerant appropriate. good too.
  • FIG. 17 is a diagram showing the ratio of the heat transfer area of the first heat exchanger 102 and the second heat exchanger 202 to the heat transfer area of the fourth heat exchanger 402.
  • the first heat exchanger 102 and the second heat exchanger 202 form a condenser of the high-level refrigeration cycle
  • the fourth heat exchanger 402 forms a condenser of the low-level refrigeration cycle. Therefore, FIG. 17 corresponds to a diagram comparing the heat transfer areas of the condenser of the high-order refrigeration cycle and the condenser of the low-order refrigeration cycle.
  • pattern 1 and pattern 2 are shown in FIG. 17.
  • pattern 1 the ratio of the heat transfer area of the fourth heat exchanger 402 to the total heat transfer area of the first heat exchanger 102, the second heat exchanger 202, and the fourth heat exchanger 402 is 3% to 50%. is considered to be in the range of That is, pattern 1 is an example in which the ratio of the heat transfer area of the low-order refrigeration cycle to the total heat transfer area of the condensers of the low-order refrigeration cycle and the high-order refrigeration cycle is in the range of 3% to 50%.
  • pattern 2 the ratio of the heat transfer area of the fourth heat exchanger 402 to the total heat transfer area of the first heat exchanger 102, the second heat exchanger 202, and the fourth heat exchanger 402 is 8% to 30%. is considered to be in the range of That is, pattern 2 is an example in which the ratio of the heat transfer area of the low-order refrigeration cycle to the total heat transfer area of the condensers of the low-order refrigeration cycle and the high-order refrigeration cycle is in the range of 8% to 30%.
  • pattern 2 is more desirable to adopt pattern 2 than pattern 1 as the heat transfer area ratio.
  • pattern 2 since pattern 2 has a higher heat transfer area ratio of the condenser of the low-order refrigeration cycle than pattern 1, pattern 2 is higher than pattern 1 in the low-order cooling mode using the fourth heat exchanger 402. It can be expected that the cooling function of
  • any of the heat transfer ratio of the fourth heat exchanger 402 within the range of 3 to 50% may be adopted.
  • any heat transfer ratio within the range of 8 to 30% of the fourth heat exchanger 402 may be adopted.
  • FIG. 18 shows a sixth heat exchanger 602 in which the first heat exchanger 102, the second heat exchanger 202 and the fourth heat exchanger 402 are integrated.
  • the sixth heat exchanger 602 corresponds to the integrated components indicated by symbols B, C, and D in FIG. 16 .
  • the sixth heat exchanger 602 is divided into a first high-level refrigerant circuit 100 in which the first refrigerant flows, a second high-level refrigerant circuit 200 in which the second refrigerant flows, and a low-level refrigerant circuit 300 in which the third refrigerant flows.
  • the first heat exchanger 102, the second heat exchanger 202, and the fourth heat exchanger 402 are integrated.
  • a sixth fan 6021 is provided in the sixth heat exchanger 602 . However, a plurality of fans may be provided for sixth heat exchanger 602 .
  • the space for arranging the equipment can be effectively utilized. Also, by integrating the first heat exchanger 102, the second heat exchanger 202, and the fourth heat exchanger 402, the cost can be reduced.
  • FIG. 19 shows a seventh heat exchanger 702 that integrates the second heat exchanger 202 and the fourth heat exchanger 402, and the first heat exchanger 102 used in combination with the seventh heat exchanger 702. It is a diagram.
  • a seventh heat exchanger 702 is obtained by integrating the constituent parts indicated by symbols B and C in FIG.
  • the seventh heat exchanger 702 is divided into the second high-level refrigerant circuit 200 in which the second refrigerant flows and the low-level refrigerant circuit 300 in which the third refrigerant flows, and the second heat exchanger 202 and the fourth heat exchanger are divided. 402 are integrated.
  • a seventh fan 7021 is provided in the seventh heat exchanger 702 . However, a plurality of fans may be provided for the seventh heat exchanger 702 .
  • the space for arranging equipment can be effectively utilized. Also, by integrating the second heat exchanger 202 and the fourth heat exchanger 402, the cost can be reduced. Note that the first heat exchanger 102 and the fourth heat exchanger 402 may be integrated.
  • FIG. 20 is a flow chart showing the contents of the operation mode control according to the second embodiment.
  • the control device 30 switches the operation mode between the cooling operation mode 2 and the stop operation mode by executing the processing based on this flowchart.
  • the control device 30 first determines whether the cooling operation has stopped (step S1000). When the operation of the low-concentration refrigerant circuit 300 is stopped due to a power failure or other circumstances, the control device 30 determines YES in step S1000, and shifts to the stop operation mode (step S2000).
  • control device 30 determines NO in step S1000, and shifts to cooling operation mode 2 (step S3000).
  • FIG. 21 is a flowchart showing the contents of control in cooling operation mode 2.
  • the control device 30 first sets the target frequency of the third compressor 301 (Comp 301) from the outside air temperature and the evaporation temperature set in the indoor unit 2 (step S90).
  • Control device 30 identifies the outside air temperature based on the output value of temperature sensor 20 .
  • the control device 30 determines whether the frequency of the third compressor 301 (Comp 301) is equal to or lower than the threshold value Y, and whether the outside air (outside air temperature) is equal to or lower than the set value (step S91).
  • the set value of the outside air temperature is a preset value. The set value of the outside air temperature will be described later with reference to FIG. 22 .
  • the controller 30 stores set values.
  • the control device 30 stores a threshold X and a threshold Y as thresholds for determining whether to switch the operation of the refrigeration cycle.
  • a frame W20 in FIG. 21 shows the relationship between the frequency of the third compressor 301 (Comp 301) and the threshold values X and Y. As shown in FIG. First, the relationship between the frequency of the third compressor 301 (Comp 301) and the thresholds X and Y will be described with reference to the frame W20.
  • (1) to (3) in the frame W20 indicate the range of frequency values of the third compressor 301 (Comp 301).
  • (1) indicates a range in which the frequency of the third compressor 301 (Comp 301) is equal to or lower than the threshold value Y;
  • (2) indicates a range in which the frequency of the third compressor 301 (Comp 301) exceeds the threshold value Y and is less than the threshold value X;
  • (3) indicates a range in which the frequency of the third compressor 301 (Comp 301) is equal to or higher than the threshold value X;
  • Frequency range (2) indicates the appropriate range.
  • Frequency range (1) indicates a range lower than the proper range.
  • Frequency range (3) indicates a range that is higher than the proper range.
  • FIG. 22 is a graph showing the relationship between the set value of the evaporating temperature inside the refrigerator and the cooling capacity (Embodiment 2).
  • FIG. 23 is a graph showing the relationship between the frequency of the third compressor (Comp301) and the set value of the evaporating temperature inside the refrigerator (Embodiment 2).
  • the threshold value X and the set value of the outside air temperature will be described with reference to FIG. 22, and the threshold value Y will be described with reference to FIG.
  • the horizontal axis indicates the condensation temperature (ET: Evaporation Temperature) set in the indoor unit 2 placed inside the refrigerator.
  • the vertical axis indicates the compressor frequency (Hz) corresponding to the cooling capacity.
  • the required cooling capacity changes depending on the outside air temperature AT (Outside Air Temperature).
  • FIG. 22 shows an example in which the outside air temperature is 20.degree. C. and -15.degree.
  • the threshold value X is set to 60 Hz based on this graph. However, this value is only an example.
  • FIG. 22 further shows a region R10 where high-level operation is unnecessary.
  • region R10 it is not necessary to operate either the first or second high-order refrigeration cycle while the low-order refrigeration cycle is in operation.
  • control device 30 selects the low-level cooling mode as the operation mode.
  • the fourth heat exchanger 402 provided in the low temperature refrigerant circuit 300 functions as a condenser to cool the third refrigerant.
  • the high temperature refrigeration cycle does not start.
  • the region R10 is set with the outside air temperature AT10 as the boundary. That is, the control device 30 selects the low-level cooling mode on the condition that the outside air temperature is AT10 or lower.
  • the outside air temperature AT10 is set to any value within the range of -15°C to 20°C.
  • the horizontal axis indicates the frequency of the third compressor 301 (Comp 301).
  • the vertical axis indicates the condensing temperature (ET) set in the indoor unit 2 placed inside the refrigerator.
  • a region R10 where high-level operation is unnecessary and a region R20 where high-level operation is required is shown.
  • Region R20 is bounded by capacity equivalence lines. The higher the frequency and condensing temperature (ET) of the third compressor 301 (Comp 301), the higher the required cooling capacity.
  • FIG. 23 shows Y1 and Y2 as examples of values that can be used as the threshold Y.
  • the threshold value Y1 is the maximum frequency of the third compressor 301 (Comp 301) in the region R10 where high-level operation is not required. Y1 is therefore a fixed value.
  • the threshold Y2 is the frequency of the third compressor 301 (Comp 301) along the capacity equivalence line. Therefore, Y2 is a value that varies according to the condensation temperature (ET) set in the indoor unit 2.
  • either Y1 or Y2 may be used as the threshold value Y.
  • two thresholds Y1 and Y2 may be stored in the memory 32 of the control device 30 in advance.
  • the control device 30 may be configured to be able to select which of Y1 and Y2 thresholds to use.
  • step S91 the control device 30 performs an operation to rotate the fourth fan 4021 of the fourth heat exchanger 402 (step S95). That is, the control device 30 starts operation in the low-level cooling mode. Thereby, the fourth heat exchanger 402 functions as a condenser. As a result, the third refrigerant in the low-concentration refrigerant circuit 300 is cooled by the fourth heat exchanger 402 .
  • control device 30 determines whether the frequency of the third compressor 301 (Comp 301) exceeds the threshold Y and the frequency of the third compressor 301 (Comp 301) is less than the threshold X (step S96). That is, control device 30 determines whether or not the frequency of third compressor 301 is within proper range (2) shown in frame W20.
  • step S99 When determining YES in step S96, the control device 30 operates the second high-level refrigeration cycle (step S99). When the second high-order refrigeration cycle is to be operated, the control device 30 performs the same process as in step S101 already described in the second high-order refrigeration cycle (step S100). Thereby, in the second high-voltage refrigerant circuit 200, the rotational speed of the second fan 2021 of the second heat exchanger 202 and the opening degree of the second expansion valve 203 are adjusted as necessary.
  • the control device 30 executes the low capacity operation mode after step S100.
  • the processing of the low capacity mode of operation is disclosed in FIG.
  • the processing of the low-capacity operation in the second embodiment is the same as the content of the control in the low-capacity operation mode of the first embodiment shown in FIG. 15, so description thereof will not be repeated here.
  • the operation of the fourth fan 4021 of the fourth heat exchanger 402 shown in step S95 is continued.
  • control device 30 When determining NO in step S96, the control device 30 operates the first and second high-level refrigeration cycles (step S97).
  • step S97 When the first and second high-order refrigeration cycles are operated in step S97, the control device 30 performs the same processing as in step S101 already described in the first and second high-order refrigeration cycles (step S98).
  • the rotational speed of the first fan 1021 of the first heat exchanger 102 and the opening degree of the first expansion valve 103 are adjusted as necessary.
  • the rotational speed of the second fan 2021 of the second heat exchanger 202 and the opening degree of the second expansion valve 203 are adjusted as necessary.
  • the control device 30 executes the high capacity operation mode after step S98.
  • the processing of the high capacity mode of operation is disclosed in FIG.
  • the high-capacity operation processing of the second embodiment is the same as the control contents of the high-capacity operation mode of the first embodiment shown in FIG. 14, and thus description thereof will not be repeated here.
  • the operation of the fourth fan 4021 of the fourth heat exchanger 402 shown in step S95 is continued.
  • step S91 When determining YES in step S91, the control device 30 performs an operation to rotate the fourth fan 4021 of the fourth heat exchanger 402 (step S92). This process is similar to step S95 already described.
  • control device 30 determines whether or not the pressure P10 of the low-concentration refrigerant circuit 300 exceeds the threshold value B (step S93).
  • P10 indicates the pressure of the low-concentration refrigerant circuit 300.
  • Control device 30 specifies pressure P ⁇ b>10 based on the output value of pressure sensor 10 provided in low-concentration refrigerant circuit 300 .
  • the relationship between pressure P10 and threshold A and threshold B is shown in frame W10 in FIG.
  • step S93 When the pressure P10 does not exceed the threshold value B in step S93, the pressure P10 does not exceed the upper limit of the set pressure range. Therefore, if the control device 30 determines NO in step S93, the determination in step S93 is repeated until the pressure P10 exceeds the threshold value B.
  • step S93 When the pressure P10 exceeds the threshold value B in step S93, it can be determined that heat radiation is insufficient with the fourth heat exchanger 402 alone. Therefore, when the determination in step S93 is YES, the control device 30 operates the second high-order refrigeration cycle in order to reduce the pressure P10 to the range of (2) in the frame W10 of FIG. 11 (step S94). Thereby, the second high-level refrigerant circuit 200 is activated. When the second high-order refrigerant circuit 200 is activated, the second cascade condenser 204 cools the third refrigerant.
  • the control device 30 activates the second high-level refrigerant circuit 200 when the pressure P10 becomes higher than the range from the threshold value A to the threshold value B even if the fourth heat exchanger 402 is activated.
  • the low capacity operation mode is executed.
  • the details of the control in the low capacity operation mode are disclosed in FIG.
  • the processing of the low-capacity operation in the second embodiment is the same as the content of the control in the low-capacity operation mode of the first embodiment shown in FIG. 15, so description thereof will not be repeated here.
  • the operation of the fourth fan 4021 of the fourth heat exchanger 402 shown in step S92 is continued.
  • the pressure of the third refrigerant is abnormally increased by using the heat radiation function of the fourth heat exchanger 402 provided in the low-concentration refrigerant circuit 300. prevent it from rising. At this time, there is no need to operate the high-level refrigeration cycle. Therefore, it is possible to operate the refrigeration cycle with high efficiency.
  • the control device 30 controls the timing of starting the first high-order refrigerant circuit 100 and the second high-order refrigerant circuit 200 based on the frequency set when starting the third compressor 301. do. Also in Embodiment 2, the low-capacity operation mode and the high-capacity operation mode are executed. The contents of the low-capacity operation mode and the high-capacity operation mode are as described in the first embodiment. However, in Embodiment 2, the fourth heat exchanger 402 is also activated. Therefore, the control device 30 according to the second embodiment controls the first high-order refrigerant circuit 100, the second high-order refrigerant circuit 200, and the 4 Control the heat exchanger 402 .
  • the control device 30 controls the rotation speed of the fourth fan 4021 without activating the high temperature refrigeration cycle so that the pressure in the low temperature refrigerant circuit 300 becomes abnormal. prevent it from rising.
  • the refrigeration cycle can be operated without activating the high-level refrigeration cycle, so the energy saving performance of the binary refrigeration cycle device 52 can be enhanced. Also, the service life of the high-order refrigeration cycle can be increased. As a result, the performance of the binary refrigeration cycle device 52 can be improved.
  • the third refrigerant flowing from the third compressor 301 to the fourth heat exchanger 402 is superheated steam.
  • the fourth heat exchanger 402 By activating the fourth heat exchanger 402 when the high-order refrigerating cycle is operated, part of the heat of the third refrigerant before flowing into the first cascade condenser 104 can be radiated by the fourth heat exchanger 402 . Therefore, in the first cascade condenser 104, heat can be exchanged between the third refrigerant and the first refrigerant in the two-phase region having a high heat transfer coefficient. The same applies to the second cascade capacitor 204 as well.
  • the fourth fan 4021 of the fourth heat exchanger 402 is rotated without activating the high-level refrigeration cycle.
  • the performance of the binary refrigerating cycle device 52 can be improved while suppressing an abnormal increase in the pressure of the low-concentration refrigerant circuit 300 when starting up the refrigerating cycle. For example, when the frequency of the third compressor 301 is lower than the threshold and the outside air temperature is lower than the set value, the dual refrigeration cycle device 52 is in a low load state.
  • the fourth fan 4021 is rotated and the second high-order refrigeration cycle is started. Accordingly, in a situation where heat treatment cannot be performed only by the fourth heat exchanger 402, it is possible to reliably suppress an abnormal increase in the pressure of the low-concentration refrigerant circuit 300 from the start of the refrigeration cycle.
  • the energy saving performance of the binary refrigerating cycle device 52 can be enhanced. Also, the service life of the high-order refrigeration cycle can be increased. As a result, the performance of the binary refrigeration cycle device 52 can be improved.
  • the fourth fan 4021 may be rotated and the first and second high-order refrigerating cycles may be activated. Accordingly, in a situation where heat treatment cannot be performed only by the fourth heat exchanger 402 and the second high-order refrigeration cycle, it is possible to reliably suppress an abnormal increase in the pressure of the low-order refrigerant circuit 300 from the start of the refrigeration cycle.
  • FIG. 24 is a flow chart showing a modification of cooling operation mode 2 according to the second embodiment. A modification of cooling operation mode 2 according to the second embodiment will be described with reference to FIG. 24 .
  • the control device 30 first sets the target frequency of the third compressor 301 (Comp 301) from the outside air temperature and the evaporation temperature set in the indoor unit 2 (step S120).
  • the processing of step S120 is the same as the processing of step S90 in FIG.
  • the control device 30 determines whether or not the frequency of the third compressor 301 (Comp 301) is equal to or less than the threshold value Y (step S121). If the control device 30 determines that the frequency of the third compressor 301 set in step S120 is equal to or less than the threshold value Y, it determines whether the outside air temperature is equal to or less than the set value (step S122).
  • the outside air temperature is the temperature detected by the temperature sensor 20 .
  • the controller 30 When the controller 30 determines that the outside air temperature is equal to or lower than the set value, it performs an operation to rotate the fourth fan 4021 of the fourth heat exchanger 402 (step S123). This activates the fourth heat exchanger 402 . This process is the same as step S92 in FIG. After that, the control device 30 performs the processing of steps S124 to S125. This process is the same as the process of steps S93-S94 in FIG.
  • step S122 When the controller 30 determines in step S122 that the outside air temperature is not equal to or lower than the set value, the controller 30 rotates the fourth fan 4021 of the fourth heat exchanger 402 and activates the second high-level refrigerant circuit 200 (step S126). ). Next, control device 30 executes the same process as already described in step S101 in the second high-level refrigerating cycle (step S127), and shifts to the low capacity operation mode.
  • control device 30 determines in step S121 that the frequency of the third compressor 301 is not equal to or lower than the threshold value Y, it determines whether the outside air temperature is equal to or lower than the set value (step S128). When the control device 30 determines that the outside air temperature is equal to or lower than the set value, the control device 30 executes the process of step S126 already described.
  • step S128 When the controller 30 determines in step S128 that the outside air temperature is not equal to or lower than the set value, the controller 30 rotates the fourth fan 4021 of the fourth heat exchanger 402 and rotates the first high-level refrigerant circuit 100 and the second high-level refrigerant circuit.
  • the circuit 200 is activated (step S129).
  • control device 30 executes the same process as already described in step S101 in the second high-level refrigeration cycle (step S130), and shifts to the high capacity operation mode.
  • control device 30 controls the first high-order refrigerant circuit 100, the It controls the timing of starting the secondary refrigerant circuit 200 and the fourth heat exchanger 402 .
  • any of the modifications of the first embodiment shown in FIGS. 4 to 7 may be applied to the second embodiment. Also, all of these modifications may be applied, or one or more of those modifications may be applied.
  • the binary refrigerating cycle device 51 and the binary refrigerating cycle device 52 have a configuration in which one low-order refrigerating cycle is divided into two high-order refrigerating cycles.
  • the binary refrigerating cycle device 51 and the binary refrigerating cycle device 52 may have a configuration in which one low-order refrigerating cycle is divided into three high-order refrigerating cycles.
  • the binary refrigerating cycle device 51 and the binary refrigerating cycle device 52 may further include a third higher refrigerating cycle.
  • the third high-order refrigeration cycle may have a higher cooling capacity than the first high-order refrigeration cycle.
  • the third higher order refrigeration cycle may have a lower cooling capacity than the second higher order refrigeration cycle.
  • a refrigerant different from the first to third refrigerants may be used in the third high-order refrigeration cycle. Any one of the first to third refrigerants may be used in the third high-order refrigeration cycle.
  • a common type of refrigerant may be used in the first to third high-order refrigeration cycles.
  • a discharge temperature sensor that detects the temperature of the high-temperature refrigerant discharged from the third compressor 301 may be provided on the discharge side of the third compressor 301 .
  • a low pressure sensor may be provided on the suction side of the third compressor 301 to calculate the low pressure saturation temperature ET.
  • controller 30 rotates fourth fan 4021 of fourth heat exchanger 402 both when YES and NO are determined in step S91. drive to let Alternatively, when determining NO in step S91, the control device 30 may proceed to the process of step S96 without rotating the fourth fan 4021 of the fourth heat exchanger 402.
  • control device 30 may control the rotation speed of fourth fan 4021 based on the output value of pressure sensor 10 in order to keep the pressure of the third refrigerant appropriate. .
  • the control device 30 determines NO in step S42 of the flowchart shown in FIG. 14, the rotation speed of the fourth fan 4021 of the fourth heat exchanger 402 may be increased to the maximum speed.
  • the control device 30 may make the same determination as in step S41 before executing the process of step S44.
  • the control device 30 may execute the process of step S44 when the pressure rise cannot be suppressed even if the rotational speed of the fourth fan 4021 of the fourth heat exchanger 402 is increased to the maximum number.
  • the control device 30 controls the fourth heat exchanger 402, the first high-level refrigerant circuit 100, or the second The refrigerating cycle of the two-higher refrigerant circuit 200 may be controlled.
  • control device 30 may control the rotation speed of fourth fan 4021 based on the output value of pressure sensor 10 in order to keep the pressure of the third refrigerant appropriate. .
  • control device 30 determines in step S73 of the flowchart shown in FIG. 15 that the frequency of second compressor 201 (Comp 201) has reached the lower limit frequency, the fourth fan of fourth heat exchanger 402 The rotation speed of 4021 may be lowered by a certain number. After that, control device 30 may reduce the rotation speed of fourth fan 4021 and then execute the processing of steps S78 to S80. Furthermore, when the control device 30 determines NO in step S80, the rotation speed of the fourth fan 4021 may be decreased again by a certain number. Alternatively, the control device 30 may stop the fourth fan 4021 of the fourth heat exchanger 402 when determining NO in step S73.
  • the control device 30 adjusts the rotational speed of the fourth fan 4021 of the fourth heat exchanger 402 so that the pressure falls within the range of the first threshold to the second threshold.
  • the refrigeration cycles of the high-order refrigerant circuit 100 and the second high-order refrigerant circuit 200 may be controlled.
  • the first high-order refrigerant circuit 100 and the second high-order refrigerant circuit 200 each have the maximum cooling Since the capacities are configured to differ from each other, it is possible to activate the high-level refrigeration cycle according to the cooling capacity required for the load in both the cooling operation mode and the stop operation mode.
  • the binary refrigerating cycle apparatus according to the first embodiment flexible operation corresponding to changes in the cooling capacity required for the load can be realized with a plurality of high-level refrigerating cycles.
  • cooling of the high-order refrigeration cycle provided by the first high-order refrigerant circuit 100 and the second high-order refrigerant circuit 200 The capacity fluctuates based on the state of the refrigeration cycle of low-condensing refrigerant circuit 300 .
  • either the low-capacity operation mode or the high-capacity operation mode is selected according to the target frequency set for the third compressor 301 .
  • flexible operation corresponding to changes in the cooling capacity required for the load can be realized with a plurality of high-level refrigerating cycles.
  • the compressor starts and stops frequently, reducing the reliability of the refrigeration cycle.
  • the compressor of the high-order refrigeration cycle frequently starts and stops in the stop operation mode. can be suppressed.
  • the high-level refrigerating cycle is divided into multiple units. As a result, even if a problem such as a failure occurs in some of the high-order refrigeration cycles, the other high-order refrigeration cycles can be operated. As a result, in the stop operation mode, it is possible to suppress an abnormal increase in pressure in the low-order refrigeration cycle.
  • the condensation temperature of the low-order refrigerating cycle is reduced even when the high-pressure refrigerant is used in the low-order refrigerating cycle. It can be operated in this state.
  • the pressure resistance required for the refrigerant pipes can be reduced because they are operated in a state where the condensation temperature of the lower refrigerating cycle is reduced.
  • the dual refrigerating cycle devices 51 and 52 related to the present disclosure have separate refrigerating cycle circuits for the high and low levels, so they can flexibly comply with the refrigerant regulations of each country.
  • the capacity of the second high-level refrigeration cycle is less than 50% when the required high-level refrigeration cycle capacity (cooling capacity) is 100%. is preferred. Furthermore, it is more preferable that the capacity of the second high-level refrigeration cycle is 35% or less, and more preferably that the capacity of the second high-level refrigeration cycle is 20% or less. When reducing the capacity, it is preferable to reduce the size of the compressor. This is because downsizing the compressor is most effective in reducing cost and cooling capacity.
  • the cooling capacity that can be output at the upper limit frequency of the second higher refrigeration cycle is greater than the cooling capacity that can be output at the lower limit frequency of the first higher refrigeration cycle.
  • the operation range can be expanded by providing a difference in the capacities of the high-level refrigeration cycles.
  • the refrigerant used in the low refrigerating cycle is CO2.
  • CO2 which is a high-pressure refrigerant
  • the condensing pressure of the low-order refrigeration cycle can be reduced in the high-order refrigeration cycle.
  • CO2 is a natural refrigerant, it can significantly reduce the total GWP of equipment.
  • the refrigerant will not burn when it leaks.
  • the pressure used on the condensing side is lower compared to using CO in a single or double refrigeration cycle.
  • the amount of refrigerant used can be reduced.
  • the uninterruptible power supply 205 is applied to the second high-order refrigeration cycle, which is smaller than the first high-order refrigeration cycle, the required power supply capacity can be reduced. Cost can be suppressed by reducing the required power supply capacity. Also, the size of the power supply can be reduced.
  • the refrigerant enclosed in the circuit of the second high-order refrigeration cycle is different from the refrigerant enclosed in the circuits of the low-order refrigeration cycle and the first high-order refrigeration cycle.
  • a second high-order refrigeration cycle having a small capacity is filled with a refrigerant having higher theoretical or practical performance than the refrigerants enclosed in the low-order refrigeration cycle and the first high-order refrigeration cycle.
  • the low refrigerating cycle transfers the heat of the high-temperature refrigerant discharged from the third compressor 301 to the air between the third compressor 301 and the first cascade condenser 104. It has a fourth heat exchanger 402 that dissipates heat.
  • the pressure of the third refrigerant in the low-level refrigerating cycle is abnormally increasing due only to heat radiation from the fourth heat exchanger 402 .
  • the operation of the high-level refrigeration cycle is unnecessary. As a result, highly efficient operation becomes possible.
  • part of the heat quantity of the third refrigerant can be radiated to the air.
  • the superheated vapor third refrigerant is guided to the first cascade condenser 104 after being cooled by the fourth heat exchanger 402 . Therefore, in the first cascade condenser 104, heat can be exchanged between the third refrigerant and the first refrigerant in the two-phase region having a high heat transfer coefficient. The same applies to the second cascade capacitor 204 as well.
  • the fourth heat exchanger 402 is configured with a sixth heat exchanger 602 integrated with the first heat exchanger 102 and the second heat exchanger 202. . Also, the fourth heat exchanger 402 is composed of a seventh heat exchanger 702 integrated with the second heat exchanger 202 . According to the present disclosure, the number of fans in the high-order refrigeration cycle can be reduced. As a result, space saving and cost reduction can be achieved.
  • the ratio of the heat transfer area of the fourth heat exchanger 402 to the total heat transfer area of the first heat exchanger 102, the second heat exchanger 202, and the fourth heat exchanger 402 is 3% or more to 50 % or in the range of 8% or more to less than 30%.
  • the gas refrigerant is fed back from the liquid receiver 304 via the check valve 305 to the inlet of the first cascade condenser 104 or the second cascade condenser 204.
  • a refrigerant pipe 18 is provided.
  • the return refrigerant pipe 18 is provided above the liquid receiver 304 . Therefore, only the gas refrigerant to be condensed can be returned to the first cascade condenser 104 or the second cascade condenser 204 in order to suppress the pressure rise of the refrigerant.
  • the liquid receiver 304 is provided at a position lower than the second cascade capacitor 204 in the vertical direction. Therefore, the liquid third refrigerant can be collected in the liquid receiver 304 by its own weight.
  • the binary refrigerating cycle devices 51 and 52 control the high-level refrigeration cycle to a preset threshold pressure range based on the detection result of the pressure sensor 10 provided in the condensing portion of the low-level refrigeration cycle.
  • the rotation speed of the refrigeration cycle fans (first fan 1021, second fan 2021), the frequency of the compressors (first compressor 101, second compressor 201), and the expansion valves (first expansion valve 103, second expansion valve Controls the degree of opening of the valve 203).
  • the binary refrigeration cycle devices 51 and 52 related to the present disclosure activate the high-level refrigeration cycle according to the detection result of the pressure sensor 10.
  • the load is large, not only the second high-order refrigeration cycle but also the first high-order refrigeration cycle are activated. Further, by controlling the rotation speed of the fan, the degree of opening of the expansion valve, and the frequency of the compressor in the high-level refrigerating cycle, the pressure rise in the low-level refrigerating cycle can be suppressed.
  • the pressure of the high-level refrigeration cycle can be prevented from rising abnormally, and the compression ratio can be reduced. It is possible to reduce the rotation speed and maintain the compression ratio under various operating conditions.
  • first compressor 101 and the second compressor on the high side are controlled according to the operating state.
  • 201 can be made to inhale gaseous refrigerant.
  • first compressor 101 and second compressor 201 to suck gas refrigerant, the reliability of first compressor 101 and second compressor 201 can be improved.
  • the cooling capacity of the high-level refrigerating cycle is controlled according to the load of the low-level refrigerating cycle. can do. Furthermore, by giving a range to the pressure threshold value, it is possible to suppress frequent starting and stopping of the compressor and to prevent frequent changes in the frequency of the compressor.
  • the third compressor 301 of the low-order refrigeration cycle and the second compressor 201 of the second high-order refrigeration cycle are started.
  • the pressure of the third refrigerant increases, for example, the pressure corresponding to 3° C. or higher.
  • the frequency of the second compressor 201 of the second high-order refrigerating cycle is increased until the pressure of the third refrigerant reaches the reference value (for example, the pressure corresponding to 0°C).
  • the reference value for example, the pressure corresponding to 0°C
  • the operation is maintained.
  • the first compressor 101 of the first high-order refrigerating cycle is started.
  • the frequency of the third compressor 301 when activated is extremely high, the first and second high-order refrigerating cycles may be activated simultaneously.
  • the pressure sensor 10 may be provided at any position in the section from the discharge part of the third compressor 301 to the inlet of the first cascade condenser 104, but the third compressor 301 where the pressure of the third refrigerant is highest is preferably provided in the ejection portion of the Among the high-order refrigerating cycles, it is preferable to start the second high-order refrigerating cycle, which basically has a small capacity, preferentially to suppress an abnormal increase in the pressure in the low-order refrigerant circuit 300 . This is because the second high-level refrigerating cycle has a smaller capacity than the first high-level refrigerating cycle, so it is possible to prevent the compressor from frequently starting and stopping. Also, when the second high-order refrigerating cycle is filled with a refrigerant with high theoretical performance, highly efficient operation is possible.
  • the dual refrigerating cycle devices 51 and 52 related to the present disclosure control the activation timings of the first high-level refrigerating cycle and the second high-level refrigerating cycle based on the set frequency when the third compressor 301 is started. For example, when the frequency of the third compressor 301 is lower than the threshold, only the small-capacity second high refrigeration cycle is activated, and when the frequency of the third compressor 301 is higher than the threshold, the first high refrigeration cycle is activated from the time of activation. Start the primary refrigerating cycle and the secondary refrigerating cycle.
  • the binary refrigerating cycle device 52 controls the rotation speed of the fourth fan 4021 of the fourth heat exchanger 402 so that the pressure is maintained within the set range based on the detection result of the pressure sensor 10
  • the rotation speed of the fourth fan 4021 can be controlled without activating the high-level refrigeration cycle. can prevent the pressure in the low-concentration refrigerant circuit 300 from abnormally rising.
  • the dual refrigeration cycle device 52 determines the start timing of the fan of the fourth heat exchanger 402 and the start of the first high-order refrigeration cycle based on the set frequency and the outside air temperature when the third compressor 301 is started. timing and start-up timing of the second high-order refrigeration cycle.
  • a binary refrigeration cycle device (51) includes a first high-level refrigerant circuit (100) that circulates a first refrigerant and a second high-level refrigerant circuit (200) that circulates a second refrigerant. , a low-condensing refrigerant circuit (300) for circulating the third refrigerant, a first cascade condenser (104) for exchanging heat between the first refrigerant and the third refrigerant, and between the second refrigerant and the third refrigerant. a second cascade condenser (204) for exchanging heat with and a controller (30).
  • the first high-level refrigerant circuit (100) has a first compressor (101), a first heat exchanger (102), and a first expansion valve (103), the first compressor (101), The first refrigerant is circulated in the order of the first heat exchanger (102), the first expansion valve (103), the first cascade condenser (104), and the first compressor (301), and the second high-level refrigerant circuit (200) ) has a second compressor (201), a second heat exchanger (202) and a second expansion valve (203), the second compressor (201) and the second heat exchanger (202) , a second expansion valve (203), a second cascade condenser (204), and a second compressor (201).
  • the control device (30) adjusts the cooling capacity of the high-level refrigeration cycle provided by the first high-level refrigerant circuit (100) and the second high-level refrigerant circuit (200) to the state of the refrigeration cycle of the low-level refrigerant circuit (300). Vary based on
  • a binary refrigerating cycle device capable of realizing flexible operation with a plurality of high-order refrigerating cycles according to changes in the cooling capacity required for the load.
  • the control device (30) activates the first high-level refrigerant circuit (100) and the second high-level refrigerant circuit (200) based on the frequency set when starting the third compressor (301). Control the start timing (stop operation mode: steps S10 to S21, low capacity operation mode: steps S40 to S54, high capacity operation mode: steps S70 to S84, cooling operation mode 2: steps S90 to S100) .
  • the binary refrigeration cycle device (51) is provided on the discharge side of the third compressor (301) and further comprises a pressure sensor (10) for detecting the pressure of the third refrigerant, and the control device (30) , the first high-level refrigerant circuit (100) and the second high-level refrigerant circuit (200) are controlled so that the pressure falls within the reference range (range from threshold A to threshold B) (stop operation mode: step S10 to step S21, low capacity operation mode: steps S40 to S54, high capacity operation mode: steps S70 to S84, cooling operation mode 2: steps S90 to S100).
  • the low-level refrigerant circuit (300) further has a fourth heat exchanger (402) arranged between the third compressor (301) and the first cascade condenser (104).
  • the binary refrigerating cycle device (51) further includes a temperature sensor (20) that detects the outside air temperature, and the control device (30) controls the frequency set when starting the third compressor (301). and the outside air temperature, the timing of starting the first high-level refrigerant circuit (100), the second high-level refrigerant circuit (200), and the fourth heat exchanger (402) is controlled (steps S120 to S130). .
  • the binary refrigeration cycle device (51) is provided on the discharge side of the third compressor (301) and further comprises a pressure sensor (10) for detecting the pressure of the third refrigerant, and the control device (30) , the first high-level refrigerant circuit (100), the second high-level refrigerant circuit (200), and the fourth heat exchanger (402) so that the pressure falls within the reference range (range from threshold A to threshold B).
  • control steps S90 to S100, low-capacity operation mode, and high-capacity operation mode).
  • the control device (30) activates the fourth heat exchanger (402) (steps S92, S123), The control device (30) activates the second high-level refrigerant circuit (200) when the pressure becomes higher than the reference range even when the fourth heat exchanger (402) is activated (steps S94, S125). .
  • the fourth heat exchanger (402) is composed of heat exchangers (602, 702) integrated with the first heat exchanger (102) or the second heat exchanger (202).
  • the heat transfer area of the fourth heat exchanger (402) is the total heat transfer area of the first heat exchanger (102), the second heat exchanger (202), and the fourth heat exchanger (402). It ranges from 3% to 50% (Fig. 17).
  • Figure 17 shows that the heat transfer area of the fourth heat exchanger (402) is equal to the total heat transfer of the first heat exchanger (102), the second heat exchanger (202) and the fourth heat exchanger (402).
  • An example of 3% or more and less than 50% of the area is shown.
  • the heat transfer area of the fourth heat exchanger (402) is three times the total heat transfer area of the first heat exchanger (102), the second heat exchanger (202), and the fourth heat exchanger (402). % and may be less than 50%.
  • control device (30) When starting the low-level refrigerant circuit (300), the control device (30) either starts the second high-level refrigerant circuit (200) together, or A selection is made as to whether the high-level refrigerant circuit (200) is to be started together (steps S31 to S34).
  • the range of the cooling capacity of the first high-order refrigerant circuit (100) includes the upper limit of the cooling capacity of the second high-order refrigerant circuit (200) (Figs. 8 and 9).
  • a low-concentration refrigerant circuit (300) comprises a liquid receiver (304) arranged between a second cascade condenser (204) and a third expansion valve (303), and from the second cascade condenser (204) a return route (route of return refrigerant pipe 18) for returning the third refrigerant that has flowed into the liquid receiver (304) to the first cascade condenser (104) or the second cascade condenser (204);
  • a check valve (305) is provided to block the flow of the third refrigerant in the direction of the liquid receiver (304).
  • the return path is connected to the top of the liquid receiver (304) (Fig. 2).
  • the liquid receiver (304) is placed vertically lower than the position of the second cascade capacitor (204) (Fig. 2).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

二元冷凍サイクル装置(51)は、第1冷媒を循環させる第1高元冷媒回路(100)と、第2冷媒を循環させる第2高元冷媒回路(200)と、第3冷媒を循環させる低元冷媒回路(300)と、第1カスケードコンデンサ(104)と、第2カスケードコンデンサ(204)と、制御装置(30)とを備える。第1高元冷媒回路(100)は、第1圧縮機(101)と、第1熱交換器(102)と、第1膨張弁(103)とを有する。第2高元冷媒回路(200)は、第2圧縮機(201)と、第2熱交換器(202)と、第2膨張弁(203)とを有する。制御装置(30)は、低元冷媒回路(300)の冷凍サイクルの状態に基づいて第1高元冷媒回路(100)および第2高元冷媒回路(200)の冷却能力を変動させる。

Description

二元冷凍サイクル装置
 本開示は二元冷凍サイクル装置に関する。
 従来から二元冷凍サイクル装置が知られている。特許文献1には、第1高元冷凍サイクルと第2高元冷凍サイクルと低元冷凍サイクルとを有する二元冷凍サイクル装置が記載されている。
国際公開第2012/066763号公報
 高元冷凍サイクル側で複数の冷凍サイクルを構成した場合、負荷に要求される冷却能力の変化に応じた柔軟な運転を複数の高元冷凍サイクルで実現できることが望ましい。
 本開示は、負荷に要求される冷却能力の変化に応じた柔軟な運転を複数の高元冷凍サイクルで実現可能な二元冷凍サイクル装置を提供することを目的とする。
 本開示の二元冷凍サイクル装置は、第1冷媒を循環させる第1高元冷媒回路と、第2冷媒を循環させる第2高元冷媒回路と、第3冷媒を循環させる低元冷媒回路と、第1冷媒と第3冷媒との間で熱交換する第1カスケードコンデンサと、第2冷媒と第3冷媒との間で熱交換する第2カスケードコンデンサと、制御装置とを備える。第1高元冷媒回路は、第1圧縮機と、第1熱交換器と、第1膨張弁とを有し、第1圧縮機、第1熱交換器、第1膨張弁、第1カスケードコンデンサ、および第1圧縮機の順に第1冷媒を循環させる。第2高元冷媒回路は、第2圧縮機と、第2熱交換器と、第2膨張弁とを有し、第2圧縮機、第2熱交換器、第2膨張弁、第2カスケードコンデンサ、および第2圧縮機の順に第2冷媒を循環させる。低元冷媒回路は、第3圧縮機と、第3熱交換器と、第3膨張弁とを有し、第3圧縮機、第1カスケードコンデンサ、第2カスケードコンデンサ、第3膨張弁、第3熱交換器、および第3圧縮機の順に第3冷媒を循環させる。制御装置は、第1高元冷媒回路および第2高元冷媒回路により提供される高元冷凍サイクルの冷却能力を低元冷媒回路の冷凍サイクルの状態に基づいて変動させる。
 本開示によれば、負荷に要求される冷却能力の変化に応じた柔軟な運転を複数の高元冷凍サイクルで実現可能な二元冷凍サイクル装置を提供することができる。
実施の形態1に関わる二元冷凍サイクル装置の構成を示す図である。 受液器と第1カスケードコンデンサおよび第2カスケードコンデンサとの配置関係を示す図である。 第1高元冷媒回路、第2高元冷媒回路、および低元冷媒回路の構成の比較例を示す図である。 実施の形態1に関わる二元冷凍サイクル装置の変形例1を示す図である。 第1熱交換器と第2熱交換器とを一体化した第5熱交換器を示す図である。 実施の形態1に関わる二元冷凍サイクル装置に無停電電源装置を設けた例を示す図である。 変形例1の二元冷凍サイクル装置に無停電電源装置を設けた例を示す図である。 第1高元冷凍サイクルの周波数範囲と冷却能力との関係、および第2高元冷凍サイクルの周波数範囲と冷却能力との関係を示すグラフ1である。 第1高元冷凍サイクルの周波数範囲と冷却能力との関係、および第2高元冷凍サイクルの周波数範囲と冷却能力との関係を示すグラフ2である。 実施の形態1に関わる運転モードの制御の内容を示すフローチャートである。 停止運転モードの制御の内容を示すフローチャートである。 冷却運転モードの制御の内容を示すフローチャートである。 庫内の蒸発温度の設定値と冷却能力との関係を示すグラフである(実施の形態1)。 高容量運転モードの制御の内容を示すフローチャートである。 低容量運転モードの制御の内容を示すフローチャートである。 実施の形態2に関わる二元冷凍サイクル装置の構成を示す図である。 第1熱交換器および第2熱交換器の伝熱面積と、第4熱交換器との伝熱面積の比率を示す図である。 第1熱交換器と第2熱交換器と第4熱交換器とを一体化した第6熱交換器を示す図である。 第2熱交換器と第4熱交換器とを一体化した第7熱交換器、および第7交換器と組み合わせて使用される第1熱交換器を示す図である。 実施の形態2に係わる運転モードの制御の内容を示すフローチャートである。 実施の形態2に係わる冷却運転モード2の制御の内容を示すフローチャートである。 庫内の蒸発温度の設定値と冷却能力との関係を示すグラフである(実施の形態2)。 第3圧縮機(Comp301)の周波数と庫内の蒸発温度の設定値との関係を示すグラフである(実施の形態2)。 実施の形態2に係わる冷却運転モード2の変形例を示すフローチャートである。
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜、組み合わせることは出願当初から予定されている。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
 実施の形態1.
 図1は、実施の形態1に関わる二元冷凍サイクル装置51の構成を示す図である。図1に基づいて、二元冷凍サイクル装置51の回路構成および動作について説明する。二元冷凍サイクル装置51は、低元冷媒回路300と、第1高元冷媒回路100と、第2高元冷媒回路200と、制御装置30とを備える。
 第1高元冷媒回路100および第2高元冷媒回路200は、室外機1に配置される。低元冷媒回路300は、延長配管15によって室外機1と室内機2とに跨がって配置される。制御装置30は、室外機1または室内機2に配置される。室外機1には、外気温度を検出する温度センサ20が設けられている。制御装置30は、室外機1および室内機2とは別の箇所に配置されていてもよい。制御装置30は、ユーザーによって操作されるリモートコントローラーと無線通信してもよい。
 第1高元冷媒回路100には第1冷媒が封入されている。第2高元冷媒回路200には第2冷媒が封入されている。低元冷媒回路300には第3冷媒が封入されている。室外機1には、第1高元冷媒回路100の第1冷媒と低元冷媒回路300の第3冷媒との間で熱を交換させるための第1カスケードコンデンサ104と、第2高元冷媒回路200の第2冷媒と低元冷媒回路300の第3冷媒との間で熱を交換させるための第2カスケードコンデンサ204とが設けられている。
 第1カスケードコンデンサ104は、第1高元冷媒回路100に含まれる構成としてもよく、低元冷媒回路300に含まれる構成としてもよい。第2カスケードコンデンサ204は、第2高元冷媒回路200に含まれる構成としてもよく、低元冷媒回路300に含まれる構成としてもよい。
<第1高元冷媒回路100の構成>
 第1高元冷媒回路100は、第1圧縮機101と、第1熱交換器102と、第1膨張弁103とを備える。第1圧縮機101と、第1熱交換器102と、第1膨張弁103とは、第1冷媒が流れる冷媒配管によって接続されている。第1熱交換器102には外気と第1冷媒との間の熱交換を促す第1ファン1021が設けられる。第1高元冷媒回路100は、第1冷媒が、第1圧縮機101、第1熱交換器102、第1膨張弁103、第1カスケードコンデンサ104、および第1圧縮機101の順に循環するように構成される。したがって、第1熱交換器102は凝縮器として機能する。第1高元冷媒回路100には、制御装置30の指令を受けて動作するマイクロコンピュータが搭載されている。制御装置30が第1高元冷媒回路100を起動することにより、第1高元冷凍サイクルが起動する。
<第2高元冷媒回路200の構成>
 第2高元冷媒回路200は、第2圧縮機201と、第2熱交換器202と、第2膨張弁203とを備える。第2圧縮機201と、第2熱交換器202と、第2膨張弁203とは、第2冷媒が流れる冷媒配管によって接続されている。第2熱交換器202には外気と第2冷媒との間の熱交換を促す第2ファン2021が設けられる。第2高元冷媒回路200は、第2冷媒が、第2圧縮機201、第2熱交換器202、第2膨張弁203、第2カスケードコンデンサ204、および第2圧縮機201の順に循環するように構成される。したがって、第2熱交換器202は、凝縮器として機能する。第2高元冷媒回路200には、制御装置30の指令を受けて動作するマイクロコンピュータが搭載されている。制御装置30が第2高元冷媒回路200を起動することにより、第2高元冷凍サイクルが起動する。
 本実施の形態において、第1高元冷媒回路100および第2高元冷媒回路200は、それぞれの最大冷却能力が互いに異なるように構成されている。特に、第2高元冷媒回路200の最大冷却能力が、第1高元冷媒回路100の最大の冷却能力よりも低くなるように、第2圧縮機201、第2熱交換器202、第2膨張弁203、および第2カスケードコンデンサ204の少なくとも1つの構成要素が、第1高元冷媒回路100の第1圧縮機101、第1熱交換器102、第1膨張弁103、および第1カスケードコンデンサ104のうちの対応する構成要素よりも小型の構成要素で構成されている。
<低元冷媒回路300の構成>
 低元冷媒回路300は、第3圧縮機301と、第3熱交換器302と、第3膨張弁303と、受液器304とを備える。第3熱交換器302と第3膨張弁303とは、室内機2に配置される。受液器304は、室外機1に配置される。第3圧縮機301と、第3熱交換器302と、第3膨張弁303と、受液器304とは、第3冷媒が流れる冷媒配管によって接続されている。第3熱交換器302には庫内の空気と第3冷媒との間の熱交換を促す第3ファン3021が設けられる。
 低元冷媒回路300は、第3冷媒が、第3圧縮機301、第1カスケードコンデンサ104、第2カスケードコンデンサ204、受液器304、第3膨張弁303、第3熱交換器302、および第3圧縮機301の順に循環するように構成される。したがって、第3熱交換器302は、庫内を冷却する蒸発器として機能する。低元冷媒回路300には、制御装置30の指令を受けて動作するマイクロコンピュータが搭載されている。制御装置30が低元冷媒回路300を起動することにより、低元冷凍サイクルが起動する。
 第3圧縮機301の吐出側に位置する冷媒配管には、圧力センサ10が設けられている。圧力センサ10は、第3圧縮機301の吐出部から第1カスケードコンデンサ104の入口までの区間であればいずれの位置に設けてもよい。しかし、圧力センサ10は、第3圧縮機301の吐出部に設けることが好ましい。第3圧縮機301の吐出部で第3冷媒の圧力が最も高くなるからである。第3圧縮機301は、第3冷媒の圧力を高めることで、低元冷媒回路300内で第3冷媒を循環させる。第3圧縮機301は、インバータによって第3圧縮機301の内部のモータ(図示省略)を制御することにより、状況に応じて運転容量を変化させる。第3圧縮機301は、第3冷媒の温度が制御装置30で設定した目標出口温度になるように、第3圧縮機301の周波数を制御する。
 第3膨張弁303は、第3冷媒の流量を調節する。第3膨張弁303は、たとえば、電子膨張弁またはキャピラリーである。電子膨張弁は、絞り開度を調整することによって、第3冷媒の流量を効率よく制御する機能を有する。
 受液器304は、高圧の液冷媒を貯留する。受液器304は低元冷媒回路300において、第2カスケードコンデンサ204と第3膨張弁303との間に配置されている。換言すると、受液器304は、第1カスケードコンデンサ104および第2カスケードコンデンサ204よりも下流側で第3膨張弁303よりも上流側に配置されている。
 受液器304と第2カスケードコンデンサ204とは第1冷媒配管16で接続されている。受液器304と第3膨張弁303とは第2冷媒配管17および延長配管15で接続されている。第1冷媒配管16は受液器304の上部に接続されている。第2冷媒配管17は受液器304の下部に接続されている。受液器304の上部には、帰還冷媒配管18がさらに接続されている。帰還冷媒配管18は、第1カスケードコンデンサ104と第2カスケードコンデンサ204との間に位置する冷媒配管と、受液器304とを接続する。帰還冷媒配管18には、帰還冷媒配管18を通じて第1カスケードコンデンサ104または第2カスケードコンデンサ204から受液器304へ第1冷媒が流れ込むことを阻止する逆止弁305が設けられている。
 <制御装置30の構成>
 制御装置30は、プロセッサ31とメモリ32とが搭載されている。プロセッサ31は、メモリ32に格納されたオペレーティングシステムおよびアプリケーションプログラムを実行する。プロセッサ31は、アプリケーションプログラムを実行するときに、メモリ32に格納されている各種のデータを参照する。プロセッサ31は、メモリ32に格納されたアプリケーションプログラムに従って、第1高元冷媒回路100、第2高元冷媒回路200、および低元冷媒回路300から運転状況を示すデータを収集する。
 プロセッサ31は、圧力センサ10の検出値に基づいて第3冷媒の圧力を取得する。プロセッサ31は、温度センサ20の検出値に基づいて外気温度を取得する。プロセッサ31は、メモリ32に格納されたアプリケーションプログラムに従って、第1高元冷媒回路100、第2高元冷媒回路200、および低元冷媒回路300を制御する。
 制御装置30は、運転モードを冷却運転モードと停止運転モードとの間で切り替えることが可能である。冷却運転モードは、第3熱交換器302が配置された庫内を冷却するための運転モードである。冷却運転モードでは、低元冷媒回路300と第2高元冷媒回路200とが動作する。冷却運転モードでは、低元冷媒回路300および第2高元冷媒回路200の運転状況に応じて第1高元冷媒回路100がさらに動作することがある。
 停止運転モードは、庫内を冷却しないときに利用する運転モードである。停止運転モードでは、低元冷媒回路300の動作が停止する。停止運転モードでは、低元冷媒回路300内の圧力が異常に上昇することを防止するため、第2高元冷媒回路200が動作する。停止運転モードにおいて、第1高元冷媒回路100をさらに動作させてもよい。
 制御装置30は、冷却運転モードにおいて、第1高元冷媒回路100、第2高元冷媒回路200、および低元冷媒回路300を独立して制御することが可能である。
 制御装置30は、冷却運転モードにおいて、低容量運転モードと高容量運転モードとのうちのいずれか一方を選択可能である。低容量運転モードは、第1高元冷媒回路100を停止させ、低元冷媒回路300および第2高元冷媒回路200を動作させるモードである。高容量運転モードは、第1高元冷媒回路100、第2高元冷媒回路200、および低元冷媒回路300を動作させるモードである。
 なお、制御装置30は、第1高元冷媒回路100、第2高元冷媒回路200、および低元冷媒回路300のうち、低元冷媒回路300のみを動作させる運転モードを選択可能に構成してもよい。
 <第1高元冷媒回路100および第2高元冷媒回路200の動作>
 第1高元冷媒回路100の動作を説明する。第1圧縮機101から吐出した高温かつ高圧のガス状の第1冷媒は、凝縮器として機能する第1熱交換器102に流れる。第1冷媒は、第1熱交換器102内でガス状態の冷媒から液状態の冷媒に変化する。第1熱交換器102から流出した第1冷媒は、第1膨張弁103に流入し、減圧される。その結果、液状態の第1冷媒は、低圧の二相冷媒に変化する。低圧の二相冷媒は、第1膨張弁103から第1カスケードコンデンサ104に流入する。第1カスケードコンデンサ104に流入した第1冷媒は、低元冷媒回路300を流れる第3冷媒から熱を奪う。これにより第3冷媒が凝縮され、第1冷媒はガス化する。ガス化した第1冷媒は第1圧縮機101に吸入される。
 第2高元冷媒回路200の動作は、第1高元冷媒回路100の動作と同様であるので、ここではその説明を繰り返さない。第1高元冷媒回路100と第2高元冷媒回路200との違いは、最大冷却能力の大きさにある。換言すると、第1高元冷媒回路100と第2高元冷媒回路200とでは、低元冷媒回路300を流れる第3冷媒を凝縮する能力に差がある。第2高元冷媒回路200は、第1高元冷媒回路100よりも第3冷媒を凝縮する能力が低くなるように設計されている。
 <低元冷媒回路300の動作>
 低元冷媒回路300の動作を説明する。第3圧縮機301から吐出した高温および高圧のガス状態の第3冷媒は、第1カスケードコンデンサ104および第2カスケードコンデンサ204に流れる。第1高元冷媒回路100が動作しているとき、第1カスケードコンデンサ104は第3冷媒に対して凝縮器として機能する。第2高元冷媒回路200が動作しているとき、第2カスケードコンデンサ204は第3冷媒に対して凝縮器として機能する。第3冷媒は、これにより、ガス状態の冷媒から液状態の冷媒に変化する。第2カスケードコンデンサ204から流出した第3冷媒は、受液器304に流入する。受液器304に溜まった液状態の第3冷媒は、受液器304内のガス圧によって第2冷媒配管17に押し出される。第2冷媒配管17に流入した第3冷媒は、延長配管15を介して第3膨張弁303に向かう。
 第3膨張弁303に流入した第3冷媒は、第3膨張弁303で減圧される。その結果、液状態の第3冷媒は、低圧の二相冷媒に変化する。低圧の二相冷媒は、第3膨張弁303から第3熱交換器302へと移動する。このとき、第3熱交換器302は、蒸発器として機能する。第3熱交換器302に流入した第3冷媒は、庫内の空気と熱を交換する。これにより庫内が冷却される。第3熱交換器302の内部でガス化した第3冷媒は第3圧縮機301に吸入される。
 制御装置30は、様々なパラメータに基づいて第3圧縮機301の周波数や第3ファン3021の回転数を調整する。パラメータとしては、たとえば、吸入温度、吐出温度、熱交換器温度、空気吸込み温度、および湿度などを挙げることができる。制御装置30は、これらのパラメータを低元冷媒回路300に配置されたセンサの値を利用して取得できる。
 たとえば、第3圧縮機301の吐出部に温度センサを設けて第3冷媒の吐出温度を検知してもよい。制御装置30は、温度センサの検知結果と、予め設定した第3圧縮機301の吐出温度との温度差に基づき、低元冷媒回路300に制御信号を送る。低元冷媒回路300は、制御信号に基づいて、第3圧縮機301の回転数、第3ファン3021の回転数、または第3膨張弁303の開度を調整する。この調整によって、制御装置30は、低元冷媒回路300に設けた各種機器の温度が耐熱温度以上に上昇しないように制御することが可能となる。
 なお、精度の観点からすると、各種のパラメータは、センサによって直接に検知することが望ましい。ただし、それらのパラメータの一部は、センサを用いることなく演算によって推定することも可能である。たとえば、圧力センサ10の検出値から、凝縮温度(CT:Condensation Temperature)を推定してもよい。
 図2は、受液器304と第1カスケードコンデンサ104および第2カスケードコンデンサ204との配置関係を示す図である。図2に示されるように、受液器304は、鉛直方向において、第1カスケードコンデンサ104および第2カスケードコンデンサ204よりも低い高さとなる位置に配置される。このため、低元冷媒回路300が起動していないときでも、第1のカスケードコンデンサ104または第2カスケードコンデンサ204にて冷却されて液化した第3冷媒は重力により受液器304へ落下する。このことは、特に低元冷凍サイクルを起動していないときに制御する停止運転モードにおいて有効である。以下、停止運転モードの動作を図1および図2を用いて詳細に説明する。
 <停止運転モードの動作>
 制御装置30は、低元冷凍サイクルを停止しているときに、高元冷凍サイクルを起動させる。このような運転モードを停止運転モードという。制御装置30は、停止運転モードで二元冷凍サイクル装置51を運転することにより、低元冷媒回路300内に滞留する第3冷媒の温度上昇に伴う圧力上昇を防止する。制御装置30は、低元冷凍サイクルを停止しているときの外気温度が基準温度以上となった場合、高元冷凍サイクルを起動する。基準温度は、たとえば、-5℃である。
 低元冷凍サイクルを停止すると、低元冷媒回路300内の圧力が均一化され、やがて、その圧力は外気温度に対応する圧力となる。低元冷媒回路300の内容積に対して封入されている第3冷媒の量が少ない場合には、第3冷媒の平均密度が小さい。このため、ボイルシャルルの法則(P∝ρ×T)に従って圧力が低くなる。しかし、第3冷媒の平均密度が高いと、低元冷媒回路300内の圧力が上昇する。
 低元冷凍サイクルを停止したときに外気温度が高いと、外気から熱を吸収することにより、低元冷媒回路300内の第3冷媒が気化する。これにより、低元冷媒回路300内の圧力が上昇する。なお、一般的な冷凍サイクルでは、内容積に対して冷媒のすべてが液体またはガスにはならないため、圧力が均等の場合、圧力は冷媒の種類に基づいた圧力と温度との関係に依存した値となる。たとえば、冷媒がCO2(二酸化炭素)で温度が20℃の場合、圧力は5.6MPaGである。
 低元冷凍サイクルを停止したときに、高元冷凍サイクルを起動することによって第3冷媒を強制的に冷却することができる。その結果、第3冷媒の温度は外気より下がる。すると、低元冷媒回路300内の第3冷媒の圧力は低下する。
 停止運転モードにおいて制御装置30が起動する高元冷凍サイクルは、第2高元冷凍サイクルである。制御装置30は、低元冷媒回路300内の圧力が異常に上昇することを効果的に抑えるために、第2高元冷凍サイクルの第2圧縮機201の周波数、第2ファン2021の回転数、および第2膨張弁203の開度を制御する。制御装置30は、第2高元冷凍サイクルの起動のみでは低元冷媒回路300内の圧力が異常に上昇することを抑えることができない場合、より凝縮能力の高い第1高元冷凍サイクルを起動してもよい。
 停止運転モードにおいて、第2高元冷凍サイクルを起動することによって、第2高元冷媒回路200と低元冷媒回路300との間に存在する第2カスケードコンデンサ204が第3冷媒に対して凝縮器として機能する。その結果、第2カスケードコンデンサ204内の第3冷媒が凝縮される。第2カスケードコンデンサ204によって凝縮された第3冷媒は液化される。液化された第3冷媒は、第1冷媒配管16を通り、受液器304に滴下する。このとき、図2に示したように、第2カスケードコンデンサ204と受液器304とは鉛直方向において高低差があるため、第3冷媒は自重で受液器304に落ちる。
 液体の第3冷媒が受液器304に滴下されるにつれて、ガス相の容積は減少する。重力の影響を受けにくいガスの第3冷媒は帰還冷媒配管18を経由して第2カスケードコンデンサ204の上流側に吸い上げられる。
 図2に示すように、帰還冷媒配管18は、受液器304の上部に接続されているため、受液器304の上方に存在する第3冷媒を自然に吸引できる。また、逆止弁305は、第1カスケードコンデンサ104から第2カスケードコンデンサ204に向かうべき第3冷媒が、帰還冷媒配管18を介して受液器304に流入するのを阻止する。特に、冷却運転モードにおいて、第3冷媒が第2カスケードコンデンサ204をバイパスして受液器304に流入することを防止できる。
 第2カスケードコンデンサ204の上流側に吸い上げられた蒸気の第3冷媒は、第2カスケードコンデンサ204によって冷却されて液化する。液化した第3冷媒は、受液器304に滴下する。停止運転モードにおいては、低元冷凍サイクルは起動されていないが、このような自然循環によって第3冷媒が低元冷媒回路300を流通する。
 第3冷媒がこのように自然循環することを繰り返すことで、低元冷媒回路300の圧力上昇を効果的に抑制できる。また、圧力が上昇することを抑制するために凝縮させたいガスのみを帰還冷媒配管18に流すことができる。さらに、第2カスケードコンデンサ204を設けることによって、受液器304を直接冷却せずに液体の第3冷媒を受液器304に貯留することができる。
 第1カスケードコンデンサ104および第2カスケードコンデンサ204は共に第3冷媒に対して凝縮器として機能し、受液器304に流入する前の第3冷媒を冷却する。このため、受液器304に冷却機能を設ける必要がない。第1カスケードコンデンサ104および第2カスケードコンデンサ204は、冷却運転モードにおいても冷却機能を発揮する。このため、冷却運転時に第3冷媒を冷却する機能を受液器304に設ける構成と比較して、受液器304の構成を単純化できる。受液器304内で第3冷媒を冷却する場合には、受液器304に蒸発器が必要となるためである。受液器304内に蒸発器を設けた場合、受液器304の容積を縮小せざるを得ない。また、受液器304の容器外周に伝熱管を設けた場合、熱疲労により接触部が劣化しやすいという問題が生じ、さらに、容器が複雑な構成となる。本実施の形態によれば、受液器304の構成を簡素にすることが可能となり、製造コストを低減できる。
 実施の形態1に関わる二元冷凍サイクル装置51は、低元冷凍サイクルが停止中であっても、少なくとも第2高元冷凍サイクルを起動させ、第2カスケードコンデンサ204によって低元冷媒回路300内に滞留する第3冷媒を冷却する。このとき、低元冷媒回路300内で第3冷媒を循環させることで、第3冷媒の温度上昇に伴う圧力上昇を効果的に抑制することができる。これにより、第3圧縮機301、第3熱交換器302、第3膨張弁303、受液器304、および冷媒配管などの各種機器の設計圧力を高く設定する必要がなくなる。その結果、低元冷媒回路300を構成する機器のコストを削減することができる。
 <冷媒回路の比較>
 図3は、第1高元冷媒回路100、第2高元冷媒回路200、および低元冷媒回路300の構成の比較例を示す図である。本実施の形態において、第1高元冷媒回路100および第2高元冷媒回路200は、それぞれの最大冷却能力が互いに異なるように構成されている。より具体的には、第2高元冷媒回路200の冷却能力は、第1高元冷媒回路100の冷却能力よりも低くなるように構成されている。図3では、低元冷媒回路300の能力に関する数値の表示を省略している。
 図3は、第1高元冷媒回路100の定格能力を41kWとし、第2高元冷媒回路200の定格能力を10kWとした例を示す。この場合、高元側の容量(冷却能力)は、41kWと10kWとを足し合わせることで51kWと算出される。51kWに対する第2高元冷媒回路200の定格能力の割合は、図3に示すように約20%である。
 図3に示すように、第2高元冷媒回路200の最大冷却能力は第1高元冷媒回路100および第2高元冷媒回路200による最大冷却能力の50%未満であればよい。すなわち、第2高元冷媒回路200の冷却能力の上限値は、第1高元冷媒回路100および第2高元冷媒回路200による冷却能力の上限値の50%未満であればよい。第2高元冷媒回路200の冷却能力の上限値は、第1高元冷媒回路100および第2高元冷媒回路200による冷却能力の上限値の35%以下であることが好ましい。さらには、第2高元冷媒回路200の冷却能力の上限値は第1高元冷媒回路100および第2高元冷媒回路200による冷却能力の上限値の20%以下であることがより好ましい。
 このように、第1高元冷媒回路100と第2高元冷媒回路200との間で冷却能力に差を設けるためには、第2高元冷媒回路200の第2圧縮機201、第2熱交換器202、第2膨張弁203、および第2カスケードコンデンサ204のうちの少なくとも1つの構成要素を、第1高元冷媒回路100の第1圧縮機101、第1熱交換器102、第1膨張弁103、および第1カスケードコンデンサ104のうちの対応する構成要素よりも能力の小さい構成要素で構成するとよい。
 圧縮機のサイズが冷媒回路のコストおよび冷却能力に最も影響を与える。このため、第1圧縮機101よりも能力が小さい小型の圧縮機で第2圧縮機201を構成することによって、第1高元冷媒回路100と第2高元冷媒回路200との間に冷却能力差を設けることが望ましい。第2圧縮機201を小型化することによって第2高元冷媒回路200のコストを下げることもできる。第2圧縮機201を小型化することによって、第2圧縮機201に必要な材料費用を低減できる。また、第2圧縮機201の容積が縮小されるため、第2高元冷媒回路200に必要な冷媒量を低減することができる。
 第2圧縮機201を小型化することで削減できた費用を第1圧縮機101に割り当てることにより、第1圧縮機101をより高性能化させてもよい。たとえば、本実施の形態では、第1圧縮機101よりも能力が小さい小型の圧縮機で第2圧縮機201を構成している。また、本実施の形態では、第1高元冷媒回路100に比べて第2高元冷媒回路200の冷媒容量が小さい。
 図3に示すように、第1高元冷媒回路100と第2高元冷媒回路200とを下限能力で比較すると、第1高元冷媒回路100の下限能力は10kWであり、第2高元冷媒回路200の下限能力は2.5kWである。なお、ここでは、圧縮機の周波数の範囲から定格能力の25%を下限能力と仮定している。
 第1高元冷媒回路100と第2高元冷媒回路200とで定格能力を異ならせることより、運転状況に応じたきめ細やかな高元冷凍サイクルの運転が可能となる。すなわち、本実施の形態では、高元冷凍サイクルを第1高元冷凍サイクルと第2高元冷凍サイクルとで構成し、かつ、それぞれのサイクルの容量に差を設けることで、運転範囲を拡大している。第1高元冷媒回路100と第2高元冷媒回路200とで定格能力を異ならせることは、冷却運転モードと停止運転モードとのいずれにおいても有効である。
 制御装置30は、庫内を冷却する場合、第3熱交換器302が配置された庫内の設定温度および外気温度などの環境条件に応じて、低容量運転モードと高容量運転モードとのうちのいずれか一方の冷却運転モードを選択する。
 制御装置30は、停止運転モードにおいて、第1高元冷媒回路100よりも冷却能力が低い第2高元冷媒回路200を起動する。停止運転モードでは、冷却運転モードのときよりも、通常、冷却負荷が小さい。冷却運転モードは、庫内を冷却することを目的とする一方、停止運転モードは、低元冷媒回路300内の圧力の異常な上昇の抑制を目的としているためである。冷却負荷が小さい停止運転モードにおいて、もし、能力の高い高元冷凍サイクルを起動すると、高元冷凍サイクル側の圧縮機の起動および起動停止が頻発する。
 ここで、高元冷凍サイクルを単一の冷凍サイクルで構成した場合を考える。単一の高元冷凍サイクルの定格能力を51kWとする。51kWという値は、図3に示す第1高元冷媒回路100の定格能力と第2高元冷媒回路200の定格能力とを足し合わせた数字である。
 必要冷却能力の25%程度が高元冷凍サイクル側の圧縮機の運転範囲の下限と仮定すると、定格能力が51kWの場合、13kWが下限能力となる。13kWという値は、停止運転モードに必要な冷却能力に対して大き過ぎるかもしれない。この場合、必要とされる冷却能力に対して、高元冷凍サイクルの能力が大き過ぎるため、高元冷凍サイクルの圧縮機の吸込み圧力が低下する。その結果、圧縮機が起動および起動停止を繰り返すことになり、二元冷凍サイクル装置の信頼性が低下するおそれがある。また、停止運転モードにおいて過剰な冷却運転を継続することになるため、消費電力が増加するおそれもある。
 そこで、本実施の形態では、2つのサイクルで高元冷凍サイクルを構成している。図3に示すように、高元冷凍サイクルの容量を2つに分けることによって、2.5kW~51kWの運転範囲が確保される。下限の2.5kWの運転能力は、第2高元冷媒回路200によって実現可能とされる。上限の51kWの運転能力は、第1高元冷媒回路100および第2高元冷媒回路200によって実現可能とされる。
 停止運転モードでは、第2高元冷媒回路200を起動する。これによって、停止運転モードにおいて、高元冷凍サイクルの圧縮機が起動および起動停止を繰り返すことを抑制している。もちろん、停止運転モードのみならず、冷却運転モードにおいても、高元冷凍サイクル側で必要に応じた適切な能力を発揮できるため、高元冷凍サイクルの圧縮機が起動および起動停止を繰り返すことが抑制される。すなわち、本実施の形態では、高元冷凍サイクルを第1高元冷凍サイクルと第2高元冷凍サイクルとで構成し、かつ、それぞれのサイクルの容量に差を設けることで、運転範囲を拡大している。なお、停止運転モードにおいて必要な冷却能力として、たとえば、1kW~4kW程度を想定する。
 本実施の形態によれば、高元冷凍サイクル側の第1圧縮機101および第2圧縮機201が起動および起動停止を繰り返すことを防止できる。このため、省エネルギー性を向上させることができる。特に、圧縮機の起動時に起動ロスが生じるため、圧縮機が起動および起動停止を繰り返さないことは重要である。
 <冷媒の種類>
 低元冷媒回路300と、第1高元冷媒回路100と、第2高元冷媒回路200とに封入する冷媒の種類の組み合わせは、様々に決定することができる。各冷媒回路の冷媒を同一の冷媒としてもよい。さらに、第1高元冷媒回路100と第2高元冷媒回路200とに同じ冷媒を封入し、低元冷媒回路300には第1高元冷媒回路100および第2高元冷媒回路200に封入する冷媒とは異なる冷媒を使用してもよい。
 一般に、冷媒は、その種類によって、理論性能、GWP(Global-warming potential)、燃焼性、毒性などが異なる。たとえば、R290やR32などの冷媒は、理論性能は高いが、燃焼性、毒性、およびGWP(Global-warming potential)が高い。このため、燃焼性、毒性、およびGWPを考慮すると、これらの冷媒を冷媒回路に多量に封入することは避けるべきである。一方、R1234yfなどは、オゾン破壊係数および地球温暖化係数が低く、地球環境に極めて優しい冷媒とされている。CO2のような自然冷媒は、機器の総GWPを大幅に削減できるというメリットがある。さらに、CO2のような不燃ガスは、万一の冷媒漏洩を考慮すると、室内機に使用することが望ましい。
 したがって、冷媒の特性と冷媒を封入する冷媒回路の特性とを考慮して、適切な冷媒を選定することが好ましい。具体的には、冷媒の種類は、封入する冷媒回路が、室内機2を通る低元冷媒回路300であるか、室外機1に用いる第1高元冷媒回路100または第2高元冷媒回路200であるか、という観点で選定することが考えられる。また、冷媒の種類は、封入する冷媒回路が、冷却性能の高い第1高元冷媒回路100であるか、冷却性能の低い第2高元冷媒回路200であるか、という観点で選定することが考えられる。本実施の形態では、第1高元冷媒回路100に比べて第2高元冷媒回路200の冷媒容量が少ない。
 図3には、第1高元冷媒回路100、第2高元冷媒回路200、および低元冷媒回路300の各々に異なる冷媒を封入した例が示されている。ここでは、冷媒の特性と冷媒を封入する冷媒回路の特性とを考慮して、適切な冷媒を選定した例を示している。
 <高元冷媒回路の冷媒>
 高容量の第1高元冷媒回路100には地球環境に優しいR1234yfを、低容量の第2高元冷媒回路200には理論性能の高いR32を、それぞれ封入している。つまり、第1冷媒はR1234yfであり、第2冷媒はR32である。また、室内機2を通る低元冷媒回路300には不燃ガスであるCO2を封入している。つまり、第1冷媒はCO2である。第2高元冷媒回路200には、R32に代えてR290またはR714(アンモニア)を封入してもよい。低元冷媒回路300には、CO2に代えてhfc1132Aを封入してもよい。
 R290やR32といった冷媒のように、理論性能は高いが、燃焼性や毒性、高GWPを考慮すると、多量に封入することが懸念される冷媒は、第1高元冷媒回路100よりも冷媒容量の小さい第2高元冷媒回路200に封入する。このように、容量の小さい第2高元冷媒回路200に対して、第1高元冷媒回路100および低元冷媒回路300に封入する冷媒よりも理論性能の高いあるいは実使用上の性能が高い冷媒を封入することで、システムのCOP(Coefficient Of Performance)を向上させることができる。
 仮に、第1高元冷媒回路100および第2高元冷媒回路200の両方に地球環境に極めて優しい冷媒とされるR1234yfを使用していた場合、第2高元冷媒回路200の冷媒を、R1234yfに比べてより理論性能の高いR290に変更することが望ましい。
 このように、本実施の形態では、R32などの理論性能は高いが、燃焼性、毒性、およびGWPが高いとはいえない冷媒を、使用冷媒量が少ない第2高元冷媒回路200に採用する。これにより、冷媒のデメリットが装置に与える影響を抑えることができる。一方、R1234yfなどの地球環境に優しいとされる冷媒を使用冷媒量が多い第1高元冷媒回路100に用いる。これにより、R32のような冷媒を第1高元冷媒回路100および第2高元冷媒回路200の両方に採用した二元冷凍サイクル装置に対して、GWPの上昇を抑制しつつシステムのCOPを向上させることができる。
 さらに、本実施の形態によれば、各国の規制状況に柔軟に対応することもできる。たとえば、GWPの規制が緩やかである国においては、第1高元冷媒回路100にR32を、第2高元冷媒回路200にR290を、それぞれ封入する。これにより、システムCOPの最大化を狙うことが可能である。一方、GWPの規制が厳しい国においては、第1高元冷媒回路100にR1234yfを、第2高元冷媒回路200にR290またはR32を、それぞれ封入する。これにより、GWPを規制値以下にしつつシステムCOPの向上を狙うことが可能である。
 <低元冷媒回路の冷媒>
 図3には、低元冷媒回路300にCO2を封入する例が示されている。低元冷媒回路300の第3冷媒は室内機2を流れるため、不燃かつ高圧冷媒であるCO2を低元冷媒回路300の第3冷媒として適用することが好ましい。CO2は、自然冷媒のため、機器の総GWPを大幅に削減できる。
 本実施の形態に関わる二元冷凍サイクル装置51は、低元冷凍サイクルと高元冷凍サイクルとの2種類の冷凍サイクルを実現する。このため、高元冷凍サイクルにおいて低元側の凝縮圧力を低減できる。したがって、低元冷媒回路300に高圧冷媒であるCO2を採用しても、低元冷媒回路300には、耐圧圧力の低い冷媒配管および各要素機器を適用することができる。このため、従来は使用できなかった要素機器を低元冷媒回路300に使用することも可能である。
 たとえば、受液器304には、フロン(R410A)に対する圧力耐性があればよい。同様に、第1カスケードコンデンサ104および第2カスケードコンデンサ204のうち、低元冷媒回路300が通過する部分にも、フロンに対する圧力耐性があればよい。低元冷媒回路300には、冷媒配管などの数多くの要素機器が設けられているため、必要とされる耐性圧力が低くなることで、低コスト化を実現可能である。
 単段冷凍サイクル装置または2段冷凍サイクル装置では、高い圧力耐性が求められるため、高い圧力耐性を有する高価な機器を適用せざるを得ない。しかし、本実施の形態では、二元冷凍サイクルを採用しているため、そのような必要がない。
 一般に、CO2は生産量が少なく、また、冷媒としてCO2を使用した場合に求められる耐圧基準は厳しい。このため、CO2を採用すると高コストになりがちである。本実施の形態に関わる二元冷凍サイクル装置51は、単段冷凍サイクル装置または2段冷凍サイクル装置にCO2を適用する場合と比較して、CO2を凝縮させる側で必要とされる圧力が低い。低圧ほど冷媒の密度は小さくなる。
 このため、凝縮器の容積が同等の場合、冷媒として必要なCO2の量を低減することができる。その結果、本実施の形態によれば、CO2に求められる厳しい耐圧基準をクリアし、かつ、CO2にかかるコストも抑えることができる。また、本実施の形態によれば、単段冷凍サイクル装置または二段冷凍サイクル装置において使用できない耐圧の低い要素機器および配管を使用することも可能である。
 以上のとおり、本実施の形態によれば、低元冷媒回路300側の凝縮温度を低減した状態で運転させることができることで、低元冷媒回路300の冷媒配管に求められる耐圧圧力を低減させることができる。また、高元側と低元側とで別々の冷凍サイクルを有するため、高元側の冷媒と低元側の冷媒とに関して、各国の規制に柔軟に対応することができる。
 たとえば、自然冷媒しか許容しない国においては、低元冷媒回路300にCO2を、第1高元冷媒回路100および第2高元冷媒回路200にR290を、それぞれ適用する。低GWPを求める国においては、低元冷媒回路300にCO2を、第1高元冷媒回路100および第2高元冷媒回路200にR1234yfを、それぞれ適用する。このように、低元冷媒回路300の冷媒の仕様を変更することなく、高元側の冷媒を変更することで、各国の冷媒規制に対応することができる。
 図4は、実施の形態1に関わる二元冷凍サイクル装置51の変形例1を示す図である。変形例1では、受液器304から延びる帰還冷媒配管18が第1カスケードコンデンサ104と第3圧縮機301との間に接続されている。このため、ガス化した第3冷媒は、受液器304から第1カスケードコンデンサ104に流入する。第1カスケードコンデンサ104に流入した第3冷媒は、第1カスケードコンデンサ104で冷却されてから第2カスケードコンデンサ204に流入する。このため、図1に示す構成と比較すると、変形例1では、より一層、第3冷媒に対する冷却効果を得ることができる。
 なお、受液器304から延びる帰還冷媒配管18を接続する位置は、第3圧縮機301の吐出部分から第1カスケードコンデンサ104の入口部分までのどの位置であってもよい。受液器304から延びる帰還冷媒配管18は、第3圧縮機301の吐出部に接続することがより好ましい。第3冷媒の圧力は、第3圧縮機301の吐出部で圧力が最も高くなるためである。
 <熱交換器の一体化>
 図5は、第1熱交換器102と第2熱交換器202とを一体化した第5熱交換器502を示す図である。図1の符号Aに示す構成部分を一体化したものが第5熱交換器502に相当する。
 第5熱交換器502は、第1冷媒が流れる第1高元冷媒回路100と、第2冷媒が流れる第2高元冷媒回路200とが分割されつつ、第1熱交換器102と第2熱交換器202とが一体化された構成を備えている。第5熱交換器502には第5ファン5021が設けられる。ただし、第5熱交換器502に対して、複数台のファンを設けてもよい。
 第1熱交換器102と第2熱交換器202とを一体化することにより、機器を配置するスペースを有効活用できる。また、第1熱交換器102と第2熱交換器202とを一体化することにより、コストを低減できる。なお、一体型の第5熱交換器502は、図4に示した変形例1に適用してもよい。
 図6は、実施の形態1に関わる二元冷凍サイクル装置51に無停電電源装置205を設けた例を示す図である。図6に示すように、第2高元冷媒回路200は、無停電電源装置205に接続されている。
 なお、無停電電源装置205に制御装置30を接続してもよい。あるいは、制御装置30に対して無停電電源装置205と別の無停電電源装置を接続してもよい。これにより、停電が発生することによって低元冷媒回路300が停止した場合でも、制御装置30は、第2高元冷媒回路200を用いて停止運転モードによる運転をすることができる。その結果、停電時に低元冷媒回路300内の圧力が異常に上昇することを防止できる。それゆえ、停電時に第3冷媒を低元冷媒回路300から外部に取り出すことによって圧力上昇を抑える作業をする必要がない。本構成によれば、信頼性を低下させることなく、低元冷凍サイクルの温度上昇に伴う圧力上昇を抑制することができる。
 第1高元冷媒回路100にも無停電電源装置205を設けてもよい。しかし、第1高元冷媒回路100と第2高元冷媒回路200とのうち、第2高元冷媒回路200に対して優先的に無停電電源装置205を設けることが好ましい。停止運転モードでは第2高元冷媒回路200を起動するからである。
 また、第2高元冷媒回路200の方が第1高元冷媒回路100よりも容量が小さいため、無停電電源装置205に要求される電源容量が小さくて済む。このため、第1高元冷媒回路100よりも第2高元冷媒回路200に無停電電源装置205を設けた方が経済的である。また、第2高元冷媒回路200には容量の少ない小型の無停電電源装置205を採用できる。
 図7は、変形例1の二元冷凍サイクル装置51に無停電電源装置205を設けた例を示す図である。図7に示すように、変形例1にも図6に示す構成と同様に無停電電源装置205を適用できる。一体型の第5熱交換器502を採用した二元冷凍サイクル装置51において、図6に示す構成と同様に無停電電源装置205を適用してもよい。
 図8は、第1高元冷凍サイクルの周波数範囲と冷却能力との関係、および第2高元冷凍サイクルの周波数範囲と冷却能力との関係を示すグラフ1である。図8において、符号L1aは、第1高元冷凍サイクルを構成する第1圧縮機101の周波数範囲を示す。符号L2aは、第2高元冷凍サイクルを構成する第2圧縮機201の周波数範囲を示す。
 図8に示すように、第1高元冷凍サイクルの方が第2高元冷凍サイクルよりも最大冷却能力は高い。一方、第2高元冷凍サイクルの方が第1高元冷凍サイクルよりも最小の冷却能力は低い。第1高元冷凍サイクルの下限周波数はf1minであり、第1高元冷凍サイクルの上限周波数はf1maxである。第2高元冷凍サイクルの下限周波数はf2minであり、第2高元冷凍サイクルの上限周波数はf2maxである。
 図8に示されるように、第1高元冷凍サイクルの下限周波数f1minで出力可能な冷却能力に対し、第2高元冷凍サイクルの上限周波数f2maxで出力可能な冷却能力は大きくなるよう設計されている。このため、第1高元冷凍サイクルの冷却能力と、第2高元冷凍サイクルの冷却能力とに重なる範囲Caが生じる。
 第1高元冷凍サイクルの冷却能力の範囲を10kW~40kWに設計し、第2高元冷凍サイクルの冷却能力の範囲を2kW~10kWに設計した仮想例を考える。仮想例の場合、両高元冷凍サイクルの冷却能力は10kWを境界にして、下の能力と上の能力とに分かれることになる。
 このため、両高元冷凍サイクルの冷却能力には、図8に示すような重なる範囲が存在しない。両高元冷凍サイクルを起動している場合の最小冷却能力は、12kWである。低元冷凍サイクルの必要能力が高元冷凍サイクルの冷却能力よりも小さいときに、冷却能力低減のために第1高元冷凍サイクルを停止し、高元冷凍サイクルとして第2高元冷凍サイクルのみを動作させた場合、10~12kWの間の冷却能力を高元冷凍サイクルで提供できないという問題が生じる。
 しかし、図8に示されるように、第1高元冷凍サイクルの冷却能力と、第2高元冷凍サイクルの冷却能力とに重なる範囲Caを設けることによって、そのような問題が発生することを防止できる。たとえば、上記の仮想例の場合、第2高元冷凍サイクルの最大冷却能力を12kWに引き上げることによって、図8に示すように、第1高元冷凍サイクルの冷却能力と、第2高元冷凍サイクルの冷却能力とに重なる範囲Caを設けることができる。
 図9は、第1高元冷凍サイクルの周波数範囲と冷却能力との関係、および第2高元冷凍サイクルの周波数範囲と冷却能力との関係を示すグラフ2である。図9に示す例では、第1高元冷凍サイクルの下限周波数f1minと、第2高元冷凍サイクルの下限周波数f2minとが一致しており、第1高元冷凍サイクルの上限周波数f1maxと、第2高元冷凍サイクルの上限周波数f2maxとが一致している。しかし、図9に示す例の場合も図8に示す例と同様に第1高元冷凍サイクルの冷却能力と、第2高元冷凍サイクルの冷却能力とに重なる範囲Cbが生じるように設計されている。このため、図8に示す例と同様に、上記仮想例によって生じる上記のような問題を解消することができる。
 このように、本実施の形態において、第1高元冷媒回路100の冷却能力の上限値は、第2高元冷媒回路200の冷却能力の上限値よりも大きい。また、本実施の形態において、第1高元冷媒回路100の冷却能力の範囲に、第2高元冷媒回路200の冷却能力の上限値が含まれる。図8および図9のいずれのパターンで、実施の形態1に関わる二元冷凍サイクル装置51の高元冷凍サイクルの周波数および冷却能力を設計してもよい。
 <運転モードの制御>
 図10は、実施の形態1に関わる運転モードの制御の内容を示すフローチャートである。制御装置30は、本フローチャートに基づく処理を実行することによって運転モードを冷却運転モードと停止運転モードとに切り替える。
 制御装置30は、はじめに、冷却運転が停止しているか否かを判定する(ステップS1)。停電、その他の事情によって低元冷媒回路300の運転が停止している場合、制御装置30は、ステップS1においてYESと判定し、停止運転モードに移行する(ステップS2)。低元冷媒回路300の運転が停止していない場合、制御装置30は、ステップS1においてNOと判定し、冷却運転モードに移行する(ステップS3)。停止運転モードの処理は図11に開示されている。冷却運転モードの処理は図12に開示されている。
 <停止運転モードの制御>
 図11は、停止運転モードの制御の内容を示すフローチャートである。制御装置30は、はじめに、P10が閾値Bを超えているか否かを判定する(ステップS10)。P10は、低元冷媒回路300の圧力を示す。制御装置30は、低元冷媒回路300に設けた圧力センサ10の出力値に基づいて圧力P10を特定する。
 制御装置30は、停止運転モードにおいて、低元冷媒回路300の圧力P10を一定の範囲に制御する。図11の枠W10には、圧力P10と閾値との関係が示されている。制御装置30は、圧力が閾値Bを超えないように制御する。図11の枠W10に示す(1)、(2)、および(3)は、圧力センサ10によって検出される圧力P10の範囲を示す。(1)~(3)のうち、制御装置30が目標とする圧力の基準範囲は(2)である。
 たとえば、低元冷媒回路300内の第3冷媒としてCO2を採用した場合、閾値Aは3.38MPaGとすることが好ましい。CO2の飽和温度が0℃のとき、CO2の圧力が3.38MPaGとなることを想定している。閾値Bは3.67MPaGとすることが好ましい。CO2の飽和温度が3℃のとき、CO2の圧力が3.67MPaGであることを想定している。
 ただし、閾値の圧力範囲を3.38MPaG~4.15MPaGとしてもよい。これは、CO2の飽和温度0℃~7.7℃に相当する。また、閾値Aは、CO2の飽和温度が0℃未満のときの温度に対応する値としてもよい。ただし、第1カスケードコンデンサ104および第2カスケードコンデンサ204への霜の付着を抑制するためには、CO2の飽和温度が0℃のときの温度に対応する値とすることが望ましい。
 制御装置30は、ステップS10においてP10が閾値Bを超えていないと判定した場合、P10が閾値Bを超えるまで、ステップS10の判定を繰り返す。制御装置30は、ステップS10において圧力P10が閾値Bを超えていると判定した場合、圧力P10を枠W10の(2)の範囲に低下させるために、第2高元冷凍サイクルを運転する(ステップS11)。これにより、第2高元冷媒回路200が起動する。第2高元冷媒回路200が起動すると、第2カスケードコンデンサ204によって第3冷媒が冷却される。
 制御装置30は、ステップS11の後、破線で示すステップS101の処理を実行する。ステップS101は、第2熱交換器202の第2ファン2021の回転数と第2膨張弁203の開度とを調整する処理であり、ステップS12とステップS13とから構成される。ステップS12において、制御装置30は、第2ファン2021の現状の回転数が目標の凝縮温度(CT:Condensation Temperature)を達成しているか、および第2膨張弁(LEV)203の現状の開度が目標の過熱度(SH:superheat)を達成しているか、を判定する。それぞれの目標を達成している場合、制御装置30はS14に移行する。それぞれの目標を達成していない場合、制御装置30は、第2ファン2021の回転数と第2膨張弁203の開度とを再設定した後、再度、ステップS12に移行する。
 制御装置30は、ステップS101の後、圧力P10が「圧力P10<閾値B」、かつ、「圧力P10>閾値A」を満たすか否かを判定する(ステップS14)。すなわち、制御装置30は、圧力P10が枠W10に示す(2)の範囲にあるか否かを判定する。
 制御装置30は、圧力P10が枠W10に示す(2)の範囲にある場合、ステップS14の処理を繰り返す。制御装置30は、圧力P10が枠W10に示す(2)の範囲から外れた場合、圧力P10が「圧力P10<閾値A」を満たすか否かを判定する。ここでは、圧力P10が枠W10に示す(1)の範囲にあるか否かが判定される。
 ステップS15において、圧力P10が「圧力P10<閾値A」を満たさない場合、圧力P10が枠W10に示す(3)の範囲にある。したがって、制御装置30は、ステップS15においてNOと判定した場合、第2圧縮機201(Comp201)の周波数を一定値上昇させる(ステップS16)。その後、制御装置30は、既に説明したステップS101と同じ処理を実行する(ステップS17)。その後、制御装置30は、ステップS14の処理に移行する。
 ステップS15において、圧力P10が「圧力P10<閾値A」を満たす場合、圧力P10が枠W10に示す(1)の範囲にある。この場合、低元冷媒回路300の圧力は十分に低いと判定できる。換言すると、高元冷凍サイクルの冷却能力が高過ぎると判定できる。この場合、第2圧縮機201の周波数を下げる必要がある。しかし、第2圧縮機201の周波数が既に下限周波数に達している可能性がある。また、第2圧縮機201の周波数が既に下限周波数に達していたとしても、外気温度が高い状態で第2高元冷凍サイクルの運転を直ちに停止すると、低元側冷凍サイクルの圧力が急上昇するおそれがある。
 そこで、制御装置30は、ステップS15でYESと判定した場合、第2圧縮機201(Comp201)の周波数は下限周波数であり、かつ、外気温度が設定温度以下であるか否かを判定する(ステップS20)。制御装置30は、温度センサ20の出力値に基づいて外気温度を特定する。
 制御装置30は、ステップS20においてNOと判定した場合、第2圧縮機201(Comp201)の周波数を一定値下げる(ステップS18)。その後、制御装置30は、既に説明したステップS101と同じ処理を実行する(ステップS19)。その後、制御装置30は、ステップS14の処理に移行する。
 制御装置30は、ステップS20においてYESと判定した場合、第2高元冷凍サイクルを停止する(ステップS21)。外気温度が設定温度以下でかつ第2圧縮機201(Comp201)の周波数が下限周波数であれば、低元冷媒回路300の圧力が急上昇する危険性がないと判定できる。このため、ステップS21において第2高元冷凍サイクルを停止する。その後、停止運転モードの処理を終了する。
 図11を用いて説明したように、制御装置30は、停止運転モードにおいて、圧力センサ10によって検出される圧力が閾値A~閾値Bの範囲に入るように第1高元冷媒回路100および第2高元冷媒回路200を制御する。
 図11に示す停止運転モードの処理では、低元冷媒回路300の圧力が異常に上昇することを第2高元冷凍サイクルで防止している。しかしながら、停止運転モードにおいて、第1高元冷凍サイクルをさらに利用してもよい。たとえば、図11のステップS16において、第2圧縮機201(Comp201)の周波数が上限周波数に達しているときには、第1高元冷凍サイクルを起動することが考えられる。
 <冷却運転モードの制御>
 図12は、冷却運転モードの制御の内容を示すフローチャートである。制御装置30は、はじめに、外気温度と室内機2において設定されている蒸発温度とから、第3圧縮機301(Comp301)の目標周波数を設定する(ステップS30)。制御装置30は、温度センサ20の出力値に基づいて外気温度を特定する。
 ステップS30の後、制御装置30は、第3圧縮機301(Comp301)の周波数が閾値Xを超えているか否かを判定する(ステップS31)。閾値Xは、要求される高元冷凍サイクルの運転能力を判定するための値である。制御装置30は、第3圧縮機301(Comp301)の周波数が閾値Xを超えていると判定したとき、第1および第2高元冷凍サイクルを運転する(ステップS32)。制御装置30は、第3圧縮機301(Comp301)の周波数が閾値Xを超えていないと判定したとき、第2高元冷凍サイクルを運転する(ステップS34)。
 このように、制御装置30は、第3圧縮機301(Comp301)を起動するときに設定された周波数に基づいて、第1高元冷媒回路100および第2高元冷媒回路200を起動するタイミングを制御する。
 図13は、庫内の蒸発温度の設定値と冷却能力との関係を示すグラフである。ここで、図13を参照して、閾値Xについて説明する。グラフにおいて、横軸は、庫内に配置される室内機2において設定される凝縮温度(ET:Evaporation Temperature)を示す。縦軸は冷却能力に対応する圧縮機の周波数(Hz)を示す。図13に示すように、必要とされる冷却能力は外気温度AT(Outside air Temperature)によって変化する。
 一般には、外気温度が高いほど、必要とされる冷却能力は高くなる。たとえば、図13では、外気温度が20℃の場合と-15℃の場合とを比較した例を示している。本実施の形態では、このグラフに基づいて、閾値Xを60Hzと定めている。ただし、この値は例示に過ぎない。
 図12のフローチャートに戻って説明を続ける。制御装置30は、ステップS32において第1および第2高元冷凍サイクルの運転を行う場合、既に説明したステップS101と同様の処理を第1および第2高元冷凍サイクルで実行する(ステップS33)。
 これにより、第1高元冷媒回路100においては、第1熱交換器102の第1ファン1021の回転数と第1膨張弁103の開度とが必要に応じて調整される。また、第2高元冷媒回路200においては、第2熱交換器202の第2ファン2021の回転数と第2膨張弁203の開度とが必要に応じて調整される。制御装置30は、ステップS33の後、高容量運転モードを実行する。高容量運転モードの処理は図14に開示されている。
 制御装置30は、ステップS34において第2高元冷凍サイクルの運転を行う場合、既に説明したステップS101と同様の処理を第2高元冷凍サイクルで実行する(ステップS35)。これにより、第2高元冷媒回路200において、第2熱交換器202の第2ファン2021の回転数と第2膨張弁203の開度とが必要に応じて調整される。制御装置30は、ステップS35の後、低容量運転モードを実行する。低容量運転モードの処理は図15に開示されている。
 <高容量運転モード>
 図14は、高容量運転モードの制御の内容を示すフローチャートである。制御装置30は、はじめに、圧力P10が「P10≦閾値B」かつ「P10≧閾値A」を満たすか否かを判定する(ステップS40)。図11を用いて既に説明されたとおり、P10は、低元冷媒回路300の圧力を示す。制御装置30は、低元冷媒回路300に設けた圧力センサ10の出力値に基づいて圧力P10を特定する。圧力P10と閾値Aおよび閾値Bとの関係は、図11の枠W10に示されている。
 圧力P10が「P10≦閾値B」かつ「P10≧閾値A」を満たす場合、圧力P10は、図11の枠W10が示す(2)の範囲にある。この場合、圧力P10は適正と判定できる。したがって、制御装置30は、ステップS40に処理を戻す。圧力P10が「P10≦閾値B」かつ「P10≧閾値A」を満たさない場合、制御装置30は、圧力P10が「P10<閾値A」を満たすか否かを判定する(ステップS41)。
 ステップS41において、圧力P10が「P10<閾値A」を満たす場合、圧力P10は、図11の枠W10が示す(1)の範囲にある。このとき、圧力P10は下限の閾値Aよりも低い値となっている。この場合、低元冷媒回路300の圧力は十分に低いと判定できる。換言すると、高元冷凍サイクルの冷却能力が高過ぎると判定できる。この場合、高元冷凍サイクル側の圧縮機の周波数を下げる必要がある。しかし、高元冷凍サイクル側の第1圧縮機101および第2圧縮機201のいずれの周波数も既に下限周波数に達している可能性がある。
 そこで、制御装置30は、ステップS41でYESと判定した場合、第1圧縮機101(Comp101)および第2圧縮機201(Comp201)の周波数はいずれも下限周波数に達しているか否かを判定する(ステップS43)。
 制御装置30は、ステップS43においてNOと判定した場合、高元冷凍サイクルの圧縮機の周波数を低下させる(ステップS52)。ステップS52において、制御装置30は、第1圧縮機101(Comp101)および第2圧縮機201(Comp201)のうち、第1圧縮機101(Comp101)の周波数を優先して低下させる。
 より具体的には、第1圧縮機101(Comp101)の周波数が下限に達していない場合、第1圧縮機101(Comp101)の周波数を一定値低下させてから、制御装置30は、次のステップS53に進む。このとき、第2圧縮機201(Comp201)の周波数は低下させない。ステップS43において、第1圧縮機101(Comp101)の周波数が下限に達し、かつ、第2圧縮機201(Comp201)の周波数が下限に達していない場合、制御装置30は、ステップS52において、第2圧縮機201(Comp201)の周波数を一定値低下させてから、ステップS53に進む。
 制御装置30は、ステップS53において、既に説明したステップS101と同様の処理を第1および第2高元冷凍サイクルで実行する。
 これにより、第1高元冷媒回路100においては、第1熱交換器102の第1ファン1021の回転数と第1膨張弁103の開度とが必要に応じて調整される。また、第2高元冷媒回路200においては、第2熱交換器202の第2ファン2021の回転数と第2膨張弁203の開度とが必要に応じて調整される。制御装置30は、ステップS53の後、処理をステップS40に戻す。
 ステップS43の処理が繰り返し行われた場合、やがて、第1圧縮機101(Comp101)および第2圧縮機201(Comp201)の周波数が共に下限値に達するかもしれない。第1圧縮機101(Comp101)および第2圧縮機201(Comp201)の周波数が共に下限値に達した場合、制御装置30は、ステップS43においてYESと判定する。このとき、第1および第2高元冷凍サイクルの双方を起動しているときの高元冷凍サイクルの冷却能力が下限に達している。
 制御装置30は、ステップS43においてYESと判定したとき、第1高元冷凍サイクルを停止させてから(ステップS54)、運転モードを高容量運転モードから低容量運転モードに切り替える。
 ステップS41において、圧力P10が「P10<閾値A」を満たさない場合、圧力P10は、図11の枠W10が示す(3)の範囲にある。このとき、圧力P10は上限の閾値Bを超えた値となっている。
 圧力P10が上限の閾値Bを超えている場合、高元冷凍サイクルの能力を高める必要がある。制御装置30は、ステップS41において、圧力P10が「P10<閾値A」を満たさないと判定した場合、第1圧縮機101(Comp101)および第2圧縮機201(Comp201)の周波数がいずれも上限値に達しているか否かを判定する(ステップS42)。
 制御装置30は、ステップS42においてNOと判定した場合、高元冷凍サイクルの圧縮機の周波数を上昇させる(ステップS44)。ステップS44において、制御装置30は、第1圧縮機101(Comp101)および第2圧縮機201(Comp201)のうち、第2圧縮機201(Comp201)の周波数を優先して上昇させる。
 より具体的には、第2圧縮機201(Comp201)の周波数が上限に達していない場合、第2圧縮機201(Comp201)の周波数を一定値上昇させてから、次のステップS45に進む。このとき、第1圧縮機101(Comp101)の周波数は上昇させない。ステップS42において、第2圧縮機201(Comp201)の周波数が上限に達し、かつ、第1圧縮機101(Comp101)の周波数が上限に達していない場合、制御装置30は、ステップS44において、第1圧縮機101(Comp101)の周波数を一定値上昇させてから、ステップS45に進む。
 制御装置30は、ステップS45において、既に説明したステップS101と同様の処理を第1および第2高元冷凍サイクルで実行する。
 これにより、第1高元冷媒回路100においては、第1熱交換器102の第1ファン1021の回転数と第1膨張弁103の開度とが必要に応じて調整される。また、第2高元冷媒回路200においては、第2熱交換器202の第2ファン2021の回転数と第2膨張弁203の開度とが必要に応じて調整される。制御装置30は、ステップS45の後、処理をステップS40に戻す。
 ステップS44の処理が繰り返し行われた場合、やがて、第1圧縮機101(Comp101)および第2圧縮機201(Comp201)の周波数が共に上限値に達するかもしれない。第1圧縮機101(Comp101)および第2圧縮機201(Comp201)の周波数が共に上限値に達した場合、制御装置30は、ステップS42においてYESと判定する。このとき、高元冷凍サイクルの冷却能力が上限に達している。
 ステップS42においてYESと判定した場合、制御装置30は、能力不足であることをユーザーに通知する(ステップS46)。制御装置30は、たとえば、室内機2を操作するためのリモートコントローラーに能力不足を意味するメッセージを表示する。
 制御装置30はステップS46の処理の後、低元冷媒回路300を構成する第3圧縮機301(Comp301)の周波数を一定値下げる(ステップS47)。制御装置30は、既に説明したステップS101と同様の処理を各冷凍サイクルに対して実行する(ステップS48)。その後、制御装置30は、圧力P10が「P10≦閾値B」を満たすか否かを判定する(ステップS49)。
 ステップS49にて、圧力P10が「P10≦閾値B」を満たさない場合、制御装置30は、ステップS46に処理を戻す。ステップS49にて、圧力P10が「P10≦閾値B」を満たす場合、制御装置30は、低元冷凍サイクルを停止するためのユーザーの操作が検出されたか否かを判定する(ステップS50)。制御装置30は、低元冷凍サイクルを停止するためのユーザーの操作が検出されるまで、ステップS50の処理を継続する。ユーザーの操作は、たとえば、室内機2に対応するリモートコントローラーから制御装置30に入力される。なお、制御装置30は、ステップS50でNOと判定したとき、ステップS46に処理を戻して、再度、ユーザーに能力不足を通知してもよい。
 制御装置30は、ステップS50においてユーザーの操作を検出すると、低元冷凍サイクルおよび第1高元冷凍サイクルを停止する(ステップS51)。次に、制御装置30は、運転モードを停止運転モードに切り替える。運転モードが停止運転モードに切り替えられることにより、低元冷媒回路300の圧力が異常に高まることが防止される。
 図14を用いて説明したように、制御装置30は、高容量運転モードにおいて、圧力センサ10によって検出される圧力が閾値A~閾値Bの範囲に入るように第1高元冷媒回路100および第2高元冷媒回路200を制御する。
 <低容量運転モード>
 図15は、低容量運転モードの制御の内容を示すフローチャートである。制御装置30は、はじめに、圧力P10が「P10≦閾値B」かつ「P10≧閾値A」を満たすか否かを判定する(ステップS70)。図11を用いて既に説明されたとおり、P10は、低元冷媒回路300の圧力を示す。制御装置30は、低元冷媒回路300に設けた圧力センサ10の出力値に基づいて圧力P10を特定する。圧力P10と閾値Aおよび閾値Bとの関係は、図11の枠W10に示されている。
 圧力P10が「P10≦閾値B」かつ「P10≧閾値A」を満たす場合、圧力P10は、図11の枠W10が示す(2)の範囲にある。この場合、圧力P10は適正と判定できる。この場合、制御装置30は、ステップS70に処理を戻す。圧力P10が「P10≦閾値B」かつ「P10≧閾値A」を満たさない場合、制御装置30は、圧力P10が「P10<閾値A」を満たすか否かを判定する(ステップS71)。
 ステップS71において、圧力P10が「P10<閾値A」を満たす場合、圧力P10は、図11の枠W10が示す(1)の範囲にある。このとき、圧力P10は下限の閾値Aよりも低い値となっている。この場合、低元冷媒回路300の圧力は十分に低いと判定できる。換言すると、高元冷凍サイクルの冷却能力が高過ぎると判定できる。この場合、高元冷凍サイクル側で起動している第2圧縮機201の周波数を下げる必要がある。しかし、第2圧縮機201の周波数が既に下限周波数に達している可能性がある。
 そこで、制御装置30は、ステップS71でYESと判定した場合、第2圧縮機201(Comp201)の周波数は下限周波数に達しているか否かを判定する(ステップS73)。
 制御装置30は、ステップS73においてNOと判定した場合、第2圧縮機201(Comp201)の周波数を一定値低下させる(ステップS76)。その後、制御装置30は、ステップS77において、既に説明したステップS101と同様の処理を第2高元冷凍サイクルで実行する。制御装置30は、ステップS77の後、処理をステップS70に戻す。
 ステップS76の処理が繰り返し行われた場合、やがて、第2圧縮機201(Comp201)の周波数が下限値に達するかもしれない。第2圧縮機201(Comp201)の周波数が下限値に達した場合、制御装置30は、ステップS73においてYESと判定する。このとき、第2高元冷凍サイクルの冷却能力が下限に達している。
 制御装置30は、ステップS73においてYESと判定したとき、低元冷媒回路300を構成する第3膨張弁303の開度を調整することにより、目標過熱度(SH)を上昇させる(ステップS78)。その後、制御装置30は、ステップS79において、既に説明したステップS101と同様の処理を低元冷凍サイクルで実行する。具体的には、制御装置30は、第3熱交換器302の第3ファン3021の回転数を調整する。
 制御装置30は、ステップS79の後、圧力P10が「P10≦閾値B」かつ「P10≧閾値A」を満たすか否かを判定する(ステップS80)。圧力P10が「P10≦閾値B」かつ「P10≧閾値A」を満たさない場合、制御装置30は、第3膨張弁303の目標過熱度(SH)を再度調整する(ステップS81)。その後、制御装置30は、ステップS79と同様の処理を実行し(ステップS82)、処理をステップS70に戻す。
 制御装置30は、ステップS80においてYESと判断したとき、ユーザーによる停止操作が検出されたか否かを判定する(ステップS83)。ユーザーは、たとえば、リモートコントローラーによって低元冷凍サイクルを停止させる操作をする。制御装置30は、ステップS83においてNOと判定したとき、処理をステップS70に戻す。制御装置30は、ステップS83においてYESと判定したとき、低元冷凍サイクルを停止する(ステップS84)。その後、制御装置30は、停止運転モードに運転モードを切り替える。
 ステップS71において、圧力P10が「P10<閾値A」を満たさない場合、圧力P10は、図11の枠W10が示す(3)の範囲にある。このとき、圧力P10は上限の閾値Bを超えた値となっている。
 圧力P10が上限の閾値Bを超えている場合、高元冷凍サイクルの能力を高める必要がある。制御装置30は、ステップS71において、圧力P10が「P10<閾値A」を満たさないと判定した場合、第2圧縮機201(Comp201)の周波数が上限値に達しているか否かを判定する(ステップS72)。
 制御装置30は、ステップS72においてNOと判定した場合、第2圧縮機201(Comp201)の周波数を一定値上昇させる(ステップS74)。その後、制御装置30は、既に説明したステップS101と同様の処理を第2高元冷凍サイクルで実行する(ステップS75)。制御装置30は、ステップS75の後、処理をステップS70に戻す。
 ステップS74の処理が繰り返し行われた場合、やがて、第2圧縮機201(Comp201)の周波数が上限値に達するかもしれない。第2圧縮機201(Comp201)の周波数が上限値に達した場合、制御装置30は、ステップS72においてYESと判定し、運転モードを高容量運転モードに切り替える。運転モードが高容量運転モードに切り替えられることにより、第2高元冷凍サイクルが起動し、高元冷凍サイクルの冷凍能力が上昇する。
 図15を用いて説明したように、制御装置30は、低容量運転モードにおいて、圧力センサ10によって検出される圧力が閾値A~閾値Bの範囲に入るように第1高元冷媒回路100および第2高元冷媒回路200を制御する。
 これまでの説明から理解されるとおり、制御装置30は、状況に応じて運転モードを停止運転モードと冷却運転モードとの間で切り換える。より具体的には、制御装置30は、停止運転モードおよび冷却運転モードのいずれにおいても、制御装置30は、圧力センサ10によって検出される圧力が閾値A~閾値Bの範囲に入るように第1高元冷媒回路100および第2高元冷媒回路200を制御する。なお、閾値は、各モードに応じて異ならせてもよい。
 また、制御装置30は、図12に示されるとおり、第3圧縮機301(Comp301)を起動するときに設定された周波数に基づいて、低容量運転モードで運転するか、高容量運転モードで運転するかを決定する。特に、高容量運転モードでは、高元側で第1および第2高元冷凍サイクルが共に起動する。一方、低容量運転モードでは、高元側で第2高元冷凍サイクルのみが起動する。ゆえに、制御装置30は、第3圧縮機301を起動するときに設定された周波数に基づいて、第1高元冷媒回路100および第2高元冷媒回路200を起動するタイミングを制御している。
 さらに、制御装置30は、図11、図14、および図15を用いて説明したとおり、必要な冷却能力の程度に応じて、冷却運転モードを低容量運転モードと高容量運転モードとの間で切り替える。
 以上のとおり、制御装置30は、第1高元冷媒回路100および第2高元冷媒回路200により提供される高元冷凍サイクルの冷却能力を低元冷媒回路300の冷凍サイクルの状態に基づいて変動させる。
 また、図8および図9を用いて説明したとおり、第1高元冷凍サイクルの冷却能力と、第2高元冷凍サイクルの冷却能力とに重なる範囲が生じるように高元冷凍サイクルを設計することは、起動する高元側の冷凍サイクルがこのように変化するときに効果的である。
 すなわち、図8および図9に示すように、第1高元冷凍サイクルの下限周波数で出力可能な冷却能力に対し、第2高元冷凍サイクルの上限周波数で出力可能な冷却能力は大きくなるよう設定することで、境界となる冷却能力が必要となる際に発生する圧縮機の起動および起動停止を抑制することができる。
 また、第2高元冷凍サイクルから第1高元冷凍サイクルに対してスムーズに運転を切り替えることができる。このため、第2圧縮機201の周波数を過剰に低下させることなく、必要な冷却能力を得ることができる。
 さらに、本実施の形態とは異なり、圧縮機の周波数を過剰に低下させざるを得ない冷凍サイクルシステムの場合には、圧縮機が冷媒を吐出するときに併せて排出される冷凍機油に対して、圧縮機が冷媒を吸入するときに圧縮機に戻る冷凍機油が減少するおそれがある。この場合、圧縮機のモーターが焼損してしまうかもしれない。しかし、本実施の形態では、第2圧縮機201の周波数を過剰に低下する必要がないため、冷凍機油の不足によって第2圧縮機201のモーターが焼損することを防止でき、第2圧縮機201の信頼性を向上させることができる。
 実施の形態2.
 次に、本実施の形態2を説明する。図16は、実施の形態2に関わる二元冷凍サイクル装置52の構成を示す図である。図16に示すように、実施の形態2に関わる二元冷凍サイクル装置52は、実施の形態1に関わる二元冷凍サイクル装置51の構成に対して、第4熱交換器402が追加されている。第4熱交換器402には外気と第3冷媒との間の熱交換を促す第4ファン4021が設けられている。
 第4熱交換器402は、低元冷媒回路300に設けられる。第4熱交換器402は、第1カスケードコンデンサ104と第1圧縮機101との間に接続されている。第4熱交換器402には、第1圧縮機101から吐出された高温かつ高圧のガス状の第3冷媒が入力される。第4ファン4021が回転することにより、第4熱交換器402は、第1圧縮機101から吐出された第3冷媒の熱を空気に放熱する。したがって、第4熱交換器402は凝縮器として機能する。
 既に説明した実施の形態1に関わる二元冷凍サイクル装置51は、冷却運転モードとして、低容量運転モードと高容量運転モードとの2つのモードを備える。これら2つのモードでは、高元冷凍サイクルが起動し、低元冷凍サイクルの第3冷媒が冷却される。
 実施の形態2に関わる二元冷凍サイクル装置52は、低容量運転モードと高容量運転モードとに加えて、高元冷凍サイクルを起動せずに第4熱交換器402によって第3冷媒を冷却するモードを有する。以下、このモードを“低元冷却モード”と称する。このように、実施の形態2の冷却運転モードは、実施の形態1の冷却運転モードよりも、切替え可能なモードの数が多い。以下、実施の形態1の冷却運転モードと実施の形態2の冷却運転モードとを区別するため、後者の冷却運転モードを特に“冷却運転モード2”と称する場合がある。
 低元冷却モードでは、第4熱交換器402に対応する第4ファン4021が回転することによって低元冷媒回路300を流れる第3冷媒が冷却される。なお、二元冷凍サイクル装置52は、第3冷媒の圧力を適正に保つため、圧力センサ10の出力値に基づいて第4ファン4021の回転数を制御してもよい。
 第3冷媒の圧力が適正範囲を超えて上昇する場合、二元冷凍サイクル装置52は、運転モードを低元冷却モードから低容量運転モードに切り換える。低容量運転モードの内容は、実施の形態1と同様である。ただし、実施の形態2に関わる低容量運転モードでは、第4熱交換器402も引き続き凝縮器として機能している。したがって、実施の形態2に関わる低容量運転モードでは、第4熱交換器402に対応する第4ファン4021が回転している。このため、実施の形態2に関わる低容量運転モードは実施の形態1に関わる低容量運転モードよりも最大冷却能力が高い。
 なお、実施の形態2に関わる低容量運転モードにおいて、第4熱交換器402に対応する第4ファン4021の回転を停止してもよい。また、実施の形態2に関わる低容量運転モードにおいて、制御装置30は、第3冷媒の圧力を適正に保つため、圧力センサ10の出力値に基づいて第4ファン4021の回転数を制御してもよい。
 低容量運転モードにおいて第3冷媒の圧力が適正範囲を超えて上昇する場合、二元冷凍サイクル装置52は、運転モードを低容量運転モードから高容量運転モードに切り換える。高容量運転モードの内容は実施の形態1と同様である。ただし、実施の形態2に関わる低容量運転モードでは、第4熱交換器402も引き続き凝縮器として機能している。したがって、実施の形態2に関わる低容量運転モードでは、第4熱交換器402に対応する第4ファン4021が回転している。このため、実施の形態2に関わる高容量運転モードは実施の形態1に関わる低容量運転モードよりも最大冷却能力が高い。
 なお、実施の形態2に関わる高容量運転モードにおいて、第4熱交換器402に対応する第4ファン4021の回転を停止してもよい。また、実施の形態2に関わる高容量運転モードにおいて、制御装置30は、第3冷媒の圧力を適正に保つため、圧力センサ10の出力値に基づいて第4ファン4021の回転数を制御してもよい。
 <伝熱面積比率>
 図17は、第1熱交換器102および第2熱交換器202の伝熱面積と、第4熱交換器402との伝熱面積の比率を示す図である。実施の形態2では、第1熱交換器102および第2熱交換器202が高元冷凍サイクルの凝縮器を構成し、第4熱交換器402が低元冷凍サイクルの凝縮器を構成する。したがって、図17は、高元冷凍サイクルの凝縮器と、低元冷凍サイクルの凝縮器との伝熱面積を比較した図に相当する。
 第1熱交換器102、第2熱交換器202、および第4熱交換器402の総伝熱面積に対する、第4熱交換器402の伝熱面積の比率に関して、パターン1とパターン2とが図17に示されている。
 パターン1では、第1熱交換器102、第2熱交換器202、および第4熱交換器402の総伝熱面積に対する、第4熱交換器402の伝熱面積の比率が3%~50%の範囲とされている。つまり、パターン1は、低元冷凍サイクルおよび高元冷凍サイクルの凝縮器の伝熱総面積に対する低元冷凍サイクルの伝熱面積の比率を3%~50%の範囲とする例である。
 パターン2では、第1熱交換器102、第2熱交換器202、および第4熱交換器402の総伝熱面積に対する、第4熱交換器402の伝熱面積の比率が8%~30%の範囲とされている。つまり、パターン2は、低元冷凍サイクルおよび高元冷凍サイクルの凝縮器の伝熱総面積に対する低元冷凍サイクルの伝熱面積の比率を8%~30%の範囲とする例である。
 伝熱面積比率として、パターン1よりもパターン2を採用する方がより望ましい。たとえば、パターン1よりもパターン2の方が低元冷凍サイクルの凝縮器の伝熱面積比率が高いため、パターン1よりもパターン2の方が第4熱交換器402を用いた低元冷却モードでの冷却機能が高めることを期待できる。
 なお、パターン1において、第4熱交換器402の伝熱比率の3~50%の範囲のいずれを採用してもよい。また、パターン2において、第4熱交換器402の伝熱比率の8~30%の範囲のいずれを採用してもよい。
 <熱交換器の一体化>
 図18は、第1熱交換器102と第2熱交換器202と第4熱交換器402とを一体化した第6熱交換器602を示す図である。図16の符号B、符号C、および符号Dが示す構成部分を一体化したものが第6熱交換器602に相当する。
 第6熱交換器602は、第1冷媒が流れる第1高元冷媒回路100と、第2冷媒が流れる第2高元冷媒回路200と、第3冷媒が流れる低元冷媒回路300とが分割されつつ、第1熱交換器102と第2熱交換器202と第4熱交換器402とが一体化された構成を備えている。第6熱交換器602には第6ファン6021が設けられる。ただし、第6熱交換器602に対して、複数台のファンを設けてもよい。
 第1熱交換器102と第2熱交換器202と第4熱交換器402とを一体化することにより、機器を配置するスペースを有効活用できる。また、第1熱交換器102と第2熱交換器202と第4熱交換器402とを一体化することにより、コストを低減できる。
 図19は、第2熱交換器202と第4熱交換器402とを一体化した第7熱交換器702、および第7熱交換器702と組み合わせて使用される第1熱交換器102を示す図である。図16の符号Bおよび符号Cが示す構成部分を一体化したものが第7熱交換器702に相当する。
 第7熱交換器702は、第2冷媒が流れる第2高元冷媒回路200と、第3冷媒が流れる低元冷媒回路300とが分割されつつ、第2熱交換器202と第4熱交換器402とが一体化された構成を備えている。第7熱交換器702には第7ファン7021が設けられる。ただし、第7熱交換器702に対して、複数台のファンを設けてもよい。
 第2熱交換器202と第4熱交換器402とを一体化することにより、機器を配置するスペースを有効活用できる。また、第2熱交換器202と第4熱交換器402とを一体化することにより、コストを低減できる。なお、第1熱交換器102と第4熱交換器402とを一体化して構成してもよい。
 <運転モードの制御>
 図20は、実施の形態2に関わる運転モードの制御の内容を示すフローチャートである。制御装置30は、本フローチャートに基づく処理を実行することによって運転モードを冷却運転モード2と停止運転モードとに切り替える。
 制御装置30は、はじめに、冷却運転が停止しているか否かを判定する(ステップS1000)。停電、その他の事情によって低元冷媒回路300の運転が停止している場合、制御装置30は、ステップS1000においてYESと判定し、停止運転モードに移行する(ステップS2000)。
 停止運転モードの内容は、実施の形態1と同様であるので、ここではその説明を繰り返さない。低元冷媒回路300の運転が停止していない場合、制御装置30は、ステップS1000においてNOと判定し、冷却運転モード2に移行する(ステップS3000)。
 <冷却運転モード2の制御>
 図21は、冷却運転モード2の制御の内容を示すフローチャートである。制御装置30は、はじめに、外気温度と室内機2において設定されている蒸発温度とから、第3圧縮機301(Comp301)の目標周波数を設定する(ステップS90)。制御装置30は、温度センサ20の出力値に基づいて外気温度を特定する。
 ステップS90の後、制御装置30は、第3圧縮機301(Comp301)の周波数が閾値Y以下、かつ、外気(外気温度)が設定値以下であるか否かを判定する(ステップS91)。外気温度の設定値は、予め設定された値である。外気温度の設定値については、図22を用いて後に説明する。制御装置30は設定値を記憶している。
 制御装置30は、冷凍サイクルの運転を切り換えるか否かを判定するための閾値として閾値Xと閾値Yとを記憶している。図21の枠W20には、第3圧縮機301(Comp301)の周波数と閾値Xおよび閾値Yとの関係が示されている。先に、枠W20を参照して、第3圧縮機301(Comp301)の周波数と閾値X,Yとの関係を説明する。
 枠W20において(1)~(3)は、第3圧縮機301(Comp301)の周波数の値がとる範囲を示す。(1)は、第3圧縮機301(Comp301)の周波数が閾値Y以下の範囲を示す。(2)は、第3圧縮機301(Comp301)の周波数が閾値Yを超過し、かつ、閾値X未満の範囲を示す。(3)は、第3圧縮機301(Comp301)の周波数が閾値X以上となる範囲を示す。周波数範囲(2)は適正範囲を示す。周波数範囲(1)は適正範囲よりも低い範囲を示す。周波数範囲(3)は適正範囲よりも高い範囲を示す。
 ここで、図22および図23を参照して、閾値X、閾値Y、および外気温度の設定値について詳細に説明する。図22は、庫内の蒸発温度の設定値と冷却能力との関係を示すグラフである(実施の形態2)。図23は、第3圧縮機(Comp301)の周波数と庫内の蒸発温度の設定値との関係を示すグラフである(実施の形態2)。図22を用いて閾値Xおよび外気温度の設定値について説明し、図23を用いて閾値Yについて説明する。
 図22が示すグラフにおいて、横軸は、庫内に配置される室内機2において設定される凝縮温度(ET:Evaporation Temperature)を示す。縦軸は冷却能力に対応する圧縮機の周波数(Hz)を示す。図22に示すように、必要とされる冷却能力は外気温度AT(Outside air Temperature)によって変化する。
 一般には、外気温度が高いほど、必要とされる冷却能力は高くなる。たとえば、図22では、外気温度が20℃の場合と-15℃の場合とを比較した例を示している。本実施の形態2では、このグラフに基づいて、閾値Xを60Hzとしている。ただし、この値は例示に過ぎない。
 図22には、高元運転が不要とされる領域R10がさらに示されている。領域R10では、低元冷凍サイクルを運転しているときに、第1および第2高元冷凍サイクルのいずれの運転も不要とされる。領域R10においては、制御装置30は、運転モードとして低元冷却モードを選択する。低元冷却モードでは、低元冷媒回路300に設けた第4熱交換器402が凝縮器として機能することにより、第3冷媒が冷却される。低元冷却モードでは、高元冷凍サイクルが起動しない。
 図22に示すように、領域R10は、外気温度AT10を境界にして設定されている。つまり、制御装置30は、外気温度がAT10以下であることを条件に低元冷却モードを選択する。外気温度AT10は、-15℃から20℃の範囲のいずれかの値として設定される。
 図23が示すグラフにおいて、横軸は、第3圧縮機301(Comp301)の周波数を示す。縦軸は、庫内に配置される室内機2において設定される凝縮温度(ET)を示す。図23のグラフには、第3圧縮機301(Comp301)の周波数と凝縮温度(ET)との関係において、高元運転が不要とされる領域R10と、高元運転が必要とされる領域R20とが示されている。領域R20は、能力同等線によって仕切られる。第3圧縮機301(Comp301)の周波数と凝縮温度(ET)とが高くなるほど、必要とされる冷却能力は高くなる。
 図23には、閾値Yとして採用可能な値の例として、Y1とY2とが示されている。閾値Y1は、高元運転が不要とされる領域R10における第3圧縮機301(Comp301)の最大周波数である。したがって、Y1は固定値である。閾値Y2は、能力同等線に沿う第3圧縮機301(Comp301)の周波数である。したがって、Y2は、室内機2において設定される凝縮温度(ET)に応じて変動する値である。
 実施の形態2においては、閾値YとしてY1およびY2のいずれを採用してもよい。また、制御装置30のメモリ32に予めY1、Y2の2つの閾値を格納してもよい。制御装置30は、Y1、Y2いずれの閾値を採用するかを選択できるものとしてもよい。
 図21のフローチャートに戻って説明を続ける。制御装置30は、ステップS91においてNOと判定した場合、第4熱交換器402の第4ファン4021を回転させる運転を行う(ステップS95)。つまり、制御装置30は、低元冷却モードの運転を開始する。これにより、第4熱交換器402は凝縮器として機能する。その結果、低元冷媒回路300の第3冷媒は第4熱交換器402によって冷却される。
 次に、制御装置30は、第3圧縮機301(Comp301)の周波数が閾値Yを超過し、かつ、第3圧縮機301(Comp301)の周波数が閾値X未満であるか否かを判定する(ステップS96)。つまり、制御装置30は、第3圧縮機301の周波数が枠W20に示した適正範囲(2)にあるか否かを判定する。
 制御装置30は、ステップS96においてYESと判定したとき、第2高元冷凍サイクルを運転する(ステップS99)。制御装置30は、第2高元冷凍サイクルの運転を行う場合、既に説明したステップS101と同様の処理を第2高元冷凍サイクルで実行する(ステップS100)。これにより、第2高元冷媒回路200において、第2熱交換器202の第2ファン2021の回転数と第2膨張弁203の開度とが必要に応じて調整される。
 制御装置30は、ステップS100の後、低容量運転モードを実行する。低容量運転モードの処理は図15に開示されている。実施の形態2の低容量運転の処理は、図15に示した実施の形態1の低容量運転モードの制御の内容を同様であるので、ここではその説明を繰り返さない。なお、実施の形態2においては、運転モードが低容量運転モードに移行しても、ステップS95が示す第4熱交換器402の第4ファン4021の運転が継続される。
 制御装置30は、ステップS96においてNOと判定したとき、第1および第2高元冷凍サイクルを運転する(ステップS97)。
 制御装置30は、ステップS97において第1および第2高元冷凍サイクルの運転を行う場合、既に説明したステップS101と同様の処理を第1および第2高元冷凍サイクルで実行する(ステップS98)。
 これにより、第1高元冷媒回路100においては、第1熱交換器102の第1ファン1021の回転数と第1膨張弁103の開度とが必要に応じて調整される。また、第2高元冷媒回路200においては、第2熱交換器202の第2ファン2021の回転数と第2膨張弁203の開度とが必要に応じて調整される。
 制御装置30は、ステップS98の後、高容量運転モードを実行する。高容量運転モードの処理は図14に開示されている。実施の形態2の高容量運転の処理は、図14に示した実施の形態1の高容量運転モードの制御の内容を同様であるので、ここではその説明を繰り返さない。なお、実施の形態2においては、運転モードが高容量運転モードに移行しても、ステップS95が示す第4熱交換器402の第4ファン4021の運転が継続される。
 制御装置30は、ステップS91においてYESと判定したとき、第4熱交換器402の第4ファン4021を回転させる運転を行う(ステップS92)。この処理は、既に説明したステップS95と同様である。
 次に、制御装置30は、低元冷媒回路300の圧力P10が閾値Bを超えているか否かを判定する(ステップS93)。
 図11を用いて既に説明したとおり、P10は、低元冷媒回路300の圧力を示す。制御装置30は、低元冷媒回路300に設けた圧力センサ10の出力値に基づいて圧力P10を特定する。圧力P10と閾値Aおよび閾値Bとの関係は、図11の枠W10に示されている。
 ステップS93において圧力P10が閾値Bを超えていない場合、圧力P10は、設定した圧力範囲の上限を超えていない。そこで、制御装置30は、ステップS93においてNOと判定した場合、圧力P10が閾値Bを超えるまで、ステップS93の判定を繰り返す。
 ステップS93において圧力P10が閾値Bを超える場合、第4熱交換器402のみでは放熱が不足していると判断できる。そこで、制御装置30は、ステップS93においてYESと判定した場合、圧力P10を図11の枠W10の(2)の範囲に低下させるために、第2高元冷凍サイクルを運転する(ステップS94)。これにより、第2高元冷媒回路200が起動する。第2高元冷媒回路200が起動すると、第2カスケードコンデンサ204によって第3冷媒が冷却される。
 このように、制御装置30は、第4熱交換器402を起動しても圧力P10が閾値Aから閾値Bの範囲よりも高くなる場合、第2高元冷媒回路200を起動する
 制御装置30は、ステップS94の後、低容量運転モードを実行する。低容量運転モードの制御の内容は、図15に開示されている。実施の形態2の低容量運転の処理は、図15に示した実施の形態1の低容量運転モードの制御の内容を同様であるので、ここではその説明を繰り返さない。なお、実施の形態2においては、運転モードが低容量運転モードに移行しても、ステップS92が示す第4熱交換器402の第4ファン4021の運転を継続する。
 以上、説明した実施の形態2によれば、冷凍サイクルに対する負荷が低いとき、低元冷媒回路300が備える第4熱交換器402の放熱機能を利用することによって、第3冷媒の圧力が異常に上昇することを防止できる。このとき、高元冷凍サイクルを運転する必要がない。このため、冷凍サイクルを高い効率で運転することが可能である。
 実施の形態2において、制御装置30は、第3圧縮機301を起動するときに設定された周波数に基づいて、第1高元冷媒回路100および第2高元冷媒回路200を起動するタイミングを制御する。また、実施の形態2においても、低容量運転モードおよび高容量運転モードは実行される。低容量運転モードおよび高容量運転モードの内容は、実施の形態1として説明したとおりである。ただし、実施の形態2においては、第4熱交換器402も起動している。したがって、実施の形態2に関わる制御装置30は、圧力P10が第1閾値Aから第2閾値Bの範囲に入るように、第1高元冷媒回路100、第2高元冷媒回路200、および第4熱交換器402を制御する。
 制御装置30は、外気温度が低い場合(たとえば-5℃)、高元冷凍サイクルを起動することなく、第4ファン4021の回転数を制御することによって低元冷媒回路300内の圧力が異常に上昇することを防止できる。特に、冬季には、高元冷凍サイクルを起動することなく冷凍サイクルを運転できるため、二元冷凍サイクル装置52の省エネルギー性を高めることができる。また、高元冷凍サイクルの耐用年数を高めることができる。その結果、二元冷凍サイクル装置52の性能を向上させることができる。
 第3圧縮機301から第4熱交換器402に流入する第3冷媒は過熱蒸気である。高元冷凍サイクルを運転するときに第4熱交換器402を起動することによって、第1カスケードコンデンサ104に流入する前の第3冷媒の熱量の一部を第4熱交換器402により放熱できる。したがって、第1カスケードコンデンサ104では熱伝達率の高い2相領域の第3冷媒と第1冷媒とで熱交換させることができる。第2カスケードコンデンサ204においても同様である。
 低負荷の状況では、高元冷凍サイクルを起動することなく第4熱交換器402の第4ファン4021を回転させる。これにより、冷凍サイクルを起動する際に低元冷媒回路300の圧力が異常に上昇することを抑制しつつ二元冷凍サイクル装置52の性能を向上させることができる。たとえば、第3圧縮機301の周波数が閾値よりも低く、外気温度が設定値よりも低いときに、二元冷凍サイクル装置52は、低負荷の状況となる。
 一方、第3圧縮機301の周波数が閾値よりも低いが、外気温度が設定値より高いとき、第4ファン4021を回転させると共に、第2高元冷凍サイクルを起動する。これにより、第4熱交換器402のみでは熱処理できない状況において、冷凍サイクルの起動時から低元冷媒回路300の圧力が異常に上昇することを確実に抑制できる。
 このとき、第1高元冷凍サイクルは起動しないため、必要最低限の機器を起動することで低元冷媒回路300の圧力が上昇することを抑制できる。よって、二元冷凍サイクル装置52の省エネルギー性を高めることができる。また、高元冷凍サイクルの耐用年数を高めることができる。その結果、二元冷凍サイクル装置52の性能を向上させることができる。
 さらに、第3圧縮機301の周波数が閾値よりも高く、外気温度が設定値より高いとき、第4ファン4021を回転させると共に、第1および第2高元冷凍サイクルを起動してもよい。これにより、第4熱交換器402および第2高元冷凍サイクルのみでは熱処理できない状況において、冷凍サイクルの起動時から低元冷媒回路300の圧力が異常に上昇することを確実に抑制できる。
 <冷却運転モード2の制御の変形例>
 図24は、実施の形態2に係わる冷却運転モード2の変形例を示すフローチャートである。図24を用いて、実施の形態2に係わる冷却運転モード2の変形例を説明する。
 制御装置30は、はじめに、外気温度と室内機2において設定されている蒸発温度とから、第3圧縮機301(Comp301)の目標周波数を設定する(ステップS120)。ステップS120の処理は、図21のステップS90の処理と同様である。
 次に、制御装置30は、第3圧縮機301(Comp301)の周波数が閾値Y以下か否かを判定する(ステップS121)。制御装置30は、ステップS120で設定された第3圧縮機301の周波数が閾値Y以下であると判定した場合、外気温度が設定値以下か否かを判定する(ステップS122)。ここで、外気温度は、温度センサ20によって検出された温度である。
 制御装置30は、外気温度が設定値以下であると判定した場合、第4熱交換器402の第4ファン4021を回転させる運転を行う(ステップS123)。これにより、第4熱交換器402が起動する。この処理は、図21のステップS92と同様である。その後、制御装置30は、ステップS124~S125の処理を行う。この処理は、図21のステップS93~S94の処理と同様である。
 制御装置30は、ステップS122において、外気温度が設定値以下でないと判断した場合、第4熱交換器402の第4ファン4021を回転させると共に、第2高元冷媒回路200を起動する(ステップS126)。次に、制御装置30は、既に説明したステップS101と同様の処理を第2高元冷凍サイクルで実行し(ステップS127)、低容量運転モードに移行する。
 制御装置30は、ステップS121において、第3圧縮機301の周波数が閾値Y以下でないと判定した場合、外気温度が設定値以下か否かを判定する(ステップS128)。制御装置30は、外気温度が設定値以下であると判断した場合、既に説明したステップS126の処理を実行する。
 制御装置30は、ステップS128において、外気温度が設定値以下でないと判断した場合、第4熱交換器402の第4ファン4021を回転させると共に、第1高元冷媒回路100および第2高元冷媒回路200を起動する(ステップS129)。次に、制御装置30は、既に説明したステップS101と同様の処理を第2高元冷凍サイクルで実行し(ステップS130)、高容量運転モードに移行する。
 以上、説明したように、変形例において、制御装置30は、第3圧縮機301を起動するときに設定された周波数および温度センサ20の検出結果に基づいて、第1高元冷媒回路100、第2高元冷媒回路200、および第4熱交換器402を起動するタイミングを制御する。
 実施の形態2には、実施の形態1として説明した様々な変形例も適用可能である。たとえば、実施の形態2に図4~図7に示した実施の形態1の変形例のいずれを適用してもよい。また、それらの変形例のすべてを適用してもよく、それらの変形例のひとつまたは2つ以上を適用してもよい。
 <その他の変形例>
 二元冷凍サイクル装置51および二元冷凍サイクル装置52は、低元冷凍サイクル1系統に対し、高元冷凍サイクルを2系統に分割した構成を備えている。しかし、二元冷凍サイクル装置51および二元冷凍サイクル装置52は、低元冷凍サイクル1系統に対し、高元冷凍サイクルを3系統に分割した構成を備えていてもよい。たとえば、二元冷凍サイクル装置51および二元冷凍サイクル装置52は、第3高元冷凍サイクルをさらに備えていてもよい。
 第3高元冷凍サイクルは、第1高元冷凍サイクルよりも高い冷却能力を備えていてもよい。第3高元冷凍サイクルは、第2高元冷凍サイクルよりも低い冷却能力を備えていてもよい。第3高元冷凍サイクルには、第1~第3冷媒と異なる種類の冷媒を用いてもよい。第3高元冷凍サイクルには、第1~第3冷媒のうちのいずれかの冷媒を用いてもよい。第1~第3高元冷凍サイクルには、共通の種類の冷媒を用いてもよい。
 第3圧縮機301の吐出側に、第3圧縮機301が吐出した高温冷媒の温度を検出する吐出温度センサを設けてもよい。第3圧縮機301の吸入部側に低圧圧力センサを設けて、低圧飽和温度ETを算出してもよい。
 図21に示した冷却運転モード2において、制御装置30は、ステップS91でYESと判定したとき、およびNOと判定したときのいずれのときも、第4熱交換器402の第4ファン4021を回転させる運転を行う。これに代えて、制御装置30は、ステップS91でNOと判定したとき、第4熱交換器402の第4ファン4021を回転させることなく、ステップS96の処理に移行してもよい。
 実施の形態2に関わる高容量運転モードにおいて、制御装置30は、第3冷媒の圧力を適正に保つため、圧力センサ10の出力値に基づいて第4ファン4021の回転数を制御してもよい。たとえば、制御装置30は、図14に示したフローチャートのステップS42において、NOと判定した場合、第4熱交換器402の第4ファン4021の回転数を最大数に上げてもよい。その後、制御装置30は、ステップS44の処理を実行する前に、ステップS41と同様の判定をしてもよい。制御装置30は、第4熱交換器402の第4ファン4021の回転数を最大数に上げても圧力上昇を抑えることができない場合、ステップS44の処理を実行してもよい。
 つまり、制御装置30は、圧力センサ10の検出結果に基づいて、圧力が第1閾値から第2閾値の範囲に入るように、第4熱交換器402、または第1高元冷媒回路100若しくは第2高元冷媒回路200の冷凍サイクルを制御してもよい。
 実施の形態2に関わる低容量運転モードにおいて、制御装置30は、第3冷媒の圧力を適正に保つため、圧力センサ10の出力値に基づいて第4ファン4021の回転数を制御してもよい。たとえば、制御装置30は、図15に示したフローチャートのステップS73において、第2圧縮機201(Comp201)の周波数が下限周波数に達していると判定した場合、第4熱交換器402の第4ファン4021の回転数を一定数下げてもよい。その後、制御装置30は、第4ファン4021の回転数を下げてからステップS78~ステップS80の処理を実行してもよい。さらに、制御装置30は、ステップS80においてNOと判定した場合、再度、第4ファン4021の回転数を一定数下げるようにしてもよい。あるいは、制御装置30は、ステップS73においてNOと判定した場合、第4熱交換器402の第4ファン4021を停止してもよい。
 つまり、制御装置30は、圧力センサ10の検出結果に基づいて、圧力が第1閾値から第2閾値の範囲に入るように、第4熱交換器402の第4ファン4021の回転数、第1高元冷媒回路100、および第2高元冷媒回路200の冷凍サイクルを制御してもよい。
 以上、説明したとおり、実施の形態1および実施の形態2に関わる二元冷凍サイクル装置51,52によれば、第1高元冷媒回路100および第2高元冷媒回路200は、それぞれの最大冷却能力が互いに異なるように構成されているため、冷却運転モードおよび停止運転モードのいずれにおいても、負荷に要求される冷却能力に応じた高元冷凍サイクルを起動することができる。その結果、実施の形態1に関わる二元冷凍サイクル装置によれば、負荷に要求される冷却能力の変化に応じた柔軟な運転を複数の高元冷凍サイクルで実現可能となる。
 また、実施の形態1および実施の形態2に関わる二元冷凍サイクル装置51,52によれば、第1高元冷媒回路100および第2高元冷媒回路200により提供される高元冷凍サイクルの冷却能力が低元冷媒回路300の冷凍サイクルの状態に基づいて変動する。たとえば、第3圧縮機301に対して設定された目標周波数の大きさに応じて、低容量運転モードおよび高容量運転モードのいずれかが選択される。その結果、実施の形態1に関わる二元冷凍サイクル装置によれば、負荷に要求される冷却能力の変化に応じた柔軟な運転を複数の高元冷凍サイクルで実現可能となる。
 <開示のポイント>
 以下、本開示のいくつかのポイントをまとめる。
 (ポイント1)
 本開示に関わる二元冷凍サイクル装置51,52において、第2高元冷凍サイクルの第2圧縮機201、第2熱交換器202、第2膨張弁203、および第2カスケードコンデンサ204のうちの少なくとも1つの構成要素が、第1高元冷凍サイクルの第1圧縮機101、第1熱交換器102、第1膨張弁103、および第1カスケードコンデンサ104のうちの対応する構成要素よりも能力の小さい構成要素で構成されている。
 一般に、停止運転モードに必要な冷却能力に対し、高元冷凍サイクルの能力が大き過ぎると圧縮機の起動および起動停止が頻発し、冷凍サイクルの信頼性が低下する。しかし、本開示では、第1高元冷凍サイクルに対し、第2高元冷凍サイクルを小型の要素で構成することで、停止運転モードにおいて、高元冷凍サイクルの圧縮機の起動および起動停止が頻発することを抑制可能である。
 本開示に関わる二元冷凍サイクル装置51,52において、高元冷凍サイクルを複数台に分割している。これにより、高元冷凍サイクルの一部の冷凍サイクルで故障などの不具合が発生したとしても、他の高元冷凍サイクルを運転させることができる。その結果、停止運転モードにおいて、低元冷凍サイクルで圧力が異常に上昇することを抑制することができる。
 本開示に関わる二元冷凍サイクル装置51,52において、二元冷凍サイクルを利用することで、低元冷凍サイクルに高圧冷媒を用いた場合であっても、低元冷凍サイクルの凝縮温度を低減した状態で運転させることができる。
 本開示に関わる二元冷凍サイクル装置51,52において、低元冷凍サイクルの凝縮温度を低減した状態で運転させるため、冷媒配管に求められる耐圧圧力を低減させることができる。
 本開示に関わる二元冷凍サイクル装置51,52は、高元と低元で別々の冷凍サイクル回路を有しているため、各国の冷媒規制に柔軟に対応することができる。
 (ポイント2)
 本開示に関わる二元冷凍サイクル装置51,52において、必要となる高元冷凍サイクルの容量(冷却能力)を100%とした場合に、第2高元冷凍サイクルの容量が50%未満であることが好ましい。さらには、第2高元冷凍サイクルの容量が35%以下である方がより好ましく、第2高元冷凍サイクルの容量が20%以下である方がより好ましい。なお、容量を低減する場合、圧縮機を小型化することが好ましい。圧縮機を小型化することが、コスト低減および冷却能力低減に最も効果があるためである。
 第1高元冷凍サイクルの下限周波数で出力可能な冷却能力に対し、第2高元冷凍サイクルの上限周波数で出力可能な冷却能力は、大きくなるよう設計することが好ましい。高元冷凍サイクルの容量に差を設けることによって、運転範囲を拡大することができる。
 第1高元冷凍サイクルの下限周波数で出力可能な冷却能力に対し、第2高元冷凍サイクルの上限周波数で出力可能な冷却能力が大きくなるよう設計することで、境界となる冷却能力が必要となる際に、圧縮機が頻繁に起動および起動停止することを抑制することができる。
 (ポイント3)
 本開示に関わる二元冷凍サイクル装置51,52において、高元冷凍サイクルに用いられる第1熱交換器102および第2熱交換器202は、両熱交換器が一体化された第5熱交換器502にて構成されている。本開示によれば、高元冷凍サイクルのファンの数を減らすことができる。その結果、省スペース化および低コスト化を図ることができる。
 (ポイント4)
 本開示に関わる二元冷凍サイクル装置51,52において、低元冷凍サイクルに用いられる冷媒がCO2である。低元冷凍サイクルに高圧冷媒であるCO2を使用する場合、高元冷凍サイクルにて低元冷凍サイクルの凝縮圧力を低減できる。その結果、低い耐圧圧力の配管および各要素機器を低減冷凍サイクルに適用することができる。
 CO2は、自然冷媒のため、機器の総GWPを大幅に削減できる。倉庫等の室内機に接続される低元冷凍サイクルに不燃ガスを用いることで、冷媒が漏洩したときに冷媒が燃焼することがない。
 単段冷凍サイクルまたは2段冷凍サイクルにCO2を適用する場合と比較して、凝縮側で使用する圧力が低いため、単段冷凍サイクルまたは2段冷凍サイクルでCO2を使用する場合と比較して、冷媒量の使用量を低減することができる。
 (ポイント5)
 第2高元冷凍サイクルに無停電電源装置205を設けることで、停電により低元冷凍サイクルおよび第1高元冷凍サイクルが停止しても、第2高元冷凍サイクルを運転することを可能としている。これにより、低元冷凍サイクルの圧力上昇を抑制できる。
 第1高元冷凍サイクルに比べ小型の第2高元冷凍サイクルに無停電電源装置205を適用するため、必要な電源容量を小さくすることができる。必要な電源容量を小さくすることでコストを抑制できる。また、電源サイズを小型化することができる。
 (ポイント6)
 本開示に関わる二元冷凍サイクル装置51,52において、第2高元冷凍サイクルの回路内に封入される冷媒が低元冷凍サイクルおよび第1高元冷凍サイクルの回路内に封入される冷媒と異なる。特に、容量の小さい第2高元冷凍サイクルに低元冷凍サイクルおよび第1高元冷凍サイクルの回路内に封入されている冷媒よりも理論性能または実使用上の性能が高い冷媒を封入する。これにより、システムCOPを向上させることができる。また、信頼性を確保することができる。
 (ポイント7)
 本開示に関わる二元冷凍サイクル装置52において、低元冷凍サイクルは、第3圧縮機301と第1カスケードコンデンサ104との間に、第3圧縮機301より吐出された高温冷媒の熱を空気に放熱する第4熱交換器402を有する。これにより、外気温度が低いときに、第4熱交換器402の放熱のみで低元冷凍サイクルの第3冷媒の圧力が異常に上昇することを防止できる。つまり、高元冷凍サイクルの運転が不要である。その結果、高効率な運転が可能となる。
 また、低元冷凍サイクルにおいて、第3冷媒の熱量の一部を空気に放熱できる。その結果、過熱蒸気の第3冷媒は、第4熱交換器402によって冷却された後に第1カスケードコンデンサ104に案内される。したがって、第1カスケードコンデンサ104において、熱伝達率の高い2相領域の第3冷媒と第1冷媒とで熱交換させることができる。第2カスケードコンデンサ204においても同様である。
 (ポイント8)
 本開示に関わる二元冷凍サイクル装置52において、第4熱交換器402は、第1熱交換器102および第2熱交換器202と共に一体化された第6熱交換器602にて構成されている。また、第4熱交換器402は、第2熱交換器202と一体化された第7熱交換器702にて構成されている。本開示によれば、高元冷凍サイクルのファンの数を減らすことができる。その結果、省スペース化および低コスト化を図ることができる。
 (ポイント9)
 第1熱交換器102と、第2熱交換器202と、第4熱交換器402との総伝熱面積に対して、第4熱交換器402の伝熱面積の比率が3%以上~50%未満の範囲である、または、8%以上~30%未満の範囲である。第4熱交換器402の伝熱面積の比率を適正化することにより、冷凍サイクルの運転状況によっては、高元冷凍サイクルを起動させずに第4熱交換器402の放熱のみで低元冷媒回路300の圧力が上昇することを抑制できる。
 (ポイント10)
 本開示に関わる二元冷凍サイクル装置51,52において、受液器304から逆止弁305を経由してガス冷媒が第1カスケードコンデンサ104または第2カスケードコンデンサの204入口部に連通するよう、帰還冷媒配管18が設けられている。帰還冷媒配管18は、受液器304の上部に設けられている。このため、冷媒の圧力上昇を抑制するために凝縮させたいガス冷媒のみを第1カスケードコンデンサ104または第2カスケードコンデンサ204に戻すことができる。
 受液器304は、第2カスケードコンデンサ204よりも鉛直方向において低い位置に設けられている。このため、液体の第3冷媒を自重で受液器304に集めることができる。
 (ポイント11)
 本開示に関わる二元冷凍サイクル装置51,52は、低元冷凍サイクルの凝縮部分に設けられている圧力センサ10の検出結果に基づいて、予め設定された閾値の圧力範囲となるように高元冷凍サイクルのファン(第1ファン1021、第2ファン2021)の回転数、圧縮機(第1圧縮機101、第2圧縮機201)の周波数、および膨張弁(第1膨張弁103、第2膨張弁203)の開度を制御する。
 本開示に関わる二元冷凍サイクル装置51,52は、圧力センサ10の検出結果に応じて高元冷凍サイクルを起動する。負荷が大きいときには、第2高元冷凍サイクルのみならず、第1高元冷凍サイクルも起動する。さらに、高元冷凍サイクルのファンの回転数、膨張弁の開度、圧縮機の周波数を所望の冷凍サイクル状態となるよう制御することで、低元冷凍サイクルの圧力上昇を抑制できる。
 特に、ファン(第1ファン1021、第2ファン2021)の回転数を制御(凝縮温度の制御)することで、高元冷凍サイクルの圧力が異常に上昇することを抑制しつつ、低圧縮比となる運転条件時に回転数を低減し、圧縮比を保つことができる。
 また、膨張弁(第1膨張弁103、第2膨張弁203)の開度を制御(SHの制御)することで、運転状態に応じて高元側の第1圧縮機101および第2圧縮機201にガス冷媒を吸入させることができる。第1圧縮機101および第2圧縮機201にガス冷媒を吸入させることで、第1圧縮機101および第2圧縮機201の信頼性を向上させることができる。
 圧力が設定した圧力となるように圧縮機(第1圧縮機101、第2圧縮機201)の周波数を制御することで、低元冷凍サイクルの負荷に応じて高元冷凍サイクルの冷却能力を制御することができる。さらに、圧力の閾値に範囲を持たせることで、圧縮機の起動および起動停止の頻発を抑制できると共に、圧縮機の周波数が頻繁に変更されることを防止できる。
 たとえば、低元冷凍サイクルの第3圧縮機301および第2高元冷凍サイクルの第2圧縮機201を起動する。低元冷凍サイクルの凝縮能力が高元冷凍サイクルの蒸発能力を超える場合、第3冷媒の圧力が上昇し、たとえば、3℃に対応する圧力以上になったとする。この場合、第2高元冷凍サイクルの第2圧縮機201の周波数を第3冷媒の圧力が基準値(たとば、0℃に対応する圧力)になるまで上昇させる。第2圧縮機201の圧力が目標値となる周波数となれば、運転を維持する。負荷が大きい場合には第1高元冷凍サイクルの第1圧縮機101を起動する。ただし、起動したときの第3圧縮機301の周波数が非常に高い場合には、第1および第2高元冷凍サイクルを同時に起動してもよい。
 圧力センサ10は、第3圧縮機301の吐出部から第1カスケードコンデンサ104の入口までの区間であればいずれの位置に設けてもよいが、第3冷媒の圧力が最も高い第3圧縮機301の吐出部に設けることが好ましい。高元冷凍サイクルの内、基本的には小容量の第2高元冷凍サイクルを優先的に起動し、低元冷媒回路300内の圧力が異常に上昇することを抑制することが好ましい。第2高元冷凍サイクルは第1高元冷凍サイクルよりも小容量であるため、圧縮機で起動および起動停止が頻繁に発生することを防止できるからである。また、第2高元冷凍サイクルに理論性能の高い冷媒を封入しているときには、高効率な運転が可能である。
 (ポイント12)
 本開示に関わる二元冷凍サイクル装置51,52は、第3圧縮機301の起動時の設定周波数に基づいて、第1高元冷凍サイクルおよび第2高元冷凍サイクルの起動のタイミングを制御する。たとえば、第3圧縮機301の周波数が閾値よりも低い際は小容量の第2高元冷凍サイクルのみを起動し、第3圧縮機301の周波数が閾値よりも高い際は起動時から第1高元冷凍サイクルおよび第2高元冷凍サイクルを起動する。
 これにより、冷凍サイクルを起動したときに圧力が急激に上昇することを確実に抑制することができる。また、第3圧縮機301の周波数が低い際に第1高元冷凍サイクルを起動しないことにより、高元冷凍サイクル側で圧縮機が起動および起動停止を頻繁に繰り返すことを抑制できる。その結果、信頼性を向上させることができる。また、不要な機器動作をさせずに冷却運転を実施できるため、性能を向上させることができる。
 (ポイント13)
 本開示に関わる二元冷凍サイクル装置52は、圧力センサ10の検出結果に基づいて、設定された範囲で圧力が維持されるように、第4熱交換器402の第4ファン4021の回転数、高元冷凍サイクルのファン(第1ファン1021、第2ファン2021)の回転数、圧縮機(第1圧縮機101、第2圧縮機201)の周波数、および膨張弁(第1膨張弁103、第2膨張弁203)の開度を制御する。
 本開示によれば、第4熱交換器402を設けることで、外気温度が低い場合(たとえば-5℃)、高元冷凍サイクルを起動することなく、第4ファン4021の回転数を制御することによって低元冷媒回路300内の圧力が異常に上昇することを防止できる。
 (ポイント14)
 本開示に関わる二元冷凍サイクル装置52は、第3圧縮機301の起動時の設定周波数および外気温度に基づいて、第4熱交換器402のファンの起動タイミング、第1高元冷凍サイクルの起動タイミング、および第2高元冷凍サイクルの起動タイミングを制御する。
 <開示の特徴>
 以下、本開示の特徴のいくつかを列挙する。
 (1) 本開示に関わる二元冷凍サイクル装置(51)は、第1冷媒を循環させる第1高元冷媒回路(100)と、第2冷媒を循環させる第2高元冷媒回路(200)と、第3冷媒を循環させる低元冷媒回路(300)と、第1冷媒と第3冷媒との間で熱を交換させる第1カスケードコンデンサ(104)と、第2冷媒と第3冷媒との間で熱を交換させる第2カスケードコンデンサ(204)と、制御装置(30)とを備える。第1高元冷媒回路(100)は、第1圧縮機(101)と、第1熱交換器(102)と、第1膨張弁(103)とを有し、第1圧縮機(101)、第1熱交換器(102)、第1膨張弁(103)、第1カスケードコンデンサ(104)、および第1圧縮機(301)の順に第1冷媒を循環させ、第2高元冷媒回路(200)は、第2圧縮機(201)と、第2熱交換器(202)と、第2膨張弁(203)とを有し、第2圧縮機(201)、第2熱交換器(202)、第2膨張弁(203)、第2カスケードコンデンサ(204)、および第2圧縮機(201)の順に第2冷媒を循環させ、低元冷媒回路(300)は、第3圧縮機(301)と、第3熱交換器(302)と、第3膨張弁(303)とを有し、第3膨張弁(303)、第3熱交換器(302)、第3圧縮機(301)の順に第3冷媒を循環させる。制御装置(30)は、第1高元冷媒回路(100)および第2高元冷媒回路(200)により提供される高元冷凍サイクルの冷却能力を低元冷媒回路(300)の冷凍サイクルの状態に基づいて変動させる。
 本開示によれば、負荷に要求される冷却能力の変化に応じた柔軟な運転を複数の高元冷凍サイクルで実現可能な二元冷凍サイクル装置を提供することが可能である。
 (2) 制御装置(30)は、第3圧縮機(301)を起動するときに設定された周波数に基づいて、第1高元冷媒回路(100)および第2高元冷媒回路(200)を起動するタイミングを制御する(停止運転モード:ステップS10~ステップS21、低容量運転モード:ステップS40~ステップS54、高容量運転モード:ステップS70~ステップS84、冷却運転モード2:ステップS90~ステップS100)。
 (3) 二元冷凍サイクル装置(51)は、第3圧縮機(301)の吐出側に設けられ、第3冷媒の圧力を検出する圧力センサ(10)をさらに備え、制御装置(30)は、圧力が基準の範囲(閾値Aから閾値Bの範囲)に入るように第1高元冷媒回路(100)および第2高元冷媒回路(200)を制御する(停止運転モード:ステップS10~ステップS21、低容量運転モード:ステップS40~ステップS54、高容量運転モード:ステップS70~ステップS84、冷却運転モード2:ステップS90~ステップS100)。
 (4) 低元冷媒回路(300)は、第3圧縮機(301)と第1カスケードコンデンサ(104)との間に配置された第4熱交換器(402)をさらに有する。
 (5) 二元冷凍サイクル装置(51)は、外気温度を検出する温度センサ(20)をさらに備え、制御装置(30)は、第3圧縮機(301)を起動するときに設定された周波数および外気温度に基づいて、第1高元冷媒回路(100)、第2高元冷媒回路(200)、および第4熱交換器(402)を起動するタイミングを制御する(ステップS120~ステップS130)。
 (6) 二元冷凍サイクル装置(51)は、第3圧縮機(301)の吐出側に設けられ、第3冷媒の圧力を検出する圧力センサ(10)をさらに備え、制御装置(30)は、圧力が基準の範囲(閾値Aから閾値Bの範囲)に入るように、第1高元冷媒回路(100)、第2高元冷媒回路(200)、および第4熱交換器(402)を制御する(ステップS90~ステップS100、低容量運転モード、および高容量運転モード)。
 (7) 制御装置(30)は、周波数が閾値(閾値Y)以下で、かつ、外気温度が設定値以下の場合、第4熱交換器(402)を起動し(ステップS92、ステップS123)、制御装置(30)は、第4熱交換器(402)を起動しても圧力が基準の範囲よりも高くなる場合、第2高元冷媒回路(200)を起動する(ステップS94、ステップS125)。
 (8) 第4熱交換器(402)は、第1熱交換器(102)または第2熱交換器(202)と一体化された熱交換器(602,702)により構成されている。
 (9) 第4熱交換器(402)の伝熱面積は、第1熱交換器(102)、第2熱交換器(202)、および第4熱交換器(402)の総伝熱面積の3%から50%の範囲にある(図17)。図17には、第4熱交換器(402)の伝熱面積が、第1熱交換器(102)、第2熱交換器(202)、および第4熱交換器(402)の総伝熱面積の3%以上50%未満である例が示されている。しかし、第4熱交換器(402)の伝熱面積は、第1熱交換器(102)、第2熱交換器(202)、および第4熱交換器(402)の総伝熱面積の3%を超過し50%未満であってもよい。
 (10) 制御装置(30)は、低元冷媒回路(300)を起動するとき、第2高元冷媒回路(200)を併せて起動するか、第1高元冷媒回路(100)および第2高元冷媒回路(200)を併せて起動するかを選択する(ステップS31~ステップS34)。
 (11) 第1高元冷媒回路(100)の冷却能力の範囲に、第2高元冷媒回路(200)の冷却能力の上限値が含まれる(図8,図9)。
 (12) 低元冷媒回路(300)は、第2カスケードコンデンサ(204)と第3膨張弁(303)との間に配置される受液器(304)と、第2カスケードコンデンサ(204)から受液器(304)に流入した第3冷媒を、第1カスケードコンデンサ(104)または第2カスケードコンデンサ(204)に戻す帰還経路(帰還冷媒配管18の経路)とをさらに有し、帰還経路には受液器(304)の方向に第3冷媒が流れることを阻止する逆止弁(305)が設けられている。
 (13) 帰還経路は、受液器(304)の上部に接続されている(図2)。
 (14) 受液器(304)は、第2カスケードコンデンサ(204)の位置よりも鉛直方向において低い位置に配置されている(図2)。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 室外機、2 室内機、10 圧力センサ、15 延長配管、16 第1冷媒配管、17 第2冷媒配管、18 帰還冷媒配管、20 温度センサ、30 制御装置、31 プロセッサ、32 メモリ、51,52 二元冷凍サイクル装置、100 第1高元冷媒回路、101 第1圧縮機、102 第1熱交換器、103 第1膨張弁、104 第1カスケードコンデンサ、200 第2高元冷媒回路、201 第2圧縮機、202 第2熱交換器、203 第2膨張弁、204 第2カスケードコンデンサ、205 無停電電源装置、300 低元冷媒回路、301 第3圧縮機、302 第3熱交換器、303 第3膨張弁、304 受液器、305 逆止弁、402 第4熱交換器、502 第5熱交換器、602 第6熱交換器、702 第7熱交換器、1021 第1ファン、2021 第2ファン、3021 第3ファン、4021 第4ファン、5021 第5ファン、6021 第6ファン、7021 第7ファン、AT10 外気温度、R10 高元運転が不要とされる領域、R20 高元運転が必要とされる領域、W10,W20 枠。

Claims (14)

  1.  二元冷凍サイクル装置であって、
     第1冷媒を循環させる第1高元冷媒回路と、
     第2冷媒を循環させる第2高元冷媒回路と、
     第3冷媒を循環させる低元冷媒回路と、
     前記第1冷媒と前記第3冷媒との間で熱を交換させる第1カスケードコンデンサと、
     前記第2冷媒と前記第3冷媒との間で熱を交換させる第2カスケードコンデンサと、
     制御装置とを備え、
     前記第1高元冷媒回路は、第1圧縮機と、第1熱交換器と、第1膨張弁とを有し、前記第1圧縮機、前記第1熱交換器、前記第1膨張弁、前記第1カスケードコンデンサ、および前記第1圧縮機の順に前記第1冷媒を循環させ、
     前記第2高元冷媒回路は、第2圧縮機と、第2熱交換器と、第2膨張弁とを有し、前記第2圧縮機、前記第2熱交換器、前記第2膨張弁、前記第2カスケードコンデンサ、および前記第2圧縮機の順に前記第2冷媒を循環させ、
     前記低元冷媒回路は、第3圧縮機と、第3熱交換器と、第3膨張弁とを有し、前記第3圧縮機、前記第1カスケードコンデンサ、前記第2カスケードコンデンサ、前記第3膨張弁、前記第3熱交換器、および前記第3圧縮機の順に前記第3冷媒を循環させ、
     前記制御装置は、前記第1高元冷媒回路および前記第2高元冷媒回路により提供される高元冷凍サイクルの冷却能力を前記低元冷媒回路の冷凍サイクルの状態に基づいて変動させる、二元冷凍サイクル装置。
  2.  前記制御装置は、前記第3圧縮機を起動するときに設定された周波数に基づいて、前記第1高元冷媒回路および前記第2高元冷媒回路を起動するタイミングを制御する、請求項1に記載の二元冷凍サイクル装置。
  3.  前記第3圧縮機の吐出側に設けられ、前記第3冷媒の圧力を検出する圧力センサをさらに備え、
     前記制御装置は、前記圧力が基準の範囲に入るように前記第1高元冷媒回路および前記第2高元冷媒回路を制御する、請求項1または請求項2に記載の二元冷凍サイクル装置。
  4.  前記低元冷媒回路は、前記第3圧縮機と前記第1カスケードコンデンサとの間に配置された第4熱交換器をさらに有する、請求項1に記載の二元冷凍サイクル装置。
  5.  外気温度を検出する温度センサをさらに備え、
     前記制御装置は、前記第3圧縮機を起動するときに設定された周波数および前記外気温度に基づいて、前記第1高元冷媒回路、前記第2高元冷媒回路、および前記第4熱交換器を起動するタイミングを制御する、請求項4に記載の二元冷凍サイクル装置。
  6.  前記第3圧縮機の吐出側に設けられ、前記第3冷媒の圧力を検出する圧力センサをさらに備え、
     前記制御装置は、前記圧力が基準の範囲に入るように、前記第1高元冷媒回路、前記第2高元冷媒回路、および前記第4熱交換器を制御する、請求項5に記載の二元冷凍サイクル装置。
  7.  前記制御装置は、前記周波数が閾値以下で、かつ、前記外気温度が設定値以下の場合、前記第4熱交換器を起動し、
     前記制御装置は、前記第4熱交換器を起動しても前記圧力が前記基準の範囲よりも高くなる場合、前記第2高元冷媒回路を起動する、請求項6に記載の二元冷凍サイクル装置。
  8.  前記第4熱交換器は、前記第1熱交換器または前記第2熱交換器と一体化された熱交換器により構成されている、請求項4~請求項7のいずれか1項に記載の二元冷凍サイクル装置。
  9.  前記第4熱交換器の伝熱面積は、前記第1熱交換器、前記第2熱交換器、および前記第4熱交換器の総伝熱面積の3%から50%の範囲にある、請求項4~請求項8のいずれか1項に記載の二元冷凍サイクル装置。
  10.  前記制御装置は、前記低元冷媒回路を起動するとき、前記第2高元冷媒回路を併せて起動するか、前記第1高元冷媒回路および前記第2高元冷媒回路を併せて起動するかを選択する、請求項1~請求項9のいずれか1項に記載の二元冷凍サイクル装置。
  11.  前記第1高元冷媒回路の冷却能力の範囲に、前記第2高元冷媒回路の冷却能力の上限値が含まれる、請求項1~請求項10のいずれか1項に記載の二元冷凍サイクル装置。
  12.  前記低元冷媒回路は、
      前記第2カスケードコンデンサと前記第3膨張弁との間に配置される受液器と、
      前記第2カスケードコンデンサから前記受液器に流入した前記第3冷媒を、前記第1カスケードコンデンサまたは前記第2カスケードコンデンサに戻す帰還経路とをさらに有し、
     前記帰還経路には前記受液器の方向に前記第3冷媒が流れることを阻止する逆止弁が設けられている、請求項1~請求項11のいずれか1項に記載の二元冷凍サイクル装置。
  13.  前記帰還経路は、前記受液器の上部に接続されている、請求項12に記載の二元冷凍サイクル装置。
  14.  前記受液器は、前記第2カスケードコンデンサの位置よりも鉛直方向において低い位置に配置されている、請求項12または請求項13に記載の二元冷凍サイクル装置。
PCT/JP2021/016204 2021-04-21 2021-04-21 二元冷凍サイクル装置 WO2022224383A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023515955A JPWO2022224383A1 (ja) 2021-04-21 2021-04-21
CN202180097075.4A CN117120783A (zh) 2021-04-21 2021-04-21 二元制冷循环装置
EP21937877.5A EP4328523A4 (en) 2021-04-21 2021-04-21 BINARY REFRIGERATION CYCLE DEVICE
PCT/JP2021/016204 WO2022224383A1 (ja) 2021-04-21 2021-04-21 二元冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/016204 WO2022224383A1 (ja) 2021-04-21 2021-04-21 二元冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2022224383A1 true WO2022224383A1 (ja) 2022-10-27

Family

ID=83722146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016204 WO2022224383A1 (ja) 2021-04-21 2021-04-21 二元冷凍サイクル装置

Country Status (4)

Country Link
EP (1) EP4328523A4 (ja)
JP (1) JPWO2022224383A1 (ja)
CN (1) CN117120783A (ja)
WO (1) WO2022224383A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012066763A1 (ja) * 2010-11-15 2012-05-24 三菱電機株式会社 冷凍装置
WO2014181399A1 (ja) * 2013-05-08 2014-11-13 三菱電機株式会社 二元冷凍装置
WO2016147305A1 (ja) * 2015-03-16 2016-09-22 三菱電機株式会社 空調給湯複合システム
JP2018132224A (ja) * 2017-02-14 2018-08-23 パナソニックIpマネジメント株式会社 二元冷凍システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012066763A1 (ja) * 2010-11-15 2012-05-24 三菱電機株式会社 冷凍装置
WO2014181399A1 (ja) * 2013-05-08 2014-11-13 三菱電機株式会社 二元冷凍装置
WO2016147305A1 (ja) * 2015-03-16 2016-09-22 三菱電機株式会社 空調給湯複合システム
JP2018132224A (ja) * 2017-02-14 2018-08-23 パナソニックIpマネジメント株式会社 二元冷凍システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4328523A4 *

Also Published As

Publication number Publication date
JPWO2022224383A1 (ja) 2022-10-27
EP4328523A4 (en) 2024-05-29
EP4328523A1 (en) 2024-02-28
CN117120783A (zh) 2023-11-24

Similar Documents

Publication Publication Date Title
EP1726892B1 (en) Refrigerant cycle apparatus
JP5318057B2 (ja) 冷凍機、冷凍装置及び空気調和装置
JP6792057B2 (ja) 冷凍サイクル装置
JP6778884B2 (ja) 冷凍サイクル装置
JP2006078087A (ja) 冷凍装置
JP2003322421A (ja) 超臨界蒸気圧縮回路における高圧側圧力制御方法と回路装置
JP2012087978A (ja) 冷凍装置
CN100381771C (zh) 冷冻机
WO2022224382A1 (ja) 二元冷凍サイクル装置
JP2004012127A (ja) 可燃性冷媒を用いた冷蔵庫
US20220205671A1 (en) Air conditioner
JP5192883B2 (ja) マルチ形空気調和機
JP6785982B2 (ja) 冷凍装置
WO2022224383A1 (ja) 二元冷凍サイクル装置
JP2013170797A (ja) 冷凍装置
JP4730318B2 (ja) 冷凍装置
JP2008008499A (ja) 冷凍サイクル装置及びヒートポンプ式給湯機
JP5836844B2 (ja) 冷凍装置
CN114935223A (zh) 空气源热泵系统
JP2005201532A (ja) 冷凍冷蔵ユニットおよび冷蔵庫
KR20190005052A (ko) 멀티형 공기조화기
JP2016169911A (ja) 冷凍機ユニット
JP2013113535A (ja) 二元冷凍装置
JP2018194200A (ja) 冷凍サイクル装置およびそれを備えた液体循環装置
JP2011226724A (ja) 冷凍サイクル装置及びその起動制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937877

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023515955

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2021937877

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021937877

Country of ref document: EP

Effective date: 20231121