WO2014172911A1 - 一种信号发送和检测方法及收发器、控制实体 - Google Patents

一种信号发送和检测方法及收发器、控制实体 Download PDF

Info

Publication number
WO2014172911A1
WO2014172911A1 PCT/CN2013/074870 CN2013074870W WO2014172911A1 WO 2014172911 A1 WO2014172911 A1 WO 2014172911A1 CN 2013074870 W CN2013074870 W CN 2013074870W WO 2014172911 A1 WO2014172911 A1 WO 2014172911A1
Authority
WO
WIPO (PCT)
Prior art keywords
side transceiver
prbs
network side
user
transceiver
Prior art date
Application number
PCT/CN2013/074870
Other languages
English (en)
French (fr)
Inventor
何孝月
刘建华
王祥
石操
周斌
法兹罗拉西·阿米尔
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2013/074870 priority Critical patent/WO2014172911A1/zh
Priority to CN201380000360.5A priority patent/CN104380639B/zh
Publication of WO2014172911A1 publication Critical patent/WO2014172911A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3405Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power
    • H04L27/3444Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power by applying a certain rotation to regular constellations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/345Modifications of the signal space to allow the transmission of additional information
    • H04L27/3455Modifications of the signal space to allow the transmission of additional information in order to facilitate carrier recovery at the receiver end, e.g. by transmitting a pilot or by using additional signal points to allow the detection of rotations

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a signal transmission and detection method, a transceiver, and a control entity.
  • DSL Digital Subscriber Line
  • UTP Unshielded Twist Pair
  • ADSL Asymmetric Digital Subscriber Line
  • VDSL Very-high
  • VDSL2 Very good-high-bit-rate Digital Subscriber Line 2
  • B SHDSL Single-pair High-bit-rate Digital Subscriber Line, single-line pair high-speed digital subscriber line
  • the XTU-0 X Transceiver Unit XTU at the ONU, the X transceiver unit on the ONU side
  • XTU-R X Transceiver Unit XTU at the Remote Side, at the remote X transceiver unit
  • the traditional DSL system detects the first symbol in the downlink direction, mainly by detecting the position of the symbol by detecting the magnitude of the energy. Since in conventional DSL systems, the frequency band used is generally low and the useful signal is much larger than the crosstalk signal, the position of the energy detection symbol can be used.
  • the industry proposes a method of detecting the position of a downlink synchronization symbol using a related technique. For example, by detecting the downlink synchronization symbols by FTU-R (Gfast Transceiver Unit at the Remote Site, Gfast at the remote transceiver unit), the position of the downlink synchronization symbol can be identified, and then according to the frame structure and super of the STDD system.
  • the frame structure parameter is used to derive the position of the uplink synchronization symbol.
  • the precondition for detection by the related technology is that crosstalk from other users has no correlation with the user's signal, so that even Crosstalk is strong and the starting position of the symbol can be detected accurately.
  • the present invention provides a signal transmission and detection method, a transceiver, and a control entity, which can effectively enhance the irrelevance between signals of each user. And using related techniques to detect the position of the transmitted symbol, Send high accuracy symbol detection, to avoid the phenomenon of the synchronization symbol detection errors due to false activation.
  • a first aspect provides a signaling method, where the method includes: a network side transceiver is connected to a port of a corresponding user side transceiver through the local port; and the network side transceiver receives a pseudo random selected by the control entity to the local port.
  • the generation parameters of the PRBS include: initial state of the PRBS register and/or PRBS generation a polynomial; the network side transceiver generates a PRBS bit of the local port by using the generated parameter of the PRBS allocated to the local port; and the network side transceiver uses the PRBS bit of the local port to perform a constellation point rotation to generate a transmission signal. , sent to the user side.
  • the method further includes: the network side transceiver receiving a generation parameter of a PRBS allocated by a control entity to a user side transceiver corresponding to the local port, and The generation parameter of the PRBS allocated to the user side transceiver corresponding to the local port is notified by a message to the user side transceiver corresponding to the local port.
  • the method further includes: sending, receiving, and receiving, by the network side Receiving a transmission signal from a user-side transceiver corresponding to the local port; the network-side transceiver generates a PRBS bit for detection using the generation parameter of the PRBS allocated to the user-side transceiver corresponding to the local port; The network side transceiver performs the constellation point rotation by using the PRBS bit for detecting, generates a reference signal, performs correlation operation on the reference signal and the received signal of the user side transceiver, and detects that the user side sends the symbol. Location.
  • the network side transceiver generates a PRBS of the local port by using the generated parameter of the PRBS allocated to the local port
  • the bit includes: the network side transceiver uses the initial state of the PRBS register allocated to the local port, and combines the system default PRBS generation polynomial to generate the PRBS bit of the local port; or the network side transceiver uses the allocated port a PRBS generating polynomial, in combination with a system default PRBS register initial state, generating a PRBS bit of the local port; or, the network side transceiver uses an initial state of a PRBS register allocated to the port and a PRBS generating polynomial to generate the The PRBS bit of this port.
  • a second aspect provides a signal detecting method, where the method includes: a user side transceiver is connected to a port of a corresponding network side transceiver through the local port; and the user side transceiver receives and demodulates a network corresponding to the port.
  • the message sent by the side transceiver obtains a generation parameter of a pseudo-random binary sequence PRBS allocated by the control entity carried in the message to the network side transceiver corresponding to the local port;
  • the generation parameters of the PRBS include: a PRBS register An initial state and/or a PRBS generation polynomial;
  • the user side transceiver receives a transmission signal from the network side transceiver;
  • the user side transceiver uses the network side transceiver assigned to the local port
  • the PRBS generation parameter generates a PRBS bit for detecting a symbol transmitted by the network side transceiver.
  • the method further includes: the user side transceiver demodulating the message, and obtaining a generation parameter of a PRBS allocated by the control entity carried in the message to the local port;
  • the user side transceiver generates the PRBS bit of the local port by using the generated parameter of the PRBS allocated to the local port;
  • the user side transceiver performs the constellation point rotation by using the PRBS bit of the local port, generates a transmission signal, and sends the signal to the network. side.
  • the user side transceiver uses the network side transceiver corresponding to the local port.
  • the generating parameters of the PRBS, generating the PRBS bit comprises: the user side transceiver generating the PRBS bit by using a PRBS register initial state allocated to the network side transceiver corresponding to the local port, in combination with a system default PRBS generation polynomial; Alternatively, the user-side transceiver generates a PRBS bit by using a PRBS generation polynomial assigned to the network-side transceiver corresponding to the local port, in combination with a system default PRBS register initial state; or the user-side transceiver The PRBS bit is generated using an initial state of a PRBS register assigned to the network side transceiver corresponding to the port and a PRBS generator polynomial.
  • the third aspect provides a method for allocating a generation parameter of a PRBS, where the method includes: the control entity generates a corresponding pseudo-random binary for the network side transceiver and the user side transceiver corresponding to the network side transceiver respectively.
  • the generating parameters of the PRBS generated by the transceiver are sent to the network side transceiver, so that the network side transceiver generates the PRBS bit of the network side transceiver according to the generated parameter of the received PRBS.
  • the generating, by the control entity, the network-side transceiver or the user-side transceiver corresponding to the network-side transceiver, the corresponding PRBS generation parameter includes: An orthogonal pilot sequence allocated by each network side transceiver or a user side transceiver corresponding to the network side transceiver, corresponding to each network side transceiver or a user side transceiver corresponding to the network side transceiver The initial state of the PRBS register.
  • the foregoing is configured according to a user side transceiver corresponding to each network side transceiver or the network side transceiver Orthogonal pilot sequences are generated corresponding to each network side transceiver or a user side transceiver corresponding to the network side transceiver
  • the initial state of the PRBS register includes: the control entity assigns a corresponding orthogonal pilot sequence to each network side transceiver or a user side transceiver corresponding to the network side transceiver; the control entity receives and receives from each network side
  • the L-bit sequence is selected from the orthogonal pilot sequences corresponding to the user-side transceivers corresponding to the network-side transceivers, and the +1 in the selected L-bit sequence is corresponding to 1, and -1 corresponds to 0.
  • the device or the initial state of the PRBS register corresponding to the user-side transceiver corresponding to the network-side transceiver performs a pairwise comparison, if the network-side transceiver or the PRBS register corresponding to the user-side transceiver corresponding to the network-side transceiver
  • the initial state is the same as the initial state of the other at least one PRBS register, and the control entity is from the network side transceiver or the network
  • the L-bit sequence is reselected in the orthogonal pilot sequence corresponding to the user-side transceiver corresponding to the side transceiver, and the newly selected L-bit sequence is compared with the initial state of all other PRBS registers until the selected one is selected
  • the L bit sequence is different from the initial state of any other PRBS register, and +1 of the L bit sequence which is different from the initial state of any other PRBS register is corresponding to 1, and -1 corresponds to 0.
  • the initial state of the PRBS register as the network side transceiver or the user side transceiver corresponding to the network side transceiver.
  • a third possible implementation manner of the third aspect is configured according to a user side transceiver corresponding to each network side transceiver or the network side transceiver
  • An orthogonal pilot sequence generating an initial state of a PRBS register corresponding to each network side transceiver or a user side transceiver corresponding to the network side transceiver, comprising: the control entity generating and the network side transceiver or Network side transceiver
  • Corresponding user-side transceivers correspond to orthogonal pilot sequence matrices.
  • the first M rows are sequentially selected, allocated to M network side transceivers or transmitted and received with the network side.
  • a user-side transceiver corresponding to the user as an orthogonal pilot sequence of each network side transceiver or a user side transceiver corresponding to the network side transceiver; wherein, M is the total number of users supported by the distribution point;
  • the entity selects an L-bit sequence from each of the network-side transceivers or the user-side transceivers corresponding to the network-side transceivers, wherein the control entity is from the orthogonal pilot sequence
  • the first column starts to sequentially select L bits as the L bit sequence; when M ⁇ 2 ' 7 ( ⁇ ( )) , the control entity transmits and receives each network side transceiver or the user side corresponding to the network side transceiver
  • the +1 in the L bit sequence corresponding to the device corresponds to 1, and the -1 corresponds to 0 as the initial state of the
  • L-bit sequence are not the same sequence corresponding to the +1 to correspond to 0, the initial state 1, -1 PRBS register as a transceiver or network side corresponding to the user-side network transceiver of the transceivers.
  • the selecting the L bit sequence from the orthogonal pilot sequence includes: if the orthogonal If the length N of the pilot sequence is greater than or equal to the length L of the PRBS register, a bit sequence having a length equal to L is selected from the orthogonal pilot sequences; if the length N of the orthogonal pilot sequence is smaller than the PRBS register For the length L, (LN) 0 or 1 is added at the end of each orthogonal pilot sequence, and a bit sequence of length L equal to L is selected from the sequence of increasing length.
  • the generating, by the control entity, a corresponding PRBS generation parameter, for the network side transceiver or the user side transceiver corresponding to the network side transceiver includes: the control entity acquires each Port number information of the network side transceiver or the user side transceiver corresponding to the network side transceiver, and generating a user side transceiver corresponding to each network side transceiver or the network side transceiver according to the port number information Corresponding The initial state of the PRBS register.
  • the generating, by the control entity, the corresponding PRBS generation parameter for the network side transceiver or the user side transceiver corresponding to the network side transceiver includes: the control entity reads The initial state table of the preset PRBS register selects an initial state of the corresponding PRBS register for each network side transceiver or a user side transceiver corresponding to the network side transceiver.
  • a network side transceiver configured to include: a receiving unit, configured to receive a generating parameter of a pseudo random binary sequence PRBS allocated by the control entity to the network side transceiver, where the PRBS Generating parameters include: an initial state of the PRBS register and/or a PRBS generator polynomial; and a sending unit, configured to notify, by the message, the generation parameter of the PRBS allocated to the network side transceiver to the network side transceiver a user side transceiver; a processing unit, configured to generate a PRBS bit of the network side transceiver by using a generation parameter of the PRBS allocated to the network side transceiver, and perform a constellation point by using a PRBS bit of the network side transceiver Rotating to generate a transmission signal; the sending unit is further configured to send the transmission signal to the user side.
  • the receiving unit is further configured to receive, by the control entity, a generation parameter of a PRBS that is allocated to a user-side transceiver corresponding to the network side transceiver; And generating, by the message, the generation parameter of the PRBS allocated to the user side transceiver corresponding to the network side transceiver to the user side transceiver corresponding to the network side transceiver.
  • the receiving unit is further configured to receive a user side transceiver corresponding to the network side transceiver
  • the processing unit is further configured to generate a PRBS bit for detection by using the generated parameter of the PRBS allocated to the user-side transceiver corresponding to the network-side transceiver, and use the PRBS for detecting The bit performs a constellation point rotation to generate a reference signal, and correlates the reference signal with the received transmission signal of the user side transceiver to detect the position of the symbol transmitted by the user side.
  • the processing unit includes: a first processing subunit, configured to use the network side transceiver The initial state of the PRBS register, combined with the system default PRBS generator polynomial, generates the PRBS bit of the network side transceiver; or the second processing subunit is configured to generate a polynomial using the PRBS allocated to the network side transceiver, a default PRBS register initial state of the system, generating a PRBS bit of the network side transceiver; or a third processing subunit, configured to generate an initial state and a PRBS generator polynomial of the PRBS register allocated to the network side transceiver The PRBS bit of the network side transceiver.
  • a fifth aspect provides a user side transceiver, where the user side transceiver includes: a receiving unit, configured to connect Receiving a message sent by the network side transceiver corresponding to the user side transceiver; the processing unit, configured to demodulate the message, and obtain, by the control entity carried in the message, the control entity corresponding to the user side transceiver a generating parameter of the pseudo-random binary sequence PRBS of the network side transceiver; the generating parameter of the PRBS includes: an initial state of the PRBS register and/or a PRBS generating polynomial; and the receiving unit is further configured to receive and receive from the network side The processing unit is further configured to generate, by using the generated parameter of the PRBS allocated to the network side transceiver corresponding to the user side transceiver, to generate the network side transceiver to send The PRBS bit of the symbol.
  • the network side transceiver further includes: a sending unit, where the processing unit is further configured to: demodulate the message, and obtain a control entity allocation carried in the message Generating a PRBS generation parameter of the user side transceiver, generating a PRBS bit of the user side transceiver using the generation parameter of the PRBS allocated to the user side transceiver; using a PRBS bit of the user side transceiver Performing a constellation point rotation to generate a transmission signal; and the sending unit is configured to send the transmission signal to the network side.
  • the processing unit includes: a first processing subunit, configured to use the user and the user The initial state of the PRBS register of the network side transceiver corresponding to the side transceiver, combined with the default PRBS generation polynomial of the system, to generate the PRBS bit; or the second processing subunit, configured to be used for sending and receiving to and from the user side a PRBS generating polynomial corresponding to the network side transceiver, and generating the PRBS bit in combination with a system default PRBS register initial state; or a third processing subunit, configured to use the corresponding to the user side transceiver The initial state of the PRBS register of the network side transceiver and the PRBS generator polynomial generate the PRBS bits.
  • the sixth aspect provides a control entity, where the control entity includes: a processing unit, configured to generate, respectively, a pseudo-random binary sequence PRBS corresponding to a network side transceiver and a user side transceiver corresponding to the network side transceiver a parameter; the generating parameter of the PRBS includes: an initial state of a PRBS register and/or a PRBS generating polynomial; and a sending unit, configured to generate the network side transceiver and a user side transceiver corresponding to the network side transceiver The generation parameter of the PRBS is sent to the network side transceiver, so that the network side transceiver generates the PRBS bit of the network side transceiver according to the generated parameter of the received PRBS.
  • a processing unit configured to generate, respectively, a pseudo-random binary sequence PRBS corresponding to a network side transceiver and a user side transceiver corresponding to the network side transceiver a parameter
  • the processing unit includes: a first processing subunit, configured to allocate according to a user side transceiver corresponding to each network side transceiver or the network side transceiver
  • the orthogonal pilot sequence generates an initial state of a PRBS register corresponding to each network side transceiver or a user side transceiver corresponding to the network side transceiver.
  • the first processing subunit includes: a first subunit, configured to allocate a corresponding orthogonal pilot sequence for each network side transceiver or a user side transceiver corresponding to the network side transceiver; the second subunit, And selecting an L-bit sequence from each of the network-side transceivers or the user-side transceivers corresponding to the network-side transceivers, and then selecting +1 of the selected L-bit sequences as 1.
  • After -1 corresponds to 0, as an initial state of a PRBS register corresponding to the network side transceiver or a user side transceiver corresponding to the network side transceiver; wherein L is the length of the initial state of the PRBS register; a three subunit, configured to perform a pairwise comparison on an initial state of a PRBS register corresponding to each network side transceiver or a user side transceiver corresponding to the network side transceiver, if the network side transceiver or the network side transceiver
  • the initial state of the PRBS register corresponding to the user-side transceiver corresponding to the device is the same as the initial state of the other at least one PRBS register, and the control entity is from the network-side transceiver or
  • the L-bit sequence is reselected in the orthogonal pilot sequence corresponding to the user-side transceiver corresponding to the network side transceiver, and the newly selected L-bit sequence is compared with the initial state of all other PRBS register
  • the L bit sequence is different from the initial state of any other PRBS register, and the +1 in the L bit sequence which is different from the initial state of any other PRBS register is corresponding to 1, and -1 corresponds to 0. Thereafter, it is an initial state of the PRBS register of the network side transceiver or the user side transceiver corresponding to the network side transceiver.
  • the first processing subunit includes: a fourth subunit, configured to generate a network side transceiver or The user side transceiver corresponding to the network side transceiver corresponds to the orthogonal pilot sequence matrix, starting from the first row of the orthogonal pilot sequence matrix, sequentially selecting the first M rows, and assigning to the M network side transceivers or a user-side transceiver corresponding to the network-side transceiver as an orthogonal pilot sequence of each network-side transceiver or a user-side transceiver corresponding to the network-side transceiver; wherein M is the total number of users supported by the distribution point a fifth subunit, configured to select an L bit sequence from each of the network side transceivers or the user side transceivers corresponding to the network side transceivers respectively; wherein the control entity The first column of the orthogonal pilot sequence starts to select L bits as the L bit sequence; when
  • the L-bit sequence corresponding to the network-side transceiver or the user-side transceiver corresponding to the network-side transceiver is different from any other L-bit sequence
  • the L-bit sequence is used as the The initial state of the PRBS register corresponding to the network side transceiver or the user side transceiver corresponding to the network side transceiver; if the network side The first L bit sequence corresponding to the transceiver or the user side transceiver corresponding to the network side transceiver is the same as the other at least one previous L bit sequence, and the control entity corresponds to the network side transceiver or the network side transceiver
  • the L-bit sequence is reselected in the orthogonal pilot sequence corresponding to the user-side transceiver, and the newly selected L-bit sequence is compared with all other L-bit sequences in pairs until the selected L-bit sequence and any other one are selected.
  • the L-bit sequences are different, and +1 of the L-bit sequence different from any other L-bit sequence is corresponding to 1, and -1 corresponds to 0, and the network side transceiver or the network is used.
  • the selecting an L bit sequence from the orthogonal pilot sequence includes: if the orthogonal If the length N of the pilot sequence is greater than or equal to the length L of the PRBS register, a bit sequence having a length equal to L is selected from the orthogonal pilot sequences; if the length N of the orthogonal pilot sequence is smaller than the PRBS register For the length L, (LN) 0 or 1 is added at the end of each orthogonal pilot sequence, and a bit sequence of length L equal to L is selected from the sequence of increasing length.
  • the processing unit includes: a second processing subunit, configured to acquire a port of each network side transceiver or a user side transceiver corresponding to the network side transceiver
  • the number information generates an initial state of the PRBS register corresponding to each of the network side transceivers or the user side transceiver corresponding to the network side transceiver based on the port number information.
  • the processing unit includes: a third processing subunit, configured to read an initial state table of a preset PRBS register, for each network side transceiver or The user side transceiver corresponding to the network side transceiver selects an initial state of the corresponding PRBS register.
  • a network for allocating a generation parameter of a PRBS comprising the network side transceiver, the user side transceiver, and the control entity.
  • the control entity allocates corresponding PRBS generation parameters (that is, the initial state of the PRBS register or the PRBS generation polynomial) to the network side transceiver and the user side transceiver corresponding to the network side transceiver, and the network side transceiver adopts
  • the control entity generates PRBS bits corresponding to the respective ports for the PRBS generation parameters respectively assigned to the respective ports, and uses the PRBS bits to perform the rotation of the constellation points, thereby maximally enhancing the randomness or irrelevance of the signals transmitted between the users, thereby
  • the user-side transceiver can detect the signal sent by the network side by using the related technology, thereby improving the detection precision of the transmitted symbol on the network side, and solving the problem of false activation caused by the detection error of the transmitted symbol on the network side.
  • FIG. 1 is a flowchart of a signal sending method according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a signal detection method according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a method for a control entity to allocate a PRBS generation parameter according to an embodiment of the present invention
  • FIG. 4 is a flowchart of a method for signaling and detecting according to a first embodiment of the present invention
  • FIG. 5 is a flowchart of a method for signaling and detecting according to Embodiment 2 of the present invention.
  • FIG. 6 is a flowchart of a method for signal transmission and detection according to Embodiment 3 of the present invention.
  • FIG. 7 is a flowchart of a method for signal transmission and detection according to Embodiment 4 of the present invention.
  • FIG. 8 is a flowchart of a method for signaling and detecting according to a fifth embodiment of the present invention.
  • FIG. 9 is a structural diagram of a network side transceiver according to Embodiment 1 of the present invention.
  • FIG. 10 is a structural diagram of a user side transceiver according to Embodiment 1 of the present invention.
  • FIG. 11 is a structural diagram of a control entity according to Embodiment 1 of the present invention.
  • FIG. 12 is a structural diagram of a network side transceiver according to Embodiment 2 of the present invention.
  • FIG. 13 is a structural diagram of a user side transceiver according to Embodiment 2 of the present invention.
  • FIG. 14 is a structural diagram of a control entity according to Embodiment 2 of the present invention.
  • FIG. 15 is a structural diagram of a network for allocating generation parameters of a PRBS according to an embodiment of the present invention. detailed description
  • the invention provides a signal transmission and detection method, a transceiver and a control entity, which can effectively enhance the irrelevance between signals of each user, and use related technologies to detect the position of the transmitted symbol, thereby improving the accuracy of transmitting the symbol detection. , to avoid false activation due to synchronization symbol detection errors.
  • the network side transceiver is connected to the port of the corresponding user side transceiver through its own port.
  • the control entity allocates corresponding PRBS generation parameters (that is, the initial state of the PRBS register or the PRBS generation polynomial) to the network side transceiver and the user side transceiver corresponding to the network side transceiver, and the network side transceiver adopts the PRBS corresponding to each port.
  • Detecting signals sent by the network side thereby The detection accuracy of the transmitted symbols on the network side is high, and the problem of false activation due to the detection error of the transmitted symbols on the network side is solved.
  • Step S10a The network side transceiver receives a generation parameter of a pseudo-random binary sequence PRBS allocated by the control entity to the local port, and generates a parameter of the PRBS generated by the port to the local port.
  • the generating parameters of the PRBS include: an initial state of the PRBS register and/or a PRBS generating polynomial; wherein the network-side transceiver passes the local port and the corresponding user-side transceiver The ports are connected.
  • Step S102a The network side transceiver generates a PRBS bit of the local port by using the generation parameter of the PRBS allocated to the local port.
  • Step S103a The network side transceiver performs the constellation point rotation by using the PRBS bit of the local port, generates a transmission signal, and sends the transmission signal to the user side.
  • the network side transceiver uses the PRBS bits corresponding to each port to modulate the transmission symbols of the corresponding bits to perform the rotation of the constellation points, thereby maximally enhancing the randomness or irrelevance of the signals transmitted between the users. Therefore, the user-side transceiver can detect the synchronization symbol sent by the network-side transceiver by using the related technology, thereby improving the position detection accuracy of the synchronization symbol sent by the network-side transceiver, and solving the problem caused by the network-side transceiver. The detection of the symbol is wrong and the problem of false activation occurs.
  • the method in the embodiment of the present invention can improve the accuracy of transmitting synchronization symbols on the user side.
  • the method in the embodiment of the present invention may implement the information exchange between the network side transceiver and the user side transceiver.
  • the method further includes: the network side transceiver receiving control entity is allocated to The generation parameter of the PRBS of the user-side transceiver corresponding to the local port, and the generation parameter of the PRBS allocated to the user-side transceiver corresponding to the local port is notified to the user-side transceiver corresponding to the local port by a message.
  • the network side may also detect the transmission signal from the user side by using a related technology, thereby improving the accuracy of detecting the transmission symbol on the user side.
  • the method further includes: the network side transceiver receiving a sending signal from a user side transceiver corresponding to the local port; the network side transceiver Generating a PRBS bit for detection using the generation parameter of the PRBS allocated to the user side transceiver corresponding to the local port; the network side transceiver performing the constellation point rotation using the PRBS bit for detection to generate a reference signal And performing a correlation operation on the reference signal and the received signal of the user-side transceiver to detect a starting position of the symbol transmitted by the user side.
  • the network side transceiver generates a local end by using the generated parameter of the PRBS allocated to the local port.
  • the PRBS bit of the port includes: the network side transceiver uses the initial state of the PRBS register allocated to the local port, and combines the system default PRBS generation polynomial to generate the PRBS bit of the local port; or, the network side transceiver uses the allocation Generating a polynomial to the PRBS of the port, and generating a PRBS bit of the local port in combination with a system default PRBS register initial state; or, the network side transceiver uses an initial state of the PRBS register allocated to the port and a PRBS generation polynomial, Generating the PRBS bit of the local port.
  • the generation parameters of the PRBS allocated by the control entity for each transceiver may be completely different. It can also be different. Therefore, it is ensured that the corresponding PRBS bits of all the transceivers on the network side may be completely different or may not be identical.
  • control entity may assign each network side transceiver an initial state of the unique PRBS register or a PRBS generation polynomial (the only means: between any two network side transceivers, the control entity allocates the PRBS register for it)
  • the initial state or PRBS generator polynomial is different.
  • the control entity may also assign a partial network side transceiver an initial state of the unique PRBS register or a PRBS generator polynomial, and another portion of the network side transceiver may be assigned an initial state of the same PRBS register or a PRBS generator polynomial.
  • control entity can determine which allocation mode to use based on the strength of the crosstalk between users. Specifically, for users who have relatively strong crosstalk between each other, the control entity may respectively allocate the initial state of the unique PRBS register or the PRBS generation polynomial to the network side transceivers corresponding to the respective users.
  • the control entity may assign the same PRBS register initial state or PRBS generator polynomial to the network side transceivers corresponding to the respective users.
  • each transceiver can be assigned an initial state of the same PRBS register or a PRBS generator polynomial.
  • the crosstalk cancellation coefficient matrix For example, it can be judged by looking at the history of the uplink crosstalk cancellation coefficient matrix and the size of the coefficients in the downlink vector precoding coefficient matrix, when the non-diagonal coefficients in the matrix, that is, the crosstalk cancellation coefficients and the diagonal coefficients in the matrix.
  • the ratio of the coefficients of the direct channel exceeds a certain threshold, it is considered that the crosstalk between the users is relatively strong, otherwise the crosstalk between the users is considered to be weak.
  • the crosstalk strength can be judged by comparing the ratio of the crosstalk channel attenuation to the direct channel attenuation.
  • the ratio of the crosstalk channel to the direct channel attenuation is ELFEXT (Equal-Level FEXT, equal horizontal far-end crosstalk)
  • a certain frequency point is greater than a certain threshold, it is considered to be a user with strong crosstalk.
  • Step S10b The user-side transceiver receives and demodulates a message sent by a network-side transceiver corresponding to the local port, and obtains a control entity carried in the message to be allocated to the a parameter for generating a pseudo-random binary sequence PRBS of the network-side transceiver corresponding to the port;
  • the generating parameter of the PRBS includes: an initial state of the PRBS register and/or a PRBS generating polynomial; wherein the user-side transceiver passes the port and the corresponding network The ports of the side transceivers are connected.
  • Step S102b The user side transceiver receives a transmission signal from the network side transceiver.
  • Step S103b The user side transceiver generates a PRBS bit for detecting a symbol transmitted by the network side transceiver by using the generation parameter of the PRBS allocated to the network side transceiver corresponding to the local port.
  • Step S104b The user side transceiver performs constellation point rotation using the PRBS bit for detection, generates a reference signal, performs correlation operation on the reference signal and the transmission signal of the network side transceiver, and detects network side transmission and reception. The location of the sync symbol sent by the device.
  • the user side transceiver performs the constellation point rotation on the transmission symbol of the network side transceiver by using the PRBS bit for detecting, generates a reference signal, and uses the reference signal to receive the network side.
  • the position of the transmitted symbol is correlated, so that the detection accuracy of the transmitted symbol on the network side can be effectively improved, and the problem of false activation due to the detection error of the transmitted symbol on the network side can be solved.
  • the user side may also use the PRBS bit corresponding to each port to perform the rotation of the constellation point, and generate a transmission signal to the network side, so that the network side transceiver can use the related technology to send the signal to the user side.
  • the detection is performed to improve the detection accuracy of the transmitted symbols on the user side.
  • the method further includes: demodulating the message by the user side transceiver, and obtaining a generation parameter of a PRBS allocated by the control entity carried in the message to the local port; the user side transceiver uses the allocation to the local
  • the PRBS generation parameter of the port generates the PRBS bit of the local port; the user side transceiver performs the constellation point rotation by using the PRBS bit of the local port, generates a transmission signal, and sends the transmission signal to the network side.
  • the user side transceiver uses the network side transceiver allocated to the local port.
  • the PRBS generation parameter, generating the PRBS bit for detection includes: the user side transceiver uses an initial state of a PRBS register allocated to the network side transceiver corresponding to the local port, and combines a system default PRBS generation polynomial to generate a The PRBS bit is used for detecting; or, the user side transceiver generates a PRBS bit by using a PRBS generation polynomial allocated to the network side transceiver corresponding to the local port, in combination with a system default PRBS register initial state; Alternatively, the user side transceiver generates the foregoing by using an initial state of a PRBS register allocated to the network side transceiver corresponding to the local port and a PRBS generation polynomial PRBS bit.
  • the initial state of the PRBS register or the PRBS generation polynomial allocated by the control entity for each transceiver may be completely different. It can also be different.
  • the specific implementation is the same as that described in the foregoing embodiment, and details are not described herein again.
  • a method for allocating a PRBS generation parameter by a control entity includes:
  • Step S101 The control entity generates, for the network side transceiver and the user side transceiver corresponding to the network side transceiver, a generation parameter of the corresponding pseudo random binary sequence PRBS; the generation parameters of the PRBS include: an initial state of the PRBS register and / or PRBS generator polynomial.
  • Step S102c The control entity sends the generated parameters of the PRBS generated by the network side transceiver and the user side transceiver corresponding to the network side transceiver to the network side transceiver, so that the network side transceiver receives according to the receiving
  • the generated parameters of the obtained PRBS generate PRBS bits of the network side transceiver.
  • the control entity generates a PRBS generation parameter corresponding to each network side transceiver and a user side transceiver corresponding to the network side transceiver (that is, an initial state of the PRBS register or a PRBS generation polynomial), and Sending to the corresponding network side transceiver and the user side transceiver corresponding to the network side transceiver, so that each network side transceiver and the user side transceiver corresponding to the network side transceiver can generate corresponding ports according to the corresponding PRBS bit.
  • the randomness or irrelevance of the signals transmitted between the transceivers on the network side can be enhanced to the greatest extent, thereby enabling the user-side transceiver to detect the transmitted symbols on the network side by using related technologies, thereby improving the network side.
  • the detection accuracy of the transmitted symbols solves the problem of false activation caused by the detection error of the transmitted symbols on the network side.
  • the PRBS generator polynomial may be completely different or not identical.
  • control entity may set an initial state or a PRBS generation polynomial of a PRBS register that is completely different or not identical for all transceivers on the network side.
  • control entity may also set the initial state or PRBS generation polynomial of the PRBS registers that are completely different or not identical for all transceivers on the user side.
  • control entity may allocate a unique PRBS register initial state or a PRBS generation polynomial for each network side transceiver; the control entity may also allocate a partial PRBS register initial state or PRBS generation polynomial for a part of the network side transceivers, Another part of the network side transceiver allocates the same PRBS registration The initial state of the device or the PRBS generator polynomial.
  • the generating, by the control entity, the corresponding PRBS generation parameter for the network side transceiver or the user side transceiver corresponding to the network side transceiver may include: receiving, by the control entity for each network side transceiver or with the network side The user-side transceiver corresponding to the device allocates an orthogonal pilot sequence, and generates an initial state of the PRBS corresponding to the network-side transceiver and/or the user-side transceiver corresponding to the network-side transceiver; or And port number information of the user side transceiver corresponding to the network side transceiver, and generating, according to the port number information, a PRBS register corresponding to each network side transceiver and a user side transceiver corresponding to the network side transceiver Or initial state of
  • the PRBS bit is used to perform constellation point rotation. Specifically, the PRBS bit is used to perform constellation point rotation on the transmission symbol for modulating the corresponding bit.
  • the transmitted symbols of the modulated corresponding bits may include synchronization symbols, data symbols, and the like.
  • the synchronization symbols are used for explanation.
  • the transmitted symbol is another symbol, the implementation process is the same as the synchronization symbol.
  • all network side transceivers and their corresponding user side transceivers adopt the same PRBS generation polynomial, and the initial state of the corresponding PRBS register is designed for each network side transceiver and its corresponding user side transceiver.
  • the initial state of the PRBS register different from other network side transceivers can be designed for all or part of the part (the part with strong crosstalk).
  • the initial state of the PRBS register of the network side transceiver and the user side transceiver corresponding thereto may be the same or different, and may be specifically set according to actual conditions.
  • the initial state of the PRBS register different from the other network side transceivers is designed as an example. .
  • the specific process of designing the initial state of the PRBS register different from other network side transceivers for some network side transceivers is similar, and will not be repeated.
  • control entity configures an OPS (Orthogonal Pilot Sequence) for each network side transceiver.
  • OPS Orthogonal Pilot Sequence
  • the initial state of the PRBS register is generated by using the orthogonal pilot sequence.
  • control entity may be a VCE (Vector Control Entity).
  • VCE Vector Control Entity
  • the VCE configures an orthogonal pilot sequence for each user.
  • the G.fast technique will be described as an example.
  • the method in the embodiment of the present invention can also be used in other DSL technologies, and the implementation process is the same as the G.fast technology, and details are not described herein again.
  • FIG. 4 there is shown a flow chart of a method of signal transmission and detection according to a first embodiment of the present invention. As shown in FIG. 4, the method includes the following steps:
  • Step S201 The user powers on, enters the Handshake phase, and the network side transceiver FTU-0 and the user side transceiver FTU-R (Gfast Transceiver Unit at the Remote Site, G.fast at the remote transceiver unit) interact.
  • the generation mode of PRBS The generation mode of PRBS.
  • FTU-0 and FTU-R establish a communication connection and interact with the PRBS generation mode.
  • the generating mode of the PRBS is: all network side transceivers adopt the same PRBS generating polynomial, and each of the orthogonal pilot sequences configured by the control entity for each network side transceiver is generated and generated.
  • the process of generating the initial state of the PRBS for the user-side transceiver corresponding to the network-side transceiver is the same, and the orthogonal pilot sequence configured by the control entity for the user-side transceiver is generated, and corresponding to each user-side transceiver is generated.
  • the initial state of the PRBS register will not be described here.
  • the network side transceiver is taken as an example to describe the process of generating a PRBS initial state or a PRBS generation polynomial for the user side transceiver. The same, no longer repeat them.
  • Step S202 The control entity generates a pilot sequence matrix according to the total number of users supported by the DP (Distribution Point), and allocates corresponding orthogonal pilot sequences for each user corresponding FTU-0 and FTU-R.
  • control entity allocates an orthogonal pilot sequence for each user corresponding to the FTU-0.
  • the process of the control entity assigning the orthogonal pilot sequence to the FTU-R is the same, and is not described here.
  • control entity may configure an orthogonal pilot sequence for each user corresponding to the FTU-0.
  • the control entity generates an orthogonal pilot matrix, where the orthogonal pilot matrix is a group of 1 or -1.
  • a matrix composed of the constituent sequences can be expressed by the following formula (1). It should be noted that the size of the orthogonal pilot sequence matrix is 2 m . Among them, ceil is the rounding up operation.
  • the control entity starts from the first row of the matrix, and sequentially selects the pre-M-row orthogonal pilot sequences and assigns them to M users, as the corresponding FTU-0 of each user.
  • Cross pilot sequence Assuming that the total number of users supported by the DP is M, the control entity starts from the first row of the matrix, and sequentially selects the pre-M-row orthogonal pilot sequences and assigns them to M users, as the corresponding FTU-0 of each user.
  • Cross pilot sequence Assuming that the total number of users supported by the DP is M, the control entity starts from the first row of the matrix, and sequentially selects the pre-M-row orthogonal pilot sequences and assigns them to M users, as the corresponding FTU-0 of each user. Cross pilot sequence.
  • control entity is not limited to the foregoing sequence selection, and the control entity may also arbitrarily select an M-line orthogonal pilot sequence from the pilot sequence matrix to allocate to M users.
  • Step S203 The control entity selects a bit sequence whose length is equal to the length of the PRBS register in the orthogonal pilot sequence corresponding to each of the FTU-0 and the FTU-R of each user, and then corresponds the +1 in each bit sequence to 1, -1 corresponds to 0 as the initial state of the PRBS register allocated by the FTU-0 and FTU-R of the user.
  • FTU-0 The following is a detailed description of FTU-0 as an example.
  • FTU-R the implementation process is the same as FTU-0, and will not be described here.
  • the bit sequence between the FTU-0 and the FTU-R corresponding to the user with strong crosstalk is guaranteed to be different, thereby ensuring the FTU-0 corresponding to the user with strong crosstalk.
  • the initial state of the PRBS register is different from that of the FTU-R.
  • the bit sequence whose length is equal to the length of the PRBS register may be: a bit sequence whose length is equal to the length of the PRBS register is selected from the orthogonal pilot sequences corresponding to each user, and then all the selected bit sequences are performed. Pairwise comparison, if there is the same bit sequence, re-select a bit sequence having a length equal to the length of the PRBS register from the orthogonal pilot sequences corresponding to the same bit sequence, and then perform a pairwise alignment on all the bit sequences. Until all bit sequences are different in two or two.
  • the length of the orthogonal pilot sequence is greater than or equal to the length of the PRBS register, a bit sequence having a length equal to the length of the PRBS register may be directly selected from the orthogonal pilot sequences. If the length of the orthogonal pilot sequence is less than the length of the PRBS register, the length of each orthogonal pilot sequence may be increased by adding a number of 0s or 1s at the end of each orthogonal pilot sequence. The length of the PRBS register is then selected from the orthogonal pilot sequence of increasing length to select a bit sequence having a length equal to the length of the PRBS register.
  • a method of selecting a bit sequence having a length equal to the length of the PRBS register will be described in detail below in a specific manner. Assume that the total number of users supported by the DP is M, and the length of the PRBS register is L (in the current VDSL2 standard, the length of the L is generally 11).
  • the size of the orthogonal pilot sequence matrix is MXN, and the length of each user's orthogonal pilot sequence is N.
  • the pre-L bit sequence may be sequentially selected starting from the beginning of the orthogonal pilot sequence (eg, bit#0 to bit#) (Ll)), and +1 in each L-bit sequence is corresponding to 1, and -1 corresponds to 0 as the initial state of the user's PRBS register.
  • each orthogonal pilot sequence may be added by adding (LN) 0s or 1s at the end of each orthogonal pilot sequence.
  • the length is increased to be equal to the length L of the PRBS register, and then +1 in the orthogonal pilot sequence after increasing the length is corresponding to 1, and -1 corresponds to 0, and is used as the initial state of the PRBS register of the user.
  • bit combination composed of 0 and/or 1 may be added at the end of each orthogonal pilot sequence.
  • all 0s, or all 1s, or both 0s may be added at the end of each orthogonal pilot sequence.
  • bit combination of 1 may be added at the end of each orthogonal pilot sequence.
  • bit combinations added by different users may be the same or different.
  • there are many methods for increasing the length of the orthogonal pilot sequence which may be, but are not limited to, the above-mentioned methods, and may be specifically set according to actual needs.
  • the orthogonal pilot sequence matrix is as shown in the formula (1), and the length N of the orthogonal pilot sequence of each user is 16.
  • the orthogonal pilot sequence of the user is al, as shown in the following equation (2):
  • the control entity When >2 ⁇ (1 ° ( )) , the control entity generates the orthogonal pilot sequence matrix, and starts from the first row, sequentially selects the first M rows of orthogonal pilot sequences, and assigns them to M users. .
  • the control entity performs a pairwise comparison on all L bit sequences corresponding to FTU-0, if the L bit sequence corresponding to FTU-0 and any other L bit sequence are If not, the L bit sequence is used as the initial state of the PRBS register corresponding to the FTU-0; if the pre-L bit sequence corresponding to the FTU-0 is identical to the other at least one pre-L bit sequence, the control entity is from the FTU- The L-bit sequence is reselected in the corresponding orthogonal pilot sequence, and the newly selected L-bit sequence is compared with all other L-bit sequences in pairs until the selected L-bit sequence and any other L-bit sequence are selected. If they are different, and +1 of the L-bit sequence which is different from any other L-bit sequence is corresponding to 1, and -1 corresponds to 0, and is the initial of the initial bit sequence PRBS register of the FTU-0. status.
  • Step S204 The control entity distributes the initial state of the PRBS register respectively allocated to the FTU-0 and the FTU-R of each user in the step S203 to the FTU-0 corresponding to each user.
  • Step S205 The FTU-0 receives an initial state of the PRBS register allocated by the control entity to the local port and the FTU-R corresponding to the local port, and allocates the allocation to the local port and the PRBS register of the FTU-R corresponding to the local port. The initial state is notified to the FTU-R corresponding to the port by a message.
  • Step S206 The FTU-R receives and demodulates the message sent by the FTU-0 corresponding to the local port, and obtains the initial state of the PRBS register allocated by the control entity carried in the message to the local port and the network side transceiver corresponding to the local port. .
  • Step S207 After entering the CHANNEL DISCOVERY phase, the FTU-0 and the corresponding FTU-R both set the initial state of the PRBS register assigned to the local port by the control entity to the system.
  • Step S208 In the Reset mode, both FTU-0 and the corresponding FTU-R set the initial state of the PRBS register received by the port to a specific stage in the Handshake phase or initialization process (eg, The initial phase of the channel discovery phase) The initial state of the interaction.
  • a specific stage in the Handshake phase or initialization process eg, The initial phase of the channel discovery phase
  • Step S209 The FTU-0 uses the initial state of the PRBS register allocated by the control entity to the local port, and combines the system default PRBS generation polynomial to generate the PRBS bit of the local port; the FTU-0 uses the PRBS bit pair of the local port.
  • the synchronization symbol rotates the constellation point to generate a downlink transmission signal, which is sent to the corresponding FTU-R.
  • Step S210 The FTU-R receives a downlink transmission signal sent from the FTU-0 corresponding thereto; the FTU-R uses the initial state of the PRBS register allocated to the corresponding FTU-0, combined with the system default Generating a polynomial, generating a PRBS bit for detecting a downlink symbol, and performing a constellation point rotation using the PRBS bit for detecting a downlink symbol, generating a reference signal, and correlating the reference signal with the received downlink transmission signal And detecting a position of the downlink synchronization symbol; determining a transmission position of the uplink synchronization symbol according to the frame structure parameters T F , ⁇ 3 and the superframe structure parameter T SF .
  • Step S211 After receiving the downlink complete 0-SIGNATURE message, the FTU-R generates the PRBS bit of the local port by using the initial state of the PRBS register allocated to the local port, and the system default PRBS generation polynomial; The FTU-R performs the constellation point rotation on the synchronization symbol by using the PRBS bit of the local port, generates an uplink transmission signal, and sends it to the corresponding FTU-0.
  • Step S212 The FTU-0 receives an uplink transmission signal from the FTU-R corresponding thereto; the FTU-0 uses the initial state of the PRBS register allocated to the corresponding FTU-R, combined with the system default PRBS Generating a polynomial, generating a PRBS bit for detecting an uplink symbol, and performing a constellation point rotation of the synchronization symbol using the PRBS bit for detecting the uplink symbol, generating a reference signal, and the reference signal and the received FTU-R Send a signal to perform correlation calculation, detect the position of the uplink synchronization symbol, and estimate the uplink synchronization symbol The deviation offset from the desired synchronization position, and the deviation offset is notified to the corresponding FTU-R for accurately adjusting the position of the uplink synchronization symbol.
  • Step S213 Completing the subsequent initialization process and entering the activation phase.
  • the far-end crosstalk cancels some signals defined in the standard GVector (ie, G.993.5), such as 0-P-VECTOR1. OP-CHA EL DISVOVERY V1 signal, etc.
  • the correlation operation is specifically: calculating a correlation between the received signal and the locally stored or generated reference signal over a certain symbol length to obtain a correlation value, and then finding a peak position in the correlation value as a starting position of the symbol.
  • the related functions are defined as follows:
  • r xy (m) J x(n)y(n + m) ( 7 )
  • r xy (m) is the cross-correlation function of the signals x(n) and y(n);
  • x(n) is the reference signal That is, the signal is transmitted;
  • y(n) is the received signal, that is, the signal after the channel delay.
  • the equation (7) means: r xy (m) at the time m is equal to the product re-phase obtained by holding x(n) stationary and y(n) shifting left by m sampling periods after the two sequences are multiplied. Add the result.
  • N the length of the signal, N is an integer greater than 1; m ranges from - (N-1 ) to (Nl ), the actual engineering Generally take 0 ⁇ N-1.
  • the transmitter For the initialization line, the transmitter (FTU-0) transmits the signal only at the position of the sync symbol, the training symbol does not transmit the signal, and the line of the showtime (speak) transmits the signal on both the sync symbol and the training symbol. Since G.fast is an STDD system, at the receiving end (FTU-R), for the initialized line, since the crosstalk signal from the showtime line has not been eliminated, it is subject to any position (except the guard interval). The crosstalk effect of the showtime line.
  • the FTU-R generates a reference signal based on the PRBS bits, and the received signal (wherein the synchronization symbol).
  • the symbol receives the crosstalk of the showtime line, and the sync symbol position receives the crosstalk and its own transmitted signal.
  • the correlation function is used to perform the correlation operation, and then the peak position of the correlation result is found, which is the position of the synchronization symbol.
  • FTU-0 and FTU-R also use the respective PRBS bits to perform the rotation of the constellation points on the transmission symbols of the modulation bit information and modulate the respective PRBS bits.
  • the transmission symbol may include, but is not limited to, a pilot symbol probe symbol, a pilot sub-lot, a Sync symbol, and the like.
  • the initial state of the PRBS register corresponding to each of the user's FTU-0 and FTU-R is generated by using the orthogonal pilot sequence configured by the control entity for each user, and the user with strong crosstalk is guaranteed.
  • the initial state of the PRBS register is different. Therefore, although all users in the first embodiment adopt the same PRBS generator polynomial, if the initial state of the user's PRBS register is not the same, then the PRBS bits of the user using different PRBS initial states are not. In the same way, FTU-0 then uses the corresponding PRBS bits to perform constellation point rotation on the sync symbols of modulation 1/0 (corresponding to pilot bits of +1/-1) bits, maximizing the random transmission of signals between users.
  • the corresponding FTU-R can detect the downlink synchronization symbol by using the related technology, thereby improving the detection precision of the downlink synchronization symbol and solving the problem of false activation caused by the error detection of the downlink synchronization symbol.
  • the FTU-R needs to be in a large Within the scope of the capture to capture the signal within the range of the synchronization symbol to do the correlation operation (currently a superframe maximum 288 symbols, that is, only one of the 288 symbols is a synchronization symbol), its complexity and difficulty are relatively large.
  • the FTU-0 may perform the constellation point rotation on the synchronization symbol by using the PRBS bit of the local port to generate a downlink transmission signal, and may further include: the FTU -0 generates a training symbol, and transmits the downlink synchronization symbol and the training symbol together with the following line signal to the corresponding FTU-R.
  • the FTU-R after receiving the downlink transmission signal (the downlink transmission signal includes a downlink synchronization symbol and a training symbol), the FTU-R first detects the location of the training symbol in the downlink transmission signal by using a correlation technique, and then according to The position of the training symbol is estimated to obtain the position of the downlink synchronization symbol.
  • the detection of the training symbols in the downlink signal by using the related technology includes: the FTU-R adopts a PRBS bit pair for detecting a downlink symbol to modulate a training symbol of a fixed byte 7E, and performs constellation point rotation. A training symbol reference signal is generated, and a correlation operation is performed on the received downlink transmission signal, and the position of the training symbol is detected.
  • And calculating the location of the downlink synchronization symbol according to the location of the training symbol may include: calculating a symbol transmission location in the downlink direction according to the location of the training symbol, and then using the PRBS bit pair of the port to modulate 1/0 (The synchronization symbol corresponding to the pilot bit is +1/-1) bit performs constellation point rotation, generates a synchronization symbol reference signal, performs correlation operation with the symbol transmission position in the downlink direction, and detects the position of the downlink synchronization symbol.
  • a superframe contains P TDD frames (P is 8 in the current standard), and there are many training symbols in a TDD frame (the total number of uplink and downlink symbols in a TDD frame in the current standard is 35). If the training symbols are detected first, the FTU-R has many opportunities to capture the training symbols and detect the position of the training symbols by the correlation technique. Therefore, the detection of the training symbols is much easier than the detection of the synchronization symbols directly. After detecting the position of the training symbol, it is possible to estimate the symbol transmission position within a TDD frame in the downlink direction.
  • synchronization symbols are typically transmitted only at the first symbol transmission location of a TDD frame.
  • the symbol transmission position in one TDD frame in the downlink direction can be derived, thereby narrowing the range in which the synchronization symbol is acquired.
  • the signal is captured at the beginning of only one TDD frame at a time, the first signal of the 8 TDD frames is captured, and then the sync symbol of 1/0 (corresponding to the pilot bits is +1/-1) bits is modulated using the PRBS bit pair.
  • the position of the downlink synchronization symbol can be detected.
  • All network side transceivers and their corresponding user side transceivers use the same PRBS generation polynomial to design the initial state of the corresponding PRBS register for each network side transceiver and its corresponding user side transceiver.
  • the control entity generates the initial state of the PRBS register corresponding to the FTU-0 by using the port number of the FTU-0; and generates the initial state of the PRBS register corresponding to the FTU-R by using the port number of the FTU-R.
  • the FTU-0 and the port number of the corresponding FTU-R are consistent.
  • FIG. 5 it is a flowchart of a method for signal transmission and detection according to Embodiment 2 of the present invention. As shown in FIG. 5, the method may include the following steps:
  • Step S301 The user powers on, enters the Handshake phase, and the FTU-0 and the FTU-R interact with the PRBS generation mode.
  • the generation mode of the PRBS is: All users adopt the same PRBS The polynomial is generated, and the initial state of the corresponding P BS register is generated by using the port number information of the FTU-0 and the FTU-R corresponding to each user.
  • Step S302 The control entity acquires port number information of FTU-0 and FTU-R respectively corresponding to each user, and generates an initial state of the PRBS register corresponding to each of the user's FTU-0 and FTU-R according to the port number information. .
  • control entity may be a VCE (Vectoring Control Entity), a PCE (Power Control Entity), or a TCE (Tiing/Time Control Entity).
  • VCE Vectoring Control Entity
  • PCE Power Control Entity
  • TCE Transmission/Time Control Entity
  • Step S303 The control entity distributes the initial state of the PRBS register allocated for each user's FTU-0 and FTU-R in step S302 to the FTU-0 corresponding to each user.
  • Step S304 The FTU-0 receives an initial state of the PRBS register allocated by the control entity to the local port and the FTU-R corresponding to the local port, and allocates the allocation to the local port and the PRBS register of the FTU-R corresponding to the local port.
  • the initial state is notified to the FTU-R corresponding to the port by a message.
  • Step S305 The FTU-R receives and demodulates the message sent by the FTU-0 corresponding to the local port, and obtains the initial state of the PRBS register allocated by the control entity carried in the message to the local port and the network side transceiver corresponding to the local port. .
  • Step S306 In the Reset mode, both FTU-0 and the corresponding FTU-R set the initial state of the PRBS register received by the port to a specific stage in the Handshake phase or initialization process (eg, The initial phase of the channel discovery phase) The initial state of the interaction.
  • a specific stage in the Handshake phase or initialization process eg, The initial phase of the channel discovery phase
  • Step S307 The FTU-0 uses the initial state of the PRBS register allocated by the control entity to the local port, and combines the system default PRBS generation polynomial to generate the PRBS bit of the local port; the FTU-0 uses the PRBS bit pair of the local port.
  • the synchronization symbol rotates the constellation point to generate a downlink transmission signal, which is sent to the corresponding FTU-R.
  • Step S308 The FTU-R receives a downlink transmission signal sent from the FTU-0 corresponding thereto; the FTU-R uses the initial state of the PRBS register allocated to the corresponding FTU-0, combined with the system default Generating a polynomial, generating a PRBS bit for detecting a downlink symbol, and performing a constellation point rotation using the PRBS bit for detecting a downlink symbol, generating a reference signal, and correlating the reference signal with the received downlink transmission signal And detecting a position of the downlink synchronization symbol; determining a transmission position of the uplink synchronization symbol according to the frame structure parameters T F , M ds and M us and the super frame structure parameter T SF .
  • Step S309 After receiving the downlink complete 0-SIGNATURE message, the FTU-R generates the initial state of the PRBS register allocated to the port, and combines the system default PRBS generation polynomial to generate The PRBS bit of the local port; the FTU-R performs the constellation point rotation on the synchronization symbol by using the PRBS bit of the local port, generates an uplink transmission signal, and sends the uplink transmission signal to the corresponding FTU-0.
  • Step S310 The FTU-0 receives an uplink transmission signal from the corresponding FTU-R; the FTU-0 uses the initial state of the PRBS register allocated to the corresponding FTU-R, combined with the system default PRBS Generating a polynomial, generating a PRBS bit for detecting an uplink symbol, and performing a constellation point rotation of the synchronization symbol using the PRBS bit for detecting the uplink symbol, generating a reference signal, and transmitting the reference signal and the received FTU-
  • the signal performs a correlation operation, detects the position of the uplink synchronization symbol, estimates the offset offset of the uplink synchronization symbol from the desired synchronization position, and notifies the offset offset to the corresponding FTU-R for accurately adjusting the position of the uplink synchronization symbol.
  • Step S311 Completing the subsequent initialization process and entering the activation phase.
  • FTU-0 and FTU-R also use the respective PRBS bits to perform the rotation of the constellation points on the transmission symbols of the modulation bit information and modulate the respective PRBS bits.
  • the transmission symbol includes pilot symbols (pilot S ymbol), sounding symbol (Probe symbol), pilot subcarrier (pilot tone), symbol synchronization (Sync symbol) and the like.
  • the initial state of the FTU-0 and the FTU-R PRBS register corresponding to each user is generated by using the port number information of the FTU-0 and the FTU-R respectively corresponding to each user, so as to ensure strong crosstalk.
  • the initial state of the PRBS register between users is different. Therefore, although all users in the second embodiment use the same PRBS generator polynomial, if the initial state of the user's PRBS register is not the same, then the PRBS bits of the user with different PRBS initial states are used. Different, then, FTU-0 uses the corresponding PRBS bit to perform constellation point rotation on the synchronization symbol of modulation 1/0 (corresponding to the pilot bit is +1/-1) bit, maximizing the signal transmission between users.
  • the randomness or the irrelevance so that the receiving end FTU can detect the downlink synchronization symbol by using the related technology, thereby improving the detection precision of the downlink synchronization symbol and solving the problem of false activation caused by the error detection of the downlink synchronization symbol.
  • the initial state of the PRBS register of the FTU-0 and the FTU-R corresponding to each user may be generated by each FTU-0 directly according to the port number information of the port. .
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • FIG. 6 is a flowchart of a method for signal transmission and detection according to a third embodiment of the present invention. As shown in FIG. 6, the method may include the following steps:
  • Step S401 The user powers on, enters the Handshake stage, and the FTU-0 and the FTU-R interact with the PRBS. Into the mode.
  • the generation mode of the PRBS is still: all users adopt the same PRBS generation polynomial, and generate FTU-0 and FTU- with each user by using the port number information of the FTU-0 corresponding to each user respectively.
  • R The initial state of the corresponding PRBS register.
  • Step S402 FTU-0 generates the port corresponding to the port according to the port number information of the port.
  • Step S403 The FTU-0 notifies the initial state of the FBS-R of the FTU-R corresponding to the local port to the FTU-R corresponding to the local port by a message.
  • Step S404 The FTU-R receives and demodulates the message sent by the FTU-0 corresponding to the local port, and obtains the initial state of the PRBS register allocated by the control entity carried in the message to the local port and the network side transceiver corresponding to the local port. .
  • Step S405 In the Reset mode, both FTU-0 and the corresponding FTU-R set the initial state of the PRBS register received by the port to a specific stage in the Handshake phase or initialization process (eg, The initial phase of the channel discovery phase) The initial state of the interaction.
  • a specific stage in the Handshake phase or initialization process eg, The initial phase of the channel discovery phase
  • Step S406 The FTU-0 uses the initial state of the PRBS register allocated by the control entity to the local port, and combines the system default PRBS generation polynomial to generate a PRBS bit of the local port; the FTU-0 uses the PRBS bit pair of the local port.
  • the synchronization symbol rotates the constellation point to generate a downlink transmission signal, which is sent to the corresponding FTU-R.
  • Step S407 The FTU-R receives a downlink transmission signal sent from the FTU-0 corresponding thereto; the FTU-R uses the initial state of the PRBS register allocated to the corresponding FTU-0, combined with the system default Generating a polynomial, generating a PRBS bit for detecting a downlink symbol, and performing a constellation point rotation using the PRBS bit for detecting a downlink symbol, generating a reference signal, and correlating the reference signal with the received downlink transmission signal And detecting a position of the downlink synchronization symbol; determining a transmission position of the uplink synchronization symbol according to the frame structure parameters T F , M ds and M us and the super frame structure parameter T SF .
  • Step S408 After receiving the downlink complete 0-SIGNATURE message, the FTU-R generates the PRBS bit of the local port by using the initial state of the PRBS register allocated to the local port, and the system default PRBS generation polynomial; The FTU-R performs the constellation point rotation on the synchronization symbol by using the PRBS bit of the local port, generates an uplink transmission signal, and sends it to the corresponding FTU-0.
  • Step S409 The FTU-0 receives an uplink transmission signal from the FTU-R corresponding thereto; the FTU-0 uses the initial state of the PRBS register allocated to the corresponding FTU-R, combined with the system default PRBS Generating a polynomial, generating a PRBS bit for detecting an uplink symbol, and using the method for detecting an uplink symbol
  • the P BS bit performs a constellation point rotation of the synchronization symbol, generates a reference signal, correlates the reference signal with the received transmission signal of the FTU-, detects the position of the uplink synchronization symbol, and estimates the uplink synchronization symbol and the desired synchronization position.
  • the deviation offset, and the deviation offset is notified to the corresponding FTU-R, for precisely adjusting the position of the uplink synchronization symbol.
  • Step S410 Complete the subsequent initialization process and enter the activation phase.
  • FTU-0 and FTU-R also use the respective PRBS bits to perform the rotation of the constellation points on the transmission symbols of the modulation bit information and modulate the respective PRBS bits.
  • the transmission symbol includes pilot symbols (pilot S ymbol), sounding symbol (Probe symbol), pilot subcarrier (pilot tone), symbol synchronization (Sync symbol) and the like.
  • the initial state of the PRBS register of each user is generated by using the port number information of the FTU-0 corresponding to each user, so that the initial state of the PRBS register between users with strong crosstalk is different, therefore, although all users in the second embodiment adopt the same PRBS generator polynomial, if the initial state of the user's PRBS register is not the same, the PRBS bits of the user adopting different PRBS initial states are different, and then, the FTU-0 adopts the corresponding PRBS.
  • the bit-pair modulation 1/0 (corresponding to the pilot bit is +1/-1).
  • the synchronization symbol of the bit is rotated by the constellation point to generate a transmission signal, and the rotation is performed to maximize the randomness or irrelevance of the signal transmitted between the users. Therefore, the receiving end FTU can detect the downlink synchronization symbol by using the related technology, thereby improving the detection precision of the downlink synchronization symbol, and solving the problem of false activation caused by the error detection of the downlink synchronization symbol.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • All users adopt the same PRBS generator polynomial, and set the initial state of the corresponding PRBS register for each user corresponding FTU-0 and FTU-R in advance, and save it in the initial state table of the PRBS register, by reading the PRBS
  • the initial state table of the register is set for each user to set the initial state of the corresponding PRBS register as the initial state of the user's PRBS register.
  • FIG. 7 a flowchart of a method for signal transmission and detection according to a fourth embodiment of the present invention is shown. As shown
  • the method can include the following steps:
  • Step S501 The user powers on, enters the Handshake phase, and FTU-0 and FTU-R interact with the PRBS generation mode.
  • the PRBS generation mode is: All users adopt the same PRBS generation polynomial, and read FTU-0 and FTU-R for each user by reading the initial state table of the preset PRBS register. Configure the initial state of the corresponding PRBS register.
  • Step S502 The control entity reads an initial state table of the preset PRBS register, and selects an initial state of the PRBS register corresponding to each of the user's FTU-0 and FTU-R.
  • Step S503 The control entity distributes the initial state of the PRBS register allocated for each user's FTU-0 and FTU-R in step S502 to the corresponding FTU-0 of each user.
  • Step S504 The FTU-0 receives an initial state of the PRBS register allocated by the control entity to the local port and the FTU-R corresponding to the local port, and allocates the allocation to the local port and the PRBS register of the FTU-R corresponding to the local port.
  • the initial state is notified to the FTU-R corresponding to the port by a message.
  • Step S505 The FTU-R receives and demodulates the message sent by the FTU-0 corresponding to the local port, and obtains the initial state of the PRBS register allocated by the control entity carried in the message to the local port and the network side transceiver corresponding to the local port. .
  • Step S506 In the Reset mode, both FTU-0 and the corresponding FTU-R set the initial state of the PRBS register received by the port to a specific stage in the Handshake phase or initialization process (eg, The initial phase of the channel discovery phase) The initial state of the interaction.
  • a specific stage in the Handshake phase or initialization process eg, The initial phase of the channel discovery phase
  • Step S507 The FTU-0 uses the initial state of the PRBS register allocated by the control entity to the local port, and combines the system default PRBS generation polynomial to generate the PRBS bit of the local port; the FTU-0 uses the PRBS bit pair of the local port.
  • the synchronization symbol rotates the constellation point to generate a downlink transmission signal, which is sent to the corresponding FTU-R.
  • Step S508 The FTU-R receives a downlink transmission signal sent from the FTU-0 corresponding thereto; the FTU-R uses the initial state of the PRBS register allocated to the corresponding FTU-0, combined with the system default Generating a polynomial, generating a PRBS bit for detecting a downlink symbol, and performing a constellation point rotation using the PRBS bit for detecting a downlink symbol, generating a reference signal, and correlating the reference signal with the received downlink transmission signal And detecting a position of the downlink synchronization symbol; determining a transmission position of the uplink synchronization symbol according to the frame structure parameters T F , M ds and M us and the super frame structure parameter T SF .
  • Step S509 After receiving the downlink complete 0-SIGNATURE message, the FTU-R generates the PRBS bit of the local port by using the initial state of the PRBS register allocated to the local port, and the system default PRBS generation polynomial; The FTU-R performs the constellation point rotation on the synchronization symbol by using the PRBS bit of the local port, generates an uplink transmission signal, and sends it to the corresponding FTU-0.
  • Step S510 The FTU-0 receives an uplink transmission signal from the FTU-R corresponding thereto; the FTU-0 uses the initial state of the PRBS register allocated to the FTU-R corresponding thereto, and combines the default PRBS of the system.
  • the FTU- transmit signal performs a correlation operation, detects the position of the uplink synchronization symbol, estimates the offset offset of the uplink synchronization symbol from the desired synchronization position, and notifies the offset offset to the corresponding FTU-R for accurately adjusting the uplink synchronization. The location of the symbol.
  • Step S511 Completing the subsequent initialization process and entering the activation phase.
  • FTU-0 and FTU-R also use the respective PRBS bits to perform the rotation of the constellation points on the transmission symbols of the modulation bit information and modulate the respective PRBS bits.
  • the transmission symbol includes pilot symbols (pilot S ymbol), sounding symbol (Probe symbol), pilot subcarrier (pilot tone), symbol synchronization (Sync symbol) and the like.
  • the initial state table of the corresponding PRBS register is configured for each user's FTU-0 and FTU-R as the initial of the PRBS register by reading the initial state table of the preset PRBS register.
  • the state at least to ensure that the initial state of the PRBS register between users with strong crosstalk is different, therefore, although all users in the fourth embodiment adopt the same PRBS generator polynomial, if the initial state of the user's PRBS register is not the same, then The PRBS bits of users with different PRBS initial states are different.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • all users in the fifth embodiment use the corresponding PRBS to generate a polynomial, at least to ensure that the PRBS between users with strong crosstalk is different.
  • FIG. 8 is a flowchart of a method for signaling and detecting according to a fifth embodiment of the present invention. As shown in FIG. 8, the method may include the following steps:
  • Step S601 The user powers on, enters the Handshake phase, and FTU-0 and FTU-R interact with the PRBS generation mode.
  • the PRBS is generated in a mode in which each user's FTU-0 and FTU-R adopt a corresponding PRBS generation polynomial.
  • the initial state of the PRBS register of all users may be the same or different, and is not limited herein.
  • the initial state of all users' PRBS registers can be all 1 or 0, etc., and both FTU-0 and FTU-R know the initial state.
  • Step S602 The control entity selects a corresponding PRBS generation polynomial for each user's FTU-0 and FTU-R respectively.
  • the PRBS generator polynomial can be:
  • n1 and n2 are both natural numbers and are relatively prime; and in any of the two users' PRBS generator polynomials, at least one of nl and n2 is different.
  • the above is merely a specific example of the PRBS generator polynomial.
  • the generator polynomial may be, but is not limited to, the above examples, and may be specifically set according to actual needs.
  • Step S603 The control entity distributes the PRBS generation polynomial respectively allocated to each user's FTU-0 and FTU-R to each user corresponding FTU-0.
  • Step S604 The FTU-0 receives the PRBS generating polynomial assigned to the local port and the FTU-R corresponding to the local port by the control entity, and allocates the PRBS generating polynomial through message to the local port and the FTU-R corresponding to the local port. Notify the FTU-R corresponding to this port.
  • Step S605 The FTU-R receives and demodulates the message sent by the FTU-0 corresponding to the local port, and obtains a PRBS generation multi-item allocated by the control entity carried in the message to the local port and the network side transceiver corresponding to the local port.
  • Step S606 In the Reset mode, the FTU-0 and the corresponding FTU-R both set the PRBS generating polynomial received by the port to a certain stage in the Handshake or initialization process (such as the channel discovery phase). The initial phase of the phase interaction.
  • Step S607 The FTU-0 generates a PRBS generating polynomial allocated to the local port by using the control entity, and generates a PRBS bit of the local port according to the initial state of the default PRBS register of the system; the FTU-0 uses the PRBS bit of the local port.
  • the synchronization symbol is rotated by the constellation point, and a downlink transmission signal is generated and sent to the corresponding FTU-R.
  • Step S608 The FTU-R receives a downlink transmission signal sent by the FTU-0 corresponding thereto; the FTU-R uses the PRBS generation polynomial allocated to the FTU-0 corresponding thereto, and combines the default PRBS of the system.
  • Initializing a register generating a PRBS bit for detecting a downlink symbol, and performing a constellation point rotation using the PRBS bit for detecting a downlink symbol, generating a reference signal, and correlating the reference signal with the received downlink transmission signal
  • the operation detects the position of the downlink synchronization symbol; determines the transmission position of the uplink synchronization symbol according to the frame structure parameters T F , M ds and M us and the superframe structure parameter T SF .
  • Step S609 After receiving the downlink complete 0-SIGNATURE message, the FTU-R generates a PRBS bit of the local port by using the PRBS generating polynomial allocated to the local port, and combining the initial state of the default PRBS register of the system; The FTU-R uses the PRBS bit of the local port to perform constellation point rotation on the synchronization symbol, generates an uplink transmission signal, and sends it to the corresponding FTU-0.
  • Step S610 The FTU-0 receives an uplink transmission signal from the corresponding FTU-R; the FTU-0 uses the PRBS generation polynomial assigned to the corresponding FTU-R, and is combined with the system default PRBS.
  • Initializing a state generating a PRBS bit for detecting an uplink symbol, and performing a constellation point rotation of the synchronization symbol using the PRBS bit for detecting an uplink symbol, generating a reference signal, and using the reference signal and the received FTU
  • the transmission signal of the -R performs a correlation operation, detects the position of the uplink synchronization symbol, estimates the deviation offset of the uplink synchronization symbol from the desired synchronization position, and notifies the offset offset to the corresponding FTU-R for accurately adjusting the uplink synchronization. The location of the symbol.
  • Step S611 Completing the subsequent initialization process and entering the activation phase.
  • FTU-0 and FTU-R also use the respective PRBS bits to perform the rotation of the constellation points on the transmission symbols of the modulation bit information and modulate the respective PRBS bits.
  • the transmission symbol includes pilot symbols (pilot S ymbol), sounding symbol (Probe symbol), pilot subcarrier (pilot tone), symbol synchronization (Sync symbol) and the like.
  • a corresponding PRBS generation polynomial is selected for each user's FTU-0 and FTU-R to generate a corresponding PRBS bit. Then, FTU-0 uses different PRBS bits to modulate the transmission symbols of the corresponding bits to perform constellation point rotation, thereby maximizing the randomness or irrelevance of the signals transmitted between users, thereby making the receiving end FTU
  • the downlink synchronization symbol can be detected by using the related technology, thereby improving the detection precision of the downlink synchronization symbol and solving the problem of false activation caused by the error detection of the downlink synchronization symbol.
  • the embodiment of the present invention further provides a network side transceiver. FIG.
  • the network side transceiver includes: a receiving unit U101, a processing unit U102, and a transmitting unit U103.
  • the receiving unit U101 is configured to receive a generating parameter of a pseudo-random binary sequence PRBS allocated by the control entity to the network side transceiver, where the generating parameters of the PRBS include: an initial state of the PRBS register and/or a PRBS generating polynomial.
  • the sending unit U103 is configured to notify the user side transceiver corresponding to the network side transceiver by using a generation parameter of the PRBS allocated to the network side transceiver.
  • the processing unit U102 is configured to generate a PRBS bit of the network side transceiver by using the generated parameter of the PRBS allocated to the network side transceiver, and perform a constellation point rotation by using a PRBS bit of the network side transceiver. , generate a send signal.
  • the sending unit U103 is further configured to send the sending signal to the user side.
  • the network side transceiver adopts a PRBS bit pair modulation phase corresponding to each port.
  • the rotation of the constellation points should be performed by the transmitted symbols of the bits, thereby maximally enhancing the randomness or irrelevance of the signals transmitted between the users, thereby enabling the user-side transceiver to detect the signals transmitted by the network side by using relevant technologies, thereby improving
  • the detection accuracy of the transmitted symbols on the network side solves the problem of false activation due to a detection error of the transmitted symbols on the network side.
  • the embodiment of the present invention can also implement the information exchange of the PRBS between the network side transceiver and the user side transceiver.
  • the receiving unit U101 is further configured to receive a generation parameter of a PRBS allocated by the control entity to the user side transceiver corresponding to the network side transceiver.
  • the transmitting unit U103 is further configured to notify the user-side transceiver corresponding to the network-side transceiver by the generation parameter of the PRBS allocated to the user-side transceiver corresponding to the network-side transceiver.
  • the network side may also detect the transmission signal from the user side by using a related technology, thereby improving the accuracy of detecting the transmission symbol on the user side.
  • the receiving unit U101 is further configured to receive a transmission signal from a user side transceiver corresponding to the network side transceiver. Processing unit
  • the U102 is further configured to generate, by using the generating parameter of the PRBS allocated to the user-side transceiver corresponding to the network-side transceiver, a PRBS bit for detecting, and performing, by using the PRBS bit for detecting, a constellation point rotation, A reference signal is generated, and the reference signal is correlated with the received signal of the user-side transceiver to detect the position of the symbol transmitted by the user side.
  • the processing unit U102 may include: a first processing subunit, configured to generate, by using a PRBS register initial state allocated to the network side transceiver, a system default PRBS generating polynomial to generate the network side transceiver a PRBS bit; or a second processing subunit, configured to generate a PRBS bit of the network side transceiver by using a PRBS generation polynomial allocated to the network side transceiver, in combination with a system default PRBS register initial state; or And a three processing subunit, configured to generate a PRBS bit of the network side transceiver using an initial state of a PRBS register allocated to the network side transceiver and a PRBS generation polynomial.
  • FIG. 10 is a structural diagram of a user-side transceiver according to Embodiment 1 of the present invention.
  • the user side transceiver includes: a receiving unit U201 and a processing unit U202.
  • the receiving unit U201 is configured to receive a message sent by a network side transceiver corresponding to the user side transceiver.
  • the processing unit U202 is configured to demodulate the message, and obtain a generation parameter of a pseudo-random binary sequence PRBS allocated by the control entity carried in the message to the network-side transceiver corresponding to the user-side transceiver;
  • the generation parameters of the PRBS include: an initial state of the PRBS register and/or a PRBS generator polynomial.
  • the receiving unit U201 is further configured to receive a transmission signal from the network side transceiver.
  • the processing unit U202 is further configured to generate a PRBS bit for detection by using the generated parameter of the PRBS allocated to the network side transceiver corresponding to the user side transceiver, and use the detection for detecting
  • the P BS bit performs constellation point rotation to generate a reference signal, and correlates the reference signal with the transmission signal of the network side transceiver to detect the position of the transmitted symbol on the network side.
  • the user-side transceiver uses the PRBS bit for detecting to perform a constellation point rotation on the signal sent by the network side transceiver to generate a reference signal, and uses the reference signal to locate the transmitted symbol on the received network side.
  • the detection accuracy of the transmission symbols on the network side can be effectively improved, and the problem of false activation due to the detection error of the transmission symbols on the network side can be solved.
  • the user side may also use the PRBS bit corresponding to each port to perform the rotation of the constellation point, and generate a transmission signal to the network side, so that the network side transceiver can use the related technology to send the signal to the user side.
  • the detection is performed to improve the detection accuracy of the transmitted symbols on the user side.
  • the network side transceiver further includes: a sending unit U203; the processing unit U202 is further configured to: demodulate the message, and obtain a PRBS allocated by the control entity carried in the message to the user side transceiver a generating parameter, generating a PRBS bit of the user-side transceiver by using the generated parameter of the PRBS allocated to the user-side transceiver; performing a constellation point rotation using the PRBS bit of the user-side transceiver to generate a transmission signal.
  • the sending unit U203 is further configured to send the sending signal to the network side.
  • the processing unit U202 may include: a first processing subunit, configured to use an initial state of a PRBS register allocated to the network side transceiver corresponding to the user side transceiver, and a system default PRBS generation polynomial Generating the PRBS bit; or, the second processing subunit, configured to generate, by using a PRBS generation polynomial allocated to the network side transceiver corresponding to the user side transceiver, in combination with a system default PRBS register initial state, And the third processing subunit, configured to generate the PRBS bit by using an initial state of a PRBS register allocated to the network side transceiver corresponding to the user side transceiver and a PRBS generation polynomial. .
  • FIG. 11 is a structural diagram of a control entity according to Embodiment 1 of the present invention. As shown in FIG. 11, the control entity includes: a processing unit U301 and a sending unit U302.
  • the processing unit U301 is configured to generate, for the network side transceiver and the user side transceiver corresponding to the network side transceiver, a generation parameter of a corresponding pseudo random binary sequence PRBS, where the PRBS generation parameter includes: a PRBS register Initial state and / or PRBS generator polynomial.
  • the sending unit U302 is configured to use the network side transceiver and the network side transceiver
  • the generation parameter of the PRBS generated by the user side transceiver is sent to the network side transceiver, so that the network side transceiver generates the PRBS bit of the network side transceiver according to the generated parameter of the received PRBS.
  • the control entity generates a PRBS generation parameter corresponding to each network side transceiver and a user side transceiver corresponding to the network side transceiver (that is, an initial state of the PRBS register or a PRBS generation polynomial), and Sending to the corresponding network side transceiver and the user side transceiver corresponding to the network side transceiver, so that each network side transceiver and the user side transceiver corresponding to the network side transceiver can generate corresponding ports according to the corresponding PRBS bit.
  • the randomness or irrelevance of the signals transmitted between the transceivers on the network side can be enhanced to the greatest extent, thereby enabling the user-side transceiver to detect the transmitted symbols on the network side by using related technologies, thereby improving the network side.
  • the detection accuracy of the transmitted symbols solves the problem of false activation caused by the detection error of the transmitted symbols on the network side.
  • the embodiment of the present invention can effectively enhance the robust transmission of the SOC message during the initialization process.
  • the processing unit U301 may include: a first processing subunit, configured to generate and generate according to an orthogonal pilot sequence allocated for each network side transceiver or a user side transceiver corresponding to the network side transceiver The initial state of the PRBS register corresponding to each network side transceiver or user side transceiver corresponding to the network side transceiver.
  • the processing unit U301 may further include: a second processing subunit, configured to acquire port number information of each network side transceiver or a user side transceiver corresponding to the network side transceiver, according to the port number The information generates an initial state of a PRBS register corresponding to each network side transceiver or a user side transceiver corresponding to the network side transceiver.
  • a second processing subunit configured to acquire port number information of each network side transceiver or a user side transceiver corresponding to the network side transceiver, according to the port number The information generates an initial state of a PRBS register corresponding to each network side transceiver or a user side transceiver corresponding to the network side transceiver.
  • the processing unit U301 may further include: a seventh processing subunit, configured to read an initial state table of the preset PRBS register, for each network side transceiver or a user corresponding to the network side transceiver The side transceiver selects the initial state of the corresponding PRBS register.
  • the embodiment of the present invention further provides a network side transceiver.
  • FIG. 12 is a structural diagram of a network side transceiver according to Embodiment 2 of the present invention. As shown in FIG. 12, the network side transceiver includes: a receiver U401, a processor U402, and a transmitter U403.
  • the receiver U401 is configured to receive a generation parameter of a pseudo-random binary sequence PRBS allocated by the control entity to the network side transceiver, where the generation parameters of the PRBS include: an initial state of the PRBS register and/or a PRBS generation polynomial.
  • the transmitter U403 is configured to notify, by using a message, the generation parameter of the PRBS allocated to the network side transceiver to a user side transceiver corresponding to the network side transceiver.
  • the processor U402 is configured to generate a PRBS bit of the network side transceiver by using a generated parameter of the PRBS allocated to the network side transceiver, and perform a constellation point rotation by using a PRBS bit of the network side transceiver, Generate a send signal.
  • the transmitter U403 is further configured to send the sending signal to the user side.
  • the network side transceiver performs the rotation of the constellation points by using the PRBS bits corresponding to the respective ports to modulate the transmission symbols of the corresponding bits, thereby maximally enhancing the randomness or irrelevance of the signals transmitted between the users. Therefore, the user-side transceiver can detect the signal sent by the network side by using the related technology, thereby improving the detection precision of the transmitted symbol on the network side, and solving the false activation phenomenon caused by the detection error of the transmitted symbol on the network side. problem.
  • the embodiments of the present invention can effectively enhance the robust transmission of SOC messages during initialization.
  • the embodiment of the present invention can also implement the information exchange of the PRBS between the network side transceiver and the user side transceiver.
  • the receiver U401 is further configured to receive a generation parameter of a PRBS allocated by the control entity to the user side transceiver corresponding to the network side transceiver.
  • the transmitter U403 is further configured to notify the user side transceiver corresponding to the network side transceiver by the generation parameter of the PRBS allocated to the user side transceiver corresponding to the network side transceiver.
  • the network side may also detect the transmission signal from the user side by using a related technology, thereby improving the accuracy of detecting the transmission symbol on the user side.
  • the receiver U401 is further configured to receive a transmission signal from a user side transceiver corresponding to the network side transceiver.
  • the processor U402 is further configured to generate, by using the generating parameters of the PRBS allocated to the user-side transceiver corresponding to the network-side transceiver, a PRBS bit for detection, using the PRBS bit for detecting
  • the constellation point is rotated to generate a reference signal, and the reference signal is correlated with the received signal of the user-side transceiver to detect the position of the symbol transmitted by the user side.
  • the processor U402 may include: a first sub-processor, configured to generate the network-side transceiver by using a PRBS register initial state allocated to the network-side transceiver, in combination with a system default PRBS generation polynomial a second sub-processor, configured to generate a PRBS bit of the network side transceiver by using a PRBS generation polynomial allocated to the network side transceiver, in combination with a system default PRBS register initial state; or a three sub-processor for generating a PRBS bit of the network side transceiver using an initial state of a PRBS register allocated to the network side transceiver and a PRBS generation polynomial.
  • a first sub-processor configured to generate the network-side transceiver by using a PRBS register initial state allocated to the network-side transceiver, in combination with a system default PRBS generation polynomial
  • a second sub-processor configured to generate a PRBS bit of the network side transceiver by using
  • FIG. 13 is a structural diagram of a user side transceiver according to Embodiment 2 of the present invention.
  • the user side transceiver includes: a receiver U501 and a processor U502.
  • the receiver U501 is configured to receive the whitening sent by the network side transceiver corresponding to the user side transceiver.
  • the processor U502 is configured to demodulate the message, and obtain a generation parameter of a pseudo-random binary sequence PRBS allocated by the control entity carried in the message to the network-side transceiver corresponding to the user-side transceiver;
  • the generation parameters of the PRBS include: an initial state of the PRBS register and/or a PRBS generator polynomial.
  • the receiver U501 is further configured to receive a transmission signal from the network side transceiver.
  • the processor U502 is further configured to generate a PRBS bit for detection by using the generated parameter of the PRBS allocated to the network side transceiver corresponding to the user side transceiver, and use the detection for detecting
  • the PRBS bit performs constellation point rotation to generate a reference signal, and correlates the reference signal with the transmission signal of the network side transceiver to detect the position of the transmitted symbol on the network side.
  • the user-side transceiver uses the PRBS bit for detecting to perform constellation point rotation on the transmission symbol of the network side transceiver, and generates a reference signal, and uses the reference signal to receive the network side.
  • the position of the transmitted symbol is correlated, so that the detection accuracy of the transmitted symbol on the network side can be effectively improved, and the problem of false activation due to the detection error of the transmitted symbol on the network side can be solved.
  • the user side may also use the PRBS bit corresponding to each port to perform the rotation of the constellation point, and generate a transmission signal to the network side, so that the network side transceiver can use the related technology to send the signal to the user side.
  • the detection is performed to improve the detection accuracy of the transmitted symbols on the user side.
  • the user-side transceiver further includes: a transmitter U503.
  • the processor U502 is further configured to: demodulate the message, and obtain a PRBS allocated by the control entity carried in the message to the user-side transceiver.
  • Generating a parameter generating a PRBS bit of the user side transceiver by using the generation parameter of the PRBS allocated to the user side transceiver; performing a constellation point rotation using the PRBS bit of the user side transceiver to generate a transmission signal.
  • the transmitter U503 is further configured to send the sending signal to the network side.
  • the processor U502 may include: a first sub-processor, configured to use an initial state of a PRBS register allocated to the network-side transceiver corresponding to the user-side transceiver, and a system default PRBS generation polynomial Generating the PRBS bit; or, the second sub-processor, configured to generate, by using a PRBS generation polynomial allocated to the network side transceiver corresponding to the user side transceiver, in combination with a system default PRBS register initial state, And the third sub-processor is configured to generate the PRBS bit by using an initial state and a PRBS generating polynomial of a PRBS register allocated to the network-side transceiver corresponding to the user-side transceiver.
  • a first sub-processor configured to use an initial state of a PRBS register allocated to the network-side transceiver corresponding to the user-side transceiver, and a system default PRBS generation polynomial Generating the PRBS bit
  • FIG. 14 is a structural diagram of a control entity according to Embodiment 2 of the present invention.
  • the control entity includes: a processor U601 and a transmitter U602.
  • the processor U601 is configured to generate, for the network side transceiver and the user side transceiver corresponding to the network side transceiver, a generation parameter of a corresponding pseudo random binary sequence PRBS, where the generating parameters of the PRBS include:
  • the transmitter U602 is configured to send, to the network side transceiver, the generation parameter of the PRBS generated by the network side transceiver and the user side transceiver corresponding to the network side transceiver, so that the network side transceiver is configured according to the network side transceiver
  • the generated parameters of the PRBS are generated, and the PRBS bits of the network side transceiver are generated.
  • the control entity generates a PRBS generation parameter corresponding to each network side transceiver and a user side transceiver corresponding to the network side transceiver (that is, an initial state of the PRBS register or a PRBS generation polynomial), and Sending to the corresponding network side transceiver and the user side transceiver corresponding to the network side transceiver, so that each network side transceiver and the user side transceiver corresponding to the network side transceiver can generate corresponding ports according to the corresponding PRBS bit.
  • the randomness or irrelevance of the signals transmitted between the transceivers on the network side can be enhanced to the greatest extent, thereby enabling the user-side transceiver to detect the transmitted symbols on the network side by using related technologies, thereby improving the network side.
  • the detection accuracy of the transmitted symbols solves the problem of false activation caused by the detection error of the transmitted symbols on the network side.
  • the processor U601 may include: a first sub-processor, configured to generate and generate according to an orthogonal pilot sequence allocated for each network side transceiver or a user side transceiver corresponding to the network side transceiver The initial state of the PRBS register corresponding to each network side transceiver or user side transceiver corresponding to the network side transceiver.
  • the processor U601 may further include: a second sub-processor, configured to acquire port number information of each network side transceiver or a user side transceiver corresponding to the network side transceiver, according to the port number The information generates an initial state of a PRBS register corresponding to each network side transceiver or a user side transceiver corresponding to the network side transceiver.
  • a second sub-processor configured to acquire port number information of each network side transceiver or a user side transceiver corresponding to the network side transceiver, according to the port number The information generates an initial state of a PRBS register corresponding to each network side transceiver or a user side transceiver corresponding to the network side transceiver.
  • the processor U601 may further include: a third sub-processor, configured to read an initial state table of the preset PRBS register, for each network side transceiver or a user corresponding to the network side transceiver The side transceiver selects the initial state of the corresponding PRBS register.
  • a third sub-processor configured to read an initial state table of the preset PRBS register, for each network side transceiver or a user corresponding to the network side transceiver The side transceiver selects the initial state of the corresponding PRBS register.
  • Embodiments of the present invention also provide a network for allocating generation parameters of a PRBS.
  • FIG. 15 is a structural diagram of a network for allocating generation parameters of a PRBS according to an embodiment of the present invention. As shown in FIG. 15, the network includes: a network side transceiver U701, a user side transceiver U702, and a control entity U703.
  • the network side transceiver U701 is connected to the port of the corresponding user side transceiver U702 through its own port.
  • the network side transceiver U701, the user side transceiver U702, and the control entity U703 may adopt The manner described in any of the embodiments is implemented, and details are not described herein again.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, i.e., may be located in one place, or may be distributed over multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as separate products, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开一种信号发送方法,包括:网络侧收发器接收控制实体分配给本端口的伪随机二进制序列PRBS的生成参数,并通过消息通知给用户侧收发器;网络侧收发器使用本端口的PRBS生成参数,生成本端口的PRBS比特;网络侧收发器使用本端口的PRBS比特进行星座点旋转,生成发送信号,发送给用户侧。本发明实施例还提供一种信号检测方法、分配PRBS的生成参数的方法、网络侧和用户侧收发器、以及控制实体。采用本发明实施例,能够有效增强各用户的信号之间的不相关性,并采用相关技术对发送符号的位置进行检测,提高发送符号检测的精确度,避免因同步符号检测错误而出现假激活的现象。

Description

一种信号发送和检测方法及收发器、 控制实体
技术领域 本发明涉及通信技术领域, 特别涉及一种信号发送和检测方法及收发器、控制实 体。 背景技术 经过 20多年的发展, DSL (Digital Subscriber Line, 数字用户线) 技术已经成为 电信领域的主流接入技术。 DSL技术是一种通过电话线,即 UTP( Unshielded Twist Pair, 无屏蔽双绞线) 进行数据传输的高速传输技术, 包括 ADSL (Asymmetrical Digital Subscriber Line, 非对称数字用户线)、 VDSL ( Very-high-bit-rate Digital Subscriber Line, 甚高速数字用户线)、 VDSL2 ( Very-high-bit-rate Digital Subscriber Line 2, 甚高速数字 用户线 2) 禾 B SHDSL ( Single-pair High-bit-rate Digital Subscriber Line, 单线对高速数 字用户线) 等。
DSL系列技术中在 Handshake (握手)后的第一个阶段 XTU-0(X Transceiver Unit XTU at the ONU, 在 ONU侧的 X收发器单元)经过一段时间的静默之后, 首先发送 下行信号而上行方向 XTU-R (X Transceiver Unit XTU at the Remote Side,在远端的 X 收发器单元) 保持静默。 传统 DSL系统检测下行方向的第一个符号的方法, 主要是 通过检测能量的大小来检测符号的位置。 由于在传统 DSL系统中, 采用的频段一般 比较低, 有用信号远大于串扰信号, 因此可以采用能量检测符号的位置。 但是, 对于 采用 STDD ( Synchronous Time Division Duplexing,同步时分双工)方式的最新的 DSL 技术 G.fast, 其使用的频段很高, 导致串扰很强。 即使在没有发送信号的时候, 接收 端接收到的来自其他线路的串扰信号也很大,此时就很难通过传统的能量检测的方法 来检测符号的位置。
由于最新的 DSL技术 G.fast是一种 STDD系统, 具有固定的帧结构和超帧结构, 且下行的第一个符号是同步符号。目前业界提出采用相关技术来检测下行同步符号的 位置的方法。 例如, 由 FTU-R ( Gfast Transceiver Unit at the Remote Site, Gfast在远 端的收发器单元) 对下行同步符号进行相关检测, 就可以识别下行同步符号的位置, 然后根据 STDD系统的帧结构和超帧结构参数,推算出上行同步符号的位置。采用相 关技术检测的前提条件是来自其他用户的串扰与本用户的信号没有相关性,使得即使 串扰很强, 也能准确检测出符号的起始位置。
但是,现有 DSL技术中,所有用户采用系统默认的相同的 PRBS (Pseudo-Random Binary Sequence, 伪随机二进制序列)寄存器初始状态和既定的 PRBS生成多项式产 生 PRBS比特对调制相应比特的发送符号 (例如: 调制 1/0比特的同步符号, 其对应 导频比特为 +1/-1 ; 再例如, 调制 IDLE消息 (空闲消息, 具体为 7E字节, 对应的二 进制比特为 01111111 )的数据符号进行星座点的旋转, 以及为初始化时的一些训练符 号产生调制比特, 使得不同用户的信号之间的相关性很强, 无法保证强串扰时使用相 关技术进行同步符号检测的准确性以及消息传输的鲁棒性。而且,在串扰较强的时候, 很容易导致假激活现象。 发明内容 本发明提供一种信号发送和检测方法及收发器、控制实体, 能够有效增强各用户 的信号之间的不相关性, 并采用相关技术对发送符号的位置进行检测,提高发送符号 检测的精确度, 避免因同步符号检测错误而出现假激活的现象。
第一方面, 提供一种信号发送方法, 所述方法包括: 网络侧收发器通过本端口与 对应的用户侧收发器的端口相连;所述网络侧收发器接收控制实体分配给本端口的伪 随机二进制序列 PRBS的生成参数,并把所述分配给本端口的 PRBS的生成参数通知 给与本端口对应的用户侧收发器; 所述 PRBS的生成参数包括: PRBS寄存器的初始 状态和 /或 PRBS生成多项式; 所述网络侧收发器使用所述分配给本端口的 PRBS的 生成参数, 生成本端口的 PRBS比特; 所述网络侧收发器使用所述本端口的 PRBS比 特进行星座点旋转, 生成发送信号, 发送给用户侧。
在第一方面的第一种可能的实现方式中, 所述方法还包括: 所述网络侧收发器接 收控制实体分配给与本端口对应的用户侧收发器的 PRBS的生成参数,并把所述分配 给与本端口对应的用户侧收发器的 PRBS 的生成参数通过消息通知给与本端口对应 的用户侧收发器。
结合第一方面第一种可能的实现方式, 在第一方面的第二种可能的实现方式中, 在所述生成发送信号, 发送给用户侧之后, 所述方法还包括: 所述网络侧收发器接收 来自与本端口对应的用户侧收发器的发送信号;所述网络侧收发器使用所述分配给与 本端口对应的用户侧收发器的 PRBS的生成参数生成用于检测的 PRBS比特;所述网 络侧收发器使用所述用于检测的 PRBS比特进行星座点旋转, 产生参考信号, 将所述 参考信号与接收到的用户侧收发器的发送信号进行相关运算,检测用户侧发送符号的 位置。
结合第一方面上述任一种可能的实现方式,在第一方面的第三种可能的实现方式 中, 所述网络侧收发器使用所述分配给本端口的 PRBS 的生成参数生成本端口的 PRBS比特包括: 所述网络侧收发器使用分配给本端口的 PRBS寄存器初始状态, 结 合系统默认的 PRBS生成多项式, 生成所述本端口的 PRBS比特; 或者, 所述网络侧 收发器使用分配给本端口的 PRBS生成多项式,结合系统默认的 PRBS寄存器初始状 态, 生成所述本端口的 PRBS 比特; 或者, 所述网络侧收发器使用分配给本端口的 PRBS寄存器的初始状态和 PRBS生成多项式, 生成所述本端口的 PRBS比特。
第二方面, 提供一种信号检测方法, 所述方法包括: 用户侧收发器通过本端口与 对应的网络侧收发器的端口相连;所述用户侧收发器接收并解调与本端口对应的网络 侧收发器发送的消息,获得所述消息中携带的控制实体分配给所述与本端口对应的网 络侧收发器的伪随机二进制序列 PRBS 的生成参数; 所述 PRBS 的生成参数包括: PRBS寄存器的初始状态和 /或 PRBS生成多项式;所述用户侧收发器接收来自所述网 络侧收发器的发送信号;所述用户侧收发器使用所述分配给所述与本端口对应的网络 侧收发器的 PRBS的生成参数, 生成用于检测所述网络侧收发器发送的符号的 PRBS 比特。
在第二方面的第一种可能的实现方式中, 所述方法还包括: 用户侧收发器解调所 述消息, 获得所述消息中携带的控制实体分配给本端口的 PRBS的生成参数; 所述用 户侧收发器使用所述分配给本端口的 PRBS的生成参数生成本端口的 PRBS比特;所 述用户侧收发器使用所述本端口的 PRBS比特进行星座点旋转, 生成发送信号, 发送 给网络侧。
结合第二方面上述任一种可能的实现方式,在第二方面的第二种可能的实现方式 中,所述用户侧收发器使用所述分配给所述与本端口对应的网络侧收发器的 PRBS的 生成参数, 生成 PRBS比特包括: 所述用户侧收发器使用分配给所述与本端口对应的 网络侧收发器的 PRBS寄存器初始状态, 结合系统默认的 PRBS生成多项式, 生成所 述 PRBS比特; 或者, 所述用户侧收发器使用分配给所述与本端口对应的网络侧收发 器的 PRBS生成多项式, 结合系统默认的 PRBS寄存器初始状态, 生成所述 PRBS比 特; 或者, 所述用户侧收发器使用分配给所述与本端口对应的网络侧收发器的 PRBS 寄存器的初始状态和 PRBS生成多项式, 生成所述 PRBS比特。
第三方面, 提供一种分配 PRBS的生成参数的方法, 所述方法包括: 控制实体为 网络侧收发器和与该网络侧收发器对应的用户侧收发器分别生成对应的伪随机二进 制序列 PRBS的生成参数; 所述 PRBS的生成参数包括: PRBS寄存器的初始状态和 / 或 PRBS生成多项式;所述控制实体将所述为网络侧收发器和与该网络侧收发器对应 的用户侧收发器生成的 PRBS的生成参数发送给该网络侧收发器,以便该网络侧收发 器根据接收到的 PRBS的生成参数生成该网络侧收发器的 PRBS比特。
在第三方面的第一种可能的实现方式中,所述控制实体为网络侧收发器或与该网 络侧收发器对应的用户侧收发器生成对应的 PRBS生成参数包括:所述控制实体根据 为每个网络侧收发器或与该网络侧收发器对应的用户侧收发器分配的正交导频序列, 生成与每个网络侧收发器或与该网络侧收发器对应的用户侧收发器对应的 PRBS 寄 存器的初始状态。
结合第三方面第一种可能的实现方式, 在第三方面的第二种可能的实现方式中, 所述根据为每个网络侧收发器或与该网络侧收发器对应的用户侧收发器分配的正交 导频序列,生成与每个网络侧收发器或与该网络侧收发器对应的用户侧收发器对应的
PRBS寄存器的初始状态包括: 所述控制实体为每个网络侧收发器或与该网络侧收发 器对应的用户侧收发器分配对应的正交导频序列;所述控制实体从每个网络侧收发器 或与该网络侧收发器对应的用户侧收发器分别对应的正交导频序列中选取 L 比特序 列, 再将选取得到的 L比特序列中的 +1对应为 1、 -1对应为 0后, 作为与所述网络 侧收发器或与该网络侧收发器对应的用户侧收发器对应的 PRBS寄存器的初始状态; 其中, L为 PRBS寄存器初始状态的长度; 所述控制实体对所有网络侧收发器或与该 网络侧收发器对应的用户侧收发器分别对应的 PRBS 寄存器的初始状态进行两两比 对,如果网络侧收发器或与该网络侧收发器对应的用户侧收发器对应的 PRBS寄存器 的初始状态与其他至少一个 PRBS寄存器的初始状态相同,则所述控制实体从该网络 侧收发器或与该网络侧收发器对应的用户侧收发器对应的正交导频序列中重新选取 L比特序列,并将新选取得到的 L比特序列与其他所有的 PRBS寄存器的初始状态进 行两两比较,直到选取得到的 L比特序列与其他任意一个 PRBS寄存器的初始状态均 不相同为止,并将该与其他任意一个 PRBS寄存器的初始状态均不相同的 L比特序列 中的 +1对应为 1、 -1对应为 0后, 作为该网络侧收发器或与该网络侧收发器对应的 用户侧收发器的 PRBS寄存器的初始状态。
结合第三方面第一种可能的实现方式, 在第三方面的第三种可能的实现方式中, 所述根据为每个网络侧收发器或与该网络侧收发器对应的用户侧收发器分配的正交 导频序列,生成与每个网络侧收发器或与该网络侧收发器对应的用户侧收发器对应的 PRBS寄存器的初始状态包括: 所述控制实体生成与网络侧收发器或与该网络侧收发 器对应的用户侧收发器对应正交导频序列矩阵,从所述正交导频序列矩阵的第一行开 始, 顺序选取前 M行, 分配给 M个网络侧收发器或与该网络侧收发器对应的用户侧 收发器,作为每个网络侧收发器或与该网络侧收发器对应的用户侧收发器的正交导频 序列; 其中, M 为分线点支持的用户总数; 所述控制实体从每个网络侧收发器或与 该网络侧收发器对应的用户侧收发器分别对应的正交导频序列中选取 L比特序列;其 中, 所述控制实体从所述正交导频序列的第一列开始顺序选择 L比特作为该 L比特 序列; ¾ M≤2 '7(^( ))时, 所述控制实体将每个网络侧收发器或与该网络侧收发器 对应的用户侧收发器对应的 L比特序列中的 +1对应为 1、 -1对应为 0后作为该网络 侧收发器或与该网络侧收发器对应的用户侧收发器的 PRBS 寄存器的初始状态; 其 中, L为 PRBS寄存器初始状态的长度; 当 Μ > 2^(ι^(^时, 所述控制实体对所有 网络侧收发器或与该网络侧收发器对应的用户侧收发器对应的 L 比特序列进行两两 比较,如果网络侧收发器或与该网络侧收发器对应的用户侧收发器对应的 L比特序列 与其他任意一个 L比特序列均不相同, 则将该 L比特序列作为该网络侧收发器或与 该网络侧收发器对应的用户侧收发器对应的 PRBS寄存器的初始状态;如果网络侧收 发器或与该网络侧收发器对应的用户侧收发器对应的前 L 比特序列与其他至少一个 前 L比特序列相同,则该控制实体从该网络侧收发器或与该网络侧收发器对应的用户 侧收发器对应的正交导频序列中重新选取 L比特序列, 并将新选取得到的 L比特序 列与其他所有的 L比特序列进行两两比较, 直到选取得到的 L比特序列与其他任意 一个 L比特序列均不相同为止, 并将该与其他任意一个 L比特序列均不相同的 L比 特序列中的 +1对应为 1、 -1对应为 0后, 作为该网络侧收发器或与该网络侧收发器 对应的用户侧收发器的 PRBS寄存器的初始状态。
结合第三方面第二种和第三种可能的实现方式,在第三方面的第四种可能的实现 方式中,所述从正交导频序列中选取 L比特序列包括:如果所述正交导频序列的长度 N大于等于所述 PRBS寄存器的长度 L,则从所述正交导频序列中选取长度等于 L的 比特序列; 如果所述正交导频序列的长度 N小于所述 PRBS寄存器的长度 L, 则在各 正交导频序列的末尾添加 (L-N) 个 0或 1, 再从增加长度后的序列中选取长度等于 L的比特序列。
在第三方面的第五种可能的实现方式中,所述控制实体为网络侧收发器或与该网 络侧收发器对应的用户侧收发器生成对应的 PRBS生成参数包括:所述控制实体获取 每个网络侧收发器或与该网络侧收发器对应的用户侧收发器的端口号信息,根据所述 端口号信息生成与每个网络侧收发器或与该网络侧收发器对应的用户侧收发器对应 的 PRBS寄存器的初始状态。
在第三方面的第六种可能的实现方式中,所述控制实体为网络侧收发器或与该网 络侧收发器对应的用户侧收发器生成对应的 PRBS生成参数包括:所述控制实体读取 预先设定的 PRBS寄存器的初始状态表,为每个网络侧收发器或与该网络侧收发器对 应的用户侧收发器选择对应的 PRBS寄存器的初始状态。
第四方面, 提供一种网络侧收发器, 所述网络侧收发器包括: 接收单元, 用于接 收控制实体分配给所述网络侧收发器的伪随机二进制序列 PRBS 的生成参数, 所述 PRBS的生成参数包括: PRBS寄存器的初始状态和 /或 PRBS生成多项式;发送单元, 用于把所述分配给所述网络侧收发器的 PRBS 的生成参数通过消息通知给与所述网 络侧收发器对应的用户侧收发器; 处理单元,用于使用所述分配给所述网络侧收发器 的 PRBS的生成参数生成所述网络侧收发器的 PRBS比特,使用所述网络侧收发器的 PRBS比特进行星座点旋转, 生成发送信号; 所述发送单元, 还用于将所述发送信号 发送给用户侧。
在第四方面的第一种可能的实现方式中, 所述接收单元, 还用于接收控制实体分 配给与所述网络侧收发器对应的用户侧收发器的 PRBS的生成参数; 所述发送单元, 还用于把所述分配给与所述网络侧收发器对应的用户侧收发器的 PRBS 的生成参数 通过消息通知给与所述网络侧收发器对应的用户侧收发器。
结合第四方面第一种可能的实现方式, 在第四方面的第二种可能的实现方式中, 所述接收单元, 还用于接收来自与所述网络侧收发器对应的用户侧收发器的发送信 号; 所述处理单元,还用于使用所述分配给与所述网络侧收发器对应的用户侧收发器 的 PRBS的生成参数生成用于检测的 PRBS比特,使用所述用于检测的 PRBS比特进 行星座点旋转,产生参考信号,将所述参考信号与接收到的用户侧收发器的发送信号 进行相关运算, 检测用户侧发送符号的位置。
结合第四方面上述任一种可能的实现方式,在第四方面的第三种可能的实现方式 中,所述处理单元包括:第一处理子单元,用于使用分配给所述网络侧收发器的 PRBS 寄存器初始状态,结合系统默认的 PRBS生成多项式,生成所述网络侧收发器的 PRBS 比特; 或者, 第二处理子单元, 用于使用分配给所述网络侧收发器的 PRBS生成多项 式, 结合系统默认的 PRBS寄存器初始状态, 生成所述网络侧收发器的 PRBS比特; 或者, 第三处理子单元, 用于使用分配给所述网络侧收发器的 PRBS寄存器的初始状 态和 PRBS生成多项式, 生成所述网络侧收发器的 PRBS比特。
第五方面, 提供一种用户侧收发器, 所述用户侧收发器包括: 接收单元, 用于接 收与所述用户侧收发器对应的网络侧收发器发送的消息; 处理单元,用于解调所述消 息,获得所述消息中携带的控制实体分配给所述与所述用户侧收发器对应的网络侧收 发器的伪随机二进制序列 PRBS的生成参数; 所述 PRBS的生成参数包括: PRBS寄 存器的初始状态和 /或 PRBS 生成多项式; 所述接收单元, 还用于接收来自所述网络 侧收发器的发送信号; 所述处理单元, 还用于使用所述分配给所述与所述用户侧收发 器对应的网络侧收发器的 PRBS的生成参数,生成用于检测所述网络侧收发器发送的 符号的 PRBS比特。
在第五方面的第一种可能的实现方式中, 所述网络侧收发器还包括: 发送单元; 所述处理单元,还用于解调所述消息, 获得所述消息中携带的控制实体分配给所述用 户侧收发器的 PRBS的生成参数,使用所述分配给所述用户侧收发器的 PRBS的生成 参数生成所述用户侧收发器的 PRBS比特;使用所述用户侧收发器的 PRBS比特进行 星座点旋转, 生成发送信号; 所述发送单元, 用于将所述发送信号发送给网络侧。
结合第五方面上述任一种可能的实现方式,在第五方面的第二种可能的实现方式 中, 所述处理单元包括: 第一处理子单元, 用于使用分配给所述与所述用户侧收发器 对应的网络侧收发器的 PRBS寄存器初始状态, 结合系统默认的 PRBS生成多项式, 生成所述 PRBS比特; 或者, 第二处理子单元, 用于使用分配给所述与所述用户侧收 发器对应的网络侧收发器的 PRBS生成多项式,结合系统默认的 PRBS寄存器初始状 态, 生成所述 PRBS比特; 或者, 第三处理子单元, 用于使用分配给所述与所述用户 侧收发器对应的网络侧收发器的 PRBS寄存器的初始状态和 PRBS生成多项式,生成 所述 PRBS比特。
第六方面, 提供一种控制实体, 所述控制实体包括: 处理单元, 用于为网络侧收 发器和与该网络侧收发器对应的用户侧收发器生成分别对应的伪随机二进制序列 PRBS的生成参数;所述 PRBS的生成参数包括: PRBS寄存器的初始状态和 /或 PRBS 生成多项式; 发送单元,用于将所述为网络侧收发器和与该网络侧收发器对应的用户 侧收发器生成的 PRBS的生成参数发送给该网络侧收发器,以便该网络侧收发器根据 接收到的 PRBS的生成参数生成该网络侧收发器的 PRBS比特。
在第六方面的第一种可能的实现方式中, 所述处理单元包括: 第一处理子单元, 用于根据为每个网络侧收发器或与该网络侧收发器对应的用户侧收发器分配的正交 导频序列,生成与每个网络侧收发器或与该网络侧收发器对应的用户侧收发器对应的 PRBS寄存器的初始状态。
结合第六方面第一种可能的实现方式, 在第六方面的第二种可能的实现方式中, 所述第一处理子单元包括: 第一子单元,用于为每个网络侧收发器或与该网络侧收发 器对应的用户侧收发器分配对应的正交导频序列; 第二子单元,用于从每个网络侧收 发器或与该网络侧收发器对应的用户侧收发器分别对应的正交导频序列中选取 L 比 特序列, 再将选取得到的 L比特序列中的 +1对应为 1、 -1对应为 0后, 作为与所述 网络侧收发器或与该网络侧收发器对应的用户侧收发器对应的 PRBS 寄存器的初始 状态; 其中, L为 PRBS寄存器初始状态的长度; 第三子单元, 用于对所有网络侧收 发器或与该网络侧收发器对应的用户侧收发器分别对应的 PRBS 寄存器的初始状态 进行两两比对, 如果网络侧收发器或与该网络侧收发器对应的用户侧收发器对应的 PRBS寄存器的初始状态与其他至少一个 PRBS寄存器的初始状态相同, 则所述控制 实体从该网络侧收发器或与该网络侧收发器对应的用户侧收发器对应的正交导频序 列中重新选取 L比特序列, 并将新选取得到的 L比特序列与其他所有的 PRBS寄存 器的初始状态进行两两比较,直到选取得到的 L比特序列与其他任意一个 PRBS寄存 器的初始状态均不相同为止,并将该与其他任意一个 PRBS寄存器的初始状态均不相 同的 L比特序列中的 +1对应为 1、 -1对应为 0后, 作为该网络侧收发器或与该网络 侧收发器对应的用户侧收发器的 PRBS寄存器的初始状态。
结合第六方面第一种可能的实现方式, 在第六方面的第三种可能的实现方式中, 所述第一处理子单元包括: 第四子单元,用于生成与网络侧收发器或与该网络侧收发 器对应的用户侧收发器对应正交导频序列矩阵,从所述正交导频序列矩阵的第一行开 始, 顺序选取前 M行, 分配给 M个网络侧收发器或与该网络侧收发器对应的用户侧 收发器,作为每个网络侧收发器或与该网络侧收发器对应的用户侧收发器的正交导频 序列; 其中, M 为分线点支持的用户总数; 第五子单元, 用于从每个网络侧收发器 或与该网络侧收发器对应的用户侧收发器分别对应的正交导频序列中选取 L 比特序 列; 其中, 所述控制实体从所述正交导频序列的第一列开始顺序选择 L比特作为该 L 比特序列; 当 M2^(1°g »时, 所述控制实体将每个网络侧收发器或与该网络侧收 发器对应的用户侧收发器对应的 L比特序列中的 +1对应为 1、 -1对应为 0后作为该 网络侧收发器或与该网络侧收发器对应的用户侧收发器的 PRBS寄存器的初始状态; 其中, L为 PRBS寄存器初始状态的长度; 当 M > 2^(1°g2 ( ))时, 所述控制实体对所 有网络侧收发器或与该网络侧收发器对应的用户侧收发器对应的 L 比特序列进行两 两比较,如果网络侧收发器或与该网络侧收发器对应的用户侧收发器对应的 L比特序 列与其他任意一个 L比特序列均不相同, 则将该 L比特序列作为该网络侧收发器或 与该网络侧收发器对应的用户侧收发器对应的 PRBS寄存器的初始状态;如果网络侧 收发器或与该网络侧收发器对应的用户侧收发器对应的前 L 比特序列与其他至少一 个前 L比特序列相同,则该控制实体从该网络侧收发器或与该网络侧收发器对应的用 户侧收发器对应的正交导频序列中重新选取 L比特序列, 并将新选取得到的 L比特 序列与其他所有的 L比特序列进行两两比较, 直到选取得到的 L比特序列与其他任 意一个 L比特序列均不相同为止, 并将该与其他任意一个 L比特序列均不相同的 L 比特序列中的 +1对应为 1、 -1对应为 0后, 作为该网络侧收发器或与该网络侧收发 器对应的用户侧收发器的 PRBS寄存器的初始状态。
结合第六方面第二种和第三种可能的实现方式,在第六方面的第四种可能的实现 方式中,所述从正交导频序列中选取 L比特序列包括:如果所述正交导频序列的长度 N大于等于所述 PRBS寄存器的长度 L,则从所述正交导频序列中选取长度等于 L的 比特序列; 如果所述正交导频序列的长度 N小于所述 PRBS寄存器的长度 L, 则在各 正交导频序列的末尾添加 (L-N) 个 0或 1, 再从增加长度后的序列中选取长度等于 L的比特序列。
在第六方面的第五种可能的实现方式中, 所述处理单元包括: 第二处理子单元, 用于获取每个网络侧收发器或与该网络侧收发器对应的用户侧收发器的端口号信息, 根据所述端口号信息生成与每个网络侧收发器或与该网络侧收发器对应的用户侧收 发器对应的 PRBS寄存器的初始状态。
在第六方面的第六种可能的实现方式中, 所述处理单元包括: 第三处理子单元, 用于读取预先设定的 PRBS寄存器的初始状态表,为每个网络侧收发器或与该网络侧 收发器对应的用户侧收发器选择对应的 PRBS寄存器的初始状态。
第七方面, 还提供一种分配 PRBS的生成参数的网络, 所述网络包括所述的网络 侧收发器、 所述的用户侧收发器、 以及所述的控制实体。
本发明实施例中,控制实体给网络侧收发器和与该网络侧收发器对应的用户侧收 发器分配相应的 PRBS生成参数(即为 PRBS寄存器初始状态或 PRBS生成多项式), 网络侧收发器采用控制实体为各端口分别分配的 PRBS 生成参数生成各端口分别对 应的 PRBS比特, 并使用该 PRBS比特进行星座点的旋转, 最大程度的增强用户之间 发送信号的随机性或不相关性,由此使得用户侧收发器可以采用相关技术对网络侧发 送的信号进行检测, 从而提高对网络侧的发送符号的检测精度,解决因对网络侧的发 送符号的检测错误而导致出现假激活现象的问题。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现 有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅 是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前 提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例提供的信号发送方法流程图;
图 2为本发明实施例提供的信号检测方法流程图;
图 3为本发明实施例提供的控制实体分配 PRBS的生成参数的方法流程图; 图 4为本发明具体实施方式一所述的信号发送和检测的方法流程图
图 5为本发明具体实施方式二所述的信号发送和检测的方法流程图
图 6为本发明具体实施方式三所述的信号发送和检测的方法流程图
图 7为本发明具体实施方式四所述的信号发送和检测的方法流程图
图 8为本发明具体实施方式五所述的信号发送和检测的方法流程图
图 9为本发明实施例一提供的网络侧收发器的结构图;
图 10为本发明实施例一提供的用户侧收发器的结构图;
图 11为本发明实施例一提供的控制实体的结构图;
图 12为本发明实施例二提供的网络侧收发器的结构图;
图 13为本发明实施例二提供的用户侧收发器的结构图
图 14为本发明实施例二提供的控制实体的结构图;
图 15为本发明实施例提供的分配 PRBS的生成参数的网络的结构图。 具体实施方式
本发明提供一种信号发送和检测方法及收发器、控制实体, 能够有效增强各用户 的信号之间的不相关性, 并采用相关技术对发送符号的位置进行检测,提高发送符号 检测的精确度, 避免因同步符号检测错误而出现假激活的现象。
本发明实施例中,网络侧收发器通过自身的端口与对应的用户侧收发器的端口相 连。 控制实体给网络侧收发器和与该网络侧收发器对应的用户侧收发器分配相应的 PRBS生成参数(即为 PRBS寄存器初始状态或 PRBS生成多项式), 网络侧收发器采 用各端口分别对应的 PRBS 生成参数生成各端口分别对应的 PRBS 比特, 并使用该 PRBS比特进行星座点的旋转, 最大程度的增强用户之间发送信号的随机性或不相关 性, 由此使得用户侧收发器可以采用相关技术对网络侧发送的信号进行检测, 从而提 高对网络侧的发送符号的检测精度,解决因对网络侧的发送符号的检测错误而导致出 现假激活现象的问题。
参照图 1, 为本发明实施例提供的信号发送方法。 如图 1所示, 所述方法包括: 步骤 SlOla: 网络侧收发器接收控制实体分配给本端口的伪随机二进制序列 PRBS的生成参数, 并把所述分配给本端口的 PRBS的生成参数通过消息通知给与本 端口对应的用户侧收发器; 所述 PRBS的生成参数包括: PRBS寄存器的初始状态和 /或 PRBS 生成多项式; 其中, 所述网络侧收发器通过本端口与对应的用户侧收发器 的端口相连。
步骤 S102a: 所述网络侧收发器使用所述分配给本端口的 PRBS的生成参数生成 本端口的 PRBS比特。
步骤 S103a: 所述网络侧收发器使用所述本端口的 PRBS比特进行星座点旋转, 生成发送信号, 发送给用户侧。
本发明实施例所述信号发送方法,网络侧收发器采用各端口分别对应的 PRBS比 特对调制相应比特的发送符号进行星座点的旋转,最大程度的增强用户之间发送信号 的随机性或不相关性,由此使得用户侧收发器可以采用相关技术对网络侧收发器发送 的同步符号进行检测, 从而提高对网络侧收发器发送的同步符号的位置检测精度, 解 决因对网络侧收发器发送的符号的检测错误而导致出现假激活现象的问题。另外, 本 发明实施例所述方法可以提高用户侧发送同步符号的精度。
优选的, 本发明实施例所述方法可以实现网络侧收发器与用户侧收发器之间的 PRBS的信息交互, 具体的, 所述方法还包括: 所述网络侧收发器接收控制实体分配 给与本端口对应的用户侧收发器的 PRBS的生成参数,并把所述分配给与本端口对应 的用户侧收发器的 PRBS的生成参数通过消息通知给与本端口对应的用户侧收发器。
进一步的, 本发明实施例中, 网络侧也可以采用相关技术对来自用户侧的发送信 号进行检测, 从而提高对用户侧的发送符号检测的精度。具体的, 在步骤 S103a中生 成发送信号, 发送给用户侧之后, 所述方法还包括: 所述网络侧收发器接收来自与本 端口对应的用户侧收发器的发送信号;所述网络侧收发器使用所述分配给与本端口对 应的用户侧收发器的 PRBS的生成参数生成用于检测的 PRBS比特;所述网络侧收发 器使用所述用于检测的 PRBS比特进行星座点旋转, 产生参考信号, 将所述参考信号 与接收到的用户侧收发器的发送信号进行相关运算, 检测用户侧发送符号的起始位 置。
优选的,所述网络侧收发器使用所述分配给本端口的 PRBS的生成参数生成本端 口的 PRBS比特包括:所述网络侧收发器使用分配给本端口的 PRBS寄存器初始状态, 结合系统默认的 PRBS生成多项式, 生成所述本端口的 PRBS比特; 或者, 所述网络 侧收发器使用分配给本端口的 PRBS生成多项式,结合系统默认的 PRBS寄存器初始 状态, 生成所述本端口的 PRBS比特; 或者, 所述网络侧收发器使用分配给本端口的 PRBS寄存器的初始状态和 PRBS生成多项式, 生成所述本端口的 PRBS比特。
需要说明的是, 本发明实施例中, 对于网络侧的所有收发器而言, 控制实体为各 收发器分配的 PRBS的生成参数(即为 PRBS寄存器的初始状态或 PRBS生成多项式) 可以完全不相同,也可以不完全相同。从而保证网络侧的所有收发器分别对应的 PRBS 比特可以完全不相同, 也可以不完全相同。
换言之,控制实体可以为每个网络侧收发器分配唯一的 PRBS寄存器的初始状态 或 PRBS生成多项式(所述唯一是指: 任意两个网络侧收发器之间, 控制实体为其分 配的 PRBS寄存器的初始状态或 PRBS生成多项式都不相同)。 控制实体也可以为一 部分网络侧收发器分配唯一的 PRBS寄存器的初始状态或 PRBS生成多项式,为另一 部分网络侧收发器分配相同的 PRBS寄存器的初始状态或 PRBS生成多项式。
当然,在实际应用中采用哪种分配方式,可以由控制实体进行具体的设定。当然, 在实际应用中,所述控制实体为各收发器分配的 PRBS寄存器的初始状态或 PRBS生 成多项式也可以完全相同, 在此不再赘述。进一步需要说明的是, 控制实体可以依据 用户之间串扰的强弱来确定采用哪种分配方式。具体的,对于相互之间串扰比较强的 用户,控制实体可以对该部分用户分别对应的网络侧收发器分别分配唯一的 PRBS寄 存器的初始状态或 PRBS生成多项式。而对于相互之间的串扰比较低的用户, 控制实 体可以对该部分用户分别对应的网络侧收发器分配相同的 PRBS 寄存器的初始状态 或 PRBS生成多项式。对于控制实体控制下的所有用户之间的串扰都比较低的话, 则 可以为各收发器分配完全相同的 PRBS寄存器的初始状态或 PRBS生成多项式。具体 的, 对于控制实体如何判断用户之间串扰的强弱, 目前业界有很多种实现方法。 下面 对此进行简单介绍。
例如:可以通过查看历史的上行串音抵消系数矩阵和下行矢量预编码系数矩阵中 系数的大小来进行判断, 当矩阵中的非对角线系数, 即串扰抵消系数与矩阵中的对角 线系数(即直接信道的系数)的比值超过一定的门限的时候, 就认为该部分用户之间 的串扰比较强, 否则认为该部分用户之间的串扰比较弱。
再例如: 可以通过比较串扰信道衰减和直接信道衰减的比值来判断串扰强弱, 当 串扰信道与直接信道衰减的比值 ELFEXT (Equal-Level FEXT, 等水平远端串扰) 在 某一频点大于某一阈值时, 就认为是串扰比较强的用户。
参照图 2, 为本发明实施例提供的信号检测方法。 如图 2所示, 所述方法包括: 步骤 SlOlb: 用户侧收发器接收并解调与本端口对应的网络侧收发器发送的消 息,获得所述消息中携带的控制实体分配给所述与本端口对应的网络侧收发器的伪随 机二进制序列 PRBS的生成参数; 所述 PRBS的生成参数包括: PRBS寄存器的初始 状态和 /或 PRBS 生成多项式; 其中, 用户侧收发器通过本端口与对应的网络侧收发 器的端口相连。
步骤 S102b: 所述用户侧收发器接收来自所述网络侧收发器的发送信号。
步骤 S103b: 所述用户侧收发器使用所述分配给所述与本端口对应的网络侧收发 器的 PRBS的生成参数, 生成用于检测所述网络侧收发器发送的符号的 PRBS比特。
步骤 S104b:所述用户侧收发器使用所述用于检测的 PRBS比特进行星座点旋转, 产生参考信号,将所述参考信号与所述网络侧收发器的发送信号进行相关运算, 检测 网络侧收发器发送的同步符号的位置。
本发明实施例所述信号检测方法,用户侧收发器使用所述用于检测的 PRBS比特 对网络侧收发器的发送符号进行星座点旋转,产生参考信号,利用该参考信号对接收 到的网络侧的发送符号的位置进行相关检测,从而能够有效提高网络侧的发送符号的 检测精度, 解决因网络侧的发送符号的检测错误而导致出现假激活现象的问题。
进一步的, 本发明实施例中, 用户侧也可以采用与各端口分别对应的 PRBS比特 进行星座点的旋转, 生成发送信号至网络侧, 使得网络侧收发器可以采用相关技术对 用户侧发送的信号进行检测, 从而提高对用户侧的发送符号的检测精度。具体的, 所 述方法还包括: 用户侧收发器解调所述消息, 获得所述消息中携带的控制实体分配给 本端口的 PRBS的生成参数;所述用户侧收发器使用所述分配给本端口的 PRBS的生 成参数, 生成本端口的 PRBS比特; 所述用户侧收发器使用所述本端口的 PRBS比特 进行星座点旋转, 生成发送信号, 发送给网络侧。
优选的,所述用户侧收发器使用所述分配给所述与本端口对应的网络侧收发器的
PRBS的生成参数, 生成用于检测的 PRBS比特包括: 所述用户侧收发器使用分配给 所述与本端口对应的网络侧收发器的 PRBS寄存器初始状态, 结合系统默认的 PRBS 生成多项式, 生成所述用于检测的 PRBS比特; 或者, 所述用户侧收发器使用分配给 所述与本端口对应的网络侧收发器的 PRBS生成多项式,结合系统默认的 PRBS寄存 器初始状态, 生成所述 PRBS比特; 或者, 所述用户侧收发器使用分配给所述与本端 口对应的网络侧收发器的 PRBS 寄存器的初始状态和 PRBS生成多项式, 生成所述 PRBS比特。
同样需要说明的是,本发明实施例中,对于用户侧的所有收发器分别对应的网络 侧收发器而言,控制实体为各收发器分配的 PRBS寄存器的初始状态或 PRBS生成多 项式可以完全不相同,也可以不完全相同。具体实现形式与前述实施例中描述的相同, 在此不再赘述。
参照图 3, 为本发明实施例提供的控制实体分配 PRBS的生成参数的方法。 如图 3所示, 所述方法包括:
步骤 SlOlc: 控制实体为网络侧收发器和与该网络侧收发器对应的用户侧收发器 生成分别对应的伪随机二进制序列 PRBS的生成参数; 所述 PRBS的生成参数包括: PRBS寄存器的初始状态和 /或 PRBS生成多项式。
步骤 S102c: 所述控制实体将所述为网络侧收发器和与该网络侧收发器对应的用 户侧收发器生成的 PRBS的生成参数发送给该网络侧收发器,以便该网络侧收发器根 据接收到的 PRBS的生成参数生成该网络侧收发器的 PRBS比特。
本发明实施例中,控制实体生成与每个网络侧收发器和与该网络侧收发器对应的 用户侧收发器分别对应的 PRBS生成参数(即为 PRBS寄存器的初始状态或 PRBS生 成多项式),并发送给对应的网络侧收发器和与该网络侧收发器对应的用户侧收发器, 以便每个网络侧收发器和与该网络侧收发器对应的用户侧收发器可以据此生成各端 口分别对应的 PRBS比特。由此可以最大程度的增强网络侧各收发器之间发送信号的 随机性或不相关性,由此使得用户侧收发器可以采用相关技术对网络侧的发送符号进 行检测, 从而提高对网络侧的发送符号的检测精度,解决因网络侧发送符号的检测错 误而导致出现假激活现象的问题。
需要说明的是, 本发明实施例中, 所述控制实体生成的、 与每个网络侧收发器和 与该网络侧收发器对应的用户侧收发器分别对应的伪随机二进制序列 PRBS 寄存器 的初始状态或 PRBS生成多项式可以完全不相同, 也可以不完全相同。
换言之,所述控制实体可以为网络侧的所有收发器设置完全不相同的或者是不完 全相同的 PRBS寄存器的初始状态或 PRBS生成多项式。 同样, 所述控制实体也可以 为用户侧的所有收发器设置完全不相同的或者是不完全相同的 PRBS 寄存器的初始 状态或 PRBS生成多项式。
具体的,控制实体可以为每个网络侧收发器分配唯一的 PRBS寄存器的初始状态 或 PRBS生成多项式;控制实体也可以为一部分网络侧收发器分配唯一的 PRBS寄存 器的初始状态或 PRBS生成多项式,为另一部分网络侧收发器分配相同的 PRBS寄存 器的初始状态或 PRBS生成多项式。
当然, 在实际应用中采用哪种分配方式, 可以由控制实体进行具体的设定。其具 体的设定方式与前述实施例中描述的相同, 在此不再赘述。优选的, 所述控制实体为 网络侧收发器或与该网络侧收发器对应的用户侧收发器生成对应的 PRBS 生成参数 可以包括:根据控制实体为每个网络侧收发器或与该网络侧收发器对应的用户侧收发 器分配正交导频序列, 生成与网络侧收发器和 /或与该网络侧收发器对应的用户侧收 发器对应的 PRBS初始状态; 或者是, 获取每个网络侧收发器或与该网络侧收发器对 应的用户侧收发器的端口号信息,根据所述端口号信息生成与每个网络侧收发器和与 该网络侧收发器对应的用户侧收发器对应的 PRBS寄存器的初始状态; 或者是, 读取 预先设定的 PRBS寄存器的初始状态表,为每个网络侧收发器和与该网络侧收发器对 应的用户侧收发器选择对应的 PRBS寄存器的初始状态。
进一步需要说明的是, 上述各实施例中, 使用 PRBS比特进行星座点旋转具体可 以为: 使用 PRBS比特对调制相应比特的发送符号进行星座点旋转。所述调制相应比 特的发送符号可以包括同步符号、 数据符号等。本发明下述各实施例中, 除特殊声明 之外, 均采用同步符号进行说明。 当所述发送符号为其他符号时, 其实现过程与同步 符号相同。
下面通过几种具体的实施方式对本发明实施例所述方法进行详细介绍。
具体实施方式一:
所述实施方式一中, 所有网络侧收发器和与其对应的用户侧收发器采用相同的 PRBS 生成多项式, 为每个网络侧收发器和与其对应的用户侧收发器设计相应的 PRBS寄存器的初始状态。 其中, 可以为全部或部分 (串扰较强的部分) 网络侧收发 器设计与其他网络侧收发器不同的 PRBS寄存器的初始状态。其中, 所述网络侧收发 器和与其对应的用户侧收发器的 PRBS寄存器的初始状态可以相同, 也可以不相同, 可以根据实际情况具体设定。
需要注意的是, 在本发明下述各具体实施方式中, 除特殊声明的之外, 均是以为 每个网络侧收发器设计与其他网络侧收发器不同的 PRBS 寄存器的初始状态为例进 行说明。而为部分网络侧收发器设计与其他网络侧收发器不同的 PRBS寄存器的初始 状态的具体过程与之相似, 不再进行重复叙述。
具体的, 控制实体为每个网络侧收发器配置 OPS (Orthogonal Pilot Sequence, 正 交导频序列), 实施方式一所述方法中, 利用所述正交导频序列生成 PRBS寄存器的 初始状态。 需要说明的是, 所述控制实体可以为 VCE (矢量控制实体)。 例如, 在矢量化 (Vectoring) 系统中, 为了测量上行串音抵消器和下行矢量预编码器, VCE 为每个 用户配置正交导频序列。
进一步的, 在本发明下述各具体实施方式中, 除特殊声明的之外, 均是以 G.fast 技术为例进行说明。 当然, 本发明实施例所述方法也可以用于其它的 DSL技术中, 其实现过程与 G.fast技术相同, 在此不再赘述。
参照图 4 所示, 为本发明具体实施方式一所述的信号发送和检测的方法的流程 图。 如图 4所示, 所述方法包括以下步骤:
步骤 S201 : 用户上电, 进入 Handshake (握手) 阶段, 网络侧收发器 FTU-0和 用户侧收发器 FTU-R ( Gfast Transceiver Unit at the Remote Site, G.fast在远端的收发 器单元) 交互 PRBS的生成模式。
具体的, 在握手阶段, FTU-0和 FTU-R建立通讯连接, 交互 PRBS的生成模式。 本发明具体实施方式一中, 该 PRBS 的生成模式为: 所有网络侧收发器采用相同的 PRBS生成多项式, 利用所述控制实体为每个网络侧收发器配置的正交导频序列, 生 成与每个网络侧收发器对应的 PRBS寄存器的初始状态。
当然,为与网络侧收发器对应的用户侧收发器生成 PRBS初始状态的过程与之相 同,利用控制实体为用户侧收发器配置的正交导频序列, 生成与每个用户侧收发器对 应的 PRBS寄存器的初始状态, 在此不再赘述。 需要说明的是, 本发明下述各实施方 式中, 除特殊声明的之外, 均是以网络侧收发器为例进行说明, 对用户侧收发器生成 PRBS初始状态或 PRBS生成多项式的过程与之相同, 不再赘述。
步骤 S202: 控制实体根据 DP (Distribution Point, 分线点)支持的用户总数生成 导频序列矩阵,并为每个用户分别对应的 FTU-0和 FTU-R分配对应的正交导频序列。
下面以控制实体为每个用户分别对应的 FTU-0分配正交导频序列为例进行详细 说明。 控制实体为 FTU-R分配正交导频序列的过程与之相同, 在此不再赘述。
具体的,所述控制实体为每个用户分别对应的 FTU-0配置正交导频序列可以为: 控制实体生成正交导频矩阵,所述正交导频矩阵为一组由 1或者 -1组成的序列构成的 矩阵, 可以如下式 (1 ) 所示。 需要说明的是, 所述正交导频序列矩阵的大小为 2m
Figure imgf000017_0001
其中, ceil为向上取整运算。
Figure imgf000018_0001
假设 DP支持的用户总数为 M, 则控制实体从该矩阵的最前面一行开始, 顺序选 取前 M行正交导频序列, 分配给 M个用户, 作为每个用户分别对应的 FTU-0的正 交导频序列。
当然, 在实际应用中, 并不限于上述顺序选取, 所述控制实体也可以从所述导频 序列矩阵中任意选取 M行正交导频序列分配给 M个用户。
步骤 S203: 所述控制实体在每个用户的 FTU-0和 FTU-R分别对应的正交导频 序列中, 选取长度等于 PRBS寄存器长度的比特序列, 再将各比特序列中的 +1对应 为 1、-1对应为 0后作为该用户的 FTU-0和 FTU-R分配的 PRBS寄存器的初始状态。
下面以 FTU-0为例进行详细说明。对于 FTU-R, 其实现过程与 FTU-0相同, 在 此不再赘述。
其中, 在选取所述长度等于 PRBS寄存器长度的比特序列时, 保证串扰很强的用 户对应的 FTU-0和 FTU-R之间的比特序列不同, 从而保证串扰很强的用户对应的 FTU-0和 FTU-R之间的 PRBS寄存器的初始状态不同。
具体的, 所述选取长度等于 PRBS寄存器长度的比特序列可以为: 从每个用户对 应的正交导频序列中, 分别选取长度等于 PRBS寄存器长度的比特序列, 然后对选取 得到的所有比特序列进行两两比较, 如果存在相同的比特序列, 则从所述相同的比特 序列对应的正交导频序列中重新选取长度等于 PRBS寄存器长度的比特序列,然后重 新对所有的比特序列进行两两比对, 直到所有的比特序列均两两不相同为止。
当然, 需要进一步说明的是, 如果所述正交导频序列的长度大于等于所述 PRBS 寄存器的长度,则可以直接从所述正交导频序列中选取长度等于 PRBS寄存器长度的 比特序列。如果所述正交导频序列的长度小于所述 PRBS寄存器的长度, 则可以通过 在各正交导频序列的末尾添加若干个 0或 1的方式将各正交导频序列的长度增加至等 于所述 PRBS 寄存器的长度, 然后再从增加长度后的正交导频序列中选取长度等于 PRBS寄存器长度的比特序列。
下面以一种具体的方法来详细说明选取长度等于 PRBS 寄存器长度的比特序列 的方法。假定: DP支持的用户总数为 M,所述 PRBS寄存器的长度为 L (目前 VDSL2 标准中, 所述 L的长度一般为 11 )。
( 1 ) ¾ M≤2 时, 所述控制实体生成正交导频序列矩阵后, 从最前面 一行开始, 顺序选取前 M行正交导频序列, 分配给 M个用户, 然后从每个用户的正 交导频序列中选取 L比特序列, 再将各 L比特序列中的 +1对应为 1、 -1对应为 0后 作为该用户的 PRBS寄存器的初始状态。
具体的, 所述正交导频序列矩阵的大小为 MXN, 则每个用户的正交导频序列的 长度为 N。
如果所述正交导频序列的长度 N大于等于所述 PRBS寄存器的长度 L,则可以从 所述正交导频序列的起始开始, 顺序选取前 L比特序列 (例如 bit#0至 bit# (L-l )), 再将各 L比特序列中的 +1对应为 1、 -1对应为 0后作为用户的 PRBS寄存器的初始 状态。
如果所述正交导频序列的长度 N小于所述 PRBS寄存器的长度 L,则可以通过在 各正交导频序列的末尾添加 (L-N) 个 0或 1的方式将各正交导频序列的长度增加至 等于所述 PRBS寄存器的长度 L,然后将增加长度后的正交导频序列中的 +1对应为 1、 -1对应为 0后, 作为该用户的 PRBS寄存器的初始状态。
需要说明的是, 可以在各正交导频序列的末尾添加由 0和 /或 1构成的比特组合, 例如可以在各正交导频序列的末尾添加全 0、 或全 1、 或既包含 0又包含 1的比特组 合。 且, 不同用户添加的比特组合可以相同也可以不相同。 在实际应用中, 为正交导 频序列增加长度的方法有很多种, 可以但不局限于上述的几种方式, 可以根据实际的 需要具体设定。
举例说明: 假设所述正交导频序列矩阵如式 (1 ) 所示, 可知各用户的正交导频 序列长度 N为 16。 以第一个用户为例, 该用户的正交导频序列为 al, 如下式 (2) 所示:
al = [l -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1] (2) 如果所述正交导频序列的长度 N大于等于所述 PRBS寄存器的长度 L,例如所述 PRBS寄存器的长度 L等于 11, 则可以选取前 11比特序列 al ', 如下式 (3 ) 所示: al'=[l -1 1 -1 1 -1 1 -1 1 -1 l] (3) 将式 (3) 中的 +1对应为 1、 -1对应为 0, 得到该第一个用户的 PRBS寄存器的 初始状态 pi为:
pl=[l 0 1 0 1 0 1 0 1 0 1] (4) 如果所述正交导频序列的长度 N小于所述 PRBS寄存器的长度 L,例如所述 PRBS 寄存器的长度 L等于 23, 则在式 (2) 的末尾添加 7个 0或 1组合(本实施例中以全 0为例), 使得增加长度后的序列为:
al"=[l -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 0 0 0 0 0 00]
(5) 将式 (5) 中的 +1对应为 1、 -1对应为 0, 得到该第一个用户的 PRBS寄存器的 初始状态 pi' 为:
pl'=[l 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0]
(6)
(2) 当 >2^(1° ( ))时, 所述控制实体生成正交导频序列矩阵后, 从最前面 一行开始, 顺序选取前 M行正交导频序列, 分配给 M个用户。
需要说明的是, M>2 时, 如果还按照 M≤2 时的方法, 则 很难保证从每个正交导频序列中得到的 L比特序列的独立性, 因此,无法保证满足需 要给每个用户的配置独立的 PRBS寄存器的初始状态的情况。
当 M > 2cea(lo 2(i))时, 所述控制实体对所有 FTU-0对应的 L比特序列进行两两 比较, 如果 FTU-0对应的 L比特序列与其他任意一个 L比特序列均不相同, 则将该 L比特序列作为该 FTU-0对应的 PRBS寄存器的初始状态; 如果 FTU-0对应的前 L 比特序列与其他至少一个前 L比特序列相同, 则该控制实体从该 FTU-0对应的正交 导频序列中重新选取 L比特序列, 并将新选取得到的 L比特序列与其他所有的 L比 特序列进行两两比较, 直到选取得到的 L比特序列与其他任意一个 L比特序列均不 相同为止, 并将该与其他任意一个 L比特序列均不相同的 L比特序列中的 +1对应为 1、 -1对应为 0后, 作为该 FTU-0的初始比特序列 PRBS寄存器的初始状态。
步骤 S204: 所述控制实体将所述步骤 S203中为每个用户的 FTU-0和 FTU-R分 别分配的 PRBS寄存器的初始状态分发给各用户分别对应的 FTU-0。 步骤 S205: FTU-0 接收控制实体分配给本端口和与本端口对应的 FTU-R 的 PRBS寄存器的初始状态, 并把所述分配给本端口和与本端口对应的 FTU-R的 PRBS 寄存器的初始状态通过消息通知给与本端口对应的 FTU-R。
步骤 S206: FTU-R接收并解调与本端口对应的 FTU-0发送的消息, 获得所述消 息中携带的控制实体分配给本端口和与本端口对应的网络侧收发器的 PRBS 寄存器 初始状态。
步骤 S207: 进入 CHANNEL DISCOVERY (信道发现)阶段之后, FTU-0和与 之对应的 FTU-R均将控制实体分配给本端口的 PRBS 寄存器初始状态置为系统的
PRBS寄存器初始状态。
步骤 S208: 在 Reset mode (复位模式) 下, FTU-0和与之对应的 FTU-R均将 本端口接收到的 PRBS寄存器的初始状态置为 Handshake阶段或初始化过程中的某一 特定阶段 (如信道发现阶段的前期阶段) 交互的初始状态。
步骤 S209: 所述 FTU-0使用控制实体分配给本端口的 PRBS寄存器初始状态, 结合系统默认的 PRBS生成多项式, 生成本端口的 PRBS比特; 所述 FTU-0使用所 述本端口的 PRBS比特对同步符号进行星座点旋转, 生成下行发送信号, 发送给与之 对应的 FTU-R。
步骤 S210:所述 FTU-R接收来自与之对应的 FTU-0发送的下行发送信号;所述 FTU-R使用所述分配给与之对应的 FTU-0的 PRBS寄存器初始状态, 结合系统默认 的 PRBS生成多项式, 生成用于检测下行符号的 PRBS比特, 并使用所述用于检测下 行符号的 PRBS比特进行星座点旋转, 产生参考信号, 将所述参考信号与接收到的下 行发送信号进行相关运算, 检测下行同步符号的位置; 根据帧结构参数 TF、 ^^3及超帧结构参数 TSF确定上行同步符号的发送位置。
步骤 S211 : 所述 FTU-R在接收到下行完整的 0-SIGNATURE消息之后, 使用所 述分配给本端口的 PRBS寄存器初始状态, 结合系统默认的 PRBS生成多项式, 生成 本端口的 PRBS比特; 所述 FTU-R使用所述本端口的 PRBS比特对同步符号进行星 座点旋转, 生成上行发送信号, 发送给与之对应的 FTU-0。
步骤 S212:所述 FTU-0接收来自与之对应的 FTU-R的上行发送信号;所述 FTU-0 使用所述分配给与之对应的 FTU-R的 PRBS寄存器初始状态,结合系统默认的 PRBS 生成多项式, 生成用于检测上行符号的 PRBS比特, 并使用所述用于检测上行符号的 PRBS比特进行同步符号的星座点旋转, 产生参考信号, 将所述参考信号与接收到的 FTU-R 的发送信号进行相关运算, 检测上行同步符号的位置, 来估计上行同步符号 与期望的同步位置的偏差 offset, 并将该偏差 offset通知与之对应的 FTU-R, 用于精 确调整上行同步符号的位置。
步骤 S213 : 完成后续的初始化过程, 进入激活阶段。
需要说明的是, 所述下行发送信号或上行发送信号中可以包括某些特定的信号, 例如, 远端串扰抵消标准 GVector (即 G.993.5 ) 中定义的一些信号, 比如 0-P-VECTOR1, O-P-CHA EL DISVOVERY V1信号等。
下面对通过相关运算对同步符号的位置进行检测的过程进行详细介绍。
在信号处理中经常要研究两个信号的相似性, 或一个信号经过一段延迟(比如信 道) 后自身的相似性, 以实现信号的检测与同步。
所述相关运算具体为:在一定的符号长度上对接收到的信号与本地存储或生成的 参考信号进行相关计算,得到相关值, 然后找出相关值中的峰值位置作为符号的起始 位置。 相关函数的定义如下:
rxy (m) = J x(n)y(n + m) ( 7 ) 其中: rxy (m)为信号 x(n)和 y(n)的互相关函数; x(n)为参考信号, 即发送信号; y(n)为接收到的信号, 即经过信道延迟之后的信号。 该式 (7 ) 表示: rxy(m)在时刻 m时的值等于将 x(n)保持不动而 y(n)左移 m个抽样周期后两个序列对应相乘得到的 积再相加的结果。
但是在实际应用中, 信号 x(n)总是有限长, 如 0〜N-1, 因此公式可以改为如下形 式:
N-1
(m) = x(n)y(n + w) ( 8 ) 其中, N为信号的长度, N为大于 1的整数; m的范围是从- (N-1 ) 至 (N-l ), 实际工程中一般取 0~N-1。
对于初始化线路, 其发送端(FTU-0 )只在同步符号的位置发送信号, 训练符号 不发送信号, 而激活 (showtime ) 的线路在同步符号和训练符号上均发送信号。 由于 G.fast是一个 STDD系统, 在接收端(FTU-R) , 对于初始化的线路来说, 由于还没有 消除来自 showtime线路的串扰信号, 因此在任何位置 (除了保护间隔之外) 都会受 到来自 showtime线路的串扰影响。
FTU-R根据 PRBS比特生成参考信号,与接收到的信号(其中在同步符号之外的 符号接收到 showtime线路的串扰, 同步符号位置接收到串扰和自己的发送信号) 利 用相关函数进行相关运算, 然后找出相关结果的峰值位置, 即为同步符号的位置。
需要说明的是, 在后续初始化以及激活 (Showtime) 过程, FTU-0和 FTU-R同 样会利用各自相应的 PRBS 比特对调制比特信息的发送符号进行星座点的旋转以及 调制各自相应的 PRBS比特产生一些训练符号,其中 PRBS比特的产生模式有些是复 位模式, 有些是自由模式。 其中, 所述发送符号可以但不限于包括导频符号 (pilot symbol ) 探测符号(Probe symbol),导频子载波(pilot tone),同步符号(Sync symbol) 等。
本发明具体实施方式一中,利用控制实体为每个用户配置的正交导频序列生成各 用户的 FTU-0和 FTU-R分别对应的 PRBS寄存器的初始状态, 且保证串扰很强的用 户之间的 PRBS寄存器的初始状态不同, 因此, 虽然具体实施方式一中所有用户采用 相同的 PRBS生成多项式, 但如果用户的 PRBS寄存器的初始状态不相同, 那么采用 不同 PRBS初始状态用户的 PRBS比特就不相同,然后, FTU-0采用各自相应的 PRBS 比特对调制 1/0 (对应导频比特为 +1/-1 ) 比特的同步符号进行星座点旋转, 最大程度 的增强用户之间发送信号的随机性或不相关性, 由此使得对应的 FTU-R可以采用相 关技术对下行同步符号进行检测, 从而提高下行同步符号的检测精度,解决因下行同 步符号的错误检测导致出现假激活现象的问题。
本发明具体实施方式一所述方法中, 对于下行方向, 在没有抵消初始化线路对 Showtime线路的串扰之前, FTU-0只能在同步符号的位置发送信号的时候, FTU-R 需要在一个很大的范围内去捕获同步符号所处范围内的信号做相关运算(目前一个超 帧最大 288个符号, 也就是 288个符号中只有一个符号是同步符号), 其复杂度和难 度都比较大。
进一步的, 本发明具体实施方式一所述方法中, 在所述 FTU-0使用所述本端口 的 PRBS比特对同步符号进行星座点旋转, 生成下行发送信号的同时, 还可以包括: 所述 FTU-0生成训练符号, 并将所述下行同步符号和训练符号一起以下行信号的形 式发送给与之对应的 FTU-R。
相对应的, 所述 FTU-R接收到下行发送信号后 (该下行发送信号中包括下行同 步符号和训练符号), 首先采用相关技术检测出所述下行发送信号中的训练符号的位 置, 然后根据所述训练符号的位置推算得到所述下行同步符号的位置。
具体的, 采用相关技术检测出所述下行信号中的训练符号包括: 所述 FTU-R采 用用于检测下行符号的 PRBS比特对调制固定字节 7E的训练符号,进行星座点旋转, 产生训练符号参考信号, 与接收到的下行发送信号进行相关运算,检测得到训练符号 的位置。
而根据所述训练符号的位置推算得到所述下行同步符号的位置可以包括:根据所 述训练符号的位置推算出下行方向中的符号发送位置,然后采用本端口的 PRBS比特 对调制 1/0 (对应导频比特为 +1/-1 ) 比特的同步符号进行星座点旋转, 产生同步符号 参考信号, 与所述下行方向中的符号发送位置进行相关运算,检测得到下行同步符号 的位置。
需要说明的是,根据所述训练符号推算得到所述下行同步符号的位置的方法有很 多, 上面仅仅是给出了一种具体的实施方式, 下面对该推算的原理进行简单的介绍。 一般情况下, 一个超帧中包含 P个 TDD帧 (目前标准中 P为 8), 一个 TDD帧 (目 前标准中一个 TDD帧中上下行符号总数为 35个)中训练符号有很多个。如果先检测 训练符号, 则 FTU-R有很多机会捕获训练符号并通过相关技术检测到训练符号的位 置, 因此, 与直接对同步符号的检测相比, 对训练符号的检测要容易的多。 检测到训 练符号的位置后, 就可以推算出在下行方向上, 一个 TDD帧内的符号发送位置。 由 本领域公知技术可知, 一般只在一个 TDD帧的最开始一个符号发送位置发送同步符 号。 当检测得到训练符号的位置后, 就能推算出下行方向中在一个 TDD帧中的符号 发送位置, 由此就可以缩小获取同步符号的范围。 例如每次只在一个 TDD帧的开头 去捕获信号, 捕获 8个 TDD帧的开头的一个信号, 然后使用 PRBS比特对调制 1/0 (对应导频比特为 +1/-1 ) 比特的同步符号进行星座点旋转, 生成同步符号参考信号 进行相关运算, 就可以检测出下行同步符号的位置。
具体实施方式二:
所有网络侧收发器和与其对应的用户侧收发器采用相同的 PRBS生成多项式,为 每个网络侧收发器和与其对应的用户侧收发器设计相应的 PRBS寄存器的初始状态。 具体的,控制实体利用 FTU-0的端口号生成与 FTU-0对应的 PRBS寄存器的初始状 态; 利用 FTU-R的端口号生成与 FTU-R对应的 PRBS寄存器的初始状态。 当然, 在 实际应用中, 所述 FTU-0和与之对应的 FTU-R的端口号是一致的。
参照图 5, 为本发明具体实施方式二所述的信号发送和检测的方法流程图。 如图 5所示, 所述方法可以包括以下步骤:
步骤 S301 : 用户上电, 进入 Handshake阶段, FTU-0和 FTU-R交互 PRBS的生 成模式。
本发明具体实施方式二中, 该 PRBS的生成模式为: 所有用户采用相同的 PRBS 生成多项式,利用各用户分别对应的 FTU-0和 FTU-R的端口号信息生成分别对应的 P BS寄存器的初始状态。
步骤 S302: 控制实体获取各用户分别对应的 FTU-0和 FTU-R的端口号信息, 根据所述端口号信息生成与每个用户的 FTU-0和 FTU-R分别对应的 PRBS寄存器的 初始状态。
需要说明的是, 所述控制实体可以为 VCE (Vectoring Control Entity, 矢量化控 制实体)、 PCE (Power Control Entity, 功率控制实体)或者 TCE ( Timing/Time Control Entity, 时钟控制实体)。
步骤 S303: 所述控制实体将步骤 S302中为每个用户的 FTU-0和 FTU-R分别分 配的 PRBS寄存器的初始状态分发给各用户分别对应的 FTU-0。
步骤 S304: FTU-0接收控制实体分配给本端口和与本端口对应的 FTU-R的 PRBS 寄存器的初始状态, 并把所述分配给本端口和与本端口对应的 FTU-R的 PRBS寄存 器的初始状态通过消息通知给与本端口对应的 FTU-R。
步骤 S305: FTU-R接收并解调与本端口对应的 FTU-0发送的消息, 获得所述消 息中携带的控制实体分配给本端口和与本端口对应的网络侧收发器的 PRBS 寄存器 初始状态。
步骤 S306: 在 Reset mode (复位模式) 下, FTU-0和与之对应的 FTU-R均将 本端口接收到的 PRBS寄存器的初始状态置为 Handshake阶段或初始化过程中的某一 特定阶段 (如信道发现阶段的前期阶段) 交互的初始状态。
步骤 S307: 所述 FTU-0使用控制实体分配给本端口的 PRBS寄存器初始状态, 结合系统默认的 PRBS生成多项式, 生成本端口的 PRBS比特; 所述 FTU-0使用所 述本端口的 PRBS比特对同步符号进行星座点旋转, 生成下行发送信号, 发送给与之 对应的 FTU-R。
步骤 S308: 所述 FTU-R接收来自与之对应的 FTU-0发送的下行发送信号; 所 述 FTU-R使用所述分配给与之对应的 FTU-0的 PRBS寄存器初始状态, 结合系统默 认的 PRBS生成多项式, 生成用于检测下行符号的 PRBS比特, 并使用所述用于检测 下行符号的 PRBS比特进行星座点旋转, 产生参考信号, 将所述参考信号与接收到的 下行发送信号进行相关运算, 检测下行同步符号的位置; 根据帧结构参数 TF、 Mds 和 Mus及超帧结构参数 TSF确定上行同步符号的发送位置。
步骤 S309: 所述 FTU-R在接收到下行完整的 0-SIGNATURE消息之后, 使用所 述分配给本端口的 PRBS寄存器初始状态, 结合系统默认的 PRBS生成多项式, 生成 本端口的 PRBS比特; 所述 FTU-R使用所述本端口的 PRBS比特对同步符号进行星 座点旋转, 生成上行发送信号, 发送给与之对应的 FTU-0。
步骤 S310:所述 FTU-0接收来自与之对应的 FTU-R的上行发送信号;所述 FTU-0 使用所述分配给与之对应的 FTU-R的 PRBS寄存器初始状态,结合系统默认的 PRBS 生成多项式, 生成用于检测上行符号的 PRBS比特, 并使用所述用于检测上行符号的 PRBS比特进行同步符号的星座点旋转, 产生参考信号, 将所述参考信号与接收到的 FTU- 的发送信号进行相关运算, 检测上行同步符号的位置, 来估计上行同步符号 与期望的同步位置的偏差 offset, 并将该偏差 offset通知与之对应的 FTU-R, 用于精 确调整上行同步符号的位置。
步骤 S311 : 完成后续的初始化过程, 进入激活阶段。
需要说明的是, 在后续初始化以及激活 (Showtime) 过程, FTU-0和 FTU-R同 样会利用各自相应的 PRBS 比特对调制比特信息的发送符号进行星座点的旋转以及 调制各自相应的 PRBS比特产生一些训练符号,其中 PRBS比特的产生模式有些是复 位模式, 有些是自由模式。 其中, 所述发送符号包括导频符号 (pilot Symbol)、 探测 符号 (Probe symbol )、 导频子载波 (pilot tone )、 同步符号 (Sync symbol) 等。
本发明具体实施方式二中,利用各用户分别对应的 FTU-0和 FTU-R的端口号信 息生成每个用户对应的 FTU-0和 FTU-R的 PRBS寄存器的初始状态, 保证串扰很强 的用户之间的 PRBS寄存器的初始状态不同, 因此, 虽然实施例二中所有用户采用相 同的 PRBS生成多项式, 但如果用户的 PRBS寄存器的初始状态不相同, 那么采用不 同 PRBS初始状态用户的 PRBS比特就不相同, 然后, FTU-0采用各自相应的 PRBS 比特对调制 1/0 (对应导频比特为 +1/-1 ) 比特的同步符号进行星座点旋转, 最大程度 的增强用户之间发送信号的随机性或不相关性, 由此使得接收端 FTU可以采用相关 技术对下行同步符号进行检测, 从而提高下行同步符号的检测精度,解决因下行同步 符号的错误检测导致出现假激活现象的问题。
需要说明的是, 对于具体实施方式二所述方法, 也可以由每个 FTU-0直接根据 本端口的端口号信息生成与每个用户对应的 FTU-0和 FTU-R的 PRBS寄存器的初始 状态。
具体实施方式三:
参照图 6, 为本发明具体实施方式三所述的信号发送和检测的方法流程图。 如图 6所示, 所述方法可以包括以下步骤:
步骤 S401 : 用户上电, 进入 Handshake阶段, FTU-0和 FTU-R交互 PRBS的生 成模式。
本发明具体实施方式三中,该 PRBS的生成模式仍为:所有用户采用相同的 PRBS 生成多项式, 利用各用户分别对应的 FTU-0的端口号信息生成与每个用户的 FTU-0 和 FTU-R分别对应的 PRBS寄存器的初始状态。
步骤 S402: FTU-0 根据本端口的端口号信息生成本端口的和与本端口对应的
FTU- 的 PRBS寄存器的初始状态。
步骤 S403: FTU-0将所述本端口的和与本端口对应的 FTU-R的 PRBS寄存器 的初始状态通过消息通知给与本端口对应的 FTU-R。
步骤 S404: FTU-R接收并解调与本端口对应的 FTU-0发送的消息, 获得所述消 息中携带的控制实体分配给本端口和与本端口对应的网络侧收发器的 PRBS 寄存器 初始状态。
步骤 S405: 在 Reset mode (复位模式) 下, FTU-0和与之对应的 FTU-R均将 本端口接收到的 PRBS寄存器的初始状态置为 Handshake阶段或初始化过程中的某一 特定阶段 (如信道发现阶段的前期阶段) 交互的初始状态。
步骤 S406: 所述 FTU-0使用控制实体分配给本端口的 PRBS寄存器初始状态, 结合系统默认的 PRBS生成多项式, 生成本端口的 PRBS比特; 所述 FTU-0使用所 述本端口的 PRBS比特对同步符号进行星座点旋转, 生成下行发送信号, 发送给与之 对应的 FTU-R。
步骤 S407: 所述 FTU-R接收来自与之对应的 FTU-0发送的下行发送信号; 所 述 FTU-R使用所述分配给与之对应的 FTU-0的 PRBS寄存器初始状态, 结合系统默 认的 PRBS生成多项式, 生成用于检测下行符号的 PRBS比特, 并使用所述用于检测 下行符号的 PRBS比特进行星座点旋转, 产生参考信号, 将所述参考信号与接收到的 下行发送信号进行相关运算, 检测下行同步符号的位置; 根据帧结构参数 TF、 Mds 和 Mus及超帧结构参数 TSF确定上行同步符号的发送位置。
步骤 S408: 所述 FTU-R在接收到下行完整的 0-SIGNATURE消息之后, 使用所 述分配给本端口的 PRBS寄存器初始状态, 结合系统默认的 PRBS生成多项式, 生成 本端口的 PRBS比特; 所述 FTU-R使用所述本端口的 PRBS比特对同步符号进行星 座点旋转, 生成上行发送信号, 发送给与之对应的 FTU-0。
步骤 S409:所述 FTU-0接收来自与之对应的 FTU-R的上行发送信号;所述 FTU-0 使用所述分配给与之对应的 FTU-R的 PRBS寄存器初始状态,结合系统默认的 PRBS 生成多项式, 生成用于检测上行符号的 PRBS比特, 并使用所述用于检测上行符号的 P BS比特进行同步符号的星座点旋转, 产生参考信号, 将所述参考信号与接收到的 FTU- 的发送信号进行相关运算, 检测上行同步符号的位置, 来估计上行同步符号 与期望的同步位置的偏差 offset, 并将该偏差 offset通知与之对应的 FTU-R, 用于精 确调整上行同步符号的位置。
步骤 S410: 完成后续的初始化过程, 进入激活阶段。
需要说明的是, 在后续初始化以及激活 (Showtime) 过程, FTU-0和 FTU-R同 样会利用各自相应的 PRBS 比特对调制比特信息的发送符号进行星座点的旋转以及 调制各自相应的 PRBS比特产生一些训练符号,其中 PRBS比特的产生模式有些是复 位模式, 有些是自由模式。 其中, 所述发送符号包括导频符号 (pilot Symbol)、 探测 符号 (Probe symbol )、 导频子载波 (pilot tone )、 同步符号 (Sync symbol) 等。
本发明具体实施方式三中, 利用各用户分别对应的 FTU-0的端口号信息生成每 个用户的 PRBS寄存器的初始状态,保证串扰很强的用户之间的 PRBS寄存器的初始 状态不同, 因此, 虽然实施例二中所有用户采用相同的 PRBS生成多项式, 但如果用 户的 PRBS寄存器的初始状态不相同,那么采用不同 PRBS初始状态用户的 PRBS比 特就不相同, 然后, FTU-0采用各自相应的 PRBS比特对调制 1/0 (对应导频比特为 +1/-1 ) 比特的同步符号进行星座点旋转, 产生发送信号, 旋转, 最大程度的增强用 户之间发送信号的随机性或不相关性, 由此使得接收端 FTU可以采用相关技术对下 行同步符号进行检测, 从而提高下行同步符号的检测精度, 解决因下行同步符号的错 误检测导致出现假激活现象的问题。
具体实施方式四:
所有用户采用相同的 PRBS生成多项式,预先为每个用户对应的 FTU-0和 FTU-R 设定分别对应的 PRBS寄存器的初始状态, 保存在 PRBS寄存器的初始状态表中, 通 过读取所述 PRBS寄存器的初始状态表的方式,为每个用户设置对应的 PRBS寄存器 的初始状态作为该用户的 PRBS寄存器的初始状态。
参照图 7, 为本发明具体实施方式四所述的信号发送和检测的方法流程图。 如图
7所示, 所述方法可以包括以下步骤:
步骤 S501 : 用户上电, 进入 Handshake阶段, FTU-0和 FTU-R交互 PRBS的生 成模式。
本发明具体实施方式四中, 该 PRBS的生成模式为: 所有用户采用相同的 PRBS 生成多项式,通过读取预先设定的 PRBS寄存器的初始状态表来为每个用户的 FTU-0 和 FTU-R配置分别对应的 PRBS寄存器的初始状态。 步骤 S502: 控制实体读取预先设定的 PRBS寄存器的初始状态表, 选择与每个 用户的 FTU-0和 FTU-R分别对应的 PRBS寄存器的初始状态。
步骤 S503: 所述控制实体将步骤 S502中为每个用户的 FTU-0和 FTU-R分别分 配的 PRBS寄存器的初始状态分发给各用户分别对应的 FTU-0。
步骤 S504: FTU-0接收控制实体分配给本端口和与本端口对应的 FTU-R的 PRBS 寄存器的初始状态, 并把所述分配给本端口和与本端口对应的 FTU-R的 PRBS寄存 器的初始状态通过消息通知给与本端口对应的 FTU-R。
步骤 S505: FTU-R接收并解调与本端口对应的 FTU-0发送的消息, 获得所述消 息中携带的控制实体分配给本端口和与本端口对应的网络侧收发器的 PRBS 寄存器 初始状态。
步骤 S506: 在 Reset mode (复位模式) 下, FTU-0和与之对应的 FTU-R均将 本端口接收到的 PRBS寄存器的初始状态置为 Handshake阶段或初始化过程中的某一 特定阶段 (如信道发现阶段的前期阶段) 交互的初始状态。
步骤 S507: 所述 FTU-0使用控制实体分配给本端口的 PRBS寄存器初始状态, 结合系统默认的 PRBS生成多项式, 生成本端口的 PRBS比特; 所述 FTU-0使用所 述本端口的 PRBS比特对同步符号进行星座点旋转, 生成下行发送信号, 发送给与之 对应的 FTU-R。
步骤 S508: 所述 FTU-R接收来自与之对应的 FTU-0发送的下行发送信号; 所 述 FTU-R使用所述分配给与之对应的 FTU-0的 PRBS寄存器初始状态, 结合系统默 认的 PRBS生成多项式, 生成用于检测下行符号的 PRBS比特, 并使用所述用于检测 下行符号的 PRBS比特进行星座点旋转, 产生参考信号, 将所述参考信号与接收到的 下行发送信号进行相关运算, 检测下行同步符号的位置; 根据帧结构参数 TF、 Mds 和 Mus及超帧结构参数 TSF确定上行同步符号的发送位置。
步骤 S509: 所述 FTU-R在接收到下行完整的 0-SIGNATURE消息之后, 使用所 述分配给本端口的 PRBS寄存器初始状态, 结合系统默认的 PRBS生成多项式, 生成 本端口的 PRBS比特; 所述 FTU-R使用所述本端口的 PRBS比特对同步符号进行星 座点旋转, 生成上行发送信号, 发送给与之对应的 FTU-0。
步骤 S510:所述 FTU-0接收来自与之对应的 FTU-R的上行发送信号;所述 FTU-0 使用所述分配给与之对应的 FTU-R的 PRBS寄存器初始状态,结合系统默认的 PRBS 生成多项式, 生成用于检测上行符号的 PRBS比特, 并使用所述用于检测上行符号的 PRBS比特进行同步符号的星座点旋转, 产生参考信号, 将所述参考信号与接收到的 FTU- 的发送信号进行相关运算, 检测上行同步符号的位置, 来估计上行同步符号 与期望的同步位置的偏差 offset, 并将该偏差 offset通知与之对应的 FTU-R, 用于精 确调整上行同步符号的位置。
步骤 S511 : 完成后续的初始化过程, 进入激活阶段。
需要说明的是, 在后续初始化以及激活 (Showtime) 过程, FTU-0和 FTU-R同 样会利用各自相应的 PRBS 比特对调制比特信息的发送符号进行星座点的旋转以及 调制各自相应的 PRBS比特产生一些训练符号,其中 PRBS比特的产生模式有些是复 位模式, 有些是自由模式。 其中, 所述发送符号包括导频符号 (pilot Symbol)、 探测 符号 (Probe symbol )、 导频子载波 (pilot tone )、 同步符号 (Sync symbol) 等。
本发明具体实施方式四中,通过读取预先设定的 PRBS寄存器的初始状态表的方 式,为每个用户的 FTU-0和 FTU-R配置对应的 PRBS寄存器的初始状态表作为 PRBS 寄存器的初始状态, 至少保证串扰很强的用户之间的 PRBS寄存器的初始状态不同, 因此, 虽然具体实施方式四中所有用户采用相同的 PRBS生成多项式, 但如果用户的 PRBS寄存器的初始状态不相同, 那么采用不同 PRBS初始状态用户的 PRBS比特就 不相同。
具体实施方式五:
与前述四个实施例不同的是,具体实施方式五中所有用户采用相应的 PRBS生成 多项式, 至少保证串扰很强的用户之间的 PRBS不同。
参照图 8, 为本发明具体实施方式五所述的信号发送和检测的方法流程图。 如图 8所示, 所述方法可以包括以下步骤:
步骤 S601 : 用户上电, 进入 Handshake阶段, FTU-0和 FTU-R交互 PRBS的生 成模式。
本发明具体实施方式五中,该 PRBS的生成模式为:每个用户的 FTU-0和 FTU-R 采用分别对应的 PRBS生成多项式。 需要说明的是, 具体实施方式五中, 所有用户的 PRBS寄存器的初始状态可以相同也可以不相同, 在此不做限定。 例如, 所有用户的 PRBS寄存器的初始状态可以全为 1或者 0等等, 且 FTU-0和 FTU-R均知道该初始 状态。
步骤 S602:控制实体为每个用户的 FTU-0和 FTU-R分别选择对应的一个 PRBS 生成多项式。
该 PRBS生成多项式可以为:
g(x) = xnl + xn2 + \ ( 7 ) 其中, nl和 n2均为自然数且互质; 且任意两个用户的 PRBS生成多项式中, 所 述 nl和 n2至少有一个不相同。
当然,上述仅仅是给出了所述 PRBS生成多项式的一种具体示例。在实际应用中, 所述生成多项式可以但不限于上述示例所示, 可以根据实际的需要具体设定。
步骤 S603:控制实体为每个用户的 FTU-0和 FTU-R分别分配的 PRBS生成多项 式分发给各用户分别对应的 FTU-0。
步骤 S604: FTU-0接收控制实体分配给本端口和与本端口对应的 FTU-R的 PRBS 生成多项式, 并把所述分配给本端口和与本端口对应的 FTU-R的 PRBS生成多项式 通过消息通知给与本端口对应的 FTU-R。
步骤 S605: FTU-R接收并解调与本端口对应的 FTU-0发送的消息, 获得所述消 息中携带的控制实体分配给本端口和与本端口对应的网络侧收发器的 PRBS 生成多 项式。
步骤 S606: 在 Reset mode (复位模式) 下, FTU-0和与之对应的 FTU-R均将 本端口接收到的 PRBS生成多项式置为 Handshake或初始化过程中的某一特定阶段 (如信道发现阶段的前期阶段) 阶段交互的初始状态。
步骤 S607: 所述 FTU-0使用控制实体分配给本端口的 PRBS生成多项式, 结合 系统默认的 PRBS寄存器的初始状态, 生成本端口的 PRBS比特; 所述 FTU-0使用 所述本端口的 PRBS比特对同步符号进行星座点旋转, 生成下行发送信号, 发送给与 之对应的 FTU-R。
步骤 S608: 所述 FTU-R接收来自与之对应的 FTU-0发送的下行发送信号; 所 述 FTU-R使用所述分配给与之对应的 FTU-0的 PRBS生成多项式, 结合系统默认的 PRBS寄存器的初始状态, 生成用于检测下行符号的 PRBS比特, 并使用所述用于检 测下行符号的 PRBS比特进行星座点旋转, 产生参考信号, 将所述参考信号与接收到 的下行发送信号进行相关运算, 检测下行同步符号的位置; 根据帧结构参数 TF、 Mds 和 Mus及超帧结构参数 TSF确定上行同步符号的发送位置。
步骤 S609: 所述 FTU-R在接收到下行完整的 0-SIGNATURE消息之后, 使用所 述分配给本端口的 PRBS生成多项式, 结合系统默认的 PRBS寄存器的初始状态, 生 成本端口的 PRBS比特; 所述 FTU-R使用所述本端口的 PRBS比特对同步符号进行 星座点旋转, 生成上行发送信号, 发送给与之对应的 FTU-0。
步骤 S610:所述 FTU-0接收来自与之对应的 FTU-R的上行发送信号;所述 FTU-0 使用所述分配给与之对应的 FTU-R的 PRBS生成多项式, 结合系统默认的 PRBS寄 存器的初始状态, 生成用于检测上行符号的 PRBS比特, 并使用所述用于检测上行符 号的 PRBS比特进行同步符号的星座点旋转, 产生参考信号, 将所述参考信号与接收 到的 FTU-R的发送信号进行相关运算, 检测上行同步符号的位置, 来估计上行同步 符号与期望的同步位置的偏差 offset, 并将该偏差 offset通知与之对应的 FTU-R, 用 于精确调整上行同步符号的位置。
步骤 S611 : 完成后续的初始化过程, 进入激活阶段。
需要说明的是, 在后续初始化以及激活 (Showtime) 过程, FTU-0和 FTU-R同 样会利用各自相应的 PRBS 比特对调制比特信息的发送符号进行星座点的旋转以及 调制各自相应的 PRBS比特产生一些训练符号,其中 PRBS比特的产生模式有些是复 位模式, 有些是自由模式。 其中, 所述发送符号包括导频符号 (pilot Symbol)、 探测 符号 (Probe symbol )、 导频子载波 (pilot tone )、 同步符号 (Sync symbol) 等。
本发明具体实施方式五中, 为每个用户的 FTU-0和 FTU-R选择相应的 PRBS生 成多项式产生相应的 PRBS比特。然后, FTU-0对不同的用户采用相应的 PRBS比特 对调制相应比特的发送符号进行星座点的旋转,最大程度的增强用户之间发送信号的 随机性或不相关性, 由此使得接收端 FTU可以采用相关技术对下行同步符号进行检 测, 从而提高下行同步符号的检测精度,解决因下行同步符号的错误检测导致出现假 激活现象的问题。 对应于本发明实施例提供的信号发送方法,本发明实施例还提供了一种网络侧收 发器。 参照图 9, 为本发明实施例一提供的网络侧收发器的结构图。 如图 9所示, 所 述网络侧收发器包括: 接收单元 U101、 处理单元 U102和发送单元 U103。
所述接收单元 U101, 用于接收控制实体分配给所述网络侧收发器的伪随机二进 制序列 PRBS的生成参数, 所述 PRBS的生成参数包括: PRBS寄存器的初始状态和 / 或 PRBS生成多项式。
所述发送单元 U103, 用于把所述分配给所述网络侧收发器的 PRBS的生成参数 通过消息通知给与所述网络侧收发器对应的用户侧收发器。
所述处理单元 U102, 用于使用所述分配给所述网络侧收发器的 PRBS的生成参 数, 生成所述网络侧收发器的 PRBS比特, 使用所述网络侧收发器的 PRBS比特进行 星座点旋转, 生成发送信号。
所述发送单元 U103, 还用于将所述发送信号发送给用户侧。
本发明实施例所述的网络侧收发器,采用各端口分别对应的 PRBS比特对调制相 应比特的发送符号进行星座点的旋转,最大程度的增强用户之间发送信号的随机性或 不相关性, 由此使得用户侧收发器可以采用相关技术对网络侧发送的信号进行检测, 从而提高对网络侧的发送符号的检测精度,解决因对网络侧的发送符号的检测错误而 导致出现假激活现象的问题。
进一步的, 本发明实施例还可以实现网络侧收发器与用户侧收发器之间的 PRBS 的信息交互。 具体的, 所述接收单元 U101, 还用于接收控制实体分配给与所述网络 侧收发器对应的用户侧收发器的 PRBS的生成参数。 所述发送单元 U103, 还用于把 所述分配给与所述网络侧收发器对应的用户侧收发器的 PRBS 的生成参数通过消息 通知给与所述网络侧收发器对应的用户侧收发器。
进一步的, 本发明实施例中, 网络侧也可以采用相关技术对来自用户侧的发送信 号进行检测, 从而提高对用户侧的发送符号检测的精度。 所述接收单元 U101, 还用 于接收来自与所述网络侧收发器对应的用户侧收发器的发送信号。 所述处理单元
U102, 还用于使用所述分配给与所述网络侧收发器对应的用户侧收发器的 PRBS 的 生成参数生成用于检测的 PRBS比特,使用所述用于检测的 PRBS比特进行星座点旋 转,产生参考信号,将所述参考信号与接收到的用户侧收发器的发送信号进行相关运 算, 检测用户侧发送符号的位置。
优选的, 所述处理单元 U102可以包括: 第一处理子单元, 用于使用分配给所述 网络侧收发器的 PRBS寄存器初始状态, 结合系统默认的 PRBS生成多项式, 生成所 述网络侧收发器的 PRBS比特; 或者, 第二处理子单元, 用于使用分配给所述网络侧 收发器的 PRBS生成多项式, 结合系统默认的 PRBS寄存器初始状态, 生成所述网络 侧收发器的 PRBS比特; 或者, 第三处理子单元, 用于使用分配给所述网络侧收发 器的 PRBS寄存器的初始状态和 PRBS生成多项式, 生成所述网络侧收发器的 PRBS 比特。
对应于本发明实施例提供的信号检测方法,本发明实施例还提供了一种用户侧收 发器。 参照图 10, 为本发明实施例一提供的用户侧收发器结构图。 如图 10所示, 所 述用户侧收发器包括: 接收单元 U201和处理单元 U202。
所述接收单元 U201, 用于接收与所述用户侧收发器对应的网络侧收发器发送的 消息。
所述处理单元 U202, 用于解调所述消息, 获得所述消息中携带的控制实体分配 给所述与所述用户侧收发器对应的网络侧收发器的伪随机二进制序列 PRBS 的生成 参数;所述 PRBS的生成参数包括: PRBS寄存器的初始状态和 /或 PRBS生成多项式。 所述接收单元 U201, 还用于接收来自所述网络侧收发器的发送信号。
所述处理单元 U202, 还用于使用所述分配给所述与所述用户侧收发器对应的网 络侧收发器的 PRBS的生成参数, 生成用于检测的 PRBS比特, 使用所述用于检测的 P BS比特进行星座点旋转, 产生参考信号, 将所述参考信号与所述网络侧收发器的 发送信号进行相关运算, 检测网络侧的发送符号的位置。
本发明实施例所述用户侧收发器,使用用于检测的 PRBS比特对网络侧收发器发 送的信号进行星座点旋转,产生参考信号,利用该参考信号对接收到的网络侧的发送 符号的位置进行相关检测, 从而能够有效提高网络侧的发送符号的检测精度,解决因 网络侧的发送符号的检测错误而导致出现假激活现象的问题。
进一步的, 本发明实施例中, 用户侧也可以采用与各端口分别对应的 PRBS比特 进行星座点的旋转, 生成发送信号至网络侧, 使得网络侧收发器可以采用相关技术对 用户侧发送的信号进行检测, 从而提高对用户侧的发送符号的检测精度。具体的, 所 述网络侧收发器还包括:发送单元 U203;所述处理单元 U202,还用于解调所述消息, 获得所述消息中携带的控制实体分配给所述用户侧收发器的 PRBS的生成参数,使用 所述分配给所述用户侧收发器的 PRBS的生成参数生成所述用户侧收发器的 PRBS比 特; 使用所述用户侧收发器的 PRBS比特进行星座点旋转, 生成发送信号。所述发送 单元 U203, 还用于将所述发送信号发送给网络侧。
优选的, 所述处理单元 U202可以包括: 第一处理子单元, 用于使用分配给所述 与所述用户侧收发器对应的网络侧收发器的 PRBS寄存器初始状态,结合系统默认的 PRBS生成多项式, 生成所述 PRBS比特; 或者, 第二处理子单元, 用于使用分配给 所述与所述用户侧收发器对应的网络侧收发器的 PRBS生成多项式,结合系统默认的 PRBS寄存器初始状态, 生成所述 PRBS比特; 或者, 第三处理子单元, 用于使用分 配给所述与所述用户侧收发器对应的网络侧收发器的 PRBS 寄存器的初始状态和 PRBS生成多项式, 生成所述 PRBS比特。。
对应于本发明实施例提供的控制实体分配 PRBS生成参数的方法,本发明实施例 还提供了一种控制实体。 参照图 11, 为本发明实施例一提供的控制实体结构图。 如 图 11所示, 所述控制实体包括: 处理单元 U301和发送单元 U302。
所述处理单元 U301, 用于为网络侧收发器和与该网络侧收发器对应的用户侧收 发器生成分别对应的伪随机二进制序列 PRBS的生成参数;所述 PRBS的生成参数包 括: PRBS寄存器的初始状态和 /或 PRBS生成多项式。
所述发送单元 U302, 用于将所述为网络侧收发器和与该网络侧收发器对应的用 户侧收发器生成的 PRBS的生成参数发送给该网络侧收发器,以便该网络侧收发器根 据接收到的 PRBS的生成参数生成该网络侧收发器的 PRBS比特。
本发明实施例中,控制实体生成与每个网络侧收发器和与该网络侧收发器对应的 用户侧收发器分别对应的 PRBS生成参数(即为 PRBS寄存器的初始状态或 PRBS生 成多项式),并发送给对应的网络侧收发器和与该网络侧收发器对应的用户侧收发器, 以便每个网络侧收发器和与该网络侧收发器对应的用户侧收发器可以据此生成各端 口分别对应的 PRBS比特。由此可以最大程度的增强网络侧各收发器之间发送信号的 随机性或不相关性,由此使得用户侧收发器可以采用相关技术对网络侧的发送符号进 行检测, 从而提高对网络侧的发送符号的检测精度,解决因网络侧发送符号的检测错 误而导致出现假激活现象的问题。另外采用本发明实施例, 可以有效增强初始化过程 中 SOC消息的鲁棒性传输。
优选的, 所述处理单元 U301可以包括: 第一处理子单元, 用于根据为每个网络 侧收发器或与该网络侧收发器对应的用户侧收发器分配的正交导频序列,生成与每个 网络侧收发器或与该网络侧收发器对应的用户侧收发器对应的 PRBS 寄存器的初始 状态。
优选的, 所述处理单元 U301还可以包括: 第二处理子单元, 用于获取每个网络 侧收发器或与该网络侧收发器对应的用户侧收发器的端口号信息,根据所述端口号信 息生成与每个网络侧收发器或与该网络侧收发器对应的用户侧收发器对应的 PRBS 寄存器的初始状态。
优选的, 所述处理单元 U301还可以包括: 第七处理子单元, 用于读取预先设定 的 PRBS寄存器的初始状态表,为每个网络侧收发器或与该网络侧收发器对应的用户 侧收发器选择对应的 PRBS寄存器的初始状态。 对应于本发明实施例提供的信号发送方法,本发明实施例还提供了一种网络侧收 发器。 参照图 12, 为本发明实施例二提供的网络侧收发器的结构图。 如图 12所示, 所述网络侧收发器包括: 接收器 U401、 处理器 U402和发送器 U403。
所述接收器 U401, 用于接收控制实体分配给所述网络侧收发器的伪随机二进制 序列 PRBS的生成参数, 所述 PRBS的生成参数包括: PRBS寄存器的初始状态和 / 或 PRBS生成多项式。
所述发送器 U403, 用于把所述分配给所述网络侧收发器的 PRBS的生成参数通 过消息通知给与所述网络侧收发器对应的用户侧收发器。 所述处理器 U402, 用于使用所述分配给所述网络侧收发器的 PRBS的生成参数 生成所述网络侧收发器的 PRBS比特,使用所述网络侧收发器的 PRBS比特进行星座 点旋转, 生成发送信号。
所述发送器 U403, 还用于将所述发送信号发送给用户侧。
本发明实施例所述的网络侧收发器,采用各端口分别对应的 PRBS比特对调制相 应比特的发送符号进行星座点的旋转,最大程度的增强用户之间发送信号的随机性或 不相关性, 由此使得用户侧收发器可以采用相关技术对网络侧发送的信号进行检测, 从而提高对网络侧的发送符号的检测精度,解决因对网络侧的发送符号的检测错误而 导致出现假激活现象的问题。 另外, 本发明实施例可以有效增强初始化过程中 SOC 消息的鲁棒性传输。
进一步的, 本发明实施例还可以实现网络侧收发器与用户侧收发器之间的 PRBS 的信息交互。 具体的, 所述接收器 U401, 还用于接收控制实体分配给与所述网络侧 收发器对应的用户侧收发器的 PRBS的生成参数。 所述发送器 U403, 还用于把所述 分配给与所述网络侧收发器对应的用户侧收发器的 PRBS 的生成参数通过消息通知 给与所述网络侧收发器对应的用户侧收发器。
进一步的, 本发明实施例中, 网络侧也可以采用相关技术对来自用户侧的发送信 号进行检测, 从而提高对用户侧的发送符号检测的精度。 所述接收器 U401, 还用于 接收来自与所述网络侧收发器对应的用户侧收发器的发送信号。 所述处理器 U402, 还用于使用所述分配给与所述网络侧收发器对应的用户侧收发器的 PRBS 的生成参 数生成用于检测的 PRBS比特, 使用所述用于检测的 PRBS比特进行星座点旋转, 产 生参考信号,将所述参考信号与接收到的用户侧收发器的发送信号进行相关运算, 检 测用户侧发送符号的位置。
优选的, 所述处理器 U402可以包括: 第一子处理器, 用于使用分配给所述网络 侧收发器的 PRBS寄存器初始状态, 结合系统默认的 PRBS生成多项式, 生成所述网 络侧收发器的 PRBS比特; 或者, 第二子处理器, 用于使用分配给所述网络侧收发器 的 PRBS生成多项式, 结合系统默认的 PRBS寄存器初始状态, 生成所述网络侧收发 器的 PRBS比特; 或者, 第三子处理器, 用于使用分配给所述网络侧收发器的 PRBS 寄存器的初始状态和 PRBS生成多项式, 生成所述网络侧收发器的 PRBS比特。
对应于本发明实施例提供的信号检测方法,本发明实施例还提供了一种用户侧收 发器。 参照图 13, 为本发明实施例二提供的用户侧收发器结构图。 如图 13所示, 所 述用户侧收发器包括: 接收器 U501和处理器 U502。 所述接收器 U501, 用于接收与所述用户侧收发器对应的网络侧收发器发送的消 白
所述处理器 U502, 用于解调所述消息, 获得所述消息中携带的控制实体分配给 所述与所述用户侧收发器对应的网络侧收发器的伪随机二进制序列 PRBS 的生成参 数; 所述 PRBS的生成参数包括: PRBS寄存器的初始状态和 /或 PRBS生成多项式。
所述接收器 U501, 还用于接收来自所述网络侧收发器的发送信号。
所述处理器 U502, 还用于使用所述分配给所述与所述用户侧收发器对应的网络 侧收发器的 PRBS 的生成参数, 生成用于检测的 PRBS 比特, 使用所述用于检测的 PRBS比特进行星座点旋转, 产生参考信号, 将所述参考信号与所述网络侧收发器的 发送信号进行相关运算, 检测网络侧的发送符号的位置。
本发明实施例所述用户侧收发器,用户侧收发器使用用于检测的 PRBS比特对网 络侧收发器的发送符号进行星座点旋转,产生参考信号,利用该参考信号对接收到的 网络侧的发送符号的位置进行相关检测,从而能够有效提高网络侧的发送符号的检测 精度, 解决因网络侧的发送符号的检测错误而导致出现假激活现象的问题。
进一步的, 本发明实施例中, 用户侧也可以采用与各端口分别对应的 PRBS比特 进行星座点的旋转, 生成发送信号至网络侧, 使得网络侧收发器可以采用相关技术对 用户侧发送的信号进行检测, 从而提高对用户侧的发送符号的检测精度。具体的, 所 述用户侧收发器还包括: 发送器 U503; 所述处理器 U502, 还用于解调所述消息, 获 得所述消息中携带的控制实体分配给所述用户侧收发器的 PRBS的生成参数,使用所 述分配给所述用户侧收发器的 PRBS 的生成参数生成所述用户侧收发器的 PRBS 比 特; 使用所述用户侧收发器的 PRBS比特进行星座点旋转, 生成发送信号。所述发送 器 U503, 还用于将所述发送信号发送给网络侧。
优选的, 所述处理器 U502可以包括: 第一子处理器, 用于使用分配给所述与所 述用户侧收发器对应的网络侧收发器的 PRBS 寄存器初始状态, 结合系统默认的 PRBS生成多项式, 生成所述 PRBS比特; 或者, 第二子处理器, 用于使用分配给所 述与所述用户侧收发器对应的网络侧收发器的 PRBS 生成多项式, 结合系统默认的 PRBS寄存器初始状态, 生成所述 PRBS比特; 或者, 第三子处理器, 用于使用分配 给所述与所述用户侧收发器对应的网络侧收发器的 PRBS寄存器的初始状态和 PRBS 生成多项式, 生成所述 PRBS比特。
对应于本发明实施例提供的控制实体分配 PRBS生成参数的方法,本发明实施例 还提供了一种控制实体。 参照图 14, 为本发明实施例二提供的控制实体结构图。 如 图 11所示, 所述控制实体包括: 处理器 U601和发送器 U602。
所述处理器 U601, 用于为网络侧收发器和与该网络侧收发器对应的用户侧收发 器生成分别对应的伪随机二进制序列 PRBS的生成参数;所述 PRBS的生成参数包括:
PRBS寄存器的初始状态和 /或 PRBS生成多项式。
所述发送器 U602, 用于将所述为网络侧收发器和与该网络侧收发器对应的用户 侧收发器生成的 PRBS的生成参数发送给该网络侧收发器,以便该网络侧收发器根据 接收到的 PRBS的生成参数, 生成该网络侧收发器的 PRBS比特。
本发明实施例中,控制实体生成与每个网络侧收发器和与该网络侧收发器对应的 用户侧收发器分别对应的 PRBS生成参数(即为 PRBS寄存器的初始状态或 PRBS生 成多项式),并发送给对应的网络侧收发器和与该网络侧收发器对应的用户侧收发器, 以便每个网络侧收发器和与该网络侧收发器对应的用户侧收发器可以据此生成各端 口分别对应的 PRBS比特。由此可以最大程度的增强网络侧各收发器之间发送信号的 随机性或不相关性,由此使得用户侧收发器可以采用相关技术对网络侧的发送符号进 行检测, 从而提高对网络侧的发送符号的检测精度,解决因网络侧发送符号的检测错 误而导致出现假激活现象的问题。
优选的, 所述处理器 U601可以包括: 第一子处理器, 用于根据为每个网络侧收 发器或与该网络侧收发器对应的用户侧收发器分配的正交导频序列,生成与每个网络 侧收发器或与该网络侧收发器对应的用户侧收发器对应的 PRBS寄存器的初始状态。
优选的, 所述处理器 U601还可以包括: 第二子处理器, 用于获取每个网络侧收 发器或与该网络侧收发器对应的用户侧收发器的端口号信息,根据所述端口号信息生 成与每个网络侧收发器或与该网络侧收发器对应的用户侧收发器对应的 PRBS 寄存 器的初始状态。
优选的,所述处理器 U601还可以包括:第三子处理器,用于读取预先设定的 PRBS 寄存器的初始状态表,为每个网络侧收发器或与该网络侧收发器对应的用户侧收发器 选择对应的 PRBS寄存器的初始状态。
本发明实施例还提供一种分配 PRBS 的生成参数的网络。 参照图 15, 为本发明 实施例提供的分配 PRBS的生成参数的网络的结构图。如图 15所示, 所述网络包括: 网络侧收发器 U701、 用户侧收发器 U702、 以及控制实体 U703。
所述网络侧收发器 U701通过自身的端口与对应的用户侧收发器 U702的端口相 连。
所述网络侧收发器 U701、 用户侧收发器 U702、 以及控制实体 U703可以采用上 述任意一种实施例中所述的方式来实现, 在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单 元及算法步骤, 能够以电子硬件、 或者计算机软件和电子硬件的结合来实现。这些功 能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专 业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实 现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、 装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和方法, 可 以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示意性的, 例如, 所 述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可以有另外的划分方式, 例如 多个单元或组件可以结合或者可以集成到另一个系统, 或一些特征可以忽略, 或不执 行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些 接口, 装置或单元的间接耦合或通信连接, 可以是电性, 机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显 示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到 多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例 方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元中, 也可以 是各个单元单独物理存在, 也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以 存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或 者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现 出来, 该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机 设备 (可以是个人计算机, 服务器, 或者网络设备等) 或处理器 (processor)执行本 发明各个实施例所述方法的全部或部分步骤。 而前述的存储介质包括: U盘、 移动硬 盘、只读存储器(ROM, Read-Only Memory )、随机存取存储器(RAM, Random Access Memory )、 磁碟或者光盘等各种可以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限于此, 任 何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到变化或替换, 都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保 护范围为准。

Claims

权 利 要 求
1、 一种信号发送方法, 其特征在于, 所述方法包括:
网络侧收发器通过本端口与对应的用户侧收发器的端口相连;
所述网络侧收发器接收控制实体分配给本端口的伪随机二进制序列 PRBS 的生成参数,并把所述分配给本端口的 PRBS的生成参数通知给与本端口对应的 用户侧收发器;所述 PRBS的生成参数包括: PRBS寄存器的初始状态和 /或 PRBS 生成多项式;
所述网络侧收发器使用所述分配给本端口的 PRBS的生成参数,生成本端口 的 PRBS比特;
所述网络侧收发器使用所述本端口的 PRBS比特进行星座点旋转,生成发送 信号, 发送给用户侧。
2、 根据权利要求 1所述的方法, 其特征在于, 所述方法还包括: 所述网络侧收发器接收控制实体分配给与本端口对应的用户侧收发器的 PRBS的生成参数, 并把所述分配给与本端口对应的用户侧收发器的 PRBS的生 成参数通过消息通知给与本端口对应的用户侧收发器。
3、 根据权利要求 2所述的方法, 其特征在于, 在所述生成发送信号, 发送 给用户侧之后, 所述方法还包括:
所述网络侧收发器接收来自与本端口对应的用户侧收发器的发送信号; 所述网络侧收发器使用所述分配给与本端口对应的用户侧收发器的 PRBS 的生成参数生成用于检测的 PRBS比特;
所述网络侧收发器使用所述用于检测的 PRBS比特进行星座点旋转,产生参 考信号, 将所述参考信号与接收到的用户侧收发器的发送信号进行相关运算, 检 测用户侧发送符号的位置。
4、 根据权利要求 1至 3任一项所述的方法, 其特征在于, 所述网络侧收发 器使用所述分配给本端口的 PRBS的生成参数生成本端口的 PRBS比特包括: 所述网络侧收发器使用分配给本端口的 PRBS寄存器初始状态,结合系统默 认的 PRBS生成多项式, 生成所述本端口的 PRBS比特;
或者, 所述网络侧收发器使用分配给本端口的 PRBS生成多项式,结合系统默认的 P BS寄存器初始状态, 生成所述本端口的 PRBS比特;
或者,
所述网络侧收发器使用分配给本端口的 PRBS寄存器的初始状态和 PRBS生 成多项式, 生成所述本端口的 PRBS比特。
5、 一种信号检测方法, 其特征在于, 所述方法包括:
用户侧收发器通过本端口与对应的网络侧收发器的端口相连;
所述用户侧收发器接收并解调与本端口对应的网络侧收发器发送的消息,获 得所述消息中携带的控制实体分配给所述与本端口对应的网络侧收发器的伪随 机二进制序列 PRBS的生成参数; 所述 PRBS的生成参数包括: PRBS寄存器的 初始状态和 /或 PRBS生成多项式;
所述用户侧收发器接收来自所述网络侧收发器的发送信号;
所述用户侧收发器使用所述分配给所述与本端口对应的网络侧收发器的 PRBS的生成参数, 生成用于检测所述网络侧收发器发送的符号的 PRBS比特。
6、 根据权利要求 5所述的方法, 其特征在于, 所述方法还包括: 用户侧收发器解调所述消息,获得所述消息中携带的控制实体分配给本端口 的 PRBS的生成参数;
所述用户侧收发器使用所述分配给本端口的 PRBS 的生成参数生成本端口 的 PRBS比特;
所述用户侧收发器使用所述本端口的 PRBS比特进行星座点旋转,生成发送 信号, 发送给网络侧。
7、 根据权利要求 5或 6所述的方法, 其特征在于, 所述用户侧收发器使用 所述分配给所述与本端口对应的网络侧收发器的 PRBS的生成参数, 生成 PRBS 比特包括:
所述用户侧收发器使用分配给所述与本端口对应的网络侧收发器的 PRBS 寄存器初始状态, 结合系统默认的 PRBS生成多项式, 生成所述 PRBS比特; 或者,
所述用户侧收发器使用分配给所述与本端口对应的网络侧收发器的 PRBS 生成多项式, 结合系统默认的 PRBS寄存器初始状态, 生成所述 PRBS比特; 或者,
所述用户侧收发器使用分配给所述与本端口对应的网络侧收发器的 PRBS 寄存器的初始状态和 PRBS生成多项式, 生成所述 PRBS比特。
8、 一种分配 PRBS的生成参数的方法, 其特征在于, 所述方法包括: 控制实体为网络侧收发器和与该网络侧收发器对应的用户侧收发器分别生 成对应的伪随机二进制序列 PRBS 的生成参数; 所述 PRBS 的生成参数包括: PRBS寄存器的初始状态和 /或 PRBS生成多项式;
所述控制实体将所述为网络侧收发器和与该网络侧收发器对应的用户侧收 发器生成的 PRBS的生成参数发送给该网络侧收发器,以便该网络侧收发器根据 接收到的 PRBS的生成参数生成该网络侧收发器的 PRBS比特。
9、 根据权利要求 8所述的方法, 其特征在于, 所述控制实体为网络侧收发 器或与该网络侧收发器对应的用户侧收发器生成对应的 PRBS生成参数包括: 所述控制实体根据为每个网络侧收发器或与该网络侧收发器对应的用户侧 收发器分配的正交导频序列,生成与每个网络侧收发器或与该网络侧收发器对应 的用户侧收发器对应的 PRBS寄存器的初始状态。 10、 根据权利要求 9所述的方法, 其特征在于, 所述根据为每个网络侧收发 器或与该网络侧收发器对应的用户侧收发器分配的正交导频序列,生成与每个网 络侧收发器或与该网络侧收发器对应的用户侧收发器对应的 PRBS 寄存器的初 始状态包括:
所述控制实体为每个网络侧收发器或与该网络侧收发器对应的用户侧收发 器分配对应的正交导频序列;
所述控制实体从每个网络侧收发器或与该网络侧收发器对应的用户侧收发 器分别对应的正交导频序列中选取 L比特序列, 再将选取得到的 L比特序列中 的 +1对应为 1、 -1对应为 0后, 作为与所述网络侧收发器或与该网络侧收发器 对应的用户侧收发器对应的 PRBS寄存器的初始状态; 其中, L为 PRBS寄存器 初始状态的长度;
所述控制实体对所有网络侧收发器或与该网络侧收发器对应的用户侧收发 器分别对应的 PRBS寄存器的初始状态进行两两比对,如果网络侧收发器或与该 网络侧收发器对应的用户侧收发器对应的 PRBS 寄存器的初始状态与其他至少 一个 PRBS寄存器的初始状态相同,则所述控制实体从该网络侧收发器或与该网 络侧收发器对应的用户侧收发器对应的正交导频序列中重新选取 L比特序列,并 将新选取得到的 L 比特序列与其他所有的 PRBS寄存器的初始状态进行两两比 较,直到选取得到的 L比特序列与其他任意一个 PRBS寄存器的初始状态均不相 同为止,并将该与其他任意一个 PRBS寄存器的初始状态均不相同的 L比特序列 中的 +1对应为 1、 -1对应为 0后, 作为该网络侧收发器或与该网络侧收发器对 应的用户侧收发器的 PRBS寄存器的初始状态。 11、 根据权利要求 9所述的方法, 其特征在于, 所述根据为每个网络侧收发 器或与该网络侧收发器对应的用户侧收发器分配的正交导频序列,生成与每个网 络侧收发器或与该网络侧收发器对应的用户侧收发器对应的 PRBS 寄存器的初 始状态包括:
所述控制实体生成与网络侧收发器或与该网络侧收发器对应的用户侧收发 器对应正交导频序列矩阵, 从所述正交导频序列矩阵的第一行开始, 顺序选取前 M行, 分配给 M个网络侧收发器或与该网络侧收发器对应的用户侧收发器, 作 为每个网络侧收发器或与该网络侧收发器对应的用户侧收发器的正交导频序列; 其中, M为分线点支持的用户总数;
所述控制实体从每个网络侧收发器或与该网络侧收发器对应的用户侧收发 器分别对应的正交导频序列中选取 L比特序列;其中,所述控制实体从所述正交 导频序列的第一列开始顺序选择 L比特作为该 L比特序列;
当 M≤ 2ceiZ(l0¾(i))时, 所述控制实体将每个网络侧收发器或与该网络侧收发 器对应的用户侧收发器对应的 L比特序列中的 +1对应为 1、 -1对应为 0后作为 该网络侧收发器或与该网络侧收发器对应的用户侧收发器的 PRBS 寄存器的初 始状态; 其中, L为 PRBS寄存器初始状态的长度;
当 M > 2cea(log2(i))时, 所述控制实体对所有网络侧收发器或与该网络侧收发 器对应的用户侧收发器对应的 L比特序列进行两两比较,如果网络侧收发器或与 该网络侧收发器对应的用户侧收发器对应的 L比特序列与其他任意一个 L比特 序列均不相同,则将该 L比特序列作为该网络侧收发器或与该网络侧收发器对应 的用户侧收发器对应的 PRBS寄存器的初始状态;如果网络侧收发器或与该网络 侧收发器对应的用户侧收发器对应的前 L比特序列与其他至少一个前 L比特序 列相同,则该控制实体从该网络侧收发器或与该网络侧收发器对应的用户侧收发 器对应的正交导频序列中重新选取 L比特序列, 并将新选取得到的 L比特序列 与其他所有的 L比特序列进行两两比较, 直到选取得到的 L比特序列与其他任 意一个 L比特序列均不相同为止, 并将该与其他任意一个 L比特序列均不相同 的 L比特序列中的 +1对应为 1、 -1对应为 0后, 作为该网络侧收发器或与该网 络侧收发器对应的用户侧收发器的 PRBS寄存器的初始状态。
12、 根据权利要求 10或 11所述的方法, 其特征在于, 所述从正交导频序列 中选取 L比特序列包括:
如果所述正交导频序列的长度 N大于等于所述 PRBS寄存器的长度 L,则从 所述正交导频序列中选取长度等于 L的比特序列;
如果所述正交导频序列的长度 N小于所述 PRBS寄存器的长度 L,则在各正 交导频序列的末尾添加 (L-N) 个 0或 1, 再从增加长度后的序列中选取长度等 于 L的比特序列。 13、 根据权利要求 9所述的方法, 其特征在于, 所述控制实体为网络侧收发 器或与该网络侧收发器对应的用户侧收发器生成对应的 PRBS生成参数包括: 所述控制实体获取每个网络侧收发器或与该网络侧收发器对应的用户侧收 发器的端口号信息,根据所述端口号信息生成与每个网络侧收发器或与该网络侧 收发器对应的用户侧收发器对应的 PRBS寄存器的初始状态。
14、 根据权利要求 9所述的方法, 其特征在于, 所述控制实体为网络侧收发 器或与该网络侧收发器对应的用户侧收发器生成对应的 PRBS生成参数包括: 所述控制实体读取预先设定的 PRBS寄存器的初始状态表,为每个网络侧收 发器或与该网络侧收发器对应的用户侧收发器选择对应的 PRBS 寄存器的初始 状态。
15、 一种网络侧收发器, 其特征在于, 所述网络侧收发器包括: 接收单元,用于接收控制实体分配给所述网络侧收发器的伪随机二进制序列 PRBS的生成参数, 所述 PRBS的生成参数包括: PRBS寄存器的初始状态和 /或 PRBS生成多项式;
发送单元,用于把所述分配给所述网络侧收发器的 PRBS的生成参数通过消 息通知给与所述网络侧收发器对应的用户侧收发器; 处理单元,用于使用所述分配给所述网络侧收发器的 PRBS的生成参数生成 所述网络侧收发器的 PRBS比特,使用所述网络侧收发器的 PRBS比特进行星座 点旋转, 生成发送信号;
所述发送单元, 还用于将所述发送信号发送给用户侧。
16、 根据权利要求 15所述的网络侧收发器, 其特征在于,
所述接收单元,还用于接收控制实体分配给与所述网络侧收发器对应的用户 侧收发器的 PRBS的生成参数;
所述发送单元,还用于把所述分配给与所述网络侧收发器对应的用户侧收发 器的 PRBS 的生成参数通过消息通知给与所述网络侧收发器对应的用户侧收发 器。
17、 根据权利要求 16所述的网络侧收发器, 其特征在于,
所述接收单元,还用于接收来自与所述网络侧收发器对应的用户侧收发器的 发送信号;
所述处理单元,还用于使用所述分配给与所述网络侧收发器对应的用户侧收 发器的 PRBS的生成参数生成用于检测的 PRBS比特,使用所述用于检测的 PRBS 比特进行星座点旋转,产生参考信号,将所述参考信号与接收到的用户侧收发器 的发送信号进行相关运算, 检测用户侧发送符号的位置。
18、 根据权利要求 15至 17任一项所述的网络侧收发器, 其特征在于, 所述 处理单元包括:
第一处理子单元,用于使用分配给所述网络侧收发器的 PRBS寄存器初始状 态, 结合系统默认的 PRBS生成多项式, 生成所述网络侧收发器的 PRBS比特; 或者,
第二处理子单元, 用于使用分配给所述网络侧收发器的 PRBS生成多项式, 结合系统默认的 PRBS寄存器初始状态, 生成所述网络侧收发器的 PRBS比特; 或者,
第三处理子单元,用于使用分配给所述网络侧收发器的 PRBS寄存器的初始 状态和 PRBS生成多项式, 生成所述网络侧收发器的 PRBS比特。
19、 一种用户侧收发器, 其特征在于, 所述用户侧收发器包括: 接收单元, 用于接收与所述用户侧收发器对应的网络侧收发器发送的消息; 处理单元, 用于解调所述消息, 获得所述消息中携带的控制实体分配给所述 与所述用户侧收发器对应的网络侧收发器的伪随机二进制序列 PRBS 的生成参 数; 所述 PRBS的生成参数包括: PRBS寄存器的初始状态和 /或 PRBS生成多项 式;
所述接收单元, 还用于接收来自所述网络侧收发器的发送信号;
所述处理单元,还用于使用所述分配给所述与所述用户侧收发器对应的网络 侧收发器的 PRBS 的生成参数, 生成用于检测所述网络侧收发器发送的符号的
PRBS比特。
20、 根据权利要求 19所述的用户侧收发器, 其特征在于, 所述网络侧收发 器还包括: 发送单元;
所述处理单元, 还用于解调所述消息, 获得所述消息中携带的控制实体分配 给所述用户侧收发器的 PRBS的生成参数,使用所述分配给所述用户侧收发器的 PRBS的生成参数生成所述用户侧收发器的 PRBS比特; 使用所述用户侧收发器 的 PRBS比特进行星座点旋转, 生成发送信号;
所述发送单元, 用于将所述发送信号发送给网络侧。
21、 根据权利要求 19或 20所述的用户侧收发器, 其特征在于, 所述处理单 元包括:
第一处理子单元,用于使用分配给所述与所述用户侧收发器对应的网络侧收 发器的 PRBS 寄存器初始状态, 结合系统默认的 PRBS生成多项式, 生成所述 PRBS比特;
或者,
第二处理子单元,用于使用分配给所述与所述用户侧收发器对应的网络侧收 发器的 PRBS 生成多项式, 结合系统默认的 PRBS 寄存器初始状态, 生成所述 PRBS比特;
或者,
第三处理子单元,用于使用分配给所述与所述用户侧收发器对应的网络侧收 发器的 PRBS寄存器的初始状态和 PRBS生成多项式, 生成所述 PRBS比特。 种控制实体, 其特征在于, 所述控制实体包括: 处理单元,用于为网络侧收发器和与该网络侧收发器对应的用户侧收发器生 成分别对应的伪随机二进制序列 PRBS的生成参数;所述 PRBS的生成参数包括: P BS寄存器的初始状态和 /或 PRBS生成多项式;
发送单元,用于将所述为网络侧收发器和与该网络侧收发器对应的用户侧收 发器生成的 PRBS的生成参数发送给该网络侧收发器,以便该网络侧收发器根据 接收到的 PRBS的生成参数生成该网络侧收发器的 PRBS比特。
23、 根据权利要求 22所述的控制实体, 其特征在于, 所述处理单元包括: 第一处理子单元,用于根据为每个网络侧收发器或与该网络侧收发器对应的 用户侧收发器分配的正交导频序列,生成与每个网络侧收发器或与该网络侧收发 器对应的用户侧收发器对应的 PRBS寄存器的初始状态。
24、 根据权利要求 23所述的控制实体, 其特征在于, 所述第一处理子单元 包括:
第一子单元,用于为每个网络侧收发器或与该网络侧收发器对应的用户侧收 发器分配对应的正交导频序列;
第二子单元,用于从每个网络侧收发器或与该网络侧收发器对应的用户侧收 发器分别对应的正交导频序列中选取 L比特序列, 再将选取得到的 L比特序列 中的 +1对应为 1、 -1对应为 0后, 作为与所述网络侧收发器或与该网络侧收发 器对应的用户侧收发器对应的 PRBS寄存器的初始状态; 其中, L为 PRBS寄存 器初始状态的长度;
第三子单元,用于对所有网络侧收发器或与该网络侧收发器对应的用户侧收 发器分别对应的 PRBS寄存器的初始状态进行两两比对,如果网络侧收发器或与 该网络侧收发器对应的用户侧收发器对应的 PRBS 寄存器的初始状态与其他至 少一个 PRBS寄存器的初始状态相同,则所述控制实体从该网络侧收发器或与该 网络侧收发器对应的用户侧收发器对应的正交导频序列中重新选取 L比特序列, 并将新选取得到的 L比特序列与其他所有的 PRBS寄存器的初始状态进行两两比 较,直到选取得到的 L比特序列与其他任意一个 PRBS寄存器的初始状态均不相 同为止,并将该与其他任意一个 PRBS寄存器的初始状态均不相同的 L比特序列 中的 +1对应为 1、 -1对应为 0后, 作为该网络侧收发器或与该网络侧收发器对 应的用户侧收发器的 PRBS寄存器的初始状态。 25、 根据权利要求 23所述的控制实体, 其特征在于, 所述第一处理子单元 包括:
第四子单元,用于生成与网络侧收发器或与该网络侧收发器对应的用户侧收 发器对应正交导频序列矩阵, 从所述正交导频序列矩阵的第一行开始, 顺序选取 前 M行, 分配给 M个网络侧收发器或与该网络侧收发器对应的用户侧收发器, 作为每个网络侧收发器或与该网络侧收发器对应的用户侧收发器的正交导频序 列; 其中, M为分线点支持的用户总数;
第五子单元,用于从每个网络侧收发器或与该网络侧收发器对应的用户侧收 发器分别对应的正交导频序列中选取 L比特序列;其中,所述控制实体从所述正 交导频序列的第一列开始顺序选择 L比特作为该 L比特序列;当 M≤ 2cea(log2(i)) 时,所述控制实体将每个网络侧收发器或与该网络侧收发器对应的用户侧收发器 对应的 L比特序列中的 +1对应为 1、 -1对应为 0后作为该网络侧收发器或与该 网络侧收发器对应的用户侧收发器的 PRBS寄存器的初始状态;其中, L为 PRBS 寄存器初始状态的长度; ¾ M > 2^(g2 ( 时, 所述控制实体对所有网络侧收发 器或与该网络侧收发器对应的用户侧收发器对应的 L比特序列进行两两比较,如 果网络侧收发器或与该网络侧收发器对应的用户侧收发器对应的 L 比特序列与 其他任意一个 L比特序列均不相同, 则将该 L比特序列作为该网络侧收发器或 与该网络侧收发器对应的用户侧收发器对应的 PRBS寄存器的初始状态;如果网 络侧收发器或与该网络侧收发器对应的用户侧收发器对应的前 L 比特序列与其 他至少一个前 L比特序列相同,则该控制实体从该网络侧收发器或与该网络侧收 发器对应的用户侧收发器对应的正交导频序列中重新选取 L比特序列,并将新选 取得到的 L比特序列与其他所有的 L比特序列进行两两比较,直到选取得到的 L 比特序列与其他任意一个 L 比特序列均不相同为止, 并将该与其他任意一个 L 比特序列均不相同的 L比特序列中的 +1对应为 1、 -1对应为 0后, 作为该网络 侧收发器或与该网络侧收发器对应的用户侧收发器的 PRBS寄存器的初始状态。
26、 根据权利要求 24或 25所述的控制实体, 其特征在于, 所述从正交导频 序列中选取 L比特序列包括:
如果所述正交导频序列的长度 N大于等于所述 PRBS寄存器的长度 L,则从 所述正交导频序列中选取长度等于 L的比特序列;
如果所述正交导频序列的长度 N小于所述 PRBS寄存器的长度 L,则在各正 交导频序列的末尾添加 (L-N) 个 0或 1, 再从增加长度后的序列中选取长度等 于 L的比特序列。
27、 根据权利要求 23所述的控制实体, 其特征在于, 所述处理单元包括: 第二处理子单元,用于获取每个网络侧收发器或与该网络侧收发器对应的用 户侧收发器的端口号信息,根据所述端口号信息生成与每个网络侧收发器或与该 网络侧收发器对应的用户侧收发器对应的 PRBS寄存器的初始状态。
28、 根据权利要求 23所述的控制实体, 其特征在于, 所述处理单元包括: 第三处理子单元, 用于读取预先设定的 PRBS寄存器的初始状态表, 为每个 网络侧收发器或与该网络侧收发器对应的用户侧收发器选择对应的 PRBS 寄存 器的初始状态。
29、 一种分配 PRBS的生成参数的网络, 其特征在于, 所述网络包括如权利 要求 15至 18任一项所述的网络侧收发器、如权利要求 19至 21任一项所述的用 户侧收发器、 以及如权利要求 22至 28任一项所述的控制实体。
PCT/CN2013/074870 2013-04-27 2013-04-27 一种信号发送和检测方法及收发器、控制实体 WO2014172911A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2013/074870 WO2014172911A1 (zh) 2013-04-27 2013-04-27 一种信号发送和检测方法及收发器、控制实体
CN201380000360.5A CN104380639B (zh) 2013-04-27 2013-04-27 一种信号发送和检测方法及收发器、控制实体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/074870 WO2014172911A1 (zh) 2013-04-27 2013-04-27 一种信号发送和检测方法及收发器、控制实体

Publications (1)

Publication Number Publication Date
WO2014172911A1 true WO2014172911A1 (zh) 2014-10-30

Family

ID=51791027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/074870 WO2014172911A1 (zh) 2013-04-27 2013-04-27 一种信号发送和检测方法及收发器、控制实体

Country Status (2)

Country Link
CN (1) CN104380639B (zh)
WO (1) WO2014172911A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160285624A1 (en) * 2015-03-26 2016-09-29 Intel Corporation Pseudorandom bit sequences in an interconnect
CN108024350B (zh) * 2016-10-28 2021-10-19 中兴通讯股份有限公司 一种动态时间分配方法及装置
CN114978337B (zh) * 2021-04-20 2023-06-02 华为技术有限公司 一种用于光通信的传输方法、接收方法及相应设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040213331A1 (en) * 2003-01-13 2004-10-28 Broadcom Corporation Systems and methods for pseudo-random signal generation in a multi-carrier communications system
CN101106557A (zh) * 2006-07-14 2008-01-16 华为技术有限公司 一种组帧同步方法
CN101179356A (zh) * 2007-11-28 2008-05-14 中国海洋石油总公司 一种数据发送、接收方法及装置
CN102150056A (zh) * 2008-09-12 2011-08-10 爱德万测试株式会社 测试模块及测试方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040213331A1 (en) * 2003-01-13 2004-10-28 Broadcom Corporation Systems and methods for pseudo-random signal generation in a multi-carrier communications system
CN101106557A (zh) * 2006-07-14 2008-01-16 华为技术有限公司 一种组帧同步方法
CN101179356A (zh) * 2007-11-28 2008-05-14 中国海洋石油总公司 一种数据发送、接收方法及装置
CN102150056A (zh) * 2008-09-12 2011-08-10 爱德万测试株式会社 测试模块及测试方法

Also Published As

Publication number Publication date
CN104380639B (zh) 2017-08-11
CN104380639A (zh) 2015-02-25

Similar Documents

Publication Publication Date Title
CN105009465B (zh) 在fext下执行上行符号对齐
US20160269135A1 (en) Guard-band for scaled numerology multiplexing
US10615845B2 (en) Line synchronization method in OSD system, system, and vectoring control entity
US9306733B2 (en) Method of synchronizing a communication system
WO2014110894A1 (zh) 扩展参考信号的方法、设备和通信系统
RU2617437C1 (ru) Самосинхронизирующаяся тестовая последовательность
JP6410752B2 (ja) 無線伝送におけるパイロットサブキャリア
CN107733561B (zh) 信号发送装置、信号检测装置及方法
KR101403590B1 (ko) G.hn 기술을 엑세스 네트워크에 적용하기 위한 방법
WO2012149791A1 (zh) 一种串扰信道估计方法、装置及系统
CN109792375B (zh) 用于使用G.hn协议来执行全双工通信的方法和装置
WO2019028991A1 (zh) 随机接入前导码传输方法及装置
WO2018121123A1 (zh) 发送/接收参考信号的方法及终端设备、网络设备
US11159230B2 (en) Digital subscriber line transceiver
KR20200093049A (ko) 참조 신호를 전송하기 위한 방법 및 장치
WO2011011572A1 (en) Improved packet detector
WO2014172911A1 (zh) 一种信号发送和检测方法及收发器、控制实体
WO2014101847A1 (zh) 一种串扰信道估计方法、装置和系统
KR101911809B1 (ko) 벡터화된 시스템 내의 특수 동작 채널
KR20130100759A (ko) 브리지드 탭 와이어들을 가진 채널들로 이더넷 phy의 확장
CN104254977B (zh) 上行导频序列同步的方法、设备及系统
JP2004173272A (ja) Tcm−isdnノイズの存在におけるdslトランシーバチャネル発見フェーズ中のttr同期獲得および維持
WO2017079946A1 (zh) 用于数字用户线初始化的方法和装置
KR102233628B1 (ko) 동기 신호 송신 장치 및 방법
CN103227709B (zh) 一种周期信号处理方法、局端设备及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13882968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13882968

Country of ref document: EP

Kind code of ref document: A1