WO2016065922A1 - 双传输块的数据发送、接收方法、装置、发射机及接收机 - Google Patents

双传输块的数据发送、接收方法、装置、发射机及接收机 Download PDF

Info

Publication number
WO2016065922A1
WO2016065922A1 PCT/CN2015/083494 CN2015083494W WO2016065922A1 WO 2016065922 A1 WO2016065922 A1 WO 2016065922A1 CN 2015083494 W CN2015083494 W CN 2015083494W WO 2016065922 A1 WO2016065922 A1 WO 2016065922A1
Authority
WO
WIPO (PCT)
Prior art keywords
symbol sequence
transport block
complex symbol
xstd
ystd
Prior art date
Application number
PCT/CN2015/083494
Other languages
English (en)
French (fr)
Inventor
袁志锋
戴建强
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP15854680.4A priority Critical patent/EP3214784B1/en
Priority to US15/523,461 priority patent/US10432356B2/en
Publication of WO2016065922A1 publication Critical patent/WO2016065922A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • H04L1/0058Block-coded modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/12Monitoring; Testing of transmitters for calibration of transmit antennas, e.g. of the amplitude or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/183Multiresolution systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3405Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power
    • H04L27/3416Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power in which the information is carried by both the individual signal points and the subset to which the individual points belong, e.g. using coset coding, lattice coding, or related schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/345Modifications of the signal space to allow the transmission of additional information
    • H04L27/3461Modifications of the signal space to allow the transmission of additional information in order to transmit a subchannel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3488Multiresolution systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • H04L1/0004Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes applied to control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • H04L1/0005Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes applied to payload information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0098Unequal error protection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0008Modulated-carrier systems arrangements for allowing a transmitter or receiver to use more than one type of modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/02Amplitude-modulated carrier systems, e.g. using on-off keying; Single sideband or vestigial sideband modulation
    • H04L27/04Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3405Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/362Modulation using more than one carrier, e.g. with quadrature carriers, separately amplitude modulated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/16Deriving transmission power values from another channel

Definitions

  • the present invention relates to the field of communications, and in particular to a data transmission and reception method, a device, a transmitter, and a receiver of a dual transport block.
  • the communication between the base station and the UE may be based on the channel condition between the base station and the UE, and a transmission block having a certain coding efficiency (Modulation Coding Scheme, MCS for short), that is, a certain spectrum efficiency, may be transmitted at a time. Therefore, a cellular communication standard will clearly specify a set of coded modulation methods to match different wireless channels.
  • MCS Modulation Coding Scheme
  • the actual channel quality may be good, for example, the UE is in the center of the cell, and the channel quality is higher than that required by the highest MCS in the standard.
  • the spectrum efficiency may be limited due to the inability to select a higher modulation mode or make full use of the transmission power.
  • the receiver Separate two TB blocks using the Serial Interference Cancellation (SIC) technique, which further improves spectral efficiency without modifying the MCS standard definition.
  • SIC Serial Interference Cancellation
  • Two TB blocks are transmitted on the same time-frequency resource, and two TB blocks interfere with each other during demodulation.
  • the second is to use SIC technology.
  • the following is a brief description of the interference cancellation process of two TBs.
  • the interference cancellation process of multiple TBs is easily promoted by first demodulating and decoding the information of TB1 (with the interference of TB2 to solve the TB1 information).
  • the TB2 information when demodulating the TB2 information, it is necessary to first subtract the previously demodulated and decoded TB1 information (which may need to be reconstructed), and then solve the TB2 information. In this way, the TB2 information can be greatly improved because there is no interference. Therefore dual TB block transfers are typically received using SIC technology.
  • FIG. 1 is a schematic diagram of a superposition of a QPSK symbol and a 16QAM symbol directly added in the related art. As shown in FIG. 1, if a receiving end uses SIC reception, demodulating a constellation point without a Gray mapping attribute is more error-prone, and SIC receiving There will be error propagation, and the degree of error propagation of 10% BLER cannot be ignored.
  • the invention provides a data transmission and reception method, a device, a transmitter and a receiver of a dual transport block, so as to at least solve the problem that in the related art, there are two TBs directly added, and the final combined constellation points have no Gray mapping attribute. problem.
  • a data transmission method for a dual transport block including: dividing data to be transmitted into two, wherein each of the transport blocks TB1 and TB2 are respectively generated according to a corresponding predetermined code modulation mode;
  • the transport block TB1 is modulated into a complex symbol sequence S1 having a certain power
  • the transport block TB2 is modulated into a complex symbol sequence S2 having a certain power
  • the S1 and the S2 are superimposed to generate a new transport block corresponding to A complex symbol sequence S3, the complex symbol sequence S3 corresponding to the new transport block has a Gray Gray attribute;
  • the new transport block is transmitted to a receiver.
  • the method before the sending the new transport block to the receiver, the method further includes: adjusting a power adjustment factor according to the two transport blocks TB1 and TB2 Adjusting the complex symbol sequence S3 corresponding to the new transport block, where more than the
  • superimposing the S1 and the S2 to generate a complex symbol sequence S3 corresponding to a new transport block includes: a complex symbol sequence S1 having a certain power after the TB1 modulation is
  • the complex symbol sequence S2 with a certain power after the TB2 modulation is
  • the complex symbol sequence S3 generated by superimposing the S1 and the S2 is Among them, the symbol Indicates rounding up, The power adjustment factor corresponding to the TB1 and TB2.
  • superimposing the S1 and the S2 to generate a complex symbol sequence S3 corresponding to a new transport block includes: a complex symbol sequence S1 having a certain power after the TB1 modulation is
  • the complex symbol sequence S2 with a certain power after the TB2 modulation is
  • the S1 and the S2 are superimposed to generate a complex symbol sequence S3.
  • the symbol Indicates rounding down, The power adjustment factor corresponding to the TB1 and TB2.
  • superimposing the S1 and the S2 to generate a complex symbol sequence S3 corresponding to a new transport block includes: mirroring the S2 to obtain a symbol S; and superposing the S1 and the S to generate the The new transport block corresponds to the S3.
  • the S2 is mirrored to obtain the symbol S: the symbol of the real part of S is determined according to the value of the real part of S1, the symbol of the imaginary part is determined according to the value of the imaginary part of S1, and the complex symbol sequence S2 is mirrored.
  • the symbol S is expressed as or
  • the unnormalized integer lattice constellation symbol S std corresponding to S1 is Xstd+Ystd ⁇ i, and the power of the symbol S is the same as the power of S2.
  • the complex symbol sequence S1 is obtained by multiplying the power-normalized modulation symbol sequence modulated by the power normalized constellation by the TB1 by a power adjustment factor; and the complex symbol sequence S2 is to return the TB2 to the power.
  • a power-normalized modulation symbol sequence modulated by a constellation is obtained by multiplying a power adjustment factor.
  • the values of Xstd and Ystd include at least one of the following: Xstd and Ystd corresponding to quadrature phase shift keying QPSK are ⁇ 1, -1 ⁇ ; and Xstd and Ystd corresponding to 16 orthogonal amplitude modulation 16QAM are taken.
  • the value is ⁇ 1, -1, 3, -3 ⁇ ; the 64th orthogonal amplitude modulation 64QAM corresponds to Xstd and Ystd as ⁇ 1, -1, 3, -3, 5, -5, 7, -7 ⁇ .
  • a data receiving method for a dual transport block comprising: receiving a transmit signal from a transmitter, wherein the transmit signal divides data to be transmitted into two on the transmitter Thereafter, each corresponding transport block TB1 and TB2 is superimposed to generate a new transport block, the transport block TB1 is modulated into a complex symbol sequence S1 having a certain power, and the transport block TB2 is modulated to have a certain power.
  • a complex symbol sequence S2 wherein the S1 and the S2 are superimposed to generate a complex symbol sequence S3 corresponding to a new transport block, and the complex symbol sequence S3 corresponding to the new transport block has a Gray Gray attribute;
  • Two transport blocks are output.
  • parsing the two transport blocks by using the serial interference cancellation method includes: intercepting the information of the TB1 by using the TB2 information interference, and removing the information of the TB1 by using the SIC method, and then decoding the information of the TB2 by using the SIC method.
  • the TB2 information is used to interfere with the information of the TB1, and after the information of the TB1 is removed by using the SIC method, the information of the mirror output TB2 includes: demodulating the information of the TB1 to be x1′+y1′ ⁇ i, and removing The information after the information of the TB1 is x2'+ ⁇ y2' ⁇ i, and the unnormalized integer lattice constellation symbol S std ' corresponding to the TB1 is Xstd'+Ystd' ⁇ i, then the image is output. Signal is or Among them, the symbol Indicates rounding up, Indicates rounding down.
  • the values of Xstd′ and Ystd′ include at least one of the following: Xstd′ and Ystd′ corresponding to quadrature phase shift keying QPSK are ⁇ 1, ⁇ 1 ⁇ ; and Xstd corresponding to 16 orthogonal amplitude modulation ', Ystd' takes the value ⁇ 1, -1, 3, -3 ⁇ ; 64's orthogonal amplitude modulation corresponds to Xstd' and Ystd', which are ⁇ 1, -1, 3, -3, 5, -5. 7,-7 ⁇ .
  • a data transmission apparatus for a dual transport block including: a dividing module, configured to divide data to be transmitted into two, wherein each copy generates a transport block TB1 according to a corresponding predetermined code modulation mode.
  • a modulation module configured to modulate the transport block TB1 into a complex symbol sequence S1 having a certain power, and modulate the transport block TB2 into a complex symbol sequence S2 having a certain power
  • a generating module configured to S1 and S2 are superimposed to generate a complex symbol sequence S3 corresponding to a new transport block, the complex symbol sequence S3 corresponding to the new transport block has a Gray Gray attribute
  • a transmitting module configured to send the new to the receiver Transport block.
  • the apparatus further includes: an adjustment module, configured to adjust a power adjustment factor according to the two transmission blocks TB1 and TB2 Adjusting the complex symbol sequence S3 corresponding to the new transport block, where more than the
  • the generating module is further configured to: superimpose the S1 and the S2 to generate a complex symbol sequence S3 corresponding to a new transport block: a complex symbol sequence having a certain power after the TB1 modulation S1 is The complex symbol sequence S2 with a certain power after the TB2 modulation is In the case where the unnormalized integer lattice constellation symbol S std corresponding to S1 is Xstd+Ystd ⁇ i, the complex symbol sequence S3 generated by superimposing the S1 and the S2 is Among them, the symbol Indicates rounding up, The power adjustment factor corresponding to the TB1 and TB2.
  • the generating module is further configured to: superimpose the S1 and the S2 to generate a complex symbol sequence S3 corresponding to a new transport block, including: a complex symbol having a certain power after the TB1 modulation Sequence S1 is The complex symbol sequence S2 with a certain power after the TB2 modulation is In the case where the unnormalized integer lattice constellation symbol S std corresponding to S1 is Xstd+Ystd ⁇ i, the S1 and the S2 are superimposed to generate a complex symbol sequence S3. Among them, the symbol Indicates rounding down, The power adjustment factor corresponding to the TB1 and TB2.
  • the generating module includes: a obtaining unit configured to mirror the S2 to obtain a symbol S; and a generating unit configured to superimpose the S1 and the S to generate a corresponding location of the new transport block Said S3.
  • the obtaining unit is further configured to obtain the symbol S by mirroring the S2 by: determining a symbol of the real part of the S according to the value of the real part of the S1, and determining a symbol of the imaginary part according to the value of the imaginary part of the S1
  • the symbol S after the complex symbol sequence S2 is mirrored is represented as or
  • the unnormalized integer lattice constellation symbol S std corresponding to S1 is Xstd+Ystd ⁇ i, and the power of the symbol S is the same as the power of S2.
  • the complex symbol sequence S1 is obtained by multiplying the power-normalized modulation symbol sequence modulated by the power normalized constellation by the TB1 by a power adjustment factor; and the complex symbol sequence S2 is to return the TB2 to the power.
  • a power-normalized modulation symbol sequence modulated by a constellation is obtained by multiplying a power adjustment factor.
  • the values of Xstd and Ystd include at least one of the following: Xstd and Ystd corresponding to quadrature phase shift keying QPSK are ⁇ 1, -1 ⁇ ; and Xstd and Ystd corresponding to 16 orthogonal amplitude modulation 16QAM are taken.
  • the value is ⁇ 1, -1, 3, -3 ⁇ ; the 64th orthogonal amplitude modulation 64QAM corresponds to Xstd and Ystd as ⁇ 1, -1, 3, -3, 5, -5, 7, -7 ⁇ .
  • a transmitter comprising the apparatus of any of the above.
  • a data receiving apparatus for a dual transport block comprising: a receiving module configured to receive a transmit signal from a transmitter, wherein the transmit signal is data to be transmitted on the transmitter After being divided into two, each corresponding transport block TB1 and TB2 is superimposed to generate a new transport block, the transport block TB1 is modulated into a complex symbol sequence S1 having a certain power, and the transport block TB2 is modulated into a complex symbol sequence S2 having a certain power, wherein the S1 and the S2 are superimposed to generate a complex symbol sequence S3 corresponding to a new transport block, and the complex symbol sequence S3 corresponding to the new transport block has a Gray Gray attribute; a parsing module, Set to parse out two transport blocks using the serial interference cancellation method.
  • the parsing module includes: a parsing unit configured to interfere with the information of the TB1 by using the TB2 information, and after the information of the TB1 is removed by using the SIC method, the information of the TB2 is decoded by the image.
  • the parsing unit is further configured to interfere with the information of the TB1 by using the TB2 information, and after the information of the TB1 is removed by using the SIC method, the information of the TB2 is mirrored: the TB1 is demodulated
  • the information is x1'+y1' ⁇ i
  • the information after removing the information of the TB1 is x2'+ ⁇ y2' ⁇ i
  • the unnormalized integer lattice constellation symbol S std ' corresponding to the TB1 is Xstd'+
  • the mirror output signal is or Among them, the symbol Indicates rounding up, Indicates rounding down.
  • the values of Xstd′ and Ystd′ include at least one of the following: Xstd′ and Ystd′ corresponding to quadrature phase shift keying QPSK are ⁇ 1, ⁇ 1 ⁇ ; and Xstd corresponding to 16 orthogonal amplitude modulation ', Ystd' takes the value ⁇ 1, -1, 3, -3 ⁇ ; 64's orthogonal amplitude modulation corresponds to Xstd' and Ystd', which are ⁇ 1, -1, 3, -3, 5, -5. 7,-7 ⁇ .
  • a receiver comprising the apparatus of any of the above.
  • the data to be transmitted is divided into two parts, wherein each of the transmission blocks TB1 and TB2 is respectively generated according to a corresponding predetermined code modulation mode; and the transmission block TB1 is modulated into a complex symbol sequence S1 having a certain power, And modulating the transport block TB2 into a complex symbol sequence S2 having a certain power; superimposing the S1 and the S2 to generate a complex symbol sequence S3 corresponding to a new transport block, the complex symbol corresponding to the new transport block
  • the sequence S3 has a Gray attribute; the new transmission block is sent to the receiver, and the related art has the problem that the two TBs are directly added and the final combined constellation points have no Gray mapping attribute, thereby improving the spectral efficiency.
  • the superimposed symbol constellation points have a Gray attribute, which improves the SIC demodulation performance, and can allocate different power effects for different data streams.
  • FIG. 1 is a schematic diagram of a superposition of a QPSK symbol and a 16QAM symbol directly added according to the related art
  • FIG. 2 is a flowchart of a method 1 for transmitting data of a dual transport block according to an embodiment of the present invention
  • FIG. 3 is a flowchart of a second method for data reception of a dual transport block according to an embodiment of the present invention
  • FIG. 4 is a structural block diagram of a data transmitting apparatus 1 of a dual transport block according to an embodiment of the present invention
  • FIG. 5 is a block diagram showing a preferred structure of a data transmitting apparatus 1 of a dual transport block according to an embodiment of the present invention
  • FIG. 6 is a block diagram showing a preferred structure of a generating module 46 in a data transmitting apparatus 1 of a dual transport block according to an embodiment of the present invention
  • FIG. 7 is a structural block diagram of a transmitter according to an embodiment of the present invention.
  • FIG. 8 is a structural block diagram of a data receiving apparatus 2 of a dual transport block according to an embodiment of the present invention.
  • FIG. 9 is a block diagram showing a preferred structure of a parsing module 84 in a data receiving apparatus 2 of a dual transport block according to an embodiment of the present invention.
  • FIG. 10 is a structural block diagram of a receiver according to an embodiment of the present invention.
  • FIG. 11 is an abstract schematic diagram of wireless uplink transmission in accordance with a preferred embodiment of the present invention.
  • FIG. 12 is a schematic diagram of two sets of information according to a preferred embodiment of the present invention, which are image-superimposed according to QPSK modulation and 16QAM modulation (invariant after mirroring);
  • FIG. 13 is a schematic diagram of image superimposition (horizontal mirroring) of two sets of information according to a preferred embodiment of the present invention by QPSK modulation and 16QAM modulation;
  • FIG. 14 is a schematic diagram of two sets of information according to a preferred embodiment 2 of the present invention, which are image-superimposed (invariant after mirroring) by QPSK modulation and 16QAM modulation, respectively;
  • 15 is a schematic diagram of image superimposition (horizontal mirroring) of two sets of information according to a preferred embodiment 2 of the present invention according to QPSK modulation and 16QAM modulation;
  • 16 is an abstract schematic diagram of wireless downlink transmission in accordance with a preferred embodiment 3 of the present invention.
  • 17 is a schematic diagram of two sets of information according to a preferred implementation of the third embodiment of the present invention after 16QAM modulation and 64QAM modulation, respectively;
  • Figure 18 is a schematic illustration of two sets of information in accordance with a preferred embodiment 3 of the present invention, mirrored superimposed (horizontal mirrored) after 16QAM modulation and 64QAM modulation, respectively.
  • FIG. 2 is a flowchart of a data transmission method 1 of a dual transport block according to an embodiment of the present invention. As shown in FIG. 2, the process includes the following steps:
  • Step S202 the data to be sent is divided into two, wherein each of the transmission blocks TB1 and TB2 are respectively generated according to a corresponding predetermined code modulation mode;
  • Step S204 modulating the transport block TB1 into a complex symbol sequence S1 having a certain power, and modulating the transport block TB2 into a complex symbol sequence S2 having a certain power;
  • Step S206 superimposing S1 and S2 to generate a complex symbol sequence S3 corresponding to the new transport block, and the complex symbol sequence S3 corresponding to the new transport block has a Gray Gray attribute;
  • Step S208 transmitting a new transport block to the receiver.
  • the two transport blocks are superimposed, so that the superposed complex symbol sequence has the Gray Gray attribute, and the related art has the problem that the two TBs are directly added and the final combined constellation points have no Gray mapping attribute. Furthermore, the spectral efficiency is improved, the superimposed symbol constellation points have a Gray attribute, the SIC demodulation performance is improved, and different power effects can be allocated for different data streams.
  • the power adjustment factor corresponding to the two transport blocks TB1 and TB2 may also be used. Adjusting the complex symbol sequence S3 corresponding to the new transport block, where more than the
  • the S1 and S2 are superimposed to generate a new symbol block corresponding to the complex symbol sequence S3 in various ways, as exemplified below.
  • the complex symbol sequence S1 having a certain power after TB1 modulation is The complex symbol sequence S2 with a certain power after TB2 modulation is In the case where the unnormalized integer lattice constellation symbol S std corresponding to S1 is Xstd+Ystd ⁇ i, the complex symbol sequence S3 generated by superimposing S1 and S2 is Among them, the symbol Indicates rounding up, The power adjustment factor corresponding to TB1 and TB2.
  • a complex symbol sequence S1 having a certain power after TB1 modulation is The complex symbol sequence S2 with a certain power after TB2 modulation is In the case where the unnormalized integer lattice constellation symbol S std corresponding to S1 is Xstd+Ystd ⁇ i, then S1 and S2 are superimposed to generate a complex symbol sequence S3. Among them, the symbol Indicates rounding down, The power adjustment factor corresponding to TB1 and TB2.
  • S1 and S2 may be superimposed to generate a complex symbol sequence S3 corresponding to a new transport block: S2 is mirrored to obtain a symbol S; and S1 and S are superimposed to generate a new transport block corresponding to S3.
  • the symbol S can be obtained by mirroring S2 in the following manner: determining the symbol of the real part of S according to the value of the real part of S1, determining the symbol of the imaginary part according to the value of the imaginary part of S1, and the symbol of the complex symbol sequence S2.
  • S is expressed as or
  • the unnormalized integer lattice constellation symbol S std corresponding to S1 is Xstd+Ystd ⁇ i, and the power of the symbol S is the same as the power of S2.
  • the complex symbol sequence S1 is obtained by multiplying a power-normalized modulation symbol sequence modulated by TB1 through a power normalized constellation diagram by a power adjustment factor; the complex symbol sequence S2 Multiplying the power-normalized modulation symbol sequence of TB2 by power normalized constellation modulation by a power adjustment factor.
  • Xstd and Ystd may be different according to the modulation mode.
  • Xstd and Ystd corresponding to the quadrature phase shift keying QPSK are ⁇ 1,-1 ⁇
  • 16 orthogonal amplitude modulation 16QAM corresponding to Xstd, Ystd value is ⁇ 1,-1,3,-3 ⁇
  • 64 orthogonal amplitude modulation 64QAM corresponding Xstd, Ystd value is ⁇ 1,- 1,3,-3,5,-5,7,-7 ⁇ .
  • FIG. 3 is a flowchart of a data receiving method 2 of a dual transport block according to an embodiment of the present invention. As shown in FIG. 3, the process includes the following steps:
  • Step S302 receiving a transmission signal from a transmitter, where the transmission signal is a new transmission block generated by superimposing each corresponding transmission block TB1 and TB2 after dividing the data to be transmitted into two on the transmitter, and transmitting the block.
  • TB1 is modulated into a complex symbol sequence S1 having a certain power
  • the transport block TB2 is modulated into a complex symbol sequence S2 having a certain power
  • S1 and S2 are superimposed to generate a complex symbol sequence S3 corresponding to the new transport block
  • the new transport block corresponds to
  • the complex symbol sequence S3 has a Gray Gray property
  • step S304 two transport blocks are parsed by the serial interference cancellation method.
  • the serial interference cancellation method can be used to resolve two transmission blocks.
  • the information of TB1 can be solved by using TB2 information interference. After the information of TB1 is removed by the SIC method, the information of TB2 is decoded by the image.
  • the information of the TB1 is intercepted by the TB2 information, and the information of the TB1 is removed by using the SIC method.
  • the information of the mirror output TB2 includes: the information of the TB1 is demodulated to be x1'+y1' ⁇ i, and the information of the TB1 is removed.
  • the information is x2'+ ⁇ y2' ⁇ i, and the unnormalized integer lattice constellation symbol S std ' corresponding to TB1 is Xstd'+Ystd' ⁇ i, then the mirror output signal is or Among them, the symbol Indicates rounding up, Indicates rounding down.
  • the values of Xstd' and Ystd' include at least one of the following: Xstd', Ystd' corresponding to quadrature phase shift keying QPSK may be ⁇ 1, -1 ⁇ ; Xstd' corresponding to 16 orthogonal amplitude modulation The value of Ystd' can be ⁇ 1, -1, 3, -3 ⁇ ; the value of Xstd' and Ystd' corresponding to 64 quadrature amplitude modulation can be ⁇ 1, -1, 3, -3, 5, -5. , 7, 7, ⁇ .
  • a dual-transport block data transmitting device is also provided, which is used to implement the above-mentioned embodiments and preferred embodiments, and has not been described again.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 4 is a structural block diagram of a data transmitting apparatus 1 of a dual transport block according to an embodiment of the present invention. As shown in FIG. 4, the apparatus includes a dividing module 42, a modulating module 44, a generating module 46, and a transmitting module 48. The device is described.
  • the dividing module 42 is configured to divide the data to be sent into two parts, wherein each part generates the transport blocks TB1 and TB2 respectively according to a corresponding predetermined code modulation mode;
  • the modulation module 44 is connected to the dividing module 42 and is configured to transmit the block TB1 Modulated into a complex symbol sequence S1 having a certain power, and modulating the transport block TB2 into a complex symbol sequence S2 having a certain power;
  • a generating module 46 coupled to the above-described modulation module 44, arranged to superimpose S1 and S2 to generate a new transmission
  • the complex symbol sequence S3 corresponding to the block, the complex symbol sequence S3 corresponding to the new transport block has a Gray Gray attribute, and the transmitting module 48 is coupled to the generating module 46 and configured to transmit a new transport block to the receiver.
  • FIG. 5 is a block diagram of a preferred structure of a data transmission apparatus 1 of a dual transport block according to an embodiment of the present invention. As shown in FIG. 5, the apparatus includes an adjustment module 52 in addition to all the modules shown in FIG. The adjustment module 52 will be described.
  • the adjusting module 52 is set to be based on the power adjustment factors corresponding to the two transport blocks TB1 and TB2 Adjusting the complex symbol sequence S3 corresponding to the new transport block, where more than the
  • the generating module 46 is further configured to: S1 and S2 are superimposed to generate a complex symbol sequence S3 corresponding to a new transport block: a complex symbol sequence S1 having a certain power after TB1 modulation is The complex symbol sequence S2 with a certain power after TB2 modulation is In the case where the unnormalized integer lattice constellation symbol S std corresponding to S1 is Xstd+Ystd ⁇ i, the complex symbol sequence S3 generated by superimposing S1 and S2 is Among them, the symbol Indicates rounding up, The power adjustment factor corresponding to TB1 and TB2.
  • the generating module 46 is further configured to: S1 and S2 are superimposed to generate a complex symbol sequence S3 corresponding to a new transport block, where the complex symbol sequence S1 having a certain power after TB1 modulation is The complex symbol sequence S2 with a certain power after TB2 modulation is In the case where the unnormalized integer lattice constellation symbol S std corresponding to S1 is Xstd+Ystd ⁇ i, then S1 and S2 are superimposed to generate a complex symbol sequence S3. Among them, the symbol Indicates rounding down, The power adjustment factor corresponding to TB1 and TB2.
  • FIG. 6 is a block diagram showing a preferred structure of a generating module 46 in a data transmitting apparatus 1 of a dual transport block according to an embodiment of the present invention.
  • the generating module 46 includes a obtaining unit 62 and a generating unit 64. Module 46 is described.
  • the obtaining unit 62 is arranged to mirror the S2 to obtain the symbol S; the generating unit 64 is connected to the obtaining unit 62, and is arranged to superimpose S1 and S to generate S3 corresponding to the new transport block.
  • the obtaining unit 62 is further configured to obtain the symbol S by mirroring the S2 by: determining the symbol of the real part of the S according to the value of the real part of the S1, and determining the symbol of the imaginary part according to the value of the imaginary part of the S1, the plural
  • the symbol S after the symbol sequence S2 is mirrored is represented as or
  • the unnormalized integer lattice constellation symbol S std corresponding to S1 is Xstd+Ystd ⁇ i, and the power of the symbol S is the same as the power of S2.
  • the complex symbol sequence S1 may be obtained by multiplying a power-normalized modulation symbol sequence modulated by TB1 by a power normalized constellation by a power adjustment factor; and the complex symbol sequence S2 may be used to restore TB2 to power.
  • a power-normalized modulation symbol sequence modulated by a constellation is obtained by multiplying a power adjustment factor.
  • the values of Xstd and Ystd are different according to different modulation modes.
  • Xstd and Ystd corresponding to the quadrature phase shift keying QPSK may be ⁇ 1, -1 ⁇
  • the values of Xstd and Ystd corresponding to the quadrature amplitude modulation 16QAM may be ⁇ 1, -1, 3, -3 ⁇
  • the values of Xstd and Ystd corresponding to 64 quadrature amplitude modulation 64QAM may be ⁇ 1, -1, 3, - 3, 5, -5, 7, -7 ⁇ .
  • FIG. 7 is a block diagram showing the structure of a transmitter according to an embodiment of the present invention. As shown in FIG. 7, the transmitter 70 includes the data transmitting apparatus 72 of the dual transport block of any of the above.
  • FIG. 8 is a structural block diagram of a data receiving apparatus 2 of a dual transport block according to an embodiment of the present invention. As shown in FIG. 8, the apparatus includes a receiving module 82 and a parsing module 84, which will be described below.
  • the receiving module 82 is configured to receive a transmit signal from the transmitter, where the transmit signal is a new transport block generated by superimposing each corresponding transport block TB1 and TB2 after dividing the data to be transmitted into two on the transmitter.
  • the transport block TB1 is modulated into a complex symbol sequence S1 having a certain power
  • the transport block TB2 is modulated into a complex symbol sequence S2 having a certain power
  • S1 and S2 are superimposed to generate a complex symbol sequence S3 corresponding to the new transport block
  • new The complex symbol sequence S3 corresponding to the transport block has a Gray Gray attribute
  • the parsing module 84 is coupled to the receiving module 82 and configured to parse the two transport blocks using a serial interference cancellation method.
  • FIG. 9 is a block diagram showing a preferred structure of the parsing module 84 in the data receiving apparatus 2 of the dual transport block according to the embodiment of the present invention.
  • the parsing module 84 includes: an parsing unit 92. Unit 92 is described.
  • the analyzing unit 92 is configured to interfere with the information of the TB1 with the TB2 information, and remove the information of the TB1 by the SIC method, and then image the information of the TB2.
  • the parsing unit 92 is further configured to interfere with the information of the TB1 by using the TB2 information to interfere with the information of the TB1 by using the SIC method, and then output the information of the TB2 by the mirror: the information of the TB1 is demodulated.
  • the information after removing the information of TB1 is x2'+ ⁇ y2' ⁇ i
  • the unnormalized integer lattice constellation symbol S std ' corresponding to TB1 is Xstd'+Ystd' ⁇ i
  • the mirror output signal is or Among them, the symbol Indicates rounding up, Indicates rounding down.
  • the values of Xstd' and Ystd' include at least one of the following: Xstd', Ystd' corresponding to the quadrature phase shift keying QPSK may be ⁇ 1, -1 ⁇ ; 16 orthogonal amplitude modulation corresponding The values of Xstd' and Ystd' may be ⁇ 1, -1, 3, -3 ⁇ ; the values of Xstd' and Ystd' corresponding to 64 orthogonal amplitude modulation may be ⁇ 1, -1, 3, -3, 5, -5,7,-7 ⁇ .
  • FIG. 10 is a block diagram showing the structure of a receiver according to an embodiment of the present invention. As shown in FIG. 10, the receiver 100 includes the data receiving apparatus 2 102 of the dual transport block of any of the above.
  • a data transmission scheme based on a dual transport block is provided, which is applicable to a terminal UE transmitting information to a base station or a base station transmitting information to a terminal UE.
  • the two TB blocks are not directly superimposed, but are superimposed by mirror superposition. The purpose is to improve spectral efficiency in data transmission.
  • the SIC demodulation performance is improved, and different powers can be allocated to different data streams in a simple and flexible manner. The scheme will be described below.
  • a data transmission method based on dual transport blocks comprising: one end of communication divides information bits into two parts, each generates a transport block according to a certain coding modulation mode (MCS), and then superimposes two transport blocks together to form a new one.
  • MCS coding modulation mode
  • the overlay method can be processed as follows:
  • the dual TB (TB1, TB2) is modulated into a complex symbol sequence S1 and S2 having a certain power to generate a complex symbol sequence S3, S3 related to S1 and S2, and having a Gray attribute;
  • the transmitter forms a transmitted signal of the complex symbol sequence generated by the superposition and sends it to the receiver.
  • the complex symbol sequence S1 with a certain power after TB1 modulation is The complex symbol sequence S2 with a certain power after TB2 modulation is The unnormalized integer lattice constellation symbol S std corresponding to S1 is Xstd+Ystd ⁇ i, and then S1 and S2 are superimposed to generate a complex symbol sequence S3. among them, Power adjustment factor, symbol Indicates rounding up.
  • the unnormalized integer lattice constellation symbol S std is Xstd+Ystd ⁇ i, and the values of Xstd and Ystd corresponding to QPSK may be ⁇ 1, -1 ⁇ ; the values of Xstd and Ystd corresponding to 16QAM may be ⁇ 1 , -1, 3, -3 ⁇ ; the values of Xstd and Ystd corresponding to 64QAM may be ⁇ 1, -1, 3, -3, 5, -5, 7, -7 ⁇ .
  • the complex symbol sequence S1 with a certain power after TB1 modulation is The complex symbol sequence S2 with a certain power after TB2 modulation is The unnormalized integer lattice constellation symbol S std corresponding to S1 is Xstd+Ystd ⁇ i, and then S1 and S2 are superimposed to generate a complex symbol sequence S3. among them, Power adjustment factor, symbol Indicates rounding down.
  • the unnormalized integer lattice constellation symbol S std is Xstd+Ystd ⁇ i, and the values of Xstd and Ystd corresponding to QPSK may be ⁇ 1, -1 ⁇ ; the values of Xstd and Ystd corresponding to 16QAM may be ⁇ 1,- 1,3,-3 ⁇ ;
  • the value of Xstd and Ystd corresponding to 64QAM can be ⁇ 1, -1, 3, -3, 5, -5, 7, -7 ⁇ .
  • the complex symbol sequences S1 and S2 are superimposed, and the complex symbol sequence S1 and the complex symbol sequence S2 mirrored symbol S may be directly superimposed, and the directly superposed complex symbol sequence S3 may be represented as (S1+S).
  • the complex symbol sequence S2 is mirrored before being superimposed with S1, the sign of the real part of S is determined according to the value of the real part of S1, and the sign of the imaginary part is determined according to the value of the imaginary part of S1.
  • the symbol S after mirroring the complex symbol sequence S2 can be expressed as or Among them, the power of the symbol S is the same as the power of S2.
  • the complex symbol sequence S1 is obtained by multiplying TB1 by a power normalized constellation-modulated power-normalized modulation symbol sequence by a power adjustment factor.
  • the complex symbol sequence S2 is obtained by multiplying TB2 by a power normalized constellation-modulated power-normalized modulation symbol sequence by a power adjustment factor.
  • the complex symbol sequence S1 with a certain power after TB1 modulation is The complex symbol sequence S2 with a certain power after C2 modulation is The power adjustment factor of S1 is The power adjustment factor of S2 is more than the when less than or equal to At the time, the symbol sequence S2 is not mirrored.
  • the symbols after S1 and S2 are directly superimposed to obtain S3.
  • the constellation points of S3 have the Gray attribute, and the superimposed symbol constellation can have the Gray attribute by other methods.
  • the transmitter forms a sequence of complex symbols generated by the superposition to form a transmission signal, and transmits the signal to the base station.
  • a data transmission demodulation method based on a dual transport block including: the base station extracts information of TB1 and information of TB2.
  • the information of TB1 is solved by the interference of the TB2 information, and the information of TB2 is mirrored after the SIC, and the mirrored output information is related to the TB1 information and the information after the SIC.
  • the information of TB1 and the information of TB2 are superimposed and transmitted to the base station together, and the base station solves the information of TB1 with the interference of TB2 information.
  • the SIC removes the information of TB1
  • the information of TB2 is mirrored and output.
  • the base station demodulates the TB1 information as x1'+y1' ⁇ i, and the signal after removing the TB1 information is x2'+ ⁇ y2' ⁇ i, demodulating the unnormalized integer lattice constellation symbol S std ' corresponding to TB1.
  • the image output signal is or Among them, the symbol Indicates rounding up, Indicates rounding down.
  • the unnormalized integer lattice constellation symbol S std ' is Xstd'+Ystd' ⁇ i, and the values of Xstd' and Ystd' corresponding to QPSK may be ⁇ 1, -1 ⁇ ; for example, Xstd', Ystd' corresponding to 16QAM The value may be ⁇ 1, -1, 3, -3 ⁇ ; the value of Xstd' and Ystd' corresponding to 64QAM may be ⁇ 1, -1, 3, -3, 5, -5, 7, -7 ⁇ .
  • the two TB blocks are not directly superimposed, but are superposed by mirror superposition.
  • the UE mirrors the constellation of TB2 and then superimposes it with TB1.
  • the base station extracts the information of TB1 with the interference of TB2 information, and mirrors the information of TB2 after SIC.
  • the spectrum efficiency is improved.
  • the superimposed symbol constellation points have a Gray attribute, which improves the SIC demodulation performance, and can realize different power distribution of different data streams in a simple and flexible manner.
  • FIG. 11 is an abstract schematic diagram of wireless uplink transmission according to a preferred embodiment of the present invention. As shown in FIG. 11, the dual transport block based data transmission method can be applied to a wireless uplink transmission scenario, and the UE will use dual TB information. (TB1, TB2) are transmitted to the base station.
  • TB1, TB2 are transmitted to the base station.
  • the dual TB (TB1, TB2) is modulated into a complex symbol sequence S1 and S2 with a certain power to generate a complex symbol sequence S3, S3 related to S1 and S2, and having a Gray attribute.
  • the UE divides the information bits to be transmitted into two, each of which generates a transport block according to a certain coding modulation scheme (MCS), or separately generates a complex symbol sequence S1 having a certain power and a complex symbol sequence S2 having a certain power.
  • MCS coding modulation scheme
  • the complex symbol sequence S1 is obtained by multiplying a power-normalized modulation symbol sequence by a power adjustment factor
  • the complex symbol sequence S2 is obtained by multiplying a power-normalized modulation symbol sequence by a power adjustment factor.
  • the power adjustment factor of S1 is The power adjustment factor of S2 is more than the Then the complex symbol sequence S1 is Complex symbol sequence S2 is The unnormalized integer lattice constellation symbol S std corresponding to S1 is Xstd+Ystd ⁇ i.
  • the unnormalized integer lattice constellation symbol S std is Xstd+Ystd ⁇ i, and the value of Xstd and Ystd corresponding to QPSK may be ⁇ 1, -1 ⁇ ; for example, the value of Xstd and Ystd corresponding to 16QAM may be ⁇ 1, -1,3,-3 ⁇ ; The values of Xstd and Ystd corresponding to 64QAM may be ⁇ 1, -1, 3, -3, 5, -5, 7, -7 ⁇ .
  • the symbol sequence S3 can be expressed as (S1+S) or as Among them, the symbol Indicates rounding up.
  • the newly transmitted block after the superposition coding has a Gray attribute
  • the superimposed symbol constellation has a Gray attribute by other methods.
  • the sign of the real part of S is determined based on the value of the real part of S1
  • the sign of the imaginary part is determined based on the value of the imaginary part of S1.
  • the symbol S after mirroring the complex symbol sequence S2 is expressed as The power of the symbol S is the same as the power of the S2.
  • FIG. 13 is a schematic diagram of image superimposition (horizontal mirroring) of two sets of information according to QPSK modulation and 16QAM modulation according to a preferred embodiment of the present invention.
  • the second step is superimposed, and the symbol S1 and the mirrored symbol S are directly superimposed to obtain the superimposed symbol S3.
  • the superimposed transport block forms a transmit signal, that is, the UE forms the superposed symbol to form a transmit signal, and transmits the superposed transport block to the base station.
  • the base station solves the information of TB1 and the information of TB2.
  • the information of TB1 is solved by the interference of the TB2 information, and the information of TB2 is mirrored after the SIC, and the mirrored output information is related to the TB1 information and the information after the SIC.
  • the superimposed symbol S3 is a high-order (64QAM) Gray map, and it is more important to note that after the two TB blocks are superimposed, even if the symbol S1 is misjudged at the receiver due to noise, Demodulating the symbol S2 and then mirroring still correctly demodulate the symbol S2, so the SIC performance is significantly improved, so it is a valuable practical technique to determine the new dual transport block image superposition transmission method.
  • the dual TB (TB1, TB2) is modulated into a complex symbol sequence S1 and S2 with a certain power to generate a complex symbol sequence S3, S3 related to S1 and S2, and having a Gray attribute.
  • the UE divides the information bits to be transmitted into two, each of which generates a transport block according to a certain coding modulation scheme (MCS), or separately generates a complex symbol sequence S1 having a certain power and a complex symbol sequence S2 having a certain power.
  • MCS coding modulation scheme
  • the complex symbol sequence S1 is obtained by multiplying a power-normalized modulation symbol sequence by a power adjustment factor
  • the complex symbol sequence S2 is obtained by multiplying a power-normalized modulation symbol sequence by a power adjustment factor.
  • the power adjustment factor of S1 is The power adjustment factor of S2 is more than the Then the complex symbol sequence S1 is Complex symbol sequence S2 is The unnormalized integer lattice constellation symbol S std corresponding to S1 is Xstd+Ystd ⁇ i.
  • the unnormalized integer lattice constellation symbol S std is Xstd+Ystd ⁇ i, and the value of Xstd and Ystd corresponding to QPSK may be ⁇ 1, -1 ⁇ ; for example, the value of Xstd and Ystd corresponding to 16QAM may be ⁇ 1, -1,3,-3 ⁇ ; The values of Xstd and Ystd corresponding to 64QAM may be ⁇ 1, -1, 3, -3, 5, -5, 7, -7 ⁇ .
  • the symbol sequence S3 can be expressed as (S1+S) or as symbol Indicates rounding down.
  • the newly transmitted block after the superposition coding has a Gray attribute
  • the superimposed symbol constellation has a Gray attribute by other methods.
  • the symbol of the real part of S is determined according to the value of the real part of S1
  • the sign of the imaginary part is determined according to the value of the imaginary part of S1.
  • the symbol S after mirroring the complex symbol sequence S2 is expressed as Among them, the power of the symbol S is the same as the power of S2.
  • step 1 is mirrored, if the S1 constellation point is '10.
  • the second step is superimposed, and the symbol S1 and the mirrored symbol S are directly superimposed to obtain the superimposed symbol S3.
  • the superimposed transport block forms a transmit signal, that is, the UE forms the superposed symbol to form a transmit signal, and transmits the superposed transport block to the base station.
  • the base station solves the information of TB1 and the information of TB2.
  • the information of TB1 is solved by the interference of the TB2 information, and the information of TB2 is mirrored after the SIC, and the mirrored output information is related to the TB1 information and the information after the SIC.
  • the superimposed symbol S3 is a high-order (64QAM) Gray map, and it is more important to note that after the two TB blocks are superimposed, even if the symbol S1 is misjudged at the receiver due to noise, Demodulating the symbol S2 and then mirroring still correctly demodulate the symbol S2, so the SIC performance is significantly improved, so it is a valuable practical technique to determine the new dual transport block image superposition transmission method.
  • 16 is an abstract schematic diagram of a wireless downlink transmission according to a preferred embodiment 3 of the present invention. As shown in FIG. 16, the method can be applied to a wireless downlink transmission scenario, and the base station transmits dual TB information (TB1, TB2) to UE.
  • dual TB information TB1, TB2
  • the dual TB (TB1, TB2) is modulated into a complex symbol sequence S1 and S2 having a certain power to generate a complex symbol sequence S3, S3 related to S1 and S2, and having a Gray attribute. .
  • the UE divides the information bits to be transmitted into two, each of which generates a transport block according to a certain coding modulation scheme (MCS), or separately generates a complex symbol sequence S1 having a certain power and a complex symbol sequence S2 having a certain power.
  • MCS coding modulation scheme
  • the complex symbol sequence S1 is obtained by multiplying a power-normalized modulation symbol sequence by a power adjustment factor
  • the complex symbol sequence S2 is obtained by multiplying a power-normalized modulation symbol sequence by a power adjustment factor.
  • the power adjustment factor of S1 is The power adjustment factor of S2 is more than the Then the complex symbol sequence S1 is Complex symbol sequence S2 is The unnormalized integer lattice constellation symbol S std corresponding to S1 is Xstd+Ystd ⁇ i.
  • the unnormalized integer lattice constellation symbol S std is Xstd+Ystd ⁇ i, and the value of Xstd and Ystd corresponding to QPSK may be ⁇ 1, -1 ⁇ ; for example, the value of Xstd and Ystd corresponding to 16QAM may be ⁇ 1, -1,3,-3 ⁇ ; The values of Xstd and Ystd corresponding to 64QAM may be ⁇ 1, -1, 3, -3, 5, -5, 7, -7 ⁇ .
  • the two transport blocks are superimposed to form a new transport block, that is, the above complex symbol sequence S1 and S2 are mirror superimposed, and the symbol S of the complex symbol sequence S1 and the complex symbol sequence S2 is directly superimposed, directly superimposed.
  • the complex symbol sequence S3 can be expressed as (S1+S) or as symbol Indicates rounding up.
  • the newly transmitted block after the superposition coding has a Gray attribute
  • the superimposed symbol constellation has a Gray attribute by other methods.
  • the symbol of the real part of S is determined according to the value of the real part of S1
  • the sign of the imaginary part is determined according to the value of the imaginary part of S1.
  • the symbol S after mirroring the complex symbol sequence S2 is expressed as The power of the symbol S is the same as the power of the S2.
  • one set of information is 16QAM modulated by standard, and the other set of information is 64QAM modulated by standard.
  • FIG. 18 is a schematic diagram of image superimposition (horizontal mirroring) of two sets of information according to preferred implementation three of the present invention according to 16QAM modulation and 64QAM modulation, as shown in FIG. 18, and step 1 is mirrored, if the S1 constellation point is '0001'.
  • S is Equivalent to the horizontal image of S2.
  • the superimposed transport block forms a transmit signal, that is, the UE forms the superposed symbol to form a transmit signal, and transmits the superposed transport block to the base station.
  • the base station solves the information of TB1 and the information of TB2.
  • the information of TB1 is solved by the interference of the TB2 information, and the information of TB2 is mirrored after the SIC, and the mirrored output information is related to the TB1 information and the information after the SIC.
  • the superimposed symbol S3 is a high-order (1024QAM) Gray map, and it is more important to note that after the two TB blocks are superimposed, even if the symbol S1 is misjudged at the receiver due to noise, Demodulating the symbol S2 and then mirroring still correctly demodulate the symbol S2, so the SIC performance is significantly improved, so it is a valuable practical technique to determine the new dual transport block image superposition transmission method.
  • modules or steps of the embodiments of the present invention can be implemented by a general computing device, which can be concentrated on a single computing device or distributed in multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from The steps shown or described are performed sequentially, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated into a single integrated circuit module. Thus, the invention is not limited to any specific combination of hardware and software.
  • the problem that the two TBs are directly added and the final combined constellation points have no Gray mapping attribute is solved, thereby improving the spectral efficiency and superimposing the superimposed
  • the symbol constellation points have a Gray attribute, which improves the SIC demodulation performance and can distribute different power effects for different data streams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本发明公开了一种双传输块的数据发送、接收方法、装置、发射机及接收机,其中,该方法包括:将待发送数据分成两份,其中,每份按对应的预定编码调制方式分别生成传输块TB1和TB2;将传输块TB1调制成具有一定功率的复数符号序列S1,以及将传输块TB2调制成具有一定功率的复数符号序列S2;将S1和S2进行叠加生成新的传输块对应的复数符号序列S3,新的传输块对应的复数符号序列S3具有Gray属性;向接收机发送新的传输块。本发明提高了频谱效率,使叠加后的符号星座点具有Gray属性,提高了SIC解调性能,而且可以为不同的数据流分配不同的功率的效果。

Description

双传输块的数据发送、接收方法、装置、发射机及接收机 技术领域
本发明涉及通信领域,具体而言,涉及一种双传输块的数据发送、接收方法、装置、发射机及接收机。
背景技术
基站和UE的通信,根据基站和UE之间的信道情况,一次可以传输一个可以匹配信道的,具有一定编码调制方式(Modulation Coding Scheme,简称为MCS)、即一定频谱效率的传输块。因此一个蜂窝通信标准都会明确规定一套编码调制方式来匹配不同的无线信道。在实际通信中,可能实际的信道质量很好,如UE处于小区中心,这时的信道质量比标准中最高MCS所需的还要高。在现有MCS标准下,当UE在小区内SNR条件很好,或发送功率有冗余时,可能因无法选择更高的调制方式或充分利用发送功率而使频谱效率受限。若UE或基站可以同时发送多个传输块(Transport Block,简称为TB)给对方,如将两个TB叠加,给第一个TB足够的传输功率,给额外的TB分配冗余功率,接收方用串行干扰消除(successive Interference Cancellation,简称为SIC)技术分离两个TB块,这样就能在不修改MCS标准定义的前提下,进一步提高频谱效率。
两个TB块在相同的时频资源上传输,解调时两个TB块是相互干扰的。在相关技术中,提供了有两种解调方法:第一种是每个TB都带着其他TB的干扰解调,这样实现较简单,但性能是有损的。第二种是使用SIC技术。下面以两个TB的干扰消除过程为例简单说明,多个TB的干扰消除过程很容易由此推广:先解调译码出TB1的信息(带着TB2的干扰来解TB1信息)。然后解调TB2信息时,需要先把之前解调译码出来的TB1信息(可能需要重构)减去,再解TB2信息。这样TB2信息因为可以没有干扰,所以性能可以有较大提升。因此双TB块传输通常会使用SIC技术接收。
两个TB直接相加后传输,这样直接相加的叠加方式由于最终组合出的星座点没有Gray映射(映射的相邻星座点仅有1个比特不同,这样调制的性能最优)的属性,图1是相关技术中,QPSK符号和16QAM符号直接相加的方式叠加的示意图,如图1所示,接收端如果使用SIC接收,解调没有Gray映射属性的星座点更容易出错,而SIC接收会有误差传播,10%的BLER这种程度的误差传播就不能忽略。
因此,在相关技术中,存在两个TB直接相加最终组合出的星座点没有Gray映射属性的问题。
发明内容
本发明提供了一种双传输块的数据发送、接收方法、装置、发射机及接收机,以至少解决在相关技术中,存在两个TB直接相加最终组合出的星座点没有Gray映射属性的问题。
根据本发明的一个方面,提供了一种双传输块的数据发送方法,包括:将待发送数据分成两份,其中,每份按对应的预定编码调制方式分别生成传输块TB1和TB2;将所述传输块TB1调制成具有一定功率的复数符号序列S1,以及将所述传输块TB2调制成具有一定功率的复数符号序列S2;将所述S1和所述S2进行叠加生成新的传输块对应的复数符号序列S3,所述新的传输块对应的复数符号序列S3具有格雷Gray属性;向接收机发送所述新的传输块。
可选地,在向所述接收机发送所述新的传输块之前,还包括:根据两份传输块TB1、TB2对应的功率调整因子
Figure PCTCN2015083494-appb-000001
调整所述新的传输块对应的复数符号序列S3,其中,
Figure PCTCN2015083494-appb-000002
大于
Figure PCTCN2015083494-appb-000003
可选地,将所述S1和所述S2进行叠加生成新的传输块对应的复数符号序列S3包括:在所述TB1调制后具有一定功率的复数符号序列S1为
Figure PCTCN2015083494-appb-000004
所述TB2调制后具有一定功率的复数符号序列S2为
Figure PCTCN2015083494-appb-000005
S1对应的未归一化整数格点星座符号Sstd为Xstd+Ystd·i的情况下,所述S1和所述S2经过叠加后生成的复数符号序列S3为
Figure PCTCN2015083494-appb-000006
其中,符号
Figure PCTCN2015083494-appb-000007
表示向上取整,
Figure PCTCN2015083494-appb-000008
为所述TB1、TB2对应的功率调整因子。
可选地,将所述S1和所述S2进行叠加生成新的传输块对应的复数符号序列S3包括:在所述TB1调制后具有一定功率的复数符号序列S1为
Figure PCTCN2015083494-appb-000009
所述TB2调制后具有一定功率的复数符号序列S2为
Figure PCTCN2015083494-appb-000010
S1对应的未归一化整数格点星座符号Sstd为Xstd+Ystd·i的情况下,则所述S1和所述S2经过叠加后生成复数符号序列S3为
Figure PCTCN2015083494-appb-000011
其中,符号
Figure PCTCN2015083494-appb-000012
表示向下取整,
Figure PCTCN2015083494-appb-000013
为所述TB1、TB2对应的功率调整因子。
可选地,将所述S1和所述S2进行叠加生成新的传输块对应的复数符号序列S3包括:将所述S2镜像后得到符号S;将所述S1和所述S进行叠加生成所述新的传输块对应的所述S3。
可选地,通过以下方式将所述S2镜像后得到符号S:根据S1实部的值确定S实部的符号,根据S1虚部的值确定S虚部的符号,复数符号序列S2镜像后的符号S表示为
Figure PCTCN2015083494-appb-000014
或者
Figure PCTCN2015083494-appb-000015
其中,S1对应的未归一化整数格点星座符号Sstd为Xstd+Ystd·i,符号S的功率和S2的功率一样。
可选地,复数符号序列S1为将所述TB1经过功率归一化星座图调制后的功率归一的调制符号序列乘以一个功率调整因子所得;复数符号序列S2为将所述TB2经过功率归一化星座图调制后的功率归一的调制符号序列乘以一个功率调整因子所得。
可选地,Xstd、Ystd的取值包括以下至少之一:正交相移键控QPSK对应的Xstd、Ystd取值为{1,-1};16正交幅度调制16QAM对应的Xstd、Ystd取值为{1,-1,3,-3};64正交幅度调制64QAM对应的Xstd、Ystd取值为{1,-1,3,-3,5,-5,7,-7}。
根据本发明的另一方面,提供了一种双传输块的数据接收方法,包括:接收来自于发射机的发射信号,其中,所述发射信号为所述发射机上将待发送数据划分为两份后,将每份对应的传输块TB1和TB2进行叠加生成的新的传输块,所述传输块TB1被调制成具有一定功率的复数符号序列S1,以及所述传输块TB2调制成具有一定功率的复数符号序列S2,所述S1和所述S2进行叠加生成新的传输块对应的复数符号序列S3,所述新的传输块对应的复数符号序列S3具有格雷Gray属性;采用串行干扰消除方法解析出两个传输块。
可选地,采用串行干扰消除方法解析出两个传输块包括:带着TB2信息干扰解出TB1的信息,采用SIC方法除去TB1的信息后,镜像解出TB2的信息。
可选地,带着TB2信息干扰解出TB1的信息,采用SIC方法除去TB1的信息后,镜像输出TB2的信息包括:在解调出所述TB1的信息为x1’+y1’·i,除去所述TB1的信息后的信息为x2’+·y2’·i,所述TB1对应的未归一化整数格点星座符号Sstd’为Xstd’+Ystd’·i的情况下,则镜像输出信号为
Figure PCTCN2015083494-appb-000016
或者
Figure PCTCN2015083494-appb-000017
Figure PCTCN2015083494-appb-000018
其中,符号
Figure PCTCN2015083494-appb-000019
表示向上取整,
Figure PCTCN2015083494-appb-000020
表示向下取整。
可选地,Xstd’、Ystd’的取值包括以下至少之一:正交相移键控QPSK对应的Xstd’、Ystd’取值为{1,-1};16正交幅度调制对应的Xstd’、Ystd’取值为{1,-1,3,-3};64正交幅度调制对应的Xstd’、Ystd’取值为{1,-1,3,-3,5,-5,7,-7}。
根据本发明的一方面,提供了一种双传输块的数据发送装置,包括:划分模块,设置为将待发送数据分成两份,其中,每份按对应的预定编码调制方式分别生成传输块TB1和TB2;调制模块,设置为将所述传输块TB1调制成具有一定功率的复数符号序列S1,以及将所述传输块TB2调制成具有一定功率的复数符号序列S2;生成模块,设置为将所述S1和所述S2进行叠加生成新的传输块对应的复数符号序列S3,所述新的传输块对应的复数符号序列S3具有格雷Gray属性;发送模块,设置为向接收机发送所述新的传输块。
可选地,该装置还包括:调整模块,设置为根据两份传输块TB1、TB2对应的功率调整因子
Figure PCTCN2015083494-appb-000021
调整所述新的传输块对应的复数符号序列S3,其中,
Figure PCTCN2015083494-appb-000022
大于
Figure PCTCN2015083494-appb-000023
可选地,所述生成模块,还设置为通过以下方式将所述S1和所述S2进行叠加生成新的传输块对应的复数符号序列S3:在所述TB1调制后具有一定功率的复数符号序列S1为
Figure PCTCN2015083494-appb-000024
所述TB2调制后具有一定功率的复数符号序列S2为
Figure PCTCN2015083494-appb-000025
Figure PCTCN2015083494-appb-000026
S1对应的未归一化整数格点星座符号Sstd为Xstd+Ystd·i的情况下,所述S1和所述S2经过叠加后生成的复数符号序列S3为
Figure PCTCN2015083494-appb-000027
Figure PCTCN2015083494-appb-000028
其中,符号
Figure PCTCN2015083494-appb-000029
表示向上取整,
Figure PCTCN2015083494-appb-000030
为所述TB1、TB2对应的功率调整因子。
可选地,所述生成模块,还设置为通过以下方式将所述S1和所述S2进行叠加生成新的传输块对应的复数符号序列S3包括:在所述TB1调制后具有一定功率的复数符号序列S1为
Figure PCTCN2015083494-appb-000031
所述TB2调制后具有一定功率的复数符号序列S2为
Figure PCTCN2015083494-appb-000032
S1对应的未归一化整数格点星座符号Sstd为Xstd+Ystd·i的情况下,则所述S1和所述S2经过叠加后生成复数符号序列S3为
Figure PCTCN2015083494-appb-000033
Figure PCTCN2015083494-appb-000034
其中,符号
Figure PCTCN2015083494-appb-000035
表示向下取整,
Figure PCTCN2015083494-appb-000036
为所述TB1、TB2对应的功率调整因子。
可选地,所述生成模块包括:得到单元,设置为将所述S2镜像后得到符号S;生成单元,设置为将所述S1和所述S进行叠加生成所述新的传输块对应的所述S3。
可选地,所述得到单元,还设置为通过以下方式将所述S2镜像后得到符号S:根据S1实部的值确定S实部的符号,根据S1虚部的值确定S虚部的符号,复数符号序列S2镜像后的符号S表示为
Figure PCTCN2015083494-appb-000037
或者
Figure PCTCN2015083494-appb-000038
Figure PCTCN2015083494-appb-000039
其中,S1对应的未归一化整数格点星座符号Sstd为Xstd+Ystd·i,符号S的功率和S2的功率一样。
可选地,复数符号序列S1为将所述TB1经过功率归一化星座图调制后的功率归一的调制符号序列乘以一个功率调整因子所得;复数符号序列S2为将所述TB2经过功率归一化星座图调制后的功率归一的调制符号序列乘以一个功率调整因子所得。
可选地,Xstd、Ystd的取值包括以下至少之一:正交相移键控QPSK对应的Xstd、Ystd取值为{1,-1};16正交幅度调制16QAM对应的Xstd、Ystd取值为{1,-1,3,-3};64正交幅度调制64QAM对应的Xstd、Ystd取值为{1,-1,3,-3,5,-5,7,-7}。
根据本发明的还一方面,提供了一种发射机,包括上述任一项所述的装置。
根据本发明的一方面,提供了一种双传输块的数据接收装置,包括:接收模块,设置为接收来自于发射机的发射信号,其中,所述发射信号为所述发射机上将待发送数据划分为两份后,将每份对应的传输块TB1和TB2进行叠加生成的新的传输块,所述传输块TB1被调制成具有一定功率的复数符号序列S1,以及所述传输块TB2调制成具有一定功率的复数符号序列S2,所述S1和所述S2进行叠加生成新的传输块对应的复数符号序列S3,所述新的传输块对应的复数符号序列S3具有格雷Gray属性;解析模块,设置为采用串行干扰消除方法解析出两个传输块。
可选地,所述解析模块包括:解析单元,设置为带着TB2信息干扰解出TB1的信息,采用SIC方法除去TB1的信息后,镜像解出TB2的信息。
可选地,所述解析单元,还设置为通过以下方式,带着TB2信息干扰解出TB1的信息,采用SIC方法除去TB1的信息后,镜像输出TB2的信息:在解调出所述TB1的信息为x1’+y1’·i,除去所述TB1的信息后的信息为x2’+·y2’·i,所述TB1对应的未归一化整数格点星座符号Sstd’为Xstd’+Ystd’·i的情况下,则镜像输出信号为
Figure PCTCN2015083494-appb-000040
Figure PCTCN2015083494-appb-000041
或者
Figure PCTCN2015083494-appb-000042
其中,符号
Figure PCTCN2015083494-appb-000043
表示向上取整,
Figure PCTCN2015083494-appb-000044
表示向下取整。
可选地,Xstd’、Ystd’的取值包括以下至少之一:正交相移键控QPSK对应的Xstd’、Ystd’取值为{1,-1};16正交幅度调制对应的Xstd’、Ystd’取值为{1,-1,3,-3};64正交幅度调制对应的Xstd’、Ystd’取值为{1,-1,3,-3,5,-5,7,-7}。
根据本发明的还一方面,提供了一种接收机,包括上述任一项所述的装置。
通过本发明实施例,将待发送数据分成两份,其中,每份按对应的预定编码调制方式分别生成传输块TB1和TB2;将所述传输块TB1调制成具有一定功率的复数符号序列S1,以及将所述传输块TB2调制成具有一定功率的复数符号序列S2;将所述S1和所述S2进行叠加生成新的传输块对应的复数符号序列S3,所述新的传输块对应的复数符号序列S3具有Gray属性;向接收机发送所述新的传输块,解决了相关技术中,存在两个TB直接相加最终组合出的星座点没有Gray映射属性的问题,进而达到了提高频谱效率,使叠加后的符号星座点具有Gray属性,提高了SIC解调性能,而且可以为不同的数据流分配不同的功率的效果。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据是相关技术中,QPSK符号和16QAM符号直接相加的方式叠加的示意图;
图2是根据本发明实施例的双传输块的数据发送方法一的流程图;
图3是根据本发明实施例的双传输块的数据接收方法二的流程图;
图4是根据本发明实施例的双传输块的数据发送装置一的结构框图;
图5是根据本发明实施例的双传输块的数据发送装置一的优选结构框图;
图6是根据本发明实施例的双传输块的数据发送装置一中生成模块46的优选结构框图;
图7是根据本发明实施例的发射机的结构框图;
图8是根据本发明实施例的双传输块的数据接收装置二的结构框图;
图9是根据本发明实施例的双传输块的数据接收装置二中解析模块84的优选结构框图;
图10是根据本发明实施例的接收机的结构框图;
图11是根据本发明优选实施例一的无线上行链路传输的抽象示意图;
图12是根据本发明优选实施例一的两组信息分别按QPSK调制和16QAM调制后镜像叠加(镜像后不变)的示意图;
图13是根据本发明优选实施例一的两组信息分别按QPSK调制和16QAM调制后镜像叠加(水平镜像)的示意图;
图14是根据本发明优选实施例二的两组信息分别按QPSK调制和16QAM调制后镜像叠加(镜像后不变)的示意图;
图15是根据本发明优选实施例二的两组信息分别按QPSK调制和16QAM调制后镜像叠加(水平镜像)的示意图;
图16是根据本发明优选实施例三的无线下行链路传输的抽象示意图;
图17是根据本发明优选实施三的两组信息分别按16QAM调制和64QAM调制后镜像叠加(镜像后不变)的示意图;
图18是根据本发明优选实施三的两组信息分别按16QAM调制和64QAM调制后镜像叠加(水平镜像)的示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
在本实施例中提供了一种双传输块的数据发送方法,图2是根据本发明实施例的双传输块的数据发送方法一的流程图,如图2所示,该流程包括如下步骤:
步骤S202,将待发送数据分成两份,其中,每份按对应的预定编码调制方式分别生成传输块TB1和TB2;
步骤S204,将传输块TB1调制成具有一定功率的复数符号序列S1,以及将传输块TB2调制成具有一定功率的复数符号序列S2;
步骤S206,将S1和S2进行叠加生成新的传输块对应的复数符号序列S3,新的传输块对应的复数符号序列S3具有格雷Gray属性;
步骤S208,向接收机发送新的传输块。
通过上述步骤,将两份传输块进行叠加,使得叠加后的复数符号序列具有格雷Gray属性,解决了相关技术中,存在两个TB直接相加最终组合出的星座点没有Gray映射属性的问题,进而达到了提高频谱效率,使叠加后的符号星座点具有Gray属性,提高了SIC解调性能,而且可以为不同的数据流分配不同的功率的效果。
可选地,在向接收机发送新的传输块之前,还可以根据两份传输块TB1、TB2对应的功率调整因子
Figure PCTCN2015083494-appb-000045
调整新的传输块对应的复数符号序列S3,其中,
Figure PCTCN2015083494-appb-000046
大于
Figure PCTCN2015083494-appb-000047
将S1和S2进行叠加生成新的传输块对应的复数符号序列S3可以采用多种方式,下面举例说明。
例如,可以采用以下方式:在TB1调制后具有一定功率的复数符号序列S1为
Figure PCTCN2015083494-appb-000048
TB2调制后具有一定功率的复数符号序列S2为
Figure PCTCN2015083494-appb-000049
S1对应的未归一化整数格点星座符号Sstd为Xstd+Ystd·i的情况下,S1和S2经过叠加后生成的复数符号序列S3为
Figure PCTCN2015083494-appb-000050
其中,符号
Figure PCTCN2015083494-appb-000051
表示向上取整,
Figure PCTCN2015083494-appb-000052
为TB1、TB2对应的功率调整因子。
又例如,还可以采用以下方式:将S1和S2进行叠加生成新的传输块对应的复数符号序列S3:在TB1调制后具有一定功率的复数符号序列S1为
Figure PCTCN2015083494-appb-000053
TB2调制后具有一定功率的复数符号序列S2为
Figure PCTCN2015083494-appb-000054
S1对应的未归一化整数格点星座符号Sstd为Xstd+Ystd·i的情况下,则S1和S2经过叠加后生成复数符号序列S3为
Figure PCTCN2015083494-appb-000055
其中,符号
Figure PCTCN2015083494-appb-000056
表示向下取整,
Figure PCTCN2015083494-appb-000057
为TB1、TB2对应的功率调整因子。
还例如,还可以采用以下方式将S1和S2进行叠加生成新的传输块对应的复数符号序列S3:将S2镜像后得到符号S;将S1和S进行叠加生成新的传输块对应的S3。
较优地,可以通过以下方式将S2镜像后得到符号S:根据S1实部的值确定S实部的符号,根据S1虚部的值确定S虚部的符号,复数符号序列S2镜像后的符号S表示为
Figure PCTCN2015083494-appb-000058
或者
Figure PCTCN2015083494-appb-000059
其中,S1对应的未归一化整数格点星座符号Sstd为Xstd+Ystd·i,符号S的功率和S2的功率一样。
其中,需要说明的是,上述复数符号序列S1为将TB1经过功率归一化星座图调制后的功率归一的调制符号序列乘以一个功率调整因子所得;上述复数符号序列S2 为将TB2经过功率归一化星座图调制后的功率归一的调制符号序列乘以一个功率调整因子所得。
另外,上述Xstd、Ystd的取值依据调制方式的不同,也可以采用多种取值,例如,可以采用以下取值至少之一:正交相移键控QPSK对应的Xstd、Ystd取值为{1,-1};16正交幅度调制16QAM对应的Xstd、Ystd取值为{1,-1,3,-3};64正交幅度调制64QAM对应的Xstd、Ystd取值为{1,-1,3,-3,5,-5,7,-7}。
图3是根据本发明实施例的双传输块的数据接收方法二的流程图,如图3所示,该流程包括如下步骤:
步骤S302,接收来自于发射机的发射信号,其中,发射信号为发射机上将待发送数据划分为两份后,将每份对应的传输块TB1和TB2进行叠加生成的新的传输块,传输块TB1被调制成具有一定功率的复数符号序列S1,以及传输块TB2调制成具有一定功率的复数符号序列S2,S1和S2进行叠加生成新的传输块对应的复数符号序列S3,新的传输块对应的复数符号序列S3具有格雷Gray属性;
步骤S304,采用串行干扰消除方法解析出两个传输块。
通过上述步骤,通过接收发射机发送的由两份传输块叠加后的新的传输块,其中,该新的传输块对应的复数符号序列具有格雷Gray属性,并对接收到的该发射信号进行解析,解决了相关技术中,存在两个TB直接相加最终组合出的星座点没有Gray映射属性的问题,进而达到了提高频谱效率,使叠加后的符号星座点具有Gray属性,不仅提高了SIC解调性能,而且可以为不同的数据流分配不同的功率的效果。
采用串行干扰消除方法解析出两个传输块可以采用多种处理方式,例如,可以带着TB2信息干扰解出TB1的信息,采用SIC方法除去TB1的信息后,镜像解出TB2的信息。
其中,带着TB2信息干扰解出TB1的信息,采用SIC方法除去TB1的信息后,镜像输出TB2的信息包括:在解调出TB1的信息为x1’+y1’·i,除去TB1的信息后的信息为x2’+·y2’·i,TB1对应的未归一化整数格点星座符号Sstd’为Xstd’+Ystd’·i的情况下,则镜像输出信号为
Figure PCTCN2015083494-appb-000060
或者
Figure PCTCN2015083494-appb-000061
Figure PCTCN2015083494-appb-000062
其中,符号表示向上取整,
Figure PCTCN2015083494-appb-000064
表示向下取整。
同样,Xstd’、Ystd’的取值包括以下至少之一:正交相移键控QPSK对应的Xstd’、Ystd’取值可以为{1,-1};16正交幅度调制对应的Xstd’、Ystd’取值可以为{1,-1,3,-3};64正交幅度调制对应的Xstd’、Ystd’取值可以为{1,-1,3,-3,5,-5,7,-7}。
在本实施例中还提供了一种双传输块的数据发送装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图4是根据本发明实施例的双传输块的数据发送装置一的结构框图,如图4所示,该装置包括划分模块42、调制模块44、生成模块46和发送模块48,下面对该装置进行说明。
划分模块42,设置为将待发送数据分成两份,其中,每份按对应的预定编码调制方式分别生成传输块TB1和TB2;调制模块44,连接至上述划分模块42,设置为将传输块TB1调制成具有一定功率的复数符号序列S1,以及将传输块TB2调制成具有一定功率的复数符号序列S2;生成模块46,连接至上述调制模块44,设置为将S1和S2进行叠加生成新的传输块对应的复数符号序列S3,新的传输块对应的复数符号序列S3具有格雷Gray属性;发送模块48,连接至上述生成模块46,设置为向接收机发送新的传输块。
图5是根据本发明实施例的双传输块的数据发送装置一的优选结构框图,如图5所示,该装置除包括图4所示的所有模块外,还包括调整模块52,下面对该调整模块52进行说明。
调整模块52,设置为根据两份传输块TB1、TB2对应的功率调整因子
Figure PCTCN2015083494-appb-000065
调整新的传输块对应的复数符号序列S3,其中,
Figure PCTCN2015083494-appb-000066
大于
Figure PCTCN2015083494-appb-000067
可选地,上述生成模块46,还设置为通过以下方式将S1和S2进行叠加生成新的传输块对应的复数符号序列S3:在TB1调制后具有一定功率的复数符号序列S1为
Figure PCTCN2015083494-appb-000068
TB2调制后具有一定功率的复数符号序列S2为
Figure PCTCN2015083494-appb-000069
S1对应的未归一化整数格点星座符号Sstd为Xstd+Ystd·i的情况下,S1和S2经过叠加后生成的复数符号序列S3为
Figure PCTCN2015083494-appb-000070
其中,符号
Figure PCTCN2015083494-appb-000071
表示向上取整,
Figure PCTCN2015083494-appb-000072
为TB1、TB2对应的功率调整因子。
可选地,上述生成模块46,还设置为通过以下方式将S1和S2进行叠加生成新的传输块对应的复数符号序列S3包括:在TB1调制后具有一定功率的复数符号序列S1为
Figure PCTCN2015083494-appb-000073
TB2调制后具有一定功率的复数符号序列S2为
Figure PCTCN2015083494-appb-000074
S1对应的未归一化整数格点星座符号Sstd为Xstd+Ystd·i的情况下,则S1和S2经过叠加后生成复数符号序列S3为
Figure PCTCN2015083494-appb-000075
其中,符号
Figure PCTCN2015083494-appb-000076
表示向下取整,
Figure PCTCN2015083494-appb-000077
为TB1、TB2对应的功率调整因子。
图6是根据本发明实施例的双传输块的数据发送装置一中生成模块46的优选结构框图,如图6所示,该生成模块46包括得到单元62和生成单元64,下面对该生成模块46进行说明。
得到单元62,设置为将S2镜像后得到符号S;生成单元64,连接至上述得到单元62,设置为将S1和S进行叠加生成新的传输块对应的S3。
可选地,上述得到单元62,还设置为通过以下方式将S2镜像后得到符号S:根据S1实部的值确定S实部的符号,根据S1虚部的值确定S虚部的符号,复数符号序列S2镜像后的符号S表示为
Figure PCTCN2015083494-appb-000078
或者
Figure PCTCN2015083494-appb-000079
Figure PCTCN2015083494-appb-000080
其中,S1对应的未归一化整数格点星座符号Sstd为Xstd+Ystd·i,符号S的功率和S2的功率一样。
可选地,上述复数符号序列S1可以为将TB1经过功率归一化星座图调制后的功率归一的调制符号序列乘以一个功率调整因子所得;上述复数符号序列S2可以为将TB2经过功率归一化星座图调制后的功率归一的调制符号序列乘以一个功率调整因子所得。
可选地,Xstd、Ystd的取值依据调制方式不同而不同,例如,可以包括以下至少之一:正交相移键控QPSK对应的Xstd、Ystd取值可以为{1,-1};16正交幅度调制16QAM对应的Xstd、Ystd取值可以为{1,-1,3,-3};64正交幅度调制64QAM对应的Xstd、Ystd取值可以为{1,-1,3,-3,5,-5,7,-7}。
图7是根据本发明实施例的发射机的结构框图,如图7所示,该发射机70包括上述任一项的双传输块的数据发送装置一72。
图8是根据本发明实施例的双传输块的数据接收装置二的结构框图,如图8所示,该装置包括接收模块82和解析模块84,下面对该装置进行说明。
接收模块82,设置为接收来自于发射机的发射信号,其中,发射信号为发射机上将待发送数据划分为两份后,将每份对应的传输块TB1和TB2进行叠加生成的新的传输块,传输块TB1被调制成具有一定功率的复数符号序列S1,以及传输块TB2调制成具有一定功率的复数符号序列S2,S1和S2进行叠加生成新的传输块对应的复数符号序列S3,新的传输块对应的复数符号序列S3具有格雷Gray属性;解析模块84,连接至上述接收模块82,设置为采用串行干扰消除方法解析出两个传输块。
图9是根据本发明实施例的双传输块的数据接收装置二中解析模块84的优选结构框图,如图9所示可选地,该解析模块84包括:解析单元92,下面对该解析单元92进行说明。
解析单元92,设置为带着TB2信息干扰解出TB1的信息,采用SIC方法除去TB1的信息后,镜像解出TB2的信息。
可选地,上述解析单元92,还设置为通过以下方式,带着TB2信息干扰解出TB1的信息,采用SIC方法除去TB1的信息后,镜像输出TB2的信息:在解调出TB1的信息为x1’+y1’·i,除去TB1的信息后的信息为x2’+·y2’·i,TB1对应的未归一化整数格点星座符号Sstd’为Xstd’+Ystd’·i的情况下,则镜像输出信号为
Figure PCTCN2015083494-appb-000081
Figure PCTCN2015083494-appb-000082
或者
Figure PCTCN2015083494-appb-000083
其中,符号
Figure PCTCN2015083494-appb-000084
表示向上取整,
Figure PCTCN2015083494-appb-000085
表示向下取整。
可选地,Xstd’、Ystd’的取值包括以下至少之一:正交相移键控QPSK对应的Xstd’、Ystd’取值可以为{1,-1};16正交幅度调制对应的Xstd’、Ystd’取值可以为{1,-1,3,-3};64正交幅度调制对应的Xstd’、Ystd’取值可以为{1,-1,3,-3,5,-5,7,-7}。
图10是根据本发明实施例的接收机的结构框图,如图10所示,该接收机100包括上述任一项的双传输块的数据接收装置二102。
针对相关技术中的上述问题,在本实施例中,提供了一种基于双传输块的数据传输方案,该方案适用于终端UE向基站发送信息或者基站向终端UE发送信息,在该方案中,两个TB块不直接叠加,而是通过镜像叠加方式叠加的方法。目的是为了在数据传输中,提高频谱效率。另外,为了使叠加后的符号星座点具有Gray属性,提高SIC解调性能,而且可以简单灵活地实现不同数据流分配不同的功率。下面对该方案进行说明。
一种基于双传输块的数据传输方法,包括:通信的一个端点将信息比特分成两份,每份按一定编码调制方式(MCS)生成传输块,然后将两个传输块叠加在一起,形成新的传输块;叠加后的传输块形成发射信号;发射叠加后的传输块。
叠加方式可以采用以下处理:
双TB(TB1,TB2)被调制为具有一定功率的复数符号序列S1和S2经过叠加后生成复数符号序列S3,S3与S1和S2有关,且具有Gray属性;
根据功率调整因子
Figure PCTCN2015083494-appb-000086
调整S3,
Figure PCTCN2015083494-appb-000087
大于
Figure PCTCN2015083494-appb-000088
发射机将叠加后生成的复数符号序列形成发射信号,发给接收机。
假设TB1调制后具有一定功率的复数符号序列S1为
Figure PCTCN2015083494-appb-000089
TB2调制后具有一定功率的复数符号序列S2为
Figure PCTCN2015083494-appb-000090
S1对应的未归一化整数格点星座符号Sstd为Xstd+Ystd·i,则S1和S2经过叠加后生成复数符号序列S3可以为
Figure PCTCN2015083494-appb-000091
Figure PCTCN2015083494-appb-000092
其中,
Figure PCTCN2015083494-appb-000093
是功率调整因子,符号
Figure PCTCN2015083494-appb-000094
表示向上取整。
其中,未归一化整数格点星座符号Sstd为Xstd+Ystd·i,如QPSK对应的Xstd、Ystd取值可以为{1,-1};16QAM对应的Xstd、Ystd取值可以为{1,-1,3,-3};64QAM对应的Xstd、Ystd取值可以为{1,-1,3,-3,5,-5,7,-7}。
假设TB1调制后具有一定功率的复数符号序列S1为
Figure PCTCN2015083494-appb-000095
TB2调制后具有一定功率的复数符号序列S2为
Figure PCTCN2015083494-appb-000096
S1对应的未归一化整数格点星座符号Sstd为Xstd+Ystd·i,则S1和S2经过叠加后生成复数符号序列S3可以为
Figure PCTCN2015083494-appb-000097
Figure PCTCN2015083494-appb-000098
其中,
Figure PCTCN2015083494-appb-000099
是功率调整因子,符号
Figure PCTCN2015083494-appb-000100
表示向下取整。
未归一化整数格点星座符号Sstd为Xstd+Ystd·i,如QPSK对应的Xstd、Ystd取值可以为{1,-1};16QAM对应的Xstd、Ystd取值可以为{1,-1,3,-3};64QAM对应的Xstd、Ystd取值可以为{1,-1,3,-3,5,-5,7,-7}。
复数符号序列S1和S2经过叠加,可以是复数符号序列S1和复数符号序列S2镜像后的符号S直接叠加,直接叠加后的复数符号序列S3可表示为(S1+S)。
复数符号序列S2与S1叠加前要经过镜像,根据S1实部的值确定S实部的符号,根据S1虚部的值确定S虚部的符号。复数符号序列S2镜像后的符号S可以表示为
Figure PCTCN2015083494-appb-000101
或者
Figure PCTCN2015083494-appb-000102
其中,符号S的功率和S2的功率一样。
复数符号序列S1是指将TB1经过功率归一化星座图调制后的功率归一的调制符号序列乘以一个功率调整因子所得。复数符号序列S2是指将TB2经过功率归一化星座图调制后的功率归一的调制符号序列乘以一个功率调整因子所得。
其中,TB1调制后具有一定功率的复数符号序列S1为
Figure PCTCN2015083494-appb-000103
C2调制后具有一定功率的复数符号序列S2为
Figure PCTCN2015083494-appb-000104
S1的功率调整因子为
Figure PCTCN2015083494-appb-000105
S2的功率调整因子为
Figure PCTCN2015083494-appb-000106
大于
Figure PCTCN2015083494-appb-000107
Figure PCTCN2015083494-appb-000108
小于或等于
Figure PCTCN2015083494-appb-000109
时,不给符号序列S2做星座镜像。
S1和S2镜像后的符号直接叠加得到S3。S3的星座点具有Gray属性,可以通过其它的方法使叠加后符号星座具有Gray属性。
发射机将叠加后生成的复数符号序列形成发射信号,发送给基站。
在本实施例中,还提供了一种基于双传输块的数据解调方法,包括:基站解出TB1的信息和TB2的信息。带着TB2信息的干扰解出TB1的信息,SIC后镜像输出TB2的信息,镜像输出信息与解出的TB1信息和SIC后的信息有关。
TB1的信息和TB2的信息叠加后一起被传输到基站,基站带着TB2信息的干扰解出TB1的信息,SIC除去TB1的信息后,镜像输出TB2的信息。
假设基站解调出TB1信息为x1’+y1’·i,除去TB1信息后的信号为x2’+·y2’·i,解调出TB1对应的未归一化整数格点星座符号Sstd’为Xstd’+Ystd’·i,则该镜像输出信号为
Figure PCTCN2015083494-appb-000110
或者
Figure PCTCN2015083494-appb-000111
其中,符号
Figure PCTCN2015083494-appb-000112
表示向上取整,
Figure PCTCN2015083494-appb-000113
表示向下取整。
未归一化整数格点星座符号Sstd’为Xstd’+Ystd’·i,如QPSK对应的Xstd’、Ystd’取值可以为{1,-1};如16QAM对应的Xstd’、Ystd’取值可以为{1,-1,3,-3};64QAM对应的Xstd’、Ystd’取值可以为{1,-1,3,-3,5,-5,7,-7}。
通过上述实施例提供的基于双传输块的数据传输方案,两个TB块不直接叠加,而是通过镜像叠加方式叠加的方法。UE将TB2的星座做相应的镜像后再和TB1叠加,基站带着TB2信息的干扰解出TB1的信息,SIC后镜像输出TB2的信息。针对上下行传输系统,提高了频谱效率。另外,使叠加后的符号星座点具有Gray属性,提高了SIC解调性能,而且可以简单灵活地实现不同数据流分配不同的功率。
下面对本发明优选实施例进行说明。
优选实施例一
图11是根据本发明优选实施例一的无线上行链路传输的抽象示意图,如图11所示,该基于双传输块的数据传输方法可以应用于无线上行链路传输情景,UE将双TB信息(TB1、TB2)传输给基站。
依照本优选实施例,在UE内,双TB(TB1,TB2)被调制为具有一定功率的复数符号序列S1和S2经过叠加后生成复数符号序列S3,S3与S1和S2有关,且具有Gray属性。
首先,UE将要传输的信息比特分成两份,每份按一定编码调制方式(MCS)生成传输块,或者说分别生成具有一定功率的复数符号序列S1和具有一定功率的复数符号序列S2。其中,复数符号序列S1是指功率归一的调制符号序列乘以一个功率调整因子所得,复数符号序列S2是指功率归一的调制符号序列乘以一个功率调整因子所得。假设S1的功率调整因子为
Figure PCTCN2015083494-appb-000114
S2的功率调整因子为
Figure PCTCN2015083494-appb-000115
大于
Figure PCTCN2015083494-appb-000116
则复数符号序列S1为
Figure PCTCN2015083494-appb-000117
复数符号序列S2为
Figure PCTCN2015083494-appb-000118
S1对应的未归一化整数格点星座符号Sstd为Xstd+Ystd·i。未归一化整数格点星座符号Sstd为Xstd+Ystd·i,如QPSK对应的Xstd、Ystd取值可以为{1,-1};如16QAM对应的Xstd、Ystd取值可以为{1,-1,3,-3};64QAM对应的Xstd、Ystd取值可以为{1,-1,3,-3,5,-5,7,-7}。
然后,将两个传输块叠加在一起,形成新的传输块,即复数符号序列S1和S2镜像叠加,是复数符号序列S1和复数符号序列S2镜像后的符号S直接叠加,直接叠加后的复数符号序列S3可表示为(S1+S),也可以表示为
Figure PCTCN2015083494-appb-000119
Figure PCTCN2015083494-appb-000120
其中,符号
Figure PCTCN2015083494-appb-000121
表示向上取整。
根据功率调整因子
Figure PCTCN2015083494-appb-000122
调整S3,
Figure PCTCN2015083494-appb-000123
大于
Figure PCTCN2015083494-appb-000124
叠加编码后的新传输块具有Gray属性,可以通过其它的方法使叠加后符号星座具有Gray属性。其中,根据S1实部的值确定S实部的符号,根据S1虚部的值确定S虚部的符号。复数符号序列S2镜像后的符号S表示为
Figure PCTCN2015083494-appb-000125
Figure PCTCN2015083494-appb-000126
符号S的功率和S2的功率一样。
下面对上述叠加的方式进行举例说明。例如,一组信息按标准采用QPSK调制,另一组信息按标准采用16QAM调制。图12是根据本发明优选实施例一的两组信息分 别按QPSK调制和16QAM调制后镜像叠加(镜像后不变)的示意图,如图12所示,步骤一做镜像,假如当S1星座点为‘11’时,Sstd符号为-1-i,即Xstd=-1,Ystd=-1。所以求得S为
Figure PCTCN2015083494-appb-000127
与S2一样。完成镜像步骤后,步骤二做叠加,符号S1和镜像后的符号S直接叠加,得到叠加后的符号S3。图13是根据本发明优选实施例一的两组信息分别按QPSK调制和16QAM调制后镜像叠加(水平镜像)的示意图,如图13所示,步骤一做镜像,假如当S1星座点为‘01’时,Sstd符号为1-i,即Xstd=1,Ystd=-1。所以求得S为
Figure PCTCN2015083494-appb-000128
相当于是S2的水平镜像。完成镜像步骤后,步骤二做叠加,符号S1和镜像后的符号S直接叠加,得到叠加后的符号S3。
最后,叠加后的传输块形成发射信号,即UE将叠加后的符号形成发射信号,发射叠加后的传输块给基站。
在接收端,基站解出TB1的信息和TB2的信息。带着TB2信息的干扰解出TB1的信息,SIC后镜像输出TB2的信息,镜像输出信息与解出的TB1信息和SIC后的信息有关。
应该注意的是,在本优选实施例中,叠加符号S3是高阶(64QAM)Gray映射的,更要注意的是,两个TB块叠加后,即使在接收机因为噪声误判了符号S1,对符号S2解调后再做一次镜像仍然能正确解调出符号S2,因而SIC性能有明显改善,所以判定这种新的双传输块镜像叠加传输方法是一项有价值的实用技术。
优选实施例二
依照本优选实施例,在UE内,双TB(TB1,TB2)被调制为具有一定功率的复数符号序列S1和S2经过叠加后生成复数符号序列S3,S3与S1和S2有关,且具有Gray属性。
首先,UE将要传输的信息比特分成两份,每份按一定编码调制方式(MCS)生成传输块,或者说分别生成具有一定功率的复数符号序列S1和具有一定功率的复数符号序列S2。其中,复数符号序列S1是指功率归一的调制符号序列乘以一个功率调整因子所得,复数符号序列S2是指功率归一的调制符号序列乘以一个功率调整因子所得。假设S1的功率调整因子为
Figure PCTCN2015083494-appb-000129
S2的功率调整因子为
Figure PCTCN2015083494-appb-000130
大于
Figure PCTCN2015083494-appb-000131
则复数符号序列S1为
Figure PCTCN2015083494-appb-000132
复数符号序列S2为
Figure PCTCN2015083494-appb-000133
S1对应的未归一化整数格点星座符号Sstd为Xstd+Ystd·i。未归一化整数格点星座符号Sstd为Xstd+Ystd·i,如QPSK对应的Xstd、Ystd取值可以为{1,-1};如16QAM对应的Xstd、Ystd取值可以为{1,-1,3,-3};64QAM对应的Xstd、Ystd取值可以为{1,-1,3,-3,5,-5,7,-7}。
然后,将两个传输块叠加在一起,形成新的传输块,即复数符号序列S1和S2镜像叠加,是复数符号序列S1和复数符号序列S2镜像后的符号S直接叠加,直接叠加后的复数符号序列S3可表示为(S1+S),也可以表示为
Figure PCTCN2015083494-appb-000134
Figure PCTCN2015083494-appb-000135
符号
Figure PCTCN2015083494-appb-000136
表示向下取整。
根据功率调整因子
Figure PCTCN2015083494-appb-000137
调整S3,
Figure PCTCN2015083494-appb-000138
大于
Figure PCTCN2015083494-appb-000139
叠加编码后的新传输块具有Gray属性,可以通过其它的方法使叠加后符号星座具有Gray属性。其中根据S1实部的值确定S实部的符号,根据S1虚部的值确定S虚部的符号。复数符号序列S2镜像后的符号S表示为
Figure PCTCN2015083494-appb-000140
Figure PCTCN2015083494-appb-000141
其中,符号S的功率和S2的功率一样。
下面对上述叠加的方式进行举例说明。例如,一组信息按标准采用QPSK调制,另一组信息按标准采用16QAM调制。图14是根据本发明优选实施例二的两组信息分别按QPSK调制和16QAM调制后镜像叠加(镜像后不变)的示意图,如图14所示,步骤一做镜像,假如当S1星座点为‘00’时,Sstd符号为1+i,即Xstd=1,Ystd=1。所以求得S为
Figure PCTCN2015083494-appb-000142
与S2一样。完成镜像步骤后,步骤二做叠加,符号S1和镜像后的符号S直接叠加,得到叠加后的符号S3。图15是根据本发明优选实施例二的两组信息分别按QPSK调制和16QAM调制后镜像叠加(水平镜像)的示意图,如图15所示,步骤一做镜像,假如当S1星座点为‘10’时,Sstd符号为-1+i,即Xstd=-1,Ystd=1。所以求得S为
Figure PCTCN2015083494-appb-000143
相当于是S2的水平镜像。完成镜像步骤后,步骤二做叠加,符号S1和镜像后的符号S直接叠加,得到叠加后的符号S3。
最后,叠加后的传输块形成发射信号,即UE将叠加后的符号形成发射信号,发射叠加后的传输块给基站。
在接收端,基站解出TB1的信息和TB2的信息。带着TB2信息的干扰解出TB1的信息,SIC后镜像输出TB2的信息,镜像输出信息与解出的TB1信息和SIC后的信息有关。
应该注意的是,在本优选实施例中,叠加符号S3是高阶(64QAM)Gray映射的,更要注意的是,两个TB块叠加后,即使在接收机因为噪声误判了符号S1,对符号S2解调后再做一次镜像仍然能正确解调出符号S2,因而SIC性能有明显改善,所以判定这种新的双传输块镜像叠加传输方法是一项有价值的实用技术。
优选实施例三
图16是根据本发明优选实施例三的无线下行链路传输的抽象示意图,如图16所示,该方法可以应用于无线下行链路传输情景,基站将双TB信息(TB1、TB2)传输给UE。
依照本优选实施例,在基站内,双TB(TB1,TB2)被调制为具有一定功率的复数符号序列S1和S2经过叠加后生成复数符号序列S3,S3与S1和S2有关,且具有Gray属性。
首先,UE将要传输的信息比特分成两份,每份按一定编码调制方式(MCS)生成传输块,或者说分别生成具有一定功率的复数符号序列S1和具有一定功率的复数符号序列S2。其中,复数符号序列S1是指功率归一的调制符号序列乘以一个功率调整因子所得,复数符号序列S2是指功率归一的调制符号序列乘以一个功率调整因子所得。假设S1的功率调整因子为
Figure PCTCN2015083494-appb-000144
S2的功率调整因子为
Figure PCTCN2015083494-appb-000145
大于
Figure PCTCN2015083494-appb-000146
则复数符号序列S1为
Figure PCTCN2015083494-appb-000147
复数符号序列S2为
Figure PCTCN2015083494-appb-000148
S1对应的未归一化整数格点星座符号Sstd为Xstd+Ystd·i。未归一化整数格点星座符号Sstd为Xstd+Ystd·i,如QPSK对应的Xstd、Ystd取值可以为{1,-1};如16QAM对应的Xstd、Ystd取值可以为{1,-1,3,-3};64QAM对应的Xstd、Ystd取值可以为{1,-1,3,-3,5,-5,7,-7}。
然后,将两个传输块叠加在一起,形成新的传输块,即上述复数符号序列S1和S2镜像叠加,是复数符号序列S1和复数符号序列S2镜像后的符号S直接叠加,直接叠加后的复数符号序列S3可表示为(S1+S),也可以表示为
Figure PCTCN2015083494-appb-000149
Figure PCTCN2015083494-appb-000150
符号
Figure PCTCN2015083494-appb-000151
表示向上取整。
根据功率调整因子
Figure PCTCN2015083494-appb-000152
调整S3,
Figure PCTCN2015083494-appb-000153
大于
Figure PCTCN2015083494-appb-000154
叠加编码后的新传输块具有Gray属性,可以通过其它的方法使叠加后符号星座具有Gray属性。其中根据S1实部的值确定S实部的符号,根据S1虚部的值确定S虚部的符号。复数符号序列S2镜像后的符号S表示为
Figure PCTCN2015083494-appb-000155
Figure PCTCN2015083494-appb-000156
符号S的功率和S2的功率一样。
下面对上述叠加的方式进行举例说明。例如,一组信息按标准采用16QAM调制,另一组信息按标准采用64QAM调制。图17是根据本发明优选实施三的两组信息分别按16QAM调制和64QAM调制后镜像叠加(镜像后不变)的示意图,如图17所示,步骤一做镜像,假如当S1星座点为‘0101’时,Sstd符号为3+3i,即Xstd=3,Ystd=3,S为
Figure PCTCN2015083494-appb-000157
与S2一样。完成镜像步骤后,步骤二做叠加,符号S1和镜像后的符号S直接叠加,得到叠加后的符号S3。图18是根据本发明优选实施三的两组信 息分别按16QAM调制和64QAM调制后镜像叠加(水平镜像)的示意图,如图18所示,步骤一做镜像,假如当S1星座点为‘0001’时,Sstd符号为1+3i,即Xstd=1,Ystd=3。S为
Figure PCTCN2015083494-appb-000158
相当于是S2的水平镜像。完成镜像步骤后,步骤二做叠加,符号S1和镜像后的符号S直接叠加,得到叠加后的符号S3。
最后,叠加后的传输块形成发射信号,即UE将叠加后的符号形成发射信号,发射叠加后的传输块给基站。
在接收端,基站解出TB1的信息和TB2的信息。带着TB2信息的干扰解出TB1的信息,SIC后镜像输出TB2的信息,镜像输出信息与解出的TB1信息和SIC后的信息有关。
应该注意的是,在本优选实施例中,叠加符号S3是高阶(1024QAM)Gray映射的,更要注意的是,两个TB块叠加后,即使在接收机因为噪声误判了符号S1,对符号S2解调后再做一次镜像仍然能正确解调出符号S2,因而SIC性能有明显改善,所以判定这种新的双传输块镜像叠加传输方法是一项有价值的实用技术。
显然,本领域的技术人员应该明白,上述的本发明实施例的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
如上所述,通过上述实施例及优选实施方式,解决了相关技术中,存在两个TB直接相加最终组合出的星座点没有Gray映射属性的问题,进而达到了提高频谱效率,使叠加后的符号星座点具有Gray属性,提高了SIC解调性能,而且可以为不同的数据流分配不同的功率的效果。

Claims (26)

  1. 一种双传输块的数据发送方法,包括:
    将待发送数据分成两份,其中,每份按对应的预定编码调制方式分别生成传输块TB1和TB2;
    将所述传输块TB1调制成具有一定功率的复数符号序列S1,以及将所述传输块TB2调制成具有一定功率的复数符号序列S2;
    将所述S1和所述S2进行叠加生成新的传输块对应的复数符号序列S3,所述新的传输块对应的复数符号序列S3具有格雷Gray属性;
    向接收机发送所述新的传输块。
  2. 根据权利要求1所述的方法,其中,在向所述接收机发送所述新的传输块之前,还包括:
    根据两份传输块TB1、TB2对应的功率调整因子
    Figure PCTCN2015083494-appb-100001
    Figure PCTCN2015083494-appb-100002
    调整所述新的传输块对应的复数符号序列S3,其中,
    Figure PCTCN2015083494-appb-100003
    大于
    Figure PCTCN2015083494-appb-100004
  3. 根据权利要求1所述的方法,其中,将所述S1和所述S2进行叠加生成新的传输块对应的复数符号序列S3包括:
    在所述TB1调制后具有一定功率的复数符号序列S1为
    Figure PCTCN2015083494-appb-100005
    所述TB2调制后具有一定功率的复数符号序列S2为
    Figure PCTCN2015083494-appb-100006
    S1对应的未归一化整数格点星座符号Sstd为Xstd+Ystd·i的情况下,所述S1和所述S2经过叠加后生成的复数符号序列S3为
    Figure PCTCN2015083494-appb-100007
    Figure PCTCN2015083494-appb-100008
    其中,符号
    Figure PCTCN2015083494-appb-100009
    表示向上取整,
    Figure PCTCN2015083494-appb-100010
    Figure PCTCN2015083494-appb-100011
    为所述TB1、TB2对应的功率调整因子。
  4. 根据权利要求1所述的方法,其中,将所述S1和所述S2进行叠加生成新的传输块对应的复数符号序列S3包括:
    在所述TB1调制后具有一定功率的复数符号序列S1为
    Figure PCTCN2015083494-appb-100012
    所述TB2调制后具有一定功率的复数符号序列S2为
    Figure PCTCN2015083494-appb-100013
    S1对应的未归一化整数格点星座符号Sstd为Xstd+Ystd·i的情况下,则所述S1和所述S2经过叠加后生成复数符号序列S3为
    Figure PCTCN2015083494-appb-100014
    Figure PCTCN2015083494-appb-100015
    其中,符号
    Figure PCTCN2015083494-appb-100016
    表示向下取整,
    Figure PCTCN2015083494-appb-100017
    Figure PCTCN2015083494-appb-100018
    为所述TB1、TB2对应的功率调整因子。
  5. 根据权利要求1所述的方法,其中,将所述S1和所述S2进行叠加生成新的传输块对应的复数符号序列S3包括:
    将所述S2镜像后得到符号S;
    将所述S1和所述S进行叠加生成所述新的传输块对应的所述S3。
  6. 根据权利要求5所述的方法,其中,通过以下方式将所述S2镜像后得到符号S:
    根据S1实部的值确定S实部的符号,根据S1虚部的值确定S虚部的符号,复数符号序列S2镜像后的符号S表示为
    Figure PCTCN2015083494-appb-100019
    或者
    Figure PCTCN2015083494-appb-100020
    其中,S1对应的未归一化整数格点星座符号Sstd为Xstd+Ystd·i,符号S的功率和S2的功率一样。
  7. 根据权利要求1至6中任一项所述的方法,其中,
    复数符号序列S1为将所述TB1经过功率归一化星座图调制后的功率归一的调制符号序列乘以一个功率调整因子所得;
    复数符号序列S2为将所述TB2经过功率归一化星座图调制后的功率归一的调制符号序列乘以一个功率调整因子所得。
  8. 根据权利要求3至6中任一项所述的方法,其中,Xstd、Ystd的取值包括以下至少之一:
    正交相移键控QPSK对应的Xstd、Ystd取值为{1,-1};16正交幅度调制16QAM对应的Xstd、Ystd取值为{1,-1,3,-3};64正交幅度调制64QAM对应的Xstd、Ystd取值为{1,-1,3,-3,5,-5,7,-7}。
  9. 一种双传输块的数据接收方法,包括:
    接收来自于发射机的发射信号,其中,所述发射信号为所述发射机上将待发送数据划分为两份后,将每份对应的传输块TB1和TB2进行叠加生成的新的传输块,所述传输块TB1被调制成具有一定功率的复数符号序列S1,以及所述传输块TB2调制成具有一定功率的复数符号序列S2,所述S1和所述S2进行叠加生成新的传输块对应的复数符号序列S3,所述新的传输块对应的复数符号序列S3具有格雷Gray属性;
    采用串行干扰消除方法解析出两个传输块。
  10. 根据权利要求9所述的方法,其中,采用串行干扰消除方法解析出两个传输块包括:
    带着TB2信息干扰解出TB1的信息,采用SIC方法除去TB1的信息后,镜像解出TB2的信息。
  11. 根据权利要求10所述的方法,其中,带着TB2信息干扰解出TB1的信息,采用SIC方法除去TB1的信息后,镜像输出TB2的信息包括:
    在解调出所述TB1的信息为x1’+y1’·i,除去所述TB1的信息后的信息为x2’+·y2’·i,所述TB1对应的未归一化整数格点星座符号Sstd’为Xstd’+Ystd’·i的情况下,则镜像输出信号为
    Figure PCTCN2015083494-appb-100021
    或者
    Figure PCTCN2015083494-appb-100022
    Figure PCTCN2015083494-appb-100023
    其中,符号
    Figure PCTCN2015083494-appb-100024
    表示向上取整,
    Figure PCTCN2015083494-appb-100025
    表示向下取整。
  12. 根据权利要求11所述的方法,其中,Xstd’、Ystd’的取值包括以下至少之一:
    正交相移键控QPSK对应的Xstd’、Ystd’取值为{1,-1};16正交幅度调制对应的Xstd’、Ystd’取值为{1,-1,3,-3};64正交幅度调制对应的Xstd’、Ystd’取值为{1,-1,3,-3,5,-5,7,-7}。
  13. 一种双传输块的数据发送装置,包括:
    划分模块,设置为将待发送数据分成两份,其中,每份按对应的预定编码调制方式分别生成传输块TB1和TB2;
    调制模块,设置为将所述传输块TB1调制成具有一定功率的复数符号序列S1,以及将所述传输块TB2调制成具有一定功率的复数符号序列S2;
    生成模块,设置为将所述S1和所述S2进行叠加生成新的传输块对应的复数符号序列S3,所述新的传输块对应的复数符号序列S3具有格雷Gray属性;
    发送模块,设置为向接收机发送所述新的传输块。
  14. 根据权利要求13所述的装置,其中,还包括:
    调整模块,设置为根据两份传输块TB1、TB2对应的功率调整因子
    Figure PCTCN2015083494-appb-100026
    Figure PCTCN2015083494-appb-100027
    调整所述新的传输块对应的复数符号序列S3,其中,
    Figure PCTCN2015083494-appb-100028
    大于
    Figure PCTCN2015083494-appb-100029
  15. 根据权利要求11所述的装置,其中,所述生成模块,还设置为通过以下方式将所述S1和所述S2进行叠加生成新的传输块对应的复数符号序列S3:
    在所述TB1调制后具有一定功率的复数符号序列S1为
    Figure PCTCN2015083494-appb-100030
    所述TB2调制后具有一定功率的复数符号序列S2为
    Figure PCTCN2015083494-appb-100031
    S1对应的未归一化整数格点星座符号Sstd为Xstd+Ystd·i的情况下,所述S1和所述S2经过叠加后生成的复数符号序列S3为
    Figure PCTCN2015083494-appb-100032
    Figure PCTCN2015083494-appb-100033
    其中,符号
    Figure PCTCN2015083494-appb-100034
    表示向上取整,
    Figure PCTCN2015083494-appb-100035
    Figure PCTCN2015083494-appb-100036
    为所述TB1、TB2对应的功率调整因子。
  16. 根据权利要求11所述的装置,其中,所述生成模块,还设置为通过以下方式将所述S1和所述S2进行叠加生成新的传输块对应的复数符号序列S3包括:
    在所述TB1调制后具有一定功率的复数符号序列S1为
    Figure PCTCN2015083494-appb-100037
    所述TB2调制后具有一定功率的复数符号序列S2为
    Figure PCTCN2015083494-appb-100038
    S1对应的未归一化整数格点星座符号Sstd为Xstd+Ystd·i的情况下,则所述S1和所述S2经过叠加后生成复数符号序列S3为
    Figure PCTCN2015083494-appb-100039
    Figure PCTCN2015083494-appb-100040
    其中,符号
    Figure PCTCN2015083494-appb-100041
    表示向下取整,
    Figure PCTCN2015083494-appb-100042
    Figure PCTCN2015083494-appb-100043
    为所述TB1、TB2对应的功率调整因子。
  17. 根据权利要求11所述的装置,其中,所述生成模块包括:
    得到单元,设置为将所述S2镜像后得到符号S;
    生成单元,设置为将所述S1和所述S进行叠加生成所述新的传输块对应的所述S3。
  18. 根据权利要求17所述的装置,其中,所述得到单元,还设置为通过以下方式将所述S2镜像后得到符号S:
    根据S1实部的值确定S实部的符号,根据S1虚部的值确定S虚部的符号,复数符号序列S2镜像后的符号S表示为
    Figure PCTCN2015083494-appb-100044
    或者
    Figure PCTCN2015083494-appb-100045
    其中,S1对应的未归一化整数格点星座符号Sstd为Xstd+Ystd·i,符号S的功率和S2的功率一样。
  19. 根据权利要求13至18中任一项所述的装置,其中,
    复数符号序列S1为将所述TB1经过功率归一化星座图调制后的功率归一的调制符号序列乘以一个功率调整因子所得;
    复数符号序列S2为将所述TB2经过功率归一化星座图调制后的功率归一的调制符号序列乘以一个功率调整因子所得。
  20. 根据权利要求15至18中任一项所述的装置,其中,Xstd、Ystd的取值包括以下至少之一:
    正交相移键控QPSK对应的Xstd、Ystd取值为{1,-1};16正交幅度调制16QAM对应的Xstd、Ystd取值为{1,-1,3,-3};64正交幅度调制64QAM对应的Xstd、Ystd取值为{1,-1,3,-3,5,-5,7,-7}。
  21. 一种发射机,包括权利要求13至20中任一项所述的装置。
  22. 一种双传输块的数据接收装置,包括:
    接收模块,设置为接收来自于发射机的发射信号,其中,所述发射信号为所述发射机上将待发送数据划分为两份后,将每份对应的传输块TB1和TB2进行叠加生成的新的传输块,所述传输块TB1被调制成具有一定功率的复数符号序列S1,以及所述传输块TB2调制成具有一定功率的复数符号序列S2,所述S1和所述S2进行叠加生成新的传输块对应的复数符号序列S3,所述新的传输块对应的复数符号序列S3具有格雷Gray属性;
    解析模块,设置为采用串行干扰消除方法解析出两个传输块。
  23. 根据权利要求22所述的装置,其中,所述解析模块包括:
    解析单元,设置为带着TB2信息干扰解出TB1的信息,采用SIC方法除去TB1的信息后,镜像解出TB2的信息。
  24. 根据权利要求23所述的装置,其中,所述解析单元,还设置为通过以下方式,带着TB2信息干扰解出TB1的信息,采用SIC方法除去TB1的信息后,镜像输出TB2的信息:
    在解调出所述TB1的信息为x1’+y1’·i,除去所述TB1的信息后的信息为x2’+·y2’·i,所述TB1对应的未归一化整数格点星座符号Sstd’为Xstd’+Ystd’·i的情况下,则镜像输出信号为
    Figure PCTCN2015083494-appb-100046
    或者
    Figure PCTCN2015083494-appb-100047
    Figure PCTCN2015083494-appb-100048
    其中,符号
    Figure PCTCN2015083494-appb-100049
    表示向上取整,
    Figure PCTCN2015083494-appb-100050
    表示向下取整。
  25. 根据权利要求24所述的装置,其中,Xstd’、Ystd’的取值包括以下至少之一:
    正交相移键控QPSK对应的Xstd’、Ystd’取值为{1,-1};16正交幅度调制对应的Xstd’、Ystd’取值为{1,-1,3,-3};64正交幅度调制对应的Xstd’、Ystd’取值为{1,-1,3,-3,5,-5,7,-7}。
  26. 一种接收机,包括权利要求22至25中任一项所述的装置。
PCT/CN2015/083494 2014-10-30 2015-07-07 双传输块的数据发送、接收方法、装置、发射机及接收机 WO2016065922A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15854680.4A EP3214784B1 (en) 2014-10-30 2015-07-07 Dual transport block data transmission and reception method, device, transmitter, and receiver
US15/523,461 US10432356B2 (en) 2014-10-30 2015-07-07 Data transmitting or receiving method and device for dual TBs, transmitter and receiver

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410604235.1 2014-10-30
CN201410604235.1A CN105634659B (zh) 2014-10-30 2014-10-30 双传输块的数据发送、接收方法、装置、发射机及接收机

Publications (1)

Publication Number Publication Date
WO2016065922A1 true WO2016065922A1 (zh) 2016-05-06

Family

ID=55856539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/083494 WO2016065922A1 (zh) 2014-10-30 2015-07-07 双传输块的数据发送、接收方法、装置、发射机及接收机

Country Status (4)

Country Link
US (1) US10432356B2 (zh)
EP (1) EP3214784B1 (zh)
CN (1) CN105634659B (zh)
WO (1) WO2016065922A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107733553A (zh) * 2016-08-12 2018-02-23 中兴通讯股份有限公司 传输块的发送方法和装置、接收方法和装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10212020B2 (en) * 2015-06-09 2019-02-19 Samsung Electronics Co., Ltd Apparatus and method for superposition transmissions
CN111478754B (zh) * 2019-09-20 2023-03-21 上海磐启微电子有限公司 一种信号调制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040028020A1 (en) * 2002-08-09 2004-02-12 Frank Frederiksen Method and system for transport block size signaling based on modulation type for HSDPA
CN102215090A (zh) * 2010-04-02 2011-10-12 北京三星通信技术研究有限公司 一种基于mimo传输发送和接收下行控制信息的方法
CN102387106A (zh) * 2010-08-30 2012-03-21 华为技术有限公司 Mu-mimo通信系统中数据调制的方法及装置
CN102771061A (zh) * 2010-02-24 2012-11-07 三星电子株式会社 指示使能的传输块的方法和系统
CN102868482A (zh) * 2011-07-08 2013-01-09 中兴通讯股份有限公司 多级编码调制方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001039456A1 (en) * 1999-11-23 2001-05-31 Thomson Licensing S.A. Gray encoding for hierarchical qam transmission systems
CN101527620A (zh) * 2008-03-07 2009-09-09 上海华为技术有限公司 数据重传方法、数据接收方法、通信系统和相关设备
CN101541011B (zh) * 2008-03-20 2011-09-14 华为技术有限公司 一种协调方法、装置及用户设备
US8310981B2 (en) * 2008-10-22 2012-11-13 Qualcomm Incorporated Common and dedicated modulation and coding scheme for a multicarrier system
US8625692B2 (en) * 2009-09-28 2014-01-07 Samsung Electronics Co., Ltd. Transmission/reception apparatus and method for improving throughput in a multi-input multi-output communication system
US10003490B2 (en) * 2012-08-23 2018-06-19 Mitsubishi Electric Corporation Communication system, transmission apparatus, reception apparatus, and digital transmission method
US9680578B2 (en) * 2014-12-30 2017-06-13 Mediatek Inc. Soft packet combining for superposition coding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040028020A1 (en) * 2002-08-09 2004-02-12 Frank Frederiksen Method and system for transport block size signaling based on modulation type for HSDPA
CN102771061A (zh) * 2010-02-24 2012-11-07 三星电子株式会社 指示使能的传输块的方法和系统
CN102215090A (zh) * 2010-04-02 2011-10-12 北京三星通信技术研究有限公司 一种基于mimo传输发送和接收下行控制信息的方法
CN102387106A (zh) * 2010-08-30 2012-03-21 华为技术有限公司 Mu-mimo通信系统中数据调制的方法及装置
CN102868482A (zh) * 2011-07-08 2013-01-09 中兴通讯股份有限公司 多级编码调制方法及装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107733553A (zh) * 2016-08-12 2018-02-23 中兴通讯股份有限公司 传输块的发送方法和装置、接收方法和装置
EP3499758A4 (en) * 2016-08-12 2020-04-15 ZTE Corporation TRANSMISSION METHOD AND DEVICE, AND RECEIVING METHOD AND DEVICE FOR TRANSPORTATION BLOCK
US10985863B2 (en) 2016-08-12 2021-04-20 Zte Corporation Method and apparatus for transmitting transport block, and method and apparatus for receiving transport block
CN107733553B (zh) * 2016-08-12 2022-01-28 中兴通讯股份有限公司 传输块的发送方法和装置、接收方法和装置

Also Published As

Publication number Publication date
EP3214784A4 (en) 2017-11-22
CN105634659B (zh) 2019-04-05
EP3214784A1 (en) 2017-09-06
US10432356B2 (en) 2019-10-01
CN105634659A (zh) 2016-06-01
EP3214784B1 (en) 2020-03-04
US20170324513A1 (en) 2017-11-09

Similar Documents

Publication Publication Date Title
US10700803B2 (en) System and method for generating codebooks with small projections per complex dimension and utilization thereof
WO2016065921A1 (zh) 多用户信息传输的叠加、解调方法及装置
WO2016086834A1 (zh) 多用户信息共道发送、接收方法及其装置
US10382144B2 (en) Systems, methods, and devices for interference mitigation in wireless networks
CN105471543B (zh) 发送装置和发送方法
CN102273300B (zh) 多分量载波ofdma通信系统
JP6814198B2 (ja) 複数ユーザー情報伝送の変調方法、復調方法及び装置
WO2016082554A1 (zh) 叠加编码、解码方法、装置、发射机及接收机
WO2018006832A1 (en) Simultaneous transmission and reception of an orthogonal multiplexed signal and a non-orthogonal multiplexed signal
KR102061653B1 (ko) 무선 통신 시스템에서 비트 심볼 매핑 방법 및 장치
WO2016065922A1 (zh) 双传输块的数据发送、接收方法、装置、发射机及接收机
WO2018210095A1 (zh) 一种功率控制方法及设备
WO2017051583A1 (ja) 装置、方法及びプログラム
US20180367238A1 (en) Information transmission method and apparatus
CN116506005B (zh) 一种基于非正交多址接入的卫星通信数据传输处理方法
CN111245560B (zh) 数据发送的方法及装置
CN111082893B (zh) 数据发送的方法及装置
WO2016184241A1 (zh) 一种多用户接入方法及装置
CN116114227A (zh) 一种分集通信的方法及装置
JPWO2016136491A1 (ja) 送信装置及び受信装置
WO2017148430A1 (zh) 传输信息的方法和装置
JP2014230206A (ja) 送信器、受信器、無線通信システム、送信方法、受信方法、および受信プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15854680

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15523461

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015854680

Country of ref document: EP