WO2021057453A1 - 通信方法、装置以及设备 - Google Patents

通信方法、装置以及设备 Download PDF

Info

Publication number
WO2021057453A1
WO2021057453A1 PCT/CN2020/113628 CN2020113628W WO2021057453A1 WO 2021057453 A1 WO2021057453 A1 WO 2021057453A1 CN 2020113628 W CN2020113628 W CN 2020113628W WO 2021057453 A1 WO2021057453 A1 WO 2021057453A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
type
data
length
signal
Prior art date
Application number
PCT/CN2020/113628
Other languages
English (en)
French (fr)
Inventor
王晓鲁
李榕
罗禾佳
王斌
王俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20867442.4A priority Critical patent/EP4030715B1/en
Publication of WO2021057453A1 publication Critical patent/WO2021057453A1/zh
Priority to US17/704,444 priority patent/US20220217029A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2676Blind, i.e. without using known symbols
    • H04L27/2678Blind, i.e. without using known symbols using cyclostationarities, e.g. cyclic prefix or postfix
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • H04L27/2621Reduction thereof using phase offsets between subcarriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3405Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • This application relates to the field of communication technology, and in particular to a communication method, device, and equipment.
  • each orthogonal frequency division multiplexing (OFDM) symbol is preceded by Cyclic prefix (CP), and the length of the CP is not less than the multipath delay extension (or multipath delay) of the wireless communication channel.
  • CP Cyclic prefix
  • the length of CP includes two types: normal CP (normal CP) and extended CP (extended CP).
  • Non-terrestrial communications include: high-altitude platform communications, high-, medium-, and low-orbit satellite communications.
  • NTN communication short-ground communication, high-altitude platform-ground wireless communication channels have the characteristics of a small number of multipaths, small multipath delay expansion, and a large proportion of direct path signals.
  • the UE user equipment
  • NTN communication the number of times the signal is reflected, scattered and/or diffracted in the wireless communication channel is less, and the number of multipaths in the wireless communication channel is less.
  • the length of the CP of the NR protocol is still used in NTN communication, the length of the CP will be much larger than the multipath delay extension of the NTN communication channel, resulting in waste and low utilization of CP resources, and reducing the transmission efficiency of the NTN communication system.
  • the embodiments of the present application provide a communication method, device, and equipment, which can reduce the waste of CP resources, increase the utilization rate of CP resources, and thereby improve the transmission efficiency of the NTN communication system.
  • an embodiment of the present application provides a communication method, which may be applicable to a non-terrestrial network communication system, and the method may include: generating a first signal and sending the first signal.
  • the first signal includes OFDM symbols, a first type of CP, and a second type of CP.
  • the CP resource of the CP of the first type may include a first CP resource and a second CP resource; the CP resource of the CP of the second type may include a second CP resource.
  • the first CP resource is used to carry data that is different from the data carried on the OFDM symbol (or, the data carried on the first CP resource does not overlap with the data carried on the OFDM symbol, indicating that the data carried on the first CP resource Is valid data); the second CP resource is used to carry the same data as the data carried on the OFDM symbol (or, the data carried on the second CP resource is the same as the data carried on the second OFDM symbol, indicating the second
  • the CP resource carries invalid data).
  • the CP resource can refer to the data bits of the CP in the time domain.
  • the first signal in the embodiment of the application includes two types of CPs.
  • One type of CP (the first type of CP) includes two types of CP resources (the first CP resource and the second CP resource), and the other type of CP (the second type CP).
  • the type CP includes a type of CP resource (ie, the second CP resource), and the first CP resource in the first type of CP is used to carry/transmit data that is different (or non-repetitive) from the data carried on the OFDM symbol (ie, valid Data), using the second CP resource to carry/transmit the same (or repeated) data (ie invalid data) as the data carried on the OFDM symbol, which can make rational use of CP resources, reduce the waste of CP resources, and improve the utilization rate of CP resources. Thereby improving the transmission efficiency of the NTN communication system.
  • the length of the first type of CP is greater than the first length
  • the length of the second type of CP is less than the first length
  • the first signal belongs to the same time slot
  • the sum of the lengths of M type 1 CPs and KM type 2 CPs in the same subframe or the same frame is the product of the first length and K (that is, the total number of CPs in a time slot or a subframe or a frame). The length remains the same).
  • the length of the CP is flexibly configured (or integrated), and the first CP resource of the first type of CP with the integrated length is used to carry/transmit data that is different (or non-repetitive) from the data carried on the OFDM symbol (that is, Effective data), can further improve the utilization rate of CP resources, thereby improving the transmission efficiency of the NTN communication system.
  • the first length may refer to the length of the CP (here, the time length) adopted by the 5G NR that works under the same conditions as the NTN communication system (for example, the same subcarrier spacing).
  • the data carried on the first CP resource may include side information.
  • the side information can be generated based on the phase rotation factor.
  • the resource size of the first CP resource may be determined based on the data size of the side information.
  • the resource size of the first CP resource may be greater than or equal to the data size of the side information.
  • the embodiment of the application determines the resource size of the first CP resource based on the size of the data to be carried on the first CP resource.
  • the size of the first CP resource can be allocated as needed to meet the needs of different services, and at the same time, CP resources can be allocated more. Flexibility.
  • the length of the second type of CP is greater than or equal to the multipath delay extension of the channel.
  • the embodiment of the application controls the length of the second type of CP to be no less than the multipath delay extension of the channel, and transmits the same/repetitive data as the data carried on the OFDM symbol on the second CP resource of the second type of CP, which can suppress multipath ISI caused by the path phenomenon can also reduce ICI.
  • the foregoing first CP resource may further include a first resource and a second resource.
  • the first resource can be used to carry the same (or repeated) data as the aforementioned side information
  • the second resource can be used to carry the aforementioned side information.
  • the embodiment of this application uses part of the resources in the first CP resource (the second resource) to transmit side information (the side information is valid data), and the other part of the resource (the first resource) transmits the same (repetitive) data as the side information (equivalent to The side information also has its own CP) to suppress the interference caused by the multipath phenomenon, which can reduce the bit error rate at the receiving end and improve the performance of the system.
  • the foregoing method further includes: sending a CP indication message, where the CP indication message is used to indicate the foregoing first CP resource.
  • the receiving end is notified in real time by sending a CP indication message, which CP resources are used for transmitting valid data, so that the receiving end can recover the data carried on the first signal.
  • an embodiment of the present application provides a communication device, which includes a unit and/or module for executing the communication method provided by the first aspect and/or any one of the possible implementations of the first aspect Therefore, the beneficial effects (or advantages) of the communication method provided by the first aspect can also be achieved.
  • an embodiment of the present application provides a communication device including a processor, a transceiver, and a memory, where the memory is used to store a computer program, and the computer program includes program instructions.
  • the processor runs the program instructions,
  • the communication device is caused to execute the communication method of the first aspect described above.
  • an embodiment of the present application provides a computer-readable storage medium that stores computer program instructions in the computer-readable storage medium, and when the computer program instructions are executed on the computer, the computer executes the above-mentioned first aspect. Communication method.
  • embodiments of the present application provide a computer program product, the computer program product including computer program code, when the computer program code runs on a computer, the computer executes the communication method of the first aspect.
  • an embodiment of the present application provides a chip including a processor.
  • the processor is configured to read and execute the computer program stored in the memory to execute the communication method in any possible implementation manner of the first aspect.
  • the chip further includes a memory, and the memory and the processor are connected through a circuit or a wire.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive data and/or signals that need to be processed, and the processor obtains the data and/or signals from the communication interface, processes the data and/or signals, and outputs the processing result through the communication interface.
  • the communication interface can be an input and output interface.
  • processors and memory may be physically independent units, or the memory may also be integrated with the processor.
  • the implementation of the embodiments of the present application can reduce the waste of CP resources and increase the utilization rate of CP resources, thereby improving the transmission efficiency of the NTN communication system.
  • Figure 1 is a system architecture diagram of an NTN communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of the relationship between OFDM symbols provided by an embodiment of the present application and data carried by the first type of CP;
  • FIG. 4 is a schematic diagram of a comparison of CP lengths in a time slot provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the positional relationship between a first type of CP and a first CP resource provided by an embodiment of the present application;
  • FIG. 6 is a schematic diagram of the length change of the CP provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of generating OFDM symbols at the transmitting end according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of transmitting side information on the first type of CP provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a receiving end obtaining data according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 11 is another schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Fig. 12 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication method provided in the embodiments of the present application can be applied to a non-terrestrial network (NTN) communication system.
  • the NTN communication system may include high-altitude platform communication, high-, medium-, and low-orbit satellite communication.
  • the embodiment of the present application first briefly introduces the system architecture of the NTN communication system.
  • the NTN communication system may include at least one network device and at least one terminal device (or UE).
  • FIG. 1 is a system architecture diagram of an NTN communication system provided by an embodiment of the present application.
  • a single network device in the NTN communication system can communicate with a single or multiple terminal devices.
  • the network device 1 transmits data and/or control to the terminal device 1, the terminal device 2, and the terminal device 3 respectively.
  • Signaling As shown in 1b of Figure 1, multiple network devices in the NTN communication system can communicate with single or multiple terminal devices, such as network device 2, network device 3, and network device 4 simultaneously transmitting data and/or to terminal device 4 Control signaling.
  • the network equipment (network equipment 1, 2, 3, and/or 4) in Figure 1 includes, but is not limited to, high altitude platform (HAPS) base stations, communication satellites (such as low-orbit satellites, medium-orbit satellites, or high-altitude platform stations). Orbiting satellites), etc.; terminal devices (terminal devices 1, 2, 3, and/or 4) in Figure 1 include but are not limited to mobile terminals (such as mobile phones, computers, vehicle-mounted terminals, etc.), fixed terminals (ground transceivers), Gateway station, air mobile station, maritime mobile station, land mobile station, local station, central station, etc.
  • HAPS high altitude platform
  • communication satellites such as low-orbit satellites, medium-orbit satellites, or high-altitude platform stations. Orbiting satellites), etc.
  • terminal devices (terminal devices 1, 2, 3, and/or 4) in Figure 1 include but are not limited to mobile terminals (such as mobile phones, computers, vehicle-mounted terminals, etc.), fixed terminals (ground transceivers), Gateway station,
  • the network equipment in FIG. 1 is an HAPS base station, and the terminal equipment may include mobile terminals, fixed terminals, gateway stations, and so on.
  • the HAPS base station can exchange data with the mobile terminal, the fixed terminal and/or the gateway station, and the HAPS base station can also send control signaling to the mobile terminal, the fixed terminal and/or the gateway station.
  • the network equipment in Figure 1 is a communication satellite, and the terminal equipment may include air mobile stations, maritime mobile stations, land mobile stations, local stations, and central stations.
  • Communication satellites can interact with air mobile stations, maritime mobile stations, land mobile stations, local stations and/or central stations, and communication satellites can also communicate with air mobile stations, maritime mobile stations, land mobile stations, local stations and/or Or the central station sends control signaling.
  • the network device when the network device sends data/signal/message/signaling to the terminal device, the network device may be referred to as the transmitting end, and the terminal device may be referred to as the receiving end.
  • the terminal device When a terminal device sends data/signal/message/signaling to a network device, the terminal device can be called a sending end, and the network device can be called a receiving end.
  • the network equipment can be a base station NodeB, an evolved base station (evolved NodeB, eNB), a transmission reception point (TRP), a next generation base station (gNB) in a 5G mobile communication system, and a future mobile communication system.
  • the base station in the system or the access node in the WiFi system, etc., the terminal equipment may include a user terminal (UE), a mobile station (mobile station, MS), or a mobile terminal (mobile terminal, MT), etc.
  • UE user terminal
  • MS mobile station
  • MT mobile terminal
  • the signal sent by the transmitting end can not only reach the receiving end through a direct path, but also reach the receiving end through reflection, scattering and/or diffraction paths. It is a multipath phenomenon, so the signal received by the receiving end not only contains the signal that arrives at the direct path, but also contains the delay signals of the signal that arrives at the direct path.
  • the difference between the arrival time of the last distinguishable delay signal and the first delay signal is the multipath delay spread, that is, the difference between the maximum transmission delay and the minimum transmission delay is the multipath delay Extension.
  • a waveform based on OFDM symbols is used, and a CP is added in front of each symbol based on OFDM.
  • the CP length is not less than the multipath delay spread of the channel.
  • the CP can suppress the inter-symbol interference (ISI) caused by the multipath phenomenon.
  • ISI inter-symbol interference
  • CP can also reduce inter-carrier interference (ICI).
  • the terminal equipment (or UE) of the NTN communication system on the ground is mostly distributed in a wide area, such as a suburb or a suburban area, and there are few high-rise buildings in the vast area (suburban or suburban area).
  • a wide area such as a suburb or a suburban area
  • there are fewer obstacles when the signal is transmitted in the NTN communication channel that is, there are fewer paths for the signal to reach the receiving end through reflection, scattering and/or diffraction, which means that the number of multipaths when the signal is transmitted in the NTN communication channel is small. Therefore, the multipath delay spread in the NTN communication system is small.
  • the CP length of the OFDM symbol in 5G NR will be too long compared to the multipath delay extension of the NTN communication channel, which will result in a waste of CP resources.
  • the utilization rate of CP resources is low, which makes the transmission efficiency of the NTN communication system low.
  • an embodiment of the present application provides a communication method that can flexibly configure CP length (integrated CP length/resources), thereby reducing waste of CP resources and improving
  • the utilization of CP resources can improve the transmission efficiency of the NTN communication system without changing the radio frame length (10ms), subframe length (1ms), slot length, and symbols of each slot (here, OFDM symbols) in 5G NR. ) Quantity.
  • the communication method provided in the embodiments of the present application will be described below by taking communication between a single sending end and a single receiving end as an example.
  • the sending end may be a network device or a terminal device (or UE), and correspondingly, the receiving end may also be a terminal device (or UE) or a network device.
  • the communication between a single sending end and multiple receiving ends, and the communication between multiple sending ends and single or multiple receiving ends can refer to the communication between a single sending end and a single receiving end. Expand the description.
  • the OFDM symbols in the embodiments of the present application may generally refer to OFDM symbols based on inverse discrete Fourier transform (IDFT) and other forms and/or variants that perform additional processing on them.
  • IDFT inverse discrete Fourier transform
  • IDFT inverse discrete Fourier transform
  • the CP resource mentioned in the embodiment of the present application may refer to the data bit of the CP in the time domain, or the time-frequency resource of the CP.
  • FIG. 2 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • the communication method provided by the embodiment of the present application may include the following steps:
  • S201 The sending end generates a first signal.
  • the foregoing first signal may be any signal sent by the transmitting end, and the foregoing first signal may carry any type of data, such as user data or signaling data.
  • the foregoing first signal may include OFDM symbols, a first type of CP, and a second type of CP. There is a CP before each OFDM symbol.
  • the CP resource of the CP of the first type may include two types of CP resources, which are the first CP resource and the second CP resource, respectively, and the CP resource of the CP of the second type may include one type of CP resource, that is, the second CP resource.
  • the first CP resource can be used to carry data that is different from the data carried on the OFDM symbol (or, the data carried on the first CP resource does not overlap with the data carried on the OFDM symbol, indicating that the data carried on the first CP resource is valid Data)
  • the second CP resource can be used to carry the same data as the data carried on the OFDM symbol (or, the data carried on the second CP resource overlaps with the data carried on the OFDM symbol, indicating that the data carried on the second CP resource is Invalid data).
  • the CP resource may be the data bit of the CP in the time domain.
  • the first signal in the embodiment of the present application includes two types of CPs.
  • One type of CP (the first type of CP) includes two types of CP resources (respectively the first CP resource and the second CP resource), and the other type (the second type of CP).
  • CP includes a type of CP resource (that is, the second CP resource), and the first CP resource in the first type of CP is used to carry/transmit data that is different (or non-repetitive) from the data carried on the OFDM symbol (that is, valid data).
  • the use of the second CP resource to carry/transmit the same (or repeated) data (ie invalid data) as the data carried on the OFDM symbol can make rational use of CP resources, reduce the waste of CP resources, and improve the utilization of CP resources, thereby Improve the transmission efficiency of the NTN communication system.
  • FIG. 3 is a schematic diagram of the relationship between the OFDM symbol provided in an embodiment of the present application and the data carried by the first type of CP.
  • the data carried on a certain OFDM symbol is represented by set A
  • the CP before this OFDM symbol is the first type of CP
  • the data carried on this first type of CP is represented by the set B.
  • the data carried on the first CP resource of this first type of CP is the part of set B except for the intersection of set A and set B (ie, B-(A ⁇ B)).
  • the data carried on the second CP resource of the class CP is the intersection of the set A and the set B (A ⁇ B).
  • the above-mentioned first signal may include K OFDM symbols, and each OFDM symbol carries data, and there is a CP before each OFDM symbol.
  • the K OFDM symbols may belong to the same time slot or the same sub-slot.
  • Frame or the same frame the CP before each OFDM symbol of the K OFDM symbols may be the first type CP or the second type CP.
  • the above-mentioned first signal may further include M first-type CPs and K-M second-type CPs.
  • the M first-type CPs and K-M second-type CPs may belong to the same time slot or the same subframe or the same frame.
  • each first-type CP in the M first-type CPs may be greater than the first length, and the length of each second-type CP in the K-M second-type CPs may be smaller than the first length.
  • the length of each first-type CP in the M first-type CPs may be the same or different; in the same way, the length of each second-type CP in the KM second-type CPs may be the same or different. the same.
  • the sum of the lengths of M type 1 CPs and KM type 2 CPs belonging to the same time slot or the same subframe or the same frame in the first signal may be equal to the product of the first length and K (i.e., a time slot
  • K i.e., a time slot
  • the total length of the CP within or within a subframe or within a frame is unchanged).
  • the foregoing first signal may include N OFDM symbols, the M OFDM symbols of the N OFDM symbols belong to the same time slot or the same subframe or the same frame, and the remaining NM OFDM symbols among the N OFDM symbols
  • the previous CP may be a third-type CP, that is, a third-type CP may also exist in the above-mentioned first signal.
  • the length of the third type of CP may be equal to the first length, and the CP resource of the third type of CP may include at least one type of CP resource, such as a second CP resource.
  • the length of the CP is flexibly configured (or integrated), and the first CP resource of the first type of CP with the integrated length is used to carry/transmit data that is different (or non-repetitive) from the data carried on the OFDM symbol (that is, Effective data), data can be transmitted on the first CP resource of the first type of CP, further improving the utilization rate of the CP resource, thereby improving the transmission efficiency of the NTN communication system.
  • K can be a natural number greater than 1 and less than or equal to 14
  • M can be a natural number greater than or equal to 1
  • K can be greater than M
  • N can be a natural number greater than 1
  • K can be greater than M
  • N can be greater than or equal to K.
  • the length of the first type of CP or the second type of CP here can refer to the time length of the CP.
  • the first length here can refer to the 5G NR operating under the same conditions as the NTN communication system (such as the same subcarrier spacing).
  • FIG. 4 is a schematic diagram of a comparison of CP lengths in a time slot provided by an embodiment of the present application.
  • a slot includes n OFDM symbols and n CPs, and there is 1 CP before each OFDM symbol.
  • 4a of FIG. 4 shows that n OFDM symbols in 1 slot and the length of the CP before the n OFDM symbols is equal to the first length L.
  • 4b of FIG. 4 shows M CPs of the first type and KM CPs of the second type in 1 time slot.
  • each CP of the first type is L 1 , and L 1 >L
  • the length of each CP of the second type is L 2 , and L 2 ⁇ L.
  • the foregoing first CP resource may include two parts of CP resources, which are the first resource and the second resource, respectively.
  • the data carried on the first resource may be the same/repetitive as the data carried on the second resource, indicating that the first resource is used to suppress interference caused by the multipath phenomenon.
  • the data carried on the second resource may be different from/not overlapped with the data carried on the OFDM symbol, indicating that the second resource is used to transmit valid data.
  • the data carried on the first CP resource may include side information, and the side information may be generated based on a combination of phase rotation factors.
  • the first resource in the first CP resource can be used to carry the same data as the side information (that is, the data carried on the first resource is the same as the side information, indicating that the side information can also have its own CP), the first CP resource
  • the second resource in can be used to carry side information.
  • FIG. 5 is a schematic diagram of the positional relationship between the first-type CP and the first CP resource provided in an embodiment of the present application.
  • the first CP resource may be located in the front part of the first type of CP (denoted as CP 1 ), and correspondingly, the second CP resource is located in the rear part of the first type of CP; the first CP resource may also be located in the first type of CP
  • the second CP resource is located in the front part of the first type of CP; the first CP resource can also be located in the middle part of the first type of CP, and correspondingly, the second CP resource is located in the first type of CP.
  • Front and rear parts; the embodiments of this application do not limit this.
  • the second CP resource may not be a continuous resource.
  • the resource size of the aforementioned first CP resource may be determined based on the size of data to be carried on the first CP resource.
  • the first CP resource is preset to carry side information (side information), and it is assumed that the data size of the side information generated by the sending end when a certain OFDM symbol is generated (the side information can be generated based on a combination of phase rotation factors) is 20 data bits, the CP before this OFDM symbol is the first type CP, and the resource size of the first CP resource included in the first type CP before this OFDM symbol may be greater than or equal to 20 data bits.
  • the embodiment of the application determines the resource size of the first CP resource based on the size of the data to be carried on the first CP resource.
  • the size of the first CP resource can be allocated as needed to meet the needs of different services, and at the same time, CP resources can be allocated more. Flexibility.
  • the length of the second type of CP may be greater than or equal to the multipath delay extension of the wireless communication channel of the NTN communication system.
  • the embodiment of the application controls the length of the second type of CP to be not less than the multipath delay extension of the channel, which can suppress the ISI caused by the multipath phenomenon, and can also reduce the ICI.
  • the transmitting end may configure the CP length for K OFDM symbols in the same time slot or the same subframe or the same frame. It is assumed that the length of the CP before each OFDM symbol before configuration is equal to the foregoing first length.
  • the transmitting end can reduce (shorten) the length of the CP before any KM OFDM symbols in the K OFDM symbols to obtain KM second type CPs, and can obtain the remaining M OFDM symbols in the K OFDM symbols
  • the length of the CP is increased (lengthened), and M CPs of the first type are obtained.
  • the sending end may decrease or increase proportionally, or decrease or increase the same value.
  • the configured length of each CP of the first type is greater than the first length
  • the length of each CP of the second type is less than the first length
  • the total length of M CPs of the first type and KM CPs of the second type is equal to K and The product of the first length.
  • FIG. 6 is a schematic diagram of the length change of the CP provided by an embodiment of the present application.
  • K 4 OFDM symbols as an example, these 4 OFDM symbols can be OFDM symbol 1, OFDM symbol 2, OFDM symbol 3, and OFDM symbol 4, respectively.
  • the CP before each OFDM symbol is configured.
  • the length is the first length L.
  • the transmitting end may allocate part of the resources of the CP before KM OFDM symbols in the K OFDM symbols (OFDM symbols 1, 2, 3, and 4) to the CP before the remaining M OFDM symbols.
  • the sending end transmits valid data (such as side information) on the first type of CP. 6a of FIG. 6 only schematically shows the transmission of valid data on the first type of CP before the OFDM symbol 1.
  • the transmitter can reduce the length of each CP before OFDM symbols 2, 3, and 4 by L/2 to obtain 3 CPs of the second type, and add OFDM symbols 2,
  • the length of the CP increases by 3L/2.
  • the sender transmits valid data on the first type of CP.
  • S202 The sending end sends a first signal to the receiving end.
  • the receiving end receives the first signal.
  • the sending end and the receiving end may pre-appoint CP resources for transmitting valid data (that is, the above-mentioned first type of CP) through signaling or protocol.
  • S203 The receiving end acquires data on the first signal.
  • the receiving end may extract the first CP resource of the OFDM symbol carried on the first CP resource of the first type of CP agreed in advance for transmitting valid data.
  • the data may remove the CP of all OFDM symbols in the first signal, and then extract the data carried on the OFDM symbols.
  • the receiving end can integrate the data carried on all the first CP resources in the first signal with the data carried on all the OFDM symbols after the CP is removed into complete data (that is, the data carried on the first signal by the transmitting end can be restored ).
  • the sender can notify the receiver in real time through signaling or indication message, what are the first CP resources in the first type of CP used by the sender to transmit valid data, so that the receiver can recover the first CP resource.
  • the data carried on the signal may also send a CP indication message to the receiving end in real time.
  • the receiving end receives the CP indication message.
  • the CP indication message may be used to indicate the first CP resource in the first type of CP.
  • the transmitting end generates a first signal and transmits the first signal, and this first signal includes an OFDM symbol, a first type of CP, and a second type of CP.
  • the CP resource of the first type of CP includes two types of CP resources, which are the first CP resource and the second CP resource, respectively;
  • the CP resource of the second type of CP includes one type of CP resource, that is, the second CP resource.
  • the first CP resource may be used to carry data that is different from the data carried on the OFDM symbol (that is, the data carried on the first CP resource does not overlap with the data carried on the OFDM symbol, indicating that the first CP resource carries valid data);
  • the second CP resource may be used to carry the same data as the data carried on the OFDM symbol (that is, the data carried on the second CP resource is duplicated with the data carried on the OFDM symbol, indicating that invalid data is carried on the second CP resource).
  • the utilization rate of the CP resource can be improved, the waste of the CP resource can be reduced, and the transmission efficiency of the NTN communication system can be improved.
  • FIG. 7 is a schematic diagram of generating OFDM symbols at the transmitting end according to an embodiment of the present application. The following will briefly introduce the generation process of the OFDM symbol in the transmitter with reference to FIG. 7.
  • constellation mapping such as 16 quadrature amplitude modulation (QAM) mapping or 64QAM mapping, etc.
  • Step 2 Perform data segmentation on the baseband constellation mapping signal X, and divide it into V data sub-blocks (V>0) to obtain data sub-blocks X 1 , X 2 ,..., X V.
  • the length of each data sub-block is P, and there are P/V valid data in each data sub-block.
  • X 1 [x 0 ,x 1 ,..,x P/V-1 ,0,...,0,0]
  • X 2 [0,0,...,0,x P/V ,x P/ V+1 ,...,x 2P/V-1 ,0,...0,0].
  • Step 3 After serial-to-parallel conversion of the V data sub-blocks, IDFT processing is performed on the V data sub-blocks respectively.
  • Step 4 Optimize the peak to average power ratio (PAPR) of OFDM symbols according to the preselected set of phase rotation factors, and select the optimal or suboptimal combination of phase rotation factors [b 1 ,b 2 ,...,b V ] .
  • the preselected set of phase rotation factors may be ⁇ +1, -1, +i, -i ⁇ .
  • Step 5 After combining the phase rotation factors through channel coding and then constellation mapping, a baseband constellation mapping signal (that is, side information) is obtained.
  • Step 6 Multiply the data sub-blocks obtained in Step 2 with the optimal or suboptimal phase rotation factor obtained in Step 4 to obtain new V data sub-blocks, add them, and then perform parallel-to-serial conversion to obtain OFDM symbols .
  • Step 7 Add the first type of CP to the OFDM symbol obtained in step 6, and set all the Q data bits (corresponding to the above-mentioned first CP resource) in the first type of CP to zero (Q>0), and reserve for transmission Side information (baseband constellation mapping signal) obtained in step 5.
  • the size of Q can be determined based on the data size of the side information obtained in step 5.
  • part of the resources on the CP of the first type before the OFDM symbol (the first resource in the above-mentioned first CP resource) can be used for transmission and the side information part Repeated data, that is, when side information is transmitted on the first type of CP before the OFDM symbol, it can have its own CP.
  • FIG. 8 is a schematic diagram of transmitting side information on the first type of CP provided by an embodiment of the present application. Figure 8 only exemplarily shows 4 OFDM symbols.
  • the side information is transmitted on the first type CP (denoted as CP 1 ) before the first OFDM symbol.
  • CP 1 the number of OFDM symbols is not limited.
  • the side information is transmitted on the first type of CP is not limited.
  • the first type of CP before the OFDM symbol in step 7 can be represented by a vector A 1.
  • a 1 [a 0 ,a 1 ,... ,a Q-1 ,a Q ,...,a l-1 ].
  • the Q data bits in the first type of CP are all set to zero, which can be expressed as: a 0 , a 1 ,..., a Q-1
  • the elements of the Q data bits are 0; a Q ,..., a l-1
  • Step 8 Map the side information (baseband constellation mapping signal) obtained in Step 5 to the Q data bits reserved in the CP of the first type in Step 7.
  • the side information can also be represented by a vector B.
  • B [b 0 ,b 1 ,...,b Q-1 ].
  • Map the side information obtained in step 5 to the Q data bits reserved in the first type of CP in step 7, and obtain A 2 [b 0 ,b 1 ,...,b Q-1 ,0,...,0] .
  • a 2 includes 1 data bits, the Q data bits in A 2 are side information, and the remaining lQ data bits have 0 elements.
  • Step 9 Add the OFDM symbols of the first type CP obtained in step 7 to the result obtained in step 8, and transmit after subsequent signal processing procedures, such as digital to analog (D/A), up-conversion , Power amplifier (PA), etc.
  • D/A digital to analog
  • PA Power amplifier
  • the OFDM symbol with the first type of CP obtained in step 7 is added to the result obtained in step 8 to obtain the OFDM symbol carrying the data and the first type of CP.
  • the data carried on this CP of the first type is shown in A above.
  • FIG. 9 is a schematic diagram of a receiving end acquiring data according to an embodiment of the present application. The following will briefly introduce the process of acquiring data in the receiving end with reference to FIG. 9.
  • the process for the receiving end to obtain data on the OFDM symbol may be the inverse process of generating the OFDM symbol by the sending end.
  • Step 10 Perform down-conversion, analog-to-digital conversion A/D, serial-to-parallel conversion and other processing on the received signal.
  • Step 11 Extract the side information data according to the Q data bits reserved for side information in the first type of CP in step 7.
  • Step 12 Perform constellation demapping on the extracted side information data to obtain the side information, and then obtain the phase rotation factor used by the transmitting end.
  • Step 13 Perform de-CP processing on the OFDM data obtained in step 10 (that is, remove the first type of CP before the OFDM symbol), and then perform discrete Fourier transform (DFT) to obtain data Y.
  • DFT discrete Fourier transform
  • Step fifteen according to the phase rotation factor obtained in step twelve, respectively perform phase inverse rotation on the data sub-blocks obtained in step fourteen.
  • Step 16 Perform constellation demapping (and channel decoding, etc., omitted here) after the result of step 15 is converted from parallel to serial, and finally decoded user data is obtained.
  • the embodiment of the present application ensures the spectrum efficiency of the system by transmitting the side information data on part of the resources of the first type of CP (the aforementioned first CP resource).
  • the embodiment of the present application also provides corresponding devices and/or equipment.
  • FIG. 10 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device may include:
  • the processing unit 10 is used to generate a first signal; the transceiver unit 20 is used to send the first signal generated by the processing unit 10.
  • the first signal includes OFDM symbols, a first type of CP, and a second type of CP.
  • the CP resource of the CP of the first type may include a first CP resource and a second CP resource; the CP resource of the CP of the second type may include a second CP resource.
  • the first CP resource is used to carry data that is different from the data carried on the OFDM symbol; the second CP resource is used to carry data that is the same as the data carried on the OFDM symbol.
  • the length of the first type of CP is greater than the first length
  • the length of the second type of CP is less than the first length
  • the first signal belongs to the same time slot or the same subframe or the same time.
  • the sum of the lengths of the M first-type CPs and the KM-type second CPs of a frame is the product of the first length and K (that is, the total length of the CP in a time slot or a subframe or a frame remains unchanged).
  • the data carried on the foregoing first CP resource includes side information.
  • the resource size of the aforementioned first CP resource is determined based on the data size of the side information.
  • the length of the second type of CP is greater than or equal to the multipath delay spread of the channel.
  • the aforementioned first CP resource includes a first resource and a second resource.
  • the first resource can be used to carry the same/repetitive data as the aforementioned side information
  • the second resource can be used to carry the aforementioned side information. information.
  • the foregoing transceiver unit 20 is further configured to send a CP indication message, where the CP indication message is used to indicate the foregoing first CP resource.
  • each unit may also correspond to the corresponding description of the sending end in the method embodiment shown in FIG. 2 to execute the methods and functions performed by the sending end in the foregoing embodiment.
  • the communication device generates a first signal and transmits the first signal, and this first signal includes an OFDM symbol, a first-type CP, and a second-type CP.
  • the CP resource of the first type of CP includes two types of CP resources, which are the first CP resource and the second CP resource, respectively;
  • the CP resource of the second type of CP includes one type of CP resource, that is, the second CP resource.
  • the first CP resource may be used to carry data that is different from the data carried on the OFDM symbol (that is, the data carried on the first CP resource does not overlap with the data carried on the OFDM symbol, indicating that the first CP resource carries valid data);
  • the second CP resource may be used to carry the same data as the data carried on the OFDM symbol (that is, the data carried on the second CP resource is duplicated with the data carried on the OFDM symbol, indicating that invalid data is carried on the second CP resource).
  • the utilization rate of the CP resource can be improved, the waste of the CP resource can be reduced, and the transmission efficiency of the NTN communication system can be improved.
  • FIG. 11 is another schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device may include:
  • the information generating unit 100 is used to generate information symbols, such as OFDM symbols.
  • the CP length configuration unit 200 is configured to shorten the length of the CP before K-M OFDM symbols to obtain K-M CPs of the second type, and increase the length of the CPs before M OFDM symbols to obtain M CPs of the first type.
  • the CP adding unit 300 is used to allocate the CP configured by the CP length configuration unit 200 to the information symbols generated by the information generating unit 100 to form the time sequence symbols to be sent.
  • the data transmission unit 400 is configured to use part of the CP resources of the first type of CP before M OFDM symbols to transmit data.
  • the above-mentioned information generating unit 100, CP length configuring unit 200, CP adding unit 300, and data transmission unit 400 may be one unit, such as a processing unit.
  • each unit may also correspond to the corresponding description of the sending end in the method embodiment shown in FIG. 2 to execute the methods and functions performed by the sending end in the foregoing embodiment.
  • the embodiment of the application integrates CP length/resources and transmits effective data on the integrated CP of the first type, which can reduce the waste of CP resources, increase the utilization rate of CP resources, and improve the transmission efficiency of the NTN communication system.
  • FIG. 12 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 1000 provided by the embodiment of the present application includes a processor 1001, a memory 1002, a transceiver 1003, and a bus system 1004.
  • the communication device provided in the embodiment of the present application may be any one of a terminal device and a network device.
  • processor 1001, memory 1002, and transceiver 1003 are connected through a bus system 1004.
  • the aforementioned memory 1002 is used to store programs. Specifically, the program may include program code, and the program code includes computer operation instructions.
  • the memory 1002 includes, but is not limited to, random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM), or Portable read-only memory (compact disc read-only memory, CD-ROM). Only one memory is shown in FIG. 12, of course, the memory can also be set to multiple as needed.
  • the memory 1002 may also be a memory in the processor 1001, which is not limited here.
  • the memory 1002 stores the following elements, executable units or data structures, or their subsets, or their extended sets:
  • Operating instructions including various operating instructions, used to implement various operations.
  • Operating system Including various system programs, used to implement various basic services and process hardware-based tasks.
  • the aforementioned processor 1001 controls the operation of the communication device 1000.
  • the processor 1001 may be one or more central processing units (CPU).
  • CPU central processing units
  • the CPU may be a single-core CPU. It can also be a multi-core CPU.
  • bus system 1004 may include a power bus, a control bus, and a status signal bus in addition to a data bus.
  • bus system 1004 may include a power bus, a control bus, and a status signal bus in addition to a data bus.
  • various buses are marked as the bus system 1004 in FIG. 12.
  • Figure 12 is only schematically drawn.
  • Figure 2 provided by the above embodiments of the present application, or the methods on the sending end disclosed in the above embodiments; or Figure 2 provided by the above embodiments of the present application, or the methods on the receiving end of the above embodiments, may be applied to the processor 1001, or It is implemented by the processor 1001.
  • the processor 1001 may be an integrated circuit chip with signal processing capabilities. In the implementation process, the steps of the foregoing method can be completed by an integrated logic circuit of hardware in the processor 1001 or instructions in the form of software.
  • the aforementioned processor 1001 may be a general-purpose processor, a digital signal processing (digital signal processing, DSP), an application specific integrated circuit (ASIC), a field-programmable gate array (field-programmable gate array, FPGA), or Other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processing
  • ASIC application specific integrated circuit
  • FPGA field-programmable gate array
  • Other programmable logic devices discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 1002, and the processor 1001 reads the information in the memory 1002, and executes FIG. 2 or the method steps of the sending end described in the foregoing embodiments in combination with its hardware; or executes FIG. 2 or the foregoing implementations in combination with its hardware.
  • the embodiments of the present application also provide a computer program product, the computer program product includes computer program code, when the computer program code runs on a computer, the computer executes the method steps of the sending end described in FIG. 2; or when the computer When the program code runs on a computer, the computer executes the method steps of the receiving end described in FIG. 2.
  • the embodiment of the present application also provides a chip including a processor.
  • the processor is used to read and execute the computer program stored in the memory to execute the communication method in any possible implementation manner of FIG. 2.
  • the chip further includes a memory, and the memory and the processor are connected through a circuit or a wire.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive data and/or information to be processed, and the processor obtains the data and/or information from the communication interface, processes the data and/or information, and outputs the processing result through the communication interface.
  • the communication interface can be an input and output interface.
  • processors and memory may be physically independent units, or the memory may also be integrated with the processor.
  • the process can be completed by a computer program instructing relevant hardware.
  • the program can be stored in a computer readable storage medium. , May include the processes of the foregoing method embodiments.
  • the aforementioned storage media include: ROM or random storage RAM, magnetic disks or optical discs and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种通信方法、装置以及设备,该方法包括:发送端生成第一信号并发送该第一信号,这个第一信号中包括OFDM符号、第一类CP以及第二类CP。其中,第一类CP的CP资源包括两种CP资源,分别为第一CP资源和第二CP资源;第二类CP的CP资源包括一种CP资源,即第二CP资源。第一CP资源可以用于承载与OFDM符号上承载的数据不相同的数据;第二CP资源可以用于承载与OFDM符号上承载的数据相同的数据。采用本申请实施例,可以减少CP资源的浪费,提高CP资源的利用率,从而提高NTN通信系统的传输效率。

Description

通信方法、装置以及设备
本申请要求于2019年9月27日提交中国专利局、申请号为201910923989.6、申请名称为“通信方法、装置以及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法、装置以及设备。
背景技术
在第五代移动通信(5th-generation,5G)新空口(new radio,NR)的帧(无线帧)结构中,每个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号前面都有循环前缀(cyclic prefix,CP),且CP的长度不小于无线通信信道的多径时延扩展(或多径时延)。通常来说,CP的长度包括两种:正常CP(normal CP)和扩展CP(extended CP)。
无线通信技术的后续发展,会将陆地通信技术、协议适配到非陆地网络(non-terrestrial networks,NTN)通信的场景中,构建一个空、天、地一体化的通信系统。非陆地通信包括:高空平台通信,高、中、低轨道卫星通信等。与陆地无线通信信道不同,NTN通信(卫星-地面通信、高空平台-地面)的无线通信信道具有多径数少,多径时延扩展小、直射径信号占比大的特点。这是因为NTN通信的用户终端(user equipment,UE)有很大一部分分布在郊区或近郊区域,UE附近的高楼等建筑物较少(即信号在传输过程中的障碍物较少),故UE在收发信号时信号在无线通信信道中经反射、散射和/或绕射的次数较少,无线通信信道中的多径数就较少。
如果在NTN通信中仍然沿用NR协议的CP的长度,则CP的长度将会远大于NTN通信信道的多径时延扩展,造成CP资源的浪费和利用率低,降低NTN通信系统的传输效率。
发明内容
本申请实施例提供一种通信方法、装置以及设备,可以减少CP资源的浪费,提高CP资源的利用率,从而提高NTN通信系统的传输效率。
下面从不同的方面介绍本申请,应理解的是,下面的不同方面的实施方式和有益效果可以互相参考。
第一方面,本申请实施例提供一种通信方法,该方法可适用于非陆地网络通信系统中,该方法可包括:生成第一信号并发送该第一信号。其中,这个第一信号中包括OFDM符号,第一类CP以及第二类CP。该第一类CP的CP资源可以包括第一CP资源和第二CP资源;该第二类CP的CP资源可以包括第二CP资源。该第一CP资源用于承载与OFDM符号上承载的数据不相同的数据(或者,该第一CP资源上承载的数据与OFDM符号上承载的数据不重复,说明该第一CP资源上承载的是有效数据);该第二CP资源用于承载与OFDM符号上承载的数据相同的数据(或者,该第二CP资源上承载的数据与该第二OFDM符号上承载的数据重复,说明第二CP资源上承载的是无效数据)。CP资源可以指CP在时域上 的数据位。
本申请实施例的第一信号中包括两类CP,一类CP(第一类CP)中包括两种CP资源(分别为第一CP资源和第二CP资源),另一类CP(第二类CP)中包括一种CP资源(即第二CP资源),利用第一类CP中的第一CP资源承载/传输与OFDM符号上承载的数据不相同(或不重复)的数据(即有效数据),利用第二CP资源承载/传输与OFDM符号上承载的数据相同(或重复)的数据(即无效数据),可以合理利用CP资源,减少CP资源的浪费,提高CP资源的利用率,从而提高NTN通信系统的传输效率。
结合第一方面,在一种可能的实施方式中,上述第一类CP的长度大于第一长度,上述第二类CP的长度小于该第一长度,且上述第一信号中属于同一个时隙或者同一个子帧或者同一个帧的M个第一类CP和K-M个第二类CP的长度总和为该第一长度与K的乘积(即一个时隙或一个子帧或一个帧内CP的总长度不变)。本申请实施例通过灵活配置(或整合)CP的长度,并利用长度整合的第一类CP的第一CP资源承载/传输与OFDM符号上承载的数据不相同(或不重复)的数据(即有效数据),可以进一步提高CP资源的利用率,从而提高NTN通信系统的传输效率。其中,第一长度可以指与NTN通信系统工作在同等条件下(如子载波间隔相同)的5G NR所采用的CP的长度(这里指时间长度)。
结合第一方面,在一种可能的实施方式中,上述第一CP资源上承载的数据可以包括边信息。其中,边信息可以基于相位旋转因子生成。
结合第一方面,在一种可能的实施方式中,上述第一CP资源的资源大小可以基于上述边信息的数据大小确定。可选的,第一CP资源的资源大小可以大于或等于边信息的数据大小。本申请实施例基于第一CP资源上要承载的数据大小来确定这个第一CP资源的资源大小,可以按需分配第一CP资源的大小,以适应不同业务的需求,同时可以增加分配CP资源的灵活性。
结合第一方面,在一种可能的实施方式中,上述第二类CP的长度大于或等于信道的多径时延扩展。本申请实施例控制第二类CP的长度不小于信道的多径时延扩展,并在第二类CP的第二CP资源上传输与OFDM符号上承载的数据相同/重复的数据,可以抑制多径现象引起的ISI,还可以降低ICI。
结合第一方面,在一种可能的实施方式中,上述第一CP资源中还可以包括第一资源和第二资源。该第一资源可以用于承载与上述边信息相同(或重复)的数据,该第二资源可以用于承载上述边信息。本申请实施例利用第一CP资源中的部分资源(第二资源)传输边信息(边信息是有效数据),另外部分资源(第一资源)传输与边信息相同(重复)的数据(相当于边信息也有自己的CP),来抑制多径现象引起的干扰,可以减少接收端的误码率,提高系统的性能。
结合第一方面,在一种可能的实施方式中,上述方法还包括:发送CP指示消息,该CP指示消息用于指示上述第一CP资源。本申请实施例通过发送CP指示消息实时通知接收端,用于传输有效数据的CP资源有哪些,以便于接收端恢复第一信号上携带的数据。
第二方面,本申请实施例提供一种通信装置,该通信装置包括用于执行上述第一方面和/或第一方面的任意一种可能的实现方式所提供的通信方法的单元和/或模块,因此也能实现第一方面提供的通信方法所具备的有益效果(或优点)。
第三方面,本申请实施例提供一种通信设备,包括处理器、收发器和存储器,其中,该存储器用于存储计算机程序,该计算机程序包括程序指令,当该处理器运行该程序指令时,使该通信设备执行上述第一方面的通信方法。
第四方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质中存储计算机程序指令,当该计算机程序指令在该计算机上运行时,使得该计算机执行上述第一方面中的通信方法。
第五方面,本申请实施例提供一种计算机程序产品,该计算机程序产品包括计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行上述第一方面的通信方法。
第六方面,本申请实施例提供一种芯片,包括处理器。该处理器用于读取并执行存储器中存储的计算机程序,以执行上述第一方面的任意可能的实现方式中的通信方法。可选的,该芯片还包括存储器,该存储器与该处理器通过电路或电线连接。进一步可选的,该芯片还包括通信接口,该处理器与该通信接口连接。该通信接口用于接收需要处理的数据和/或信号,该处理器从该通信接口获取该数据和/或信号,并对该数据和/或信号进行处理,并通过该通信接口输出处理结果。该通信接口可以是输入输出接口。
可选的,上述的处理器与存储器可以是物理上相互独立的单元,或者,存储器也可以和处理器集成在一起。
实施本申请实施例,可以减少CP资源的浪费,提高CP资源的利用率,从而提高NTN通信系统的传输效率。
附图说明
图1是本申请实施例提供的NTN通信系统的系统架构图;
图2是本申请实施例提供的通信方法的示意流程图;
图3是本申请实施例提供的OFDM符号和第一类CP所承载的数据的关系示意图;
图4是本申请实施例提供的一个时隙内CP的长度对比示意图;
图5是本申请实施例提供的第一类CP与第一CP资源的位置关系示意图;
图6是本申请实施例提供的CP的长度变化示意图;
图7是本申请实施例提供的发送端生成OFDM符号的示意图;
图8是本申请实施例提供的第一类CP上传输边信息的示意图;
图9是本申请实施例提供的接收端获取数据的示意图;
图10是本申请实施例提供的通信装置的一结构示意图;
图11是本申请实施例提供的通信装置的另一结构示意图;
图12是本申请实施例提供的通信设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
本申请实施例提供的通信方法可应用在非陆地网络(NTN)通信系统中。NTN通信系 统可包括高空平台通信,高、中、低轨道卫星通信等。为便于理解,本申请实施例先对NTN通信系统的系统架构进行简要介绍。
在一些可行的实施方式中,NTN通信系统可以包括至少一个网络设备,和至少一个终端设备(或UE)。如图1所示,图1是本申请实施例提供的NTN通信系统的系统架构图。如图1的1a所示,NTN通信系统中的单个网络设备可以与单个或多个终端设备进行通信,比如网络设备1分别向终端设备1、终端设备2以及终端设备3传输数据和/或控制信令。如图1的1b所示,NTN通信系统中的多个网络设备可以与单个或多个终端设备进行通信,比如网络设备2、网络设备3以及网络设备4同时向终端设备4传输数据和/或控制信令。其中,图1中的网络设备(网络设备1、2、3和/或4)包括但不限于高空平台(high altitude platform station,HAPS)基站、通信卫星(如低轨道卫星、中轨道卫星或高轨道卫星)等;图1中的终端设备(终端设备1、2、3和/或4)包括但不限于移动终端(如手机、电脑、车载终端等)、固定终端(地面收发信机)、网关站、空中移动站、海上移动站、陆上移动站、地方站、中央站等。
在一些可行的实施方式中,如果NTN通信系统为高空平台通信系统,则图1中的网络设备为HAPS基站,终端设备可以包括移动终端、固定终端、网关站等。HAPS基站可以与移动终端、固定终端和/或网关站进行数据交互,HAPS基站还可以向移动终端、固定终端和/或网关站发送控制信令。如果NTN通信系统为高、中或低轨道卫星通信系统,则图1中的网络设备为通信卫星,终端设备可以包括空中移动站、海上移动站、陆上移动站、地方站、中央站等。通信卫星可以与空中移动站、海上移动站、陆上移动站、地方站和/或中央站进行数据交互,通信卫星还可以向空中移动站、海上移动站、陆上移动站、地方站和/或中央站发送控制信令。
在一些可行的实施方式中,当网络设备向终端设备发送数据/信号/消息/信令时,网络设备可称为发送端,终端设备可称为接收端。当终端设备向网络设备发送数据/信号/消息/信令时,终端设备可称为发送端,网络设备可称为接收端。其中,网络设备可以是基站NodeB、演进型基站(evolved NodeB,eNB)、发送接收点(transmission reception point,TRP)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、未来移动通信系统中的基站或WiFi系统中的接入节点等,终端设备可以包括用户终端(UE)、移动台(mobile station,MS)或移动终端(mobile terminal,MT)等。为便于描述,下面从发送端和接收端的角度进行介绍。
在一些可行的实施方式中,在发送端与接收端进行通信时,发送端发送出来的信号不仅可以经过直射路径到达接收端,还可以经过反射、散射和/或绕射路径到达接收端,这就是多径现象,所以接收端接收到的信号中不仅含有直射路径到达的信号,还包含有直射路径到达的信号的各个时延信号。其中,最后一个可分辨的时延信号与第一个时延信号的到达时间之差就为多径时延扩展,即最大传输时延和最小传输时延之间的差值为多径时延扩展。
对于5G NR系统来说,在发送端,采用了基于OFDM符号的波形,并在基于OFDM的每个符号前面增加了CP。通常CP长度不小于信道的多径时延扩展。虽然在无线帧的OFDM符号前增加CP会降低系统的传输效率,但是CP能够抑制多径现象引起的符号间干 扰(inter-symbol interference,ISI)。同时,CP还能够降低载波间干扰(inter-carrier interference,ICI)。
对于NTN通信系统来说,因为NTN通信系统在地面上的终端设备(或UE)大多分布广阔地,如郊区或近郊区,且广阔地(郊区或近郊区)的高楼等建筑物较少,说明信号在NTN通信信道中传输时遇到的障碍物较少,即信号经反射、散射和/或绕射到达接收端的路径少,也就说明信号在NTN通信信道中传输时的多径数量少。所以NTN通信系统中的多径时延扩展小。故如果在NTN通信系统中继续沿用5G NR系统的CP,则5G NR中OFDM符号的CP长度相对于NTN通信信道的多径时延扩展而言就会过长,就会导致CP资源的浪费,CP资源的利用率低,从而使得NTN通信系统的传输效率低。
针对上述CP资源浪费、利用率低以及NTN通信系统的传输效率低的问题,本申请实施例提供一种通信方法,可以灵活配置CP长度(整合CP长度/资源),减少CP资源的浪费,提高CP资源的利用率,从而提高NTN通信系统的传输效率,同时不改变5G NR中无线帧长度(10ms)、子帧长度(1ms)、时隙长度以及每个时隙的符号(这里指OFDM符号)数量。
下面将结合附图2至附图9,对本申请实施例提供的通信方法进行详细说明。
为便于描述,下面将以单个发送端与单个接收端之间的通信为例对本申请实施例提供的通信方法进行说明。其中,发送端可以为网络设备或终端设备(或UE),相应地,接收端也可以为终端设备(或UE)或网络设备。可选的,单个发送端与多个接收端之间的通信,以及多个发送端与单个或多个接收端之间的通信可参考单个发送端与单个接收端之间的通信,在此不展开说明。
在一些可行的实施方式中,本申请实施例中的OFDM符号可以泛指基于离散傅里叶逆变换(inverse discrete Fourier transform,IDFT)的OFDM符号以及对其做额外处理的其它形式和/或变形,例如离散傅立叶变换-扩展-正交频分复用(discrete fourier transform-spread-OFDM,DFT-S-OFDM)、滤波器组多载波(filter bank multi-carrier,FBMC)或子带滤波的正交频分复用(filtered orthogonal frequency division multiplexing,f-OFDM)符号等。为便于描述,本申请实施例以基于IDFT的OFDM符号(下面简称OFDM符号)为例进行说明。
在一些可行的实施方式中,本申请实施例所提及的CP资源可以指CP在时域上的数据位,或者CP的时频资源。
参见图2,图2是本申请实施例提供的通信方法的示意流程图。如图2所示,本申请实施例提供的通信方法可包括步骤:
S201,发送端生成第一信号。
在一些可行的实施方式中,上述第一信号可以为发送端发送的任意信号,上述第一信号中可以携带任意类型的数据,如用户数据或信令数据等。上述第一信号中可以包括OFDM符号、第一类CP以及第二类CP。每个OFDM符号前存在一个CP。第一类CP的CP资源可以包括两种CP资源,分别为第一CP资源和第二CP资源,第二类CP的CP资源可以包括一种CP资源,即第二CP资源。第一CP资源可以用于承载与OFDM符号上承载的数据 不相同的数据(或者,第一CP资源上承载的数据与OFDM符号上承载的数据不重复,说明第一CP资源上承载的是有效数据),第二CP资源可以用于承载与OFDM符号上承载的数据相同的数据(或者,第二CP资源上承载的数据与OFDM符号上承载的数据重复,说明第二CP资源上承载的是无效数据)。其中,CP资源可以为CP在时域上的数据位。
本申请实施例的第一信号中包括两类CP,一类CP(第一类CP)中包括两种CP资源(分别为第一CP资源和第二CP资源),另一类(第二类CP)中包括一种CP资源(即第二CP资源),利用第一类CP中的第一CP资源承载/传输与OFDM符号上承载的数据不相同(或不重复)的数据(即有效数据),利用第二CP资源承载/传输与OFDM符号上承载的数据相同(或重复)的数据(即无效数据),可以合理利用CP资源,减少CP资源的浪费,提高CP资源的利用率,从而提高NTN通信系统的传输效率。
例如,以一个OFDM符号为例,如图3所示,图3是本申请实施例提供的OFDM符号和第一类CP所承载的数据的关系示意图。假设某个OFDM符号上承载的数据用集合A表示,这个OFDM符号前的CP为第一类CP,这个第一类CP上承载的数据用集合B表示。如图3所示,这个第一类CP的第一CP资源上承载的数据为集合B中除集合A与集合B的交集之外的部分(即B-(A∪B)),这个第一类CP的第二CP资源上承载的数据为集合A与集合B的交集(A∪B)。
在一些可行的实施方式中,上述第一信号可以包括K个OFDM符号,每个OFDM符号上承载数据,每个OFDM符号前存在一个CP,这K个OFDM符号可以属于同一个时隙或者同一个子帧或者同一个帧,这K个OFDM符号的各个OFDM符号前的CP可以为第一类CP或第二类CP。上述第一信号还可以包括M个第一类CP和K-M个第二类CP,这M个第一类CP和K-M个第二类CP可以属于同一个时隙或者同一个子帧或者同一个帧。该M个第一类CP中每个第一类CP的长度可以大于第一长度,该K-M个第二类CP中每个第二类CP的长度可以小于该第一长度。选的,该M个第一类CP中各个第一类CP的长度可以相同,也可以不相同;同理,该K-M个第二类CP中各个第二类CP的长度可以相同,也可以不相同。该第一信号中属于同一个时隙或同一个子帧或同一个帧的M个第一类CP和K-M个第二类CP的长度总和可以等于该第一长度与K的乘积(即一个时隙内或一个子帧内或一个帧内的CP的总长度不变)。可选的,上述第一信号可以包括N个OFDM符号,N个OFDM符号中的M个OFDM符号属于同一个时隙或同一个子帧或同一个帧,N个OFDM符号中剩余的N-M个OFDM符号前的CP可以为第三类CP,即上述第一信号中还可以存在第三类CP。第三类CP的长度可以等于该第一长度,该第三类CP的CP资源可以包括至少一种CP资源,如第二CP资源。本申请实施例通过灵活配置(或整合)CP的长度,并利用长度整合的第一类CP的第一CP资源承载/传输与OFDM符号上承载的数据不相同(或不重复)的数据(即有效数据),可以在第一类CP的第一CP资源上传输数据,进一步提高CP资源的利用率,从而提高NTN通信系统的传输效率。
其中,K可以为大于1且小于或等于14的自然数,M可以为大于或等于1的自然数,K可以大于M,N可以为大于1的自然数,N可以大于或等于K。这里的第一类CP或第二类CP的长度可以指CP的时间长度,相应地,这里的第一长度可以指与NTN通信系统工作在同等条件下(如子载波间隔相同)的5G NR所采用的CP的时间长度。
例如,参见图4,图4是本申请实施例提供的一个时隙内CP的长度对比示意图。如图4所示,假设一个时隙内包括n个OFDM符号以及n个CP,每个OFDM符号前存在1个CP。其中,图4的4a示出了1个时隙内的n个OFDM符号以及这n个OFDM符号前的CP的长度等于第一长度L。图4的4b示出了1个时隙内的M个第一类CP以及K-M个第二类CP。图4的4b中假设各个第一类CP(记为CP 1)的长度均为L 1,且L 1>L;各个第二类CP(记为CP 2)的长度均为L 2,且L 2<L。可选的,K小于或等于n。若K小于n时,1个时隙中还包括n-K个第三类CP(图4的4b中未示出),第三类CP的长度L 3=L。
在一些可行的实施方式中,上述第一CP资源中可以包括两部分CP资源,分别为第一资源和第二资源。第一资源上承载的数据可以与第二资源上承载的数据相同/重复,说明第一资源用于抑制多径现象引起的干扰。第二资源上承载的数据可以与OFDM符号上承载的数据不相同/不重复,说明第二资源用于传输有效数据。可选的,上述第一CP资源上承载的数据可以包括边信息(side information),边信息可以基于相位旋转因子组合生成。该第一CP资源中的第一资源可以用于承载与边信息相同的数据(即第一资源上承载的数据与边信息重复,说明边信息也可以有自己的CP),该第一CP资源中的第二资源可以用于承载边信息。本申请实施例在第一类CP的第一CP资源上传输有效数据时,利用第一CP资源中的部分资源(第二资源)传输有效数据,另外部分资源(第一资源)传输与有效数据重复的数据(相当于有效数据也有自己的CP),来抑制多径现象引起的干扰,可以减少接收端的误码率,提高系统的性能。
可选的,如图5所示,图5是本申请实施例提供的第一类CP与第一CP资源的位置关系示意图。其中,第一CP资源可以位于第一类CP(记为CP 1)的前面部分,相应地,第二CP资源就位于第一类CP的后面部分;第一CP资源也可以位于第一类CP的后面部分,相应地,第二CP资源就位于第一类CP的前面部分;第一CP资源还可以位于第一类CP的中间部分,相应地,第二CP资源就位于第一类CP的前和后部分;本申请实施例对此不做限定。其中,第二CP资源可以不是连续的资源。
在一些可行的实施方式中,上述第一CP资源的资源大小可以基于第一CP资源上要承载的数据大小确定。例如,预先设定第一CP资源用于承载边信息(side information),假设发送端在生成某个OFDM符号时产生的边信息(这里的边信息可以基于相位旋转因子组合生成)的数据大小为20个数据位,这个OFDM符号前的CP为第一类CP,则这个OFDM符号前的第一类CP所包括的第一CP资源的资源大小可以大于或等于20个数据位。本申请实施例基于第一CP资源上要承载的数据大小来确定这个第一CP资源的资源大小,可以按需分配第一CP资源的大小,以适应不同业务的需求,同时可以增加分配CP资源的灵活性。
可选的,上述第二类CP的长度可以大于或等于NTN通信系统的无线通信信道的多径时延扩展。本申请实施例控制第二类CP的长度不小于信道的多径时延扩展,可以抑制多径现象引起的ISI,还可以降低ICI。
在一些可行的实施方式中,发送端可以对同一时隙或同一子帧或同一帧的K个OFDM符号配置CP的长度。假设配置前每个OFDM符号前的CP的长度等于上述第一长度。发送端可以将该K个OFDM符号中的任意K-M个OFDM符号前的CP的长度减少(变短) 后得到K-M个第二类CP,并可以将该K个OFDM符号中剩余的M个OFDM符号的CP的长度增加(变长)后得到M个第一类CP。可选的,发送端在减少或增加CP的长度时,可以按比例减少或按比例增加,也可以减少或增加同一数值。配置得到的每个第一类CP的长度大于该第一长度,每个第二类的CP长度小于该第一长度,M个第一类CP和K-M个第二类CP的总长度等于K与第一长度的乘积。发送端在为OFDM符号配置好CP的长度之后,不仅可以在OFDM符号上承载数据,还可以在CP的长度变长的一类CP上(即第一类CP上)传输有效数据(这里的有效数据可以指上述第一CP资源上承载的数据)。其中,发送端在第一类CP上传输有效数据时,可以采用单载波、多载波或者其他载波形式,本申请实施例对此不作限定。
例如,如图6所示,图6是本申请实施例提供的CP的长度变化示意图。图6中假设K=4,以4个OFDM符号为例,这4个OFDM符号可以分别为OFDM符号1、OFDM符号2、OFDM符号3以及OFDM符号4,配置前每个OFDM符号前的CP的长度为第一长度L。发送端可以将K个OFDM符号(OFDM符号1、2、3以及4)中K-M个OFDM符号前的CP的部分资源分配给剩余的M个OFDM符号前的CP。如图6的6a所示,M=2,则发送端可以将OFDM符号3和4前的每个CP的长度减少L/2,得到2个第二类CP(记为CP 2),并将OFDM符号3和4前的CP减少的总长度(L/2+L/2=L)均分给OFDM符号1和2前的CP,得到2个第一类CP(记为CP 1),此时OFDM符号1和2前的每个CP的长度增加L/2。发送端在第一类CP上传输有效数据(比如边信息),图6的6a仅是示意性地示出了在OFDM符号1前的第一类CP上传输有效数据,实际应用中,还可以在OFDM符号2前的第一类CP上传输有效数据。如图6的6b所示,M=3,则发送端可以将OFDM符号2、3以及4前的每个CP的长度减少L/2,得到3个第二类CP,并将OFDM符号2、3以及4前的CP减少的总长度(L/2+L/2+L/2=3L/2)分给OFDM符号1前的CP,得到1个第一类CP,此时OFDM符号1前的CP的长度增加3L/2。发送端在第一类CP上传输有效数据。
S202,发送端向接收端发送第一信号。相应地,接收端接收第一信号。
在一些可行的实施方式中,发送端在向接收端发送上述第一信号之前,发送端与接收端可以通过信令或协议事先约定好用于传输有效数据的CP资源(即上述第一类CP中的第一CP资源)等,以便于接收端恢复第一信号上携带的数据,比如事先约定在哪些时隙(slot)或子帧(subframe)或帧(frame)、哪些OFDM符号前的哪些CP数据位上传输有效数据。
S203,接收端获取第一信号上的数据。
在一些可行的实施方式中,接收端在接收到上述第一信号之后,可以按照事先约定的用于传输有效数据的第一类CP的第一CP资源,提取OFDM符号的第一CP资源上承载的数据。接收端可以去除该第一信号中所有OFDM符号的CP,再提取OFDM符号上承载的数据。接收端可以将该第一信号中所有第一CP资源上承载的数据与去除CP后的所有OFDM符号上承载的数据整合成完整的数据(即恢复出发送端在该第一信号上携带的数据)。
作为一个可选实施方式,发送端可以通过信令或指示消息实时通知接收端,发送端用于传输有效数据的第一类CP中的第一CP资源有哪些,以便于接收端恢复出第一信号上携 带的数据。故在步骤S203之前,发送端还可以向接收端实时发送CP指示消息。相应地,接收端接收CP指示消息。该CP指示消息可以用于指示上述第一类CP中的第一CP资源。
在本申请实施例中,发送端生成第一信号并发送该第一信号,这个第一信号中包括OFDM符号、第一类CP以及第二类CP。其中,第一类CP的CP资源包括两种CP资源,分别为第一CP资源和第二CP资源;第二类CP的CP资源包括一种CP资源,即第二CP资源。第一CP资源可以用于承载与OFDM符号上承载的数据不相同的数据(即第一CP资源上承载的数据与OFDM符号上承载的数据不重复,说明第一CP资源上承载有效数据);第二CP资源可以用于承载与OFDM符号上承载的数据相同的数据(即第二CP资源上承载的数据与OFDM符号上承载的数据重复,说明第二CP资源上承载无效数据)。本申请实施例通过在第一类CP的第一CP资源上传输有效数据,可以提高CP资源的利用率,减少CP资源的浪费,提高NTN通信系统的传输效率。
作为一个可选的具体实施例,参见图7,图7是本申请实施例提供的发送端生成OFDM符号的示意图。下面将结合图7,对发送端中OFDM符号的生成过程进行简要介绍。
步骤一、将数据源(这里可以指经过信道编码后的数据源)经过星座映射(比如16正交幅度调制(quadrature amplitude modulation,QAM)映射或64QAM映射等)后得到基带星座映射信号X=[x 0,x 1,…,x P-1]。其中,P为大于1的整数。
步骤二、对基带星座映射信号X进行数据分割,分割(这里可以均分)为V个数据子块(V>0),得到数据子块X 1,X 2,…,X V。其中,每个数据子块的长度为P,每个数据子块中存在P/V个有效数据。如X 1=[x 0,x 1,..,x P/V-1,0,…,0,0],X 2=[0,0,…,0,x P/V,x P/V+1,…,x 2P/V-1,0,…0,0]。
步骤三、将V个数据子块经过串并转换后,分别对V个数据子块进行IDFT处理。
步骤四、根据相位旋转因子的预选集合优化OFDM符号的峰均比(peak to average power ratio,PAPR),选择最优或次优的相位旋转因子组合[b 1,b 2,…,b V]。例如,相位旋转因子的预选集合可以为{+1,-1,+i,-i}。
其中,相位旋转因子可以从相位或复数的角度理解。从相位角度来说,相位旋转因子的预选集合{+1,-1,+i,-i}中,+1可以表示相位旋转0°,-1可以表示相位旋转180°,+i可以表示相位旋转+90°,-i可以表示相位旋转-90°(或270°)。从复数角度来说,相位旋转因子的预选集合{+1,-1,+i,-i}中,+1和-1可以表示实部,+i和-i可以表示虚部。相位旋转因子组合[b 1,b 2,…,b V]=[+1,-1,+i,-i,+1,-1,+i,-i,…]
步骤五、将相位旋转因子组合经过信道编码再经过星座映射后得到基带星座映射信号(即边信息)。
步骤六、将步骤二得到的数据子块与步骤四得到的最优或次优的相位旋转因子相乘后得到新的V个数据子块,将其相加,然后经过并串转换得到OFDM符号。
步骤七、对步骤六得到的OFDM符号加第一类CP,并将第一类CP中的Q个数据位(对应上述第一CP资源)全部置零(Q>0),预留用来传输步骤五得到的边信息(基带星座映射信号)。
其中,Q的大小可以基于步骤五得到的边信息的数据大小确定。步骤五得到的边信息 在OFDM符号前的第一类CP上传输时,可以利用OFDM符号前的第一类CP上的部分资源(上述第一CP资源中的第一资源)传输与边信息部分重复的数据,即边信息在OFDM符号前的第一类CP上传输时,可以拥有自己的CP。如图8所示,图8是本申请实施例提供的第一类CP上传输边信息的示意图。图8仅是示例性的画出了4个OFDM符号,在第1个OFDM符号前的第一类CP(记为CP 1)上传输边信息,但实际应用中,OFDM符号的数量不限,以及在哪些OFDM符号前的第一类CP上传输边信息也不限。
为便于理解,步骤七中OFDM符号前的第一类CP可以用向量A 1表示,假设OFDM符号前的第一类CP中包括l个数据位,则A 1=[a 0,a 1,…,a Q-1,a Q,…,a l-1]。其中,第一类CP中的Q个数据位全部置零可以表示为:a 0,a 1,…,a Q-1这Q个数据位的元素为0;a Q,…,a l-1这l-Q个数据位的元素不为0,即A 1=[0,0,…,0,a Q,…,a l-1]。
步骤八、将步骤五得到的边信息(基带星座映射信号)映射到步骤七的第一类CP中预留的Q个数据位上。
其中,为便于理解,边信息也可以用向量B表示,假设边信息的数据大小为Q个数据位,则B=[b 0,b 1,…,b Q-1]。将步骤五得到的边信息映射到步骤七的第一类CP中预留的Q个数据位上,得到A 2=[b 0,b 1,…,b Q-1,0,…,0]。A 2中包括l个数据位,A 2中的Q个数据位为边信息,剩余l-Q个数据位的元素为0。
步骤九、将步骤七得到的加第一类CP的OFDM符号与步骤八得到的结果相加,经过后续信号处理程序后进行发射,如数模转换(digit to analog,D/A),上变频、功率放大(power amplifier,PA)等。
其中,由于步骤六生成OFDM符号后,步骤七和步骤八未对OFDM符号上承载的数据做任何处理,仅对OFDM符号前的第一类CP做处理,所以这里不讨论OFDM符号本身的变化,仅讨论OFDM符号前的第一类CP上的变化。故步骤九中,第一类CP的变化用向量A表示为:A=A 1+A 2=[b 0,b 1,…,b Q-1,a Q,…,a l-1]。步骤九将步骤七得到的加第一类CP的OFDM符号与步骤八得到的结果相加后得到承载了数据的OFDM符号以及第一类CP。这个第一类CP上承载的数据如上述A所示。
作为另一个可选的具体实施例,参见图9,图9是本申请实施例提供的接收端获取数据的示意图。下面将结合图9,对接收端中数据的获取过程进行简要介绍。可选的,接收端获取OFDM符号上数据的过程可以为发送端生成OFDM符号的逆过程。
步骤十、将接收到的信号进行下变频、模数转换A/D、串并转换等处理。
步骤十一、根据步骤七的第一类CP中为边信息预留的Q个数据位,提取出边信息数据。
步骤十二、对提取出的边信息数据进行星座解映射得到边信息,进而获得发送端使用的相位旋转因子。
步骤十三、对步骤十得到的OFDM数据进行去CP处理(即去除OFDM符号前的第一类CP),然后做离散傅里叶变换(discrete Fourier transform,DFT)后得到数据Y。
步骤十四、对步骤十三得到的数据Y进行数据分割。将Y分割为V个数据子块,得到数据子块Y 1,Y 2,…,Y V。其中,每个子块中有P/V个数据。如Y 1=[y 0,y 1,…,y P/V-1],Y 2=[y P/V, y P/V+1,…,y 2P/V-1]。
步骤十五、根据步骤十二得到的相位旋转因子,分别对步骤十四中得到的数据子块做相位逆旋转。
步骤十六、将步骤十五的结果经过并串转换后做星座解映射(以及信道解码等,此处省略),最终得到解码后的用户数据。
本申请实施例通过在第一类CP的部分资源(上述第一CP资源)上传输边信息数据,保证了系统的频谱效率。
上述详细阐述了本申请实施例的通信方法,为了便于更好地实施本申请实施例的上述方案,本申请实施例还提供了相应的装置和/或设备。
参见图10,图10是本申请实施例提供的通信装置的一结构示意图。如图10所示,该通信装置可包括:
处理单元10,用于生成第一信号;收发单元20,用于发送该处理单元10生成的第一信号。其中,该第一信号中包括OFDM符号、第一类CP以及第二类CP。该第一类CP的CP资源可以包括第一CP资源和第二CP资源;该第二类CP的CP资源可以包括第二CP资源。该第一CP资源用于承载与OFDM符号上承载的数据不相同的数据;该第二CP资源用于承载与OFDM符号上承载的数据相同的数据。
在一些可行的实施方式中,上述第一类CP的长度大于第一长度,上述第二类CP的长度小于该第一长度,且上述第一信号中属于同一个时隙或同一个子帧或同一个帧的M个第一类CP和K-M类第二CP的长度总和为该第一长度与K的乘积(即一个时隙或一个子帧或一个帧内CP的总长度不变)。
在一些可行的实施方式中,上述第一CP资源上承载的数据包括边信息。
在一些可行的实施方式中,上述第一CP资源的资源大小基于该边信息的数据大小确定。
在一些可行的实施方式中,上述第二类CP的长度大于或等于信道的多径时延扩展。
在一些可行的实施方式中,上述第一CP资源包括第一资源和第二资源,该第一资源可以用于承载与上述边信息相同/重复的数据,该第二资源可以用于承载上述边信息。
在一些可行的实施方式中,上述收发单元20还用于:发送CP指示消息,该CP指示消息用于指示上述第一CP资源。
具体实现中,各个单元的实现还可以对应参照图2所示的方法实施例中发送端的相应描述,执行上述实施例中发送端所执行的方法和功能。
在本申请实施例中,通信装置生成第一信号并发送该第一信号,这个第一信号中包括OFDM符号、第一类CP以及第二类CP。其中,第一类CP的CP资源包括两种CP资源,分别为第一CP资源和第二CP资源;第二类CP的CP资源包括一种CP资源,即第二CP资源。第一CP资源可以用于承载与OFDM符号上承载的数据不相同的数据(即第一CP资源上承载的数据与OFDM符号上承载的数据不重复,说明第一CP资源上承载有效数据);第二CP资源可以用于承载与OFDM符号上承载的数据相同的数据(即第二CP资源上承载的数据与OFDM符号上承载的数据重复,说明第二CP资源上承载无效数据)。本申请实 施例通过在第一类CP的第一CP资源上传输有效数据,可以提高CP资源的利用率,减少CP资源的浪费,提高NTN通信系统的传输效率。
参见图11,图11是本申请实施例提供的通信装置的另一结构示意图。如图11所示,该通信装置可包括:
信息生成单元100,用于生成信息符号,如OFDM符号等。CP长度配置单元200,用于将K-M个OFDM符号前的CP的长度变短,得到K-M个第二类CP,将M个OFDM符号前的CP的长度变长,得到M个第一类CP。加CP单元300,用于将该CP长度配置单元200配置好的CP分配给该信息生成单元100生成的信息符号,组成将要发送的时序符号。数据传输单元400,用于利用M个OFDM符号前的第一类CP的部分CP资源传输数据。
其中,上述信息生成单元100、CP长度配置单元200、加CP单元300以及数据传输单元400可以为一个单元,如处理单元。
具体实现中,各个单元的实现还可以对应参照图2所示的方法实施例中发送端的相应描述,执行上述实施例中发送端所执行的方法和功能。
本申请实施例通过整合CP长度/资源,并在整合后的第一类CP上传输有效数据,可以减少CP资源的浪费,提高CP资源的利用率,提高NTN通信系统的传输效率。
参见图12,图12是本申请实施例提供的通信设备的结构示意图。如图12所示,本申请实施例提供的通信设备1000包括处理器1001、存储器1002、收发器1003和总线系统1004。本申请实施例提供的通信设备可以为终端设备和网络设备中的任意一种。
其中,上述处理器1001、存储器1002和收发器1003通过总线系统1004连接。
上述存储器1002用于存放程序。具体地,程序可以包括程序代码,程序代码包括计算机操作指令。存储器1002包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read only memory,EPROM)、或便携式只读存储器(compact disc read-only memory,CD-ROM)。图12中仅示出了一个存储器,当然,存储器也可以根据需要,设置为多个。存储器1002也可以是处理器1001中的存储器,在此不做限制。
存储器1002存储了如下的元素,可执行单元或者数据结构,或者它们的子集,或者它们的扩展集:
操作指令:包括各种操作指令,用于实现各种操作。
操作系统:包括各种系统程序,用于实现各种基础业务以及处理基于硬件的任务。
上述处理器1001控制通信设备1000的操作,处理器1001可以是一个或多个中央处理器(central processing unit,CPU),在处理器1001是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
具体的应用中,通信设备1000的各个组件通过总线系统1004耦合在一起,其中总线系统1004除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图12中将各种总线都标为总线系统1004。为便于表示,图12中仅 是示意性画出。
上述本申请实施例提供的图2,或者上述各个实施例揭示的发送端的方法;或者上述本申请实施例提供的图2,或者上述各个实施例的接收端的方法可以应用于处理器1001中,或者由处理器1001实现。处理器1001可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1001中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1001可以是通用处理器、数字信号处理器(digital signal processing,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1002,处理器1001读取存储器1002中的信息,结合其硬件执行图2,或者上述各个实施例所描述的发送端的方法步骤;或者结合其硬件执行图2,或者上述各个实施例所描述的接收端的方法步骤。
本申请实施例还提供一种计算机程序产品,该计算机程序产品包括计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图2所描述的发送端的方法步骤;或者当该计算机程序代码在计算机上运行时,使得该计算机执行图2所描述的接收端的方法步骤。
本申请实施例还提供一种芯片,包括处理器。该处理器用于读取并执行存储器中存储的计算机程序,以执行图2的任意可能的实现方式中的通信方法。可选的,该芯片还包括存储器,该存储器与该处理器通过电路或电线连接。进一步可选的,该芯片还包括通信接口,该处理器与该通信接口连接。该通信接口用于接收需要处理的数据和/或信息,该处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理,并通过该通信接口输出处理结果。该通信接口可以是输入输出接口。
可选的,上述的处理器与存储器可以是物理上相互独立的单元,或者,存储器也可以和处理器集成在一起。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储程序代码的介质。

Claims (17)

  1. 一种通信方法,其特征在于,包括:
    生成第一信号,所述第一信号中包括正交频分复用OFDM符号、第一类循环前缀CP以及第二类CP,所述第一类CP的CP资源包括第一CP资源和第二CP资源,所述第二类CP的CP资源包括所述第二CP资源,所述第一CP资源用于承载与OFDM符号上承载的数据不相同的数据,所述第二CP资源用于承载与OFDM符号上承载的数据相同的数据;
    发送所述第一信号。
  2. 根据权利要求1所述的方法,其特征在于,所述第一类CP的长度大于第一长度,所述第二类CP的长度小于所述第一长度,所述第一信号中属于同一时隙的M个第一类CP和K-M个第二类CP的长度总和为所述第一长度与所述K的乘积。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一CP资源上承载的数据包括边信息。
  4. 根据权利要求3所述的方法,其特征在于,所述第一CP资源包括第一资源和第二资源,所述第一资源用于承载与所述边信息相同的数据,所述第二资源用于承载所述边信息。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述第二类CP的长度大于或等于信道的多径时延扩展。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述方法还包括:
    发送CP指示消息,所述CP指示消息用于指示所述第一CP资源。
  7. 根据权利要求3所述的方法,其特征在于,所述第一CP资源的资源大小基于所述边信息的数据大小确定。
  8. 一种通信装置,其特征在于,包括:
    处理单元,用于生成第一信号,所述第一信号中包括正交频分复用OFDM符号、第一类CP以及第二类CP,所述第一类CP的CP资源包括第一CP资源和第二CP资源,所述第二类CP的CP资源包括所述第二CP资源,所述第一CP资源用于承载与OFDM符号上承载的数据不相同的数据,所述第二CP资源用于承载与OFDM符号上承载的数据相同的数据;
    收发单元,用于发送所述生成单元生成的第一信号。
  9. 根据权利要求8所述的通信装置,其特征在于,所述第一类CP的长度大于第一长 度,所述第二类CP的长度小于所述第一长度,所述第一信号中属于同一时隙的M个第一类CP和K-M个第二类CP的长度总和为所述第一长度与所述K的乘积。
  10. 根据权利要求8或9所述的通信装置,其特征在于,所述第一CP资源上承载的数据包括边信息。
  11. 根据权利要求10所述的通信装置,其特征在于,所述第一CP资源包括第一资源和第二资源,所述第一资源用于承载与所述边信息相同的数据,所述第二资源用于承载所述边信息。
  12. 根据权利要求8-11任一项所述的通信装置,其特征在于,所述第二类CP的长度大于或等于信道的多径时延扩展。
  13. 根据权利要求8-12任一项所述的通信装置,其特征在于,所述收发单元还用于:
    发送CP指示消息,所述CP指示消息用于指示所述第一CP资源。
  14. 根据权利要求10所述的通信装置,其特征在于,所述第一CP资源的资源大小基于所述边信息的数据大小确定。
  15. 一种通信设备,其特征在于,包括处理器和存储器,其中,所述存储器用于存储计算机程序,所述计算机程序包括程序指令,当所述处理器运行所述程序指令时,使所述通信设备执行如权利要求1-7任一项所述的方法。
  16. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储计算机程序指令,当所述计算机程序指令在所述计算机上运行时,使得所述计算机执行如权利要求1-7任一项所述的方法。
  17. 一种芯片,其特征在于,包括处理器和通信接口;
    所述处理器用于执行如权利要求1-7任一项所述的方法以生成第一信号;
    所述通信接口用于输出所述第一信号。
PCT/CN2020/113628 2019-09-27 2020-09-04 通信方法、装置以及设备 WO2021057453A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20867442.4A EP4030715B1 (en) 2019-09-27 2020-09-04 Communication method and apparatus, and device
US17/704,444 US20220217029A1 (en) 2019-09-27 2022-03-25 Communication Method, Apparatus, And Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910923989.6A CN112583751B (zh) 2019-09-27 2019-09-27 通信方法、装置以及设备
CN201910923989.6 2019-09-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/704,444 Continuation US20220217029A1 (en) 2019-09-27 2022-03-25 Communication Method, Apparatus, And Device

Publications (1)

Publication Number Publication Date
WO2021057453A1 true WO2021057453A1 (zh) 2021-04-01

Family

ID=75109966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113628 WO2021057453A1 (zh) 2019-09-27 2020-09-04 通信方法、装置以及设备

Country Status (4)

Country Link
US (1) US20220217029A1 (zh)
EP (1) EP4030715B1 (zh)
CN (1) CN112583751B (zh)
WO (1) WO2021057453A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10581654B2 (en) * 2017-07-20 2020-03-03 Cable Television Laboratories, Inc Systems and methods for asymmetrical cyclic prefixes in RFoG transmissions
CN111865858B (zh) * 2019-04-30 2022-01-11 华为技术有限公司 一种基于部分传输序列技术的边信息传输方法和装置
EP4401452A1 (en) * 2021-11-01 2024-07-17 Huawei Technologies Co., Ltd. Short-distance wireless communication method, apparatus and system
CN118368028A (zh) * 2023-01-17 2024-07-19 华为技术有限公司 一种通信方法及其装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109156019A (zh) * 2016-06-20 2019-01-04 华为技术有限公司 一种ofdm符号传输方法及装置
CN109155773A (zh) * 2016-05-11 2019-01-04 高通股份有限公司 无线通信中的动态循环前缀(cp)长度
WO2019145855A1 (en) * 2018-01-23 2019-08-01 Telefonaktiebolaget Lm Ericsson (Publ) Adjusting an error vector measure (evm) window

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2327678C (en) * 1998-04-03 2007-12-18 Tellabs Operations, Inc. Filter for impulse response shortening, with addition spectral constraints, for multicarrier transmission
US7920884B2 (en) * 2004-06-04 2011-04-05 Qualcomm Incorporated Frame structures for a wireless communication system with multiple radio technologies
KR100937423B1 (ko) * 2006-09-26 2010-01-18 엘지전자 주식회사 반복형 시퀀스 생성 방법 및 이를 이용한 신호 송신 방법
KR20100123078A (ko) * 2009-05-14 2010-11-24 광운대학교 산학협력단 Ofdm 통신망에서 적응형 싸이클릭 프리픽스 길이 조절 방법 및 그 시스템
CN102238122A (zh) * 2010-04-26 2011-11-09 电信科学技术研究院 一种数据传输的方法、系统和装置
CN102377713B (zh) * 2010-08-12 2014-03-19 电信科学技术研究院 一种数据传输的方法、系统和设备
US9131351B2 (en) * 2012-05-03 2015-09-08 Qualcomm Incorporated Apparatus and methods of MBMS support in new carrier type in LTE
US9485678B2 (en) * 2013-03-11 2016-11-01 Qualcomm Incorporated Effective utilization of cyclic prefix in OFDM systems under benign channel conditions
CN105323048B (zh) * 2014-05-28 2019-05-03 上海数字电视国家工程研究中心有限公司 物理帧中前导符号的生成方法
CN107852393B (zh) * 2015-08-21 2019-11-29 华为技术有限公司 发送、解调数据的方法、设备及系统
US10237103B2 (en) * 2015-11-24 2019-03-19 Qualcom Incorporated Changing cyclic prefix (CP) length based on precoder mode selection
CN107528620B (zh) * 2016-06-22 2021-10-15 中兴通讯股份有限公司 天线通道的校正信号发送方法、装置和基站
CN107682295B (zh) * 2016-08-02 2020-09-29 中兴通讯股份有限公司 信息传输、接收方法及装置、通信系统
CN107835063B (zh) * 2016-09-14 2023-10-20 华为技术有限公司 信息传输的方法、发送端设备和接收端设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109155773A (zh) * 2016-05-11 2019-01-04 高通股份有限公司 无线通信中的动态循环前缀(cp)长度
CN109156019A (zh) * 2016-06-20 2019-01-04 华为技术有限公司 一种ofdm符号传输方法及装置
WO2019145855A1 (en) * 2018-01-23 2019-08-01 Telefonaktiebolaget Lm Ericsson (Publ) Adjusting an error vector measure (evm) window

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
See also references of EP4030715A4
SHARP: "Different CP length and different subcarrier spacing of inband operation", 3GPP DRAFT; R1-157118, vol. RAN WG1, 6 November 2015 (2015-11-06), Anaheim, USA, pages 1 - 5, XP051041999 *
ZTE: "Consideration of cyclic prefix for NR", 3GPP DRAFT; R1-166406 CONSIDERATION OF CYCLIC PREFIX FOR NR, vol. RAN WG1, 13 August 2016 (2016-08-13), Gothenburg, Sweden, pages 1 - 5, XP051142379 *

Also Published As

Publication number Publication date
EP4030715A4 (en) 2022-12-21
US20220217029A1 (en) 2022-07-07
EP4030715A1 (en) 2022-07-20
EP4030715B1 (en) 2024-01-31
CN112583751A (zh) 2021-03-30
CN112583751B (zh) 2021-11-19

Similar Documents

Publication Publication Date Title
WO2021057453A1 (zh) 通信方法、装置以及设备
JP7102417B2 (ja) 基準信号を伝送するための方法およびデバイス
US10075321B2 (en) Exploitation of frequency twisted waves in wireless communication systems to increase transmission capacity thereof
CA3031986C (en) Information transmission method and information transmission apparatus
CN108632193B (zh) 一种资源指示方法及网络设备、终端设备
WO2021027901A1 (zh) 数据传输方法及其装置
US11128508B2 (en) Information transmission method and apparatus in wireless local area network
CN112311514B (zh) 控制信息传输方法及装置
US10999108B2 (en) Wireless communication method, apparatus, and system
WO2020187132A1 (zh) 数据信道的传输方法及装置
WO2019242738A1 (zh) 发送调制符号的方法、接收调制符号的方法和通信设备
CN106487492B (zh) 一种数据映射方法、装置及设备
WO2022248011A1 (en) Multiple symbol shift configuration
WO2018058550A1 (zh) 一种数据映射方法、装置及设备
WO2023011551A1 (zh) 一种相位跟踪参考信号的传输方法及装置
WO2022161224A1 (zh) 数据发送方法、数据接收方法及相关装置
WO2024082926A1 (zh) 信号传输方法、通信系统及通信装置
WO2022082494A1 (zh) 无线通信方法、发送端和接收端
WO2023226854A1 (zh) 数据传输方法及装置、数据处理方法及装置、存储介质
WO2023125761A1 (zh) 一种通信方法及装置
WO2022078209A1 (zh) 通信方法和通信装置
US12101747B2 (en) Communication method and apparatus
US20210195568A1 (en) Communication method and apparatus
WO2022188659A1 (zh) 一种通信方法及通信装置
US20230327915A1 (en) Channel estimation method and apparatus, communication device, and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20867442

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020867442

Country of ref document: EP

Effective date: 20220411