WO2018058550A1 - 一种数据映射方法、装置及设备 - Google Patents

一种数据映射方法、装置及设备 Download PDF

Info

Publication number
WO2018058550A1
WO2018058550A1 PCT/CN2016/101133 CN2016101133W WO2018058550A1 WO 2018058550 A1 WO2018058550 A1 WO 2018058550A1 CN 2016101133 W CN2016101133 W CN 2016101133W WO 2018058550 A1 WO2018058550 A1 WO 2018058550A1
Authority
WO
WIPO (PCT)
Prior art keywords
narrowband
sampling points
narrow
band
sampling
Prior art date
Application number
PCT/CN2016/101133
Other languages
English (en)
French (fr)
Inventor
焦富强
鲁志兵
王志国
杨盛波
杨洁
Original Assignee
海能达通信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海能达通信股份有限公司 filed Critical 海能达通信股份有限公司
Priority to PCT/CN2016/101133 priority Critical patent/WO2018058550A1/zh
Publication of WO2018058550A1 publication Critical patent/WO2018058550A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present invention relates to the field of communications, and in particular, to a data mapping method, apparatus, and device.
  • CPRI common public radio interface
  • RE Radio Equipment
  • the CPRI system also includes a CPRI link.
  • 2 is a hierarchical structure diagram of the CPRI protocol, which shows that the CPRI protocol is divided into two layers: a physical layer and a data link layer.
  • the digital baseband modulated signal between the REC and the RE is transmitted through a data stream (referred to as IQ data) channel of two components of in-phase/quadrature-phase (IQ) in the data link layer.
  • IQ data in-phase/quadrature-phase
  • IQ data mapping methods are proposed in the existing CPRI protocol: based on IQ sample based, symbol based and backward compatible.
  • the basic idea of the third type of IQ data mapping is to uniformly allocate the IQ samples of the broadband N A antenna carrier (AxC) in K basic frames, each AxC has The same characteristics (bit width, sampling rate are the same), and each AxC corresponds to S IQ sampling points.
  • the basic frame is the basic unit of CPRI transmission, and the time corresponding to the N A ⁇ S IQ sampling points is the same as the time of the K basic frames.
  • a basic frame corresponds to an AxC Container (AxC Container), so the size of an AxC container N C needs to be able to bear at least The conditions of the sampling points. If the N A ⁇ S IQ sample points do not fill the AxC container in the K basic frames, the remaining capacity in the AxC container is filled by the invalid sample points.
  • the calculation of S and K is given in the agreement, namely:
  • f s is the sampling rate of the IQ data
  • f c is the CPRI basic frame rate, fixed at 3.84 MHz
  • LCM is a function for calculating the least common multiple.
  • the cluster private network is evolving from narrowband to broadband.
  • the traditional narrowband systems (PDT, DMR, Tetra, etc.) still use the integrated base station architecture, that is, the BBU and RRU are integrated into one architecture, but in the process of evolution, it is inevitable
  • the architecture separated by BBU and RRU is involved in the data transmission problem of narrowband data in CPRI.
  • the CPRI interface protocol of the public network cannot be directly used in the trunking private network, because when calculating the number K of basic frames corresponding to the S IQ sampling points, the value obtained by the narrowband calculation is much higher than that obtained by the broadband calculation. Value.
  • the configuration of the mapping parameter K is usually small (for example, within 50), so that the existing CPRI cannot transmit the narrowband IQ data, and if the existing CPRI is adapted to the narrowband IQ data transmission, It takes a lot of changes in the configuration, which is very inconvenient.
  • the present invention provides a data mapping method, apparatus and device, which can achieve the purpose of transmitting narrowband IQ data without changing the CPRI.
  • An embodiment of the present invention provides a data mapping method, where the method includes:
  • IQ obtain narrowband sampling rate f 's, the frequency f sf broadband and narrowband antenna-carrier number N' A, the wideband of frequencies is the reciprocal of the time slice, the time slice refers to a predetermined broadband standard protocol time period ;
  • IQ using the narrowband sampling rate f 's and the wideband frequency f sf obtain a narrowband antenna number S corresponding to each IQ sample point narrowband carrier' and N 'A antennas IQ samples narrowband carriers can be The number K' of time slices mapped to the broadband;
  • the narrowband N 'antennas A carrier mapping narrowband to broadband IQ samples K' time slice, wherein, K 'time slices can be accommodated in a narrow band IQ greater than or equal the number of samples N' antennas A The number of narrowband IQ sampling points of the carrier;
  • the narrowband IQ sample points are mapped into the basic frame of the general public radio interface in units of the mapped K' time slices to complete the mapping of the narrowband IQ sample points in the general public radio interface.
  • the IQ using the narrowband sampling rate f 's and the wideband frequency f sf, to give the number S of each carrier corresponding to a narrowband antenna narrowband IQ samples by the following formula':
  • the LCM is a function for calculating a least common multiple.
  • the IQ using the narrowband sampling rate f 's and the wideband frequency f sf, obtained by the following equation N' A antennas IQ samples narrowband carriers can be mapped to the number of time slices the broadband K ':
  • the LCM is a function for calculating a least common multiple.
  • the broadband is an LTE system
  • the time slice is a subframe
  • the number of narrow-band IQ sampling points that the K' time slice can accommodate is obtained according to the number of sampling points of the OFDM symbol of LTE.
  • the number of sampling points of the narrowband IQ that the K′ time slice can accommodate is obtained according to the number of sampling points of the OFDM symbol of the LTE:
  • the number of sampling points that can be accommodated by K' sub-frames is obtained according to the number of sampling points that can be accommodated in each sub-frame.
  • the number of sampling points that can be accommodated in each LTE subframe according to the number of sampling points of the OFDM symbol is specifically:
  • the N symbol is the number of sampling points of the LTE OFDM symbol
  • the N tti is the number of sampling points that can be accommodated in each LTE subframe.
  • the method further includes:
  • the remaining sample point capacity in the K' time slices is the number of narrow-band IQ sample points that the K' time slices can accommodate and the N 'The difference between the number of narrow-band IQ sampling points of the A antenna carriers.
  • the embodiment of the invention further provides a data mapping device, the device comprising:
  • a parameter acquisition unit a parameter calculation unit, a narrowband mapping unit, and a broadband mapping unit;
  • the parameter obtaining unit configured to obtain a narrow band IQ sampling rate f 's, the frequency f sf broadband and narrowband antenna-carrier number N' frequency A, the broadband is the reciprocal of a time slice, a time slice means The time period specified in the broadband standard protocol;
  • the parameter calculating unit for utilizing the narrowband sampling rate of IQ f 's and the wideband frequency f sf obtain a narrowband antenna number S corresponding to each IQ sample point narrowband carrier' and N 'A number The number K' of time slices of the broadband that the narrowband IQ sampling point of the antenna carrier can be mapped to;
  • the narrowband mapping unit for 'A number of antennas carrier mapping narrowband to broadband IQ samples K' narrowband N time slice, wherein, K 'time slices can accommodate the number of sampling points is greater than or narrowband IQ N is equal to the number of sampling points IQ 'a narrowband antenna carriers;
  • the broadband mapping unit is configured to map the narrow-band IQ sampling points to the basic frame of the general public radio interface in units of the mapped K′ time slices, to complete the narrow-band IQ sampling point in the common public wireless interface. Mapping.
  • the apparatus further includes:
  • a filling unit configured to fill the remaining sampling point capacity in the K′ time slices with invalid IQ sampling points, wherein the remaining sampling point capacity in the K′ time slices is a narrow-band IQ sampling that can be accommodated by K′ time slices points of difference between the number of sampling points of the narrow-band IQ N 'a antennas carriers.
  • the present invention also provides a data mapping device, the device comprising:
  • a memory for storing the processor executable instructions
  • processor is configured to:
  • the IQ obtain narrowband sampling rate f 's, the frequency f sf broadband and narrowband antenna-carrier number N' A, the wideband frequency is the reciprocal of the time slices, the time slices refers to a predetermined broadband standard protocol time period ;
  • IQ using the narrowband sampling rate f 's and the wideband frequency f sf obtains the number of sampling points S narrowband IQ each carrier corresponding to the narrow band antenna' and N 'A antennas IQ samples narrowband carriers can be The number K' of time slices mapped to the broadband;
  • the narrowband N 'antennas A carrier mapping narrowband to broadband IQ samples K' time slice, wherein, K 'time slices can be accommodated in the narrow band IQ greater than or equal the number of samples N' antennas A The number of narrowband IQ sampling points of the carrier;
  • the narrowband IQ sample points are mapped into the basic frame of the general public radio interface in units of the mapped K' time slices to complete the mapping of the narrowband IQ sample points in the general public radio interface.
  • the present invention 'N number of antenna-carrier s, broadband and narrowband frequency f sf' IQ by obtaining a narrowband sampling rate f A, and using the narrowband sampling rate of IQ f 's and the wideband frequency f sf obtained per corresponding to the number of antenna-carrier narrowband narrowband IQ sample number of points S ', and N' time slices IQ sample a narrowband antenna can be mapped to carriers wideband K ', to narrowband N' number a
  • the narrow-band IQ sampling point of the antenna carrier is mapped into the wide-band K' time slice, and the narrow-band IQ data is mapped to the broadband IQ data, and then the narrow-band IQ sampling is performed in units of the mapped K' time slices.
  • the points are mapped into the basic frame of the general public radio interface to complete the mapping of the narrowband IQ sample points in the general public radio interface. Since the present embodiment can implement transmission of narrowband IQ data without changing the existing CPRI, the adaptability and utilization of the existing CPRI are improved.
  • FIG. 1 is a basic configuration diagram of CPRI
  • Figure 2 is a hierarchical structure diagram of the CPRI protocol
  • FIG. 3 is a flowchart of a data mapping method according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic diagram of a PDT system frame structure in a data mapping method according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic diagram of a baseband modulation process of a PDT in a data mapping method according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic diagram of a manner in which an IQ sampling point of a PDT and an invalid IQ sampling point are filled in an LTE subframe in a data mapping method according to Embodiment 2 of the present invention
  • FIG. 7 is a schematic diagram of carrier multiplexing of an LTE antenna for wide-narrowband data compatible transmission in a data mapping method according to Embodiment 2 of the present invention.
  • FIG. 8 is a structural block diagram of a data mapping apparatus according to Embodiment 3 of the present invention.
  • FIG. 9 is a structural block diagram of a data mapping device according to Embodiment 4 of the present invention.
  • the prior art CPRI protocol provides a broadband-based IQ data mapping method.
  • the basic idea is to evenly distribute the IQ samples of the broadband N A antenna carriers (AxC).
  • AxC broadband N A antenna carriers
  • the basic frame number K calculated by the broadband-based IQ data transmission has only a single digit, and if the formula is directly applied to the narrow-band IQ data mapping, the calculated number of basic frames is farther. It is much higher than the number of basic frames calculated based on broadband-based IQ data transmission.
  • the invention proposes a method of data mapping, the basic idea is: First, the 'map corresponding to A number of antennas carriers IQ sample point to broadband K' narrowband N time slice, and then to The mapped K's time slice is a unit, and the narrow-band IQ sample points are mapped into the basic frame of the general public radio interface. That is to say, the narrow-band IQ sampling point is first “packaged” into a wide-band IQ sampling point, and then the mapping method of the broadband IQ sampling point in the prior art is mapped, so that the existing CPRI-to-narrowband IQ data can be used. Continued transmission, improving the adaptability and utilization of existing CPRI.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • FIG. 3 it is a flowchart of Embodiment 1 of a data mapping method provided by the present invention.
  • Step S101 obtaining the IQ narrowband sampling rate f 'number of antenna-carrier s, broadband and narrowband frequency f sf N' A.
  • the frequency of the broadband is the reciprocal of the time slice, and the time slice refers to a time period specified in the broadband standard protocol, such as a subframe, a time slot, a radio frame, and an OFDM (Orthogonal Frequency Division Multiplexing). Symbols, etc.
  • Step S102 obtaining the number S′ of narrow-band IQ sampling points corresponding to each narrow-band antenna carrier and the narrow-band IQ of N′ A antenna carriers by using the narrow-band IQ sampling rate f′ s and the broadband frequency f sf The number K' of time slices that can be mapped to the wideband.
  • the number S' of narrow-band IQ sampling points corresponding to each narrow-band antenna carrier can be obtained by the following formula:
  • the LCM is a function for calculating a least common multiple.
  • the N 'A number of antennas IQ narrowband carriers can be mapped to a sample point of time slices the broadband K' can be obtained by the following formula:
  • the LCM is a function for calculating a least common multiple.
  • Step S103 The narrowband N 'A narrowband antennas carriers mapped to the IQ samples of the broadband K' time slice.
  • K 'time slices can be accommodated in a narrow band IQ greater than the number of sampling points N' A antennas carriers, may be K 'time slice remaining capacity of the sampling point by invalid filling IQ samples, the K 'time slice remaining capacity of sampling points K' time slices can be accommodated in the narrow band IQ sampling points N 'difference between the number of sampling points IQ carriers narrowband antennas a .
  • Step S104 Map the narrow-band IQ sample points into the basic frame of the general public radio interface in units of the mapped K' time slices to complete the mapping of the narrow-band IQ sample points in the common public radio interface.
  • the narrow-band IQ sampling point is mapped to the wide-band K' time slice, which is equivalent to "changing" the narrow-band IQ data into the broadband IQ data. Therefore, after mapping, the broadband IQ data in the prior art can be utilized.
  • the mapping method maps the broadband IQ data carrying the narrowband IQ sampling points into the basic frame of the CPRI.
  • IQ sampling rate f 's and the wideband present embodiment by obtaining a narrow band IQ sampling rate f' s, the frequency f sf broadband and narrowband antenna-carrier number N 'A, and using the narrowband frequency f sf give a narrowband antenna number corresponding to the number S of each carrier narrowband sampling point IQ ', and N' time slices a number of antennas IQ narrowband carriers can be mapped to a sample point broadband K ', to narrowband N' a
  • the narrowband IQ sampling points of the antenna carriers are mapped into the K' time slices of the wideband, and the purpose of mapping the narrowband IQ data to the broadband IQ data is realized, and then the narrowband IQ is measured in units of the mapped K' time slices.
  • the sample points are mapped into the basic frame of the general public radio interface to complete the mapping of the narrowband IQ sample points in the general public radio interface. Since the present embodiment can implement transmission of narrowband IQ data without changing the existing CPRI, the adaptability and utilization of the existing CPRI are improved.
  • the narrowband is a PDT (Police Digital Trunking or Public Digital Trunking) system
  • the broadband is an LTE (Long Term Evolution) system. Not only the transmission of IQ data to the PDT system but also the IQ data of the PDT system and the IQ data of the LTE system are implemented. Compatible transmission.
  • the frame format and IQ data format of the PDT cluster system are first introduced.
  • FIG. 4 the figure shows a frame structure of the PDT system.
  • 60 ms is divided into two time slots, each of which has a length of 30 ms.
  • a time slot consists of three segments: synchronous or embedded signaling, voice or data, and CACH (downlink) or guard interval (upstream).
  • Each frame of data includes 144 OFDM symbols, and the symbol rate is 4800 Hz. Since 4FSK (Frequency-shift keying) modulation is used, each time slot carries 288 bits of valid data.
  • 4FSK Frequency-shift keying
  • the baseband modulation process of the PDT is shown in FIG. 5, that is, first, every 2 bits of data is mapped into modulation symbols, then the modulation symbols are upsampled and shaped, and finally, the frequency modulation is performed to generate a baseband signal.
  • the IQ data is upsampled by a certain multiple above the symbol rate.
  • N' A 4.
  • the LTE subframe is used as a time slice, and the length of each subframe is 1 ms, so the frequency f sf of the subframe is 1000 Hz (the reciprocal of the length of a single subframe).
  • each antenna carrier of the PDT corresponds to S′ IQ sampling points.
  • LCM is the least common multiple of the two.
  • the number of sampling points of the PDT that can be accommodated in the LTE subframe can be obtained according to the number of sampling points of the OFDM symbol of the LTE, and the number of sampling points of the OFDM symbol of the LTE can be obtained according to the bandwidth check table of the LTE. Assuming that the bandwidth of the LTE is 20 MHz, the sampling point N symbol of the OFDM symbol corresponding to the bandwidth can be found according to Table 1 as 2048.
  • the number of IQ sampling points (768) corresponding to the four antenna carriers of the PDT in this embodiment is much smaller than the number of sampling points N g-gap (153600) that can be accommodated in five LTE subframes, so that it can be implemented. Mapping between the IQ sample point of the PDT and the LTE subframe.
  • the N C-AxC is the maximum number of antenna carriers of the PDT multiplexed by the K′ LTE subframes, and the INT is rounded. According to the formula, you can get:
  • the most antenna carrier of the PDT that can be multiplexed by 5 LTE subframes in this embodiment The number is 800, far exceeding the number of antenna carriers (4) of the actual PDT, so the IQ sampling points of the 4 antenna carriers of the PDT can be "loaded" into the 5 LTE subframes.
  • IQ sampling points of a PDT and the invalid IQ sampling point are filled in an LTE subframe, that is, IQ sampling points of the PDT are grouped together, and the invalid IQ sampling points are grouped together.
  • the IQ sampling points of the respective antenna carriers are spaced apart from the invalid IQ sampling points to fill, and the number of invalid IQ sampling points filled in each interval may be the same.
  • N A of the LTE supported by the CPRI is calculated to be 4, and the LTE IQ sampling point actually needed to be transmitted only needs to occupy two antenna carriers, and then one of the remaining two antenna carriers can be used for multiplexing.
  • the IQ sample point of the PDT, and the other one is reserved for idle.
  • AxC0 and AxC1 are used to "load” the IQ sampling points of LTE, and AxC2 is used to "load” the IQ sampling points of the PDT.
  • the data mapping method may be performed by the REC, and the REC may pass a C&M (Control and Management) channel. Transmitting the number N' A of antenna carriers of the PDT and the location of the PDT in the LTE (eg, AxC sequence number 2) to the RE, and the REC and the RE pre-arrange the sampling rate of the PDT, After receiving the foregoing parameters, the RE may obtain a mapping relationship between the IQ data of the PDT in the LTE antenna carrier according to the foregoing parameter, so as to receive data sent by the REC according to the mapping relationship. If the RE is a data transmission party and the REC is a data receiver, the same is true.
  • C&M Control and Management
  • an embodiment of the present invention further provides a data mapping apparatus, and the working principle thereof will be described in detail below with reference to the accompanying drawings.
  • FIG. 8 is a structural block diagram of a data mapping apparatus according to an embodiment of the present disclosure.
  • a parameter acquisition unit 101 a parameter calculation unit 102, a narrowband mapping unit 103, and a broadband mapping unit 104;
  • the parameter obtaining unit 101 configured to obtain a narrow band IQ sampling rate f 'number of antenna-carrier s, broadband and narrowband frequency f sf N' A, the wideband of frequencies is the reciprocal of the time slice, the time slice is Refers to the time period specified in the broadband standard protocol;
  • the number of time slices K' of the broadband can be mapped to the narrowband IQ sampling points of the antenna carriers;
  • the narrowband mapping unit 103 for narrow band N 'A narrowband antennas carriers mapped to the IQ samples of the broadband K' time slice, wherein, K 'time slices can accommodate the number of sampling points is larger than the narrow band IQ or equal to the number N of sampling points narrowband IQ 'a antenna carriers;
  • the broadband mapping unit 104 is configured to map the narrow-band IQ sampling points into the basic frame of the general public radio interface in units of the mapped K′ time slices, to complete the narrow-band IQ sampling point in the common public wireless interface.
  • the mapping in .
  • IQ sampling rate f 's and the wideband present embodiment by obtaining a narrow band IQ sampling rate f' s, the frequency f sf broadband and narrowband antenna-carrier number N 'A, and using the narrowband frequency f sf give a narrowband antenna number corresponding to the number S of each carrier narrowband sampling point IQ ', and N' time slices a number of antennas IQ narrowband carriers can be mapped to a sample point broadband K ', to narrowband N' a
  • the narrowband IQ sampling points of the antenna carriers are mapped into the K' time slices of the wideband, and the purpose of mapping the narrowband IQ data to the broadband IQ data is realized, and then the narrowband IQ is measured in units of the mapped K' time slices.
  • the sample points are mapped into the basic frame of the general public radio interface to complete the mapping of the narrowband IQ sample points in the general public radio interface. Since the present embodiment can implement transmission of narrowband IQ data without changing the existing CPRI, the adaptability and utilization of the existing CPRI are improved.
  • the apparatus further includes:
  • a filling unit configured to fill the remaining sampling point capacity in the K′ time slices with invalid IQ sampling points, wherein the remaining sampling point capacity in the K′ time slices is a narrow-band IQ sampling that can be accommodated by K′ time slices points of difference between the number of sampling points of the narrow-band IQ N 'a antennas carriers.
  • the embodiment of the present invention further provides a data mapping device, and the working principle thereof is described in detail below with reference to the accompanying drawings.
  • FIG. 9 is a structural block diagram of a data mapping device according to an embodiment of the present disclosure.
  • the data mapping device includes
  • a memory 202 for storing the processor executable instructions; the processor and the memory are connected by a communication bus 203;
  • the processor 201 is configured to:
  • IQ obtain narrowband sampling rate f 's, the frequency f sf broadband and narrowband antenna-carrier number N' A, the wideband of frequencies is the reciprocal of the time slice, the time slice refers to a predetermined broadband standard protocol time period ;
  • IQ using the narrowband sampling rate f 's and the wideband frequency f sf obtain a narrowband antenna number S corresponding to each IQ sample point narrowband carrier' and N 'A antennas IQ samples narrowband carriers can be The number K' of time slices mapped to the broadband;
  • the narrowband N 'antennas A carrier mapping narrowband to broadband IQ samples K' time slice, wherein, K 'time slices can be accommodated in a narrow band IQ or equal to the number of sampling points is greater than N' antennas A The number of narrowband IQ sampling points of the carrier;
  • the narrowband IQ sample points are mapped into the basic frame of the general public radio interface in units of the mapped K' time slices to complete the mapping of the narrowband IQ sample points in the general public radio interface.
  • the number S′ of narrow-band IQ sampling points corresponding to each narrow-band antenna carrier is obtained by the following formula:
  • the LCM is a function for calculating a least common multiple.
  • the LCM is a function for calculating a least common multiple.
  • the broadband is an LTE system, and the time slice is a subframe;
  • the number of narrow-band IQ sampling points that the K' time slice can accommodate is obtained according to the number of sampling points of the OFDM symbol of LTE.
  • the number of sampling points of the narrowband IQ that can be accommodated by the K′ time slices is specifically determined according to the number of sampling points of the OFDM symbol of the LTE:
  • the number of sampling points that can be accommodated by K' sub-frames is obtained according to the number of sampling points that can be accommodated in each sub-frame.
  • the number of sampling points that can be accommodated in each LTE subframe according to the number of sampling points of the OFDM symbol is specifically:
  • the N symbol is the number of sampling points of the LTE OFDM symbol
  • the N tti is the number of sampling points that can be accommodated in each LTE subframe.
  • the method further includes:
  • the remaining sample point capacity in the K' time slices is the number of narrow-band IQ sample points that the K' time slices can accommodate and the N 'The difference between the number of narrow-band IQ sampling points of the A antenna carriers.
  • the above processor may be a microprocessor or the processor may be any conventional processor.
  • the steps of the method disclosed in the embodiment of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the code implementing the above functions may be stored in a computer readable medium.
  • Computer readable media includes computer storage media.
  • a storage medium may be any available media that can be accessed by a computer.
  • the computer readable medium may be a random access memory (English full name is random access memory, abbreviated as RAM), read-only memory (English full name is read-only memory, English abbreviation for ROM), Electrical erasable programmable read-only memory (English full name electrically erasable programmable read-only memory, abbreviated as EEPROM), read-only optical disc (English full name compact disc read-only memory, English abbreviation for CD-ROM) or other disc
  • Computer readable medium therefore, it is a compact disc (English full name compact disc, English abbreviation for CD), laser disc, digital video disc (English full name digital video disc, English abbreviation for DVD), floppy disk or Blu-ray disc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明实施例公开了一种数据映射方法、装置和设备,实现了在不改变CPRI的前提下能够传输窄带IQ数据的数据映射方法。其中所述方法包括:获取窄带的IQ采样速率fs'、宽带的频率fsf以及窄带的天线载波数量N'A,所述宽带的频率为时间片的倒数,时间片是指宽带制式协议中规定的时间周期;利用窄带的IQ采样速率fs'和宽带的频率fsf得到每个窄带天线载波对应的窄带IQ采样点的个数S',以及N'A个天线载波的窄带IQ采样点能够映射到的宽带的时间片的个数K';将窄带的N'A个天线载波的窄带IQ采样点映射到宽带的K'个时间片中;以映射后的K'个时间片为单位,将窄带的IQ采样点映射到通用公共无线接口的基本帧中,以完成对窄带IQ采样点在通用公共无线接口中的映射。

Description

一种数据映射方法、装置及设备 技术领域
本发明涉及通信领域,尤其涉及一种数据映射方法、装置及设备。
背景技术
本部分旨在为权利要求书中陈述的本发明的实施方式提供背景或上下文。此处的描述不因为包括在本部分中就承认是现有技术。
随着移动通信技术的不断进步,无线通信的网络架构也在不断向前演进,以基带单元(Base Band Unit,BBU)和远程射频单元(Remote Radio Unit,RRU)分离为主要特征的基站系统已经成为公网基站(尤其是LTE基站)的主要形态。在二者呈分布式的射频系统中,通用公共无线接口(Common Public Radio Interface,CPRI)是所述基带单元所在的无线设备控制中心(Radio Equipment Control,REC),与所述远程射频单元所在的无线设备(Radio Equipment,RE)之间进行交互的标准接口。由于CPRI具有标准化、传输速率高、延迟小等特征,因而成为公网基站中REC和RE的常用接口,接口的传输协议称为CPRI协议。图1为CPRI的基本配置图,除了REC和RE,CPRI系统还包括CPRI链路。图2为CPRI协议的分层结构图,该图示出CPRI协议分为两层:物理层和数据链路层。通常,REC与RE之间的数字基带调制信号通过数据链路层中的同向/正交(in-phase/Quadrature-phase,IQ)两个分量的数据流(简称IQ数据)通道进行传输。若REC向RE传输IQ数据,那么REC称为数据传输方,RE称为数据接收方;若RE向REC传输IQ数据,那么RE称为数据传输方,REC称为数据接收方。不管是哪一方是数据传输方,哪一方是数据接收方,在对IQ数据进行传输之前,都需要进行IQ数据映射,其目的在于使得IQ数据按照CPRI的传输要求进行传输。
在现有的CPRI协议中提出了三种IQ数据映射方法:基于IQ采样点(IQ sample based)、基于符号(symbol based)和向后兼容(backward compatible)。其中第三种IQ数据映射的基本思路为:将宽带的NA个天线载波(Antenna-carrier,简称AxC)的IQ采样点(IQ samples)均匀的分配在K个基本帧中,每个AxC具有相同的特性(位宽、采样速率均相同),且每个AxC都分别对应S个IQ采样点。基本帧是CPRI传输的基本单位,NA·S 个IQ采样点对应的时间和K个基本帧的时间相同。一个基本帧对应一个AxC容器(AxC Container),因此一个AxC容器的大小NC需要满足至少能承载
Figure PCTCN2016101133-appb-000001
个采样点的条件。若NA·S个IQ采样点没有把K个基本帧中的AxC容器填满,AxC容器中剩余的容量由无效采样点填充。协议中给出了S和K的计算方式,即:
Figure PCTCN2016101133-appb-000002
其中,fs为IQ数据的采样速率,fc为CPRI基本帧速率,固定为3.84MHz,LCM为计算最小公倍数的函数。
目前集群专网正在由窄带向宽带演进,传统的窄带系统(PDT、DMR、Tetra等)还在使用一体式基站架构,即BBU和RRU合为一体的架构,但是在演进的过程中,必然要采用BBU和RRU分离的架构,因此涉及到窄带数据在CPRI中的数据传输问题。而公网的CPRI接口协议是无法直接用在集群专网中的,因为在计算S个IQ采样点对应的基本帧的个数K时,窄带计算得到的数值要远远高于宽带计算得到的数值。而在公网制式下,对映射参数K的配置通常较小(例如在50以内),以至于现有的CPRI无法传输窄带的IQ数据,而若要现有的CPRI适应窄带的IQ数据传输,就需要在配置上进行较大的改动,非常不便。
所以,目前需要出现一种在不改变CPRI的前提下能够传输窄带IQ数据的数据映射方法。
发明内容
为了解决现有技术存在的技术问题,本发明提供一种数据映射方法、装置及设备,实现了在不改变CPRI的前提下能够传输窄带IQ数据的目的。
本发明实施例提供了一种数据映射方法,所述方法包括:
获取窄带的IQ采样速率f's、宽带的频率fsf以及窄带的天线载波数量N'A,所述宽带的频率为时间片的倒数,所述时间片是指宽带制式协议中规定的时间周期;
利用所述窄带的IQ采样速率f's和所述宽带的频率fsf得到每个窄带天线载波对应的窄带IQ采样点的个数S',以及N'A个天线载波的窄带IQ采样点能够映射到的宽带的时间片的个数K';
将窄带的N'A个天线载波的窄带IQ采样点映射到宽带的K'个时间片中,其中,K'个时间片所能容纳的窄带IQ采样点数大于或等于所述N'A个天线载波的窄带IQ采样点数量;
以映射后的K'个时间片为单位,将窄带的IQ采样点映射到通用公共无线接口的基本帧中,以完成对窄带IQ采样点在通用公共无线接口中的映射。
优选的,利用所述窄带的IQ采样速率f's和所述宽带的频率fsf,通过如下公式得到每个窄带天线载波对应的窄带IQ采样点的个数S':
Figure PCTCN2016101133-appb-000003
其中,所述LCM为计算最小公倍数的函数。
优选的,利用所述窄带的IQ采样速率f's和所述宽带的频率fsf,通过如下公式得到N'A个天线载波的窄带IQ采样点能够映射到的宽带的时间片的个数K':
Figure PCTCN2016101133-appb-000004
其中,所述LCM为计算最小公倍数的函数。
优选的,所述宽带为LTE制式,所述时间片为子帧;
所述K'个时间片所能容纳的窄带IQ采样点数根据LTE的OFDM符号的采样点数得到。
优选的,所述K'个时间片所能容纳的窄带IQ采样点数根据LTE的OFDM符号的采样点数得到具体为:
根据OFDM符号的采样点数得到每个LTE子帧所能容纳的采样点数;
根据每个子帧所能容纳的采样点数得到K'个子帧所能容纳的采样点数。
优选的,所述根据OFDM符号的采样点数得到每个LTE子帧所能容纳的采样点数具体为:
Ntti=15·Nsymbol
其中,所述Nsymbol为LTE的OFDM符号的采样点数,所述Ntti为每个LTE子帧所能容纳的采样点数。
优选的,若K'个时间片所能容纳的窄带IQ采样点数大于所述N'A个天线载波的窄带IQ采样点数量,则所述方法还包括:
将K'个时间片中剩余的采样点容量用无效IQ采样点填充,所述K'个时间片中剩余的采样点容量为K'个时间片所能容纳的窄带IQ采样点数与所述N'A个天线载波的窄带IQ采样点数量之差。
本发明实施例还提供一种数据映射装置,所述装置包括:
参数获取单元、参数计算单元、窄带映射单元和宽带映射单元;
所述参数获取单元,用于获取窄带的IQ采样速率f's、宽带的频率fsf以及窄带的天线载波数量N'A,所述宽带的频率为时间片的倒数,所述时间片是指宽带制式协议中规定的时间周期;
所述参数计算单元,用于利用所述窄带的IQ采样速率f's和所述宽带的频率fsf得到每个窄带天线载波对应的窄带IQ采样点的个数S',以及N'A个天线载波的窄带IQ采样点能够映射到的宽带的时间片的个数K';
所述窄带映射单元,用于将窄带的N'A个天线载波的窄带IQ采样点映射到宽带的K'个时间片中,其中,K'个时间片所能容纳的窄带IQ采样点数大于或等于所述N'A个天线载波的窄带IQ采样点数量;
所述宽带映射单元,用于以映射后的K'个时间片为单位,将窄带的IQ采样点映射到通用公共无线接口的基本帧中,以完成对窄带IQ采样点在通用公共无线接口中的映射。
优选的,若K'个时间片所能容纳的窄带IQ采样点数大于所述N'A个天线载波的窄带IQ采样点数量,则所述装置还包括:
填充单元,用于将K'个时间片中剩余的采样点容量用无效IQ采样点填充,所述K'个时间片中剩余的采样点容量为K'个时间片所能容纳的窄带IQ采样点数与所述N'A个天线载波的窄带IQ采样点数量之差。
本发明还提供了一种数据映射设备,所述设备包括:
处理器;
用于存储所述处理器可执行指令的存储器;
其中,所述处理器被配置为:
获取窄带的IQ采样速率f's、宽带的频率fsf以及窄带的天线载波数量N'A,所述宽带的频率为时间片的倒数,所述时间片是指宽带制式协议中规定的时间周期;
利用所述窄带的IQ采样速率f's和所述宽带的频率fsf得到每个窄带天 线载波对应的窄带IQ采样点的个数S',以及N'A个天线载波的窄带IQ采样点能够映射到的宽带的时间片的个数K';
将窄带的N'A个天线载波的窄带IQ采样点映射到宽带的K'个时间片中,其中,K'个时间片所能容纳的窄带IQ采样点数大于或等于所述N'A个天线载波的窄带IQ采样点数量;
以映射后的K'个时间片为单位,将窄带的IQ采样点映射到通用公共无线接口的基本帧中,以完成对窄带IQ采样点在通用公共无线接口中的映射。
本发明通过获取窄带的IQ采样速率f's、宽带的频率fsf以及窄带的天线载波数量N'A,并利用所述窄带的IQ采样速率f's和所述宽带的频率fsf得到每个窄带天线载波对应的窄带IQ采样点的个数S',以及N′A个天线载波的窄带IQ采样点能够映射到的宽带的时间片的个数K',以将窄带的N′A个天线载波的窄带IQ采样点映射到宽带的K'个时间片中,实现了将窄带IQ数据映射到宽带IQ数据的目的,然后以映射后的K'个时间片为单位,将窄带的IQ采样点映射到通用公共无线接口的基本帧中,以完成对窄带IQ采样点在通用公共无线接口中的映射。由于本实施例无需对现有的CPRI做变动就可以实现对窄带IQ数据的传输,因此提高了现有CPRI的适应性和利用率。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为CPRI的基本配置图;
图2为CPRI协议的分层结构图;
图3为本发明实施例一提供的一种数据映射方法的流程图;
图4为本发明实施例二提供的一种数据映射方法中PDT制式帧结构的示意图;
图5为本发明实施例二提供的一种数据映射方法中PDT的基带调制过程示意图;
图6为本发明实施例二提供的一种数据映射方法中PDT的IQ采样点和所述无效IQ采样点填充在LTE子帧中的其中一种方式;
图7为本发明实施例二提供的一种数据映射方法中宽窄带数据兼容传输的LTE天线载波复用示意图;
图8为本发明实施例三提供的一种数据映射装置的结构框图;
图9为本发明实施例四提供的一种数据映射设备的结构框图。
具体实施方式
现有技术的CPRI协议给出了基于宽带的IQ数据映射方法,其基本思想为:将宽带的NA个天线载波(Antenna-carrier,简称AxC)的IQ采样点(IQ samples)均匀的分配在K个基本帧中,并给出了每个AxC对应的IQ采样点的个数S,以及NA个天线载波(Antenna-carrier,简称AxC)的IQ采样点对应的基本帧个数K的计算公式。一般来说,基于宽带的IQ数据传输计算得到的基本帧个数K只有个位数,而若将该公式直接应用在对窄带的IQ数据映射,则计算得到的基本帧的个数K要远远高于基于宽带的IQ数据传输计算得到的基本帧个数。
举个例子,假设宽带的IQ数据的采样速率fs=30.72MHz,由于fc为定值3.84MHz,因此有LCM(fs,fc)=30.72MHz,进而可以得到:
Figure PCTCN2016101133-appb-000005
假设窄带的IQ数据的采样速率为fs=38.4KHz=3.84×10-2MHz,由于fc为定值3.84MHz,因此有LCM(fs,fc)=3.84MHz,进而可以得到:
Figure PCTCN2016101133-appb-000006
可见传输窄带IQ数据的K值和传输宽带IQ数据的K值相差很大,现有的CPRI不适用于窄带IQ数据的传输。
为了克服这个技术问题,发明人提出了一种数据映射方法,其基本思路为:首先将窄带的N'A个天线载波对应的IQ采样点映射到宽带的K'个时间片中,然后再以映射后的K'个时间片为单位,将窄带的IQ采样点映射到通用公共无线接口的基本帧中。也就是说,先将窄带的IQ采样点“包装”成宽带的IQ采样点,然后利用现有技术中对宽带IQ采样点的映射方法进行映 射,这样就可以采用现有的CPRI对窄带IQ数据继续传输,提高了现有CPRI的适应性和利用率。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一:
参见图3,该图为本发明提供的一种数据映射方法实施例一的流程图。
本实施例提供的数据映射方法包括如下步骤:
步骤S101:获取窄带的IQ采样速率f's、宽带的频率fsf以及窄带的天线载波数量N'A
所述宽带的频率为时间片的倒数,所述时间片是指宽带制式协议中规定的时间周期,例如子帧、时隙、无线帧、OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号等。
步骤S102:利用所述窄带的IQ采样速率f's和所述宽带的频率fsf得到每个窄带天线载波对应的窄带IQ采样点的个数S',以及N'A个天线载波的窄带IQ采样点能够映射到的宽带的时间片的个数K'。
在本实施例中,所述每个窄带天线载波对应的窄带IQ采样点的个数S'可以通过如下公式得到:
Figure PCTCN2016101133-appb-000007
其中,所述LCM为计算最小公倍数的函数。
所述N'A个天线载波的窄带IQ采样点能够映射到的宽带的时间片的个数K'可以通过如下公式得到:
Figure PCTCN2016101133-appb-000008
其中,所述LCM为计算最小公倍数的函数。
需要注意的是,上述两个公式并不构成对本发明的限定,本领域技术人员可以根据本发明提供的技术思想结合实际应用需求自行设计。
步骤S103:将窄带的N'A个天线载波的窄带IQ采样点映射到宽带的K'个 时间片中。
为了能够实现对窄带IQ数据的映射,需要满足K'个时间片所能容纳的窄带IQ采样点数大于或等于所述N'A个天线载波的窄带IQ采样点数量。
在实际应用中,若K'个时间片所能容纳的窄带IQ采样点数大于所述N'A个天线载波的窄带IQ采样点数量,则可以将K'个时间片中剩余的采样点容量用无效IQ采样点填充,所述K'个时间片中剩余的采样点容量为K'个时间片所能容纳的窄带IQ采样点数与所述N'A个天线载波的窄带IQ采样点数量之差。
步骤S104:以映射后的K'个时间片为单位,将窄带的IQ采样点映射到通用公共无线接口的基本帧中,以完成对窄带IQ采样点在通用公共无线接口中的映射。
本实施例将窄带的IQ采样点映射到宽带的K'个时间片,相当于将窄带的IQ数据“变为”宽带的IQ数据,因而在映射后,可以利用现有技术中对宽带IQ数据映射的方法,将携带窄带IQ采样点的宽带IQ数据映射到CPRI的基本帧中。
本实施例通过获取窄带的IQ采样速率f′s、宽带的频率fsf以及窄带的天线载波数量N'A,并利用所述窄带的IQ采样速率f's和所述宽带的频率fsf得到每个窄带天线载波对应的窄带IQ采样点的个数S',以及N'A个天线载波的窄带IQ采样点能够映射到的宽带的时间片的个数K',以将窄带的N'A个天线载波的窄带IQ采样点映射到宽带的K'个时间片中,实现了将窄带IQ数据映射到宽带IQ数据的目的,然后以映射后的K'个时间片为单位,将窄带的IQ采样点映射到通用公共无线接口的基本帧中,以完成对窄带IQ采样点在通用公共无线接口中的映射。由于本实施例无需对现有的CPRI做变动就可以实现对窄带IQ数据的传输,因此提高了现有CPRI的适应性和利用率。
实施例二
本实施例通过结合实际应用场景来介绍本发明提供的数据映射方法。在该实施例中,所述窄带为PDT(Police Digital Trunking或Public Digital Trunking,警用数字集群系统或公共数字集群)制式,所述宽带为LTE(Long Term Evolution,长期演进)制式,本实施例不仅要实现对PDT制式的IQ数据的传输,而且还要实现PDT制式的IQ数据与所述LTE制式的IQ数据 的兼容传输。
为了更好的理解本实施例提供的数据映射方法,首先介绍一下PDT集群制式的帧格式和IQ数据格式。参见图4,该图为PDT制式的帧结构,在该帧结构中,60ms被划分成2个时隙,每个时隙长度为30ms。一个时隙由三分部组成:同步或内嵌信令、语音或数据以及CACH(下行)或保护间隔(上行)。每一帧数据包括144个OFDM符号,符号速率为4800Hz,由于是采用4FSK(Frequency-shift keying,移频键控)调制,每个时隙承载288bit比特有效数据。
PDT的基带调制过程图5所示,即首先将每2比特数据映射成调制符号,然后对调制符号进行上采样和成形滤波,最后经进频率调制生成基带信号。经过调制后,IQ数据在符号速率之上进行了一定倍数的上采样。本实施样例中以8倍采样率为例,即f's=8×4800Hz=38400Hz的IQ采样速率,当然实际中也可以使用其它采样速率。此外,假设PDT的天线载波数量N′A=4。
本实施例以LTE子帧作为时间片,每个子帧时间长度为1ms,因此子帧的频率fsf为1000Hz(单个子帧时间长度的倒数)。若要将PDT的4个天线载波的IQ采样点装入LTE的K'个子帧中进行传输,则应当满足如下条件:
Figure PCTCN2016101133-appb-000009
其中,PDT的每个天线载波对应S'个IQ采样点。
因为S'和K'只能取整数,因此需要将小数的f's进行处理,也就是在计算f's和fsf的最小公倍数时,将f's乘以10,相应的,也需要将fsf乘以10。
S'和K'可以通过如下公式得到:
Figure PCTCN2016101133-appb-000010
Figure PCTCN2016101133-appb-000011
其中,LCM为计算两者的最小公倍数。
为了能将PDT的4个天线载波中的IQ采样点映射到LTE的5个子帧中,需要保证这5个子帧所能容纳的PDT的IQ采样点大于或等于这四个天线载波中的IQ采样点。由于每个PDT的天线载波对应384个IQ采样点,那么4个天线载波一共对应192×4=768个IQ采样点,因而需要保证5个子帧所能容纳最少768个IQ采样点。
LTE子帧所能容纳的PDT的采样点数可以根据LTE的OFDM符号的采样点数得到,而LTE的OFDM符号的采样点数可以根据LTE的带宽查表得到。假设所述LTE的带宽为20MHz,那么根据表1可以查到与所述带宽对应的OFDM符号的采样点Nsymbol为2048。
表1
带宽(MHz) 1.4 3 5 10 15 20
Nsymbol 128 256 512 1024 1536或2048 2048
一个LTE子帧所能容纳的采样点数Ntti根据如下公式得到:
Ntti=15·Nsymbol=15×2048=30720
所以,本实施例中K'个子帧所能容纳的采样点数Ng-gap根据如下公式得到:
Ng-gap=K'·Ntti=5×30720=153600
经过计算,本实施例中PDT的四个天线载波对应的IQ采样点的数量(768个)远远小于5个LTE子帧所能容纳的采样点数Ng-gap(153600个),因此可以实现PDT的IQ采样点与LTE子帧之间的映射。
此外,还可以通过另外一种方式来验证K'个LTE子帧是否能容纳PDT的4个天线载波的IQ采样点,即:
Figure PCTCN2016101133-appb-000012
其中,所述NC-AxC为K'个LTE子帧所能复用的PDT的最多天线载波数量,INT为取整。根据该公式可以得到:
Figure PCTCN2016101133-appb-000013
也就是说,本实施例中5个LTE子帧所能复用的PDT的最多天线载波 数量为800个,远远超过实际PDT的天线载波数量(4个),因此可以将PDT的4个天线载波的IQ采样点“装入”所述5个LTE子帧中。
在本实施例中,在将所述PDT4个天线载波的IQ采样点映射到5个LTE子帧中后,所述5个LTE子帧中剩余的采样点容量可以用无效IQ采样点填充,也就是说可以填充Ng-gap-4×S'=153600-4×192=152832个无效IQ采样点,所述无效IQ采样点是指用于填充的IQ采样点,在发送端和接收端均可以忽略其内容。
图6为PDT的IQ采样点和所述无效IQ采样点填充在LTE子帧中的其中一种方式,即所述PDT的IQ采样点集中在一起,所述无效IQ采样点集中在一起。在实际应用中,还可以有其他的填充方式,例如各个天线载波的IQ采样点与无效IQ采样点间隔开来填充,每个间隔填充的无效IQ采样点的数量可以相同。
在介绍了如何将PDT的IQ采样点映射到LTE子帧中后,下面介绍如何进行宽窄带的数据兼容传输。
假设根据计算得到CPRI支持的LTE的天线载波个数NA为4,而实际需要传输的LTE IQ采样点只需要占用两个天线载波,那么就可以利用剩余两个天线载波中的一个来复用PDT的IQ采样点,另外一个为空闲保留。参见图7,AxC0和AxC1用于“装载”LTE的IQ采样点,AxC2用于“装载”PDT的IQ采样点,这样的复用方式实现了宽窄带数据的兼容传输。
在实际应用中,若所述REC为数据传输方,所述RE为数据接收方,则上述数据映射方法可以由所述REC执行,所述REC可以通过C&M(Control and Management,控制和管理)通道将所述PDT的天线载波数N'A和所述PDT映射在所述LTE中的位置(例如AxC序号2)发送给所述RE,并且所述REC和所述RE事先约定PDT的采样速率,所述RE在接收到上述参数后,可以根据上述参数得到所述PDT的IQ数据在LTE天线载波中的映射关系,以便根据所述映射关系接收来自所述REC发送的数据。若所述RE为数据传输方,所述REC为数据接收方,则同理。
基于以上实施例提供的一种数据映射方法,本发明实施例还提供了一种数据映射装置,下面结合附图来详细说明其工作原理。
实施例三
参见图8,该图为本实施例提供的一种数据映射装置的结构框图。
本实施例提供的数据映射装置包括:
参数获取单元101、参数计算单元102、窄带映射单元103和宽带映射单元104;
所述参数获取单元101,用于获取窄带的IQ采样速率f's、宽带的频率fsf以及窄带的天线载波数量N'A,所述宽带的频率为时间片的倒数,所述时间片是指宽带制式协议中规定的时间周期;
所述参数计算单元102,用于利用所述窄带的IQ采样速率f′s和所述宽带的频率fsf得到每个窄带天线载波对应的窄带IQ采样点的个数S',以及N'A个天线载波的窄带IQ采样点能够映射到的宽带的时间片的个数K';
所述窄带映射单元103,用于将窄带的N'A个天线载波的窄带IQ采样点映射到宽带的K'个时间片中,其中,K'个时间片所能容纳的窄带IQ采样点数大于或等于所述N'A个天线载波的窄带IQ采样点数量;
所述宽带映射单元104,用于以映射后的K'个时间片为单位,将窄带的IQ采样点映射到通用公共无线接口的基本帧中,以完成对窄带IQ采样点在通用公共无线接口中的映射。
本实施例通过获取窄带的IQ采样速率f's、宽带的频率fsf以及窄带的天线载波数量N'A,并利用所述窄带的IQ采样速率f's和所述宽带的频率fsf得到每个窄带天线载波对应的窄带IQ采样点的个数S',以及N'A个天线载波的窄带IQ采样点能够映射到的宽带的时间片的个数K',以将窄带的N'A个天线载波的窄带IQ采样点映射到宽带的K'个时间片中,实现了将窄带IQ数据映射到宽带IQ数据的目的,然后以映射后的K'个时间片为单位,将窄带的IQ采样点映射到通用公共无线接口的基本帧中,以完成对窄带IQ采样点在通用公共无线接口中的映射。由于本实施例无需对现有的CPRI做变动就可以实现对窄带IQ数据的传输,因此提高了现有CPRI的适应性和利用率。
优选的,若K'个时间片所能容纳的窄带IQ采样点数大于所述N′A个天线载波的窄带IQ采样点数量,则所述装置还包括:
填充单元,用于将K'个时间片中剩余的采样点容量用无效IQ采样点填充,所述K'个时间片中剩余的采样点容量为K'个时间片所能容纳的窄带IQ采样点数与所述N'A个天线载波的窄带IQ采样点数量之差。
基于以上实施例提供的一种数据映射方法和装置,本发明实施例还提供了一种数据映射设备,下面结合附图来详细说明其工作原理。
实施例四
参见图9,该图为本实施例提供的一种数据映射设备的结构框图。
在本实施例中,所述数据映射设备包括
处理器201;
用于存储所述处理器可执行指令的存储器202;所述处理器和所述存储器通过通信总线203连接;
其中,所述处理器201被配置为:
获取窄带的IQ采样速率f's、宽带的频率fsf以及窄带的天线载波数量N'A,所述宽带的频率为时间片的倒数,所述时间片是指宽带制式协议中规定的时间周期;
利用所述窄带的IQ采样速率f's和所述宽带的频率fsf得到每个窄带天线载波对应的窄带IQ采样点的个数S',以及N'A个天线载波的窄带IQ采样点能够映射到的宽带的时间片的个数K';
将窄带的N'A个天线载波的窄带IQ采样点映射到宽带的K'个时间片中,其中,K'个时间片所能容纳的窄带IQ采样点数大于或等于所述N'A个天线载波的窄带IQ采样点数量;
以映射后的K'个时间片为单位,将窄带的IQ采样点映射到通用公共无线接口的基本帧中,以完成对窄带IQ采样点在通用公共无线接口中的映射。
可选的,利用所述窄带的IQ采样速率f's和所述宽带的频率fsf,通过如下公式得到每个窄带天线载波对应的窄带IQ采样点的个数S':
Figure PCTCN2016101133-appb-000014
其中,所述LCM为计算最小公倍数的函数。
可选的,利用所述窄带的IQ采样速率f's和所述宽带的频率fsf,通过如下公式得到N'A个天线载波的窄带IQ采样点能够映射到的宽带的时间片的个数K':
Figure PCTCN2016101133-appb-000015
其中,所述LCM为计算最小公倍数的函数。
可选的,所述宽带为LTE制式,所述时间片为子帧;
所述K'个时间片所能容纳的窄带IQ采样点数根据LTE的OFDM符号的采样点数得到。
可选的,所述K'个时间片所能容纳的窄带IQ采样点数根据LTE的OFDM符号的采样点数得到具体为:
根据OFDM符号的采样点数得到每个LTE子帧所能容纳的采样点数;
根据每个子帧所能容纳的采样点数得到K'个子帧所能容纳的采样点数。
可选的,所述根据OFDM符号的采样点数得到每个LTE子帧所能容纳的采样点数具体为:
Ntti=15·Nsymbol
其中,所述Nsymbol为LTE的OFDM符号的采样点数,所述Ntti为每个LTE子帧所能容纳的采样点数。
可选的,若K'个时间片所能容纳的窄带IQ采样点数大于所述N'A个天线载波的窄带IQ采样点数量,则所述方法还包括:
将K'个时间片中剩余的采样点容量用无效IQ采样点填充,所述K'个时间片中剩余的采样点容量为K'个时间片所能容纳的窄带IQ采样点数与所述N'A个天线载波的窄带IQ采样点数量之差。
上述处理器可以是微处理器或者该处理器也可以是任何常规的处理器。结合本发明实施例所公开的方法的步骤,可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。当使用软件实现时,可以将实现上述功能的代码存储在计算机可读介质中。计算机可读介质包括计算机存储介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以是随机存取存储器(英文全称为random access memory,英文缩写为RAM)、只读存储器(英文全称为read-only memory,英文缩写为ROM)、电可擦可编程只读存储器(英文全称为electrically erasable programmable read-only memory,英文缩写为EEPROM)、只读光盘(英文全称为compact disc read-only memory,英文缩写为CD-ROM)或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的程序代码并能够由计算机存取的任何其他介质。计算机可读介质可 以是压缩光碟(英文全称为compact disc,英文缩写为CD)、激光碟、数字视频光碟(英文全称为digital video disc,英文缩写为DVD)、软盘或者蓝光碟。
当介绍本发明的各种实施例的元件时,冠词“一”、“一个”、“这个”和“所述”都意图表示有一个或多个元件。词语“包括”、“包含”和“具有”都是包括性的并意味着除了列出的元件之外,还可以有其它元件。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于实施例三和实施例四而言,由于其基本相似于实施例一和实施例二,所以描述得比较简单,相关之处参见实施例一和实施例二的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元及模块可以是或者也可以不是物理上分开的。另外,还可以根据实际的需要选择其中的部分或者全部单元和模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
以上所述仅是本发明的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种数据映射方法,其特征在于,所述方法包括:
    获取窄带的IQ采样速率fs'、宽带的频率fsf以及窄带的天线载波数量N'A,所述宽带的频率为时间片的倒数,所述时间片是指宽带制式协议中规定的时间周期;
    利用所述窄带的IQ采样速率fs'和所述宽带的频率fsf得到每个窄带天线载波对应的窄带IQ采样点的个数S',以及N'A个天线载波的窄带IQ采样点能够映射到的宽带的时间片的个数K';
    将窄带的N'A个天线载波的窄带IQ采样点映射到宽带的K'个时间片中,其中,K'个时间片所能容纳的窄带IQ采样点数大于或等于所述N'A个天线载波的窄带IQ采样点数量;
    以映射后的K'个时间片为单位,将窄带的IQ采样点映射到通用公共无线接口的基本帧中,以完成对窄带IQ采样点在通用公共无线接口中的映射。
  2. 根据权利要求1所述的方法,其特征在于,利用所述窄带的IQ采样速率fs'和所述宽带的频率fsf,通过如下公式得到每个窄带天线载波对应的窄带IQ采样点的个数S':
    Figure PCTCN2016101133-appb-100001
    其中,所述LCM为计算最小公倍数的函数。
  3. 根据权利要求1或2所述的方法,其特征在于,利用所述窄带的IQ采样速率fs'和所述宽带的频率fsf,通过如下公式得到N'A个天线载波的窄带IQ采样点能够映射到的宽带的时间片的个数K':
    Figure PCTCN2016101133-appb-100002
    其中,所述LCM为计算最小公倍数的函数。
  4. 根据权利要求1所述的方法,其特征在于,所述宽带为LTE制式,所述时间片为子帧;
    所述K'个时间片所能容纳的窄带IQ采样点数根据LTE的OFDM符号的采样点数得到。
  5. 根据权利要求4所述的方法,其特征在于,所述K'个时间片所能容纳 的窄带IQ采样点数根据LTE的OFDM符号的采样点数得到具体为:
    根据OFDM符号的采样点数得到每个LTE子帧所能容纳的采样点数;
    根据每个子帧所能容纳的采样点数得到K'个子帧所能容纳的采样点数。
  6. 根据权利要求5所述的方法,其特征在于,所述根据OFDM符号的采样点数得到每个LTE子帧所能容纳的采样点数具体为:
    Ntti=15·Nsymbol
    其中,所述Nsymbol为LTE的OFDM符号的采样点数,所述Ntti为每个LTE子帧所能容纳的采样点数。
  7. 根据权利要求1所述的方法,其特征在于,若K'个时间片所能容纳的窄带IQ采样点数大于所述N'A个天线载波的窄带IQ采样点数量,则所述方法还包括:
    将K'个时间片中剩余的采样点容量用无效IQ采样点填充,所述K'个时间片中剩余的采样点容量为K'个时间片所能容纳的窄带IQ采样点数与所述N'A个天线载波的窄带IQ采样点数量之差。
  8. 一种数据映射装置,其特征在于,所述装置包括:
    参数获取单元、参数计算单元、窄带映射单元和宽带映射单元;
    所述参数获取单元,用于获取窄带的IQ采样速率fs'、宽带的频率fsf以及窄带的天线载波数量N'A,所述宽带的频率为时间片的倒数,所述时间片是指宽带制式协议中规定的时间周期;
    所述参数计算单元,用于利用所述窄带的IQ采样速率fs'和所述宽带的频率fsf得到每个窄带天线载波对应的窄带IQ采样点的个数S',以及N'A个天线载波的窄带IQ采样点能够映射到的宽带的时间片的个数K';
    所述窄带映射单元,用于将窄带的N'A个天线载波的窄带IQ采样点映射到宽带的K'个时间片中,其中,K'个时间片所能容纳的窄带IQ采样点数大于或等于所述N'A个天线载波的窄带IQ采样点数量;
    所述宽带映射单元,用于以映射后的K'个时间片为单位,将窄带的IQ采样点映射到通用公共无线接口的基本帧中,以完成对窄带IQ采样点在通用公共无线接口中的映射。
  9. 根据权利要求8所述的装置,其特征在于,若K'个时间片所能容纳的窄带IQ采样点数大于所述N'A个天线载波的窄带IQ采样点数量,则所述装 置还包括:
    填充单元,用于将K'个时间片中剩余的采样点容量用无效IQ采样点填充,所述K'个时间片中剩余的采样点容量为K'个时间片所能容纳的窄带IQ采样点数与所述N'A个天线载波的窄带IQ采样点数量之差。
  10. 一种数据映射设备,其特征在于,所述设备包括:
    处理器;
    用于存储所述处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    获取窄带的IQ采样速率fs'、宽带的频率fsf以及窄带的天线载波数量N'A,所述宽带的频率为时间片的倒数,所述时间片是指宽带制式协议中规定的时间周期;
    利用所述窄带的IQ采样速率fs'和所述宽带的频率fsf得到每个窄带天线载波对应的窄带IQ采样点的个数S',以及N'A个天线载波的窄带IQ采样点能够映射到的宽带的时间片的个数K';
    将窄带的N'A个天线载波的窄带IQ采样点映射到宽带的K'个时间片中,其中,K'个时间片所能容纳的窄带IQ采样点数大于或等于所述N'A个天线载波的窄带IQ采样点数量;
    以映射后的K'个时间片为单位,将窄带的IQ采样点映射到通用公共无线接口的基本帧中,以完成对窄带IQ采样点在通用公共无线接口中的映射。
PCT/CN2016/101133 2016-09-30 2016-09-30 一种数据映射方法、装置及设备 WO2018058550A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/101133 WO2018058550A1 (zh) 2016-09-30 2016-09-30 一种数据映射方法、装置及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/101133 WO2018058550A1 (zh) 2016-09-30 2016-09-30 一种数据映射方法、装置及设备

Publications (1)

Publication Number Publication Date
WO2018058550A1 true WO2018058550A1 (zh) 2018-04-05

Family

ID=61762550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/101133 WO2018058550A1 (zh) 2016-09-30 2016-09-30 一种数据映射方法、装置及设备

Country Status (1)

Country Link
WO (1) WO2018058550A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113518069A (zh) * 2021-04-07 2021-10-19 海能达通信股份有限公司 数据传输方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101325737A (zh) * 2007-06-15 2008-12-17 中兴通讯股份有限公司 Gsm/edge的iq数据与cpri接口的适配方法
CN101715214A (zh) * 2009-09-29 2010-05-26 中兴通讯股份有限公司 同相正交数据传输方法及系统
US20100215117A1 (en) * 2009-02-05 2010-08-26 Leo Patanapongpibul Data transmission in telecommunications networks
CN102307395A (zh) * 2011-09-02 2012-01-04 中兴通讯股份有限公司 用cpri接口传输gsm/edge的iq数据的方法
US20140241186A1 (en) * 2013-02-28 2014-08-28 Agilent Technologies, Inc. Method and Apparatus for Determining the Configuration of a Cellular Transmission System
CN106487492A (zh) * 2016-09-30 2017-03-08 海能达通信股份有限公司 一种数据映射方法、装置及设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101325737A (zh) * 2007-06-15 2008-12-17 中兴通讯股份有限公司 Gsm/edge的iq数据与cpri接口的适配方法
US20100215117A1 (en) * 2009-02-05 2010-08-26 Leo Patanapongpibul Data transmission in telecommunications networks
CN101715214A (zh) * 2009-09-29 2010-05-26 中兴通讯股份有限公司 同相正交数据传输方法及系统
CN102307395A (zh) * 2011-09-02 2012-01-04 中兴通讯股份有限公司 用cpri接口传输gsm/edge的iq数据的方法
US20140241186A1 (en) * 2013-02-28 2014-08-28 Agilent Technologies, Inc. Method and Apparatus for Determining the Configuration of a Cellular Transmission System
CN106487492A (zh) * 2016-09-30 2017-03-08 海能达通信股份有限公司 一种数据映射方法、装置及设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113518069A (zh) * 2021-04-07 2021-10-19 海能达通信股份有限公司 数据传输方法及装置

Similar Documents

Publication Publication Date Title
EP3606219A1 (en) Method, apparatus and system for reference signal transmission
CN111386736B (zh) 一种通信方法、装置以及系统
AU2013409674B2 (en) Data transmission method, data forwarding device, and system
CN108632193B (zh) 一种资源指示方法及网络设备、终端设备
US20150195814A1 (en) Broadcast message transmission method, base station and user equipment
WO2020063464A1 (zh) Dmrs处理方法、装置、系统、设备、终端、存储介质
CN111343672A (zh) 无线通信的方法和装置
AU2018338767B2 (en) Sub-physical resource block (sub-PRB) transmissions over a physical uplink shared channel (PUSCH)
EP4030715B1 (en) Communication method and apparatus, and device
WO2014110924A1 (zh) 一种发射上行解调参考信号的方法和系统
CN109803371B (zh) 一种通信处理方法和装置
CN103517439B (zh) 位置处理方法及基站、终端
CN106487492B (zh) 一种数据映射方法、装置及设备
CN106413138B (zh) 数据映射方法、装置及设备
KR20120039847A (ko) 통신 시스템에서 동적으로 자원을 할당하기 위한 장치 및 방법
WO2018058550A1 (zh) 一种数据映射方法、装置及设备
US11962521B2 (en) Radio communication apparatus, method, program, non-transitory computer readable recording medium, and system
CN104685941A (zh) 站间同步的方法及基站
WO2018058549A1 (zh) 数据映射方法、装置及设备
WO2022141106A1 (zh) 重复传输数据信道的方法和设备
US10797775B2 (en) Backhaul transmission method for wireless communication, controller, base station, and gateway
WO2018082365A1 (zh) 传输控制方法、装置及系统存储介质
CN114257484B (zh) 一种符号应用方法及通信装置
WO2022041081A1 (zh) 通信方法及装置
WO2022151500A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16917300

Country of ref document: EP

Kind code of ref document: A1