WO2022223297A1 - Amélioration de productivité de train de coulée-laminage par réglage d'épaisseur de coulée optimale - Google Patents

Amélioration de productivité de train de coulée-laminage par réglage d'épaisseur de coulée optimale Download PDF

Info

Publication number
WO2022223297A1
WO2022223297A1 PCT/EP2022/059122 EP2022059122W WO2022223297A1 WO 2022223297 A1 WO2022223297 A1 WO 2022223297A1 EP 2022059122 W EP2022059122 W EP 2022059122W WO 2022223297 A1 WO2022223297 A1 WO 2022223297A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
casting machine
cast
model
thickness
Prior art date
Application number
PCT/EP2022/059122
Other languages
German (de)
English (en)
Inventor
Christoph Hassel
Björn Kintscher
Kai GRYBEL
Original Assignee
Sms Group Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sms Group Gmbh filed Critical Sms Group Gmbh
Priority to EP22718723.4A priority Critical patent/EP4326459A1/fr
Publication of WO2022223297A1 publication Critical patent/WO2022223297A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/1206Accessories for subsequent treating or working cast stock in situ for plastic shaping of strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/168Controlling or regulating processes or operations for adjusting the mould size or mould taper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/20Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2275/00Mill drive parameters
    • B21B2275/02Speed
    • B21B2275/06Product speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • B21B37/76Cooling control on the run-out table

Definitions

  • the present invention relates to a method for operating a casting and rolling plant for casting and rolling a continuous product.
  • CSP-® plants have been used for some time to produce thin metallic strips. Due to a compact plant concept, they enable particularly economical and environmentally friendly production of thin metallic strips with high productivity and excellent strip quality.
  • the abbreviation CSP-® stands for "Compact Strip Production”.
  • the liquid metal in particular steel, is cast into a strand which is divided into individual slabs. After heat treatment, the slabs are then rolled out in a rolling train to form a (thin) metallic strip. Due to the direct connection of casting and rolling, a CSP-® plant is characterized by particularly low energy consumption, so that - compared to conventional hot strip mills - up to 40% energy can be saved.
  • a hot strip produced on a CSP ® plant is characterized by high quality, it has a uniform structure and homogeneous mechanical and physical properties over the entire length and width of the strip. The tape geometry is within the tightest tolerances.
  • EP 3000539 A1 describes a method in which the drives of a continuous casting machine are synchronized overridingly with those of a rolling train with regard to an identical and constant mass flow in terms of amount.
  • the cast thickness to be produced in the continuous casting machine for the continuous material to be rolled in the rolling train or the hot rolled product to be produced is determined on the basis of empirical values of a hot strip mill worker and/or on the basis of a pass schedule model of the hot strip mill becomes.
  • the smallest casting thickness from the determined casting thickness range is often selected, then transmitted to an operator of the continuous casting machine and generated accordingly.
  • this safety-oriented approach comes at the expense of the productivity of such a system.
  • the present invention is therefore based on the object of providing a method for operating a casting and rolling plant which, compared to the methods known from the prior art, enables higher, preferably maximum, productivity.
  • the object is achieved by a method having the features of claim 1.
  • a selection of possible bar thicknesses to be cast (Ds, can, n to Ds, can, N) is determined on the basis of a final strip thickness to be produced (Dendband, target) after the Nth rolling stand in the rolling train using the pass plan model, the pass schedule model then communicating the selection of values (Ds, can, n through Ds, can, N) to the continuous caster model.
  • all bar thicknesses (Ds, can, n to Ds, can, N) are determined that can basically be rolled within the rolling train in order to achieve the desired final strip thickness.
  • all thicknesses of continuous material that could no longer be rolled in the rolling train to the desired final strip thickness are thereby sorted out in advance
  • a constant, maximum mass flow (Mschmeiz, max, const.) and using manipulated variables of the continuous caster is then used to cast a Bar thickness (Ds, opt) determined by means of the continuous casting machine model, preferably one to be cast Bar thickness (Ds , opt ) for which the throughput through the continuous caster is maximum.
  • the strand thickness_set value (Ds , soii) is in the range of the selected values (Ds , can, n to Ds , can, N). This restriction is necessary because, due to the maximum possible rolling forces and moments in the rolling train, only a maximum thickness reduction is possible and thus a specified final strip thickness (Üendband, target) after the Nth rolling stand in the rolling train is only possible if the String material thickness_set value specification (Ds , soii) is less than the value (Ds , can, N).
  • any casting thickness greater than the value (Ds , can, N) is forbidden, even if the highest productivity should be there, since the final final strip thickness (D ndband, target) would no longer be achievable.
  • a new strand thickness value (Ds , opt) is advantageously sought which is smaller than the value (Ds , can, N) and at which productivity is maximum.
  • This continuous material thickness_setpoint value (Ds , soii) determined according to the invention is generally larger than the smallest cast thickness from the determined cast thickness range of the rolling mill used according to the safety-oriented approach. As a result, the casting-rolling plant achieves higher productivity compared to the conventional approach.
  • the maximum throughput through the continuous casting machine is determined on the basis of a constant, maximum mass flow (Mschmeiz, max, konst.) and using manipulated variables of the continuous casting machine.
  • the constant, maximum mass flow from the steelworks results from the ladle volume and the frequency with which this can be continuously fed to the mold of the continuous casting machine.
  • the manipulated variables of the continuous casting machine are advantageously selected from among the casting speed, the casting width, the material quality and/or combinations thereof.
  • the manipulated variables of the continuous casting machine include, on the one hand, a first maximum casting speed, which is a function of a solidification length, a specific steel grade and the casting thickness that can be cast by the continuous casting machine.
  • the manipulated variables of the continuous casting machine include a second maximum casting speed, which is a function of the first maximum casting speed and the casting width that can be cast by the continuous casting machine.
  • a second maximum casting speed which is a function of the first maximum casting speed and the casting width that can be cast by the continuous casting machine.
  • the pass plan model of the rolling train can provide further target value specifications for determining the selection of possible billet thicknesses to be cast (Ds , can, n to Ds , can, N), which are selected from the series comprising the temperature, the billet width, the control strategy of the rolling mill and/or combinations thereof.
  • the casting-rolling plant can include a cooling section downstream of the rolling train with a cooling section model, the cooling section model resulting from the to be cast Bar thickness (Ds , opt) using the pass plan model resulting process conditions, in particular the final rolling temperature and final rolling speed, with regard to a cooling capacity of the cooling line checked before the bar thickness to be cast (Ds , opt) as a bar thickness_setpoint (Ds , soii) is used.
  • the mechanical properties of a flat steel product having the final strip thickness can additionally be checked using a prediction model for predicting mechanical properties, before the continuous material thickness to be cast is measured
  • (Ds , opt) is used as Stranggutdicken_Sollwertvorgabe (Ds , soii). In particular, it is checked whether the desired properties of the end product are achieved with the billet thickness to be cast (Ds , opt) and the corresponding decreases in the rolling train. If these cannot be achieved, the casting thickness is not optimized.
  • FIG. 1 shows an embodiment variant of a casting-rolling plant 1, which in the present case can be designed in the form of a CSP® plant and by means of which the method according to the invention can be carried out.
  • the plant 1 comprises a continuous casting machine 2, preferably a CSP® thin slab casting machine, with which a continuous material 3 with a thickness in the range of 30-150 mm, preferably with a thickness in the range of 50-90 mm, and a width in the range of 500 to 2500 mm, preferably with a width of 850 to 1950 mm.
  • a separating device 4 is arranged downstream of the continuous casting machine 2 in the direction of strip travel, with which the continuous material 3 is divided into individual slabs 5 before it is fed to the rolling train is separated.
  • the separating device 4 can consist, for example, of pendulum shears.
  • the plant 1 comprises a furnace 6, which can be designed as a tunnel furnace, and a finishing train 7 with a specific number of roll stands 8, three of which are shown in FIG. 1 purely as an example.
  • the finishing train 7 can preferably have 4 to 8 roll stands. Downstream of the finishing train 7 in the direction of strip travel, the plant 1 first comprises a cooling section 9, with which the hot strip rolled to the desired final strip thickness (Üendband, target) is cooled, a flaring device 10, and a second one arranged between the cooling section 9 and the flaring device 10 separator 11.
  • the system 1 can also have a roughing train 12 with preferably up to three roll stands, a transfer bar cooling device 13, another furnace 14, a heating device 15, which is preferably inductive, and/or an upsetting device (not shown). at least one, preferably several edging stands.
  • the continuous casting machine 2 includes a continuous casting machine model 17 and the finishing rolling train 17 includes a pass plan model 18 .
  • a cooling section model 19 can also be provided.
  • the pass schedule model 18 determines a selection of possible continuous material thicknesses to be cast (Ds , can, n to Ds , can, N) on the basis of the final strip thickness to be produced (D ndband, target) and, if applicable, the final strip width after the Nth rolling stand in the rolling train 7 using the pass schedule model 18.
  • the determined values (Ds , can, n to Ds , can, N), which can be 57 mm (Ds, can, n ) to 63 mm (Ds, can, N), for example, are then the control station 16 transmits as a selection to the continuous caster model 17.
  • the determined values (Ds , can, n to Ds , can, N) can also be transmitted via a direct telegram.
  • the continuous casting machine model 17 determines the optimal continuous material thickness (Ds, opt) to be cast, i.e. the continuous material thickness (Ds, opt), on the basis of a constant, maximum mass flow (Mschmeiz, max, konst.) and using manipulated variables of the continuous casting machine 2 at which the throughput through the continuous casting machine 2 is at its maximum.
  • the constant, maximum mass flow from the steelworks results from the ladle volume, which can be between 120 and 160 t, for example, and the frequency with which this can be fed continuously to the mold of the continuous casting machine 2 .
  • the constant, maximum mass flow (Mschmeiz, max, konst.) can have a value of 4 t/min, for example.
  • the manipulated variables of the continuous casting machine 2 include a first maximum casting speed 20 (FIG. 2), which is a function of a solidification length, a specific steel grade, in this case low-carbon steel, and the casting thickness cast by the continuous casting machine 2 can be. Furthermore, the manipulated variables of the continuous casting machine 2 include a second maximum casting speed 21 (FIG. 3), which is a function of the first maximum casting speed 20 and the casting width that can be cast by the continuous casting machine 2.
  • FIG. 3 shows an example of a maximum casting speed for a casting thickness of 67 mm. On the basis of these two functions, as well as by attracting the density for the specific steel grade, throughputs can be determined for all casting thicknesses, as shown in the diagram in FIG.
  • FIG. 3 shows the throughput 22 for a casting thickness of 67 mm as an example.
  • FIG. 4 shows the throughputs 22, 23, 24, 25, 26, 27, 28 for the different casting thicknesses of 55 mm, 60 mm, 67 mm, 70 mm, 75 mm, 80 mm and 85 mm.
  • This family of curves can ultimately be used to determine a normalized throughput, i.e. a throughput based on the maximum mass flow (Mschmeiz, max, constant) of 4 t/min, for example, for a specific casting width, based on which the maximum throughput possible by the continuous casting machine 2 can be determined is (Figure 5). For example, for a casting width of 1350 mm (FIG. 5), the throughput through the continuous casting machine 2 is at a maximum with a casting thickness (Ds, opt) of 60 mm.
  • Ds, opt casting thickness
  • the strand thickness value (Ds, opt) i.e. the value 60 mm, for example, is in the range of the selection of values (Ds, can, n to Ds, can, N), for example in the range 57 mm (D s , can, n) to 63 mm (D s , can, N), this is then used as a strand material thickness_set value specification (Ds, soii).
  • the smallest casting thickness i.e. the value 57 mm
  • the billet thickness_setpoint value Ds , soii.
  • the approach according to the invention shows that the throughput through the continuous casting machine 2 is at a maximum with a casting thickness (Ds , opt ) of 60 mm. This results in a higher productivity of up to 5% for the plant operator compared to the conventional approach.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)

Abstract

La présente demande concerne un procédé destiné à faire fonctionner un train de coulée-laminage (1) permettant de couler et de laminer un matériau en brin (3), le train de coulée-laminage (1) comprenant : une machine de coulée continue (2) comportant un modèle (17) de machine de coulée continue ; et un train de laminoirs (7, 12) comportant un modèle (18) de programme de laminage, le train de laminoirs étant en aval de la machine de coulée continue (2), et le train de laminoirs (7, 12) présentant n cages de laminage (8), où n = 1 à N. Le procédé comprend les étapes consistant : a) à déterminer une sélection d'épaisseurs possibles du matériau en brin (Ds, kann, n à Ds, kann, N) à couler, en fonction d'une épaisseur de bande finale souhaitée (DEndband, Ziel) après la Nième cage de laminage (8) dans le train de laminoirs (7, 12), au moyen du modèle (18) de programme de laminage, le modèle (18) de programme de laminage transmettant la sélection des valeurs (Ds, kann, n à Ds, kann, N) au modèle (17) de machine de coulée continue ; b) à déterminer, au moyen du modèle (17) de machine de coulée continue, une épaisseur du matériau en brin (Ds, opt) à couler, en fonction d'un débit massique maximal constant (Mschmeiz, max, konst.) et, au vue des variables manipulées de la machine de coulée continue (2), de préférence une épaisseur du matériau en brin (Ds, opt) à couler pour laquelle le débit à travers la machine de coulée continue (2) est maximal ; et c) à utiliser l'épaisseur du matériau en brin (Ds, opt) à couler en tant que spécification de consigne de l'épaisseur du matériau en brin (Ds, soll), sous réserve que la condition selon laquelle l'épaisseur du matériau en brin est comprise dans la sélection des valeurs (Ds, kann, n <sb /> à Ds, kann, N) soit satisfaite.
PCT/EP2022/059122 2021-04-19 2022-04-06 Amélioration de productivité de train de coulée-laminage par réglage d'épaisseur de coulée optimale WO2022223297A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22718723.4A EP4326459A1 (fr) 2021-04-19 2022-04-06 Amélioration de productivité de train de coulée-laminage par réglage d'épaisseur de coulée optimale

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021203848.4 2021-04-19
DE102021203848.4A DE102021203848A1 (de) 2021-04-19 2021-04-19 Verbesserung der Produktivität einer Gießwalzanlage durch Einstellung einer optimalen Gießdicke

Publications (1)

Publication Number Publication Date
WO2022223297A1 true WO2022223297A1 (fr) 2022-10-27

Family

ID=81386580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/059122 WO2022223297A1 (fr) 2021-04-19 2022-04-06 Amélioration de productivité de train de coulée-laminage par réglage d'épaisseur de coulée optimale

Country Status (3)

Country Link
EP (1) EP4326459A1 (fr)
DE (1) DE102021203848A1 (fr)
WO (1) WO2022223297A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2322320A (en) * 1997-02-21 1998-08-26 Kvaerner Metals Cont Casting Continuous casting with rolling stages separated by a temperature controlling stage
EP3000539A1 (fr) 2014-09-24 2016-03-30 SMS group GmbH Procédé et installation de coulée-laminage destinés à couler et laminer un produit en coulée continue
EP3787811A1 (fr) * 2018-04-30 2021-03-10 SMS Group GmbH Procédé pour faire fonctionner une zone de refroidissement et installation pour la fabrication de produits laminés

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2322320A (en) * 1997-02-21 1998-08-26 Kvaerner Metals Cont Casting Continuous casting with rolling stages separated by a temperature controlling stage
EP3000539A1 (fr) 2014-09-24 2016-03-30 SMS group GmbH Procédé et installation de coulée-laminage destinés à couler et laminer un produit en coulée continue
US20170266704A1 (en) * 2014-09-24 2017-09-21 Sms Group Gmbh Method and casting/rolling system for casting and rolling a continuous strand material
EP3787811A1 (fr) * 2018-04-30 2021-03-10 SMS Group GmbH Procédé pour faire fonctionner une zone de refroidissement et installation pour la fabrication de produits laminés

Also Published As

Publication number Publication date
DE102021203848A1 (de) 2022-10-20
EP4326459A1 (fr) 2024-02-28

Similar Documents

Publication Publication Date Title
EP1318876B1 (fr) Procede et installation pour produire des feuillards et des toles en acier
AT398396B (de) Verfahren zum herstellen eines bandes, vorstreifens oder einer bramme
DE69814513T2 (de) Walzverfahren und Walzstrasse für dünne Flacherzeugnisse
EP2964404B1 (fr) Procédé de production d&#39;une bande métallique au moyen de cylindres de coulée
AT504782A4 (de) Verfahren zur herstellung eines warmgewalzten stahlbandes und kombinierte giess- und walzanlage zur durchführung des verfahrens
EP3341142B1 (fr) Procédé de fonctionnement d&#39;une installation fonctionnant suivant le concept csp (compact strip production)
EP2427281B1 (fr) Procédé de fabrication d&#39;un produit de laminage et/ou d&#39;une section de produit de laminage laminé(e) dans une chaîne de laminage d&#39;une installation de laminage, dispositif de commande et/ou de réglage pour une installation de laminage destiné à la fabrication de produits de laminage laminés, installation de laminage destinée à la fabrication de produits de laminage laminés, code de programme lisible sur machine et support de stockage
EP1833623B1 (fr) Dispositif de fabrication d&#39;un produit metallique par laminage
WO2004004938A1 (fr) Procede et installation de laminage de coulee continue pour le laminage semi-continu ou continu par coulee d&#39;une barre de metal, en particulier d&#39;acier, separee transversalement selon le besoin apres solidification
DE10304318A1 (de) Verfahren zum Walzen von dünnen und/oder dicken Brammen aus Stahlwerkstoffen zu Warmband
EP2663412B1 (fr) Installation et procédé destinés à produire des bandes d&#39;acier laminées à chaud
EP3016762B1 (fr) Installation de laminage de coulée continue et procédé de fabrication de produit laminé métallique
WO2016165933A1 (fr) Installation de coulée et de laminage et procédé servant à faire fonctionner ladite installation
WO2018158420A1 (fr) Procédé et dispositif permettant la fabrication en continu d&#39;un feuillard d&#39;acier
WO2022223297A1 (fr) Amélioration de productivité de train de coulée-laminage par réglage d&#39;épaisseur de coulée optimale
EP2689863A1 (fr) Procédé d&#39;influence ciblée de la géométrie d&#39;un produit à laminer
DE102019207459A1 (de) Gieß-Walzanlage für den Batch- und Endlosbetrieb
EP3206808B1 (fr) Installation et procédé de fabrication de tôles fortes
EP1641573B1 (fr) Dispositif pour la production de feuillard d&#39;acier lamine a chaud, en particulier a partir d&#39;ebauche en bande coulee en continu
EP1317325A1 (fr) Installation de coulee et laminage
DE102012224531A1 (de) Verfahren zur Herstellung von kornorientierten Silizium-Stählen
EP3027331B1 (fr) Installation de laminage de coulée continue et procédé de fabrication de brames
EP4034318A1 (fr) Dispositif et procédé de fabrication et d&#39;usinage ultérieur de brames
DE19639298A1 (de) Verfahren und Vorrichtung zur Erzeugung von dünnen Brammen mit direkt anschließendem Walzprozeß/Walzwerk
DE19749706C1 (de) Verfahren zur Herstellung von dünnem warmgewalztem Stahlband

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22718723

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2022718723

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022718723

Country of ref document: EP

Effective date: 20231120