WO2022222933A1 - 一种用于光通信的传输方法、接收方法及相应设备 - Google Patents

一种用于光通信的传输方法、接收方法及相应设备 Download PDF

Info

Publication number
WO2022222933A1
WO2022222933A1 PCT/CN2022/087770 CN2022087770W WO2022222933A1 WO 2022222933 A1 WO2022222933 A1 WO 2022222933A1 CN 2022087770 W CN2022087770 W CN 2022087770W WO 2022222933 A1 WO2022222933 A1 WO 2022222933A1
Authority
WO
WIPO (PCT)
Prior art keywords
symbols
polarization direction
pilot
subframe
training
Prior art date
Application number
PCT/CN2022/087770
Other languages
English (en)
French (fr)
Inventor
黄科超
梁伟光
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CA3217493A priority Critical patent/CA3217493A1/en
Priority to KR1020237039661A priority patent/KR20230170777A/ko
Priority to JP2023564244A priority patent/JP2024515195A/ja
Priority to BR112023021802A priority patent/BR112023021802A2/pt
Priority to EP22791040.3A priority patent/EP4318977A4/en
Priority to MX2023012470A priority patent/MX2023012470A/es
Publication of WO2022222933A1 publication Critical patent/WO2022222933A1/zh
Priority to US18/490,448 priority patent/US20240178920A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/54Intensity modulation
    • H04B10/541Digital intensity or amplitude modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/612Coherent receivers for optical signals modulated with a format different from binary or higher-order PSK [X-PSK], e.g. QAM, DPSK, FSK, MSK, ASK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • H04L1/0008Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length by supplementing frame payload, e.g. with padding bits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of optical communication, and in particular, to a transmission method, a reception method and corresponding equipment for optical communication.
  • Coherent optical communication systems use the amplitude, phase, polarization and frequency of light waves to carry information.
  • coherent optical communication systems In order to resist the optical signal distortion caused by dispersion, polarization-related damage, noise, nonlinear effects and other factors during transmission and maintain long-distance transmission, coherent optical communication systems usually add some designed fixed symbol sequences to the transmission symbol sequence , which is convenient for the receiver to recover the transmitted symbols.
  • the existing transmission symbol sequences are mainly used in 400Gbps scenarios, which cannot be adapted to future scenarios above 400Gbps (including 600Gbps, 800Gbps, etc.), and there is a problem of poor cross-correlation between transmission symbol sequences in different polarization directions. problems to be solved in the future.
  • the present application provides a transmission method for optical communication, which solves the problem that the prior art cannot be applied to scenarios above 400 Gbps, and the cross-correlation of symbol sequences in different polarization directions is poor.
  • a first aspect provides a transmission method for optical communication, the method comprising: generating a superframe including a plurality of subframes, the subframes including training symbols and pilot symbols, wherein, in one polarization direction, all The sum of the number of the training symbols and the pilot symbols included in the subframe is not less than 5, and one symbol is both a training symbol and a pilot symbol; and each of the training symbols and each of the pilot symbols
  • the symbols are respectively one of -A-Aj, -A+Aj, A-Aj, and A+Aj, and A is a real number; in the training symbols and the pilot symbols included in each subframe, -A-
  • the numbers of Aj, -A+Aj, A-Aj and A+Aj in one polarization direction are and the numbers in the other polarization direction are respectively Among them, N TS is the number of the training symbols in each subframe in one polarization direction, N PS is the number of the pilot symbols in each subframe in one polarization direction, N
  • a second aspect provides a receiving method for optical communication, the method comprising: receiving a superframe including a plurality of subframes, the subframes including training symbols and pilot symbols, wherein, in one polarization direction, all The sum of the number of the training symbols and the pilot symbols included in the subframe is not less than 5, and one symbol is both a training symbol and a pilot symbol; and each of the training symbols and each of the pilot symbols
  • the frequency symbols are respectively one of -A-Aj, -A+Aj, A-Aj, and A+Aj, and A is a real number; in the training symbols and the pilot symbols included in each subframe, -A
  • the numbers of -Aj, -A+Aj, A-Aj and A+Aj in one polarization direction are and the numbers in the other polarization direction are respectively Among them, N TS is the number of the training symbols in each subframe in one polarization direction, N PS is the number of the pilot symbols in each subframe in one polarization direction, N
  • a subframe in each polarization direction, includes a total of N TS +N PS -1 training symbols and pilot symbols.
  • N TS +N PS -1 training symbols and pilot symbols in each polarization direction, includes N TS +N PS -1 training symbols and pilot symbols.
  • the number of A+Aj differs not more than 1 from each other; and, in a subframe, the number of four complex numbers representing training symbols and pilot symbols in two polarization directions is the same, both (N TS +N PS -1)/2, effectively ensuring the balance of the number of symbols.
  • the sequence formed by the training symbols and the pilot symbols can also achieve DC balance, which is beneficial for the receiving end to restore the quality of the signal.
  • a sequence composed of training symbols in one polarization direction and a sequence composed of training symbols in another polarization direction are mutually exclusive. Not the same, the sequence composed of pilot symbols in one polarization direction is different from the sequence composed of pilot symbols in another polarization direction. To avoid the problem that the receiving end cannot distinguish the two polarization directions in actual transmission.
  • the training symbols are consecutively arranged in the subframe, wherein, in any polarization direction, in the training symbols included in the subframe, the real part is The number of consecutive identical elements is not greater than 5, and the number of consecutive identical imaginary elements is not greater than 5. Further, in any polarization direction, the number of consecutive identical training symbols in a subframe does not exceed 4.
  • the training sequence obtained under such conditions is beneficial to clock recovery, thereby helping to improve the signal quality recovered by the receiving end.
  • the plurality of subframes further includes a first subframe, and the first subframe includes consecutively arranged frame synchronization symbols, each frame synchronization symbol are respectively one of -A-Aj, -A+Aj, A-Aj, and A+Aj; in any polarization direction, in the frame synchronization symbol included in the subframe, the elements of the real part are consecutively the same. The number is not greater than 5, and the number of consecutive identical elements in the imaginary part is not greater than 5. Further, in any polarization direction, the number of consecutive identical frame synchronization symbols in the first subframe does not exceed 4.
  • the frame synchronization sequence obtained under such conditions is also beneficial to clock recovery, thereby helping to improve the signal quality recovered by the receiving end.
  • N FAW is the number of the frame synchronization symbols in the first subframe in one polarization direction
  • N FAW is an even number.
  • N TS is an even number
  • -A-Aj, -A+Aj, A-Aj and A+Aj are The numbers in one polarization direction are and the numbers in the other polarization direction are respectively
  • N TS is an odd number
  • the numbers of -A-Aj, -A+Aj, A-Aj and A+Aj in one polarization direction are respectively and the numbers in the other polarization direction are respectively
  • the above two embodiments give the numbers of several possible symbols of the training sequence in different polarization directions under two different situations, the training symbols -A-Aj, -A+Aj, A- included in a subframe
  • the numbers of Aj, A+Aj are close to each other.
  • the sum of the real parts of the complex numbers corresponding to other training symbols is 0, and the sum of the imaginary parts is also 0, DC balance can be achieved, which is beneficial for the receiving end to restore the quality of the signal.
  • N PS is an even number
  • the pilot symbols included in each subframe the numbers of -A-Aj, -A+Aj, A-Aj and A+Aj in one polarization direction are and the numbers in the other polarization direction are respectively
  • N PS is an odd number
  • the pilot symbols included in each subframe except the pilot symbol that is also used as the training symbol
  • the numbers of -A-Aj, -A+Aj, A-Aj and A+Aj in one polarization direction are respectively and the numbers in the other polarization direction are respectively
  • the pilot symbols in one polarization direction The remainder divided by 4 is 0.
  • the numbers of -A-Aj, -A+Aj, A-Aj and A+Aj in one polarization direction are respectively N PS /4+1, N PS /4-1, N PS /4-1, N PS /4+1, and the numbers in the other polarization direction are N PS /4-1, N PS /4, respectively +1, N PS /4+1, N PS /4-1; or, the number in both polarization directions is N PS /4.
  • the pilot symbols in one polarization direction The remainder divided by 4 is 2.
  • the numbers of -A-Aj, -A+Aj, A-Aj, and A+Aj in one polarization direction are respectively (N PS -2)/4, (N PS -2)/4+1, (N PS -2)/4+1, (N PS -2)/4, and the number in the other polarization direction, respectively are (N PS -2)/4+1, (N PS -2)/4, (N PS -2)/4, (N PS -2)/4+1.
  • the pilot frequency in one polarization direction The remainder of dividing the number of symbols by 4 is 1.
  • the number of A+Aj in one polarization direction is (N PS -1)/4+1, (N PS -1)/4-1, (N PS -1)/4-1, (N PS -1 )/4+1, and the numbers in the other polarization direction are (N PS -1)/4-1, (N PS -1)/4+1, (N PS -1)/4+1, (N PS -1)/4-1; or, the number in both polarization directions is (N PS -1)/4.
  • the pilot frequency in one polarization direction When the remainder of the number of symbols divided by 4 is 3, in the pilot symbols included in each subframe, remove the pilot symbol that is also a training symbol, -A-Aj, -A+Aj, A-Aj , the number of A+Aj in one polarization direction are (N PS -3)/4, (N PS -3)/4+1, (N PS -3)/4+1, (N PS -3) /4, and the numbers in the other polarization direction are (N PS -3)/4+1, (N PS -3)/4, (N PS -3)/4, (N PS -3)/ 4+1.
  • the above-mentioned seventh to twelfth embodiments give the number of several possible symbols of the pilot sequence in different polarization directions under several different situations, and the pilot symbols -A-Aj, -A included in a subframe
  • the numbers of +Aj, A-Aj, and A+Aj are close to each other, which effectively ensures the balance between training symbols.
  • the sum of the real parts of the complex numbers corresponding to other pilot symbols is 0, and the sum of the imaginary parts is also 0, can achieve DC balance, which is beneficial to the quality of the signal at the receiving end.
  • the modulation format of the symbols in the superframe is 16QAM, and the value of A is 1 or 3.
  • the value of A will be compressed accordingly.
  • the power of the 16 symbols on the 16QAM constellation diagram is normalized.
  • the value of become The value of A is or It should be understood that when the pilot symbols and training symbols -A-Aj, -A+Aj, A-Aj, and A+Aj use the outermost 4 symbols of the constellation diagram, the sensitivity (sensitivity) of the training and pilot symbols is relatively high, But the peak to average power ratio (peak to average power) is larger; when the pilot symbols and training symbols take the values -A-Aj, -A+Aj, A-Aj, and A+Aj using the innermost 4 symbols of the constellation diagram, The training and pilot symbols have less noise but lower sensitivity.
  • the pilot symbols and training symbols -A-Aj, -A+Aj, A-Aj, and A+Aj may not be symbols on the constellation diagram of the modulation format used, It may be some 4 symbols in the middle area of the outermost 4 symbols and the innermost 4 symbols of the constellation diagram.
  • the training and pilot symbol noise and sensitivity are average, but the peak-to-average power ratio is relatively low.
  • the values of the 16 symbols on the 16QAM constellation diagram are ⁇ 1 ⁇ 1j, ⁇ 1 ⁇ 3j, ⁇ 3 ⁇ 1j, ⁇ 3 ⁇ 3j ⁇ , and the value of the real number A satisfies 1 ⁇ A ⁇ 3.
  • the outermost 4 symbols of the constellation diagram are 3+3j, 3-3j, -3+3j, -3-3j, and the innermost 4 symbols of the constellation diagram are 1+1j, 1-1j, -1+1j , -1-1j.
  • the values of the pilot symbols and training symbols -A-Aj, -A+Aj, A-Aj, and A+Aj may be some 4 symbols in the middle area between the outermost 4 symbols and the innermost 4 symbols of the 16QAM constellation.
  • the specific value of the real number A can be selected according to the actual application scenario, so that the peak-to-average power ratio, noise and sensitivity of the training and pilot symbols have a good compromise.
  • the values of pilot symbols and training symbols are In addition, when the power of the 16 symbols on the 16QAM constellation is normalized and the value is The value of the real number A satisfies For example real numbers
  • the values of pilot symbols and training symbols are
  • the fixed position of every 64 symbols is the pilot symbol.
  • the first symbol in every 64 symbols is a pilot symbol.
  • the second aspect and any one of the first to thirteenth possible implementation manners, in the fifteenth possible implementation manner, in each subframe, every 48
  • the fixed position of the symbol is the pilot symbol.
  • the first symbol in every 48 symbols is a pilot symbol.
  • a transmission device for optical communication includes a processor and a memory, the memory is used for storing instructions, the processor is used for executing the instructions, so that the transmission device executes the The method described in the first aspect and any possible implementation manner of the first aspect.
  • a receiving device for optical communication includes a processor and a memory, the memory is used for storing instructions, and the processor is used for executing the instructions, so that the receiving device executes the The method described in the second aspect and any possible implementation manner of the second aspect.
  • a system for optical communication comprising the transmission device as described in the third aspect, and the reception device as described in the fourth aspect.
  • the processor may be a central processing unit (Central Processing Unit, referred to as "CPU” for short), or other general-purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), and off-the-shelf programmable gate arrays. (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor, etc., which is not limited in this application.
  • a computer-readable storage medium stores instructions, and when the instructions are executed on a terminal device, the terminal device is made to perform any one of the first aspect or the first aspect.
  • a computer program product containing instructions, which, when run on a terminal device, cause the terminal device to execute the method described in the first aspect or any possible implementation manner of the first aspect; or cause the The terminal device executes the method described in the second aspect or any possible implementation manner of the second aspect.
  • the terminal device may be a chip, a processor, etc., which is not limited in this application.
  • a transmission method for optical communication comprising: generating a superframe including a plurality of subframes, the subframes including training symbols and pilot symbols, wherein, in one polarization direction, there is a symbol that is both is a training symbol and a pilot symbol, and each training symbol and each pilot symbol are one of -A-Aj, -A+Aj, A-Aj, and A+Aj, respectively, and A is a real number;
  • the pilot symbols are generated by the target polynomial and the seed, and there are N PS pilot symbols, which are combined with N TS training symbols to achieve DC balance, where N TS is the The number of the training symbols in a polarization direction, N TS +N PS is an odd number;
  • the target polynomial is one of the following table;
  • a receiving method for optical communication comprising:
  • a superframe containing multiple subframes is received, and the subframe includes training symbols and pilot symbols, wherein, in one polarization direction, one symbol is both a training symbol and a pilot symbol, and each training symbol and each pilot symbol are received.
  • the frequency symbol is one of -A-Aj, -A+Aj, A-Aj, A+Aj, A is a real number; in each subframe, in one polarization direction, the pilot symbol is the target polynomial and the seed Generated, there are N PS pilot symbols, and the combination with N TS training symbols achieves DC balance, where N TS is the number of the training symbols in each subframe in one polarization direction, and N TS +N PS is Odd number; the target polynomial is one of the following table;
  • the pilot symbol is generated according to a target polynomial and a corresponding seed
  • the target polynomial is any item in the above table
  • the target polynomial and the corresponding seed can satisfy the generated NPS .
  • the combination of pilot symbols and NTS training symbols achieves DC balance, that is, in a subframe in one polarization direction, the sum of the real parts of the complex numbers corresponding to the training symbols and the pilot symbols is 0, and the sum of the imaginary parts is 0. The sum is also 0, which is conducive to better recovery of the signal at the receiving end and improves the quality of the signal at the receiving end.
  • This kind of superframe structure can be more conducive to better signal recovery at the receiving end and improve the quality of the signal at the receiving end.
  • the target polynomial and the seeds expressed in hexadecimal in the two polarization directions are in the following table.
  • the normalized amplitude of the periodic autocorrelation function side lobe value of the pilot symbols in the same polarization direction is not greater than 0.2
  • the normalized amplitude of the periodic cross-correlation function value of the pilot symbols in different polarization directions is not greater than 0.2
  • the target polynomial is the original polynomial, and its non-zero term is not greater than 5
  • the target polynomial and the two polarization directions are expressed in hexadecimal.
  • the seed is a row in the table below
  • the normalized amplitude of the side lobe value of the periodic autocorrelation function of the pilot symbols in the same polarization direction is not greater than 0.25
  • the value of the periodic cross-correlation function of the pilot symbols in different polarization directions is not greater than 0.25.
  • the normalized amplitude is not greater than 0.25
  • the target polynomial is x 10 +x 7 +x 3 +x+1
  • the corresponding two polarizations when the hexadecimal seeds in the direction are 0x34E and 0x084, in one polarization direction, in the combination of 114 pilot symbols and 11 training symbols, -A-Aj, -A+Aj, A-Aj
  • the number of A+Aj in one polarization direction is 31, and the 114 pilot symbols in the two polarization directions are respectively as shown in the following table:
  • the target polynomial and the seeds expressed in hexadecimal in the two polarization directions are in the following table.
  • the normalized amplitude of the periodic autocorrelation function side lobe value of the pilot symbols in the same polarization direction is not greater than 0.23
  • the normalized amplitude of the periodic cross-correlation function value of the pilot symbols in different polarization directions is not greater than 0.23
  • serial number target polynomial Seeds in one direction of polarization Seeds in two directions of polarization 1 x 10 +x 7 +x 3 +x+1 0x204 0x279 2 x 10 +x 7 +x 3 +x+1 0x0B1 0x3E9 3 x 10 +x 7 +x 3 +x+1 0x0B1 0x279 .
  • a tenth aspect provides a transmission device for optical communication, the transmission device includes a processor and a memory, the memory is used to store instructions, and the processor is used to execute the instructions, so that the transmission device performs the eighth aspect and any of the eighth aspects.
  • the transmission device includes a processor and a memory, the memory is used to store instructions, and the processor is used to execute the instructions, so that the transmission device performs the eighth aspect and any of the eighth aspects.
  • a receiving device for optical communication includes a processor and a memory, the memory is used for storing instructions, and the processor is used for executing the instructions, so that the receiving device performs as in the ninth aspect and in the ninth aspect A method for any possible implementation.
  • a twelfth aspect provides a system for optical communication, the system comprising the transmission device as in the tenth aspect, and the reception device as in the eleventh aspect.
  • the processor may be a central processing unit (Central Processing Unit, referred to as "CPU"), or other general-purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), and off-the-shelf programmable gate arrays. (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor, etc., which is not limited in this application.
  • a thirteenth aspect provides a computer-readable storage medium, where the computer-readable storage medium stores an instruction, and when the instruction is executed on a terminal device, the terminal device is made to execute the eighth aspect or any possible implementation manner of the eighth aspect or cause the terminal device to execute the method of the ninth aspect or any possible implementation manner of the ninth aspect.
  • a fourteenth aspect provides a computer program product containing instructions that, when run on a terminal device, cause the terminal device to execute the method of the eighth aspect or any possible implementation of the eighth aspect; or cause the terminal device to execute The method of the ninth aspect or any one of the possible implementations of the ninth aspect.
  • the terminal device may be a chip, a processor, etc., which is not limited in this application.
  • a fifteenth aspect provides a transmission method for optical communication, comprising: generating a superframe including a plurality of subframes, the subframes including training symbols and pilot symbols; in each subframe, in one polarization direction , there are N PS pilot symbols, and the value is one of -A 2 -A 2 j, -A 2 +A 2 j, A 2 -A 2 j, and A 2 +A 2 j, where A 2 is a real number, NPS is an even number; NPS pilot symbols reach DC balance; the combination of training symbols and NPS pilot symbols achieves DC balance; the pilot symbols are the target polynomial and the seed It is determined that the target polynomial is an original polynomial, and its non-zero term is not greater than 5; the target polynomial is one of the following table;
  • the superframe is sent out.
  • a sixteenth aspect provides a receiving method for optical communication, comprising: receiving a superframe including a plurality of subframes, the subframes including training symbols and pilot symbols; in each subframe, in one polarization direction , there are N PS pilot symbols, and the value is one of -A 2 -A 2 j, -A 2 +A 2 j, A 2 -A 2 j, and A 2 +A 2 j, where A 2 is a real number, NPS is an even number; NPS pilot symbols reach DC balance; the combination of training symbols and NPS pilot symbols achieves DC balance; the pilot symbols are the target polynomial and the seed It is determined that the target polynomial is an original polynomial, and its non-zero term is not greater than 5; the target polynomial is one of the following table;
  • the received superframe is decoded.
  • the pilot symbol is generated according to a target polynomial and a corresponding seed
  • the target polynomial is any item in the above table
  • the target polynomial and the corresponding seed can satisfy N PS
  • the pilot symbols achieve DC balance
  • the combination of training symbols and N PS pilot symbols achieves DC balance, which is conducive to better signal recovery at the receiving end and improves signal quality at the receiving end.
  • the periodic autocorrelation function side lobe value of the pilot symbol in the same polarization direction The normalized amplitude of is not greater than 0.25, the normalized amplitude of the periodic cross-correlation function value of pilot symbols in different polarization directions is not greater than 0.25,
  • the target polynomial is x 10 +x 9 +x 7 +x 6 +1
  • the hexadecimal seeds in the corresponding two polarization directions are 0x002 and 0x3C6
  • the respective 114 pilot symbols in the two polarization directions are shown in the following table:
  • the number of -A 2 -A 2 j is equal to the number of A 2 +A 2 j, and the number of -A 2 +A 2 j The number is equal to the number of A 2 -A 2 j, and the number of -A 2 -A 2 j and the number of the difference are 2; or, -A 2 -A 2 j, -A 2 +A 2 j, A 2 -A 2 j, A 2 +A 2 j are equal in number.
  • the number of -A 2 -A 2 j is equal to the number of A 2 +A 2 j, - The number of A 2 +A 2 j is equal to the number of A 2 -A 2 j, and the number and the number of -A 2 -A 2 j differ by one.
  • a seventeenth aspect provides a transmission device for optical communication, the transmission device includes a processor and a memory, the memory is used for storing instructions, and the processor is used for executing the instructions, so that the transmission device performs as in the fifteenth aspect and the fifteenth A method of any of the possible implementations of an aspect.
  • a receiving device for optical communication includes a processor and a memory, the memory is used for storing instructions, and the processor is used for executing the instructions, so that the receiving device performs as in the sixteenth aspect and the sixteenth A method of any of the possible implementations of an aspect.
  • a nineteenth aspect provides a system for optical communication, the system comprising the transmission device as in the seventeenth aspect, and the reception device as in the eighteenth aspect.
  • the processor may be a central processing unit (Central Processing Unit, referred to as "CPU” for short), or other general-purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), and off-the-shelf programmable gate arrays. (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor, etc., which is not limited in this application.
  • a computer-readable storage medium stores instructions, and when the instructions are executed on a terminal device, the terminal device is made to execute any of the possibilities as described in the fifteenth aspect or the fifteenth aspect.
  • the method of implementation; or the terminal device is made to execute the method of the sixteenth aspect or any one of the possible implementations of the sixteenth aspect.
  • a twenty-first aspect provides a computer program product containing instructions that, when run on a terminal device, cause the terminal device to perform the method of the fifteenth aspect or any possible implementation of the fifteenth aspect; or The terminal device performs the method according to the sixteenth aspect or any one of the possible implementations of the sixteenth aspect.
  • the terminal device may be a chip, a processor, etc., which is not limited in this application.
  • the numbers of -A-Aj, -A+Aj, A-Aj, and A+Aj representing training symbols and pilot symbols differ by no more than 1, which is valid Balance between symbols is guaranteed.
  • the sum of the real parts of the complex numbers corresponding to the training symbols and pilot symbols in a subframe is 0, and the sum of the imaginary parts is also 0, which can achieve DC balance, which is conducive to the recovery of the signal at the receiving end. quality.
  • Fig. 1 is the structural block diagram of the communication system
  • FIG. 2 is a schematic diagram of a framing process
  • FIG. 3 is a schematic diagram of another framing process
  • 5A is a schematic diagram of a position of training symbols or pilot symbols in a constellation diagram under DP-16QAM
  • 5B is a schematic diagram of another position of a training symbol or a pilot symbol in a constellation diagram under DP-16QAM;
  • FIG. 6 is a structure diagram of a superframe, a structure diagram of a first type of subframe, and a structure diagram of a second type of subframe provided by the application;
  • Fig. 7 is the mapping relationship between DP-QPSK symbols and bits
  • Fig. 8 is the mapping relationship between DP-16QAM symbols and bits
  • FIG. 9 is a structural diagram of a specific superframe and a first subframe therein and other subframes except the first subframe provided by an embodiment of the present application;
  • FIG. 10 is an aperiodic autocorrelation result diagram of a specific frame synchronization sequence in the X polarization direction, aperiodic autocorrelation result diagram in the Y polarization direction, and aperiodic cross-correlation in two polarization directions provided by the embodiment of the application result graph;
  • FIG. 11 is a graph of aperiodic autocorrelation results of a specific training sequence in the X polarization direction, a graph of aperiodic autocorrelation results in the Y polarization direction, and aperiodic cross-correlation results in two polarization directions provided by the embodiments of the present application picture;
  • FIG. 12 is a graph of periodic autocorrelation results of a specific pilot sequence in the X polarization direction, a graph of periodic autocorrelation results in the Y polarization direction, and a graph of periodic cross-correlation results in two polarization directions provided by the embodiment of the present application;
  • Fig. 13 adopts the superframe structure as shown in Fig. 9, the superframe spectrogram under DP-16QAM, and the spectrogram of random DP-16QAM signal;
  • Figure 14 is a superframe spectrogram under DP-QPSK using the superframe structure as shown in Figure 9, and a spectrogram of a random DP-QPSK signal;
  • 15 is a specific superframe structure diagram provided by another embodiment of the application, a structure diagram of a first subframe in a specific superframe, and a structure diagram of other subframes except the first subframe;
  • 16 is an aperiodic autocorrelation result diagram of a specific frame synchronization sequence in the X polarization direction, an aperiodic autocorrelation result diagram in the Y polarization direction, and an aperiodic autocorrelation result diagram in two polarization directions provided by another embodiment of the present application Periodic cross-correlation result graph;
  • 17 is an aperiodic autocorrelation result diagram of a specific training sequence in the X polarization direction, aperiodic autocorrelation result diagram in the Y polarization direction, and aperiodic autocorrelation result diagrams in two polarization directions provided by another embodiment of the present application Cross-correlation result graph;
  • Figure 19 is a superframe spectrogram under DP-16QAM using the superframe structure shown in Figure 15;
  • 20 is a specific superframe structure diagram, a structure diagram of the first subframe in the specific superframe, and the structure diagram of other subframes except the first subframe in the specific superframe provided by another embodiment of the application structure diagram;
  • FIG. 21 is an aperiodic autocorrelation result diagram of a specific training sequence in the X polarization direction, aperiodic autocorrelation result diagram in the Y polarization direction, and aperiodic autocorrelation result diagrams in two polarization directions provided by another embodiment of the present application Cross-correlation result graph;
  • FIG. 22 is a graph of periodic autocorrelation results of a specific pilot sequence in the X polarization direction, a graph of periodic autocorrelation results in the Y polarization direction, and periodic cross-correlation in two polarization directions provided by another embodiment of the present application result graph;
  • Figure 23 is a superframe spectrogram under DP-16QAM using the superframe structure shown in Figure 20;
  • 24 is a specific superframe structure diagram, a structure diagram of the first subframe in the specific superframe, and the structure diagram of other subframes except the first subframe in the specific superframe provided by another embodiment of the application structure diagram;
  • Figure 25 is a superframe spectrogram under DP-16QAM using the superframe structure shown in Figure 24;
  • 26 is a specific superframe structure diagram, a structure diagram of the first subframe in the specific superframe, and the structure diagram of other subframes except the first subframe in the specific superframe provided by another embodiment of the application structure diagram;
  • FIG. 27 is an aperiodic autocorrelation result diagram of a specific training sequence in the X polarization direction, aperiodic autocorrelation result diagram in the Y polarization direction, and aperiodic autocorrelation result diagrams in two polarization directions provided by another embodiment of the present application Cross-correlation result graph;
  • Figure 29 is a superframe spectrogram under DP-16QAM using the superframe structure shown in Figure 26;
  • FIG. 30 is a specific superframe structure diagram, a structure diagram of the first subframe in the specific superframe, and the structure diagram of other subframes except the first subframe in the specific superframe provided by another embodiment of the application structure diagram;
  • Figure 31 is a superframe spectrogram under DP-16QAM using the superframe structure shown in Figure 30;
  • 33 is a specific superframe provided by an embodiment of the application and a structural diagram of the first subframe therein and other subframes except the first subframe;
  • 34 is a schematic structural diagram of a pilot symbol generation provided by an embodiment of the present application.
  • 35 is a schematic structural diagram of another pilot symbol generation provided by an embodiment of the present application.
  • 36 is a graph of periodic autocorrelation results in the X polarization direction, a graph of periodic autocorrelation results in the Y polarization direction, and periodic cross-correlation in two polarization directions of a sequence of specific pilot symbols provided in this embodiment of the application result graph;
  • 39 is a structural diagram of a specific superframe provided by an embodiment of the application and a first subframe therein and other subframes except the first subframe;
  • 40 is a schematic structural diagram of another pilot symbol generation provided by an embodiment of the present application.
  • 43 is a schematic structural diagram of another pilot symbol generation provided by an embodiment of the present application.
  • Fig. 1 shows the structural block diagram of the communication system, at the transmitting end, the information source provides the data stream to be sent; the encoder receives the data stream, encodes it, and encodes the codeword information combining the check bits and the information bits to send
  • the signal processor at the incoming and outgoing end performs framing, transmits through the channel, and reaches the receiving end; the receiving end receives the distorted signal caused by noise or other damage in the channel, and sends it to the signal processor at the receiving end for dispersion compensation, synchronization, and phase recovery. Wait for the operation, and then decode through the decoder to restore the original data and send it to the sink.
  • the encoding method provided by the present application is applied to the originating signal processor shown in FIG. 1 , which is a very important part of the communication system.
  • the framing process may be as shown in FIG. 2 or FIG. 3 .
  • the received data sequence is subjected to symbol mapping, including but not limited to Quadrature Phase Shift Keying (QPSK) and Quadrature Amplitude Modulation (Quadrature Amplitude Modulation).
  • QPSK Quadrature Phase Shift Keying
  • Quadrature Amplitude Modulation Quadrature Amplitude Modulation
  • DP symbols such as DP-QPSK, DP-8QAM, DP-16QAM, DP-32QAM and DP-64QAM, etc.
  • the symbols are framed as follows: frame synchronization symbols, training symbols, reserved symbols and pilot symbols are inserted in the X and Y polarization directions, respectively, to obtain a dual-polarization symbol sequence to be sent, which is called a super-frame.
  • the symbols may also be interleaved, and the above-mentioned framing processing is performed on the interleaved symbols.
  • a dual-polarization symbol can be represented by two symbols, one of which is located in the X polarization direction and the other symbol is located in the Y polarization direction, and each symbol can be represented by a complex number, for example, obtained by 16QAM modulation can be represented by any of the following 16 complex numbers, ⁇ 1 ⁇ 1j, ⁇ 1 ⁇ 3j, ⁇ 3 ⁇ 1j, and ⁇ 3 ⁇ 3j; it should be understood that there are Normalization is performed, but the essence does not change.
  • a sequence of N dual-polarization symbols can be completely represented by two complex sequences of length N, where one complex sequence represents symbols on X polarization and the other complex sequence represents symbols on Y polarization.
  • Each complex sequence of length N is represented by a sequence of real parts of length N and an imaginary part sequence of length N, where N is an integer greater than 1.
  • the received data sequence is the information and check sequence obtained by forward error correction code (Forward Error Correction, FEC).
  • FEC Forward Error Correction
  • the framing operation shown in FIG. 2 is performed on symbols, and as shown in FIG. 3, for the received data sequence, according to the adopted symbol mapping rule, frame synchronization symbols, training symbols, The bits corresponding to the reserved symbols and the pilot symbols are then subjected to symbol mapping and polarization symbol division to obtain the same superframe as the operation in FIG. 2 .
  • the bit sequence after inserting the bits corresponding to the above symbols may also be interleaved, and then the same superframe as the operation in FIG. 2 is obtained through symbol mapping and polarization symbol division. It should be understood that other framing manners are not excluded, which will not be repeated in this application.
  • An embodiment of the present application provides a transmission method for optical communication, as shown in FIG. 4 , the transmission method includes:
  • one subframe includes training symbols and pilot symbols, and each training symbol and each pilot symbol are -A-Aj, -A+Aj, A-Aj, A+ One of Aj; in the training symbols and pilot symbols included in each subframe, the numbers of -A-Aj, -A+Aj, A-Aj and A+Aj in one polarization direction are respectively and the numbers in the other polarization direction are respectively Among them, N TS is the number of training symbols in one polarization direction in each subframe, N PS is the number of pilot symbols in each subframe in one polarization direction, N TS +N PS is an odd number, where Indicates that the positive real number a is rounded down.
  • the value of A is determined by the modulation format used when generating the symbol.
  • -A-Aj, -A+Aj, A-Aj and A+Aj are symbols on the constellation diagram of the modulation format used.
  • each training symbol can be composed of -3-3j, -3+3j, 3-3j and 3+3j
  • a representation of , in a subframe, the training symbols represented by these four complex numbers will also exist, as will the pilot symbols.
  • A ⁇ 1 or ⁇ 3 or ⁇ 5 or ⁇ 7.
  • each training symbol can be represented by one of -5-5j, -5+5j, 5-5j and 5+5j.
  • the pilot symbols satisfy the same conditions.
  • a higher-order modulation format may also be used, which will not be repeated in this application. In the actual transmission process, the probability of symbol error can be made low, which is convenient for channel estimation.
  • the value of A will also be compressed accordingly.
  • the power of the 16 symbols on the 16QAM constellation diagram is normalized. , the value becomes The value of A is or It is also possible to use other normalization methods, which is not limited in this application.
  • the sensitivity (sensitivity) of the training and pilot symbols is relatively high, However, the peak to average power ratio (peak to average power) is larger; when the pilot symbols and training symbols take the values -A-Aj, -A+Aj, A-Aj, and A+Aj using the innermost 4 symbols of the constellation diagram, The noise of the training and pilot is small, but its sensitivity is low.
  • the pilot symbols and training symbols -A-Aj, -A+Aj, A-Aj, and A+Aj may not be symbols on the constellation diagram of the modulation format used, It may be some 4 symbols in the middle area of the outermost 4 symbols and the innermost 4 symbols of the constellation diagram.
  • the training and pilot symbol noise and sensitivity are average, but the peak-to-average power ratio is relatively low.
  • the values of the 16 symbols on the 16QAM constellation diagram are ⁇ 1 ⁇ 1j, ⁇ 1 ⁇ 3j, ⁇ 3 ⁇ 1j, ⁇ 3 ⁇ 3j ⁇ , and the value of the real number A satisfies 1 ⁇ A ⁇ 3. More specifically, as shown in FIG.
  • the outermost 4 symbols of the constellation diagram are 3+3j, 3-3j, -3+3j, -3-3j, and the innermost 4 symbols of the constellation diagram are 1+1j, 1- 1j, -1+1j, -1-1j.
  • the values of the pilot symbols and training symbols -A-Aj, -A+Aj, A-Aj, and A+Aj may be some 4 symbols in the middle area between the outermost 4 symbols and the innermost 4 symbols of the 16QAM constellation.
  • the specific value of the real number A can be selected according to the actual application scenario so that the peak-to-average power ratio, noise and sensitivity of the training and pilot frequencies have a good compromise. For example real numbers
  • the values of pilot symbols and training symbols are In addition, when the power of the 16 symbols on the 16QAM constellation is normalized and the value is The value of the real number A satisfies For example real numbers
  • the values of pilot symbols and training symbols are
  • the two polarization directions are orthogonal to each other, that is, when one of the polarization directions is X polarization, the other polarization direction is Y polarization; when one of the polarization directions is Y polarization, the other polarization direction is X polarization.
  • the sum of the numbers of training symbols and pilot symbols included in one subframe is N TS +N PS ⁇ 1, which is not less than 5; the reason why it is not N TS +N PS , The reason is that one symbol is both a training symbol and a pilot symbol, so the sum of the numbers is one less than the sum of the two symbols.
  • the sequence composed of training symbols in one polarization direction is different from the sequence composed of training symbols in the other polarization direction
  • the sequence composed of pilot symbols in one polarization direction is different from the sequence composed of training symbols in the other polarization direction.
  • the sequences of pilot symbols in the polarization directions are different from each other.
  • the sequence composed of training symbols in one polarization direction is -A-Aj, -A-Aj, A+Aj, A-Aj, then in the same order, the sequence composed of training symbols in the other polarization direction It cannot be the same, but can be -A-Aj, -A-Aj, A+Aj, and A+Aj. There is a difference to avoid the problem that the receiving end cannot distinguish the two polarization directions in actual transmission.
  • a subframe in each polarization direction, includes N TS +N PS -1 training symbols and pilot symbols in total, that is, -A-Aj, - representing training symbols and pilot symbols
  • the total number of A+Aj, A-Aj, A+Aj is N TS +N PS -1, and the number of the four symbols is not greater than 1;
  • the number of the four complex numbers (-A-Aj, -A+Aj, A-Aj, A+Aj) in the two polarization directions is the same, and the number is (N TS +N PS -1)/2;
  • the number of symbols is effectively guaranteed to be balanced.
  • the sum of the real parts of the complex numbers corresponding to the training symbols and pilot symbols in a subframe is 0, and the sum of the imaginary parts is also 0, which can achieve DC balance, which is conducive to the recovery of the signal at the receiving end. quality.
  • the superframe (superframe) of the present application which may also be referred to as a multiframe (multiframe), includes multiple subframes, and its structure is shown in (a) in FIG. 6 , and each subframe includes the same number of symbols (N S symbols) symbol), subframes mainly include two categories, one category of subframes includes frame synchronization symbols, usually the first subframe in the superframe, and other positions in the superframe are not excluded, and other subframes are the second subframe Among them, the structure of the first type of subframe is shown in (b) in Figure 6, and the first N TS symbols in the subframe are training symbols, which can be used for link training and/or subframe synchronization; under normal circumstances, The first symbol of the subframe is both a training symbol and a pilot symbol.
  • any one of the first N TS symbols may be both a training symbol and a pilot symbol, which is not limited in this application; , in the first type of subframe, every 64 symbols or a fixed position symbol in 48 symbols is a pilot symbol, which is used for carrier phase recovery. Taking the symbols as pilot symbols as an example, the frame structure diagram of the first type of subframe is given. The pilot signal is followed by a plurality of frame synchronization symbols, which are used for synchronization between superframes.
  • the frame synchronization symbols can be used together with the training symbols for synchronization between superframes, and can also be used with the pilot symbols to achieve the same function; It should be understood that the frame synchronization symbols are arranged in a row and may be next to the training signal, as shown in (b) in FIG. 6 , and there may also be one or more symbol intervals between the frame synchronization signal and the training signal. ; In addition, after multiple frame synchronization symbols, there are usually multiple reserved symbols, which can be reserved for other purposes in the future, and the reserved symbols can also be located in one of multiple second-type subframes. limited.
  • the remaining symbols are pre-framing symbols containing information and check, wherein, pilot symbols and reserved symbols, and pilot symbols and pre-framing symbols do not overlap, for example, there is no pilot symbol, and there is no overlap is the symbol of the symbol before framing.
  • the frame structure of the second type of subframe is shown in (c) in Figure 6.
  • the first N TS symbols in the subframe are also training symbols.
  • the first symbol of the subframe is both a training symbol and a
  • the pilot symbol may also be any one of the first N TS symbols that is both a training symbol and a pilot symbol, which is not limited in this application.
  • every 64 symbols or symbols in fixed positions in 48 symbols are also pilot symbols for carrier phase recovery.
  • the symbols are pilot symbols, and the frame structure diagram of the second type of subframe is given. Except for the training symbols and pilot symbols, the rest of the symbols are usually pre-framing symbols containing information and verification. , wherein the pilot symbols do not overlap with the symbols before framing.
  • N CW 175616
  • a CFEC encoding method in which a staircase code and a Hamming code are cascaded, or other encoding methods; the first symbol in every 64 symbols is a pilot symbol.
  • the number of subframes N SF the number of training symbols in each subframe N TS , the number of pilot symbols N PS , the number of symbols in each subframe N S , the number of superframes
  • the number of symbols which can be understood as the number of dual-polarization symbols, and can also be understood as the number of symbols in one polarization direction; moreover, the different symbols in the two polarization directions
  • the number of s is the same. For example, there are 10 training symbols in one polarization direction, and 10 training symbols in the other polarization direction. Overall, there are 10 dual-polarization training symbols. Subsequent forms can be understood in this way and will not be repeated in this application.
  • an open code Open FEC, OFEC
  • the number of symbols before framing N CW 175616, for example, using the CFEC encoding method, the first symbol in every 48 symbols is a pilot symbol, at this time, the number of subframes N SF , each sub-frame
  • the number of symbols before framing N CW 172032, for example, using OFEC encoding, the first symbol in every 48 symbols is a pilot symbol, at this time, the number of subframes N SF , each sub-frame
  • the training symbols are arranged consecutively in the subframe, and in one polarization direction, in the training symbols included in a subframe, the number of consecutive "-A" or "A” elements in the real part is not greater than M0, The number of consecutive "-A” or “A” elements in the sub-element is not greater than M0.
  • the number of consecutive identical training symbols in a subframe does not exceed M1, where M0 and M1 are both positive integers, and 2 ⁇ M1 ⁇ M0 ⁇ 5.
  • the training sequence obtained under this condition is beneficial to Clock recovery, thereby helping to improve the signal quality recovered at the receiving end.
  • the number of consecutive "-A” or “A” elements in the real part is not greater than 5, and the number of consecutive "-A” or “A” elements in the imaginary part is not greater than 5. The number is not more than 5. Taking six training symbols in one polarization direction as an example, in the sequences -A-Aj, -A-Aj, -A-Aj, -A-Aj and A+Aj, there are consecutive 5 real elements.
  • N TS is an even number, that is, in each subframe, there are an even number of training symbols in one polarization direction.
  • the training symbols included in each subframe -A-Aj, -A+Aj , the number of A-Aj and A+Aj in one polarization direction are respectively and the numbers in the other polarization direction are respectively Since N TS + N PS is an odd number, and N TS is an even number, then N PS must be an odd number, that is, in each subframe, there are an odd number of pilot symbols in one polarization direction.
  • the pilot symbols included in each subframe are Among the frequency symbols, except for the pilot symbol that is also used as a training symbol, -A-Aj, -A+Aj, A-Aj and A+Aj can also satisfy the following conditions: the numbers in one polarization direction are and the numbers in the other polarization direction are respectively
  • NTS is an odd number, that is, in each subframe, there are an odd number of training symbols in one polarization direction.
  • N PS is an odd number
  • N TS is an odd number
  • N PS must be an even number, that is, in each subframe, there are even pilot symbols in one polarization direction.
  • the pilot symbols included in each subframe are In the frequency symbol, -A-Aj, -A+Aj, A-Aj and A+Aj can also satisfy the following conditions: the number in one polarization direction is and the numbers in the other polarization direction are respectively
  • the number of training symbols -A-Aj, -A+Aj, A-Aj, and A+Aj included in one subframe is close to each other; and, when N When TS is an even number, in a subframe, the number of four different symbols (complex form) representing training symbols in the two polarization directions is the same, and the number of four symbols is N TS /2, the training symbol The sum of the real part of the corresponding complex number is 0, and the sum of the imaginary part is also 0; when N TS is an odd number, in a subframe, remove the training symbol that is also used as a pilot symbol, indicating that the four different training symbols are different.
  • the number of symbols (complex form) of , in the two polarization directions is the same, the number of four symbols is (N TS -1)/2, and the sum of the real parts of the complex numbers corresponding to the N TS -1 training symbols is 0, the sum of the imaginary parts is also 0; the balance of the number of symbols is effectively guaranteed, and the DC balance can be achieved, which is beneficial to the quality of the signal at the receiving end.
  • the pilot sequence formed by the pilot symbols also has a similar effect.
  • each subframe when the remainder of dividing the number N PS of pilot symbols in one polarization direction by 4 is 0, in the pilot symbols included in each subframe, -A-Aj, -
  • the numbers of A+Aj, A-Aj and A+Aj in one polarization direction are N PS /4+1, N PS /4-1, N PS /4-1, N PS /4+1, respectively, and in The number in the other polarization direction is N PS /4-1, N PS /4+1, N PS /4+1, N PS /4-1; or, the number in both polarization directions is N PS /4.
  • the numbers of -A-Aj, -A+Aj, A-Aj, and A+Aj in one polarization direction are respectively ( N PS -2)/4, (N PS -2)/4+1, (N PS -2)/4+1, (N PS -2)/4, and the numbers in the other polarization direction are (N PS -2)/4+1, (N PS -2)/4, (N PS -2)/4, (N PS -2)/4+1.
  • N PS divided by 4 When the remainder of N PS divided by 4 is 3, in the pilot symbols included in each subframe, remove the pilot symbol that is also used as a training symbol, -A-Aj, -A+Aj, A-Aj, A+
  • the numbers of Aj in one polarization direction are (N PS -3)/4, (N PS -3)/4+1, (N PS -3)/4+1, (N PS -3)/4, respectively. and the numbers in the other polarization direction are (N PS -3)/4+1, (N PS -3)/4, (N PS -3)/4, (N PS -3)/4+1 .
  • the number of pilot symbols -A-Aj, -A+Aj, A-Aj, and A+Aj included in a subframe is relatively small, which effectively ensures the balance between symbols.
  • the sum of the real parts of the complex numbers corresponding to other pilot symbols is 0, and the sum of the imaginary parts is also 0, can achieve DC balance, which is beneficial to the quality of the signal at the receiving end.
  • the first type of subframe also includes frame synchronization symbols.
  • frame synchronization symbols are consecutively arranged in the first type of subframes.
  • Each frame synchronization symbol is one of -A-Aj, -A+Aj, A-Aj, and A+Aj respectively.
  • the A value corresponding to the frame synchronization symbol is also determined by the modulation format used, which is the same as the previous one.
  • the values of the A values corresponding to the training symbols and the pilot symbols described in the embodiments are in the same manner, which will not be repeated in this application.
  • each frame synchronization symbol of the frame synchronization symbol is one of -A-Aj, -A+Aj, A-Aj, and A+Aj, and its corresponding A value can be the same as the previous value.
  • the A values corresponding to the training symbols and the pilot symbols described in the embodiments adopt different real numbers. For simplicity of description, the present application takes the value of the two being equal as an example for description.
  • the number of consecutive "-A” or “A” elements in the real part is not greater than M2, and the number of consecutive "-A” or “A” elements in the imaginary part is not greater than M2.
  • the number of "A” is not greater than M2.
  • the number of consecutive identical frame synchronization symbols in the first type of subframe does not exceed M3, where M2 and M3 are both positive integers, and 2 ⁇ M3 ⁇ M2 ⁇ 5, the frame synchronization obtained under this condition The sequence is beneficial to clock recovery, thereby helping to improve the signal quality recovered at the receiving end.
  • the number of consecutive "-A” or “A” elements in the real part is not greater than 5, and the number of consecutive "-A” or “A” elements in the imaginary part is not greater than 5.
  • the number of "A” is not more than 5.
  • the number of consecutive identical frame synchronization symbols in the first type of subframes does not exceed 4. The specific example has been described in the example of the training symbol in the previous embodiment, and will not be repeated in this application.
  • the first type of subframe there are an even number of frame synchronization symbols in one polarization direction, and the following conditions can be met: in the frame synchronization symbols included in the first type of subframe, -A-Aj, -A+Aj, A The numbers of -Aj and A+Aj in one polarization direction are and the numbers in the other polarization direction are respectively
  • N FAW is the number of frame synchronization symbols in the first type of subframes in one polarization direction. This condition ensures that multiple frame synchronization symbols satisfy DC balance, and the number of the four optional symbols -A-Aj, -A+Aj, A-Aj, and A+Aj does not differ by more than 1, which is beneficial for the receiving end to recover signal quality.
  • N FAW 22
  • the numbers of symbols -A-Aj, -A+Aj, A-Aj, and A+Aj in the X polarization direction are 5, 6, 6, and 5, respectively, and in the Y polarization direction
  • the numbers of symbols -A-Aj, -A+Aj, A-Aj, and A+Aj are 6, 5, 5, and 6, respectively; the two polarization directions are perpendicular to each other.
  • N FAW 24
  • the number of symbols -A-Aj, -A+Aj, A-Aj, and A+Aj in any polarization direction is 6; the balance between symbols and DC balance can be achieved, which is beneficial to the recovery of the receiving end the quality of the signal.
  • the present application provides some possible symbol sequences, including a frame synchronization sequence composed of frame synchronization symbols in the first type of subframes, a training sequence composed of training symbols in each subframe, and pilot symbols in each subframe.
  • the formed pilot sequences wherein the training sequences in different subframes are identical to each other, and the pilot sequences in different subframes are also identical to each other.
  • the frame synchronization sequence can have the following possibilities, which can ensure that the frame synchronization sequences in the two polarization directions have good cross-correlation with each other, and the redundancy is not too large:
  • the frame synchronization sequence can be any item in Table 5, it should be understood that a sequence number corresponds to a group of frame synchronization sequences on two polarizations, and an item is represented as a sequence corresponding to a sequence number; and
  • the first polarization of any item in the table is X polarization
  • the second polarization is Y polarization
  • the first polarization is Y polarization
  • the second polarization is X polarization
  • the frame synchronization sequence can be any of the items in Table 6.
  • the frame synchronization sequence can be any one in Table 7.
  • the pilot sequence can have the following possibilities, which can ensure good cross-correlation between the pilot sequences in the two polarization directions:
  • N PS 48
  • the pilot sequence is one of the following Table 8-1
  • the pilot sequence is as follows One of Tables 8-1 or 8-2. It should be understood that N TS + N PS is an odd number. If N PS is an even number, then N TS must be an odd number, and the remainder obtained by dividing by 4 must be 1 or 3; if N PS is an odd number, then N TS must be an even number. The remainder obtained with 4 must be 0 or 2, which will not be repeated later.
  • the pilot sequence is one of the following Table 12-1; or any one of the following Table 12-2 is selected as the pilot sequence on one polarization, and the pilot sequence is selected from the following Table 12-3 Select any one of the following as the pilot sequence on the other polarization; or select any one from the following table 12-4 as the pilot sequence on one polarization, and select any one from the following table 12-5 as the pilot sequence on the other polarization the pilot sequence.
  • the pilot sequence is one of the following Table 15-1; or any one of the items in Table 15-2 is selected as the pilot sequence on a polarization, and the pilot sequence is selected from the following Table 15-2. Select any one of 3 as the pilot sequence on the other polarization; or select any one from the following table 15-4 as the pilot sequence on one polarization, and select any one from the following table 15-5 as the other polarization on the pilot sequence.
  • the pilot sequence is an item from Table 18-1; Select any one of 3 as the pilot sequence on another polarization; or select any one from Table 18-4 as the pilot sequence on one polarization, and select any one from Table 18-5 as the other polarization on the pilot sequence.
  • the pilot sequence is one of the following Table 20-1; or any one of the items in Table 20-2 is selected as the pilot sequence on one polarization, and the pilot sequence is selected from the following Table 20-2 Select any one of 3 as the pilot sequence on another polarization; or select any one from Table 20-4 as the pilot sequence on one polarization, and select any one from Table 20-5 as the other polarization on the pilot sequence.
  • N PS 61
  • the remainder is 0, and the pilot sequence is one of the following table 23-1. If N TS is divided by 4, the remainder is 2, and the pilot sequence is as follows One of 23-1 or 23-2.
  • N PS 72
  • the pilot sequence is one of the following table 25-1; if N TS is divided by 4, the remainder is 3, the pilot sequence is as follows One of 25-1 or 25-2; or any one of the following table 25-3 as the pilot sequence in one polarization direction, and any one of the following table 25-4 as the pilot sequence in the other polarization direction or choose any one from the following Table 25-5 as the pilot sequence in one polarization direction, and select any one from Table 25-6 as the pilot sequence in the other polarization direction.
  • N PS 80
  • the pilot sequence is an item in Table 27-1; if N TS is divided by 4, the remainder is 3, and the pilot sequence is as shown in the table One of 27-1 or 27-2; or select any one from Table 27-3 as the pilot sequence in one polarization direction, and select any one from Table 27-4 as the other polarization direction or select any item from Table 27-5 as the pilot sequence in one polarization direction, and select any item from Table 27-6 as the pilot sequence in the other polarization direction.
  • N PS 92
  • the pilot sequence is an item in Table 28-1; or any item in Table 28-2 is selected as a polarization direction pilot sequence, and select any one from Table 28-3 as the pilot sequence in the other polarization direction; or select any one from Table 28-4 as the pilot sequence in one polarization direction, and select any one from Table 28-4 as the pilot sequence in one polarization direction Select any of the items in Table 28-5 as the pilot sequence in the other polarization direction.
  • the pilot sequence is one of Table 28-1 or 28-6; or any one of Table 28-2 is selected as the pilot sequence in one polarization direction, and Select any item from Table 28-3 as the pilot sequence in the other polarization direction; or select any item from Table 28-4 as the pilot sequence in one polarization direction, and select any item from Table 28-5 as the pilot sequence in one polarization direction. Choose any one as the pilot sequence in the other polarization direction.
  • N PS 96
  • the pilot sequence is one of the items in Table 29-1. If N TS is divided by 4 and the remainder is 3, the pilot sequence is one of Table 29-1 or 29-2, or any one of Table 29-3 is selected as the pilot sequence in one polarization direction, and Select any one from Table 29-4 as the pilot sequence in the other polarization direction; or select any one from Table 29-5 as the pilot sequence in one polarization direction, and select one from Table 29-6 choose any one as the pilot sequence in the other polarization direction.
  • N PS 104
  • the pilot sequence is one of the items in Table 30-1. If N TS is divided by 4 and the remainder is 3, the pilot sequence is one of Table 30-1 or 30-2, or any one of Table 30-3 is selected as the pilot sequence in one polarization direction, and Select any one from Table 30-4 as the pilot sequence in the other polarization direction; or select any one from Table 30-5 as the pilot sequence in one polarization direction, and select one from Table 30-6 choose any one as the pilot sequence in the other polarization direction.
  • the training sequence can have the following possibilities, which can also ensure that the training sequences in the two polarization directions have good cross-correlation with each other:
  • the training sequence can be any one in Table 31.
  • Figure 7 and Figure 8 respectively give the DP -The mapping relationship between QPSK symbols and DP-16QAM symbols and bits, where the QPSK symbol is composed of 2 bits, bit 01 is -1+1j, 11 is 1+1j; 16QAM is composed of 4 bits, 0000 is -3-3j, 1010 is 3+3j, etc.; taking QPSK as an example, if a sequence is 1+1j, 1+1j, 1-1j, -1+1j, then the corresponding bit sequence is 11111001, the bit sequence After the corresponding modulation, it will become a symbol sequence output.
  • Embodiment 1 The symbols before framing are obtained by CFEC encoding, the number of symbols is 175616 , and the corresponding parameters such as NSF, NTS , NPS, NFAW , NRES , Ns , NF , OH are shown in the following table Show:
  • the superframe includes 49 subframes, each subframe includes 3648 symbols, as shown in (a) in Figure 9; the first subframe is shown in (b) in Figure 9 As shown, there are 6 training symbols, 24 frame synchronization symbols, and 74 reserved symbols; in the 2nd to 49th subframes, there are also 6 training symbols, as shown in (c) in Figure 9; and in each subframe In a subframe, the first symbol in every 64 symbols is a pilot symbol.
  • a frame synchronization sequence of length 24 uses an entry in Table 7.
  • a training sequence of length 6 may use an item in Table 31.
  • a frame synchronization sequence with a symbol length of 24 uses the following sequence:
  • Figure 10 shows the aperiodic autocorrelation result of the frame synchronization sequence in the X polarization direction
  • Figure 10 (b) shows the Y polarization direction.
  • (c) in Figure 10 shows the aperiodic cross-correlation result of the frame synchronization sequence in the X and Y polarization directions.
  • the aperiodic autocorrelation function side lobe value of the symbol sequence in the two polarization directions is not greater than 0.172 (normalized amplitude), and the aperiodic cross-correlation function value of the symbol sequence in the two polarization directions is not greater than 0.177 (normalized amplitude) range).
  • the training sequence with symbol length 6 adopts the following sequence:
  • Fig. 11 shows the aperiodic autocorrelation results of the training sequence in the X polarization direction
  • Fig. 11 shows the training in the Y polarization direction
  • Fig. 11(c) shows the aperiodic cross-correlation result of the training sequence in the two polarization directions of X and Y.
  • the aperiodic autocorrelation function side lobe value of the symbol sequence in the two polarization directions is not greater than 0.34 (normalized amplitude), and the aperiodic cross-correlation function value of the symbol sequence in the two polarization directions is not greater than 0.38 (normalized amplitude) range).
  • the pilot sequence with a symbol length of 57 uses the following sequence:
  • Figure 12 shows the periodic autocorrelation result of the pilot sequence in the X polarization direction
  • Figure 12 (b) shows the Y polarization direction
  • (c) in Figure 12 shows the periodic cross-correlation result of the pilot frequency sequence in the two polarization directions of X and Y.
  • the periodic autocorrelation function side lobe value of the symbol sequences in the two polarization directions is not greater than 0.177 (normalized amplitude), and the periodic cross-correlation function value of the symbol sequences in the two polarization directions is not greater than 0.197 (normalized amplitude) ).
  • the value of A does not affect the normalized amplitude value of the correlation function, that is, it has nothing to do with the modulation format used.
  • the value of A is limited, which is not repeated in this application.
  • the frame redundancy of the superframe architecture provided by the embodiment of the present application is as low as 1.79%, and the designed sequences have good autocorrelation and cross-correlation characteristics, the frame synchronization sequence can also satisfy the DC balance, the training sequence and The combination of the pilot sequence can also satisfy the DC balance, which is beneficial to improve the quality of the recovered signal at the receiving end.
  • the receiving end uses the frame synchronization sequence, training sequence, and pilot sequence to perform signal processing to recover the signal. For example, by separately calculating the correlation values between the received signals in the two polarization directions and the sequence symbols of the training sequence on the X and Y polarizations, the polarization directions can be distinguished, and the subframe synchronization can be performed; the frame synchronization sequence is used for superframe synchronization. Alignment; use pilot signal for carrier phase recovery.
  • bit sequences in this embodiment can be represented in the form of bit sequences.
  • bit sequences can be shown in the following tables, where b1-b8 are shown in Fig. 7 respectively. and the corresponding bits in Figure 8:
  • bit sequence corresponding to the frame synchronization sequence is as follows:
  • bit sequence corresponding to the training sequence is as follows:
  • the bit sequence corresponding to the pilot sequence is as follows:
  • this embodiment also simulates the spectral flatness characteristics of superframes under different modulation formats.
  • FIG. 13 shows that under DP-16QAM, the superframe architecture shown in FIG. 9 is adopted, The spectrogram of 300 superframes is included, and
  • Figure 13 is the spectrogram of the random DP-16QAM signal of the same length;
  • Figure 14 shows that under DP-QPSK, the The superframe architecture shown in Figure 14 contains the spectrogram of 300 superframes.
  • Embodiment 2 The embodiment of the present application also provides a specific superframe format.
  • the symbols are obtained by CFEC encoding before framing, and the number of symbols is 175616.
  • the corresponding N SF , N TS , N PS , N FAW , N RES , NS , NF , OH and other parameters are shown in the following table:
  • the superframe includes 43 subframes, each subframe includes 4160 symbols, as shown in (a) in Figure 15; the first subframe (b) in Figure 15 As shown, there are 10 training symbols, 22 frame synchronization symbols, and 60 reserved symbols; in the 2nd to 43rd subframes, there are also 10 training symbols, as shown in (c) in Figure 15; and in each subframe In a subframe, the first symbol in every 64 symbols is a pilot symbol.
  • a frame synchronization sequence of length 22 uses an entry in Table 6.
  • a training sequence of length 10 may use one of Table 33.
  • the frame synchronization sequence of the sequence adopts the following sequence:
  • Fig. 16(a) shows the aperiodic autocorrelation result of the frame synchronization sequence in the X polarization direction
  • Fig. 16(b) shows the Y polarization direction.
  • Figure 16(c) shows the aperiodic cross-correlation result of the frame synchronization sequence in the X and Y polarization directions.
  • the aperiodic autocorrelation function side lobe value of the symbol sequence in the two polarization directions is not greater than 0.182 (normalized amplitude), and the aperiodic cross-correlation function value of the symbol sequence in the two polarization directions is not greater than 0.188 (normalized amplitude) range).
  • the frame synchronization sequence of length 22 can use the existing symbol sequence, such as the sequence used by OIF-400ZR, but the cross-correlation of this sequence in X-polarization and Y-polarization is poor. More symbols ensure that the synchronization error probability is low enough.
  • the training sequence with a symbol length of 10 uses the following sequence:
  • Fig. 17 shows the aperiodic autocorrelation results of the training sequence in the X polarization direction
  • Fig. 17 shows the training in the Y polarization direction
  • Fig. 17(c) shows the aperiodic cross-correlation result of the training sequence in the two polarization directions of X and Y.
  • the aperiodic autocorrelation function side lobe value of the symbol sequence in the two polarization directions is not greater than 0.283 (normalized amplitude), and the aperiodic cross-correlation function value of the symbol sequence in the two polarization directions is not greater than 0.283 (normalized amplitude) range).
  • the pilot sequence with a symbol length of 65 uses the following sequence:
  • Figure 18 (a) shows the periodic autocorrelation result of the pilot sequence in the X polarization direction
  • Figure 18 (b) shows the Y polarization direction
  • Figure 18 (c) shows the periodic cross-correlation results of the pilot sequences in the X and Y polarization directions.
  • the periodic autocorrelation function side lobe value of the symbol sequence in the two polarization directions is not greater than 0.161 (normalized amplitude), and the periodic cross-correlation function value of the symbol sequence in the two polarization directions is not greater than 0.173 (normalized amplitude) ).
  • the frame redundancy of the superframe architecture provided by the embodiment of the present application is also low, which is 1.86%, and the designed sequence has good autocorrelation and cross-correlation characteristics, and the frame synchronization sequence can also meet the DC balance, training The combination of the sequence and the pilot sequence can also satisfy the DC balance, which is beneficial to improve the quality of the recovered signal at the receiving end.
  • this embodiment also takes DP-16QAM as an example to simulate the spectral flatness characteristics of the superframe, and the result is shown in Figure 19, which adopts the superframe structure shown in From the spectrogram, it can be seen that the spectral flatness characteristic of the superframe structure provided in this embodiment is very little different from the random modulation signal of the same length, and the flatness is good.
  • Embodiment 3 The embodiment of the present application also provides a specific superframe format.
  • the symbols before framing are obtained by CFEC encoding, and the number of symbols is 175616.
  • the corresponding NSF, NTS, NPS , NFAW , N RES , NS , NF , OH and other parameters are shown in the following table:
  • the superframe includes 50 subframes, and each subframe includes 3584 symbols, as shown in (a) in Figure 20; the first subframe is shown in (b) in Figure 20 As shown, there are 15 training symbols, 22 frame synchronization symbols, and 62 reserved symbols; in the 2nd to 50th subframes, there are also 15 training symbols, as shown in (c) in Figure 20; and in each subframe In a subframe, the first symbol in every 64 symbols is a pilot symbol.
  • the frame synchronization sequence of length 22 adopts an item in Table 6.
  • a training sequence of length 15 may use one of Table 42.
  • Fig. 21 shows the corresponding correlation characteristics of Fig. 21, (a) in Fig. 21 shows the aperiodic autocorrelation result of the training sequence in the X polarization direction, and (b) in Fig. 21 shows the training in the Y polarization direction
  • the aperiodic autocorrelation result of the sequence Figure 21(c) shows the aperiodic cross-correlation result of the training sequence in the two polarization directions of X and Y.
  • the aperiodic autocorrelation function side lobe value of the symbol sequence in the two polarization directions is not greater than 0.211 (normalized amplitude), and the aperiodic cross-correlation function value of the symbol sequence in the two polarization directions is not greater than 0.211 (normalized amplitude) range).
  • Figure 22 shows the periodic autocorrelation result of the pilot sequence in the X polarization direction
  • Figure 22 (b) shows the Y polarization direction
  • Figure 22(c) shows the periodic cross-correlation results of the pilot sequences in the X and Y polarization directions.
  • the periodic autocorrelation function side lobe value of the symbol sequence in the two polarization directions is not greater than 0.183 (normalized amplitude), and the periodic cross-correlation function value of the symbol sequence in the two polarization directions is not greater than 0.203 (normalized amplitude) ).
  • the frame redundancy of the superframe architecture provided by the embodiment of the present application is also low, which is 2.03%; the training sequence is long, which is convenient for the receiving end to perform frame synchronization; and the designed sequence autocorrelation and cross-correlation characteristics are relatively high.
  • the frame synchronization sequence can also satisfy the DC balance, and the combination of the training sequence and the pilot sequence can also satisfy the DC balance, which is beneficial to improve the quality of the recovered signal at the receiving end.
  • this embodiment also takes DP-16QAM as an example to simulate the spectral flatness of the superframe, and the result is shown in Figure 23. It adopts the superframe architecture shown in From the spectrogram, it can be seen that the spectral flatness characteristic of the superframe structure provided in this embodiment is very little different from the random modulation signal of the same length, and the flatness is good.
  • Embodiment 4 The embodiment of the present application provides a specific superframe format. Before framing, symbols are obtained by open code (Open FEC, OFEC) encoding, and the number of symbols is 172032. The corresponding N SF , N TS , N Parameters such as PS , N FAW , N RES , N S , NF , and OH are shown in the following table:
  • the superframe includes 48 subframes, and each subframe includes 3648 symbols, as shown in (a) in Figure 24; the first subframe is shown in (b) in Figure 24 As shown, there are 6 training symbols, 24 frame synchronization symbols, and 72 reserved symbols; in the 2nd to 48th subframes, there are also 6 training symbols, as shown in (c) in Figure 24; and in each subframe In a subframe, the first symbol in every 64 symbols is a pilot symbol.
  • a frame synchronization sequence of length 24 uses an entry in Table 7.
  • a training sequence of length 6 may use an entry in Table 31.
  • this embodiment also takes DP-16QAM as an example to simulate the spectral flatness of the superframe.
  • the result is shown in Figure 25.
  • the superframe architecture shown in From the spectrogram it can be seen that the spectral flatness characteristic of the superframe structure provided in this embodiment is very little different from the random modulation signal of the same length, and the flatness is good.
  • Embodiment 5 The embodiment of the present application provides a specific superframe format. Before framing, the symbols are obtained by CFEC encoding, and the number of symbols is 175616. The corresponding NSF, NTS , NPS, NFAW , NRES , NS , NF , OH and other parameters are shown in the following table:
  • the superframe includes 50 subframes, each subframe includes 3600 symbols, as shown in (a) in Figure 26; the first subframe (b) in Figure 26 As shown, there are 12 training symbols, 22 frame synchronization symbols, and 62 reserved symbols; in the 2nd to 50th subframes, there are also 12 training symbols, as shown in (c) in Figure 26; and in each subframe In a subframe, the first symbol in every 48 symbols is a pilot symbol.
  • the frame synchronization sequence of length 22 adopts an item in Table 6.
  • a training sequence of length 12 may use one of Table 34.
  • the first symbol in Table 26 is selected to be the same as the first symbol of the training sequence used;
  • the corresponding correlation simulation result is shown in FIG. 16 .
  • Fig. 27 shows the aperiodic autocorrelation results of the training sequence in the X polarization direction
  • Fig. 27 shows the training in the Y polarization direction
  • Fig. 27(c) shows the aperiodic cross-correlation result of the training sequence in the two polarization directions of X and Y.
  • the aperiodic autocorrelation function side lobe value of the symbol sequence in the two polarization directions is not greater than 0.251 (normalized amplitude), and the aperiodic cross-correlation function value of the symbol sequence in the two polarization directions is not greater than 0.251 (normalized amplitude) range).
  • Figure 28 shows the periodic autocorrelation result of the pilot sequence in the X polarization direction
  • Figure 28 (b) shows the Y polarization direction
  • (c) in Figure 28 shows the periodic cross-correlation result of the pilot frequency sequence in the X and Y polarization directions.
  • the periodic autocorrelation function side lobe value of the symbol sequence in the two polarization directions is not greater than 0.150 (normalized amplitude), and the periodic cross-correlation function value of the symbol sequence in the two polarization directions is not greater than 0.168 (normalized amplitude) ).
  • the frame redundancy of the superframe architecture provided by the embodiment of the present application is also low, at 2.50%, and the designed sequence has good autocorrelation and cross-correlation characteristics, and the frame synchronization sequence can also satisfy the DC balance, training sequence and pilot frequency.
  • the combination of the sequences can also satisfy the DC balance, which is beneficial to improve the quality of the recovered signal at the receiving end.
  • this embodiment also takes DP-16QAM as an example to simulate the spectral flatness of the superframe, and the result is shown in Figure 29. It adopts the superframe structure shown in From the spectrogram, it can be seen that the spectral flatness characteristic of the superframe structure provided in this embodiment is very little different from the random modulation signal of the same length, and the flatness is good.
  • Embodiment 6 The embodiment of the present application provides a specific superframe format. Before framing, the symbols are obtained by OFEC encoding, and the number of symbols is 172032. The corresponding NSF, NTS , NPS, NFAW , NRES , NS , NF , OH and other parameters are shown in the following table:
  • the superframe includes 49 subframes, and each subframe includes 3600 symbols, as shown in (a) in Figure 30; the first subframe is shown in (b) in Figure 30 As shown, there are 12 training symbols, 22 frame synchronization symbols, and 132 reserved symbols; in the 2nd to 49th subframes, there are also 12 training symbols, as shown in (c) in Figure 30; and in each subframe In a subframe, the first symbol in every 48 symbols is a pilot symbol.
  • the frame synchronization sequence of length 22 adopts an item in Table 6.
  • a training sequence of length 12 may use one of Table 34.
  • a pilot sequence with a length of 75 select the same item that the first symbol in Table 26 is the same as the first symbol of the adopted training sequence; for example, adopt the same frame synchronization sequence as the fifth embodiment,
  • the correlations of training sequences and pilot sequences are shown in Figures 16, 27 and 28, respectively.
  • the frame redundancy of the superframe architecture provided by the embodiment of the present application is also low, which is 2.54%, and the designed sequence has good autocorrelation and cross-correlation characteristics, and the frame synchronization sequence can also meet the DC balance, training sequence and pilot frequency.
  • the combination of the sequences can also satisfy the DC balance, which is beneficial to improve the quality of the recovered signal at the receiving end.
  • this embodiment also takes DP-16QAM as an example to simulate the spectral flatness of the superframe.
  • the result is shown in Figure 31.
  • the superframe architecture shown in From the spectrogram it can be seen that the spectral flatness characteristic of the superframe structure provided in this embodiment is very little different from the random modulation signal of the same length, and the flatness is good.
  • the embodiment of the present application further provides another transmission method for optical communication, As shown in Figure 32, the transmission method includes:
  • the transmission device generates a superframe that includes multiple subframes, and each subframe includes a training symbol and a pilot symbol, wherein, in one polarization direction, one symbol is both a training symbol and a pilot symbol, and each subframe is a training symbol and a pilot symbol.
  • the training symbols and each pilot symbol are one of -A-Aj, -A+Aj, A-Aj, and A+Aj respectively, and A is a real number; in each subframe, in one polarization direction, the leading The frequency symbols are generated by the target polynomial and the seed, and there are N PS pilot symbols, which are combined with N TS training symbols to achieve DC balance, where N TS is the number of the training symbols in each subframe in one polarization direction , N TS +N PS is an odd number; the target polynomial is one of the following table X-1.
  • the transmitting device sends the superframe, and correspondingly, the receiving device receives the superframe containing multiple subframes.
  • the receiving device decodes the received superframe.
  • the value of A is determined by the modulation format used when generating the symbol, which can be understood by referring to the corresponding content in the foregoing embodiments of FIG. 4 and FIG. 5A .
  • the pilot symbols and training symbols -A-Aj, -A+Aj, A-Aj, and A+Aj may not be the symbols on the constellation diagram of the modulation format used. It can be some 4 symbols in the middle area between the outermost 4 symbols and the innermost 4 symbols of the constellation diagram. At this point, the noise and sensitivity of the training and pilot symbols are average, but the peak-to-average power ratio is relatively low.
  • the values of 16 symbols on the 16QAM constellation diagram are ⁇ 1 ⁇ 1j, ⁇ 1 ⁇ 3j, ⁇ 3 ⁇ 1j, ⁇ 3 ⁇ 3j ⁇ , and the value of the real number A satisfies 1 ⁇ A ⁇ 3. More specifically, as shown in FIG. 5B, the outermost 4 symbols of the constellation diagram are 3+3j, 3-3j, -3+3j, -3-3j, and the innermost 4 symbols of the constellation diagram are 1+1j, 1- 1j, -1+1j, -1-1j.
  • the values of the pilot symbols and training symbols -A-Aj, -A+Aj, A-Aj, and A+Aj may be some 4 symbols in the middle area between the outermost 4 symbols and the innermost 4 symbols of the 16QAM constellation.
  • the specific value of the real number A can be selected according to the actual application scenario so that the peak-to-average power ratio, noise and sensitivity of the training and pilot symbols have a good compromise.
  • the values of pilot symbols and training symbols are
  • real numbers The values of pilot symbols and training symbols are
  • the two polarization directions are orthogonal to each other, that is, when one of the polarization directions is X polarization, the other polarization direction is Y polarization; when one of the polarization directions is Y polarization , and the other polarization direction is X polarization.
  • These two polarization directions can also be described by polarization one and polarization two.
  • the sum of the number of training symbols and pilot symbols included in one subframe is N TS +N PS -1, and the reason why it is not N TS +N PS is that there is a symbol It is both a training symbol and a pilot symbol, so the sum of the numbers is one less than the sum of the numbers of the two symbols.
  • the pilot symbol is generated by a target polynomial and a seed
  • the target polynomial is any one of the above Table X-1
  • the target polynomial and the corresponding seed can satisfy the generated N PS
  • the combination of the pilot symbols and N TS training symbols achieves DC balance, that is, in a subframe in one polarization direction, the sum of the real parts of the complex numbers corresponding to the training symbols and the pilot symbols is 0, and the imaginary part is 0.
  • the sum is also 0, which is conducive to better recovery of the signal at the receiving end and improves the quality of the signal at the receiving end.
  • the structure of the superframe provided by the embodiment of the present application can be understood by referring to the corresponding contents in the aforementioned parts (a) to (c) in FIG. 6 , and details are not repeated here.
  • 114 pilot symbols are determined based on the target polynomial and corresponding seeds.
  • the target polynomial adopts a 10th-order polynomial
  • the 10th-order polynomial can be expressed as:
  • the pilot symbol generation structure can be understood by referring to Fig. 34.
  • the seeds can be expressed in binary form as m 9 , m 8 , m 7 , m 6 , m 5 , m 4 , m 3 , m 2 , m 1 , m 0 , of course, the seed can also be expressed in hexadecimal or decimal.
  • 0110111000 is expressed in hexadecimal as 0x1B8, and in decimal as 440 .
  • the same target generator polynomial may be used, but because the seeds are different, correspondingly, the pilot symbols output in the two polarization directions Not exactly the same.
  • bit sequences b 0 , b 1 , b 2 , . . . b 227 with a continuous length of 228 are obtained according to the target polynomial and the seed.
  • the bit sequence b 0 , b 1 , b 2 , ...b 227 maps every 2 consecutive bits to a symbol, where b 2t and b 2t+1 map to a symbol (2b 2t -1)A+(2b 2t+1 -1) Aj, 0 ⁇ t ⁇ 114.
  • the symbol (2b 2t -1)A+(2b 2t+1 -1)Aj may not be the symbol on the constellation diagram of the used modulation format, it may be the outermost 4 of the constellation diagram of the used modulation format symbol and some 4 symbols in the middle area of the innermost 4 symbols. At this point, the noise and sensitivity of the training and pilot symbols are average, but the peak-to-average power ratio is relatively low.
  • the values of the 16 symbols on the 16QAM constellation diagram are ⁇ 1 ⁇ 1j, ⁇ 1 ⁇ 3j, ⁇ 3 ⁇ 1j, ⁇ 3 ⁇ 3j ⁇ , and the value of the real number A satisfies 1 ⁇ A ⁇ 3.
  • the specific value of the real number A can be selected according to the actual application scenario, so that the peak-to-average power ratio, noise and sensitivity of the training and pilot symbols have a good compromise.
  • the values of pilot symbols and training symbols are
  • the values of pilot symbols and training symbols are
  • the target polynomial and the seed can be determined by designing the values of the coefficients a 9 .
  • the cross-correlation properties of the symbol sequences of the two polarizations are good.
  • the normalized amplitude of the periodic autocorrelation function side lobe values of the symbol sequences in the two polarization directions is not greater than a preset value T0, and the normalized periodic cross-correlation function values of the symbol sequences in the two polarization directions
  • the normalization amplitude is not greater than a preset value T1.
  • Table X-6 is a subset of Table X-5
  • the numbers of -A-Aj, -A+Aj, A-Aj and A+Aj in one polarization direction are all 31.
  • the sequence generated when the target polynomial is a primitive polynomial generally has good randomness
  • the more non-zero terms of the target polynomial the more complex the implementation, the primitive polynomial is used in the target polynomial and its non-zero terms are not greater than 5
  • the normalization of the periodic autocorrelation function side lobe values of the pilot symbols in the same polarization direction The normalization amplitude is not greater than 0.25
  • the normalization amplitude of the periodic cross-correlation function values of pilot symbols in different polarization directions is not greater than 0.25.
  • the target polynomial which can also be called the primitive polynomial, is x 10 +x 7 +x 3 +x+1, and the corresponding two polarization directions are in hexadecimal
  • the seeds represented by the system are 0x34E and 0x084
  • the generation process of 114 pilot symbols can be understood by referring to Figure 35.
  • the input polarization seed is 0x34E, which is 1101001110 after being converted into a binary sequence, that is, the value from m 9 to m 0 , if the two bits continuously output in order are 1 and 0, the pilot symbol in the X polarization direction is A-Aj. If the two bits are 0 and 0 continuously output in order, the pilot symbol in the X polarization direction is -A-Aj. If the order is continuous If the two output bits are 1 and 1, the pilot symbol in the X polarization direction is A+Aj. If the two bits are 0 and 1 continuously output in sequence, the pilot symbol in the X polarization direction is -A +Aj.
  • 114 pilot symbols in the X polarization direction can be obtained.
  • the input polarization seed is 0x084, which is 0010000100 after being converted into a binary sequence, that is, the value from m 9 to m 0.
  • the pilot symbol in the Y polarization direction is A-Aj. If the two bits are 0 and 0 continuously output in order, the pilot symbol in the Y polarization direction is -A-Aj. If the two output bits are 1 and 1, the pilot symbol in the Y polarization direction is A+Aj. If the two bits are 0 and 1 continuously output in sequence, the pilot symbol in the Y polarization direction is -A +Aj.
  • the polarization seeds in the X polarization direction and the polarization seeds in the Y polarization direction can be interchanged, so 114 pilot symbols can be obtained as shown in Table X-8 below.
  • Figure 36 shows the correlation characteristics corresponding to the pilot symbols in Figure 36, and (a) in Figure 36 shows the periodic autocorrelation result of the sequence of pilot symbols in the X polarization direction, in Figure 36 (b) shows the periodic autocorrelation result of the sequence of pilot symbols in the Y polarization direction, and (c) in Figure 36 shows the periodic cross-correlation of the sequence of pilot symbols in the X and Y polarization directions result.
  • the normalized amplitude of the periodic autocorrelation function side lobe values of the symbol sequences in the two polarization directions is not greater than 0.167, and the normalized amplitude of the periodic cross-correlation function side lobe values of the symbol sequences in the two polarization directions is not greater than 0.202.
  • the frame redundancy of the superframe architecture provided by the embodiment of the present application is also low, at 1.79%, and the sequence autocorrelation and cross-correlation characteristics of pilot symbols are both good, and the combination of training symbols and pilot symbols can also satisfy DC balance , which is beneficial to improve the signal recovered at the receiving end and improve the quality of the recovered signal.
  • the input polarization seed is 0x0BE, which is 0010111110 after being converted into a binary sequence, that is, the value from m 9 to m 0.
  • the pilot symbol in the X polarization direction is A-Aj.
  • the pilot symbol in the X polarization direction is -A-Aj.
  • the order is continuous If the two output bits are 1 and 1, the pilot symbol in the X polarization direction is A+Aj. If the two bits are 0 and 1 continuously output in sequence, the pilot symbol in the X polarization direction is -A +Aj.
  • the input polarization seed is 0x1B8, which is 0110111000 after being converted into a binary sequence, that is, the value from m 9 to m 0.
  • the pilot symbol in the Y polarization direction is A-Aj. If the two bits are 0 and 0 continuously output in order, the pilot symbol in the Y polarization direction is -A-Aj. If the two output bits are 1 and 1, the pilot symbol in the Y polarization direction is A+Aj. If the two bits are 0 and 1 continuously output in sequence, the pilot symbol in the Y polarization direction is -A +Aj.
  • the polarization seeds in the X polarization direction and the polarization seeds in the Y polarization direction can be interchanged, so 114 pilot symbols can be obtained as shown in Table X-9 below.
  • Figure 38 shows the correlation characteristics corresponding to the pilot symbols.
  • (a) in Figure 38 shows the periodic autocorrelation results of the sequence of pilot symbols in the X polarization direction.
  • (b) shows the periodic autocorrelation result of the sequence of pilot symbols in the Y polarization direction
  • (c) in Figure 38 shows the periodic cross-correlation result of the sequence of pilot symbols in the X and Y polarization directions .
  • the normalized amplitude of the periodic autocorrelation function side lobe values of the symbol sequences in the two polarization directions is not greater than 0.162
  • the normalized amplitude of the periodic cross-correlation function side lobe values of the symbol sequences in the two polarization directions is not greater than 0.185.
  • the frame redundancy of the superframe architecture provided by the embodiment of the present application is also low, at 1.79%, and the designed pilot symbols have good sequence autocorrelation and cross-correlation characteristics, and the training sequence and the pilot symbol sequence are combined together It can also meet the DC balance, which is beneficial to improve the signal recovery at the receiving end and improve the quality of the recovered signal.
  • the 57 pilot symbols are determined by the target polynomial and corresponding seeds.
  • the structure of the target polynomial and the seed to generate the pilot symbol can be understood by referring to the corresponding content in the foregoing part of FIG. 34 .
  • continuous bit sequences b 0 , b 1 , b 2 , . . . b 113 of length 114 are obtained according to the target polynomial and the seed.
  • the bit sequence b 0 , b 1 , b 2 , ...b 113 maps every 2 consecutive bits to a symbol, where b 2t and b 2t+1 map to a symbol (2b 2t -1)A+(2b 2t+1 -1) Aj.
  • the symbol (2b 2t -1)A+(2b 2t+1 -1)Aj may not be the symbol on the constellation diagram of the used modulation format, it may be the outermost 4 of the constellation diagram of the used modulation format symbol and some 4 symbols in the middle area of the innermost 4 symbols. At this point, the noise and sensitivity of the training and pilot symbols are average, but the peak-to-average power ratio is relatively low.
  • the values of the 16 symbols on the 16QAM constellation diagram are ⁇ 1 ⁇ 1j, ⁇ 1 ⁇ 3j, ⁇ 3 ⁇ 1j, ⁇ 3 ⁇ 3j ⁇ , and the value of the real number A satisfies 1 ⁇ A ⁇ 3.
  • the specific value of the real number A can be selected according to the actual application scenario so that the peak-to-average power ratio, noise and sensitivity of the training and pilot symbols have a good compromise.
  • the values of pilot symbols and training symbols are
  • the values of pilot symbols and training symbols are
  • the normalized amplitude of the periodic autocorrelation function side lobe values of the pilot symbols in the same polarization direction is different. If it is greater than 0.23, the normalized amplitude of the periodic cross-correlation function values of pilot symbols in different polarization directions is not greater than 0.23.
  • serial number target polynomial Seeds for one polarization direction Seed for another polarization direction 1 x 10 +x 7 +x 3 +x+1 0x204 0x279 2 x 10 +x 7 +x 3 +x+1 0x0B1 0x3E9 3 x 10 +x 7 +x 3 +x+1 0x0B1 0x279
  • the input polarization seed is 0x0B1, which is 0010110001 after being converted into a binary sequence, that is, the value from m 9 to m 0.
  • the pilot symbol in the X polarization direction is A-Aj.
  • the pilot symbol in the X polarization direction is -A-Aj.
  • the order is continuous If the two output bits are 1 and 1, the pilot symbol in the X polarization direction is A+Aj. If the two bits are 0 and 1 continuously output in sequence, the pilot symbol in the X polarization direction is -A +Aj.
  • the input polarization seed is 0x3E9, which is 1111101001 after being converted into a binary sequence, that is, the value from m 9 to m 0.
  • the pilot symbol in the Y polarization direction is A-Aj.
  • the pilot symbol in the Y polarization direction is -A-Aj.
  • the pilot symbol in the Y polarization direction is A+Aj.
  • the pilot symbol in the Y polarization direction is -A +Aj.
  • the polarization seeds in the X polarization direction and the polarization seeds in the Y polarization direction can be interchanged, so 57 pilot symbols can be obtained as shown in Table X-13 below.
  • Figure 41 shows the correlation characteristics corresponding to the pilot symbols.
  • (a) in Figure 41 shows the periodic autocorrelation results of the sequence of pilot symbols in the X polarization direction.
  • (b) shows the periodic autocorrelation result of the sequence of pilot symbols in the Y polarization direction
  • (c) in Figure 41 shows the periodic cross-correlation result of the sequence of pilot symbols in the X and Y polarization directions .
  • the normalized amplitude of the periodic autocorrelation function side lobe values of the symbol sequences in the two polarization directions is not greater than 0.206, and the normalized amplitude of the periodic cross-correlation function side lobe values of the symbol sequences in the two polarization directions is not greater than 0.212.
  • the frame redundancy of the superframe architecture provided by the embodiment of the present application is also low, at 1.79%, and the designed pilot symbols have good sequence autocorrelation and cross-correlation characteristics, and the training sequence and the pilot symbol sequence are combined together It can also meet the DC balance, which is beneficial to improve the signal recovery at the receiving end and improve the quality of the recovered signal.
  • the embodiment of the present application further provides another transmission method for optical communication, As shown in Figure 42, the transmission method includes:
  • the transmission device generates a superframe that includes a plurality of subframes, and the subframes include training symbols and pilot symbols;
  • N PS pilot symbols In each subframe, in one polarization direction, there are N PS pilot symbols, whose values are -A 2 -A 2 j, -A 2 +A 2 j, A 2 -A 2 j, and A 2 +A One of 2 j, where A 2 is a real number and N PS is an even number; N PS pilot symbols achieve DC balance; the combination of training symbols and N PS pilot symbols achieves DC balance;
  • the pilot symbol is determined by the target polynomial and the seed, the target polynomial is the original polynomial, and its non-zero term is not greater than 5; the target polynomial is one of the following table Y-1;
  • the transmitting device sends the superframe, and correspondingly, the receiving device receives the superframe containing multiple subframes.
  • the receiving device decodes the received superframe.
  • the pilot symbol is generated by a target polynomial and a seed
  • the target polynomial is any one of the above Table Y-1
  • the target polynomial and the corresponding seed can satisfy the generated N PS
  • the pilot symbols achieve DC balance
  • the combination of training symbols and N PS pilot symbols achieves DC balance, which is conducive to better signal recovery at the receiving end and improves signal quality at the receiving end.
  • the structure of the superframe provided by the embodiment of the present application can be understood by referring to the corresponding contents in the aforementioned parts (a) to (c) in FIG. 33 , and details are not repeated here.
  • the number of symbols before framing is 172032, which are encoded symbols, and the encoding method may be Open FEC (Open FEC, OFEC), or a code length
  • the 128-bit Hamming code can be obtained by multiple encoding, and other encoding methods can also be used; the corresponding parameters such as NSF, NTS, NPS, NFAW , NRES , Ns , NF , and OH are shown in the following table:
  • the frame synchronization sequence with a length of 22 is shown in Table Y-2 below, wherein the value of the real number A FAW is not specifically limited. It can be selected according to the actual application scenario so that the peak-to-average power ratio, noise and sensitivity of the FAW symbol have a good compromise.
  • the values of the 16 symbols on the 16QAM constellation diagram are ⁇ 1 ⁇ 1j, ⁇ 1 ⁇ 3j, ⁇ 3 ⁇ 1j, ⁇ 3 ⁇ 3j ⁇ , and the value of the real number A FAW satisfies 1 ⁇ A ⁇ 3 .
  • real numbers The value of the pilot symbol is
  • the 114 pilot symbols are determined based on the target polynomial and corresponding seeds.
  • the target polynomial adopts a 10th-order polynomial
  • the 10th-order polynomial can be expressed as:
  • the pilot symbol generation structure can be understood by referring to the previous Figure 34.
  • the seeds can be expressed in binary form as m 9 , m 8 , m 7 , m 6 , m 5 , m 4 , m 3 , m 2 , m 1 , m 0 , of course, the seed can also be expressed in hexadecimal or decimal.
  • the target polynomial it needs to be converted into binary form, such as: 0110111000 is expressed in hexadecimal as 0x1B8, and in decimal is 440.
  • the same target generator polynomial may be used, but because the seeds are different, correspondingly, the pilot symbols output in the two polarization directions Not exactly the same.
  • bit sequences b 0 , b 1 , b 2 , . . . b 227 with a continuous length of 228 are obtained according to the target polynomial and the seed.
  • the bit sequence b 0 , b 1 , b 2 , ...b 227 is mapped to a symbol every 2 consecutive bits, at this time b 2t and b 2t+1 are mapped to a symbol (2b 2t -1)A 2 +(2b 2t+1 -1) A 2 j, 0 ⁇ t ⁇ 114.
  • the pilot symbol may not be a symbol on the constellation diagram of the modulation format used, but may be a certain 4 symbols in the middle area of the outermost 4 symbols and the innermost 4 symbols of the constellation diagram of the modulation format used. .
  • the noise and sensitivity of the pilot symbols are average, but the peak-to-average power ratio is relatively low.
  • the values of the 16 symbols on the 16QAM constellation diagram are ⁇ 1 ⁇ 1j, ⁇ 1 ⁇ 3j, ⁇ 3 ⁇ 1j, ⁇ 3 ⁇ 3j ⁇ , and the value of the real number A 2 satisfies 1 ⁇ A 2 ⁇ 3.
  • the specific value of the real number A 2 can be selected according to the actual application scenario so that the peak-to-average power ratio, noise and sensitivity of the training or pilot symbols have a good compromise.
  • the values of pilot symbols and training symbols are
  • the power of the 16 symbols on the 16QAM constellation is normalized and the value is The value of the real number A 2 satisfies
  • the value of the pilot symbol is
  • the sequence generated when the target polynomial is a primitive polynomial generally has good randomness
  • the more non-zero terms of the target polynomial the more complex the implementation, the primitive polynomial is used in the target polynomial and its non-zero terms are not greater than 5
  • the normalization of the periodic autocorrelation function side lobe values of the pilot symbols in the same polarization direction The normalization amplitude is not greater than 0.25
  • the normalization amplitude of the periodic cross-correlation function values of pilot symbols in different polarization directions is not greater than 0.25.
  • the target polynomial adopts the primitive polynomial as x 10 +x 9 +x 7 +x 6 +1, and the corresponding two polarization directions are expressed in hexadecimal.
  • the seeds are 0x002 and 0x3C6, the generation process of 114 pilot symbols can be understood by referring to Figure 43 below.
  • the input polarization seed is 0x002, which is 0000000010 after being converted into a binary sequence, that is, the value from m 9 to m 0 , if the two bits output in sequence are 1 and 0, the pilot symbols in the X polarization direction are A 2 -A 2 j, and if the two bits are 0 and 0 continuously output in sequence, the pilot symbols in the X polarization direction are -A 2 -A 2 j, if the two bits 1 and 1 are continuously output in order, the pilot symbol in the X polarization direction is A 2 +A 2 j, if the two bits are 0 and 1 continuously output in order, then the X polarization
  • the pilot symbols in the direction are -A 2 +A 2 j.
  • the input polarization seed is 0x3C6, which is 0010000100 after being converted into a binary sequence, that is, the value from m 9 to m 0.
  • the pilot symbols in the Y polarization direction are A 2 -A 2 j
  • the pilot symbols in the Y polarization direction are -A 2 -A 2 j
  • the pilot symbol in the Y polarization direction is A 2 +A 2 j
  • the two bits are 0 and 1 continuously output in order
  • the pilot symbol in the Y polarization direction is A 2 +A 2 j
  • the two bits are 0 and 1 continuously output in order
  • the pilot symbols in the direction are -A 2 +A 2 j.
  • the polarization seeds in the X polarization direction and the polarization seeds in the Y polarization direction can be interchanged, so 114 pilot symbols as shown in Table Y-4 below can be obtained.
  • the first symbol in each subframe is used as a pilot symbol and also as a training symbol.
  • the first of the 11 training symbols considered is the same as the first of the 114 pilot symbols.
  • excluding the first symbol in each subframe also includes 10 training symbols, and the values of these 10 training symbols are -A 1 -A 1 j, -A 1 +A 1 j, A 1 - One of A 1 j, A 1 +A 1 j, where A 1 is a real number; the specific value of the real number A 1 can be selected according to the actual application scenario so that the peak-to-average power ratio, noise and sensitivity of training or pilot symbols are Nice compromise.
  • a 1 may not be equal to A 2 ; taking 16QAM as an example, the 16 symbols on the 16QAM constellation are ⁇ 1 ⁇ 1j, ⁇ 1 ⁇ 3j, ⁇ 3 ⁇ 1j, ⁇ 3 ⁇ 3j ⁇ , the real number A 1 The value satisfies 1 ⁇ A 2 ⁇ 3. For example real numbers The value of the 10 training symbols after removing the first symbol in each subframe is In addition, when the power of the 16 symbols on the 16QAM constellation is normalized and the value is The value of the real number A 2 satisfies For example real numbers The value of the pilot symbol is
  • the training sequence of length 11 can use an item of -A+Aj for the two polarization first symbols in Table 40, and use the real number used in the first symbol in each polarization direction A is set to A 2 , and the real number A used in the remaining 10 symbols excluding the first symbol is set to A 1 .
  • Table Y-5 the entry of No. 15 in Table 40 is used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Optical Communication System (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种用于光通信的传输方法,可应用于400Gbps以上(包含600Gbps、800Gbps等)的城域、骨干网、数据中心互连等多个场景,所述方法包括:生成包含多个子帧的超帧,并将超帧发送出去;其中,每个子帧包括训练符号和导频符号,每个训练符号和每个导频符号分别为-A-Aj、-A+Aj、A-Aj、A+Aj中的一种,A为实数;而且,在每个子帧包括的训练符号和导频符号中,-A-Aj、-A+Aj、A-Aj和A+Aj在两个互相垂直的偏振方向上的数目满足特定要求,可实现直流均衡,利于接收端恢复信号。

Description

一种用于光通信的传输方法、接收方法及相应设备
本申请要求于2021年04月20日提交中国专利局、申请号为202110424596.8、发明名称为“一种超帧传输方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请要求于2021年12月1日提交中国专利局、申请号为202111456537.5、发明名称为“一种用于光通信的传输方法、接收方法及相应设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请要求于2022年01月27日提交中国专利局、申请号为202210102040.1、发明名称为“一种用于光通信的传输方法、接收方法及相应设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信领域,尤其涉及一种用于光通信的传输方法、接收方法及相应设备。
背景技术
在5G、云计算、大数据、人工智能等持续推动下,高速光传输网络正朝着大容量、分组化、智能化的方向发展。相干光通信系统利用光波的幅度,相位,偏振和频率来承载信息。为了对抗在传输过程中因色散、偏振相关损伤、噪声、非线性效应及其它因素引起的光信号失真并保持长距离传输,相干光通信系统通常在传输符号序列中加入一些经过设计的固定符号序列,便于接收端恢复发送符号。
现有的传输符号序列主要是应用于400Gbps场景,无法适应未来400Gbps以上(包含600Gbps,800Gbps等)的场景,且存在不同偏振方向上的传输符号序列之间的互相关性差的问题,这些都是未来亟需解决的问题。
发明内容
本申请提供一种用于光通信的传输方法,解决了现有技术无法应用于400Gbps以上的场景,且不同偏振方向上的符号序列互相关性较差的问题。
第一方面,提供一种用于光通信的传输方法,所述方法包括:生成包含多个子帧的超帧,所述子帧包括训练符号和导频符号,其中,在一个偏振方向上,所述子帧包括的所述训练符号和所述导频符号的数量之和不小于5,有一个符号既为训练符号,也为导频符号;且每个所述训练符号和每个所述导符号分别为-A-Aj、-A+Aj、A-Aj、A+Aj中的一种,A为实数;在每个子帧包括的所述训练符号和所述导频符号中,-A-Aj、-A+Aj、A-Aj和A+Aj在一个偏振方向上的数目分别为
Figure PCTCN2022087770-appb-000001
Figure PCTCN2022087770-appb-000002
且在另一个偏振方向上的数目分别为
Figure PCTCN2022087770-appb-000003
Figure PCTCN2022087770-appb-000004
其中,N TS为每个子帧中所述训练符号在一个偏振方向上的数量,N PS为每个子帧中所述导频符号在一个偏振方向上的数量,N TS+N PS为奇数,两个偏振方向相互正交;将所述超帧发送出去。
第二方面,提供一种用于光通信的接收方法,所述方法包括:接收包含多个子帧的超帧,所述子帧包括训练符号和导频符号,其中,在一个偏振方向上,所述子帧包括的所述训练符号和所述导频符号的数量之和不小于5,有一个符号既为训练符号,也为导频符号;且每个所述训练符号和每个所述导频符号分别为-A-Aj、-A+Aj、A-Aj、A+Aj中的一种,A为实数;在每个子帧包括的所述训练符号和所述导频符号中,-A-Aj、-A+Aj、A-Aj和A+Aj在一个偏振方向上的数目分别为
Figure PCTCN2022087770-appb-000005
Figure PCTCN2022087770-appb-000006
且在另一个偏振方向上的数目分别为
Figure PCTCN2022087770-appb-000007
Figure PCTCN2022087770-appb-000008
其中,N TS为每个子帧中所述训练符号在一个偏振方向上的数量,N PS为每个子帧中所述导频符号在一个偏振方向上的数量,N TS+N PS为奇数,两个偏振方向相互正交;对接收到的所述超帧进行解码。
本申请实施例中,每个偏振方向上,一个子帧总共包括N TS+N PS-1个训练符号和导频符号,在这些符号中,-A-Aj、-A+Aj、A-Aj、A+Aj彼此之间的数目相差不大于1;而且,在一个子帧中,表示训练符号和导频符号的四个复数在两个偏振方向上的数目是相同的,均为(N TS+N PS-1)/2,有效保证了符号数目的平衡。此外,还可以使训练符号和导频符号构成的序列达到直流平衡,利于接收端恢复信号的质量。
结合第一方面或第二方面,在第一种可能的实施方式中,在一个子帧中,在一个偏振方向上的训练符号组成的序列与在另一个偏振方向上的训练符号组成的序列互不相同,在一个偏振方向上的导频符号组成的序列与在另一个偏振方向上的导频符号组成的序列互不相同。避免实际传输中,接收端无法区分两个偏振方向的问题。
结合以上实施方式,在第二种可能的实施方式中,所述训练符号在所述子帧中连续排列,其中,在任一个偏振方向上,所述子帧包括的所述训练符号中,实部元素连续相同的个数不大于5,虚部元素连续相同的个数不大于5。进一步地,在任一个偏振方向上,一个子帧中连续相同的所述训练符号的个数不超过4个。在此种条件下得出的训练序列,有利于时钟恢复,从而有助于提高收端恢复的信号质量。
结合以上实施方式,在第一方面的第三种可能的实施方式中,所述多个子帧还包括第一子帧,所述第一子帧包括连续排列的帧同步符号,每个帧同步符号分别为-A-Aj、-A+Aj、A-Aj、A+Aj中的一种;在任一个偏振方向上,所述子帧包括的所述帧同步符号中,实部的元素连续相同的个数不大于5,虚部中元素连续相同的个数不大于5。进一步地,在任一个偏振方向上,所述第一子帧中连续相同的所述帧同步符号的个数不超过4个。在此种条件下得出的帧同步序列,同样有利于时钟恢复,从而有助于提高收端恢复的信号质量。
结合第三种可能的实施方式,在第四种可能的实施方式中,在所述第一子帧包括的帧同步符号中,-A-Aj、-A+Aj、A-Aj和A+Aj在一个偏振方向上的数目分别为
Figure PCTCN2022087770-appb-000009
Figure PCTCN2022087770-appb-000010
且在另一个偏振方向上的数目分别为
Figure PCTCN2022087770-appb-000011
其中,N FAW为所述第一子帧中的所述帧同步符号在一个偏振方向上的数量,N FAW为偶数。本实施例保证了多个帧同步符号满足直流平衡,且4个可选符号-A-Aj、-A+Aj、A-Aj、A+Aj的数目相差不大于1,利于接收端恢复信号质量。
结合上述实施方式,在第五种可能的实施方式中,N TS为偶数,在每个子帧包括的所述训练符号中,-A-Aj、-A+Aj、A-Aj和A+Aj在一个偏振方向上的数目分别为
Figure PCTCN2022087770-appb-000012
Figure PCTCN2022087770-appb-000013
且在另一个偏振方向上的数目分别为
Figure PCTCN2022087770-appb-000014
Figure PCTCN2022087770-appb-000015
结合第一方面,第二方面,以及第一种至第四种中任一种可能的实施方式,在第六种可能的实施方式中,N TS为奇数,在每个子帧包括的训练符号中,除去同时作为所述导频符号的那个训练符号,-A-Aj、-A+Aj、A-Aj和A+Aj在一个偏振方向上的数目分别为
Figure PCTCN2022087770-appb-000016
Figure PCTCN2022087770-appb-000017
且在另一个偏振方向上的数目分别为
Figure PCTCN2022087770-appb-000018
上述两个实施例,给出了两种不同情况下,训练序列的几种可能符号在不同偏振方向上的数目,一个子帧中包括的训练符号-A-Aj、-A+Aj、A-Aj、A+Aj彼此之间的数目接近。此外,在每个偏振方向上,除去同时作为导频符号的那个训练符号(如果是奇数个训练符号),其他训练符号对应的复数的实部之和为0,虚部之和也为0,可以达到直流平衡,利于接收端恢复信号的质量。
结合第一方面,第二方面,以及第一种至第四种中任一种可能的实施方式,在第七种可能的实施方式中,N PS为偶数,在每个子帧包括的导频符号中,-A-Aj、-A+Aj、A-Aj和A+Aj在一个偏振方向上的数目分别为
Figure PCTCN2022087770-appb-000019
且在另一个偏振方向上的数目分别为
Figure PCTCN2022087770-appb-000020
结合第一方面,第二方面,以及第一种至第四种中任一种可能的实施方式,在第八种可能的实施方式中,N PS为奇数,在每个子帧包括的导频符号中,除去同时作为所述训练符号的那个导频符号,-A-Aj、-A+Aj、A-Aj和A+Aj在一个偏振方向上的数目分别为
Figure PCTCN2022087770-appb-000021
Figure PCTCN2022087770-appb-000022
且在另一个偏振方向上的数目分别为
Figure PCTCN2022087770-appb-000023
结合第一方面,第二方面,以及第一种至第四种中任一种可能的实施方式,在第九种可能的实施方式中,在每个子帧中,一个偏振方向上的导频符号的个数除以4的余数为0,在每个子帧包括的所述导频符号中,-A-Aj、-A+Aj、A-Aj和A+Aj在一个偏振方向上的数目分别为N PS/4+1、N PS/4-1、N PS/4-1、N PS/4+1,且在另一个偏振方向上的数目分别为N PS/4-1、N PS/4+1、N PS/4+1、N PS/4-1;或,在两个偏振方向上的数目均为N PS/4。
结合第一方面,第二方面,以及第一种至第四种中任一种可能的实施方式,在第十种可能的实施方式中,在每个子帧中,一个偏振方向上的导频符号的个数除以4的余数为2,在每个子帧包括的所述导频符号中,-A-Aj、-A+Aj、A-Aj、A+Aj在一个偏振方向上的数目分别为(N PS-2)/4、(N PS-2)/4+1、(N PS-2)/4+1、(N PS-2)/4,且在另一个偏振方向上的数目分别为(N PS-2)/4+1、(N PS-2)/4、(N PS-2)/4、(N PS-2)/4+1。
结合第一方面,第二方面,以及第一种至第四种中任一种可能的实施方式,在第十一种可能的实施方式中,在每个子帧中,一个偏振方向上的导频符号的个数除以4的余数为1,在每个子帧包括的所述导频符号中,除去同时作为训练符号的那个导频符号,-A-Aj、-A+Aj、A-Aj、A+Aj在一个偏振方向上的数目分别为(N PS-1)/4+1、(N PS-1)/4-1、(N PS-1)/4-1、(N PS-1)/4+1,且在另一个偏振方向上的数目分别为(N PS-1)/4-1、(N PS-1)/4+1、(N PS-1)/4+1、 (N PS-1)/4-1;或,在两个偏振方向上的数目均为(N PS-1)/4。
结合第一方面,第二方面,以及第一种至第四种中任一种可能的实施方式,在第十二种可能的实施方式中,在每个子帧中,一个偏振方向上的导频符号的个数除以4的余数为3时,在每个子帧包括的所述导频符号中,除去同时作为训练符号的那个导频符号,-A-Aj、-A+Aj、A-Aj、A+Aj在一个偏振方向上的数目分别为(N PS-3)/4、(N PS-3)/4+1、(N PS-3)/4+1、(N PS-3)/4,且在另一个偏振方向上的数目分别为(N PS-3)/4+1、(N PS-3)/4、(N PS-3)/4、(N PS-3)/4+1。
上述第七到第12种实施方式给出了几种不同情况下,导频序列的几种可能符号在不同偏振方向上的数目,一个子帧中包括的导频符号-A-Aj、-A+Aj、A-Aj、A+Aj彼此之间的数目接近,有效保证了训练符号间的均衡。此外,在每个偏振方向上,除去同时作为训练符号的那个导频符号(如果是奇数个导频符号),其他导频符号对应的复数的实部之和为0,虚部之和也为0,可以达到直流平衡,利于接收端恢复信号的质量。
结合上述实施方式,在第十三种可能的实施方式,所述超帧中的符号的调制格式为16QAM,A的值为1或3。此外,也有可能对星座图上的符号进行压缩,相应的,A的值也会被相应压缩,以16QAM为例,对16QAM星座图上的16个符号进行功率归一化,此时,取值变为
Figure PCTCN2022087770-appb-000024
A的值为
Figure PCTCN2022087770-appb-000025
Figure PCTCN2022087770-appb-000026
应理解,当导频符号和训练符号-A-Aj、-A+Aj、A-Aj、A+Aj采用星座图最外面4个符号时,训练和导频符号的灵敏度(sensitivity)较高,但峰均功率比(peak to average power)较大;当导频符号和训练符号取值-A-Aj、-A+Aj、A-Aj、A+Aj采用星座图最里面4个符号时,训练和导频符号的噪声(noise)较小,但其灵敏度(sensitivity)较低。
需要说明的是,在一些实际应用场景中,导频符号和训练符号-A-Aj、-A+Aj、A-Aj、A+Aj也可以不为所用的调制格式的星座图上的符号,其可以是星座图最外面4个符号和最里面4个符号中间区域的某4个符号。此时,训练和导频符号噪声和灵敏度一般,但峰均功率比相对较低。以16QAM为例,16QAM星座图上的16个符号取值为{±1±1j,±1±3j,±3±1j,±3±3j},实数A的取值满足1≤A≤3。更具体地,星座图最外面4个符号是3+3j,3-3j,-3+3j,-3-3j,星座图最里面4个符号是1+1j,1-1j,-1+1j,-1-1j。导频符号和训练符号取值-A-Aj、-A+Aj、A-Aj、A+Aj可以是在16QAM星座图最外面4个符号和最里面4个符号中间区域的某4个符号。实数A的具体取值可根据实际应用场景选取使得训练和导频符号的峰均功率比、噪声和灵敏度具备很好的折中。例如实数
Figure PCTCN2022087770-appb-000027
导频符号和训练符号的取值为
Figure PCTCN2022087770-appb-000028
另外,当16QAM星座图上的16个符号进行功率归一化且取值为
Figure PCTCN2022087770-appb-000029
Figure PCTCN2022087770-appb-000030
实数A的取值满足
Figure PCTCN2022087770-appb-000031
例如实数
Figure PCTCN2022087770-appb-000032
导频符号 和训练符号的取值为
Figure PCTCN2022087770-appb-000033
结合上述实施方式,在第十四种可能的实施方式,在每个子帧中,每64个符号的固定位置为所述导频符号。例如,每64个符号中的第一个符号为导频符号。
结合第一方面,第二方面,以及第一种至第十三种可能的实现方式中任一种可能的实施方式,在第十五种可能的实施方式,在每个子帧中,每48个符号的固定位置为所述导频符号。例如,每48个符号中的第一个符号为导频符号。
应理解,上述实施方式均可结合第一方面或者第二方面,本申请不做限制。
第三方面,提供一种用于光通信的传输设备,所述传输设备包括处理器和存储器,所述存储器用于存储指令,所述处理器用于执行所述指令,使得所述传输设备执行如第一方面中以及第一方面中任一种可能的实现方式所述的方法。
第四方面,提供一种用于光通信的接收设备,所述传输设备包括处理器和存储器,所述存储器用于存储指令,所述处理器用于执行所述指令,使得所述接收设备执行如第二方面中以及第二方面中任一种可能的实现方式所述的方法。
第五方面,提供一种用于光通信的系统,所述系统包括如第三方面所述的传输设备,以及如第四方面所述的接收设备。
应理解,处理器可以是中央处理单元(Central Processing Unit,简称为“CPU”),还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等,本申请不做限定。
第六方面,提供一种计算机可读存储介质,所述计算机可读存储介质存储指令,当所述指令在终端设备上运行时,使得所述终端设备执行如第一方面或第一方面任一种可能的实现方式所述的方法;或使得所述终端设备执行如第二方面或第二方面中任一种可能的实现方式所述的方法。
第七方面,提供一种包含指令的计算机程序产品,当在终端设备上运行时,使得终端设备执行如第一方面或第一方面任一种可能的实现方式所述的方法;或使得所述终端设备执行如第二方面或第二方面中任一种可能的实现方式所述的方法。应理解,终端设备可以为芯片、处理器等等,本申请并不做限定。
第八方面,提供一种用于光通信的传输方法,该方法包括:生成包含多个子帧的超帧,子帧包括训练符号和导频符号,其中,在一个偏振方向上,有一个符号既为训练符号,也为导频符号,且每个训练符号和每个导频符号分别为-A-Aj、-A+Aj、A-Aj、A+Aj中的一种,A为实数;在每个子帧中在一个偏振方向上,导频符号是目标多项式和种子生成的,导频符号有N PS个,与N TS个训练符号的组合达到直流平衡,N TS为所述每个子帧中所述训练符号在一个偏振方向上的数量,N TS+N PS为奇数;目标多项式为下表中的一个;
序号 目标多项式
1 x 10+x 9+x 8+x 7+x 6+1
2 x 10+x 9+x 8+x 6+x 4+1
3 x 10+x 9+x 7+x 6+x 4+1
4 x 10+x 9+x 6+x 3+1
5 x 10+x 8+x 5+x 3+1
6 x 10+x 8+x 6+x 5+x 3+1
7 x 10+x 8+x 7+x 4+x 3+1
8 x 10+x 6+x 5+x 4+x 3+1
9 x 10+x 9+x 6+x 2+1
10 x 10+x 7+x 6+x 2+1
11 x 10+x 7+x 5+x 2+1
12 x 10+x 8+x 7+x 5+x 2+1
13 x 10+x 9+x 8+x 7+x 4+x 2+1
14 x 10+x 7+x 5+x 4+x 2+1
15 x 10+x 9+x 7+x 5+x 4+x 2+1
16 x 10+x 9+x 8+x 3+x 2+1
17 x 10+x 9+x 8+x 7+x 3+x 2+1
18 x 10+x 7+x 6+x 3+x 2+1
19 x 10+x 8+x 5+x+1
20 x 10+x 8+x 4+x+1
21 x 10+x 9+x 8+x 7+x 4+x+1
22 x 10+x 8+x 5+x 4+x+1
23 x 10+x 5+x 3+x+1
24 x 10+x 8+x 6+x 5+x 3+x+1
25 x 10+x 9+x 8+x 7+x 4+x 3+x+1
26 x 10+x 6+x 4+x 3+x+1
27 x 10+x 8+x 7+x 2+x+1
28 x 10+x 9+x 8+x 7+x 4+x 2+x+1
29 x 10+x 9+x 6+x 3+x 2+x+1
30 x 10+x 8+x 6+x 3+x 2+x+1
31 x 10+x 6+x 5+x 3+x 2+x+1
32 x 10+x 4+x 3+x 2+x+1
33 x 10+x 9+x 7+x 3+1
34 x 10+x 9+x 6+x+1
35 x 10+x 9+x 4+x+1
36 x 10+x 7+x 3+x+1
将超帧发送出去。
第九方面,提供用于光通信的接收方法,该方法包括:
接收包含多个子帧的超帧,子帧包括训练符号和导频符号,其中,在一个偏振方向上,有一个符号既为训练符号,也为导频符号,且每个训练符号和每个导频符号分别为-A-Aj、 -A+Aj、A-Aj、A+Aj中的一种,A为实数;在每个子帧中,在一个偏振方向上,导频符号是目标多项式和种子生成的,导频符号有N PS个,与N TS个训练符号的组合达到直流平衡,N TS为所述每个子帧中所述训练符号在一个偏振方向上的数量,N TS+N PS为奇数;目标多项式为下表中的一个;
序号 目标多项式
1 x 10+x 9+x 8+x 7+x 6+1
2 x 10+x 9+x 8+x 6+x 4+1
3 x 10+x 9+x 7+x 6+x 4+1
4 x 10+x 9+x 6+x 3+1
5 x 10+x 8+x 5+x 3+1
6 x 10+x 8+x 6+x 5+x 3+1
7 x 10+x 8+x 7+x 4+x 3+1
8 x 10+x 6+x 5+x 4+x 3+1
9 x 10+x 9+x 6+x 2+1
10 x 10+x 7+x 6+x 2+1
11 x 10+x 7+x 5+x 2+1
12 x 10+x 8+x 7+x 5+x 2+1
13 x 10+x 9+x 8+x 7+x 4+x 2+1
14 x 10+x 7+x 5+x 4+x 2+1
15 x 10+x 9+x 7+x 5+x 4+x 2+1
16 x 10+x 9+x 8+x 3+x 2+1
17 x 10+x 9+x 8+x 7+x 3+x 2+1
18 x 10+x 7+x 6+x 3+x 2+1
19 x 10+x 8+x 5+x+1
20 x 10+x 8+x 4+x+1
21 x 10+x 9+x 8+x 7+x 4+x+1
22 x 10+x 8+x 5+x 4+x+1
23 x 10+x 5+x 3+x+1
24 x 10+x 8+x 6+x 5+x 3+x+1
25 x 10+x 9+x 8+x 7+x 4+x 3+x+1
26 x 10+x 6+x 4+x 3+x+1
27 x 10+x 8+x 7+x 2+x+1
28 x 10+x 9+x 8+x 7+x 4+x 2+x+1
29 x 10+x 9+x 6+x 3+x 2+x+1
30 x 10+x 8+x 6+x 3+x 2+x+1
31 x 10+x 6+x 5+x 3+x 2+x+1
32 x 10+x 4+x 3+x 2+x+1
33 x 10+x 9+x 7+x 3+1
34 x 10+x 9+x 6+x+1
35 x 10+x 9+x 4+x+1
36 x 10+x 7+x 3+x+1
对接收到的超帧进行解码。
上述第八方面或第九方面中,导频符号是根据目标多项式和对应的种子生成的,该目标多项式是上述表中的任意一项,该目标多项式和所对应的种子可以满足生成的N PS个导频符号和N TS个训练符号的组合达到直流平衡,也就是,一个子帧中在一个偏振方向上,与训练符号和导频符号对应的复数的实部之和为0,虚部之和也为0,这样有利于接收端较好的恢复信号,提高接收端信号的质量。
结合上述第八方面或第九方面,在一种可能的实现方式中,在一个偏振方向上,超帧中总符号数量N F=175104,子帧数量N SF=24,每个子帧中的符号数量N S=7296,N TS=11,N PS=114,帧同步符号的数量N FAW与保留符号的数量N RES之和N FAW+N RES=96,超帧成帧前的符号数量为172032。该种超帧结构可以更有利于接收端较好的恢复信号,提高接收端信号的质量。
结合上述第八方面或第九方面或者任一种可能的实现方式,在另一种可能的实现方式中,目标多项式与两个偏振方向上的用十六进制表示的种子为下表中的一行时,同一偏振方向上的导频符号的周期自相关函数旁瓣值的归一化幅度不大于0.2,不同偏振方向上的导频符号的周期互相关函数值的归一化幅度不大于0.2,
Figure PCTCN2022087770-appb-000034
Figure PCTCN2022087770-appb-000035
Figure PCTCN2022087770-appb-000036
Figure PCTCN2022087770-appb-000037
结合上述第八方面、第九方面或任一种可能的实现方式,在另一种可能的实现方式中,当目标多项式与两个偏振方向上的用十六进制表示的种子为下表中的一行时,在一个偏振方向上,114个导频符号和11个训练符号的组合中,-A-Aj、-A+Aj、A-Aj和A+Aj在一个偏振方向上的数目均为31;
序号 目标多项式 偏振一方向的种子 偏振二方向的种子
1 x 10+x 9+x 8+x 7+x 6+1 0x046 0x384
2 x 10+x 9+x 8+x 7+x 6+1 0x046 0x3C4
3 x 10+x 9+x 6+x 3+1 0x076 0x07C
4 x 10+x 8+x 7+x 4+x 3+1 0x1A2 0x330
5 x 10+x 8+x 7+x 4+x 3+1 0x2E6 0x330
6 x 10+x 8+x 7+x 2+x+1 0x226 0x3DC
7 x 10+x 9+x 6+x 3+x 2+x+1 0x13A 0x330
8 x 10+x 4+x 3+x 2+x+1 0x322 0x368
9 x 10+x 4+x 3+x 2+x+1 0x322 0x0E4
10 x 10+x 4+x 3+x 2+x+1 0x0E2 0x368
11 x 10+x 4+x 3+x 2+x+1 0x0E2 0x0E4
12 x 10+x 4+x 3+x 2+x+1 0x04E 0x2F0
结合上述第八方面、第九方面或任一种可能的实现方式,目标多项式为本原多项式,且其非零项不大于5时,目标多项式与两个偏振方向上的用十六进制表示的种子为下表中的一行时,同一偏振方向上的导频符号的周期自相关函数旁瓣值的归一化幅度不大于0.25,不同偏振方向上的导频符号的周期互相关函数值的归一化幅度不大于0.25,
序号 目标多项式 偏振一方向的种子 偏振二方向的种子
1 x 10+x 9+x 7+x 3+1 0x23E 0x094
2 x 10+x 7+x 6+x 2+1 0x0BE 0x1B8
3 x 10+x 9+x 6+x+1 0x002 0x210
4 x 10+x 9+x 6+x+1 0x002 0x308
5 x 10+x 9+x 6+x+1 0x002 0x184
6 x 10+x 9+x 6+x+1 0x1C2 0x040
7 x 10+x 8+x 5+x+1 0x3FE 0x0E0
8 x 10+x 8+x 5+x+1 0x3FE 0x270
9 x 10+x 8+x 5+x+1 0x3FE 0x304
10 x 10+x 9+x 4+x+1 0x3B6 0x1A0
11 x 10+x 9+x 4+x+1 0x3B6 0x0D0
12 x 10+x 9+x 4+x+1 0x3B6 0x058
13 x 10+x 9+x 4+x+1 0x3B6 0x22C
14 x 10+x 7+x 3+x+1 0x34E 0x084
结合上述第八方面、第九方面或任一种可能的实现方式,在另一种可能的实现方式中,当目标多项式为x 10+x 7+x 3+x+1,对应的两个偏振方向上的用十六进制表示的种子为0x34E和0x084时,在一个偏振方向上,114个导频符号和11个训练符号的组合中,-A-Aj、-A+Aj、A-Aj和A+Aj在一个偏振方向上的数目均为31,两个偏振方向上各自的114个导频符号分别为下表所示:
Figure PCTCN2022087770-appb-000038
Figure PCTCN2022087770-appb-000039
结合上述第八方面、第九方面或任一种可能的实现方式,在另一种可能的实现方式中,当目标多项式为x 10+x 7+x 6+x 2+1,对应的两个偏振方向上的用十六进制表示的种子为0x0BE和0x1B8时,两个偏振方向上各自的114个导频符号分别为下表所示:
Figure PCTCN2022087770-appb-000040
结合上述第八方面、第九方面或任一种可能的实现方式,在另一种可能的实现方式中,在一个偏振方向上,超帧中总符号数量N F=175104,子帧数量N SF=48,每个子帧中的符号数量N S=3648,N TS=6,N PS=57,帧同步符号的数量N FAW与保留符号的数量N RES之和N FAW+N RES=96,超帧成帧前的符号数量为172032。
结合上述第八方面、第九方面或任一种可能的实现方式,在另一种可能的实现方式中,目标多项式与两个偏振方向上的用十六进制表示的种子为下表中的一行时,同一偏振方向上的导频符号的周期自相关函数旁瓣值的归一化幅度不大于0.23,不同偏振方向上的导频符号的周期互相关函数值的归一化幅度不大于0.23,
序号 目标多项式 偏振一方向的种子 偏振二方向的种子
1 x 10+x 7+x 3+x+1 0x204 0x279
2 x 10+x 7+x 3+x+1 0x0B1 0x3E9
3 x 10+x 7+x 3+x+1 0x0B1 0x279
结合上述第八方面、第九方面或任一种可能的实现方式,在另一种可能的实现方式中,当目标多项式为x 10+x 7+x 3+x+1,对应的两个偏振方向上的用十六进制表示的种子为0x0B1和0x3E9时,两个偏振方向上各自的57个导频符号分别为下表所示:
Figure PCTCN2022087770-appb-000041
第十方面,提供一种用于光通信的传输设备,传输设备包括处理器和存储器,存储器用于存储指令,处理器用于执行指令,使得传输设备执行如第八方面中以及第八方面中任一种可能的实现方式的方法。
第十一方面,提供一种用于光通信的接收设备,传输设备包括处理器和存储器,存储器用于存储指令,处理器用于执行指令,使得接收设备执行如第九方面中以及第九方面中任一种可能的实现方式的方法。
第十二方面,提供一种用于光通信的系统,系统包括如第十方面的传输设备,以及如第十一方面的接收设备。
应理解,处理器可以是中央处理单元(Central Processing Unit,简称为“CPU”),还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等,本申请不做限定。
第十三方面,提供一种计算机可读存储介质,计算机可读存储介质存储指令,当指令在终端设备上运行时,使得终端设备执行如第八方面或第八方面任一种可能的实现方式的方法;或使得终端设备执行如第九方面或第九方面中任一种可能的实现方式的方法。
第十四方面,提供一种包含指令的计算机程序产品,当在终端设备上运行时,使得终端设备执行如第八方面或第八方面任一种可能的实现方式的方法;或使得终端设备执行如第九方面或第九方面中任一种可能的实现方式的方法。应理解,终端设备可以为芯片、处理器等等,本申请并不做限定。
第十五方面,提供一种用于光通信的传输方法,包括:生成包含多个子帧的超帧,所述子帧包括训练符号和导频符号;在每个子帧中,在一个偏振方向上,所述导频符号有N PS个,取值为-A 2-A 2j、-A 2+A 2j、A 2-A 2j、A 2+A 2j中的一种,其中A 2为实数,N PS为偶数;N PS个所述导频符号达到直流平衡;所述训练符号与N PS个所述导频符号的组合达到直流平衡;所述导频符号是目标多项式和种子确定生成的,所述目标多项式为本原多项式,且其非零项不大于5;所述目标多项式为下表中的一个;
序号 目标多项式
1 x 10+x 9+x 7+x 6+1
2 x 10+x 9+x 7+x 3+1
3 x 10+x 8+x 4+x 3+1
4 x 10+x 7+x 6+x 2+1
5 x 10+x 9+x 6+x+1
6 x 10+x 9+x 4+x+1
7 x 10+x 7+x 3+x+1
8 x 10+x 4+x 3+x+1
将所述超帧发送出去。
第十六方面,提供一种用于光通信的接收方法,包括:接收包含多个子帧的超帧,所述子帧包括训练符号和导频符号;在每个子帧中,在一个偏振方向上,所述导频符号有N PS个,取值为-A 2-A 2j、-A 2+A 2j、A 2-A 2j、A 2+A 2j中的一种,其中A 2为实数,N PS为偶数;N PS个所述导频符号达到直流平衡;所述训练符号与N PS个所述导频符号的组合达到直流平衡;所述导频符号是目标多项式和种子确定生成的,所述目标多项式为本原多项式,且其非零项不大于5;所述目标多项式为下表中的一个;
序号 目标多项式
1 x 10+x 9+x 7+x 6+1
2 x 10+x 9+x 7+x 3+1
3 x 10+x 8+x 4+x 3+1
4 x 10+x 7+x 6+x 2+1
5 x 10+x 9+x 6+x+1
6 x 10+x 9+x 4+x+1
7 x 10+x 7+x 3+x+1
8 x 10+x 4+x 3+x+1
对接收到的所述超帧进行解码。
上述第十五方面或第十六方面中,导频符号是根据目标多项式和对应的种子生成的,该目标多项式是上述表中的任意一项,该目标多项式和所对应的种子可以满足N PS个导频符号达到直流平衡,训练符号与N PS个导频符号的组合达到直流平衡,这样有利于接收端较好的恢复信号,提高接收端信号的质量。
结合上述第十五方面或第十六方面,在一种可能的实现方式中,在一个偏振方向上,所述超帧中总符号数量N F=175104,子帧数量N SF=24,每个子帧中的符号数量N S=7296,N PS=114,帧同步符号的数量N FAW与保留符号的数量N RES之和N FAW+N RES=96,所述超帧成帧前的符号数量为172032;
生成所述导频符号的所述目标多项式与两个偏振方向上的用十六进制表示的种子为下表中的一行时,同一偏振方向上的导频符号的周期自相关函数旁瓣值的归一化幅度不大于0.25,不同偏振方向上的导频符号的周期互相关函数值的归一化幅度不大于0.25,
序号 目标多项式 偏振一方向的种子 偏振二方向的种子
1 x 10+x 9+x 7+x 6+1 0x002 0x3C6
2 x 10+x 9+x 7+x 6+1 0x002 0x38D
3 x 10+x 9+x 7+x 3+1 0x094 0x11F
4 x 10+x 9+x 7+x 3+1 0x129 0x11F
5 x 10+x 8+x 4+x 3+1 0x07A 0x167
6 x 10+x 8+x 4+x 3+1 0x07A 0x2CF
7 x 10+x 7+x 6+x 2+1 0x1B8 0x22F
8 x 10+x 7+x 6+x 2+1 0x1B8 0x05F
9 x 10+x 9+x 6+x+1 0x040 0x210
10 x 10+x 9+x 6+x+1 0x040 0x308
11 x 10+x 9+x 6+x+1 0x040 0x184
12 x 10+x 9+x 6+x+1 0x040 0x0C2
13 x 10+x 9+x 6+x+1 0x040 0x0E1
14 x 10+x 9+x 6+x+1 0x040 0x0D7
15 x 10+x 9+x 6+x+1 0x040 0x1AF
16 x 10+x 9+x 6+x+1 0x210 0x201
17 x 10+x 9+x 6+x+1 0x308 0x201
18 x 10+x 9+x 6+x+1 0x184 0x201
19 x 10+x 9+x 6+x+1 0x0C2 0x201
20 x 10+x 9+x 6+x+1 0x201 0x0E1
21 x 10+x 9+x 6+x+1 0x201 0x0D7
22 x 10+x 9+x 6+x+1 0x201 0x1AF
23 x 10+x 9+x 4+x+1 0x1A0 0x2D9
24 x 10+x 9+x 4+x+1 0x1A0 0x3DB
25 x 10+x 9+x 4+x+1 0x0D0 0x2D9
26 x 10+x 9+x 4+x+1 0x0D0 0x3DB
27 x 10+x 9+x 4+x+1 0x058 0x2D9
28 x 10+x 9+x 4+x+1 0x058 0x3DB
29 x 10+x 9+x 4+x+1 0x22C 0x2D9
30 x 10+x 9+x 4+x+1 0x22C 0x3DB
31 x 10+x 9+x 4+x+1 0x2D2 0x2D9
32 x 10+x 9+x 4+x+1 0x2D2 0x3DB
33 x 10+x 9+x 4+x+1 0x2D9 0x1A5
34 x 10+x 9+x 4+x+1 0x2D9 0x3DD
35 x 10+x 9+x 4+x+1 0x1A5 0x3DB
36 x 10+x 9+x 4+x+1 0x3DD 0x3DB
37 x 10+x 7+x 3+x+1 0x084 0x1A7
38 x 10+x 7+x 3+x+1 0x109 0x1A7
39 x 10+x 4+x 3+x+1 0x365 0x3EB
40 x 10+x 4+x 3+x+1 0x2CB 0x3EB
结合上述第十五方面或第十六方面或其中任一中可能的实现方式,在另一种可能的实 现方式中,当所述目标多项式为x 10+x 9+x 7+x 6+1,对应的两个偏振方向上的用十六进制表示的种子为0x002和0x3C6时,所述两个偏振方向上各自的114个导频符号分别为下表所示:
Figure PCTCN2022087770-appb-000042
Figure PCTCN2022087770-appb-000043
结合上述第十五方面或第十六方面或其中任一中可能的实现方式,在另一种可能的实现方式中,在每个子帧中,在一个偏振方向上,当所述导频符号的数量除以4的余数为0时,在每个子帧包括的所述导频符号中,-A 2-A 2j的数量等于A 2+A 2j的数量,-A 2+A 2j的数量等于A 2-A 2j的数量,且-A 2-A 2j的数量和的数量相差为2;或,-A 2-A 2j、-A 2+A 2j、A 2-A 2j、A 2+A 2j的数量相等。
当所述导频符号的数量除以4的余数为2时,在每个子帧包括的所述导频符号中,-A 2-A 2j的数量等于A 2+A 2j的数量,-A 2+A 2j的数量等于A 2-A 2j的数量,且-A 2-A 2j的数量和的数量相差为1。
第十七方面,提供一种用于光通信的传输设备,传输设备包括处理器和存储器,存储器用于存储指令,处理器用于执行指令,使得传输设备执行如第十五方面中以及第十五方面中任一种可能的实现方式的方法。
第十八方面,提供一种用于光通信的接收设备,传输设备包括处理器和存储器,存储器用于存储指令,处理器用于执行指令,使得接收设备执行如第十六方面中以及第十六方面中任一种可能的实现方式的方法。
第十九方面,提供一种用于光通信的系统,系统包括如第十七方面的传输设备,以及如第十八方面的接收设备。
应理解,处理器可以是中央处理单元(Central Processing Unit,简称为“CPU”),还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等,本申请不做限定。
第二十方面,提供一种计算机可读存储介质,计算机可读存储介质存储指令,当指令在终端设备上运行时,使得终端设备执行如第十五方面或第十五方面任一种可能的实现方式的方法;或使得终端设备执行如第十六方面或第十六方面中任一种可能的实现方式的方法。
第二十一方面,提供一种包含指令的计算机程序产品,当在终端设备上运行时,使得终端设备执行如第十五方面或第十五方面任一种可能的实现方式的方法;或使得终端设备执行如第十六方面或第十六方面中任一种可能的实现方式的方法。应理解,终端设备可以为芯片、处理器等等,本申请并不做限定。
在本申请上述实施例中,每个偏振方向上,表示训练符号和导频符号的-A-Aj、-A+Aj、A-Aj、A+Aj彼此之间的数目相差不大于1,有效保证了符号间的均衡。此外,在每个偏振方向上,一个子帧中与训练符号和导频符号对应的复数的实部之和为0,虚部之和也为0,可以达到直流平衡,利于接收端恢复信号的质量。
附图说明
图1为通信系统的结构框图;
图2为一种成帧过程示意图;
图3为另一种成帧过程示意图;
图4为本申请提供的用于光通信的传输方法流程图;
图5A为DP-16QAM下训练符号或导频符号在星座图中的一位置示意图图;
图5B为DP-16QAM下训练符号或导频符号在星座图中的另一位置示意图;
图6为本申请提供的一种超帧结构图、其中的第一类子帧结构图,以及第二类子帧的结构图;
图7为DP-QPSK符号与比特的映射关系;
图8为DP-16QAM符号与比特的映射关系;
图9为本申请实施例提供的一种具体的超帧以及其中的第一个子帧和除第一个子帧之外的其他子帧的结构图;
图10为本申请实施例提供的具体帧同步序列在X偏振方向上的非周期自相关结果图、在Y偏振方向上的非周期自相关结果图、在两个偏振方向上的非周期互相关结果图;
图11为本申请实施例提供的具体训练序列在X偏振方向上的非周期自相关结果图、在Y偏振方向上的非周期自相关结果图、在两个偏振方向上的非周期互相关结果图;
图12为本申请实施例提供的具体导频序列在X偏振方向上的周期自相关结果图、在Y偏振方向上的周期自相关结果图、在两个偏振方向上的周期互相关结果图;
图13为采用如图9所示的超帧结构,在DP-16QAM下的超帧频谱图,以及随机DP-16QAM信号的频谱图;
图14为采用如图9所示的超帧结构,在DP-QPSK下的超帧频谱图,以及随机DP-QPSK信号的频谱图;
图15为本申请又一实施例提供的一种具体的超帧结构图,具体超帧中第一个子帧的结构图,以及除第一个子帧外的其他子帧的结构图;
图16为本申请又一实施例提供的具体帧同步序列在X偏振方向上的非周期自相关结果图、在Y偏振方向上的非周期自相关结果图,以及在两个偏振方向上的非周期互相关结果图;
图17为本申请又一实施例提供的具体训练序列在X偏振方向上的非周期自相关结果图、在Y偏振方向上的非周期自相关结果图,以及在两个偏振方向上的非周期互相关结果图;
图18为本申请又一实施例提供的具体导频序列在X偏振方向上的周期自相关结果图、在Y偏振方向上的周期自相关结果图,以及在两个偏振方向上的周期互相关结果图;
图19为采用如图15所示的超帧结构,在DP-16QAM下的超帧频谱图;
图20为本申请又一实施例提供的一种具体的超帧结构图、具体超帧中第一个子帧的结构图,以及具体超帧中除第一个子帧外的其他子帧的结构图;
图21为本申请又一实施例提供的具体训练序列在X偏振方向上的非周期自相关结果图、在Y偏振方向上的非周期自相关结果图,以及在两个偏振方向上的非周期互相关结果图;
图22为本申请又一实施例提供的具体导频序列在X偏振方向上的周期自相关结果图、在Y偏振方向上的周期自相关结果图,以及在两个偏振方向上的周期互相关结果图;
图23为采用如图20所示的超帧结构,在DP-16QAM下的超帧频谱图;
图24为本申请又一实施例提供的一种具体的超帧结构图、具体超帧中第一个子帧的结构图,以及具体超帧中除第一个子帧外的其他子帧的结构图;
图25为采用如图24所示的超帧结构,在DP-16QAM下的超帧频谱图;
图26为本申请又一实施例提供的一种具体的超帧结构图、具体超帧中第一个子帧的结构图,以及具体超帧中除第一个子帧外的其他子帧的结构图;
图27为本申请又一实施例提供的具体训练序列在X偏振方向上的非周期自相关结果图、在Y偏振方向上的非周期自相关结果图,以及在两个偏振方向上的非周期互相关结果图;
图28为本申请又一实施例提供的具体导频序列在X偏振方向上的周期自相关结果图、在Y偏振方向上的周期自相关结果图,以及在两个偏振方向上的周期互相关结果图;
图29为采用如图26所示的超帧结构,在DP-16QAM下的超帧频谱图;
图30为本申请又一实施例提供的一种具体的超帧结构图、具体超帧中第一个子帧的结构图,以及具体超帧中除第一个子帧外的其他子帧的结构图;
图31为采用如图30所示的超帧结构,在DP-16QAM下的超帧频谱图;
图32为本申请实施例提供的用于光通信的传输方法流程图;
图33为本申请实施例提供的具体的超帧以及其中的第一个子帧和除第一个子帧之外的其他子帧的结构图;
图34为本申请实施例提供的一导频符号生成结构示意图;
图35为本申请实施例提供的另一导频符号生成结构示意图;
图36为本申请实施例提供的具体导频符号的序列在X偏振方向上的周期自相关结果图、在Y偏振方向上的周期自相关结果图,以及在两个偏振方向上的周期互相关结果图;
图37为本申请实施例提供的另一导频符号生成结构示意图;
图38为本申请实施例提供的具体导频符号的序列在X偏振方向上的周期自相关结果图、在Y偏振方向上的周期自相关结果图,以及在两个偏振方向上的周期互相关结果图;
图39为本申请实施例提供的具体的超帧以及其中的第一个子帧和除第一个子帧之外的其他子帧的结构图;
图40为本申请实施例提供的另一导频符号生成结构示意图;
图41为本申请实施例提供的具体导频符号的序列在X偏振方向上的周期自相关结果图、在Y偏振方向上的周期自相关结果图,以及在两个偏振方向上的周期互相关结果图;
图42为本申请实施例提供的用于光通信的另一传输方法流程图;
图43为本申请实施例提供的另一导频符号生成结构示意图;
图44为本申请实施例提供的具体导频符号的序列在X偏振方向上的周期自相关结果图、在Y偏振方向上的周期自相关结果图,以及在两个偏振方向上的周期互相关结果图.。
具体实施方式
在对本申请实施例进行详细地解释说明之前,先对本申请实施例的应用场景予以说明。图1示出通信系统的结构框图,在发送端,信源提供待发送的数据流;编码器接收该数据流,并对其进行编码,编码获得校验比特和信息比特合并的码字信息送入发端信号处理器进行成帧,经过信道传输,到达接收端;接收端接收到因为信道中的噪声或者其他损伤产生的失真信号后,送到收端信号处理器进行色散补偿、同步、相位恢复等操作,然后通过 译码器进行译码,恢复出原有数据,发给信宿。其中,本申请提供的编码方法应用于图1所示的发端信号处理器中,是通信系统中非常重要的一环。
在发端信号处理器中,成帧过程可以如图2或图3所示。在一种成帧方式中,如图2所示,将接收的数据序列进行符号映射,包括但不限于正交相移键控(Quadrature Phase Shift Keying,QPSK)和正交振幅调制(Quadrature Amplitude Modulation,QAM),然后进行偏振符号划分得到双偏振(Dual-polarization,DP)符号,例如,DP-QPSK,DP-8QAM,DP-16QAM,DP-32QAM和DP-64QAM等;将一定数量的双偏振符号进行如下成帧处理:在X和Y偏振方向上分别插入帧同步符号,训练符号,保留符号和导频符号,得到待发送的双偏振符号序列,称为超帧(super-frame)。需要说明的是,在符号映射之后,还可以对符号进行交织,将交织后的符号进行上述成帧处理。在本申请中,一个双偏振符号,可以由两个符号表示,其中一个符号位于X偏振方向上,另一个符号位于Y偏振方向上,每一个符号可以由一个复数表示,例如,采用16QAM调制得到的符号,可以由下面16个复数中的任意一个表示,±1±1j,±1±3j,±3±1j以及±3±3j;应理解,有一些情况下,会对实部和虚部进行归一化,但本质并没有改变。进一步地,一个具有N个双偏振符号的序列,其可完全由两个长度为N的复数序列表示,其中一个复数序列代表X偏振上的符号,另一个复数序列代表Y偏振上的符号。每个长度为N的复数序列由长度为N的实部序列和长度为N的虚部序列表示,N为大于1的整数。
通常情况下,接收的数据序列为通过前向纠错码(Forward Error Correction,FEC)得到的信息和校验序列。图2所示的成帧操作是在符号上进行操作,还可按如图3所示,对接收的数据序列,根据所采用的符号映射规则,在符号映射前插入帧同步符号、训练符号、保留符号和导频符号所对应的比特,再经过符号映射并进行偏振符号划分可得到跟图2操作相同的超帧。此时,在符号映射之前,还可以对插入上述符号对应的比特之后的比特序列进行交织,再通过符号映射以及偏振符号划分来得到跟图2操作相同的超帧。应理解,不排除还有其他成帧方式,本申请不再赘述。
本申请实施例提供一种用于光通信的传输方法,如图4所示,该传输方法包括:
401、生成包含多个子帧的超帧,一个子帧包括训练符号和导频符号,每个训练符号和每个导频符号分别为-A-Aj、-A+Aj、A-Aj、A+Aj中的一种;在每个子帧包括的训练符号和导频符号中,-A-Aj、-A+Aj、A-Aj和A+Aj在一个偏振方向上的数目分别为
Figure PCTCN2022087770-appb-000044
Figure PCTCN2022087770-appb-000045
且在另一个偏振方向上的数目分别为
Figure PCTCN2022087770-appb-000046
Figure PCTCN2022087770-appb-000047
其中,N TS为每个子帧中训练符号在一个偏振方向上的数量,N PS为每个子帧中导频符号在一个偏振方向上的数量,N TS+N PS为奇数,这里
Figure PCTCN2022087770-appb-000048
表示对正实数a进行向下取整。
402、将超帧发送出去。
在本申请实施例中,A的取值是由生成符号时采用的调制格式决定的。在一些实际应用场景中,-A-Aj、-A+Aj、A-Aj和A+Aj为所用的调制格式的星座图上的符号。例如,采用QPSK,只有四个符号,此时A=±1,每个训练符号可以由-1-1j,-1+1j,1-1j和1+1j中的一个表示,在一个子帧中,四种复数表示的训练符号都会存在,导频符号也一样;而采用 16QAM,有16个符号,A=±1或±3,通常情况下,训练符号和导频符号均为星座图上最外面的4个符号,如图5A中的空心符号所示,此时A=3或-3时,每个训练符号可以由-3-3j,-3+3j,3-3j和3+3j中的一个表示,在一个子帧中,这四种复数表示的训练符号也都会存在,导频符号也一样。同理,采用64QAM,则A=±1或±3或±5或±7,通常情况下,表示训练符号和导频符号的复数中,A=±5或±7,假设A=5或-5时,每个训练符号可以由-5-5j,-5+5j,5-5j和5+5j中的一个表示,在一个子帧中,这四种复数表示的训练符号都会存在,同理,导频符号满足一样条件。还可以采用更高阶的调制格式,本申请不再赘述。在实际传输过程中,可以使得符号错误的概率较低,便于信道估计。
需要说明的是,也有可能对星座图上的符号进行压缩,相应的,A的值也会被相应压缩,以16QAM为例,对16QAM星座图上的16个符号进行功率归一化,此时,取值变为
Figure PCTCN2022087770-appb-000049
A的值为
Figure PCTCN2022087770-appb-000050
Figure PCTCN2022087770-appb-000051
也有可能采用其他方式的归一化,本申请不做限定。
应理解,当导频符号和训练符号-A-Aj、-A+Aj、A-Aj、A+Aj采用星座图最外面4个符号时,训练和导频符号的灵敏度(sensitivity)较高,但峰均功率比(peak to average power)较大;当导频符号和训练符号取值-A-Aj、-A+Aj、A-Aj、A+Aj采用星座图最里面4个符号时,训练和导频的噪声(noise)较小,但其灵敏度(sensitivity)较低。
需要说明的是,在一些实际应用场景中,导频符号和训练符号-A-Aj、-A+Aj、A-Aj、A+Aj也可以不为所用的调制格式的星座图上的符号,其可以是星座图最外面4个符号和最里面4个符号中间区域的某4个符号。此时,训练和导频符号噪声和灵敏度一般,但峰均功率比相对较低。以16QAM为例,16QAM星座图上的16个符号取值为{±1±1j,±1±3j,±3±1j,±3±3j},实数A的取值满足1≤A≤3。更具体地,如图5B所示,星座图最外面4个符号是3+3j,3-3j,-3+3j,-3-3j,星座图最里面4个符号是1+1j,1-1j,-1+1j,-1-1j。导频符号和训练符号取值-A-Aj、-A+Aj、A-Aj、A+Aj可以是在16QAM星座图最外面4个符号和最里面4个符号中间区域的某4个符号。实数A的具体取值可根据实际应用场景选取使得训练和导频的峰均功率比、噪声和灵敏度具备很好的折中。例如实数
Figure PCTCN2022087770-appb-000052
导频符号和训练符号的取值为
Figure PCTCN2022087770-appb-000053
另外,当16QAM星座图上的16个符号进行功率归一化且取值为
Figure PCTCN2022087770-appb-000054
Figure PCTCN2022087770-appb-000055
实数A的取值满足
Figure PCTCN2022087770-appb-000056
例如实数
Figure PCTCN2022087770-appb-000057
导频符号和训练符号的取值为
Figure PCTCN2022087770-appb-000058
此外,两个偏振方向相互正交,即当其中一个偏振方向为X偏振时,另一个偏振方向为Y偏振;当其中一个偏振方向为Y偏振时,另一个偏振方向为X偏振。在本申请实施例 中,一个偏振方向上,一个子帧包括的训练符号和导频符号的数量之和为N TS+N PS-1,其不小于5;之所以不是N TS+N PS,原因是有一个符号既为训练符号,也为导频符号,所以数量之和比两种符号的个数相加要少一个。
在一个子帧中,在一个偏振方向上的训练符号组成的序列与在另一个偏振方向上的训练符号组成的序列互不相同,在一个偏振方向上的导频符号组成的序列与在另一个偏振方向上的导频符号组成的序列互不相同。例如,在其中一个偏振方向上的训练符号构成的序列为-A-Aj、-A-Aj、A+Aj、A-Aj,则按照同样顺序,在另一个偏振方向上的训练符号构成的序列不能与其相同,可以为-A-Aj、-A-Aj、A+Aj、A+Aj,有一个不同,避免实际传输中,接收端无法区分两个偏振方向的问题。
在本申请实施例的方案中,每个偏振方向上,一个子帧总共包括N TS+N PS-1个训练符号和导频符号,即表示训练符号和导频符号的-A-Aj、-A+Aj、A-Aj、A+Aj的总数为N TS+N PS-1,四个符号彼此之间的数目相差不大于1;而且,在一个子帧中,表示训练符号和导频符号的四个复数(-A-Aj、-A+Aj、A-Aj、A+Aj)在两个偏振方向上的数目是相同的,数目均为(N TS+N PS-1)/2;有效保证了符号的数目平衡。此外,在每个偏振方向上,一个子帧中与训练符号和导频符号对应的复数的实部之和为0,虚部之和也为0,可以达到直流平衡,利于接收端恢复信号的质量。
本申请的超帧(superframe),也可被称为多帧(multiframe),包括多个子帧,其结构如图6中的(a)所示,每个子帧包括的符号数相同(N S个符号),子帧主要包括两类,一类子帧包括帧同步符号,通常情况下为超帧中的第一个子帧,也不排除位于超帧中的其他位置,其他子帧为第二类;其中,第一类子帧的结构如图6中的(b)所示,子帧中前N TS个符号为训练符号,可用于链路训练和/或子帧同步;通常情况下,子帧的第一个符号既为训练符号,也为导频符号,当然,也可能是前N TS个符号中的任一个既为训练符号,也为导频符号,本申请不做限定;此外,在第一类子帧中,每64个符号或48个符号中的固定位置的符号为导频符号,用于载波相位恢复,图6中的(b)以每64个符号中的第一个符号为导频符号为例,给出了第一类子帧的帧结构图。导频信号之后为多个帧同步符号,用于超帧之间的同步,该帧同步符号可以与训练符号一起,用于超帧之间的同步,也可以与导频符号,实现相同功能;应理解,帧同步符号是连续排列的,可以紧挨着训练信号,图6中的(b)所示的就是这种情况,帧同步信号也可以与训练信号之间存在一个或多个符号间隔;此外,在多个帧同步符号之后,通常为多个保留符号,可以预留出来以供未来其他用途,保留符号也可位于多个第二类子帧中的一个里面,本申请均不做限定。剩余的符号为包含了信息和校验的成帧前符号,其中,导频符号与保留符号,以及导频符号与成帧前符号都不存在重叠,例如,不存在既为导频符号,又为成帧前符号的符号。
第二类子帧的帧结构如图6中的(c)所示,子帧中前N TS个符号也为训练符号,通常情况下,子帧的第一个符号既为训练符号,也为导频符号,当然,也可能是前N TS个符号中的任一个既为训练符号,也为导频符号,本申请不做限定。与第一类子帧类似,每64个符号或48个符号中的固定位置的符号也为导频符号,用于载波相位恢复,图6中的(c)以每64个符号中的第一个符号为导频符号为例,给出了第二类子帧的帧结构图,除训练符号和导频符号之外,通常情况下,其余的符号为包含信息和校验的成帧前符号,其中,导 频符号与成帧前符号不存在重叠。
进一步地,本申请还针对几种不同的情况,给出了每个符号可能的具体个数,几种情况举例如下:
(1)成帧前符号的个数N CW=175616,例如是采用阶梯(staircase)码与汉明码级联的CFEC编码方式,也可以采用其他编码方式;每64个符号中的第一个符号为导频符号,此时,子帧的个数N SF、每个子帧中训练符号的个数N TS、导频符号的个数N PS、每个子帧中的符号个数N S、超帧的符号个数N F、超帧冗余OH、帧同步符号的个数N FAW与保留符号的个数N RES之和等参数为如表1中的一项,其中,N FAW为偶数,对应的N RES>0,OH=(N F-N CW)/N CW
除OH外,其他的参数均为符号个数,可以理解成是双偏振符号的个数,也可以理解成在一个偏振方向上的符号个数;而且,在两个偏振方向上的各个不同符号的个数是相同的,比如,在其中一个偏振方向上有10个训练符号,在另一个偏振方向上也同样有10个训练符号,整体来看,就是有10个双偏振训练符号。后续的表格均可如此理解,本申请不再赘述。
序号 N SF N PS N S N F OH N TS N FAW+N RES
1 88 32 2048 180224 2.62% 19 208
2 85 33 2112 179520 2.22% 12 164
3 80 35 2240 179200 2.04% 10 64
4 78 36 2304 179712 2.33% 15 196
5 74 38 2432 179968 2.48% 19 208
6 72 39 2496 179712 2.33% 16 208
7 72 39 2496 179712 2.33% 18 64
8 70 40 2560 179200 2.04% 11 84
9 70 40 2560 179200 2.04% 9 224
10 65 43 2752 178880 1.86% 6 144
11 61 46 2944 179584 2.26% 19 64
12 61 46 2944 179584 2.26% 17 186
13 57 49 3136 178752 1.79% 6 58
14 56 50 3200 179200 2.04% 13 112
15 56 50 3200 179200 2.04% 11 224
16 55 51 3264 179520 2.22% 18 164
17 50 56 3584 179200 2.04% 15 84
18 50 56 3584 179200 2.04% 13 184
19 49 57 3648 178752 1.79% 6 98
20 43 65 4160 178880 1.86% 10 82
21 40 70 4480 179200 2.04% 19 64
22 40 70 4480 179200 2.04% 17 144
23 40 70 4480 179200 2.04% 15 224
24 35 80 5120 179200 2.04% 19 154
25 35 80 5120 179200 2.04% 17 224
表1
(2)成帧前符号的个数N CW=172032,例如是采用开放码(Open FEC,OFEC)编码方式,也可以采用其他编码方式;每64个符号中的第一个符号为导频符号,此时,子帧的个数N SF、每个子帧中训练符号的个数N TS、导频符号的个数N PS、每个子帧中的符号个数N S、超帧的符号个数N F、超帧冗余OH、帧同步符号的个数N FAW与保留符号的个数N RES之和等参数为如表2中的一项,其中,N FAW为偶数,对应的N RES>0,OH=(N F-N CW)/N CW
序号 N SF N PS N S N F OH N TS N FAW+N RES
1 83 33 2112 175296 1.90% 6 110
2 74 37 2368 175232 1.86% 6 92
3 67 41 2624 175808 2.19% 14 158
4 61 45 2880 175680 2.12% 14 110
5 56 49 3136 175616 2.08% 14 112
6 56 49 3136 175616 2.08% 12 224
7 49 56 3584 175616 2.08% 17 56
8 49 56 3584 175616 2.08% 15 154
9 48 57 3648 175104 1.79% 6 96
10 45 61 3904 175680 2.12% 18 138
11 38 72 4608 175104 1.79% 7 108
12 37 74 4736 175232 1.86% 11 92
13 37 74 4736 175232 1.86% 9 166
14 36 76 4864 175104 1.79% 9 48
15 33 83 5312 175296 1.90% 14 96
16 33 83 5312 175296 1.90% 12 162
17 24 114 7296 175104 1.79% 13 48
18 24 114 7296 175104 1.79% 11 96
19 24 114 7296 175104 1.79% 9 144
20 24 114 7296 175104 1.79% 7 192
21 23 119 7616 175168 1.82% 16 54
22 23 119 7616 175168 1.82% 14 100
23 23 119 7616 175168 1.82% 12 146
24 23 119 7616 175168 1.82% 10 192
表2
(3)成帧前符号的个数N CW=175616,例如,采用CFEC编码方式,每48个符号中的第一个符号为导频符号,此时,子帧的个数N SF、每个子帧中训练符号的个数N TS、导频符号的个数N PS、每个子帧中的符号个数N S、超帧的符号个数N F、超帧冗余OH、帧同步符号的个数N FAW与保留符号的个数N RES之和等参数为如表3中的一项,其中,N FAW为偶数,对应的N RES>0,OH=(N F-N CW)/N CW
序号 N SF N PS N S N F OH N TS N FAW+N RES
1 121 31 1488 180048 2.52% 6 76
2 114 33 1584 180576 2.82% 10 172
3 99 38 1824 180576 2.82% 11 208
4 94 40 1920 180480 2.77% 11 164
5 80 47 2256 180480 2.77% 14 64
6 80 47 2256 180480 2.77% 12 224
7 75 50 2400 180000 2.50% 7 184
8 75 50 2400 180000 2.50% 9 34
9 71 53 2544 180624 2.85% 18 38
10 71 53 2544 180624 2.85% 16 180
11 67 56 2688 180096 2.55% 9 192
12 67 56 2688 180096 2.55% 11 58
13 66 57 2736 180576 2.82% 16 208
14 66 57 2736 180576 2.82% 18 76
15 57 66 3168 180576 2.82% 19 172
16 56 67 3216 180096 2.55% 10 224
17 56 67 3216 180096 2.55% 12 112
18 52 72 3456 179712 2.33% 7 40
19 50 75 3600 180000 2.50% 12 84
20 50 75 3600 180000 2.50% 10 184
21 48 78 3744 179712 2.33% 7 64
22 39 96 4608 179712 2.33% 9 40
23 39 96 4608 179712 2.33% 7 118
24 36 104 4992 179712 2.33% 9 64
25 36 104 4992 179712 2.33% 7 136
26 35 107 5136 179760 2.36% 10 84
27 35 107 5136 179760 2.36% 8 154
28 35 107 5136 179760 2.36% 6 224
29 32 117 5616 179712 2.33% 10 64
30 32 117 5616 179712 2.33% 8 128
31 32 117 5616 179712 2.33% 6 192
32 31 121 5808 180048 2.52% 20 92
33 31 121 5808 180048 2.52% 18 154
34 31 121 5808 180048 2.52% 16 216
35 30 125 6000 180000 2.50% 20 64
36 30 125 6000 180000 2.50% 18 124
37 30 125 6000 180000 2.50% 16 184
表3
(4)成帧前符号的个数N CW=172032,例如,采用OFEC编码方式,每48个符号中的 第一个符号为导频符号,此时,子帧的个数N SF、每个子帧中训练符号的个数N TS、导频符号的个数N PS、每个子帧中的符号个数N S、超帧的符号个数N F、超帧冗余OH、帧同步符号的个数N FAW与保留符号的个数N RES之和等参数为如表4中的一项,其中,N FAW为偶数,对应的N RES>0,OH=(N F-N CW)/N CW
序号 N SF N PS N S N F OH N TS N FAW+N RES
1 119 31 1488 177072 2.93% 12 42
2 105 35 1680 176400 2.54% 6 168
3 97 38 1824 176928 2.85% 13 46
4 92 40 1920 176640 2.68% 9 192
5 90 41 1968 177120 2.96% 16 48
6 82 45 2160 177120 2.96% 16 168
7 80 46 2208 176640 2.68% 11 128
8 75 49 2352 176400 2.54% 8 168
9 72 51 2448 176256 2.46% 8 48
10 72 51 2448 176256 2.46% 6 192
11 68 54 2592 176256 2.46% 7 144
12 67 55 2640 176880 2.82% 16 158
13 55 67 3216 176880 2.82% 20 118
14 54 68 3264 176256 2.46% 9 120
15 51 72 3456 176256 2.46% 11 42
16 51 72 3456 176256 2.46% 9 144
17 49 75 3600 176400 2.54% 14 56
18 49 75 3600 176400 2.54% 12 154
19 46 80 3840 176640 2.68% 19 100
20 46 80 3840 176640 2.68% 17 192
21 40 92 4416 176640 2.68% 19 208
22 39 94 4512 175968 2.29% 7 36
23 36 102 4896 176256 2.46% 15 48
24 36 102 4896 176256 2.46% 13 120
25 36 102 4896 176256 2.46% 11 192
26 35 105 5040 176400 2.54% 18 98
27 35 105 5040 176400 2.54% 16 168
28 34 108 5184 176256 2.46% 15 76
29 34 108 5184 176256 2.46% 13 144
30 34 108 5184 176256 2.46% 11 212
表4
可选地,训练符号在子帧中是连续排列的,在一个偏振方向上,一个子帧包括的训练符号中,实部元素连续“-A”或“A”的个数不大于M0,虚部元素连续“-A”或“A”的个数不大于M0。此外,一个子帧中连续相同的训练符号的个数不超过M1个,其中,M0和M1均为正整数,且2≤M1≤M0≤5,此种条件下得出的训练序列,有利于时钟恢复,从而有助于提高收端恢复的信号质量。
进一步地,在一个偏振方向上,一个子帧包括的训练符号中,实部元素连续“-A”或“A”的个数不大于5,虚部元素连续“-A”或“A”的个数不大于5。以一个偏振方向上的六个训练符号为例,序列-A-Aj、-A-Aj、-A-Aj、-A-Aj、-A-Aj和A+Aj中,实部元素存在连续5个-A,符合本实施例要求;而如果序列为-A-Aj、-A-Aj、-A-Aj、-A-Aj、-A-Aj和-A+Aj,此时实部元素存在连续6个-A,则不满足本实施例要求。进一步地,在一个偏振方向上,一个子帧中连续相同的训练符号的个数不超过4个,此时,原先满足要求的序列-A-Aj、-A-Aj、-A-Aj、-A-Aj、-A-Aj和A+Aj,由于存在连续5个-A-Aj,变得不满足本实施例要求。
可选地,当N TS为偶数时,即每个子帧中,在一个偏振方向上有偶数个训练符号,此时,在每个子帧包括的训练符号中,-A-Aj、-A+Aj、A-Aj和A+Aj在一个偏振方向上的数目分别为
Figure PCTCN2022087770-appb-000059
且在另一个偏振方向上的数目分别为
Figure PCTCN2022087770-appb-000060
由于N TS+N PS为奇数,且N TS为偶数,那么N PS必定为奇数,即每个子帧中,在一个偏振方向上有奇数个导频符号,此时,在每个子帧包括的导频符号中,除去同时作为训练符号的那个导频符号,-A-Aj、-A+Aj、A-Aj和A+Aj也可以满足如下条件:在一个偏振方向上的数目分别为
Figure PCTCN2022087770-appb-000061
Figure PCTCN2022087770-appb-000062
且在另一个偏振方向上的数目分别为
Figure PCTCN2022087770-appb-000063
而当N TS为奇数时,即每个子帧中,在一个偏振方向上有奇数个训练符号,此时,在每个子帧包括的训练符号中,除去同时作为导频符号的那个训练符号,-A-Aj、-A+Aj、A-Aj和A+Aj在一个偏振方向上的数目分别为
Figure PCTCN2022087770-appb-000064
Figure PCTCN2022087770-appb-000065
在另一个偏振方向上的数目分别为
Figure PCTCN2022087770-appb-000066
Figure PCTCN2022087770-appb-000067
由于N TS+N PS为奇数,且N TS为奇数,那么N PS必定为偶数,即每个子帧中,在一个偏振方向上有偶数个导频符号,此时,在每个子帧包括的导频符号中,-A-Aj、-A+Aj、A-Aj和A+Aj也可以满足如下条件:在一个偏振方向 上的数目分别为
Figure PCTCN2022087770-appb-000068
且在另一个偏振方向上的数目分别为
Figure PCTCN2022087770-appb-000069
在上述实施例的方案中,每个偏振方向上,一个子帧中包括的训练符号-A-Aj、-A+Aj、A-Aj、A+Aj彼此之间的数目接近;而且,当N TS为偶数时,在一个子帧中,表示训练符号的四个不同的符号(复数形式)在两个偏振方向上的数目是相同的,四个符号的数目均为N TS/2,训练符号对应的复数的实部之和为0,虚部之和也为0;当N TS为奇数时,在一个子帧中,除去同时作为导频符号的那个训练符号,表示训练符号的四个不同的符号(复数形式)在两个偏振方向上的数目是相同的,四个符号的数目均为(N TS-1)/2,N TS-1个训练符号对应的复数的实部之和为0,虚部之和也为0;有效保证了符号数目的平衡,且可以达到直流平衡,利于接收端恢复信号的质量。应理解,导频符号构成的导频序列,也有类似效果。
可选地,在每个子帧中,当一个偏振方向上的导频符号的个数N PS除以4的余数为0时,在每个子帧包括的导频符号中,-A-Aj、-A+Aj、A-Aj和A+Aj在一个偏振方向上的数目分别为N PS/4+1、N PS/4-1、N PS/4-1、N PS/4+1,且在另一个偏振方向上的数目分别为N PS/4-1、N PS/4+1、N PS/4+1、N PS/4-1;或,在两个偏振方向上的数目均为N PS/4。当N PS除以4的余数为2时,在每个子帧包括的导频符号中,-A-Aj、-A+Aj、A-Aj、A+Aj在一个偏振方向上的数目分别为(N PS-2)/4、(N PS-2)/4+1、(N PS-2)/4+1、(N PS-2)/4,且在另一个偏振方向上的数目分别为(N PS-2)/4+1、(N PS-2)/4、(N PS-2)/4、(N PS-2)/4+1。当N PS除以4的余数为1时,在每个子帧包括的导频符号中,除去同时作为训练符号的那个导频符号,-A-Aj、-A+Aj、A-Aj、A+Aj在一个偏振方向上的数目分别为(N PS-1)/4+1、(N PS-1)/4-1、(N PS-1)/4-1、(N PS-1)/4+1,且在另一个偏振方向上的数目分别为(N PS-1)/4-1、(N PS-1)/4+1、(N PS-1)/4+1、(N PS-1)/4-1;或,在两个偏振方向上的数目均为(N PS-1)/4。当N PS除以4的余数为3时,在每个子帧包括的导频符号中,除去同时作为训练符号的那个导频符号,-A-Aj、-A+Aj、A-Aj、A+Aj在一个偏振方向上的数目分别为(N PS-3)/4、(N PS-3)/4+1、(N PS-3)/4+1、(N PS-3)/4,且在另一个偏振方向上的数目分别为(N PS-3)/4+1、(N PS-3)/4、(N PS-3)/4、(N PS-3)/4+1。
在上述实施例中,一个子帧中包括的导频符号-A-Aj、-A+Aj、A-Aj、A+Aj彼此之间的数目相差较小,有效保证了符号间的均衡。此外,在每个偏振方向上,除去同时作为训练符号的那个导频符号(如果是奇数个导频符号),其他导频符号对应的复数的实部之和为0,虚部之和也为0,可以达到直流平衡,利于接收端恢复信号的质量。
在超帧包括的多个子帧结构中,第一类子帧还包括帧同步符号,如图6中的(b)所示,多个帧同步符号在第一类子帧中是连续排列的,每个帧同步符号分别为-A-Aj、-A+Aj、A-Aj、A+Aj中的一种,其中,帧同步符号对应的A值,也是由采用的调制格式确定的,与前面实施例描述的训练符号和导频符号对应的A值取值方式一致,本申请在此不再赘述。应理解,在一些应用场景中,帧同步符号每个帧同步符号分别为-A-Aj、-A+Aj、A-Aj、A+Aj中的一种,其对应的A值可以和与前面实施例描述的训练符号和导频符号对应的A值采用不同的实数。为了描述简单,本申请以两者取值相等为例进行描述。
可选地,在一个偏振方向上,第一类子帧包括的帧同步符号中,实部元素连续“-A”或“A”的个数不大于M2,虚部元素连续“-A”或“A”的个数不大于M2。此外,第一类子帧中连续相同的帧同步符号的个数不超过M3个,其中,M2和M3均为正整数,且2≤M3≤M2≤5, 此种条件下得出的帧同步序列,有利于时钟恢复,从而有助于提高收端恢复的信号质量。
进一步地,在一个偏振方向上,第一类子帧包括的帧同步符号中,实部元素连续“-A”或“A”的个数不大于5,虚部元素连续“-A”或“A”的个数不大于5。可选地,在一个偏振方向上,第一类子帧中连续相同的帧同步符号的个数不超过4个。具体的例子,在前面实施例中训练符号的例子中描述过,本申请不再赘述。
在第一类子帧中,帧同步符号在一个偏振方向上有偶数个,且可以满足如下条件:在第一类子帧包括的帧同步符号中,-A-Aj、-A+Aj、A-Aj和A+Aj在一个偏振方向上的数目分别为
Figure PCTCN2022087770-appb-000070
且在另一个偏振方向上的数目分别为
Figure PCTCN2022087770-appb-000071
其中,N FAW为第一类子帧中的帧同步符号在一个偏振方向上的数量。该条件保证了多个帧同步符号满足直流平衡,且4个可选符号-A-Aj、-A+Aj、A-Aj、A+Aj的数目相差不大于1,利于接收端恢复信号质量。
比如,当N FAW=22时,在X偏振方向上的符号-A-Aj、-A+Aj、A-Aj、A+Aj的数目分别为5、6、6、5,且Y偏振方向上的符号-A-Aj、-A+Aj、A-Aj、A+Aj的数目分别为6、5、5、6;两个偏振方向互相垂直。当N FAW=24时,在任一偏振方向上的符号-A-Aj、-A+Aj、A-Aj、A+Aj的数目均为6;可以达到符号间平衡以及直流平衡,利于接收端恢复信号的质量。
接下来,本申请提供了一些可能的符号序列,包括第一类子帧中的帧同步符号构成的帧同步序列,每个子帧中的训练符号构成的训练序列,每个子帧中的导频符号构成的导频序列,其中,不同子帧里面的训练序列是彼此相同的,不同子帧里面的导频序列也是彼此相同的。
首先,帧同步序列可以有如下几种可能,能保证在两个偏振方向上的帧同步序列彼此之间的互相关性较好,且冗余不会太大:
(1)假设N FAW=20,帧同步序列可为表5中的任一项,应理解,一个序号对应一组两个偏振上的帧同步序列,一项表示为一个序号对应的序列;且表格中任一项的偏振一为X偏振时,偏振二为Y偏振;偏振一为Y偏振时,偏振二为X偏振;后面的训练序列和导频序列表格也是同样的表示方式,本申请不再赘述。
Figure PCTCN2022087770-appb-000072
Figure PCTCN2022087770-appb-000073
Figure PCTCN2022087770-appb-000074
Figure PCTCN2022087770-appb-000075
表5
(2)假设N FAW=22,帧同步序列可为表6中的任一项。
Figure PCTCN2022087770-appb-000076
Figure PCTCN2022087770-appb-000077
Figure PCTCN2022087770-appb-000078
Figure PCTCN2022087770-appb-000079
表6
(3)假设N FAW=24,帧同步序列可为表7中的任一项。
Figure PCTCN2022087770-appb-000080
Figure PCTCN2022087770-appb-000081
Figure PCTCN2022087770-appb-000082
Figure PCTCN2022087770-appb-000083
Figure PCTCN2022087770-appb-000084
表7
其次,导频序列可以有如下几种可能,能保证在两个偏振方向上的导频序列彼此之间的互相关性较好:
(1)假设N PS=48,若N TS除以4的余数为1,导频序列为如下表8-1中的一项,若N TS除以4的余数为3,导频序列为如下表8-1或8-2中的一项。应理解,N TS+N PS为奇数,若N PS为偶数,则N TS必须为奇数,除以4得到的余数必然为1或3;若N PS为奇数,则N TS必须为偶数,除以4得到的余数必然为0或2,后面不再赘述。
Figure PCTCN2022087770-appb-000085
Figure PCTCN2022087770-appb-000086
Figure PCTCN2022087770-appb-000087
Figure PCTCN2022087770-appb-000088
Figure PCTCN2022087770-appb-000089
表8-1
Figure PCTCN2022087770-appb-000090
Figure PCTCN2022087770-appb-000091
Figure PCTCN2022087770-appb-000092
Figure PCTCN2022087770-appb-000093
Figure PCTCN2022087770-appb-000094
Figure PCTCN2022087770-appb-000095
Figure PCTCN2022087770-appb-000096
Figure PCTCN2022087770-appb-000097
Figure PCTCN2022087770-appb-000098
Figure PCTCN2022087770-appb-000099
Figure PCTCN2022087770-appb-000100
表8-2
(2)假设N PS=56,若N TS除以4的余数为1,导频序列为如下表9-1中的一项,若N TS除以4的余数为3,导频序列为如下表9-1或9-2中的一项。
Figure PCTCN2022087770-appb-000101
Figure PCTCN2022087770-appb-000102
Figure PCTCN2022087770-appb-000103
Figure PCTCN2022087770-appb-000104
Figure PCTCN2022087770-appb-000105
Figure PCTCN2022087770-appb-000106
Figure PCTCN2022087770-appb-000107
Figure PCTCN2022087770-appb-000108
Figure PCTCN2022087770-appb-000109
表9-1
Figure PCTCN2022087770-appb-000110
Figure PCTCN2022087770-appb-000111
Figure PCTCN2022087770-appb-000112
Figure PCTCN2022087770-appb-000113
Figure PCTCN2022087770-appb-000114
表9-2
(3)假设N PS=57,若N TS除以4的余数为0,导频序列为如下表10-1中的一项,若N TS除以4的余数为2,导频序列为如下表10-1或10-2中的一项。
Figure PCTCN2022087770-appb-000115
Figure PCTCN2022087770-appb-000116
Figure PCTCN2022087770-appb-000117
Figure PCTCN2022087770-appb-000118
Figure PCTCN2022087770-appb-000119
表10-1
Figure PCTCN2022087770-appb-000120
Figure PCTCN2022087770-appb-000121
Figure PCTCN2022087770-appb-000122
Figure PCTCN2022087770-appb-000123
表10-2
(4)假设N PS=65,若N TS除以4的余数为0,导频序列为如下表11-1中的一项,若 N TS除以4的余数为2,导频序列为如下表11-1或11-2中的一项。
Figure PCTCN2022087770-appb-000124
Figure PCTCN2022087770-appb-000125
Figure PCTCN2022087770-appb-000126
Figure PCTCN2022087770-appb-000127
Figure PCTCN2022087770-appb-000128
Figure PCTCN2022087770-appb-000129
Figure PCTCN2022087770-appb-000130
Figure PCTCN2022087770-appb-000131
表11-1
Figure PCTCN2022087770-appb-000132
Figure PCTCN2022087770-appb-000133
Figure PCTCN2022087770-appb-000134
Figure PCTCN2022087770-appb-000135
Figure PCTCN2022087770-appb-000136
Figure PCTCN2022087770-appb-000137
Figure PCTCN2022087770-appb-000138
Figure PCTCN2022087770-appb-000139
表11-2
(5)假设N PS=74,导频序列为如下表12-1中的一项;或从如下表12-2中选任一项作为一个偏振上的导频序列,并从如下表12-3中选任一项作为另一个偏振上的导频序列;或从如下表12-4中选任一项作为一个偏振上的导频序列,并从如下表12-5中选任一项作为另一个偏振上的导频序列。
Figure PCTCN2022087770-appb-000140
Figure PCTCN2022087770-appb-000141
Figure PCTCN2022087770-appb-000142
Figure PCTCN2022087770-appb-000143
Figure PCTCN2022087770-appb-000144
表12-1
Figure PCTCN2022087770-appb-000145
Figure PCTCN2022087770-appb-000146
Figure PCTCN2022087770-appb-000147
表12-2
Figure PCTCN2022087770-appb-000148
Figure PCTCN2022087770-appb-000149
Figure PCTCN2022087770-appb-000150
表12-3
Figure PCTCN2022087770-appb-000151
Figure PCTCN2022087770-appb-000152
表12-4
Figure PCTCN2022087770-appb-000153
Figure PCTCN2022087770-appb-000154
Figure PCTCN2022087770-appb-000155
表12-5
(6)假设N PS=76,若N TS除以4的余数为1,导频序列为如下表13-1中的一项,若N TS除以4的余数为3,导频序列为如下表13-1或13-2中的一项。
Figure PCTCN2022087770-appb-000156
Figure PCTCN2022087770-appb-000157
Figure PCTCN2022087770-appb-000158
Figure PCTCN2022087770-appb-000159
Figure PCTCN2022087770-appb-000160
Figure PCTCN2022087770-appb-000161
Figure PCTCN2022087770-appb-000162
Figure PCTCN2022087770-appb-000163
Figure PCTCN2022087770-appb-000164
表13-1
Figure PCTCN2022087770-appb-000165
Figure PCTCN2022087770-appb-000166
Figure PCTCN2022087770-appb-000167
Figure PCTCN2022087770-appb-000168
Figure PCTCN2022087770-appb-000169
Figure PCTCN2022087770-appb-000170
Figure PCTCN2022087770-appb-000171
表13-2
(7)假设N PS=50,导频序列为如下表14中的一项。
Figure PCTCN2022087770-appb-000172
Figure PCTCN2022087770-appb-000173
Figure PCTCN2022087770-appb-000174
Figure PCTCN2022087770-appb-000175
Figure PCTCN2022087770-appb-000176
Figure PCTCN2022087770-appb-000177
表14
(8)当N PS=66时,导频序列为如下表15-1中的一项;或从如表15-2中选任一项作为一个偏振上的导频序列,并从如表15-3中选任一项作为另一个偏振上的导频序列;或从如表15-4中选任一项作为一个偏振上的导频序列,并从如下表15-5中选任一项作为另一个偏振上的导频序列。
Figure PCTCN2022087770-appb-000178
Figure PCTCN2022087770-appb-000179
表15-1
Figure PCTCN2022087770-appb-000180
Figure PCTCN2022087770-appb-000181
表15-2
Figure PCTCN2022087770-appb-000182
Figure PCTCN2022087770-appb-000183
表15-3
Figure PCTCN2022087770-appb-000184
Figure PCTCN2022087770-appb-000185
表15-4
Figure PCTCN2022087770-appb-000186
Figure PCTCN2022087770-appb-000187
表15-5
(9)当N PS=68时,若N TS除以4余数为1,导频序列为如表16-1中的一项,若N TS除以4余数为3,导频序列为如表16-1或16-2中的一项。
Figure PCTCN2022087770-appb-000188
Figure PCTCN2022087770-appb-000189
Figure PCTCN2022087770-appb-000190
Figure PCTCN2022087770-appb-000191
Figure PCTCN2022087770-appb-000192
Figure PCTCN2022087770-appb-000193
Figure PCTCN2022087770-appb-000194
Figure PCTCN2022087770-appb-000195
表16-1
Figure PCTCN2022087770-appb-000196
Figure PCTCN2022087770-appb-000197
Figure PCTCN2022087770-appb-000198
Figure PCTCN2022087770-appb-000199
Figure PCTCN2022087770-appb-000200
Figure PCTCN2022087770-appb-000201
Figure PCTCN2022087770-appb-000202
Figure PCTCN2022087770-appb-000203
表16-2
(10)当N PS=70时,导频序列为如下表17中的一项。
Figure PCTCN2022087770-appb-000204
Figure PCTCN2022087770-appb-000205
Figure PCTCN2022087770-appb-000206
Figure PCTCN2022087770-appb-000207
Figure PCTCN2022087770-appb-000208
Figure PCTCN2022087770-appb-000209
Figure PCTCN2022087770-appb-000210
表17
(11)当N PS=78时,导频序列为如表18-1中的一项;或从如表18-2中选任一项作为一个偏振上的导频序列,并从如表18-3中选任一项作为另一个偏振上的导频序列;或从如表18-4中选任一项作为一个偏振上的导频序列,并从如表18-5中选任一项作为另一个偏振上的导频序列。
Figure PCTCN2022087770-appb-000211
Figure PCTCN2022087770-appb-000212
Figure PCTCN2022087770-appb-000213
Figure PCTCN2022087770-appb-000214
Figure PCTCN2022087770-appb-000215
Figure PCTCN2022087770-appb-000216
Figure PCTCN2022087770-appb-000217
Figure PCTCN2022087770-appb-000218
Figure PCTCN2022087770-appb-000219
Figure PCTCN2022087770-appb-000220
Figure PCTCN2022087770-appb-000221
Figure PCTCN2022087770-appb-000222
Figure PCTCN2022087770-appb-000223
Figure PCTCN2022087770-appb-000224
Figure PCTCN2022087770-appb-000225
Figure PCTCN2022087770-appb-000226
表18-1
Figure PCTCN2022087770-appb-000227
Figure PCTCN2022087770-appb-000228
表18-2
Figure PCTCN2022087770-appb-000229
Figure PCTCN2022087770-appb-000230
表18-3
Figure PCTCN2022087770-appb-000231
Figure PCTCN2022087770-appb-000232
表18-4
Figure PCTCN2022087770-appb-000233
Figure PCTCN2022087770-appb-000234
表18-5
(12)当N PS=94时,导频序列为如表19中的一项。
Figure PCTCN2022087770-appb-000235
Figure PCTCN2022087770-appb-000236
Figure PCTCN2022087770-appb-000237
Figure PCTCN2022087770-appb-000238
表19
(13)当N PS=102时,导频序列为如下表20-1中的一项;或从如表20-2中选任一项作为一个偏振上的导频序列,并从如表20-3中选任一项作为另一个偏振上的导频序列;或从如表20-4中选任一项作为一个偏振上的导频序列,并从如表20-5中选任一项作为另一个偏振上的导频序列。
Figure PCTCN2022087770-appb-000239
Figure PCTCN2022087770-appb-000240
Figure PCTCN2022087770-appb-000241
Figure PCTCN2022087770-appb-000242
Figure PCTCN2022087770-appb-000243
Figure PCTCN2022087770-appb-000244
表20-1
Figure PCTCN2022087770-appb-000245
Figure PCTCN2022087770-appb-000246
表20-2
Figure PCTCN2022087770-appb-000247
Figure PCTCN2022087770-appb-000248
表20-3
Figure PCTCN2022087770-appb-000249
Figure PCTCN2022087770-appb-000250
表20-4
Figure PCTCN2022087770-appb-000251
Figure PCTCN2022087770-appb-000252
Figure PCTCN2022087770-appb-000253
表20-5
(14)当N PS=49时,若N TS除以4余数为0,导频序列为如下表21-1中的一项,若N TS除以4余数为2,导频序列为如下表21-1或21-2中的一项。
Figure PCTCN2022087770-appb-000254
Figure PCTCN2022087770-appb-000255
Figure PCTCN2022087770-appb-000256
表21-1
Figure PCTCN2022087770-appb-000257
Figure PCTCN2022087770-appb-000258
Figure PCTCN2022087770-appb-000259
Figure PCTCN2022087770-appb-000260
Figure PCTCN2022087770-appb-000261
Figure PCTCN2022087770-appb-000262
表21-2
(15)当N PS=51时,导频序列为如下表22中的一项。
Figure PCTCN2022087770-appb-000263
Figure PCTCN2022087770-appb-000264
Figure PCTCN2022087770-appb-000265
Figure PCTCN2022087770-appb-000266
Figure PCTCN2022087770-appb-000267
Figure PCTCN2022087770-appb-000268
Figure PCTCN2022087770-appb-000269
Figure PCTCN2022087770-appb-000270
Figure PCTCN2022087770-appb-000271
Figure PCTCN2022087770-appb-000272
Figure PCTCN2022087770-appb-000273
Figure PCTCN2022087770-appb-000274
Figure PCTCN2022087770-appb-000275
表22
(16)当N PS=61时,若N TS除以4余数为0,导频序列为如下表23-1中的一项,若N TS除以4余数为2,导频序列为如下表23-1或23-2中的一项。
Figure PCTCN2022087770-appb-000276
Figure PCTCN2022087770-appb-000277
Figure PCTCN2022087770-appb-000278
Figure PCTCN2022087770-appb-000279
表23-1
Figure PCTCN2022087770-appb-000280
Figure PCTCN2022087770-appb-000281
Figure PCTCN2022087770-appb-000282
表23-2
(17)当N PS=67时,导频序列为如下表24中的一项。
Figure PCTCN2022087770-appb-000283
Figure PCTCN2022087770-appb-000284
Figure PCTCN2022087770-appb-000285
Figure PCTCN2022087770-appb-000286
表24
(18)当N PS=72时,若N TS除以4余数为1,导频序列为如下表25-1中的一项;若N TS除以4余数为3,导频序列为如下表25-1或25-2中的一项;或从如下表25-3中选任一项作为一个偏振方向上的导频序列,并从如表25-4中选任一项作为另一个偏振方向上的导频序列;或从如下表25-5中选任一项作为一个偏振方向上的导频序列,并从如表25-6中选任一项作为另一个偏振方向上的导频序列。
Figure PCTCN2022087770-appb-000287
Figure PCTCN2022087770-appb-000288
Figure PCTCN2022087770-appb-000289
Figure PCTCN2022087770-appb-000290
Figure PCTCN2022087770-appb-000291
Figure PCTCN2022087770-appb-000292
Figure PCTCN2022087770-appb-000293
Figure PCTCN2022087770-appb-000294
Figure PCTCN2022087770-appb-000295
Figure PCTCN2022087770-appb-000296
Figure PCTCN2022087770-appb-000297
Figure PCTCN2022087770-appb-000298
Figure PCTCN2022087770-appb-000299
Figure PCTCN2022087770-appb-000300
Figure PCTCN2022087770-appb-000301
表25-1
Figure PCTCN2022087770-appb-000302
Figure PCTCN2022087770-appb-000303
表25-2
Figure PCTCN2022087770-appb-000304
Figure PCTCN2022087770-appb-000305
表25-3
Figure PCTCN2022087770-appb-000306
Figure PCTCN2022087770-appb-000307
表25-4
Figure PCTCN2022087770-appb-000308
Figure PCTCN2022087770-appb-000309
表25-5
Figure PCTCN2022087770-appb-000310
Figure PCTCN2022087770-appb-000311
表25-6
(19)特别地,当N PS=75时,导频序列为如下表26中的一项。
Figure PCTCN2022087770-appb-000312
Figure PCTCN2022087770-appb-000313
Figure PCTCN2022087770-appb-000314
Figure PCTCN2022087770-appb-000315
Figure PCTCN2022087770-appb-000316
Figure PCTCN2022087770-appb-000317
Figure PCTCN2022087770-appb-000318
Figure PCTCN2022087770-appb-000319
Figure PCTCN2022087770-appb-000320
Figure PCTCN2022087770-appb-000321
Figure PCTCN2022087770-appb-000322
Figure PCTCN2022087770-appb-000323
Figure PCTCN2022087770-appb-000324
Figure PCTCN2022087770-appb-000325
表26
(20)当N PS=80时,若N TS除以4余数为1,导频序列为如表27-1中的一项;若N TS除 以4余数为3,导频序列为如表27-1或27-2中的一项;或从如表27-3中选任一项作为一个偏振方向上的导频序列,并从如表27-4中选任一项作为另一个偏振方向上的导频序列;或从如表27-5中选任一项作为一个偏振方向上的导频序列,并从如表27-6中选任一项作为另一个偏振方向上的导频序列。
Figure PCTCN2022087770-appb-000326
Figure PCTCN2022087770-appb-000327
Figure PCTCN2022087770-appb-000328
Figure PCTCN2022087770-appb-000329
Figure PCTCN2022087770-appb-000330
Figure PCTCN2022087770-appb-000331
Figure PCTCN2022087770-appb-000332
Figure PCTCN2022087770-appb-000333
Figure PCTCN2022087770-appb-000334
表27-1
Figure PCTCN2022087770-appb-000335
Figure PCTCN2022087770-appb-000336
Figure PCTCN2022087770-appb-000337
Figure PCTCN2022087770-appb-000338
Figure PCTCN2022087770-appb-000339
Figure PCTCN2022087770-appb-000340
表27-2
Figure PCTCN2022087770-appb-000341
Figure PCTCN2022087770-appb-000342
表27-3
Figure PCTCN2022087770-appb-000343
Figure PCTCN2022087770-appb-000344
表27-4
Figure PCTCN2022087770-appb-000345
Figure PCTCN2022087770-appb-000346
表27-5
Figure PCTCN2022087770-appb-000347
Figure PCTCN2022087770-appb-000348
表27-6
(21)当N PS=92时,若N TS除以4余数为1,导频序列为如表28-1中的一项;或从如表28-2中选任一项作为一个偏振方向上的导频序列,并从如表28-3中选任一项作为另一个偏振方向上的导频序列;或从如表28-4中选任一项作为一个偏振方向上的导频序列,并从如表28-5中选任一项作为另一个偏振方向上的导频序列。若N TS除以4余数为3,导频序列为如表28-1或28-6中的一项;或从如表28-2中选任一项作为一个偏振方向上的导频序列,并从如表28-3中选任一项作为另一个偏振方向上的导频序列;或从如表28-4中选任一项作为一个偏振方向上的导频序列,并从如表28-5中选任一项作为另一个偏振方向上的导频序列。
Figure PCTCN2022087770-appb-000349
Figure PCTCN2022087770-appb-000350
Figure PCTCN2022087770-appb-000351
表28-1
Figure PCTCN2022087770-appb-000352
Figure PCTCN2022087770-appb-000353
Figure PCTCN2022087770-appb-000354
表28-2
Figure PCTCN2022087770-appb-000355
Figure PCTCN2022087770-appb-000356
表28-3
Figure PCTCN2022087770-appb-000357
Figure PCTCN2022087770-appb-000358
表28-4
Figure PCTCN2022087770-appb-000359
Figure PCTCN2022087770-appb-000360
表28-5
Figure PCTCN2022087770-appb-000361
Figure PCTCN2022087770-appb-000362
Figure PCTCN2022087770-appb-000363
Figure PCTCN2022087770-appb-000364
Figure PCTCN2022087770-appb-000365
Figure PCTCN2022087770-appb-000366
Figure PCTCN2022087770-appb-000367
Figure PCTCN2022087770-appb-000368
表28-6
(22)特别地,当N PS=96时,若N TS除以4余数为1,导频序列为如表29-1中的一项。若N TS除以4余数为3,导频序列为如表29-1或29-2中的一项,或从如表29-3中选任一项作为一个偏振方向上的导频序列,并从如表29-4中选任一项作为另一个偏振方向上的导频序列;或从如表29-5中选任一项作为一个偏振方向上的导频序列,并从如表29-6中选任一项作为另一个偏振方向上的导频序列。
Figure PCTCN2022087770-appb-000369
Figure PCTCN2022087770-appb-000370
Figure PCTCN2022087770-appb-000371
Figure PCTCN2022087770-appb-000372
Figure PCTCN2022087770-appb-000373
Figure PCTCN2022087770-appb-000374
Figure PCTCN2022087770-appb-000375
Figure PCTCN2022087770-appb-000376
表29-1
Figure PCTCN2022087770-appb-000377
Figure PCTCN2022087770-appb-000378
Figure PCTCN2022087770-appb-000379
Figure PCTCN2022087770-appb-000380
Figure PCTCN2022087770-appb-000381
Figure PCTCN2022087770-appb-000382
Figure PCTCN2022087770-appb-000383
Figure PCTCN2022087770-appb-000384
表29-2
Figure PCTCN2022087770-appb-000385
Figure PCTCN2022087770-appb-000386
Figure PCTCN2022087770-appb-000387
表29-3
Figure PCTCN2022087770-appb-000388
Figure PCTCN2022087770-appb-000389
Figure PCTCN2022087770-appb-000390
表29-4
Figure PCTCN2022087770-appb-000391
Figure PCTCN2022087770-appb-000392
表29-5
Figure PCTCN2022087770-appb-000393
Figure PCTCN2022087770-appb-000394
Figure PCTCN2022087770-appb-000395
表29-6
(23)特别地,当N PS=104时,若N TS除以4余数为1,导频序列为如表30-1中的一项。若N TS除以4余数为3,导频序列为如表30-1或30-2中的一项,或从如表30-3中选任一项作为一个偏振方向上的导频序列,并从如表30-4中选任一项作为另一个偏振方向上的导频序列;或从如表30-5中选任一项作为一个偏振方向上的导频序列,并从如表30-6中选任一项作为另一个偏振方向上的导频序列。
Figure PCTCN2022087770-appb-000396
Figure PCTCN2022087770-appb-000397
Figure PCTCN2022087770-appb-000398
Figure PCTCN2022087770-appb-000399
Figure PCTCN2022087770-appb-000400
Figure PCTCN2022087770-appb-000401
Figure PCTCN2022087770-appb-000402
Figure PCTCN2022087770-appb-000403
Figure PCTCN2022087770-appb-000404
Figure PCTCN2022087770-appb-000405
Figure PCTCN2022087770-appb-000406
Figure PCTCN2022087770-appb-000407
Figure PCTCN2022087770-appb-000408
Figure PCTCN2022087770-appb-000409
Figure PCTCN2022087770-appb-000410
Figure PCTCN2022087770-appb-000411
Figure PCTCN2022087770-appb-000412
表30-1
Figure PCTCN2022087770-appb-000413
Figure PCTCN2022087770-appb-000414
Figure PCTCN2022087770-appb-000415
Figure PCTCN2022087770-appb-000416
表30-2
Figure PCTCN2022087770-appb-000417
Figure PCTCN2022087770-appb-000418
Figure PCTCN2022087770-appb-000419
表30-3
Figure PCTCN2022087770-appb-000420
Figure PCTCN2022087770-appb-000421
Figure PCTCN2022087770-appb-000422
表30-4
Figure PCTCN2022087770-appb-000423
Figure PCTCN2022087770-appb-000424
Figure PCTCN2022087770-appb-000425
表30-5
Figure PCTCN2022087770-appb-000426
Figure PCTCN2022087770-appb-000427
Figure PCTCN2022087770-appb-000428
表30-6
再次,训练序列可以有如下几种可能,同样可以保证在两个偏振方向上的训练序列彼此之间的互相关性较好:
(1)假设N TS=6,训练序列可为表31中的任一项。
Figure PCTCN2022087770-appb-000429
Figure PCTCN2022087770-appb-000430
表31
(2)当N TS=8时,训练序列为如表32中的一项。
Figure PCTCN2022087770-appb-000431
Figure PCTCN2022087770-appb-000432
Figure PCTCN2022087770-appb-000433
Figure PCTCN2022087770-appb-000434
Figure PCTCN2022087770-appb-000435
Figure PCTCN2022087770-appb-000436
Figure PCTCN2022087770-appb-000437
Figure PCTCN2022087770-appb-000438
Figure PCTCN2022087770-appb-000439
Figure PCTCN2022087770-appb-000440
表32
(3)当N TS=10时,训练序列为如下表33中的一项。
Figure PCTCN2022087770-appb-000441
Figure PCTCN2022087770-appb-000442
Figure PCTCN2022087770-appb-000443
Figure PCTCN2022087770-appb-000444
Figure PCTCN2022087770-appb-000445
Figure PCTCN2022087770-appb-000446
表33
(4)当N TS=12时,训练序列为如下表34中的一项。
Figure PCTCN2022087770-appb-000447
Figure PCTCN2022087770-appb-000448
Figure PCTCN2022087770-appb-000449
Figure PCTCN2022087770-appb-000450
Figure PCTCN2022087770-appb-000451
Figure PCTCN2022087770-appb-000452
Figure PCTCN2022087770-appb-000453
Figure PCTCN2022087770-appb-000454
Figure PCTCN2022087770-appb-000455
Figure PCTCN2022087770-appb-000456
表34
(5)当N TS=14时,训练序列为如下表35中的一项。
Figure PCTCN2022087770-appb-000457
Figure PCTCN2022087770-appb-000458
Figure PCTCN2022087770-appb-000459
Figure PCTCN2022087770-appb-000460
Figure PCTCN2022087770-appb-000461
Figure PCTCN2022087770-appb-000462
表35
(6)当N TS=16时,训练序列为如下表36中的一项。
Figure PCTCN2022087770-appb-000463
Figure PCTCN2022087770-appb-000464
Figure PCTCN2022087770-appb-000465
Figure PCTCN2022087770-appb-000466
Figure PCTCN2022087770-appb-000467
Figure PCTCN2022087770-appb-000468
Figure PCTCN2022087770-appb-000469
Figure PCTCN2022087770-appb-000470
Figure PCTCN2022087770-appb-000471
Figure PCTCN2022087770-appb-000472
表36
(7)当N TS=18时,训练序列为如下表37中的一项。
Figure PCTCN2022087770-appb-000473
Figure PCTCN2022087770-appb-000474
Figure PCTCN2022087770-appb-000475
Figure PCTCN2022087770-appb-000476
Figure PCTCN2022087770-appb-000477
Figure PCTCN2022087770-appb-000478
Figure PCTCN2022087770-appb-000479
Figure PCTCN2022087770-appb-000480
Figure PCTCN2022087770-appb-000481
Figure PCTCN2022087770-appb-000482
表37
(8)当N TS=7时,训练序列为如下表38中的一项。
Figure PCTCN2022087770-appb-000483
Figure PCTCN2022087770-appb-000484
Figure PCTCN2022087770-appb-000485
Figure PCTCN2022087770-appb-000486
Figure PCTCN2022087770-appb-000487
Figure PCTCN2022087770-appb-000488
Figure PCTCN2022087770-appb-000489
Figure PCTCN2022087770-appb-000490
Figure PCTCN2022087770-appb-000491
Figure PCTCN2022087770-appb-000492
Figure PCTCN2022087770-appb-000493
Figure PCTCN2022087770-appb-000494
Figure PCTCN2022087770-appb-000495
Figure PCTCN2022087770-appb-000496
Figure PCTCN2022087770-appb-000497
Figure PCTCN2022087770-appb-000498
Figure PCTCN2022087770-appb-000499
Figure PCTCN2022087770-appb-000500
Figure PCTCN2022087770-appb-000501
表38
(9)当N TS=9时,TS训练序列为如下表39中的一项。
Figure PCTCN2022087770-appb-000502
Figure PCTCN2022087770-appb-000503
Figure PCTCN2022087770-appb-000504
Figure PCTCN2022087770-appb-000505
Figure PCTCN2022087770-appb-000506
表39
(10)当N TS=11时,训练序列为如下表40中的一项。
Figure PCTCN2022087770-appb-000507
Figure PCTCN2022087770-appb-000508
Figure PCTCN2022087770-appb-000509
Figure PCTCN2022087770-appb-000510
Figure PCTCN2022087770-appb-000511
Figure PCTCN2022087770-appb-000512
表40
(11)当N TS=13时,训练序列为如下表41中的一项。
Figure PCTCN2022087770-appb-000513
Figure PCTCN2022087770-appb-000514
Figure PCTCN2022087770-appb-000515
Figure PCTCN2022087770-appb-000516
Figure PCTCN2022087770-appb-000517
Figure PCTCN2022087770-appb-000518
表41
(12)当N TS=15时,训练序列为如下表42中的一项。
Figure PCTCN2022087770-appb-000519
Figure PCTCN2022087770-appb-000520
Figure PCTCN2022087770-appb-000521
Figure PCTCN2022087770-appb-000522
Figure PCTCN2022087770-appb-000523
Figure PCTCN2022087770-appb-000524
Figure PCTCN2022087770-appb-000525
Figure PCTCN2022087770-appb-000526
表42
(13)当N TS=17时,训练序列为如下表43中的一项。
Figure PCTCN2022087770-appb-000527
Figure PCTCN2022087770-appb-000528
Figure PCTCN2022087770-appb-000529
Figure PCTCN2022087770-appb-000530
Figure PCTCN2022087770-appb-000531
表43
(14)当N TS=19时,训练序列为如下表44中的一项。
Figure PCTCN2022087770-appb-000532
Figure PCTCN2022087770-appb-000533
Figure PCTCN2022087770-appb-000534
Figure PCTCN2022087770-appb-000535
Figure PCTCN2022087770-appb-000536
表44
需要说明的是,上述帧同步序列,导频序列,训练序列均以符号的形式给出,也可以用比特的形式,两者是等价的,例如,图7和图8分别给出了DP-QPSK符号和DP-16QAM符号与比特的映射关系,其中,QPSK符号由2个比特构成,比特01即为-1+1j,11为1+1j;16QAM由4个比特构成的,0000即为-3-3j,1010为3+3j等等;以QPSK为例,如果一个序列为1+1j,1+1j,1-1j,-1+1j,那么对应的比特序列即为11111001,比特序列经过相应的调制,会变成符号序列输出。
本申请实施例还提供了几种具体的超帧格式,描述如下:
实施例一:成帧前符号经过CFEC编码得到,符号个数为175616个,其对应的N SF、N TS、N PS、N FAW、N RES、N S、N F、OH等参数如下表所示:
N SF N PS N S N F OH N FAW N TS N RES
49 57 3648 178752 1.79% 24 6 74
其超帧架构如图9所示,该超帧包括49个子帧,每个子帧包括3648个符号,如图9中的(a)所示;第一个子帧如图9中的(b)所示,有6个训练符号,24个帧同步符号,74个保留符号;在第2到49个子帧中,也都有6个训练符号,如图9中的(c);且在每一个子帧中,每64个符号里面的第一个符号为导频符号。长度为24的帧同步序列采用表7中一项。长度为6的训练序列可采用表31中一项。长度为57的导频序列,根据超帧结构,选取表10-1或表10-2中第一个符号与所采用的训练序列的第一个符号相同的一项。例如,符号长度为24的帧同步序列采用如下序列:
Figure PCTCN2022087770-appb-000537
Figure PCTCN2022087770-appb-000538
其对应的相关特性如图10所示,图10中的(a)显示的是在X偏振方向上帧同步序列的非周期自相关结果,图10中的(b)显示的是Y偏振方向上帧同步序列的非周期自相关结果,图10中的(c)显示的是在X和Y两个偏振方向上帧同步序列的非周期互相关结果。在两个偏振方向上的符号序列的非周期自相关函数旁瓣值不大于0.172(归一化幅度),且两个偏振方向上的符号序列的非周期互相关函数值不大于0.177(归一化幅度)。
符号长度为6的训练序列采用如下序列:
偏振 训练序列
X -A+Aj,-A+Aj,-A-Aj,A+Aj,A-Aj,A-Aj
Y -A-Aj,-A+Aj,A+Aj,-A-Aj,A-Aj,A+Aj
其对应的相关特性如图11所示,图11中的(a)显示的是在X偏振方向上训练序列的非周期自相关结果,图11中的(b)显示的是Y偏振方向上训练序列的非周期自相关结果,图11中的(c)显示的是在X和Y两个偏振方向上训练序列的非周期互相关结果。在两个偏振方向上的符号序列的非周期自相关函数旁瓣值不大于0.34(归一化幅度),且两个偏振方向上的符号序列的非周期互相关函数值不大于0.38(归一化幅度)。
符号长度为57的导频序列采用如下序列:
Figure PCTCN2022087770-appb-000539
Figure PCTCN2022087770-appb-000540
其对应的相关特性如图12所示,图12中的(a)显示的是在X偏振方向上导频序列的周期自相关结果,图12中的(b)显示的是Y偏振方向上导频序列的周期自相关结果,图12中的(c)显示的是在X和Y两个偏振方向上导频序列的周期互相关结果。在两个偏振方向上的符号序列的周期自相关函数旁瓣值不大于0.177(归一化幅度),且两个偏振方向上的符号序列的周期互相关函数值不大于0.197(归一化幅度)。应理解,对于上述序列的相关特性,A的取值不影响相关函数归一化幅度数值,即与采用的调制格式没有关系,故本实施例及后续实施例在验证序列的相关特性时,不限制A的取值,本申请不再赘述。
由此可见,本申请实施例提供的超帧架构的帧冗余较低为1.79%,且所设计的序列自相关和互相关特性都较好,帧同步序列还可满足直流平衡,训练序列和导频序列结合一起也可满足直流平衡,利于提高接收端恢复信号的质量。
接收端根据接收到的两个偏振方向的信号,利用帧同步序列、训练序列、导频序列进行信号处理来恢复信号。比如,通过分别计算接收到的两个偏振方向的信号与训练序列在X和Y偏振上的序列符号的相关值,可区分偏振方向,并进行子帧同步对齐;利用帧同步序列进行超帧同步对齐;利用导频信号进行载波相位恢复。
此外,本实施例的三个符号序列可以用比特序列的形式表示,以采用DP-16QAM和DP-QPSK为例,比特序列可如下面几个表所示,其中,b1-b8分别为图7和图8中所对应的比特:
帧同步序列所对应的比特序列如下:
Figure PCTCN2022087770-appb-000541
Figure PCTCN2022087770-appb-000542
训练序列所对应的比特序列如下:
Figure PCTCN2022087770-appb-000543
导频序列所对应的比特序列如下:
Figure PCTCN2022087770-appb-000544
Figure PCTCN2022087770-appb-000545
进一步地,本实施例还对不同调制格式下,超帧的频谱平坦特性做了仿真,图13中的(a)给出了在DP-16QAM下,采用如图9所示的超帧架构,包含300个超帧的频谱图,图13中的(b)为相同长度的随机DP-16QAM信号的频谱图;图14中的(a)给出了在DP-QPSK下,采用如图9所示的超帧架构,包含300个超帧的频谱图,图14中的(b)为相同长度的随机DP-QPSK信号的频谱图;可以看出,无论是DP-16QAM,还是DP-QPSK,本实施例提供的超帧结构的频谱平坦特性与相同长度的随机调制信号差别很小,平坦性很好。
应理解,因为在两个偏振方向上,信号的频谱平坦特性是非常类似的,因此,本申请实施例只以一个偏振方向为例,给出了仿真结果,后续实施例也是一样,本申请不再赘述。
实施例二:本申请实施例还提供一种具体的超帧格式,成帧前符号经过CFEC编码得到,符号个数为175616个,其对应的N SF、N TS、N PS、N FAW、N RES、N S、N F、OH等参数如下表所示:
N SF N PS N S N F OH N FAW N TS N RES
43 65 4160 178880 1.86% 22 10 60
其超帧架构如图15所示,该超帧包括43个子帧,每个子帧包括4160个符号,如图15中的(a)所示;第一个子帧如图15中的(b)所示,有10个训练符号,22个帧同步符号,60个保留符号;在第2到43个子帧中,也都有10个训练符号,如图15中的(c);且在每一个子帧中,每64个符号里面的第一个符号为导频符号。长度为22的帧同步序列采 用表6中一项。长度为10的训练序列可采用表33中的一项。长度为65的导频序列,根据超帧结构,选取表11-1或表11-2中第一个符号与所采用的训练序列的第一个符号相同的一项;例如,符号长度为22的帧同步序列采用如下序列:
Figure PCTCN2022087770-appb-000546
其对应的相关特性如图16所示,图16中的(a)显示的是在X偏振方向上帧同步序列的非周期自相关结果,图16中的(b)显示的是Y偏振方向上帧同步序列的非周期自相关结果,图16中的(c)显示的是在X和Y两个偏振方向上帧同步序列的非周期互相关结果。在两个偏振方向上的符号序列的非周期自相关函数旁瓣值不大于0.182(归一化幅度),且两个偏振方向上的符号序列的非周期互相关函数值不大于0.188(归一化幅度)。
在有些实际应用中,长度22的帧同步序列可采用现有符号序列,比如OIF-400ZR采用的序列,但该序列在X偏振和Y偏振上的互相关性较差,接收端同步时需采用较多符号确保同步错误概率足够低。
符号长度为10的训练序列采用如下序列:
Figure PCTCN2022087770-appb-000547
其对应的相关特性如图17所示,图17中的(a)显示的是在X偏振方向上训练序列的非周期自相关结果,图17中的(b)显示的是Y偏振方向上训练序列的非周期自相关结果,图17中的(c)显示的是在X和Y两个偏振方向上训练序列的非周期互相关结果。在两个偏振方向上的符号序列的非周期自相关函数旁瓣值不大于0.283(归一化幅度),且两个偏振方向上的符号序列的非周期互相关函数值不大于0.283(归一化幅度)。
符号长度为65的导频序列采用如下序列:
Figure PCTCN2022087770-appb-000548
Figure PCTCN2022087770-appb-000549
其对应的相关特性如图18所示,图18中的(a)显示的是在X偏振方向上导频序列的周期自相关结果,图18中的(b)显示的是Y偏振方向上导频序列的周期自相关结果,图18中的(c)显示的是在X和Y两个偏振方向上导频序列的周期互相关结果。在两个偏振方向上的符号序列的周期自相关函数旁瓣值不大于0.161(归一化幅度),且两个偏振方向上的符号序列的周期互相关函数值不大于0.173(归一化幅度)。
由此可见,本申请实施例提供的超帧架构的帧冗余也较低,为1.86%,且所设计的序列自相关和互相关特性都较好,帧同步序列还可满足直流平衡,训练序列和导频序列结合一起也可满足直流平衡,利于提高接收端恢复信号的质量。
进一步地,本实施例还以DP-16QAM为例,对超帧的频谱平坦特性做了仿真,结果如图19所示,其采用如图15所示的超帧架构,包含300个超帧的频谱图,可以看出,本实施例提供的超帧结构的频谱平坦特性与相同长度的随机调制信号差别很小,平坦性很好。
实施例三:本申请实施例还提供一种具体的超帧格式,成帧前符号经过CFEC编码得到,符号个数为175616个,其对应的N SF、N TS、N PS、N FAW、N RES、N S、N F、OH等参数如下表所示:
N SF N PS N S N F OH N FAW N TS N RES
50 56 3584 179200 2.04% 22 15 62
其超帧架构如图20所示,该超帧包括50个子帧,每个子帧包括3584个符号,如图20中的(a)所示;第一个子帧如图20中的(b)所示,有15个训练符号,22个帧同步符号,62个保留符号;在第2到50个子帧中,也都有15个训练符号,如图20中的(c);且在每一个子帧中,每64个符号里面的第一个符号为导频符号。长度为22的帧同步序列采用表6中一项。长度为15的训练序列可采用表42中的一项。长度为56的导频序列,根据超帧结构,选取表9-1或表9-2中第一个符号与所采用的训练序列的第一个符号相同的一项;例如,考虑符号长度为22的帧同步序列采用与实施例二相同的序列,其对应的相关性仿真 结果如图16所示。
考虑符号长度为15的训练序列采用如下序列:
Figure PCTCN2022087770-appb-000550
其对应的相关特性如图21所示,图21中的(a)显示的是在X偏振方向上训练序列的非周期自相关结果,图21中的(b)显示的是Y偏振方向上训练序列的非周期自相关结果,图21中的(c)显示的是在X和Y两个偏振方向上训练序列的非周期互相关结果。在两个偏振方向上的符号序列的非周期自相关函数旁瓣值不大于0.211(归一化幅度),且两个偏振方向上的符号序列的非周期互相关函数值不大于0.211(归一化幅度)。
考虑符号长度为56的导频序列采用如下序列:
Figure PCTCN2022087770-appb-000551
其对应的相关特性如图22所示,图22中的(a)显示的是在X偏振方向上导频序列的周期自相关结果,图22中的(b)显示的是Y偏振方向上导频序列的周期自相关结果,图22中的(c)显示的是在X和Y两个偏振方向上导频序列的周期互相关结果。在两个偏振方向上的符号序列的周期自相关函数旁瓣值不大于0.183(归一化幅度),且两个偏振方向上的符号序列的周期互相关函数值不大于0.203(归一化幅度)。
由此可见,本申请实施例提供的超帧架构的帧冗余也较低,为2.03%;训练序列较长,便于接收端进行帧同步;且所设计的序列自相关和互相关特性都较好,帧同步序列还可满足直流平衡,训练序列和导频序列结合一起也可满足直流平衡,利于提高接收端恢复信号的质量。
进一步地,本实施例还以DP-16QAM为例,对超帧的频谱平坦特性做了仿真,结果如图23所示,其采用如图20所示的超帧架构,包含300个超帧的频谱图,可以看出,本实施例提供的超帧结构的频谱平坦特性与相同长度的随机调制信号差别很小,平坦性很好。
实施例四:本申请实施例提供一种具体的超帧格式,成帧前符号经过开放码(Open FEC,OFEC)编码得到,符号个数为172032个,其对应的N SF、N TS、N PS、N FAW、N RES、N S、N F、OH等参数如下表所示:
N SF N PS N S N F OH N FAW N TS N RES
48 57 3648 175104 1.79% 24 6 72
其超帧架构如图24所示,该超帧包括48个子帧,每个子帧包括3648个符号,如图24中的(a)所示;第一个子帧如图24中的(b)所示,有6个训练符号,24个帧同步符号,72个保留符号;在第2到48个子帧中,也都有6个训练符号,如图24中的(c);且在每一个子帧中,每64个符号里面的第一个符号为导频符号。长度为24的帧同步序列采用表7中一项。长度为6的训练序列可采用表31中的一项。长度为57的导频序列,根据超帧结构,选取表10-1或表10-2中第一个符号与所采用的训练序列的第一个符号相同的一项;例如,采用与实施例一相同的帧同步序列,训练序列和导频序列,其相关性分别如图10-12所示。
进一步地,本实施例还以DP-16QAM为例,对超帧的频谱平坦特性做了仿真,结果如图25所示,其采用如图24所示的超帧架构,包含300个超帧的频谱图,可以看出,本实施例提供的超帧结构的频谱平坦特性与相同长度的随机调制信号差别很小,平坦性很好。
实施例五:本申请实施例提供一种具体的超帧格式,成帧前符号经过CFEC编码得到,符号个数为175616个,其对应的N SF、N TS、N PS、N FAW、N RES、N S、N F、OH等参数如下表所示:
N SF N PS N S N F OH N FAW N TS N RES
50 75 3600 180000 2.50% 22 12 62
其超帧架构如图26所示,该超帧包括50个子帧,每个子帧包括3600个符号,如图26中的(a)所示;第一个子帧如图26中的(b)所示,有12个训练符号,22个帧同步符号,62个保留符号;在第2到50个子帧中,也都有12个训练符号,如图26中的(c);且在每一个子帧中,每48个符号里面的第一个符号为导频符号。长度为22的帧同步序列采用表6中一项。长度为12的训练序列可采用表34中的一项。长度为75的导频序列,根据超帧结构,选取表26中第一个符号与所采用的训练序列的第一个符号相同的一项;例如,考虑符号长度为22的帧同步序列采用与实施例二相同的序列,其对应的相关性仿真结果如图16所示。
考虑符号长度为12的训练序列采用如下序列:
Figure PCTCN2022087770-appb-000552
其对应的相关特性如图27所示,图27中的(a)显示的是在X偏振方向上训练序列的非周期自相关结果,图27中的(b)显示的是Y偏振方向上训练序列的非周期自相关结果,图27中的(c)显示的是在X和Y两个偏振方向上训练序列的非周期互相关结果。在两个偏振方向上的符号序列的非周期自相关函数旁瓣值不大于0.251(归一化幅度),且两个偏振方向上的符号序列的非周期互相关函数值不大于0.251(归一化幅度)。
考虑符号长度为75的导频序列采用如下序列:
Figure PCTCN2022087770-appb-000553
其对应的相关特性如图28所示,图28中的(a)显示的是在X偏振方向上导频序列的周期自相关结果,图28中的(b)显示的是Y偏振方向上导频序列的周期自相关结果,图28中的(c)显示的是在X和Y两个偏振方向上导频序列的周期互相关结果。在两个偏振方向上的 符号序列的周期自相关函数旁瓣值不大于0.150(归一化幅度),且两个偏振方向上的符号序列的周期互相关函数值不大于0.168(归一化幅度)。
本申请实施例提供的超帧架构的帧冗余也较低,为2.50%,且所设计的序列自相关和互相关特性都较好,帧同步序列还可满足直流平衡,训练序列和导频序列结合一起也可满足直流平衡,利于提高接收端恢复信号的质量。
进一步地,本实施例还以DP-16QAM为例,对超帧的频谱平坦特性做了仿真,结果如图29所示,其采用如图26所示的超帧架构,包含300个超帧的频谱图,可以看出,本实施例提供的超帧结构的频谱平坦特性与相同长度的随机调制信号差别很小,平坦性很好。
实施例六:本申请实施例提供一种具体的超帧格式,成帧前符号经过OFEC编码得到,符号个数为172032个,其对应的N SF、N TS、N PS、N FAW、N RES、N S、N F、OH等参数如下表所示:
N SF N PS N S N F OH N FAW N TS N RES
49 75 3600 176400 2.54% 22 12 132
其超帧架构如图30所示,该超帧包括49个子帧,每个子帧包括3600个符号,如图30中的(a)所示;第一个子帧如图30中的(b)所示,有12个训练符号,22个帧同步符号,132个保留符号;在第2到49个子帧中,也都有12个训练符号,如图30中的(c);且在每一个子帧中,每48个符号里面的第一个符号为导频符号。长度为22的帧同步序列采用表6中一项。长度为12的训练序列可采用表34中的一项。长度为75的导频序列,根据超帧结构,选取表26中第一个符号与所采用的训练序列的第一个符号相同的一项;例如,采用与实施例五相同的帧同步序列,训练序列和导频序列,其相关性分别如图16,27和28所示。
本申请实施例提供的超帧架构的帧冗余也较低,为2.54%,且所设计的序列自相关和互相关特性都较好,帧同步序列还可满足直流平衡,训练序列和导频序列结合一起也可满足直流平衡,利于提高接收端恢复信号的质量。
进一步地,本实施例还以DP-16QAM为例,对超帧的频谱平坦特性做了仿真,结果如图31所示,其采用如图30所示的超帧架构,包含300个超帧的频谱图,可以看出,本实施例提供的超帧结构的频谱平坦特性与相同长度的随机调制信号差别很小,平坦性很好。
结合前述图1对应的实施例所介绍的通信系统,以及图2或图3对应的实施例所描述的成帧的过程,本申请实施例还提供了另一种用于光通信的传输方法,如图32所示,该传输方法包括:
3201.传输设备生成包含多个子帧的超帧,在每个子帧中包括训练符号和导频符号,其中,在一个偏振方向上,有一个符号既为训练符号,也为导频符号,且每个训练符号和每个导频符号分别为-A-Aj、-A+Aj、A-Aj、A+Aj中的一种,A为实数;在每个子帧中,在一个偏振方向上,导频符号是目标多项式和种子生成的,导频符号有N PS个,与N TS个训练符号的组合达到直流平衡,N TS为所述每个子帧中所述训练符号在一个偏振方向上的数量,N TS+N PS为奇数;目标多项式为下表X-1中的一个。
表X-1
序号 目标多项式
1 x 10+x 9+x 8+x 7+x 6+1
2 x 10+x 9+x 8+x 6+x 4+1
3 x 10+x 9+x 7+x 6+x 4+1
4 x 10+x 9+x 6+x 3+1
5 x 10+x 8+x 5+x 3+1
6 x 10+x 8+x 6+x 5+x 3+1
7 x 10+x 8+x 7+x 4+x 3+1
8 x 10+x 6+x 5+x 4+x 3+1
9 x 10+x 9+x 6+x 2+1
10 x 10+x 7+x 6+x 2+1
11 x 10+x 7+x 5+x 2+1
12 x 10+x 8+x 7+x 5+x 2+1
13 x 10+x 9+x 8+x 7+x 4+x 2+1
14 x 10+x 7+x 5+x 4+x 2+1
15 x 10+x 9+x 7+x 5+x 4+x 2+1
16 x 10+x 9+x 8+x 3+x 2+1
17 x 10+x 9+x 8+x 7+x 3+x 2+1
18 x 10+x 7+x 6+x 3+x 2+1
19 x 10+x 8+x 5+x+1
20 x 10+x 8+x 4+x+1
21 x 10+x 9+x 8+x 7+x 4+x+1
22 x 10+x 8+x 5+x 4+x+1
23 x 10+x 5+x 3+x+1
24 x 10+x 8+x 6+x 5+x 3+x+1
25 x 10+x 9+x 8+x 7+x 4+x 3+x+1
26 x 10+x 6+x 4+x 3+x+1
27 x 10+x 8+x 7+x 2+x+1
28 x 10+x 9+x 8+x 7+x 4+x 2+x+1
29 x 10+x 9+x 6+x 3+x 2+x+1
30 x 10+x 8+x 6+x 3+x 2+x+1
31 x 10+x 6+x 5+x 3+x 2+x+1
32 x 10+x 4+x 3+x 2+x+1
33 x 10+x 9+x 7+x 3+1
34 x 10+x 9+x 6+x+1
35 x 10+x 9+x 4+x+1
36 x 10+x 7+x 3+x+1
3202.传输设备将超帧发送出去,对应地,接收设备接收包含多个子帧的超帧。
3203.接收设备对接收到的超帧进行解码。
本申请实施例中,A的取值是由生成符号时采用的调制格式决定的,可以参阅前述图4和图5A实施例部分的相应内容进行理解。需要说明的是,在一些实际应用场景中,导频符号和训练符号-A-Aj、-A+Aj、A-Aj、A+Aj可以不为所用的调制格式的星座图上的符号,其可以是星座图最外面4个符号和最里面4个符号中间区域的某4个符号。此时,训练和导频符号的噪声和灵敏度一般,但峰均功率比相对较低。以16QAM为例,16QAM星座图上的16个符号取值为{±1±1j,±1±3j,±3±1j,±3±3j},实数A的取值满足1≤A≤3。更具体地,如图5B所示,星座图最外面4个符号是3+3j,3-3j,-3+3j,-3-3j,星座图最里面4个符号是1+1j,1-1j,-1+1j,-1-1j。导频符号和训练符号取值-A-Aj、-A+Aj、A-Aj、A+Aj可以是在16QAM星座图最外面4个符号和最里面4个符号中间区域的某4个符号。实数A的具体取值可根据实际应用场景选取使得训练和导频符号的峰均功率比、噪声和灵敏度具备很好的折中。例如实数
Figure PCTCN2022087770-appb-000554
导频符号和训练符号的取值为
Figure PCTCN2022087770-appb-000555
Figure PCTCN2022087770-appb-000556
另外,当16QAM星座图上的16个符号进行功率归一化且取值为
Figure PCTCN2022087770-appb-000557
Figure PCTCN2022087770-appb-000558
实数A的取值满足
Figure PCTCN2022087770-appb-000559
例如实数
Figure PCTCN2022087770-appb-000560
导频符号和训练符号的取值为
Figure PCTCN2022087770-appb-000561
此外,本申请实施例中,偏振方向有两个,两个偏振方向相互正交,即当其中一个偏振方向为X偏振时,另一个偏振方向为Y偏振;当其中一个偏振方向为Y偏振时,另一个偏振方向为X偏振。这两个偏振方向也可以用偏振一和偏振二来描述。在本申请实施例中,一个偏振方向上,一个子帧包括的训练符号和导频符号的数量之和为N TS+N PS-1,之所以不是N TS+N PS,原因是有一个符号既为训练符号,也为导频符号,所以数量之和比两种符号的个数相加要少一个。
在本申请实施例的方案中,导频符号是目标多项式和种子生成的,该目标多项式是上述表X-1中的任意一项,该目标多项式和所对应的种子可以满足生成的N PS个所述导频符号和N TS个训练符号的组合达到直流平衡,也就是,一个子帧中在一个偏振方向上,与训练符号和导频符号对应的复数的实部之和为0,虚部之和也为0,这样有利于接收端较好的恢复信号,提高接收端信号的质量。
本申请实施例所提供的超帧的结构可以参阅前述图6中的(a)至图6中的(c)部分的相应内容进行理解,此处不再重复赘述。
本申请实施例所提供的方案可以适用于前述实施例中表2中序号是18的一行和序号是9的一行。
下面分别对这两种超帧格式进行介绍。
针对前述表2中序号是18的一行,在一个偏振方向上,成帧前符号个数为172032个,其对应的N SF、N PS、N TS、N S、N F、N FAW、N RES、OH等参数如下表X-2所示:
表X-2
N SF N PS N S N F OH N TS N FAW+N RES
24 114 7296 175104 1.79% 11 96
其超帧结构如图33中的(a)所示,该超帧包括24个子帧,每个子帧包括7296个符号;第一个子帧如图33中的(b)所示,有11个训练符号,N FAW个帧同步符号,N RES个保留符号,N FAW+N RES=96;如图33中的(c)所示,在第2到24个子帧中,也都有11个训练符号;且在每一个子帧中,每64个符号里面的第一个符号为导频符号,每个子帧包含114个导频符号。
该图33中的(b)中,以N FAW=22,N RES=74为例进行描述,22个帧同步符号的序列可以参阅下表X-3进行理解:
表X-3
Figure PCTCN2022087770-appb-000562
11个训练符号的序列可以参阅下表X-4进行理解:
表X-4
Figure PCTCN2022087770-appb-000563
在该示例中,114个导频符号是基于目标多项式及对应的种子(seed)确定的。本申请实施例中,目标多项式采用10阶的多项式,该10阶的多项式可以表示为:
x 10+a 9×x 9+a 8×x 8+a 7×x 7+a 6×x 6+a 5×x 5+a 4×x 4+a 3×x 3+a 2×x 2+a 1×x+1
其中,a 9...a 1可取值0或1。
导频符号生成结构可以参阅图34进行理解,如图34所示,种子用二进制的形式可以表示为m 9、m 8、m 7、m 6、m 5、m 4、m 3、m 2、m 1、m 0,当然,种子也可以用十六进制或十进制来表示,当与目标多项式运算时需要转换为二进制的形式,如:0110111000用十六进制表示为0x1B8,十进制表示为440。
本申请实施例中,对于两个正交的偏振方向上的导频符号,可以采用相同的目标生成 多项式,但因种子(seed)不相同,对应地,两个偏振方向上输出的导频符号不完全一样。
如图34中,针对需要产生114个导频符号的场景,根据目标多项式和种子获得连续长度228的比特序列b 0,b 1,b 2,...b 227。比特序列b 0,b 1,b 2,...b 227每2个连续比特映射为一个符号,其中b 2t和b 2t+1映射为一个符号(2b 2t-1)A+(2b 2t+1-1)Aj,0≤t<114。需要说明的是,符号(2b 2t-1)A+(2b 2t+1-1)Aj也可以不为所用的调制格式的星座图上的符号,其可以是所用的调制格式的星座图最外面4个符号和最里面4个符号中间区域的某4个符号。此时,训练和导频符号的噪声和灵敏度一般,但峰均功率比相对较低。以16QAM为例,16QAM星座图上的16个符号取值为{±1±1j,±1±3j,±3±1j,±3±3j},实数A的取值满足1≤A≤3。实数A的具体取值可根据实际应用场景选取使得训练和导频符号的峰均功率比、噪声和灵敏度具备很好的折中。例如实数
Figure PCTCN2022087770-appb-000564
导频符号和训练符号的取值为
Figure PCTCN2022087770-appb-000565
另外,当16QAM星座图上的16个符号进行功率归一化且取值为
Figure PCTCN2022087770-appb-000566
实数A的取值满足
Figure PCTCN2022087770-appb-000567
例如实数
Figure PCTCN2022087770-appb-000568
导频符号和训练符号的取值为
Figure PCTCN2022087770-appb-000569
Figure PCTCN2022087770-appb-000570
本申请实施例中,可以通过设计多项式中系数a 9...a 1的取值来确定的目标多项式,以及种子,使得所生成的导频符号在X偏振、Y偏振的符号序列自相关特性较好,两个偏振的符号序列互相关特性较好。特别地,在两个偏振方向上的符号序列的周期自相关函数旁瓣值的归一化幅度不大于一个预设的值T0,两个偏振方向上的符号序列的周期互相关函数值的归一化幅度不大于一个预设的值T1。
目标多项式与两个偏振方向上的用十六进制表示的种子为下表X-5中的一行时,同一偏振方向上的导频符号的周期自相关函数旁瓣值的归一化幅度不大于0.2,不同偏振方向上的导频符号的周期互相关函数值的归一化幅度不大于0.2,也就是T0=0.2,T1=0.2。
表X-5
序号 目标多项式 偏振一方向的种子 偏振二方向的种子
1 x 10+x 9+x 8+x 7+x 6+1 0x122 0x0E4
2 x 10+x 9+x 8+x 7+x 6+1 0x122 0x06C
3 x 10+x 9+x 8+x 7+x 6+1 0x362 0x1C4
4 x 10+x 9+x 8+x 7+x 6+1 0x362 0x0DC
5 x 10+x 9+x 8+x 7+x 6+1 0x31A 0x0E4
6 x 10+x 9+x 8+x 7+x 6+1 0x31A 0x06C
7 x 10+x 9+x 8+x 7+x 6+1 0x046 0x384
8 x 10+x 9+x 8+x 7+x 6+1 0x046 0x3C4
9 x 10+x 9+x 8+x 7+x 6+1 0x046 0x2DC
10 x 10+x 9+x 8+x 7+x 6+1 0x246 0x348
11 x 10+x 9+x 8+x 7+x 6+1 0x246 0x1C4
12 x 10+x 9+x 8+x 7+x 6+1 0x246 0x0DC
13 x 10+x 9+x 8+x 7+x 6+1 0x0F6 0x384
14 x 10+x 9+x 8+x 7+x 6+1 0x0F6 0x1C4
15 x 10+x 9+x 8+x 7+x 6+1 0x0F6 0x0DC
16 x 10+x 9+x 8+x 7+x 6+1 0x08E 0x0E4
17 x 10+x 9+x 8+x 7+x 6+1 0x08E 0x06C
18 x 10+x 9+x 8+x 6+x 4+1 0x022 0x080
19 x 10+x 9+x 8+x 6+x 4+1 0x022 0x220
20 x 10+x 9+x 8+x 6+x 4+1 0x022 0x1FC
21 x 10+x 9+x 7+x 6+x 4+1 0x3A2 0x1A4
22 x 10+x 9+x 7+x 6+x 4+1 0x03A 0x1A4
23 x 10+x 9+x 6+x 3+1 0x076 0x07C
24 x 10+x 8+x 5+x 3+1 0x3CE 0x19C
25 x 10+x 8+x 6+x 5+x 3+1 0x186 0x048
26 x 10+x 8+x 6+x 5+x 3+1 0x186 0x034
27 x 10+x 8+x 7+x 4+x 3+1 0x1A2 0x2A0
28 x 10+x 8+x 7+x 4+x 3+1 0x1A2 0x330
29 x 10+x 8+x 7+x 4+x 3+1 0x10A 0x334
30 x 10+x 8+x 7+x 4+x 3+1 0x10A 0x08C
31 x 10+x 8+x 7+x 4+x 3+1 0x3EA 0x350
32 x 10+x 8+x 7+x 4+x 3+1 0x3EA 0x184
33 x 10+x 8+x 7+x 4+x 3+1 0x2E6 0x2A0
34 x 10+x 8+x 7+x 4+x 3+1 0x2E6 0x330
35 x 10+x 6+x 5+x 4+x 3+1 0x166 0x0CC
36 x 10+x 9+x 6+x 2+1 0x21E 0x028
37 x 10+x 9+x 6+x 2+1 0x21E 0x014
38 x 10+x 7+x 6+x 2+1 0x0BE 0x1B8
39 x 10+x 7+x 5+x 2+1 0x342 0x16C
40 x 10+x 8+x 7+x 5+x 2+1 0x0D6 0x0CC
41 x 10+x 9+x 8+x 7+x 4+x 2+1 0x16A 0x0DC
42 x 10+x 9+x 8+x 7+x 4+x 2+1 0x2A6 0x0DC
43 x 10+x 7+x 5+x 4+x 2+1 0x18A 0x324
44 x 10+x 7+x 5+x 4+x 2+1 0x1C6 0x324
45 x 10+x 9+x 7+x 5+x 4+x 2+1 0x26E 0x38C
46 x 10+x 9+x 7+x 5+x 4+x 2+1 0x26E 0x27C
47 x 10+x 9+x 8+x 3+x 2+1 0x102 0x1F0
48 x 10+x 9+x 8+x 3+x 2+1 0x022 0x1AC
49 x 10+x 9+x 8+x 3+x 2+1 0x00A 0x144
50 x 10+x 9+x 8+x 3+x 2+1 0x14A 0x07C
51 x 10+x 9+x 8+x 3+x 2+1 0x0A6 0x07C
52 x 10+x 9+x 8+x 3+x 2+1 0x176 0x1AC
53 x 10+x 9+x 8+x 3+x 2+1 0x0BE 0x07C
54 x 10+x 9+x 8+x 7+x 3+x 2+1 0x082 0x264
55 x 10+x 7+x 6+x 3+x 2+1 0x202 0x170
56 x 10+x 7+x 6+x 3+x 2+1 0x202 0x3F4
57 x 10+x 7+x 6+x 3+x 2+1 0x142 0x2E0
58 x1 0+x 7+x 6+x 3+x 2+1 0x142 0x054
59 x 10+x 7+x 6+x 3+x 2+1 0x142 0x07C
60 x 10+x 7+x 6+x 3+x 2+1 0x2EA 0x150
61 x 10+x 7+x 6+x 3+x 2+1 0x306 0x220
62 x 10+x 7+x 6+x 3+x 2+1 0x306 0x094
63 x 10+x 8+x 5+x+1 0x3FE 0x0E0
64 x 10+x 8+x 4+x+1 0x28E 0x0F4
65 x 10+x 9+x 8+x 7+x 4+x+1 0x102 0x248
66 x 10+x 8+x 5+x 4+x+1 0x10A 0x0EC
67 x 10+x 5+x 3+x+1 0x1C6 0x07C
68 x 10+x 8+x 6+x 5+x 3+x+1 0x246 0x24C
69 x 10+x 9+x 8+x 7+x 4+x 3+x+1 0x1C6 0x130
70 x 10+x 6+x 4+x 3+x+1 0x25A 0x23C
71 x 10+x 6+x 4+x 3+x+1 0x2F6 0x23C
72 x 10+x 8+x 7+x 2+x+1 0x022 0x1CC
73 x 10+x 8+x 7+x 2+x+1 0x022 0x3DC
74 x 10+x 8+x 7+x 2+x+1 0x226 0x1CC
75 x 10+x 8+x 7+x 2+x+1 0x226 0x3DC
76 x 10+x 8+x 7+x 2+x+1 0x316 0x1C4
77 x 10+x 8+x 7+x 2+x+1 0x316 0x2EC
78 x 10+x 8+x 7+x 2+x+1 0x12E 0x1C4
79 x 10+x 8+x 7+x 2+x+1 0x12E 0x2EC
80 x 10+x 9+x 8+x 7+x 4+x 2+x+1 0x38A 0x07C
81 x 10+x 9+x 6+x 3+x 2+x+1 0x252 0x398
82 x 10+x 9+x 6+x 3+x 2+x+1 0x13A 0x330
83 x 10+x 9+x 6+x 3+x 2+x+1 0x13A 0x398
84 x 10+x 8+x 6+x 3+x 2+x+1 0x31A 0x310
85 x 10+x 8+x 6+x 3+x 2+x+1 0x31A 0x1C4
86 x 10+x 6+x 5+x 3+x 2+x+1 0x262 0x3A4
87 x 10+x 6+x 5+x 3+x 2+x+1 0x292 0x36C
88 x 10+x 4+x 3+x 2+x+1 0x222 0x048
89 x 10+x 4+x 3+x 2+x+1 0x222 0x138
90 x 10+x 4+x 3+x 2+x+1 0x322 0x368
91 x 10+x 4+x 3+x 2+x+1 0x322 0x1D8
92 x 10+x 4+x 3+x 2+x+1 0x322 0x0E4
93 x 10+x 4+x 3+x 2+x+1 0x0E2 0x368
94 x 10+x 4+x 3+x 2+x+1 0x0E2 0x1D8
95 x 10+x 4+x 3+x 2+x+1 0x0E2 0x0E4
96 x 10+x 4+x 3+x 2+x+1 0x07A 0x2C4
97 x 10+x 4+x 3+x 2+x+1 0x07A 0x3B4
98 x 10+x 4+x 3+x 2+x+1 0x04E 0x2F0
99 x 10+x 4+x 3+x 2+x+1 0x04E 0x224
100 x 10+x 4+x 3+x 2+x+1 0x36E 0x2C4
101 x 10+x 4+x 3+x 2+x+1 0x36E 0x0EC
102 x 10+x 4+x 3+x 2+x+1 0x21E 0x368
103 x 10+x 4+x 3+x 2+x+1 0x21E 0x1D8
当目标多项式与两个偏振方向上的用十六进制表示的种子为下表X-6(表X-6为表X-5的子集)中的一行时,在一个偏振方向上,114个导频符号和11个训练符号的组合中,-A-Aj、-A+Aj、A-Aj和A+Aj在一个偏振方向上的数目均为31。
表X-6
序号 目标多项式 偏振一方向的种子 偏振二方向的种子
1 x 10+x 9+x 8+x 7+x 6+1 0x046 0x384
2 x 10+x 9+x 8+x 7+x 6+1 0x046 0x3C4
3 x 10+x 9+x 6+x 3+1 0x076 0x07C
4 x 10+x 8+x 7+x 4+x 3+1 0x1A2 0x330
5 x 10+x 8+x 7+x 4+x 3+1 0x2E6 0x330
6 x 10+x 8+x 7+x 2+x+1 0x226 0x3DC
7 x 10+x 9+x 6+x 3+x 2+x+1 0x13A 0x330
8 x 10+x 4+x 3+x 2+x+1 0x322 0x368
9 x 10+x 4+x 3+x 2+x+1 0x322 0x0E4
10 x 10+x 4+x 3+x 2+x+1 0x0E2 0x368
11 x 10+x 4+x 3+x 2+x+1 0x0E2 0x0E4
12 x 10+x 4+x 3+x 2+x+1 0x04E 0x2F0
考虑到目标多项式为本原多项式时所产生的序列一般具有较好随机性,同时考虑到目标多项式的非零项越多,实现越复杂,在目标多项式采用本原多项式且其非零项不大于5时,目标多项式与两个偏振方向上的用十六进制表示的种子为下表X-7中的一行时,同一偏振方向上的导频符号的周期自相关函数旁瓣值的归一化幅度不大于0.25,不同偏振方向上的导频符号的周期互相关函数值的归一化幅度不大于0.25。
表X-7
序号 目标多项式 偏振一方向的种子 偏振二方向的种子
1 x 10+x 9+x 7+x 3+1 0x23E 0x094
2 x 10+x 7+x 6+x 2+1 0x0BE 0x1B8
3 x 10+x 9+x 6+x+1 0x002 0x210
4 x 10+x 9+x 6+x+1 0x002 0x308
5 x 10+x 9+x 6+x+1 0x002 0x184
6 x 10+x 9+x 6+x+1 0x1C2 0x040
7 x 10+x 8+x 5+x+1 0x3FE 0x0E0
8 x 10+x 8+x 5+x+1 0x3FE 0x270
9 x 10+x 8+x 5+x+1 0x3FE 0x304
10 x 10+x 9+x 4+x+1 0x3B6 0x1A0
11 x 10+x 9+x 4+x+1 0x3B6 0x0D0
12 x 10+x 9+x 4+x+1 0x3B6 0x058
13 x 10+x 9+x 4+x+1 0x3B6 0x22C
14 x 10+x 7+x 3+x+1 0x34E 0x084
该表X-7中,序号为14的一行中,目标多项式,也可以称为本原多项式为x 10+x 7+x 3+x+1,对应的两个偏振方向上的用十六进制表示的种子为0x34E和0x084时,114个导频符号的生成过程可以参阅图35进行理解。
如图35所示,在X偏振方向上,输入的偏振种子为0x34E,转换为二进制序列后为1101001110,也就是从m 9到m 0的取值,若按顺序连续输出的两个比特位1和0,则X偏振方向上的导频符号为A-Aj,若按顺序连续输出的两个比特位0和0,则X偏振方向上的导频符号为-A-Aj,若按顺序连续输出的两个比特位1和1,则X偏振方向上的导频符号为A+Aj,若按顺序连续输出的两个比特位0和1,则X偏振方向上的导频符号为-A+Aj。依次类推,可以得到X偏振方向上的114个导频符号。
如图35所示,在Y偏振方向上,输入的偏振种子为0x084,转换为二进制序列后为0010000100,也就是从m 9到m 0的取值,若按顺序连续输出的两个比特位1和0,则Y偏振方向上的导频符号为A-Aj,若按顺序连续输出的两个比特位0和0,则Y偏振方向上的导频符号为-A-Aj,若按顺序连续输出的两个比特位1和1,则Y偏振方向上的导频符号为A+Aj,若按顺序连续输出的两个比特位0和1,则Y偏振方向上的导频符号为-A+Aj。依次类推,可以得到Y偏振方向上的114个导频符号。
X偏振方向上的偏振种子和Y偏振方向上的偏振种子可以互换,因此可以得到如下表 X-8所示的114个导频符号。
表X-8
Figure PCTCN2022087770-appb-000571
上述表X-8中,在一个偏振方向上,114个导频符号和11个训练符号的组合中,-A-Aj、-A+Aj、A-Aj和A+Aj在所述一个偏振方向上的数目均为31。
上述X-8的方案中,导频符号对应的相关特性如图36所示,图36中的(a)显示的是在X偏振方向上导频符号的序列的周期自相关结果,图36中的(b)显示的是Y偏振方向上导频符号的序列的周期自相关结果,图36中的(c)显示的是在X和Y两个偏振方向上导频符号的序列的周期互相关结果。在两个偏振方向上的符号序列的周期自相关函数旁瓣值的归一化幅度不大于0.167,且两个偏振方向上的符号序列的周期互相关函数旁瓣值的归一化幅度不大于0.202。本申请实施例提供的超帧架构的帧冗余也较低,为1.79%,且导频符号的序列自相关和互相关特性都较好,训练符号和导频符号结合一起也可满足直流平衡,利于提高接收端恢复信号,提高所恢复的信号的质量。
下面,再提供一个上述超帧结构的另一个示例,当目标多项式为x 10+x 7+x 6+x 2+1,对应的两个偏振方向上的用十六进制表示的种子为0x0BE和0x1B8时,两个偏振方向上的导频符号的生成过程可以参阅图37进行理解。
如图37所示,在X偏振方向上,输入的偏振种子为0x0BE,转换为二进制序列后为0010111110,也就是从m 9到m 0的取值,若按顺序连续输出的两个比特位1和0,则X偏振方向上的导频符号为A-Aj,若按顺序连续输出的两个比特位0和0,则X偏振方向上的导频符号为-A-Aj,若按顺序连续输出的两个比特位1和1,则X偏振方向上的导频符号为A+Aj,若按顺序连续输出的两个比特位0和1,则X偏振方向上的导频符号为-A+Aj。依次类推,可以得到X偏振方向上的114个导频符号。
如图37所示,在Y偏振方向上,输入的偏振种子为0x1B8,转换为二进制序列后为0110111000,也就是从m 9到m 0的取值,若按顺序连续输出的两个比特位1和0,则Y偏振方向上的导频符号为A-Aj,若按顺序连续输出的两个比特位0和0,则Y偏振方向上的导频符号为-A-Aj,若按顺序连续输出的两个比特位1和1,则Y偏振方向上的导频符号为A+Aj,若按顺序连续输出的两个比特位0和1,则Y偏振方向上的导频符号为-A+Aj。依次类推,可以得到Y偏振方向上的114个导频符号。
X偏振方向上的偏振种子和Y偏振方向上的偏振种子可以互换,因此可以得到如下表X-9所示的114个导频符号。
表X-9
Figure PCTCN2022087770-appb-000572
Figure PCTCN2022087770-appb-000573
上述图X-9中,导频符号对应的相关特性如图38所示,图38中的(a)显示的是在X偏振方向上导频符号的序列的周期自相关结果,图38中的(b)显示的是Y偏振方向上导频符号的序列的周期自相关结果,图38中的(c)显示的是在X和Y两个偏振方向上导频符号的序列的周期互相关结果。在两个偏振方向上的符号序列的周期自相关函数旁瓣值的归一化幅度不大于0.162,且两个偏振方向上的符号序列的周期互相关函数旁瓣值的归一化幅度不大于0.185。本申请实施例提供的超帧架构的帧冗余也较低,为1.79%,且所设计的导频符号的序列自相关和互相关特性都较好,训练序列和导频符号的序列结合一起也可满足直流平衡,利于提高接收端恢复信号,提高所恢复的信号的质量。
以上介绍了前述表2中序号是18的一行的超帧结构,及其导频符号的生成过程的内容,下面介绍了前述表2中序号是9的一行的超帧的相应内容。
针对前述表2中序号是9的一行,成帧前符号个数为172032个,其对应的N SF、N PS、N TS、N S、N F、N FAW、N RES、OH等参数如下表X-10所示:
表X-10
N SF N PS N S N F OH N TS N FAW+N RES
48 57 3648 175104 1.79% 6 96
其超帧结构如图39中的(a)所示,该超帧包括48个子帧,每个子帧包括3648个符号;第一个子帧如图39中的(b)所示,有6个训练符号,N FAW个帧同步符号,N RES个保留符号,N FAW+N RES=96;如图39中的(c)所示,在第2到48个子帧中,也都有6个训练符号;且在每一个子帧中,每64个符号里面的第一个符号为导频符号,每个子帧包含57个导频符号。
该图39中的(b)中,以N FAW=22,N RES=74为例进行描述,22个帧同步符号的序列可以参阅下表X-3进行理解:考虑到6个训练符号的首符号需要跟57个导频符号的首符号相同。该图39中的(b)中,6个训练符号的序列可以参阅下表X-11进行理解:
表X-11
偏振 训练符号的序列
偏振一 A-Aj,A+Aj,A+Aj,-A-Aj,-A-Aj,-A+Aj
偏振二 A-Aj,-A-Aj,-A+Aj,A-Aj,A+Aj,-A+Aj
在该示例中,57个导频符号是目标多项式及对应的种子(seed)确定的。本申请实施例中,目标多项式和种子生成导频符号的结构可以参阅前述图34部分的相应内容进行理解。
针对需要生成57个导频符号的场景,根据目标多项式和种子获得连续的长度114的比特序列b 0,b 1,b 2,...b 113。比特序列b 0,b 1,b 2,...b 113每2个连续比特映射为一个符号,其中b 2t 和b 2t+1映射为一个符号(2b 2t-1)A+(2b 2t+1-1)Aj。需要说明的是,符号(2b 2t-1)A+(2b 2t+1-1)Aj也可以不为所用的调制格式的星座图上的符号,其可以是所用的调制格式的星座图最外面4个符号和最里面4个符号中间区域的某4个符号。此时,训练和导频符号的噪声和灵敏度一般,但峰均功率比相对较低。以16QAM为例,16QAM星座图上的16个符号取值为{±1±1j,±1±3j,±3±1j,±3±3j},实数A的取值满足1≤A≤3。实数A的具体取值可根据实际应用场景选取使得训练和导频符号的峰均功率比、噪声和灵敏度具备很好的折中。例如实数
Figure PCTCN2022087770-appb-000574
导频符号和训练符号的取值为
Figure PCTCN2022087770-appb-000575
Figure PCTCN2022087770-appb-000576
另外,当16QAM星座图上的16个符号进行功率归一化且取值为
Figure PCTCN2022087770-appb-000577
实数A的取值满足
Figure PCTCN2022087770-appb-000578
例如实数
Figure PCTCN2022087770-appb-000579
导频符号和训练符号的取值为
Figure PCTCN2022087770-appb-000580
目标多项式与两个偏振方向上的用十六进制表示的种子为下表X-12中的一行时,同一偏振方向上的导频符号的周期自相关函数旁瓣值的归一化幅度不大于0.23,不同偏振方向上的导频符号的周期互相关函数值的归一化幅度不大于0.23。
表X-12
序号 目标多项式 一个偏振方向的种子 另一个偏振方向的种子
1 x 10+x 7+x 3+x+1 0x204 0x279
2 x 10+x 7+x 3+x+1 0x0B1 0x3E9
3 x 10+x 7+x 3+x+1 0x0B1 0x279
当目标多项式为x 10+x 7+x 3+x+1,对应的两个偏振方向上的用十六进制表示的种子为0x0B1和0x3E9时,也就是上述表X-12中的序号为2的一行时,57个导频符号的生成过程可以参阅图40进行理解。
如图40所示,在X偏振方向上,输入的偏振种子为0x0B1,转换为二进制序列后为0010110001,也就是从m 9到m 0的取值,若按顺序连续输出的两个比特位1和0,则X偏振方向上的导频符号为A-Aj,若按顺序连续输出的两个比特位0和0,则X偏振方向上的导频符号为-A-Aj,若按顺序连续输出的两个比特位1和1,则X偏振方向上的导频符号为A+Aj,若按顺序连续输出的两个比特位0和1,则X偏振方向上的导频符号为-A+Aj。依次类推,可以得到X偏振方向上的57个导频符号。
如图40所示,在Y偏振方向上,输入的偏振种子为0x3E9,转换为二进制序列后为1111101001,也就是从m 9到m 0的取值,若按顺序连续输出的两个比特位1和0,则Y偏振方向上的导频符号为A-Aj,若按顺序连续输出的两个比特位0和0,则Y偏振方向上的导频符号为-A-Aj,若按顺序连续输出的两个比特位1和1,则Y偏振方向上的导频符号为A+Aj,若按顺序连续输出的两个比特位0和1,则Y偏振方向上的导频符号为-A+Aj。依次类推,可以得到Y偏振方向上的57个导频符号。
X偏振方向上的偏振种子和Y偏振方向上的偏振种子可以互换,因此可以得到如下表 X-13所示的57个导频符号。
表X-13
Figure PCTCN2022087770-appb-000581
上述图X-13中,导频符号对应的相关特性如图41所示,图41中的(a)显示的是在X偏振方向上导频符号的序列的周期自相关结果,图41中的(b)显示的是Y偏振方向上导频符号的序列的周期自相关结果,图41中的(c)显示的是在X和Y两个偏振方向上导频符号的序列的周期互相关结果。在两个偏振方向上的符号序列的周期自相关函数旁瓣值的归一化幅度不大于0.206,且两个偏振方向上的符号序列的周期互相关函数旁瓣值的归一化幅度不大于0.212。本申请实施例提供的超帧架构的帧冗余也较低,为1.79%,且所设计的导频符号的序列自相关和互相关特性都较好,训练序列和导频符号的序列结合一起也可满足直流平衡,利于提高接收端恢复信号,提高所恢复的信号的质量。
结合前述图1对应的实施例所介绍的通信系统,以及图2或图3对应的实施例所描述的成帧的过程,本申请实施例还提供了另一种用于光通信的传输方法,如图42所示,该传输方法包括:
3301.传输设备生成包含多个子帧的超帧,子帧包括训练符号和导频符号;
在每个子帧中,在一个偏振方向上,导频符号有N PS个,取值为-A 2-A 2j、-A 2+A 2j、A 2-A 2j、A 2+A 2j中的一种,其中A 2为实数,N PS为偶数;N PS个导频符号达到直流平衡;训练符号与N PS个导频符号的组合达到直流平衡;
导频符号是目标多项式和种子确定生成的,目标多项式为本原多项式,且其非零项不大于5;目标多项式为下表Y-1中的一个;
表Y-1
序号 目标多项式
1 x 10+x 9+x 7+x 6+1
2 x 10+x 9+x 7+x 3+1
3 x 10+x 8+x 4+x 3+1
4 x 10+x 7+x 6+x 2+1
5 x 10+x 9+x 6+x+1
6 x 10+x 9+x 4+x+1
7 x 10+x 7+x 3+x+1
8 x 10+x 4+x 3+x+1
3302.传输设备将超帧发送出去,对应地,接收设备接收包含多个子帧的超帧。
3303.接收设备对接收到的超帧进行解码。
在本申请实施例的方案中,导频符号是目标多项式和种子生成的,该目标多项式是上述表Y-1中的任意一项,该目标多项式和所对应的种子可以满足生成的N PS个导频符号达到直流平衡,以及训练符号与N PS个导频符号的组合达到直流平衡,这样有利于接收端较好的恢复信号,提高接收端信号的质量。
本申请实施例所提供的超帧的结构可以参阅前述图33中的(a)至图33中的(c)部分的相应内容进行理解,此处不再重复赘述。
在本申请实施例中,考虑如下具体的超帧格式,成帧前符号个数为172032个,其是经过编码的符号,编码方式可以是采用开放码(Open FEC,OFEC),或采用码长128比特的汉明码多次编码获得,也可以采用其他编码方式;其对应的N SF、N TS、N PS、N FAW、N RES、N S、N F、OH等参数如下表所示:
Figure PCTCN2022087770-appb-000582
该超帧包括24个子帧,每个子帧包括7296个符号,如图33中的(a)所示;第一个子帧如图33中的(b)所示,有11个训练符号,N FAW个帧同步符号,N RES个保留符号,其中N FAW+N RES=96;在第2到24个子帧中,也都有11个训练符号,如图33中的(c);且在每一个子帧中,每64个符号里面的第一个符号为导频符号。每个子帧包含114个导频符号。
这里以帧同步符号个数N FAW=22、保留符号个数N RES=74为例进行描述,如图33中的(b)所示。
长度为22的帧同步序列采用下表Y-2所示,其中实数A FAW的取值不做具体限定。可根据实际应用场景选取使得FAW符号的峰均功率比、噪声和灵敏度具备很好的折中。以16QAM为例,16QAM星座图上的16个符号取值为{±1±1j,±1±3j,±3±1j,±3±3j},实数A FAW的取值满足1≤A≤3。例如实数
Figure PCTCN2022087770-appb-000583
导频符号的取值为
Figure PCTCN2022087770-appb-000584
Figure PCTCN2022087770-appb-000585
表Y-2
Figure PCTCN2022087770-appb-000586
Figure PCTCN2022087770-appb-000587
114个导频符号是基于目标多项式及对应的种子(seed)确定的。本申请实施例中,目标多项式采用10阶的多项式,该10阶的多项式可以表示为:
x 10+a 9×x 9+a 8×x 8+a 7×x 7+a 6×x 6+a 5×x 5+a 4×x 4+a 3×x 3+a 2×x 2+a 1×x+1
其中,a 9...a 1可取值0或1。
导频符号生成结构可以参阅前面的图34进行理解,如图34所示,种子用二进制的形式可以表示为m 9、m 8、m 7、m 6、m 5、m 4、m 3、m 2、m 1、m 0,当然,种子也可以用十六进制或十进制来表示,当与目标多项式运算时需要转换为二进制的形式,如:0110111000用十六进制表示为0x1B8,十进制表示为440。
本申请实施例中,对于两个正交的偏振方向上的导频符号,可以采用相同的目标生成多项式,但因种子(seed)不相同,对应地,两个偏振方向上输出的导频符号不完全一样。
如图34中,针对需要产生114个导频符号的场景,根据目标多项式和种子获得连续长度228的比特序列b 0,b 1,b 2,...b 227。比特序列b 0,b 1,b 2,...b 227每2个连续比特映射为一个符号,此时b 2t和b 2t+1映射为一个符号(2b 2t-1)A 2+(2b 2t+1-1)A 2j,0≤t<114。
应理解,当导频符号采用星座图最外面4个符号时,导频符号的灵敏度(sensitivity)较高,但峰均功率比(peak to average power)较大;当导频符号取值采用星座图最里面4个符号时,训练和导频的噪声(noise)较小,但其灵敏度(sensitivity)较低。
需要说明的是,导频符号可以不为所用的调制格式的星座图上的符号,其可以是所用的调制格式的星座图最外面4个符号和最里面4个符号中间区域的某4个符号。此时,导频符号的噪声和灵敏度一般,但峰均功率比相对较低。以16QAM为例,16QAM星座图上的16个符号取值为{±1±1j,±1±3j,±3±1j,±3±3j},实数A 2的取值满足1≤A 2≤3。实数A 2的具体取值可根据实际应用场景选取使得训练或导频符号的峰均功率比、噪声和灵 敏度具备很好的折中。例如实数
Figure PCTCN2022087770-appb-000588
导频符号和训练符号的取值为
Figure PCTCN2022087770-appb-000589
Figure PCTCN2022087770-appb-000590
另外,当16QAM星座图上的16个符号进行功率归一化且取值为
Figure PCTCN2022087770-appb-000591
实数A 2的取值满足
Figure PCTCN2022087770-appb-000592
例如实数
Figure PCTCN2022087770-appb-000593
导频符号的取值为
Figure PCTCN2022087770-appb-000594
Figure PCTCN2022087770-appb-000595
考虑到目标多项式为本原多项式时所产生的序列一般具有较好随机性,同时考虑到目标多项式的非零项越多,实现越复杂,在目标多项式采用本原多项式且其非零项不大于5时,目标多项式与两个偏振方向上的用十六进制表示的种子为下表Y-3中的一行时,同一偏振方向上的导频符号的周期自相关函数旁瓣值的归一化幅度不大于0.25,不同偏振方向上的导频符号的周期互相关函数值的归一化幅度不大于0.25。
表Y-3
序号 目标多项式 偏振一方向的种子 偏振二方向的种子
1 x 10+x 9+x 7+x 6+1 0x002 0x3C6
2 x 10+x 9+x 7+x 6+1 0x002 0x38D
3 x 10+x 9+x 7+x 3+1 0x094 0x11F
4 x 10+x 9+x 7+x 3+1 0x129 0x11F
5 x 10+x 8+x 4+x 3+1 0x07A 0x167
6 x 10+x 8+x 4+x 3+1 0x07A 0x2CF
7 x 10+x 7+x 6+x 2+1 0x1B8 0x22F
8 x 10+x 7+x 6+x 2+1 0x1B8 0x05F
9 x 10+x 9+x 6+x+1 0x040 0x210
10 x 10+x 9+x 6+x+1 0x040 0x308
11 x 10+x 9+x 6+x+1 0x040 0x184
12 x 10+x 9+x 6+x+1 0x040 0x0C2
13 x 10+x 9+x 6+x+1 0x040 0x0E1
14 x 10+x 9+x 6+x+1 0x040 0x0D7
15 x 10+x 9+x 6+x+1 0x040 0x1AF
16 x 10+x 9+x 6+x+1 0x210 0x201
17 x 10+x 9+x 6+x+1 0x308 0x201
18 x 10+x 9+x 6+x+1 0x184 0x201
19 x 10+x 9+x 6+x+1 0x0C2 0x201
20 x 10+x 9+x 6+x+1 0x201 0x0E1
21 x 10+x 9+x 6+x+1 0x201 0x0D7
22 x 10+x 9+x 6+x+1 0x201 0x1AF
23 x 10+x 9+x 4+x+1 0x1A0 0x2D9
24 x 10+x 9+x 4+x+1 0x1A0 0x3DB
25 x 10+x 9+x 4+x+1 0x0D0 0x2D9
26 x 10+x 9+x 4+x+1 0x0D0 0x3DB
27 x 10+x 9+x 4+x+1 0x058 0x2D9
28 x 10+x 9+x 4+x+1 0x058 0x3DB
29 x 10+x 9+x 4+x+1 0x22C 0x2D9
30 x 10+x 9+x 4+x+1 0x22C 0x3DB
31 x 10+x 9+x 4+x+1 0x2D2 0x2D9
32 x 10+x 9+x 4+x+1 0x2D2 0x3DB
33 x 10+x 9+x 4+x+1 0x2D9 0x1A5
34 x 10+x 9+x 4+x+1 0x2D9 0x3DD
35 x 10+x 9+x 4+x+1 0x1A5 0x3DB
36 x 10+x 9+x 4+x+1 0x3DD 0x3DB
37 x 10+x 7+x 3+x+1 0x084 0x1A7
38 x 10+x 7+x 3+x+1 0x109 0x1A7
39 x 10+x 4+x 3+x+1 0x365 0x3EB
40 x 10+x 4+x 3+x+1 0x2CB 0x3EB
该表Y-3中,序号为1的一行中,目标多项式采用本原多项式为x 10+x 9+x 7+x 6+1,对应的两个偏振方向上的用十六进制表示的种子为0x002和0x3C6时,114个导频符号的生成过程可以参阅下图43进行理解。
如图43所示,在X偏振方向上,输入的偏振种子为0x002,转换为二进制序列后为0000000010,也就是从m 9到m 0的取值,若按顺序连续输出的两个比特位1和0,则X偏振方向上的导频符号为A 2-A 2j,若按顺序连续输出的两个比特位0和0,则X偏振方向上的导频符 号为-A 2-A 2j,若按顺序连续输出的两个比特位1和1,则X偏振方向上的导频符号为A 2+A 2j,若按顺序连续输出的两个比特位0和1,则X偏振方向上的导频符号为-A 2+A 2j。依次类推,可以得到X偏振方向上的114个导频符号。
如图43所示,在Y偏振方向上,输入的偏振种子为0x3C6,转换为二进制序列后为0010000100,也就是从m 9到m 0的取值,若按顺序连续输出的两个比特位1和0,则Y偏振方向上的导频符号为A 2-A 2j,若按顺序连续输出的两个比特位0和0,则Y偏振方向上的导频符号为-A 2-A 2j,若按顺序连续输出的两个比特位1和1,则Y偏振方向上的导频符号为A 2+A 2j,若按顺序连续输出的两个比特位0和1,则Y偏振方向上的导频符号为-A 2+A 2j。依次类推,可以得到Y偏振方向上的114个导频符号。
X偏振方向上的偏振种子和Y偏振方向上的偏振种子可以互换,因此可以得到如下表Y-4所示的114个导频符号。
表Y-4
Figure PCTCN2022087770-appb-000596
Figure PCTCN2022087770-appb-000597
上述表Y-4中,在一个偏振方向上,114个导频符号中-A 2-A 2j、-A 2+A 2j、A 2-A 2j和A 2+A 2j在所述一个偏振方向上的数目分别为28、29、29、28。在一个偏振方向上,一个子帧中包括的导频符号中-A 2-A 2j、-A 2+A 2j、A 2-A 2j、A 2+A 2j彼此之间的数目接近。此外,在一个偏振方向上,一个子帧中的114个导频符号的和为0,可以达到直流平衡,利于接收端恢复信号的质量。
本申请实施例中,每个子帧中的第一个符号作为导频符号也作为训练符号。所考虑的11个训练符号的第一个符号跟114个导频符号的第一个符号相同。在一个偏振方向上,每个子帧中除去第一个符号还包括10个训练符号,这10个训练符号的取值为-A 1-A 1j、-A 1+A 1j、A 1-A 1j、A 1+A 1j中的一种,其中A 1为实数;实数A 1的具体取值可根据实际应用场景选取使得训练或导频符号的峰均功率比、噪声和灵敏度具备很好的折中。A 1可以不等于A 2;以16QAM为例,16QAM星座图上的16个符号取值为{±1±1j,±1±3j,±3±1j,±3±3j},实数A 1的取值满足1≤A 2≤3。例如实数
Figure PCTCN2022087770-appb-000598
每个子帧中除去第一个符号后的10个训练符号的取值为
Figure PCTCN2022087770-appb-000599
另外,当16QAM星座图上的16个符号进行功率归一化且取值为
Figure PCTCN2022087770-appb-000600
Figure PCTCN2022087770-appb-000601
实数A 2的取值满足
Figure PCTCN2022087770-appb-000602
例如实数
Figure PCTCN2022087770-appb-000603
导频符号的取值为
Figure PCTCN2022087770-appb-000604
该图33中的(b)中,长度为11的训练序列可采用表40中两个偏振首符号均为-A+Aj的一项,并将每个偏振方向上的首符号中采用的实数A设置为A 2,且除去首符号剩余10个符号中采用的实数A设置为A 1。如采用表40中序号15的一项,获得下表Y-5所示。
表Y-5
Figure PCTCN2022087770-appb-000605
Figure PCTCN2022087770-appb-000606
采用上述114个导频符号和11个训练符号,在一个偏振方向上,一个子帧中包括的导频符号和训练符号的组合满足直流平衡。
需要说明的是,当实数A 1和A 2的取值不相等,上述表Y-5中11个训练序列中第一个符号为-A 2+A 2j,与后面10个训练序列中的取值-A 1-A 1j、-A 1+A 1j、A 1-A 1j、A 1+A 1j均不相等。在一些实际应用场景中,为了便于实现,在一个偏振方向上,在每个子帧中的第一个符号仅用做导频符号不再用于训练符号,此时,子帧中训练符号个数减少为10个,其取值为-A 1-A 1j、-A 1+A 1j、A 1-A 1j、A 1+A 1j中一种,便于均衡(equalisation)的实现。此时,长度为10的训练序列可采用表33中的一项,并将实数A设置为A 1
上述方案中,导频符号对应的相关特性如下图44所示,图44中的(a)显示的是在X偏振方向上导频符号的序列的周期自相关结果,图44中的(b)显示的是Y偏振方向上导频符号的序列的周期自相关结果,图44中的(c)显示的是在X和Y两个偏振方向上导频符号的序列的周期互相关结果。在两个偏振方向上的符号序列的周期自相关函数旁瓣值的归一化幅度不大于0.167,且两个偏振方向上的符号序列的周期互相关函数旁瓣值的归一化幅度不大于0.176。本申请实施例提供的超帧架构的帧冗余也较低,为1.79%,且导频符号的序列自相关和互相关特性都较好,训练符号和导频符号结合一起也可满足直流平衡,利于提高接收端恢复信号,提高所恢复的信号的质量。
本领域内的技术人员应明白,本申请的实施例可提供为方法、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
以上所述仅为本申请技术方案的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (72)

  1. 一种用于光通信的传输方法,其特征在于,所述方法包括:
    生成包含多个子帧的超帧,所述子帧包括训练符号和导频符号,其中,在一个偏振方向上,所述子帧包括的所述训练符号和所述导频符号的数量之和不小于5,有一个符号既为训练符号,也为导频符号;且每个所述训练符号和每个所述导频符号分别为-A-Aj、-A+Aj、A-Aj、A+Aj中的一种,A为实数;
    在每个子帧包括的所述训练符号和所述导频符号中,-A-Aj、-A+Aj、A-Aj和A+Aj在一个偏振方向上的数目分别为
    Figure PCTCN2022087770-appb-100001
    Figure PCTCN2022087770-appb-100002
    且在另一个偏振方向上的数目分别为
    Figure PCTCN2022087770-appb-100003
    Figure PCTCN2022087770-appb-100004
    其中,N TS为每个子帧中所述训练符号在一个偏振方向上的数量,N PS为每个子帧中所述导频符号在一个偏振方向上的数量,N TS+N PS为奇数,两个偏振方向相互正交;
    将所述超帧发送出去。
  2. 根据权利要求1所述的传输方法,其特征在于,在一个子帧中,在一个偏振方向上的训练符号组成的序列与在另一个偏振方向上的训练符号组成的序列互不相同,在一个偏振方向上的导频符号组成的序列与在另一个偏振方向上的导频符号组成的序列互不相同。
  3. 根据权利要求1或2所述的传输方法,其特征在于,所述训练符号在所述子帧中连续排列,其中,在一个偏振方向上,所述子帧包括的所述训练符号中,实部元素连续相同的个数不大于5,虚部元素连续相同的个数不大于5。
  4. 根据权利要求3所述的传输方法,其特征在于,在一个偏振方向上,一个子帧中连续相同的所述训练符号的个数不超过4个。
  5. 根据权利要求1-4中任一项所述的传输方法,其特征在于,所述多个子帧还包括第一子帧,所述第一子帧包括连续排列的帧同步符号,每个帧同步符号分别为-A-Aj、-A+Aj、A-Aj、A+Aj中的一种;
    在一个偏振方向上,所述子帧包括的所述帧同步符号中,实部的元素连续相同的个数不大于5,虚部中元素连续相同的个数不大于5。
  6. 根据权利要求5所述的传输方法,其特征在于,在一个偏振方向上,所述第一子帧中连续相同的所述帧同步符号的个数不超过4个。
  7. 根据权利要求5所述的传输方法,其特征在于,在所述第一子帧包括的帧同步符号中,-A-Aj、-A+Aj、A-Aj和A+Aj在一个偏振方向上的数目分别为
    Figure PCTCN2022087770-appb-100005
    Figure PCTCN2022087770-appb-100006
    且在另一个偏振方向上的数目分别为
    Figure PCTCN2022087770-appb-100007
    Figure PCTCN2022087770-appb-100008
    其中,N FAW为所述第一子帧中的所述帧同步符号在一个偏振方向上的数量,N FAW为偶数。
  8. 根据权利要求1-7中任一项所述的传输方法,其特征在于,N TS为偶数,在每个子帧包括的所述训练符号中,-A-Aj、-A+Aj、A-Aj和A+Aj在一个偏振方向上的数目分别为
    Figure PCTCN2022087770-appb-100009
    Figure PCTCN2022087770-appb-100010
    且在另一个偏振方向上的数目分别为
    Figure PCTCN2022087770-appb-100011
    Figure PCTCN2022087770-appb-100012
  9. 根据权利要求1-7中任一项所述的传输方法,其特征在于,N TS为奇数,在每个子帧 包括的训练符号中,除去同时作为所述导频符号的那个训练符号,-A-Aj、-A+Aj、A-Aj和A+Aj在一个偏振方向上的数目分别为
    Figure PCTCN2022087770-appb-100013
    Figure PCTCN2022087770-appb-100014
    且在另一个偏振方向上的数目分别为
    Figure PCTCN2022087770-appb-100015
    Figure PCTCN2022087770-appb-100016
  10. 根据权利要求1-7中任一项所述的传输方法,其特征在于,在每个子帧中,一个偏振方向上的导频符号的个数除以4的余数为0,在每个子帧包括的所述导频符号中,-A-Aj、-A+Aj、A-Aj和A+Aj在一个偏振方向上的数目分别为N PS/4+1、N PS/4-1、N PS/4-1、N PS/4+1,且在另一个偏振方向上的数目分别为N PS/4-1、N PS/4+1、N PS/4+1、N PS/4-1;或,在两个偏振方向上的数目均为N PS/4。
  11. 根据权利要求1-7中任一项所述的传输方法,其特征在于,在每个子帧中,一个偏振方向上的导频符号的个数除以4的余数为2,在每个子帧包括的所述导频符号中,-A-Aj、-A+Aj、A-Aj、A+Aj在一个偏振方向上的数目分别为(N PS-2)/4、(N PS-2)/4+1、(N PS-2)/4+1、(N PS-2)/4,且在另一个偏振方向上的数目分别为(N PS-2)/4+1、(N PS-2)/4、(N PS-2)/4、(N PS-2)/4+1。
  12. 根据权利要求1-7中任一项所述的传输方法,其特征在于,在每个子帧中,一个偏振方向上的导频符号的个数除以4的余数为1,在每个子帧包括的所述导频符号中,除去同时作为训练符号的那个导频符号,-A-Aj、-A+Aj、A-Aj、A+Aj在一个偏振方向上的数目分别为(N PS-1)/4+1、(N PS-1)/4-1、(N PS-1)/4-1、(N PS-1)/4+1,且在另一个偏振方向上的数目分别为(N PS-1)/4-1、(N PS-1)/4+1、(N PS-1)/4+1、(N PS-1)/4-1;或,在两个偏振方向上的数目均为(N PS-1)/4。
  13. 根据权利要求1-7中任一项所述的传输方法,其特征在于,在每个子帧中,一个偏振方向上的导频符号的个数除以4的余数为3时,在每个子帧包括的所述导频符号中,除去同时作为训练符号的那个导频符号,-A-Aj、-A+Aj、A-Aj、A+Aj在一个偏振方向上的数目分别为(N PS-3)/4、(N PS-3)/4+1、(N PS-3)/4+1、(N PS-3)/4,且在另一个偏振方向上的数目分别为(N PS-3)/4+1、(N PS-3)/4、(N PS-3)/4、(N PS-3)/4+1。
  14. 根据权利要求1-13中任一项所述的传输方法,其特征在于,所述超帧中的符号的调制格式为16QAM,A的值为±1或±3或
    Figure PCTCN2022087770-appb-100017
  15. 根据权利要求1-7中任一项所述的传输方法,其特征在于,在每个子帧中,每64个符号里固定位置为所述导频符号。
  16. 根据权利要求15所述的传输方法,其特征在于,每个子帧包括15个训练符号和56个导频符号,所述训练符号构成的训练序列和所述导频符号构成的导频序列在相同偏振方向上的第一个符号相同,其中,所述训练序列为下表中的一项:
    Figure PCTCN2022087770-appb-100018
    Figure PCTCN2022087770-appb-100019
    Figure PCTCN2022087770-appb-100020
    Figure PCTCN2022087770-appb-100021
    Figure PCTCN2022087770-appb-100022
    Figure PCTCN2022087770-appb-100023
    Figure PCTCN2022087770-appb-100024
    Figure PCTCN2022087770-appb-100025
    所述导频序列为下表中的一项:
    Figure PCTCN2022087770-appb-100026
    Figure PCTCN2022087770-appb-100027
    Figure PCTCN2022087770-appb-100028
    Figure PCTCN2022087770-appb-100029
    Figure PCTCN2022087770-appb-100030
    Figure PCTCN2022087770-appb-100031
    Figure PCTCN2022087770-appb-100032
    Figure PCTCN2022087770-appb-100033
    Figure PCTCN2022087770-appb-100034
    Figure PCTCN2022087770-appb-100035
    Figure PCTCN2022087770-appb-100036
    Figure PCTCN2022087770-appb-100037
    Figure PCTCN2022087770-appb-100038
    Figure PCTCN2022087770-appb-100039
  17. 根据权利要求15所述的传输方法,其特征在于,每个子帧包括6个训练符号和57个导频符号,所述训练符号构成的训练序列和所述导频符号构成的导频序列在相同偏振方向上的第一个符号相同,其中,所述训练序列为下表中的一项:
    Figure PCTCN2022087770-appb-100040
    Figure PCTCN2022087770-appb-100041
    所述导频序列为下表中的一项:
    Figure PCTCN2022087770-appb-100042
    Figure PCTCN2022087770-appb-100043
    Figure PCTCN2022087770-appb-100044
    Figure PCTCN2022087770-appb-100045
    Figure PCTCN2022087770-appb-100046
    Figure PCTCN2022087770-appb-100047
    Figure PCTCN2022087770-appb-100048
    Figure PCTCN2022087770-appb-100049
    Figure PCTCN2022087770-appb-100050
  18. 根据权利要求15所述的传输方法,其特征在于,每个子帧包括10个训练符号和65个导频符号,所述训练符号构成的训练序列和所述导频符号构成的导频序列在相同偏振方向上的第一个符号相同,其中,所述训练序列为下表中的一项:
    Figure PCTCN2022087770-appb-100051
    Figure PCTCN2022087770-appb-100052
    Figure PCTCN2022087770-appb-100053
    Figure PCTCN2022087770-appb-100054
    Figure PCTCN2022087770-appb-100055
    所述导频序列为下表中的一项:
    Figure PCTCN2022087770-appb-100056
    Figure PCTCN2022087770-appb-100057
    Figure PCTCN2022087770-appb-100058
    Figure PCTCN2022087770-appb-100059
    Figure PCTCN2022087770-appb-100060
    Figure PCTCN2022087770-appb-100061
    Figure PCTCN2022087770-appb-100062
    Figure PCTCN2022087770-appb-100063
    Figure PCTCN2022087770-appb-100064
    Figure PCTCN2022087770-appb-100065
    Figure PCTCN2022087770-appb-100066
    Figure PCTCN2022087770-appb-100067
    Figure PCTCN2022087770-appb-100068
    Figure PCTCN2022087770-appb-100069
    Figure PCTCN2022087770-appb-100070
  19. 根据权利要求1-7中任一项所述的传输方法,其特征在于,在每个子帧中,每48个符号里的固定位置为所述导频符号。
  20. 根据权利要求19所述的传输方法,其特征在于,每个子帧包括12个训练符号和75个导频符号,所述训练符号构成的训练序列和所述导频符号构成的导频序列在相同偏振方向上的第一个符号相同,其中,所述训练序列为下表中的一项:
    Figure PCTCN2022087770-appb-100071
    Figure PCTCN2022087770-appb-100072
    Figure PCTCN2022087770-appb-100073
    Figure PCTCN2022087770-appb-100074
    Figure PCTCN2022087770-appb-100075
    Figure PCTCN2022087770-appb-100076
    Figure PCTCN2022087770-appb-100077
    Figure PCTCN2022087770-appb-100078
    Figure PCTCN2022087770-appb-100079
    Figure PCTCN2022087770-appb-100080
    所述导频序列为下表中的一项:
    Figure PCTCN2022087770-appb-100081
    Figure PCTCN2022087770-appb-100082
    Figure PCTCN2022087770-appb-100083
    Figure PCTCN2022087770-appb-100084
    Figure PCTCN2022087770-appb-100085
    Figure PCTCN2022087770-appb-100086
    Figure PCTCN2022087770-appb-100087
    Figure PCTCN2022087770-appb-100088
    Figure PCTCN2022087770-appb-100089
    Figure PCTCN2022087770-appb-100090
    Figure PCTCN2022087770-appb-100091
    Figure PCTCN2022087770-appb-100092
    Figure PCTCN2022087770-appb-100093
    Figure PCTCN2022087770-appb-100094
  21. 一种用于光通信的接收方法,其特征在于,所述方法包括:
    接收包含多个子帧的超帧,所述子帧包括训练符号和导频符号,其中,在一个偏振方 向上,所述子帧包括的所述训练符号和所述导频符号的数量之和不小于5,有一个符号既为训练符号,也为导频符号;且每个所述训练符号和每个所述导频符号分别为-A-Aj、-A+Aj、A-Aj、A+Aj中的一种,A为实数;
    在每个子帧包括的所述训练符号和所述导频符号中,-A-Aj、-A+Aj、A-Aj和A+Aj在一个偏振方向上的数目分别为
    Figure PCTCN2022087770-appb-100095
    Figure PCTCN2022087770-appb-100096
    且在另一个偏振方向上的数目分别为
    Figure PCTCN2022087770-appb-100097
    Figure PCTCN2022087770-appb-100098
    其中,N TS为每个子帧中所述训练符号在一个偏振方向上的数量,N PS为每个子帧中所述导频符号在一个偏振方向上的数量,N TS+N PS为奇数,两个偏振方向相互正交;
    对接收到的所述超帧进行解码。
  22. 根据权利要求21所述的接收方法,其特征在于,在一个子帧中,在一个偏振方向上的训练符号组成的序列与在另一个偏振方向上的训练符号组成的序列互不相同,在一个偏振方向上的导频符号组成的序列与在另一个偏振方向上的导频符号组成的序列互不相同。
  23. 根据权利要求21或22所述的接收方法,其特征在于,所述训练符号在所述子帧中连续排列,其中,在一个偏振方向上,所述子帧包括的所述训练符号中,实部元素连续相同的个数不大于5,虚部元素连续相同的个数不大于5。
  24. 根据权利要求23所述的接收方法,其特征在于,在一个偏振方向上,一个子帧中连续相同的所述训练符号的个数不超过4个。
  25. 根据权利要求21-24中任一项所述的接收方法,其特征在于,所述多个子帧还包括第一子帧,所述第一子帧包括连续排列的帧同步符号,每个帧同步符号分别为-A-Aj、-A+Aj、A-Aj、A+Aj中的一种;
    在一个偏振方向上,所述子帧包括的所述帧同步符号中,实部的元素连续相同的个数不大于5,虚部中元素连续相同的个数不大于5。
  26. 根据权利要求25所述的接收方法,其特征在于,在一个偏振方向上,所述第一子帧中连续相同的所述帧同步符号的个数不超过4个。
  27. 根据权利要求25所述的接收方法,其特征在于,在所述第一子帧包括的帧同步符号中,-A-Aj、-A+Aj、A-Aj和A+Aj在一个偏振方向上的数目分别为
    Figure PCTCN2022087770-appb-100099
    Figure PCTCN2022087770-appb-100100
    且在另一个偏振方向上的数目分别为
    Figure PCTCN2022087770-appb-100101
    Figure PCTCN2022087770-appb-100102
    其中,N FAW为所述第一子帧中的所述帧同步符号在一个偏振方向上的数量,N FAW为偶数。
  28. 根据权利要求21-27中任一项所述的接收方法,其特征在于,N TS为偶数,在每个子帧包括的所述训练符号中,-A-Aj、-A+Aj、A-Aj和A+Aj在一个偏振方向上的数目分别为
    Figure PCTCN2022087770-appb-100103
    且在另一个偏振方向上的数目分别为
    Figure PCTCN2022087770-appb-100104
  29. 根据权利要求21-27中任一项所述的接收方法,其特征在于,N TS为奇数,在每个子帧包括的训练符号中,除去同时作为所述导频符号的那个训练符号,-A-Aj、-A+Aj、A-Aj和A+Aj在一个偏振方向上的数目分别为
    Figure PCTCN2022087770-appb-100105
    Figure PCTCN2022087770-appb-100106
    且在另一个偏振方向上的数目分别为
    Figure PCTCN2022087770-appb-100107
    Figure PCTCN2022087770-appb-100108
  30. 根据权利要求21-27中任一项所述的接收方法,其特征在于,在每个子帧中,一个偏振方向上的导频符号的个数除以4的余数为0,在每个子帧包括的所述导频符号中,-A-Aj、-A+Aj、A-Aj和A+Aj在一个偏振方向上的数目分别为N PS/4+1、N PS/4-1、N PS/4-1、N PS/4+1,且在另一个偏振方向上的数目分别为N PS/4-1、N PS/4+1、N PS/4+1、N PS/4-1;或,在两个偏振方向上的数目均为N PS/4。
  31. 根据权利要求21-27中任一项所述的接收方法,其特征在于,在每个子帧中,一个偏振方向上的导频符号的个数除以4的余数为2,在每个子帧包括的所述导频符号中,-A-Aj、-A+Aj、A-Aj、A+Aj在一个偏振方向上的数目分别为(N PS-2)/4、(N PS-2)/4+1、(N PS-2)/4+1、(N PS-2)/4,且在另一个偏振方向上的数目分别为(N PS-2)/4+1、(N PS-2)/4、(N PS-2)/4、(N PS-2)/4+1。
  32. 根据权利要求21-27中任一项所述的接收方法,其特征在于,在每个子帧中,一个偏振方向上的导频符号的个数除以4的余数为1,在每个子帧包括的所述导频符号中,除去同时作为训练符号的那个导频符号,-A-Aj、-A+Aj、A-Aj、A+Aj在一个偏振方向上的数目分别为(N PS-1)/4+1、(N PS-1)/4-1、(N PS-1)/4-1、(N PS-1)/4+1,且在另一个偏振方向上的数目分别为(N PS-1)/4-1、(N PS-1)/4+1、(N PS-1)/4+1、(N PS-1)/4-1;或,在两个偏振方向上的数目均为(N PS-1)/4。
  33. 根据权利要求21-27中任一项所述的接收方法,其特征在于,在每个子帧中,一个偏振方向上的导频符号的个数除以4的余数为3时,在每个子帧包括的所述导频符号中,除去同时作为训练符号的那个导频符号,-A-Aj、-A+Aj、A-Aj、A+Aj在一个偏振方向上的数目分别为(N PS-3)/4、(N PS-3)/4+1、(N PS-3)/4+1、(N PS-3)/4,且在另一个偏振方向上的数目分别为(N PS-3)/4+1、(N PS-3)/4、(N PS-3)/4、(N PS-3)/4+1。
  34. 根据权利要求21-33中任一项所述的接收方法,其特征在于,所述超帧中的符号的调制格式为16QAM,A的值为±1或±3或
    Figure PCTCN2022087770-appb-100109
  35. 根据权利要求21-34中任一项所述的接收方法,其特征在于,在每个子帧中,每64个符号里固定位置为所述导频符号;或在每个子帧中,每48个符号里固定位置为所述导频符号。
  36. 一种用于光通信的传输设备,其特征在于,所述传输设备包括处理器和存储器,所述存储器用于存储指令,所述处理器用于执行所述指令,使得所述传输设备执行如权利要求1-20中任一项所述的传输方法。
  37. 一种用于光通信的接收设备,其特征在于,所述传输设备包括处理器和存储器,所述存储器用于存储指令,所述处理器用于执行所述指令,使得所述接收设备执行如权利要求21-35中任一项所述的接收方法。
  38. 一种用于光通信的系统,其特征在于,所述系统包括如权利要求36所述的传输设备,以及如权利要求37所述的接收设备。
  39. 一种用于光通信的传输方法,其特征在于,包括:
    生成包含多个子帧的超帧,所述子帧包括训练符号和导频符号,其中,在一个偏振方 向上,有一个符号既为训练符号,也为导频符号,且每个所述训练符号和每个所述导频符号分别为-A-Aj、-A+Aj、A-Aj、A+Aj中的一种,A为实数;在每个子帧中,在所述一个偏振方向上,所述导频符号是目标多项式和种子生成的,所述导频符号有N PS个,与N TS个所述训练符号的组合达到直流平衡,所述N TS为所述每个子帧中所述训练符号在一个偏振方向上的数量,N TS+N PS为奇数;所述目标多项式为下表中的一个;
    序号 目标多项式 1 x 10+x 9+x 8+x 7+x 6+1 2 x 10+x 9+x 8+x 6+x 4+1 3 x 10+x 9+x 7+x 6+x 4+1 4 x 10+x 9+x 6+x 3+1 5 x 10+x 8+x 5+x 3+1 6 x 10+x 8+x 6+x 5+x 3+1 7 x 10+x 8+x 7+x 4+x 3+1 8 x 10+x 6+x 5+x 4+x 3+1 9 x 10+x 9+x 6+x 2+1 10 x 10+x 7+x 6+x 2+1 11 x 10+x 7+x 5+x 2+1 12 x 10+x 8+x 7+x 5+x 2+1 13 x 10+x 9+x 8+x 7+x 4+x 2+1 14 x 10+x 7+x 5+x 4+x 2+1 15 x 10+x 9+x 7+x 5+x 4+x 2+1 16 x 10+x 9+x 8+x 3+x 2+1 17 x 10+x 9+x 8+x 7+x 3+x 2+1 18 x 10+x 7+x 6+x 3+x 2+1 19 x 10+x 8+x 5+x+1 20 x 10+x 8+x 4+x+1 21 x 10+x 9+x 8+x 7+x 4+x+1 22 x 10+x 8+x 5+x 4+x+1 23 x 10+x 5+x 3+x+1 24 x 10+x 8+x 6+x 5+x 3+x+1 25 x 10+x 9+x 8+x 7+x 4+x 3+x+1 26 x 10+x 6+x 4+x 3+x+1 27 x 10+x 8+x 7+x 2+x+1 28 x 10+x 9+x 8+x 7+x 4+x 2+x+1 29 x 10+x 9+x 6+x 3+x 2+x+1 30 x 10+x 8+x 6+x 3+x 2+x+1 31 x 10+x 6+x 5+x 3+x 2+x+1
    32 x 10+x 4+x 3+x 2+x+1 33 x 10+x 9+x 7+x 3+1 34 x 10+x 9+x 6+x+1 35 x 10+x 9+x 4+x+1 36 x 10+x 7+x 3+x+1
    将所述超帧发送出去。
  40. 根据权利要求39所述的传输方法,其特征在于,在一个偏振方向上,所述超帧中总符号数量N F=175104,子帧数量N SF=24,每个子帧中的符号数量N S=7296,N TS=11,N PS=114,帧同步符号的数量N FAW与保留符号的数量N RES之和N FAW+N RES=96,所述超帧成帧前的符号数量为172032。
  41. 根据权利要求40所述的传输方法,其特征在于,所述目标多项式与两个偏振方向上的用十六进制表示的种子为下表中的一行时,同一偏振方向上的导频符号的周期自相关函数旁瓣值的归一化幅度不大于0.2,不同偏振方向上的导频符号的周期互相关函数值的归一化幅度不大于0.2,
    Figure PCTCN2022087770-appb-100110
    Figure PCTCN2022087770-appb-100111
    Figure PCTCN2022087770-appb-100112
    Figure PCTCN2022087770-appb-100113
  42. 根据权利要求41所述的传输方法,其特征在于,当所述目标多项式与两个偏振方向上的用十六进制表示的种子为下表中的一行时,在一个偏振方向上,114个导频符号和11个训练符号的组合中,-A-Aj、-A+Aj、A-Aj和A+Aj在所述一个偏振方向上的数目均为31;
    序号 目标多项式 偏振一方向的种子 偏振二方向的种子 1 x 10+x 9+x 8+x 7+x 6+1 0x046 0x384 2 x 10+x 9+x 8+x 7+x 6+1 0x046 0x3C4 3 x 10+x 9+x 6+x 3+1 0x076 0x07C 4 x 10+x 8+x 7+x 4+x 3+1 0x1A2 0x330 5 x 10+x 8+x 7+x 4+x 3+1 0x2E6 0x330 6 x 10+x 8+x 7+x 2+x+1 0x226 0x3DC 7 x 10+x 9+x 6+x 3+x 2+x+1 0x13A 0x330 8 x 10+x 4+x 3+x 2+x+1 0x322 0x368 9 x 10+x 4+x 3+x 2+x+1 0x322 0x0E4 10 x 10+x 4+x 3+x 2+x+1 0x0E2 0x368 11 x 10+x 4+x 3+x 2+x+1 0x0E2 0x0E4 12 x 10+x 4+x 3+x 2+x+1 0x04E 0x2F0
  43. 根据权利要求40所述的传输方法,其特征在于,所述目标多项式为本原多项式,且其非零项不大于5时,所述目标多项式与两个偏振方向上的用十六进制表示的种子为下表中的一行时,同一偏振方向上的导频符号的周期自相关函数旁瓣值的归一化幅度不大于0.25,不同偏振方向上的导频符号的周期互相关函数值的归一化幅度不大于0.25,
    序号 目标多项式 偏振一方向的种子 偏振二方向的种子 1 x 10+x 9+x 7+x 3+1 0x23E 0x094 2 x 10+x 7+x 6+x 2+1 0x0BE 0x1B8 3 x 10+x 9+x 6+x+1 0x002 0x210 4 x 10+x 9+x 6+x+1 0x002 0x308 5 x 10+x 9+x 6+x+1 0x002 0x184
    6 x 10+x 9+x 6+x+1 0x1C2 0x040 7 x 10+x 8+x 5+x+1 0x3FE 0x0E0 8 x 10+x 8+x 5+x+1 0x3FE 0x270 9 x 10+x 8+x 5+x+1 0x3FE 0x304 10 x 10+x 9+x 4+x+1 0x3B6 0x1A0 11 x 10+x 9+x 4+x+1 0x3B6 0x0D0 12 x 10+x 9+x 4+x+1 0x3B6 0x058 13 x 10+x 9+x 4+x+1 0x3B6 0x22C 14 x 10+x 7+x 3+x+1 0x34E 0x084
  44. 根据权利要求43所述的传输方法,其特征在于,当所述目标多项式为x 10+x 7+x 3+x+1,对应的两个偏振方向上的用十六进制表示的种子为0x34E和0x084时,在一个偏振方向上,114个导频符号和11个训练符号的组合中,-A-Aj、-A+Aj、A-Aj和A+Aj在所述一个偏振方向上的数目均为31,所述两个偏振方向上各自的114个导频符号分别为下表所示:
    Figure PCTCN2022087770-appb-100114
    Figure PCTCN2022087770-appb-100115
  45. 根据权利要求41所述的传输方法,其特征在于,当所述目标多项式为x 10+x 7+x 6+x 2+1,对应的两个偏振方向上的用十六进制表示的种子为0x0BE和0x1B8时,所述两个偏振方向上各自的114个导频符号分别为下表所示:
    Figure PCTCN2022087770-appb-100116
  46. 根据权利要求39所述的传输方法,其特征在于,在一个偏振方向上,所述超帧中总符号数量N F=175104,子帧数量N SF=48,每个子帧中的符号数量N S=3648,N TS=6,N PS=57,帧同步符号的数量N FAW与保留符号的数量N RES之和N FAW+N RES=96,所述超帧成帧前的符号数量为172032。
  47. 根据权利要求46所述的传输方法,其特征在于,所述目标多项式与两个偏振方向上的用十六进制表示的种子为下表中的一行时,同一偏振方向上的导频符号的周期自相关函数旁瓣值的归一化幅度不大于0.23,不同偏振方向上的导频符号的周期互相关函数值的归一化幅度不大于0.23,
    序号 目标多项式 偏振一方向的种子 偏振二方向的种子 1 x 10+x 7+x 3+x+1 0x204 0x279 2 x 10+x 7+x 3+x+1 0x0B1 0x3E9 3 x 10+x 7+x 3+x+1 0x0B1 0x279
  48. 根据权利要求47所述的传输方法,其特征在于,当所述目标多项式为x 10+x 7+x 3+x+1,对应的两个偏振方向上的用十六进制表示的种子为0x0B1和0x3E9时,所述两个偏振方向上各自的57个导频符号分别为下表所示:
    Figure PCTCN2022087770-appb-100117
  49. 一种用于光通信的接收方法,其特征在于,包括:
    接收包含多个子帧的超帧,所述子帧包括训练符号和导频符号,其中,在一个偏振方向上,有一个符号既为训练符号,也为导频符号,且每个所述训练符号和每个所述导频符号分别为-A-Aj、-A+Aj、A-Aj、A+Aj中的一种,A为实数;在每个子帧中,在所述一个偏振方向上,所述导频符号是目标多项式和种子生成的,所述导频符号有N PS个,与N TS个所述训练符号的组合达到直流平衡,所述N TS为所述每个子帧中所述训练符号在一个偏振方向上的数量,N TS+N PS为奇数;所述目标多项式为下表中的一个;
    序号 目标多项式 1 x 10+x 9+x 8+x 7+x 6+1 2 x 10+x 9+x 8+x 6+x 4+1 3 x 10+x 9+x 7+x 6+x 4+1
    4 x 10+x 9+x 6+x 3+1 5 x 10+x 8+x 5+x 3+1 6 x 10+x 8+x 6+x 5+x 3+1 7 x 10+x 8+x 7+x 4+x 3+1 8 x 10+x 6+x 5+x 4+x 3+1 9 x 10+x 9+x 6+x 2+1 10 x 10+x 7+x 6+x 2+1 11 x 10+x 7+x 5+x 2+1 12 x 10+x 8+x 7+x 5+x 2+1 13 x 10+x 9+x 8+x 7+x 4+x 2+1 14 x 10+x 7+x 5+x 4+x 2+1 15 x 10+x 9+x 7+x 5+x 4+x 2+1 16 x 10+x 9+x 8+x 3+x 2+1 17 x 10+x 9+x 8+x 7+x 3+x 2+1 18 x 10+x 7+x 6+x 3+x 2+1 19 x 10+x 8+x 5+x+1 20 x 10+x 8+x 4+x+1 21 x 10+x 9+x 8+x 7+x 4+x+1 22 x 10+x 8+x 5+x 4+x+1 23 x 10+x 5+x 3+x+1 24 x 10+x 8+x 6+x 5+x 3+x+1 25 x 10+x 9+x 8+x 7+x 4+x 3+x+1 26 x 10+x 6+x 4+x 3+x+1 27 x 10+x 8+x 7+x 2+x+1 28 x 10+x 9+x 8+x 7+x 4+x 2+x+1 29 x 10+x 9+x 6+x 3+x 2+x+1 30 x 10+x 8+x 6+x 3+x 2+x+1 31 x 10+x 6+x 5+x 3+x 2+x+1 32 x 10+x 4+x 3+x 2+x+1 33 x 10+x 9+x 7+x 3+1 34 x 10+x 9+x 6+x+1 35 x 10+x 9+x 4+x+1 36 x 10+x 7+x 3+x+1
    对接收到的所述超帧进行解码。
  50. 根据权利要求49所述的接收方法,其特征在于,在一个偏振方向上,所述超帧中总符号数量N F=175104,子帧数量N SF=24,每个子帧中的符号数量N S=7296,N TS=11,N PS=114,帧同步符号的数量N FAW与保留符号的数量N RES之和N FAW+N RES=96,所述超帧 成帧前的符号数量为172032。
  51. 根据权利要求50所述的接收方法,其特征在于,所述目标多项式与两个偏振方向上的用十六进制表示的种子为下表中的一行时,同一偏振方向上的导频符号的周期自相关函数旁瓣值的归一化幅度不大于0.2,不同偏振方向上的导频符号的周期互相关函数值的归一化幅度不大于0.2,
    Figure PCTCN2022087770-appb-100118
    Figure PCTCN2022087770-appb-100119
    Figure PCTCN2022087770-appb-100120
  52. 根据权利要求51所述的接收方法,其特征在于,当所述目标多项式与两个偏振方向上的用十六进制表示的种子为下表中的一行时,在一个偏振方向上,114个导频符号和11个训练符号的组合中,-A-Aj、-A+Aj、A-Aj和A+Aj在所述一个偏振方向上的数目均为31;
    序号 目标多项式 偏振一方向的种子 偏振二方向的种子 1 x 10+x 9+x 8+x 7+x 6+1 0x046 0x384 2 x 10+x 9+x 8+x 7+x 6+1 0x046 0x3C4 3 x 10+x 9+x 6+x 3+1 0x076 0x07C 4 x 10+x 8+x 7+x 4+x 3+1 0x1A2 0x330 5 x 10+x 8+x 7+x 4+x 3+1 0x2E6 0x330 6 x 10+x 8+x 7+x 2+x+1 0x226 0x3DC 7 x 10+x 9+x 6+x 3+x 2+x+1 0x13A 0x330 8 x 10+x 4+x 3+x 2+x+1 0x322 0x368 9 x 10+x 4+x 3+x 2+x+1 0x322 0x0E4 10 x 10+x 4+x 3+x 2+x+1 0x0E2 0x368 11 x 10+x 4+x 3+x 2+x+1 0x0E2 0x0E4 12 x 10+x 4+x 3+x 2+x+1 0x04E 0x2F0
  53. 根据权利要求50所述的接收方法,其特征在于,所述目标多项式为本原多项式,且其非零项不大于5时,所述目标多项式与两个偏振方向上的用十六进制表示的种子为下表中的一行时,同一偏振方向上的导频符号的周期自相关函数旁瓣值的归一化幅度不大于0.25,不同偏振方向上的导频符号的周期互相关函数值的归一化幅度不大于0.25,
    序号 目标多项式 偏振一方向的种子 偏振二方向的种子 1 x 10+x 9+x 7+x 3+1 0x23E 0x094 2 x 10+x 7+x 6+x 2+1 0x0BE 0x1B8 3 x 10+x 9+x 6+x+1 0x002 0x210 4 x 10+x 9+x 6+x+1 0x002 0x308 5 x 10+x 9+x 6+x+1 0x002 0x184 6 x 10+x 9+x 6+x+1 0x1C2 0x040 7 x 10+x 8+x 5+x+1 0x3FE 0x0E0 8 x 10+x 8+x 5+x+1 0x3FE 0x270 9 x 10+x 8+x 5+x+1 0x3FE 0x304 10 x 10+x 9+x 4+x+1 0x3B6 0x1A0 11 x 10+x 9+x 4+x+1 0x3B6 0x0D0 12 x 10+x 9+x 4+x+1 0x3B6 0x058 13 x 10+x 9+x 4+x+1 0x3B6 0x22C 14 x 10+x 7+x 3+x+1 0x34E 0x084
  54. 根据权利要求53所述的接收方法,其特征在于,当所述目标多项式为x 10+x 7+x 3+x+1,对应的两个偏振方向上的用十六进制表示的种子为0x34E和0x084时,在一个偏振方向上,114个导频符号和11个训练符号的组合中,-A-Aj、-A+Aj、A-Aj和A+Aj在所述一个偏振方向上的数目均为31,所述两个偏振方向上各自的114个导频符号分别为下表所示:
    Figure PCTCN2022087770-appb-100121
  55. 根据权利要求51所述的接收方法,其特征在于,当所述目标多项式为x 10+x 7+x 6+x 2+1,对应的两个偏振方向上的用十六进制表示的种子为0x0BE和0x1B8时,所述两个偏振方向上各自的114个导频符号分别为下表所示:
    Figure PCTCN2022087770-appb-100122
    Figure PCTCN2022087770-appb-100123
  56. 根据权利要求49所述的接收方法,其特征在于,在一个偏振方向上,所述超帧中总符号数量N F=175104,子帧数量N SF=48,每个子帧中的符号数量N S=3648,N TS=6,N PS=57,帧同步符号的数量N FAW与保留符号的数量N RES之和N FAW+N RES=96,所述超帧成帧前的符号数量为172032。
  57. 根据权利要求56所述的接收方法,其特征在于,所述目标多项式与两个偏振方向上的用十六进制表示的种子为下表中的一行时,同一偏振方向上的导频符号的周期自相关函数旁瓣值的归一化幅度不大于0.23,不同偏振方向上的导频符号的周期互相关函数值的归一化幅度不大于0.23,
    序号 目标多项式 偏振一方向的种子 偏振二方向的种子 1 x 10+x 7+x 3+x+1 0x204 0x279 2 x 10+x 7+x 3+x+1 0x0B1 0x3E9 3 x 10+x 7+x 3+x+1 0x0B1 0x279
  58. 根据权利要求57所述的接收方法,其特征在于,当所述目标多项式为x 10+x 7+x 3+x+1,对应的两个偏振方向上的用十六进制表示的种子为0x0B1和0x3E9时, 所述两个偏振方向上各自的57个导频符号分别为下表所示:
    Figure PCTCN2022087770-appb-100124
  59. 一种用于光通信的传输设备,其特征在于,所述传输设备包括处理器和存储器,所述存储器用于存储指令,所述处理器用于执行所述指令,使得所述传输设备执行如权利要求39-48中任一项所述的传输方法。
  60. 一种用于光通信的接收设备,其特征在于,所述传输设备包括处理器和存储器,所述存储器用于存储指令,所述处理器用于执行所述指令,使得所述接收设备执行如权利要求49-58中任一项所述的接收方法。
  61. 一种用于光通信的系统,其特征在于,所述系统包括如权利要求59所述的传输设备,以及如权利要求60所述的接收设备。
  62. 一种用于光通信的传输方法,其特征在于,包括:
    生成包含多个子帧的超帧,所述子帧包括训练符号和导频符号;
    在每个子帧中,在一个偏振方向上,所述导频符号有N PS个,取值为-A 2-A 2j、-A 2+A 2j、A 2-A 2j、A 2+A 2j中的一种,其中A 2为实数,N PS为偶数;N PS个所述导频符号达到直流平衡;所述训练符号与N PS个所述导频符号的组合达到直流平衡;
    所述导频符号是目标多项式和种子确定生成的,所述目标多项式为本原多项式,且其非零项不大于5;所述目标多项式为下表中的一个;
    序号 目标多项式 1 x 10+x 9+x 7+x 6+1 2 x 10+x 9+x 7+x 3+1 3 x 10+x 8+x 4+x 3+1 4 x 10+x 7+x 6+x 2+1 5 x 10+x 9+x 6+x+1 6 x 10+x 9+x 4+x+1 7 x 10+x 7+x 3+x+1
    8 x 10+x 4+x 3+x+1
    将所述超帧发送出去。
  63. 根据权利要求62所述的传输方法,其特征在于,在一个偏振方向上,所述超帧中总符号数量N F=175104,子帧数量N SF=24,每个子帧中的符号数量N S=7296,N PS=114,帧同步符号的数量N FAW与保留符号的数量N RES之和N FAW+N RES=96,所述超帧成帧前的符号数量为172032;
    生成所述导频符号的所述目标多项式与两个偏振方向上的用十六进制表示的种子为下表中的一行时,同一偏振方向上的导频符号的周期自相关函数旁瓣值的归一化幅度不大于0.25,不同偏振方向上的导频符号的周期互相关函数值的归一化幅度不大于0.25,
    序号 目标多项式 偏振一方向的种子 偏振二方向的种子 1 x 10+x 9+x 7+x 6+1 0x002 0x3C6 2 x 10+x 9+x 7+x 6+1 0x002 0x38D 3 x 10+x 9+x 7+x 3+1 0x094 0x11F 4 x 10+x 9+x 7+x 3+1 0x129 0x11F 5 x 10+x 8+x 4+x 3+1 0x07A 0x167 6 x 10+x 8+x 4+x 3+1 0x07A 0x2CF 7 x 10+x 7+x 6+x 2+1 0x1B8 0x22F 8 x 10+x 7+x 6+x 2+1 0x1B8 0x05F 9 x 10+x 9+x 6+x+1 0x040 0x210 10 x 10+x 9+x 6+x+1 0x040 0x308 11 x 10+x 9+x 6+x+1 0x040 0x184 12 x 10+x 9+x 6+x+1 0x040 0x0C2 13 x 10+x 9+x 6+x+1 0x040 0x0E1 14 x 10+x 9+x 6+x+1 0x040 0x0D7 15 x 10+x 9+x 6+x+1 0x040 0x1AF 16 x 10+x 9+x 6+x+1 0x210 0x201 17 x 10+x 9+x 6+x+1 0x308 0x201 18 x 10+x 9+x 6+x+1 0x184 0x201 19 x 10+x 9+x 6+x+1 0x0C2 0x201 20 x 10+x 9+x 6+x+1 0x201 0x0E1
    21 x 10+x 9+x 6+x+1 0x201 0x0D7 22 x 10+x 9+x 6+x+1 0x201 0x1AF 23 x 10+x 9+x 4+x+1 0x1A0 0x2D9 24 x 10+x 9+x 4+x+1 0x1A0 0x3DB 25 x 10+x 9+x 4+x+1 0x0D0 0x2D9 26 x 10+x 9+x 4+x+1 0x0D0 0x3DB 27 x 10+x 9+x 4+x+1 0x058 0x2D9 28 x 10+x 9+x 4+x+1 0x058 0x3DB 29 x 10+x 9+x 4+x+1 0x22C 0x2D9 30 x 10+x 9+x 4+x+1 0x22C 0x3DB 31 x 10+x 9+x 4+x+1 0x2D2 0x2D9 32 x 10+x 9+x 4+x+1 0x2D2 0x3DB 33 x 10+x 9+x 4+x+1 0x2D9 0x1A5 34 x 10+x 9+x 4+x+1 0x2D9 0x3DD 35 x 10+x 9+x 4+x+1 0x1A5 0x3DB 36 x 10+x 9+x 4+x+1 0x3DD 0x3DB 37 x 10+x 7+x 3+x+1 0x084 0x1A7 38 x 10+x 7+x 3+x+1 0x109 0x1A7 39 x 10+x 4+x 3+x+1 0x365 0x3EB 40 x 10+x 4+x 3+x+1 0x2CB 0x3EB
  64. 根据权利要求63所述的传输方法,其特征在于,当所述目标多项式为x 10+x 9+x 7+x 6+1,对应的两个偏振方向上的用十六进制表示的种子为0x002和0x3C6时,所述两个偏振方向上各自的114个导频符号分别为下表所示:
    Figure PCTCN2022087770-appb-100125
    Figure PCTCN2022087770-appb-100126
  65. 根据权利要求62所述的传输方法,其特征在于,在每个子帧中,在一个偏振方向上,当所述导频符号的数量除以4的余数为0时,在每个子帧包括的所述导频符号中,-A 2-A 2j的数量等于A 2+A 2j的数量,-A 2+A 2j的数量等于A 2-A 2j的数量,且-A 2-A 2j的数量和的数量相差为2;或,-A 2-A 2j、-A 2+A 2j、A 2-A 2j、A 2+A 2j的数量相等;
    当所述导频符号的数量除以4的余数为2时,在每个子帧包括的所述导频符号中,-A 2-A 2j的数量等于A 2+A 2j的数量,-A 2+A 2j的数量等于A 2-A 2j的数量,且-A 2-A 2j的数量和的数量相差为1。
  66. 一种用于光通信的接收方法,其特征在于,包括:
    接收包含多个子帧的超帧,所述子帧包括训练符号和导频符号;
    在每个子帧中,在一个偏振方向上,所述导频符号有N PS个,取值为-A 2-A 2j、-A 2+A 2j、A 2-A 2j、A 2+A 2j中的一种,其中A 2为实数,N PS为偶数;N PS个所述导频符号达到直流平衡;所述训练符号与N PS个所述导频符号的组合达到直流平衡;
    所述导频符号是目标多项式和种子确定生成的,所述目标多项式为本原多项式,且其非零项不大于5;所述目标多项式为下表中的一个;
    序号 目标多项式 1 x 10+x 9+x 7+x 6+1 2 x 10+x 9+x 7+x 3+1 3 x 10+x 8+x 4+x 3+1 4 x 10+x 7+x 6+x 2+1 5 x 10+x 9+x 6+x+1 6 x 10+x 9+x 4+x+1 7 x 10+x 7+x 3+x+1 8 x 10+x 4+x 3+x+1
    对接收到的所述超帧进行解码。
  67. 根据权利要求66所述的接收方法,其特征在于,在一个偏振方向上,所述超帧中总符号数量N F=175104,子帧数量N SF=24,每个子帧中的符号数量N S=7296,N PS=114,帧同步符号的数量N FAW与保留符号的数量N RES之和N FAW+N RES=96,所述超帧成帧前的符号数量为172032;
    生成所述导频符号的所述目标多项式与两个偏振方向上的用十六进制表示的种子为下表中的一行时,同一偏振方向上的导频符号的周期自相关函数旁瓣值的归一化幅度不大于0.25,不同偏振方向上的导频符号的周期互相关函数值的归一化幅度不大于0.25,
    序号 目标多项式 偏振一方向的种子 偏振二方向的种子 1 x 10+x 9+x 7+x 6+1 0x002 0x3C6 2 x 10+x 9+x 7+x 6+1 0x002 0x38D 3 x 10+x 9+x 7+x 3+1 0x094 0x11F 4 x 10+x 9+x 7+x 3+1 0x129 0x11F 5 x 10+x 8+x 4+x 3+1 0x07A 0x167 6 x 10+x 8+x 4+x 3+1 0x07A 0x2CF 7 x 10+x 7+x 6+x 2+1 0x1B8 0x22F 8 x 10+x 7+x 6+x 2+1 0x1B8 0x05F 9 x 10+x 9+x 6+x+1 0x040 0x210 10 x 10+x 9+x 6+x+1 0x040 0x308
    11 x 10+x 9+x 6+x+1 0x040 0x184 12 x 10+x 9+x 6+x+1 0x040 0x0C2 13 x 10+x 9+x 6+x+1 0x040 0x0E1 14 x 10+x 9+x 6+x+1 0x040 0x0D7 15 x 10+x 9+x 6+x+1 0x040 0x1AF 16 x 10+x 9+x 6+x+1 0x210 0x201 17 x 10+x 9+x 6+x+1 0x308 0x201 18 x 10+x 9+x 6+x+1 0x184 0x201 19 x 10+x 9+x 6+x+1 0x0C2 0x201 20 x 10+x 9+x 6+x+1 0x201 0x0E1 21 x 10+x 9+x 6+x+1 0x201 0x0D7 22 x 10+x 9+x 6+x+1 0x201 0x1AF 23 x 10+x 9+x 4+x+1 0x1A0 0x2D9 24 x 10+x 9+x 4+x+1 0x1A0 0x3DB 25 x 10+x 9+x 4+x+1 0x0D0 0x2D9 26 x 10+x 9+x 4+x+1 0x0D0 0x3DB 27 x 10+x 9+x 4+x+1 0x058 0x2D9 28 x 10+x 9+x 4+x+1 0x058 0x3DB 29 x 10+x 9+x 4+x+1 0x22C 0x2D9 30 x 10+x 9+x 4+x+1 0x22C 0x3DB 31 x 10+x 9+x 4+x+1 0x2D2 0x2D9 32 x 10+x 9+x 4+x+1 0x2D2 0x3DB 33 x 10+x 9+x 4+x+1 0x2D9 0x1A5 34 x 10+x 9+x 4+x+1 0x2D9 0x3DD 35 x 10+x 9+x 4+x+1 0x1A5 0x3DB 36 x 10+x 9+x 4+x+1 0x3DD 0x3DB 37 x 10+x 7+x 3+x+1 0x084 0x1A7
    38 x 10+x 7+x 3+x+1 0x109 0x1A7 39 x 10+x 4+x 3+x+1 0x365 0x3EB 40 x 10+x 4+x 3+x+1 0x2CB 0x3EB
  68. 根据权利要求67所述的接收方法,其特征在于,当所述目标多项式为x 10+x 9+x 7+x 6+1,对应的两个偏振方向上的用十六进制表示的种子为0x002和0x3C6时,所述两个偏振方向上各自的114个导频符号分别为下表所示:
    Figure PCTCN2022087770-appb-100127
    Figure PCTCN2022087770-appb-100128
  69. 根据权利要求66所述的接收方法,其特征在于,在每个子帧中,在一个偏振方向上,当所述导频符号的数量除以4的余数为0时,在每个子帧包括的所述导频符号中,-A 2-A 2j的数量等于A 2+A 2j的数量,-A 2+A 2j的数量等于A 2-A 2j的数量,且-A 2-A 2j的数量和的数量相差为2;或,-A 2-A 2j、-A 2+A 2j、A 2-A 2j、A 2+A 2j的数量相等;
    当所述导频符号的数量除以4的余数为2时,在每个子帧包括的所述导频符号中,-A 2-A 2j的数量等于A 2+A 2j的数量,-A 2+A 2j的数量等于A 2-A 2j的数量,且-A 2-A 2j的数量和的数量相差为1。
  70. 一种用于光通信的传输设备,其特征在于,所述传输设备包括处理器和存储器,所述存储器用于存储指令,所述处理器用于执行所述指令,使得所述传输设备执行如权利要求62-65中任一项所述的传输方法。
  71. 一种用于光通信的接收设备,其特征在于,所述传输设备包括处理器和存储器,所述存储器用于存储指令,所述处理器用于执行所述指令,使得所述接收设备执行如权利要求66-69中任一项所述的接收方法。
  72. 一种用于光通信的系统,其特征在于,所述系统包括如权利要求70所述的传输设备,以及如权利要求71所述的接收设备。
PCT/CN2022/087770 2021-04-20 2022-04-19 一种用于光通信的传输方法、接收方法及相应设备 WO2022222933A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA3217493A CA3217493A1 (en) 2021-04-20 2022-04-19 Transmission method and reception method for optical communication, and corresponding device
KR1020237039661A KR20230170777A (ko) 2021-04-20 2022-04-19 광통신을 위한 송신 방법 및 수신 방법과 대응하는 디바이스
JP2023564244A JP2024515195A (ja) 2021-04-20 2022-04-19 光通信のための送信方法および受信方法、ならびに対応するデバイス
BR112023021802A BR112023021802A2 (pt) 2021-04-20 2022-04-19 Método de transmissão e método de recepção para comunicação óptica e dispositivo correspondente
EP22791040.3A EP4318977A4 (en) 2021-04-20 2022-04-19 TRANSMISSION METHOD AND RECEPTION METHOD FOR OPTICAL COMMUNICATION, AND CORRESPONDING DEVICE
MX2023012470A MX2023012470A (es) 2021-04-20 2022-04-19 Metodo de transmision y metodo de recepcion para comunicacion optica, y dispositivo correspondiente.
US18/490,448 US20240178920A1 (en) 2021-04-20 2023-12-29 Transmission method and reception method for optical communication, and corresponding device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202110424596.8 2021-04-20
CN202110424596 2021-04-20
CN202111456537.5 2021-12-01
CN202111456537 2021-12-01
CN202210102040.1A CN114978337B (zh) 2021-04-20 2022-01-27 一种用于光通信的传输方法、接收方法及相应设备
CN202210102040.1 2022-01-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/490,448 Continuation US20240178920A1 (en) 2021-04-20 2023-12-29 Transmission method and reception method for optical communication, and corresponding device

Publications (1)

Publication Number Publication Date
WO2022222933A1 true WO2022222933A1 (zh) 2022-10-27

Family

ID=82974446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087770 WO2022222933A1 (zh) 2021-04-20 2022-04-19 一种用于光通信的传输方法、接收方法及相应设备

Country Status (9)

Country Link
US (1) US20240178920A1 (zh)
EP (1) EP4318977A4 (zh)
JP (1) JP2024515195A (zh)
KR (1) KR20230170777A (zh)
CN (5) CN116566498A (zh)
BR (1) BR112023021802A2 (zh)
CA (1) CA3217493A1 (zh)
MX (1) MX2023012470A (zh)
WO (1) WO2022222933A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117081692A (zh) * 2022-05-10 2023-11-17 华为技术有限公司 一种用于光通信的传输方法及相应设备
CN118101124A (zh) * 2022-11-26 2024-05-28 华为技术有限公司 一种数据传输方法和数据传输装置
CN118677536A (zh) * 2023-03-14 2024-09-20 华为技术有限公司 数据传输方法、装置、设备和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150110492A1 (en) * 2013-10-22 2015-04-23 Zte Corporation Transmission and reception of quad-subcarrier orthogonal frequency division multiplexed signals
CN110460387A (zh) * 2019-07-24 2019-11-15 深圳市深光谷科技有限公司 一种相干接收机、光通信系统及光信号检测方法
CN112118053A (zh) * 2019-06-21 2020-12-22 华为技术有限公司 信号处理方法以及光接收机
CN112204902A (zh) * 2018-03-29 2021-01-08 有线电视实验室公司 用于接入网络中的相干光学的系统和方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090324223A1 (en) * 2008-06-30 2009-12-31 Xiang Liu System, method and apparatus for channel estimation with dual polarization training symbols for coherent optical OFDM
WO2014172911A1 (zh) * 2013-04-27 2014-10-30 华为技术有限公司 一种信号发送和检测方法及收发器、控制实体
US9401823B2 (en) * 2013-11-26 2016-07-26 Plusn Llc System and method for radio frequency carrier aggregation
CN107005525B (zh) * 2015-01-07 2020-01-03 华为技术有限公司 无线局域网中的导频传输方法及数据传输装置
WO2016188563A1 (en) * 2015-05-26 2016-12-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Data communication methods and data communication systems
CN110166194B (zh) * 2018-02-12 2020-09-08 华为技术有限公司 一种导频信号生成方法及装置
CN110213191B (zh) * 2019-05-30 2022-10-21 哈尔滨工业大学(深圳) Fbmc-oqam定时及信道估计训练序列设计方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150110492A1 (en) * 2013-10-22 2015-04-23 Zte Corporation Transmission and reception of quad-subcarrier orthogonal frequency division multiplexed signals
CN112204902A (zh) * 2018-03-29 2021-01-08 有线电视实验室公司 用于接入网络中的相干光学的系统和方法
CN112118053A (zh) * 2019-06-21 2020-12-22 华为技术有限公司 信号处理方法以及光接收机
CN110460387A (zh) * 2019-07-24 2019-11-15 深圳市深光谷科技有限公司 一种相干接收机、光通信系统及光信号检测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI CHENJIA; ZHANG FAN; ZHANG LEI; CHEN XINYU; YANG FAN; MING HAO; RUAN XIAOKE; CHEN ZHANGYUAN; YANG CHUANCHUAN: "Inter-Channel Fiber Nonlinearity Mitigation in High Baud-Rate Optical Communication Systems", JOURNAL OF LIGHTWAVE TECHNOLOGY, IEEE, USA, vol. 39, no. 6, 4 December 2020 (2020-12-04), USA, pages 1653 - 1661, XP011847177, ISSN: 0733-8724, DOI: 10.1109/JLT.2020.3042671 *
See also references of EP4318977A4

Also Published As

Publication number Publication date
CN114978337B (zh) 2023-06-02
US20240178920A1 (en) 2024-05-30
CN114978337A (zh) 2022-08-30
CA3217493A1 (en) 2022-10-27
EP4318977A4 (en) 2024-09-11
BR112023021802A2 (pt) 2023-12-26
CN116388881B (zh) 2024-07-30
MX2023012470A (es) 2024-01-16
JP2024515195A (ja) 2024-04-05
CN116683996A (zh) 2023-09-01
CN116388881A (zh) 2023-07-04
CN116566498A (zh) 2023-08-08
KR20230170777A (ko) 2023-12-19
EP4318977A1 (en) 2024-02-07
CN117118524A (zh) 2023-11-24

Similar Documents

Publication Publication Date Title
WO2022222933A1 (zh) 一种用于光通信的传输方法、接收方法及相应设备
US10903937B2 (en) Apparatus and method for communicating data over an optical channel
US8964896B2 (en) PLS header coding for efficient signaling of modulation and coding schemes for broadband satellite communications systems
CN108702350B (zh) 用于发送单个信道、被绑定信道以及具有用以有助于agc、定时和信道估计的字段的mimo ofdm帧的装置和方法
US9294131B2 (en) Apparatus and method for improved modulation and coding schemes for broadband satellite communications systems
US11533087B2 (en) Apparatus, system and method of communicating a physical layer protocol data unit (PPDU)
WO2015032259A1 (zh) 对数据进行处理的方法及装置
US8674758B2 (en) Method and apparatus for improved high order modulation
WO2009067899A1 (fr) Procédé et dispositif de codage de données et de décodage de données
CN106936532B (zh) 一种功率域非正交多址接入译码方法
US7778334B2 (en) Modulation scheme for communication environments
US20180205493A1 (en) Data processing method, apparatus, and system
WO2021057453A1 (zh) 通信方法、装置以及设备
JP2013125982A (ja) 送信装置及び受信装置
US20140229997A1 (en) Satellite broadcasting and communication transmitting method and apparatus operable in broad signal to noise ratio (snr) environment
JP5053302B2 (ja) デジタル伝送方式の復号器及び受信装置
WO2016065922A1 (zh) 双传输块的数据发送、接收方法、装置、发射机及接收机
Nguyen et al. Low-reliable low-latency networks optimized for HPC parallel applications
WO2022068680A1 (zh) 一种解码方法、接收设备以及存储介质
Abusedra et al. Implementation and performance study of the LDPC coding in the DVB-S2 link system using MATLAB
WO2023216709A1 (zh) 一种用于光通信的传输方法及相应设备
WO2024109238A1 (zh) 一种数据传输方法和数据传输装置
Vicente Nuñez Light coding and protocols for network-on-chip systems of low energy consumption

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22791040

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023564244

Country of ref document: JP

Ref document number: MX/A/2023/012470

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 202327071700

Country of ref document: IN

Ref document number: 3217493

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2022791040

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023021802

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2022791040

Country of ref document: EP

Effective date: 20231027

ENP Entry into the national phase

Ref document number: 20237039661

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237039661

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11202307987T

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 112023021802

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231019