WO2017079946A1 - 用于数字用户线初始化的方法和装置 - Google Patents

用于数字用户线初始化的方法和装置 Download PDF

Info

Publication number
WO2017079946A1
WO2017079946A1 PCT/CN2015/094484 CN2015094484W WO2017079946A1 WO 2017079946 A1 WO2017079946 A1 WO 2017079946A1 CN 2015094484 W CN2015094484 W CN 2015094484W WO 2017079946 A1 WO2017079946 A1 WO 2017079946A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink pilot
pilot sequence
sequence
notification message
transceiver
Prior art date
Application number
PCT/CN2015/094484
Other languages
English (en)
French (fr)
Inventor
易溪林
贾鑫
周斌
王祥
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201580082439.6A priority Critical patent/CN107925437B/zh
Priority to EP15908076.1A priority patent/EP3367581B1/en
Priority to PCT/CN2015/094484 priority patent/WO2017079946A1/zh
Publication of WO2017079946A1 publication Critical patent/WO2017079946A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2675Pilot or known symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/32Reducing cross-talk, e.g. by compensating
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M11/00Telephonic communication systems specially adapted for combination with other electrical systems
    • H04M11/06Simultaneous speech and data transmission, e.g. telegraphic transmission over the same conductors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/46Monitoring; Testing
    • H04B3/487Testing crosstalk effects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • Embodiments of the present invention relate to the field of communications, and more particularly, to a method for Digital Subscriber Line (DSL) initialization, a client transceiver, and a Vectoring Control Entity (VCE).
  • DSL Digital Subscriber Line
  • VCE Vectoring Control Entity
  • DSL is a high-speed data transmission technology that is transmitted over a telephone twisted pair, such as Unshielded Twist Pair (UTP).
  • UTP Unshielded Twist Pair
  • DSL Access Multiplexer DSL Access Multiplexer
  • ITU-T In order to meet the needs of medium- and long-term higher rates, ITU-T has established the G.fast project to study the use of copper wire to provide the final high speed in the Fiber to the Distribution Point (FTTdp) scenario. Access, the goal is to provide access rates above 500Mbps in the 100m range. ITU-T Q4 adopts Time Division Duplexing (TDD) as the duplex mode of G.fast, the next-generation copper broadband access standard.
  • TDD Time Division Duplexing
  • the long-line line is subject to strong crosstalk of the short-line line, which causes the joining lines to fail to detect signals during the initialization phase and exit initialization.
  • the embodiment of the invention provides a method for DSL initialization, a client transceiver and a vectorization control entity, which can reduce the crosstalk of the showtime line to the new incoming line, and improve the robustness of the synchronization symbol of the new terminal station transceiver. .
  • the first aspect provides a method for DSL initialization, including: receiving, by a client transceiver, a first notification message sent by a vectorization control entity VCE, where the first notification message includes first indication information, where the first The indication information indicates at least one first serial number, wherein the client transceiver is a transceiver located at the opposite end of the VCE on the showtime line, and the transceiver located at the opposite end of the VCE on the new incoming line needs to send a new uplink.
  • the element of the at least one first sequence number in the pilot sequence is 1 or -1; according to the first notification message, converting the first uplink pilot sequence that the UE transceiver needs to transmit into the second uplink pilot a sequence, wherein an element of the at least one first sequence number in the second uplink pilot sequence is zero; and the second uplink pilot sequence is sent to a central office transceiver of the showtime line.
  • the VCE before the initialization of the new incoming line enters the R-VECTOR 1, the VCE sends the first notification message to notify the client transceiver of the showtime line to convert the first uplink pilot sequence into the second uplink pilot. sequence.
  • the pilot sequence of the showtime line corresponding to the position of the non-zero pilot element of the new incoming line is 0, and the central transceiver of the newly incoming line is detected when detecting the uplink pilot signal.
  • the crosstalk is reduced, which can reduce the noise, improve the signal-to-noise ratio, and further improve the robustness of the synchronization symbol detected by the central transceiver of the new line.
  • the first uplink pilot sequence that needs to be sent by the UE transceiver is converted into a second uplink pilot sequence according to the first notification message.
  • the method includes: modifying, according to the first indication information, a non-zero element of the at least one first sequence number in the first uplink pilot sequence to zero.
  • the first notification message further includes second indication information, where the second indication information indicates at least one second serial number, where the new incoming uplink The element of the at least one second sequence number in the pilot sequence is zero; wherein, according to the first notification message, the first uplink pilot sequence that needs to be sent by the UE transceiver is converted into a second uplink guide
  • the frequency sequence includes: modifying, according to the first indication information, a non-zero element of the at least one first sequence number in the first uplink pilot sequence to zero; according to the second indication information, An element of zero of the at least one second sequence number in an uplink pilot sequence is modified to be 1 or -1.
  • the at least one second sequence number includes a sequence number of all or a part of the zero elements in the new uplink pilot sequence.
  • the at least one first sequence number includes a sequence number of all or a portion of the non-zero elements in the new uplink pilot sequence.
  • the second uplink pilot sequence includes a non-zero element, and the estimation of the new line crosstalk by the showtime line can be completed according to the second uplink pilot sequence.
  • the method for DSL initialization of the embodiment of the present invention further includes: the UE transceiver receives a second notification message sent by the VCE; and converts the second uplink pilot sequence according to the second notification message.
  • the third uplink pilot sequence at least one element in the third uplink pilot sequence is 1 or -1; and the third uplink pilot sequence is sent to the central transceiver.
  • the VCE determines that the new terminal station transceiver completes the pilot sequence detection, it sends the signal to the client transceiver of the showtime line.
  • the UE transceiver modifies the second uplink pilot sequence to a third uplink pilot sequence according to the second notification message, where at least one element of the third uplink pilot sequence is 1 or -1.
  • the VCE then completes the showtime line's estimation of the incoming line crosstalk.
  • a second aspect provides a method for DSL initialization, including: a vectorization control entity VCE generates first indication information, where the first indication information indicates at least one first sequence number, where the location on the new incoming line The element of the at least one first sequence number in the new uplink pilot sequence that the transceiver of the VCE peer needs to transmit is 1 or -1; when it is determined that the initialization of the new incoming line enters the channel discovery phase, according to the first Instructing information, generating a first notification message, the first notification message is used to instruct the UE transceiver to convert the first uplink pilot sequence into a second uplink pilot sequence, where the UE transceiver is on the showtime line a transceiver located at the opposite end of the VCE, where the element of the first sequence number is zero in the second uplink pilot sequence; and sending the first notification message to the client transceiver.
  • the VCE before the initialization of the new incoming line enters the R-VECTOR 1, the VCE sends the first notification message to notify the client transceiver of the showtime line to convert the first uplink pilot sequence into the second uplink pilot. sequence.
  • the pilot sequence of the showtime line corresponding to the position of the non-zero pilot element of the new incoming line is 0, and the central transceiver of the newly incoming line is detected when detecting the uplink pilot signal.
  • the crosstalk will be reduced, which will reduce the noise, improve the signal-to-noise ratio, and further improve the robustness of the synchronization symbol detected by the central transceiver of the new line. Sex.
  • the first notification message is used to indicate that the UE transceiver converts the first uplink pilot sequence into the second uplink pilot sequence, including:
  • the first indication information in the first notification message is used to indicate that the UE transceiver modifies the non-zero element of the at least one first sequence number in the first uplink pilot sequence to zero.
  • the method further includes: generating second indication information, where the second indication information indicates at least one second serial number, where the new uplink indicator And generating, by the first indication message, the first notification message, according to the first indication information and the second indication information, where The first indication information in the first notification message is used to indicate that the UE transceiver modifies the non-zero element of the at least one first sequence number in the first uplink pilot sequence to zero, the first The second indication information in the notification message is used to indicate that the UE transceiver modifies the zero element of the at least one second sequence number in the first uplink pilot sequence to 1 or -1.
  • the at least one second sequence number includes a sequence number of all or a part of the zero elements in the new uplink pilot sequence.
  • the at least one first sequence number includes a sequence number of all or a part of the non-zero elements in the new uplink pilot sequence.
  • the second uplink pilot sequence includes a non-zero element, and the estimation of the new line crosstalk by the showtime line can be completed according to the second uplink pilot sequence.
  • the method further includes: the VCE generating a second notification message, where the second notification message is used to indicate that the user transceiver is to use the second uplink
  • the pilot sequence is converted into a third uplink pilot sequence, and at least one element of the third uplink pilot sequence is 1 or -1; the second notification message is sent to the UE transceiver.
  • the method before the generating the second notification message, includes: receiving third indication information sent by the central transceiver transceiver on the new incoming line, The third indication information is used to instruct the central transceiver to complete pilot sequence detection.
  • the VCE determines that the new terminal station transceiver completes the pilot sequence detection, it sends the signal to the client transceiver of the showtime line.
  • the UE transceiver modifies the second uplink pilot sequence to a third uplink pilot sequence according to the second notification message, where at least one element of the third uplink pilot sequence is 1 or -1. Then VCE completes the showtime line to the new line Estimation of crosstalk.
  • a client transceiver for DSL initialization for performing the method of any of the first aspect or the first aspect of the first aspect.
  • the apparatus comprises means for performing the method of any of the above-described first aspect or any of the possible implementations of the first aspect.
  • a vectorized control entity VCE for DSL initialization for performing the method of any of the above-described second aspect or any of the possible implementations of the second aspect.
  • the apparatus comprises means for performing the method of any of the above-described second aspect or any of the possible implementations of the second aspect.
  • a client transceiver for DSL initialization comprising: a transceiver, a memory, a processor, and a bus system.
  • the transceiver, the memory and the processor are connected by the bus system, the memory is for storing instructions for executing instructions stored by the memory, and when the processor executes the instructions stored by the memory, Executing the method of causing the processor to perform the first aspect or any of the possible implementations of the first aspect.
  • a vectored control entity VCE for DSL initialization comprising: a transceiver, a memory, a processor, and a bus system.
  • the transceiver, the memory and the processor are connected by the bus system, the memory is for storing instructions for executing instructions stored by the memory, and when the processor executes the instructions stored by the memory, Executing the method of causing the processor to perform the second aspect or any of the possible implementations of the second aspect.
  • a seventh aspect a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • a computer readable medium for storing a computer program comprising instructions for performing the method of the second aspect or any of the possible implementations of the second aspect.
  • FIG. 1 is a schematic diagram of a connection relationship diagram of a multi-line pair xDSL system according to an embodiment of the present invention.
  • FIG. 2 is an interaction flow diagram of a specific embodiment of a method for DSL initialization according to an embodiment of the present invention.
  • FIG. 3 is a schematic block diagram of a UE transceiver for DSL initialization in accordance with an embodiment of the present invention.
  • FIG. 4 is a schematic block diagram of another UE transceiver for DSL initialization in accordance with an embodiment of the present invention.
  • FIG. 5 is a schematic block diagram of a VCE for DSL initialization according to an embodiment of the present invention.
  • VCE 6 is a schematic block diagram of another VCE for DSL initialization in accordance with an embodiment of the present invention.
  • Figure 7 is a schematic block diagram of a system in accordance with an embodiment of the present invention.
  • FIG. 1 shows a connection diagram for a multi-pair pair xDSL system.
  • the Vectoring Control Entity is capable of controlling a plurality of central transceivers and the client transceiver to transmit data.
  • the central transceiver is a G.fast transceiver unit on the optical network unit side (G.
  • the fast Transceiver Unit at the Optical Network Unit (FTU-O) is described as an example of a G.fast Transceiver Unit at the remove side (FTU-R).
  • the VCE can be a software module and can be implemented by a chip.
  • the FTU-O and FTU-R connected through UTP are a pair, and the FTU-O can transmit data through the UTP and the FTU-R.
  • the Showtime line refers to the line where the FTU-O and FTU-R have completed the initialization process and started transmitting data on the bearer channel.
  • the new line refers to the line where the FTU-O and FTU-R have not completed the initialization process.
  • the FTU-O of the newly entered line is the first FTU-O
  • the FTU-R of the new incoming line is the second FTU-R
  • the FTU-O of the showtime line is the second FTU-O
  • showtime The FTU-R of the line is the second FTU-R.
  • the initialization process includes a handshake phase, a channel discovery phase, a channel analysis, and a channel switching phase.
  • the channel discovery phase is an important phase of initialization. In this phase, crosstalk cancellation of the new incoming line to the showtime line is required, and crosstalk cancellation of all showtime lines to the new incoming line is also required.
  • the only signal that can be utilized by the new incoming line is the Sync Symbol (SS), when the new incoming line is a long line relative to the showtime line.
  • SS Sync Symbol
  • the uplink pilot signal in the SS of the new incoming line superimposes the strong crosstalk of the uplink pilot signal of the showtime line, and it is difficult for the new incoming line detection to accurately detect the uplink SS.
  • the technical solution of the present invention can be applied at this time.
  • FIG. 2 shows a flow diagram of a method 100 for DSL initialization in accordance with an embodiment of the present invention.
  • S101 to S105 in FIG. 2 are flowcharts that must be performed by the method 100 for implementing DSL initialization according to an embodiment of the present invention, and S106 to S111 are required to perform channel estimation in the method 100 for further implementing the DSL initialization of the embodiment of the present invention.
  • the process of the method 100 will be described in detail below.
  • the VCE 11 generates first indication information. Specifically, the VCE 11 determines that the new incoming line enters the channel discovery phase, and generates first indication information according to the uplink pilot sequence of the new incoming line. The first indication information is used to indicate at least one first sequence number.
  • the uplink pilot sequence that the transceiver at the opposite end of the VCE needs to send is a new uplink pilot sequence, and the new uplink pilot sequence is included in the new uplink sequence.
  • the element for the at least one first sequence number is zero.
  • the VCE is capable of monitoring each FTU-O in an xDSL system in real time.
  • the VCE can configure a new incoming uplink pilot sequence for the new incoming line, and will include the new incoming uplink pilot.
  • the indication information of the sequence is sent to the first FTU-O, and then the first FTU-O sends the indication information to the first FTU-R.
  • the first FTU-R can determine the uplink pilot sequence that needs to be sent to the first FTU-O during the R-VECTOR 1 phase.
  • the pilot sequence is divided into an uplink pilot sequence and a downlink pilot sequence.
  • the pilot sequence can be from 4 to 128 in length.
  • a i is the value of the i-th element in the pilot sequence
  • i is The serial number of the element (Index).
  • the value of A i can be 10-1.
  • a i indicates that the carrier modulation bit of the pilot signal is 00
  • the corresponding constellation point is 1+i before the scrambling code
  • a i 0, it indicates that there is no pilot signal.
  • a i is -1, it indicates that the carrier modulation bit of the pilot signal is 11, and the corresponding constellation point is -1-i before the scrambling code.
  • the transmitted superframe is P
  • the value of the element of the transmitted uplink pilot sequence is 1
  • the first FTU-R SS in the uplink superframe contains P in the pilot signal element corresponding to a 1
  • the next superframe P + SS in the uplink pilot signal contained 1 a 2 corresponding to the elements, i.e., Each element in the uplink pilot sequence is cyclically transmitted in a superframe.
  • elements corresponding to A 1 comprises a pilot signal SS in the uplink superframe of the P + 7.
  • the VCE 11 generates first indication information according to the new uplink pilot sequence.
  • the at least one first sequence number includes a sequence number of all or a part of the non-zero elements in the new uplink pilot sequence.
  • the sequence number of the non-zero elements of the new uplink pilot sequence is 1, 2, 3, and 4, and the first indication information
  • the one or more first sequence numbers of the indication may be 1, 2, 3, 4, or may be part of 1, 2, 3, 4, the first indication information indicating that the second FTU-R is the second FTU-
  • the value of the non-zero element corresponding to one or more first sequence numbers in the first uplink pilot sequence that R needs to transmit is modified to zero.
  • the VCE may further generate second indication information according to the new uplink pilot sequence, where the second indication information indicates at least one second sequence number, and the element of the at least one second sequence number in the new uplink pilot sequence Zero.
  • the at least one second sequence number includes a sequence number of all or a part of the zero elements in the new uplink pilot sequence.
  • the at least one second sequence number may be 5, 6, 7, or 8, or may be 5, 6, 7, or 8. portion.
  • the second indication information indicates that the second FTU-R of the showtime line modifies the element of the first uplink pilot sequence to the at least one second sequence number to 1 or -1.
  • the VCE 11 configures an uplink pilot sequence for each line in the xDSL system, and the uplink pilot sequences in the SS sent by the FTU-R of each line are the same length and orthogonal to each other, and at the same time.
  • the sequence number of the elements in the uplink pilot sequence in the SS transmitted by the FTU-R of each line is the same.
  • the VCE 11 generates a first notification message.
  • the first notification message is used to notify the second FTU-R A new user needs to access the xDSL network, and the initialization of the new incoming line has proceeded to the channel discovery phase.
  • the first notification message includes first indication information, where the first notification message is used to indicate that the second FTU-R of the showtime line converts the first uplink pilot sequence into a second uplink pilot sequence, and the second uplink guide The element of the first sequence number in the frequency sequence is zero.
  • the first uplink pilot sequence is an uplink pilot sequence sent by the second FTU-R to the second FTU-O before the R-VECTOR 1 phase is performed by the new incoming line initialization, and the second pilot sequence is initialized to the new incoming line.
  • the first uplink pilot sequence of the showtime line is converted into the second uplink pilot sequence according to the first notification message, where the first uplink information may be determined according to the first indication information.
  • the non-zero element of the at least one first sequence number in the frequency sequence is modified to zero.
  • the first notification message may further include second indication information, where the first indication information in the first notification message may be used to indicate that the second FTU-R of the showtime line will use the first uplink pilot.
  • the non-zero element in the sequence that is the at least one first sequence number is modified to be zero, and the second indication information in the first notification message is used to indicate that the second FTU-R of the showtime line is at least one of the first uplink pilot sequence.
  • An element with two zeros is modified to be non-zero.
  • the VCE may indicate that some or all of the plurality of showtime lines modify the first uplink pilot sequence, and the second pilot sequence of the multiple showtime lines may be partially or completely zero. .
  • the VCE can only generate the first notification message of the two showtime lines, so that The crosstalk of the short-lived showtime line received when the incoming pilot sequence in the SS is detected by the new incoming line can be significantly reduced.
  • the VCE 11 sends the first notification message.
  • the VCE 11 sends the first notification message to the second FTU-O 12 of the showtime line, and the second FTU-O 12 forwards the first notification message to the second FTU-R 13.
  • the second FTU-O may send the first notification message to the second FTU-R 13 of the showtime line at the downlink transmission time in the superframe.
  • the VCE determines that the first notification message needs to be sent to the second FTU-R of the plurality of showtime lines
  • the first notification message may be sent to the plurality of showtime lines respectively.
  • the second FTU-R 13 modifies the uplink pilot sequence.
  • the second FTU-R can determine that a new user needs to access the xDSL network, and the initialization of the new incoming line has proceeded to the channel discovery phase.
  • the second FTU-R of the plurality of showtime lines respectively modify the first uplink pilot sequence according to the first notification message.
  • the second FTU-R 13 converts the first uplink pilot sequence of the showtime line into the second uplink pilot sequence according to the received first notification message, where The element of the first sequence number in the two uplink pilot sequences is zero.
  • the first uplink pilot sequences of the two showtime lines are 1 1 1 1 1 1 1 1 1 1 and 1 -1 1 -1 1 -1 - 1 -1.
  • the new uplink pilot sequence is 1 1 -1 -1 1 1 -1 -1,
  • the at least one first sequence indicated by the first indication information in the first notification message may be 1, 2, 3, or 4, that is, the sequence number of the zero element in the new uplink pilot sequence, according to the The first notification message is configured to modify the non-zero element of the at least one first sequence number in the first uplink pilot sequence to zero, that is, the uplink pilot sequence of the two showtime lines can be modified to 0 0 0 0 1 1 1 1 and 0 0 0 0 1 -1 1 -1, such that the uplink pilot sequence in the SS transmitted by the first FTU-R of the new incoming line to the first FTU-O is 1 1 -1 -1 1 1 - When 1 -1, the pilot of the showtime line corresponding to the position of the non-zero pilot element of the new incoming line is 0, so the crosstalk received by the first FTU-O when detecting the uplink pilot signal can be reduced, thereby reducing noise. Improve the signal to noise ratio.
  • the at least one first sequence indicated by the first indication information in the first notification message may be a sequence number of all non-zero elements in the new uplink pilot sequence
  • the first The non-zero element of the at least one first sequence number in the uplink pilot sequence is modified to zero, that is, the uplink pilot sequences of the two showtime lines are respectively modified to 0 0 0 0 0 0 0 0 0 and 0 0 0 0 0 0 0 0 0 0.
  • the uplink pilot sequence in the SS sent by the first FTU-R of the new incoming line to the first FTU-O is 1 1 -1 -1 1 1 -1 -1
  • the new incoming line is non-zero.
  • the pilot of the showtime line corresponding to the position of the pilot element is 0, which can reduce the crosstalk that the first FTU-O receives when detecting the uplink pilot signal, thereby reducing noise and improving the signal to noise ratio.
  • the first notification message may further include second indication information, where the second indication information indicates at least one second sequence number, where the element of the at least one second sequence number in the new uplink pilot sequence is zero;
  • the first indication information may be configured to modify the non-zero element of the at least one first sequence number in the first uplink pilot sequence to be zero, and according to the second indication information, the at least one of the first uplink pilot sequences An element with two zeros is modified to be non-zero.
  • the first uplink pilot sequences of the two showtime lines are 1 1 1 1 1 0 0 0 0 0 and 1 -1 1 -1 0 0 0 0 respectively.
  • the new incoming pilot sequence is 1 1 -1 -1 0 0 0 0.
  • the at least one first serial number is 1, 2, 3, and 4, and the at least one second serial number is 5, 6, 7, and 8.
  • the uplink pilot sequences of the two showtime lines to 0 0 0 0 1 1 1 1 and 0 0 0 0 1 -1 1 -1 respectively, so that when new The showtime line corresponding to the location of the non-zero pilot element of the new incoming line when the uplink pilot sequence in the SS sent by the first FTU-R of the line to the first FTU-O is 1 1 -1 -1 0 0 0 0
  • the pilot frequency is 0, so the crosstalk received by the first FTU-O when detecting the uplink pilot signal can be reduced, thereby reducing noise and improving the signal to noise ratio.
  • the second FTU-R 13 sends a second uplink pilot sequence to the second FTU-O 12.
  • the SS sent by the FTU-R of each line is aligned, that is, the first FTU-R of the new incoming line transmits the uplink pilot sequence determined in the S101 to the first FTU-O, and the second FTU-R also Sending a second uplink pilot sequence to the second FTU-O.
  • the first FTU-O of the new incoming line detects the uplink pilot signal without crosstalk of the showtime line, and thus the noise is minimized.
  • the signal to noise ratio is the highest.
  • the first FTU-O of the new incoming line can more accurately estimate the symbol alignment of the SS on the new incoming line.
  • the boundary further calculates the deviation value of the symbol boundary of the new incoming line from the symbol boundary of the showtime line, and can modulate the uplink symbol transmission time according to the deviation value, thereby better enabling the new incoming line to and the showtime route when transmitting data.
  • the data sent on the synchronization when the showtime line has no crosstalk or crosstalk reduction for the uplink pilot signal of the new incoming line, on the one hand, the first FTU-O of the new incoming line can more accurately estimate the symbol alignment of the SS on the new incoming line.
  • the boundary further calculates the deviation value of the symbol boundary of the new incoming line from the symbol boundary of the showtime line, and can modulate the uplink symbol transmission time according to the deviation value, thereby better enabling the new incoming line to and the showtime route when transmitting data.
  • the data sent on the synchronization when the showtime line has no crosstalk
  • the first FTU-O of the new line can detect the first FTU-R more accurately.
  • the pilot signal in the uplink SS is sent to prevent the first FTU-O from detecting the uplink pilot sequence in the SS sent by the first FTU-R because the crosstalk of the showtime line is too large, thereby exiting the initialization.
  • the VCE before the initialization of the new incoming line enters the R-VECTOR 1, the VCE sends the first notification message to notify the client transceiver of the showtime line to convert the first uplink pilot sequence into the second uplink. Pilot sequence.
  • the pilot sequence of the showtime line corresponding to the position of the non-zero pilot element of the new incoming line is 0, and the central transceiver of the newly incoming line is detected when detecting the uplink pilot signal.
  • the crosstalk is reduced, which can reduce the noise, improve the signal-to-noise ratio, and further improve the robustness of the synchronization symbol detected by the central transceiver of the new line.
  • the uplink pilot signal of the showtime line can be modified again to facilitate subsequent estimation of the crosstalk of the showtime line to the incoming line.
  • the VCE 11 determines that the first FTU-O of the new incoming line completes the detection of the uplink synchronization symbol.
  • the VCE can actively acquire various parameters in the initialization process of the new incoming line, such as a symbol alignment parameter and a TG update parameter, etc., to determine that the first FTU-O has completed the detection of the uplink pilot signal.
  • the first FTU-O of the new incoming line may also report the indication information to the VCE after the detection of the uplink pilot signal is completed.
  • the VCE may determine The first FTU-O has completed the detection of the uplink pilot sequence.
  • the VCE 11 generates a second notification message.
  • the second notification message indicates that the second FTU-R 12 of the showtime line modifies the second uplink pilot sequence to a third uplink pilot sequence, and at least one element of the third uplink pilot sequence is 1 or -1.
  • the uplink pilot sequences transmitted by each FTU-R in the xDSL line are orthogonal to each other.
  • the VCE 11 sends a second notification message to the second FTU-R.
  • the third uplink pilot sequence is an uplink pilot sequence sent by the second FTU-R to the second FTU-O after the R-VECTOR 1 phase is completed, and the VCE is according to the third uplink pilot sequence.
  • the VCE 11 first sends the second notification message to the second FTU-O 12 of the showtime line, and the second FTU-O 12 forwards the second notification message to the second FTU-R 13.
  • the second notification message can be sent to the second FTU-R 13 of the showtime line at the downlink transmission time in the superframe.
  • the second FTU-R 13 modifies the uplink pilot sequence.
  • the second FTU-R can determine that the first FTU-O of the new incoming line has completed the detection of the synchronization symbol.
  • the FTU-R 13 modifies the second uplink pilot sequence to the third uplink pilot sequence according to the received second notification message, and at least one element of the third uplink pilot sequence is 1 or -1.
  • the second FTU-R 13 sends a third uplink pilot sequence to the second FTU-O 12. While the second FTU-R transmits the third uplink pilot sequence, the first FTU-R of the new incoming line also transmits the new uplink pilot sequence to the first FTU-O of the new incoming line.
  • the VCE 11 performs channel estimation. Specifically, the VCE 11 calculates the crosstalk of the showtime line to the new incoming line according to the non-zero element uplink pilot sequence of the multiple showtime lines, and completes the channel estimation to implement crosstalk cancellation for all the showtime lines to the new incoming line.
  • the VCE determines that the new station's central office transceiver completes the pilot sequence detection, it sends the signal to the client transceiver of the showtime line.
  • the UE transceiver modifies the second uplink pilot sequence to a third uplink pilot sequence according to the second notification message, where at least one element of the third uplink pilot sequence is 1 or -1.
  • the VCE then completes the showtime line's estimation of the incoming line crosstalk.
  • the VCE before the initialization of the new incoming line enters the R-VECTOR 1, the VCE sends the first notification message to notify the client transceiver of the showtime line to convert the first uplink pilot sequence into the second uplink pilot. sequence.
  • the pilot sequence of the showtime line corresponding to the position of the non-zero pilot element of the new incoming line is 0, and the central transceiver of the newly incoming line is detected when detecting the uplink pilot signal.
  • the crosstalk is reduced, which can reduce the noise, improve the signal-to-noise ratio, and further improve the robustness of the synchronization symbol detected by the central transceiver of the new line.
  • FIG. 3 is a block diagram of a client transceiver 300 for digital subscriber line initialization, which includes:
  • the receiving unit 310 is configured to receive a first notification message sent by the VCE, where the first notification message includes first indication information, where the first indication information indicates at least one first serial number, where the new incoming line is located
  • the element of the at least one first sequence number in the new uplink pilot sequence that the transceiver of the VCE peer needs to transmit is 1 or -1.
  • the converting unit 320 is configured to convert, according to the first notification message, a first uplink pilot sequence that needs to be sent by the UE transceiver to a second uplink pilot sequence, where the second uplink pilot sequence is The element of the at least one first sequence number is zero.
  • the sending unit 330 is configured to send the second uplink pilot sequence to the central transceiver of the showtime line.
  • the VCE before the initialization of the new incoming line enters the R-VECTOR 1, the VCE sends the first notification message to notify the client transceiver of the showtime line to convert the first uplink pilot sequence into the second uplink. Pilot sequence.
  • the pilot sequence of the showtime line corresponding to the position of the non-zero pilot element of the new incoming line is 0, and the central transceiver of the newly incoming line is detected when detecting the uplink pilot signal.
  • the crosstalk is reduced, which can reduce the noise, improve the signal-to-noise ratio, and further improve the robustness of the synchronization symbol detected by the central transceiver of the new line.
  • the converting unit 320 is configured to modify, according to the first indication information, a non-zero element of the at least one first sequence number in the first uplink pilot sequence to be zero.
  • the first notification message received by the receiving unit 310 further includes second indication information, where the second indication information indicates at least one second sequence number, wherein the at least one of the new incoming uplink pilot sequences The element of the second sequence number is zero; wherein the converting unit is configured to: modify, according to the first indication information, the non-zero element of the at least one first sequence number in the first uplink pilot sequence to be zero And modifying, according to the second indication information, an element of the at least one second sequence number of zero in the first uplink pilot sequence to be 1 or -1.
  • the at least one second sequence number includes a sequence number of all or part of the zero elements in the new uplink pilot sequence.
  • the at least one first sequence number includes a sequence number of all or part of the non-zero elements in the new uplink pilot sequence.
  • the second uplink pilot sequence includes a non-zero element, and the VCE can be based on the second uplink guide.
  • the frequency sequence can be used to estimate the crosstalk of the incoming line by the showtime line.
  • the receiving unit 310 is further configured to receive a second notification message that is sent by the VCE, where the converting unit 320 is further configured to convert the second uplink pilot sequence to the second notification message according to the second notification message.
  • a third uplink pilot sequence at least one element of the third uplink pilot sequence is 1 or -1; the sending unit 330 is further configured to send the third uplink pilot sequence to the central transceiver .
  • the VCE determines that the new station's central office transceiver completes the pilot sequence detection, it sends the signal to the client transceiver of the showtime line.
  • the UE transceiver modifies the second uplink pilot sequence to a third uplink pilot sequence according to the second notification message, where at least one element of the third uplink pilot sequence is 1 or -1.
  • the VCE then completes the showtime line's estimation of the incoming line crosstalk.
  • the converting unit 320 may be implemented by a processor, and the receiving unit 310 and the transmitting unit 330 may be implemented by a transceiver.
  • the client transceiver 400 can include a processor 410, a memory 420, a transceiver 430, and a bus system 440.
  • the memory 420 can be used to store code and the like executed by the processor 410.
  • the various components in the client transceiver 400 are coupled together by a bus system 440, which in addition to the data bus includes a power bus, a control bus, and a status signal bus.
  • a bus system 440 which in addition to the data bus includes a power bus, a control bus, and a status signal bus.
  • the client transceiver 300 shown in FIG. 3 or the client transceiver 400 shown in FIG. 4 can implement the processes of the second FTU-R 13 in the foregoing method embodiment shown in FIG. 2. To avoid repetition, here is not Let me repeat.
  • VCE 600 for digital subscriber line initialization which includes:
  • the generating unit 610 is configured to generate first indication information, where the first indication information indicates at least one first sequence number, where the transceiver located on the new terminal of the VCE needs to send the new uplink pilot sequence
  • the element that is the at least one first serial number is 1 or -1.
  • the determining unit 610 is further configured to generate, according to the first indication information, a first notification message, where the first notification message is used to indicate that the user transceiver is to be in the first
  • An uplink pilot sequence is converted into a second uplink pilot sequence, where the client transceiver is a transceiver on the showtime line at the opposite end of the VCE, the second The element of the first sequence number in the row pilot sequence is zero.
  • the sending unit 620 is configured to send the first notification message to the client transceiver.
  • the VCE before the initialization of the new incoming line enters the R-VECTOR 1, the VCE sends the first notification message to notify the client transceiver of the showtime line to convert the first uplink pilot sequence into the second uplink. Pilot sequence.
  • the pilot sequence of the showtime line corresponding to the position of the non-zero pilot element of the new incoming line is 0, and the central transceiver of the newly incoming line is detected when detecting the uplink pilot signal.
  • the crosstalk is reduced, which can reduce the noise, improve the signal-to-noise ratio, and further improve the robustness of the synchronization symbol detected by the central transceiver of the new line.
  • the first notification message generated by the generating unit 610 is used to indicate that the UE transceiver of the showtime line converts the first uplink pilot sequence into the second uplink pilot sequence, including: in the first notification message.
  • the first indication information is used to indicate that the UE transceiver modifies the non-zero element of the at least one first sequence number in the first uplink pilot sequence to zero. .
  • the generating unit 610 is further configured to: generate second indication information, where the second indication information indicates at least one second sequence number, where the new incoming uplink pilot sequence is the at least one second sequence number
  • the first notification message is generated by the generating unit 610 according to the first indication information and the second indication information, where the first notification message is generated.
  • the first indication information is used to indicate that the UE transceiver modifies the non-zero element of the at least one first sequence number in the first uplink pilot sequence to zero, and the second indication information in the first notification message And configured to instruct the client transceiver to modify a zero element of the at least one second sequence number in the first uplink pilot sequence to be 1 or ⁇ 1.
  • the at least one second sequence number includes a sequence number of all or part of the zero elements in the new uplink pilot sequence.
  • the at least one first sequence number includes a sequence number of all or part of the non-zero elements in the new uplink pilot sequence.
  • the second uplink pilot sequence includes a non-zero element, and the estimation of the new line crosstalk by the showtime line can be completed according to the second uplink pilot sequence.
  • the generating unit 610 is further configured to: generate a second notification message, where the second notification message is used to instruct the user transceiver to convert the second uplink pilot sequence into a third uplink pilot.
  • the sequence, the at least one element in the third uplink pilot sequence is 1 or -1; the sending unit 620 is further configured to send the second notification message to the client transceiver.
  • the method includes: a receiving unit, configured to receive third indication information that is sent by the central transceiver transceiver on the new incoming line, where the third indication is The information is used to instruct the central transceiver to complete pilot sequence detection.
  • the VCE determines that the new station's central office transceiver completes the pilot sequence detection, it sends the signal to the client transceiver of the showtime line.
  • the UE transceiver modifies the second uplink pilot sequence to a third uplink pilot sequence according to the second notification message, where at least one element of the third uplink pilot sequence is 1 or -1.
  • the VCE then completes the showtime line's estimation of the incoming line crosstalk.
  • VCE 700 can include a processor 710, a memory 720, a transceiver 730, and a bus system 740.
  • the memory 720 can be used to store code and the like executed by the processor 610.
  • the VCE 600 shown in FIG. 5 or the UE transceiver 700 shown in FIG. 6 can implement the processes performed by the VCE 11 in the foregoing method embodiment shown in FIG. 2, and the client transceiver of the showtime line can be in FIG.
  • the second FTU-R 13, the central office transceiver of the new line may be the first FTU-O in the method 100, and to avoid repetition, no further details are provided here.
  • system 900 includes:
  • the client transceiver 300 of the foregoing embodiment of the present invention and the vectorization control entity VCE 600 of the embodiment of the present invention are identical to each other.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a Field Programmable Gate Array (FPGA), or the like. Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • Software module can It is located in a random storage medium, such as a flash memory, a read only memory, a programmable read only memory or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory in the embodiments of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate SDRAM
  • DDR SDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM Synchronous Connection Dynamic Random Access Memory
  • DR RAM direct memory bus random access memory
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • Another point that is shown or discussed between each other The coupling or direct coupling or communication connection may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Telephonic Communication Services (AREA)

Abstract

本发明实施例提供了用于数字用户线初始化的方法和装置,该方法由showtime线路的用户端收发器执行,该方法包括:接收矢量化控制实体VCE发送的第一通知消息,该第一通知消息包括第一指示信息,该第一指示信息指示至少一个第一序号,其中,新进上行导频序列中该至少一个第一序号的元素为1或-1;根据该第一通知消息,将showtime线路的第一上行导频序列转换为第二上行导频序列;向该showtime线路的局端收发器发送该第二上行导频序列。因此,在本发明实施例中,新进线路的局端收发器检测上行导频信号时受到的串扰会减小,进而能够降低噪声,提高信噪比,进一步提高新进线路的局端收发器检测同步符号的强壮性。

Description

用于数字用户线初始化的方法和装置 技术领域
本发明实施例涉及通信领域,并且更具体地,涉及用于数字用户线(Digital Subscriber Line,DSL)初始化的方法、用户端收发器和矢量化控制实体(Vectoring Control Entity,VCE)。
背景技术
DSL是一种在电话双绞线,例如无屏蔽双绞线(Unshielded Twist Pair,UTP)传输的高速数据传输技术。在DSL系统中具有多路DSL线路,目前通常由DSL接入复用器(DSLAM,DSL Access Multiplexer)为多路DSL线路提供接入服务。
为了满足中长期更高速率的需求,国际电信联盟ITU-T成立了G.fast项目,研究在光纤到分线点(Fiber to the Distribution Point,FTTdp)场景下,使用铜线来提供最后的高速接入,目标是100m范围内提供500Mbps以上的接入速率。ITU-T Q4采纳时分双工(Time Division Duplexing,TDD)作为下一代铜线宽带接入标准G.fast的双工方式。
但是,由于电磁感应原理,在接入DSLAM的多路信号之间会相互产生串扰(Crosstalk)。近端串音(Near End Cross-Talk,NEXT)和远端串音(Far End Cross-Talk,FEXT)能量都会随着频段升高而增强。G.fast上下行信道采用TDD方式,NEXT可以通过dp点的超帧(superframe)同步来避免,但由于G.fast使用的频段越来越宽,FEXT愈发严重地影响线路的传输性能。xDSL传输中,串音体现为噪声的一部分;所以严重的远端串音显著的降低了信道速率。当一捆电缆内有多路用户都要求开通xDSL业务时,会因为FEXT使一些线路速率低、性能不稳定、甚至不能开通等,最终导致DSLAM的出线率比较低。
具体而言,在混合线长的多线对场景,长线线路会受到短线线路很强的串扰,会导致新进线路(joining lines)在初始化阶段检测信号失败,退出初始化。
发明内容
本发明实施例提供了用于DSL初始化的方法、用户端收发器和矢量化控制实体,能够减小showtime线路对新进线路的串扰,提高新进线路的局端收发器检测同步符号的强壮性。
第一方面,提供了一种用于DSL初始化的方法,包括:用户端收发器接收矢量化控制实体VCE发送的第一通知消息,所述第一通知消息包括第一指示信息,所述第一指示信息指示至少一个第一序号,其中,所述用户端收发器为showtime线路上的位于所述VCE对端的收发器,新进线路上的位于所述VCE对端的收发器需要发送的新进上行导频序列中所述至少一个第一序号的元素为1或-1;根据所述第一通知消息,将所述用户端收发器需要发送的第一上行导频序列转换为第二上行导频序列,其中,所述第二上行导频序列中所述至少一个第一序号的元素为零;向所述showtime线路的局端收发器发送所述第二上行导频序列。
在本发明实施例中,在新进线路的初始化进入R-VECTOR 1之前,VCE通过发送第一通知消息,通知showtime线路的用户端收发器将第一上行导频序列转换为第二上行导频序列。这样,新进线路进入R-VECTOR 1时,新进线路的部分非零导频元素位置所对应的showtime线路的导频序列为0,新进线路的局端收发器检测上行导频信号时受到的串扰会减小,进而能够降低噪声,提高信噪比,进一步提高新进线路的局端收发器检测同步符号的强壮性。
结合第一方面,在第一方面的第一种实现方式中所述根据所述第一通知消息,将所述用户端收发器需要发送的第一上行导频序列转换为第二上行导频序列,包括:根据所述第一指示信息,将所述第一上行导频序列中所述至少一个第一序号的非零元素修改为零。
结合第一方面,在第一方面的第二种实现方式中,所述第一通知消息还包括第二指示信息,所述第二指示信息指示至少一个第二序号,其中,所述新进上行导频序列中所述至少一个第二序号的元素为零;其中,所述根据所述第一通知消息,将所述用户端收发器需要发送的第一上行导频序列转换为第二上行导频序列,包括:根据所述第一指示信息,将所述第一上行导频序列中所述至少一个第一序号的非零元素修改为零;根据所述第二指示信息,将所述第一上行导频序列中所述至少一个第二序号的为零的元素修改为1或-1。
结合第一方面,在第一方面的第三种实现方式中,所述至少一个第二序号包括所述新进上行导频序列中的全部或部分零元素的序号。
结合第一方面,在第一方面的第四种实现方式中,所述至少一个第一序号包括所述新进上行导频序列中的全部或部分非零元素的序号。
这样,该第二上行导频序列中包含非零元素,可以根据第二上行导频序列可以完成showtime线路对新进线路串扰的估计。
本发明实施例的用于DSL初始化的方法,还包括:所述用户端收发器接收所述VCE发送的第二通知消息;根据所述第二通知消息,将所述第二上行导频序列转换为第三上行导频序列,所述第三上行导频序列中至少存在一个元素为1或-1;向所述局端收发器发送所述第三上行导频序列。
这样,当根据第二上行导频序列不能完成showtime线路对新进线路串扰的估计时,在VCE确定新进线路的局端收发器完成导频序列检测后,向showtime线路的用户端收发器发送第二通知消息,该用户端收发器根据该第二通知消息将第二上行导频序列修改为第三上行导频序列,该第三上行导频序列中至少有一个元素为1或-1,然后VCE完成showtime线路对新进线路串扰的估计。
第二方面,提供了一种用于DSL初始化的方法,包括:矢量化控制实体VCE生成第一指示信息,所述第一指示信息指示至少一个第一序号,其中,新进线路上的位于所述VCE对端的收发器需要发送的新进上行导频序列中为所述至少一个第一序号的元素为1或-1;当确定新进线路的初始化进入信道发现阶段时,根据所述第一指示信息,生成第一通知消息,所述第一通知消息用于指示用户端收发器将第一上行导频序列转换为第二上行导频序列,其中,所述用户端收发器为showtime线路上的位于所述VCE对端的收发器,所述第二上行导频序列中所述第一序号的元素为零;向所述用户端收发器发送所述第一通知消息。
在本发明实施例中,在新进线路的初始化进入R-VECTOR 1之前,VCE通过发送第一通知消息,通知showtime线路的用户端收发器将第一上行导频序列转换为第二上行导频序列。这样,新进线路进入R-VECTOR 1时,新进线路的部分非零导频元素位置所对应的showtime线路的导频序列为0,新进线路的局端收发器检测上行导频信号时受到的串扰会减小,进而能够降低噪声,提高信噪比,进一步提高新进线路的局端收发器检测同步符号的强壮 性。
结合第二方面,在第二方面的第一种实现方式中,所述第一通知消息用于指示用户端收发器将第一上行导频序列转换为第二上行导频序列,包括:所述第一通知消息中的第一指示信息用于指示所述用户端收发器将所述第一上行导频序列中所述至少一个第一序号的非零元素修改为零。
结合第二方面,在第二方面的第二种实现方式中,所述方法还包括:生成第二指示信息,所述第二指示信息指示至少一个第二序号,其中,所述新进上行导频序列中为所述至少一个第二序号的元素为零;其中,所述生成第一通知消息包括:根据所述第一指示信息和所述第二指示信息,生成所述第一通知消息,所述第一通知消息中的第一指示信息用于指示所述用户端收发器将所述第一上行导频序列中所述至少一个第一序号的非零元素修改为零,所述第一通知消息中的第二指示信息用于指示所述用户端收发器将所述第一上行导频序列中所述至少一个第二序号的零元素修改为1或-1。
结合第二方面,在第二方面的第三种实现方式中,所述至少一个第二序号包括所述新进上行导频序列中的全部或部分零元素的序号。
结合第二方面,在第二方面的第四种实现方式中,所述至少一个第一序号包括所述新进上行导频序列中的全部或部分非零元素的序号。
这样,该第二上行导频序列中包含非零元素,可以根据第二上行导频序列可以完成showtime线路对新进线路串扰的估计。
结合第二方面,在第二方面的第五种实现方式中,还包括:所述VCE生成第二通知消息,所述第二通知消息用于指示所述用户端收发器将所述第二上行导频序列转换为第三上行导频序列,所述第三上行导频序列中至少存在一个元素为1或-1;向所述用户端收发器发送所述第二通知消息。
结合第二方面,在第二方面的第六种实现方式中,在所述生成第二通知消息之前,包括:接收所述新进线路上的局端收发器收发器发送的第三指示信息,所述第三指示信息用于指示所述局端收发器完成导频序列检测。
这样,当根据第二上行导频序列不能完成showtime线路对新进线路串扰的估计时,在VCE确定新进线路的局端收发器完成导频序列检测后,向showtime线路的用户端收发器发送第二通知消息,该用户端收发器根据该第二通知消息将第二上行导频序列修改为第三上行导频序列,该第三上行导频序列中至少有一个元素为1或-1,然后VCE完成showtime线路对新进线路 串扰的估计。
第三方面,提供了一种用于DSL初始化的用户端收发器,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该装置包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的单元。
第四方面,提供了一种用于DSL初始化的矢量化控制实体VCE,用于执行上述第二方面或第二方面的任意可能的实现方式中的方法。具体地,该装置包括用于执行上述第二方面或第二方面的任意可能的实现方式中的方法的单元。
第五方面,提供了一种用于DSL初始化的用户端收发器,该用户端收发器包括:收发器、存储器、处理器和总线系统。其中,该收发器、该存储器和该处理器通过该总线系统相连,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第一方面或第一方面的任意可能的实现方式中的方法。
第六方面,提供了一种用于DSL初始化的矢量化控制实体VCE,该VCE包括:收发器、存储器、处理器和总线系统。其中,该收发器、该存储器和该处理器通过该总线系统相连,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第二方面或第二方面的任意可能的实现方式中的方法。
第七方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。
第八方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第二方面或第二方面的任意可能的实现方式中的方法的指令。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造 性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例的多线对xDSL系统连接关系图的示意图。
图2是本发明实施例的用于DSL初始化的方法的一个具体实施例的交互流程图。
图3是本发明实施例的用于DSL初始化的一个用户端收发器的示意性框图。
图4是本发明实施例的用于DSL初始化的另一个用户端收发器的示意性框图。
图5是本发明实施例的用于DSL初始化的一个VCE的示意性框图。
图6是本发明实施例的用于DSL初始化的另一个VCE的示意性框图。
图7是本发明实施例系统的示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1示出了多线对xDSL系统连接关系图。矢量化控制实体(VectoringControl Entity,VCE)能够控制多个局端收发器与用户端收发器传输数据,本发明实施例以局端收发器为光网络单元侧的G.fast收发器单元(G.fast Transceiver Unit at the Optical Network Unit,FTU-O),用户端收发器为远端G.fast收发器单元(G.fast Transceiver Unit at the remove side,FTU-R)为例进行说明。该VCE可以为软件模块,可以用芯片实现。通过UTP连接的FTU-O和FTU-R为一个线对,FTU-O可以通过该UTP与FTU-R传输数据。
xDSL系统中的多线对存在showtime线路和新进线路。Showtime线路指FTU-O和FTU-R已经完成初始化过程并开始在承载通道发送数据的线路,新进线路指FTU-O和FTU-R还没有完成初始化的过程的线路。本发明实施例中,称新进线路的FTU-O为第一FTU-O,新进线路的FTU-R为第二FTU-R,称showtime线路的FTU-O为第二FTU-O,showtime线路的FTU-R为第二FTU-R。
当用户要求开通xDSL业务时,新进线路的第一FTU-O和第一FTU-R 需要完成初始化过程。该初始化过程包括握手阶段、信道发现阶段、信道分析和信道交换阶段。其中,信道发现阶段是初始化的一个重要的阶段,该阶段要实现新进线路对showtime线路的串扰抵消,还需要完成所有showtime线路对新进线路的串扰抵消。
在混合线长的多线对场景下,信道发现阶段的R-VECTOR-1阶段,新进线路唯一能够利用的信号为同步符号(Sync Symbol,SS),当新进线路相对showtime线路为长线线路时,或者新进线路中信号的衰减很大时,新进线路的SS中的上行导频信号会叠加showtime线路的上行导频信号很强的串扰,新进线路检测很难准确检测出上行SS中的上行导频信号,这时可以应用本发明的技术方案。
图2示出了根据本发明实施例的用于DSL初始化的方法100的流程图。图2中的S101至S105为实施本发明实施例的用于DSL初始化的方法100必须执行的流程,S106至S111为进一步实施本发明实施例的用于DSL初始化的方法100中完成信道估计需要执行的流程,下面将对方法100中的每个步骤进行详细说明。
S101,VCE 11生成第一指示信息。具体的,VCE 11确定新进线路进入信道发现阶段,根据该新进线路的上行导频序列,生成第一指示信息。第一指示信息用于指示至少一个第一序号,本文可以称新进线路的位于所述VCE对端的收发器需要发送的上行导频序列为新进上行导频序列,新进上行导频序列中为该至少一个第一序号的元素为零。
具体而言,VCE能够实时监测xDSL系统中的每一个FTU-O。当新进线路的第一FTU-O与第一FTU-R完成握手阶段,进入信道发现阶段时,VCE能够为该新进线路配置新进上行导频序列,并将包含该新进上行导频序列的指示信息发送给该第一FTU-O,然后该第一FTU-O将该指示信息发送给第一FTU-R。
这样,第一FTU-R能够确定在R-VECTOR 1阶段需要向第一FTU-O发送的上行导频序列。
应注意,本发明实施例中,导频序列分为上行导频序列和下行导频序列。该导频序列的长度可以为4至128。例如,当该导频序列的长度为8时,例如为A1A2A3A4A5A6A7A8,Ai为该导频序列中的第i个元素的值,i为该元素的序号(Index)。Ai的取值可以为10-1。当Ai取值为1时,表示该导 频信号的载波调制比特为00,对应星座点在加扰码前为1+i,当Ai取值为0时,表示没有导频信号,当Ai取值为-1时,表示该导频信号的载波调制比特为11,对应星座点在加扰码前为-1-i。
例如,当第一FTU-R发送的上行导频序列为1 1 -1 -1 1 1 -1 -1,发送的超帧为P,发送的上行导频序列的元素的值的序号为1时,即该第一FTU-R在超帧P中的上行SS中包含A1元素对应的导频信号,在下一个超帧P+1中的上行SS中包含A2元素对应的导频信号,即在超帧中依次循环发送该上行导频序列中的每一个元素。可以理解,在超帧P+7中上行SS中包含A1元素对应的导频信号。
然后,VCE 11根据该新进上行导频序列,生成第一指示信息。
可选的,该至少一个第一序号包括新进上行导频序列中的全部或部分非零元素的序号。
例如,当该新进上行导频序列为1 1 -1 -1 0 0 0 0时,该新进上行导频序列的非零元素的序号为1、2、3、4,该第一指示信息指示的一个或多个第一序号可以为1、2、3、4,也可以为1、2、3、4中的一部分,该第一指示信息指示第二FTU-R将该第二FTU-R需要发送的第一上行导频序列中一个或多个第一序号对应的非零元素的值修改为零。
可选的,VCE还可以根据该新进上行导频序列,生成第二指示信息,该第二指示信息指示至少一个第二序号,新进上行导频序列中为该至少一个第二序号的元素为零。
可选的,上述至少一个第二序号包括所述新进上行导频序列中的全部或部分零元素的序号。
例如,当新进上行导频序列为1 1 -1 -1 0 0 0 0时,该至少一个第二序号可以为5、6、7、8,也可以为5、6、7、8中的一部分。该第二指示信息指示showtime线路的第二FTU-R将第一上行导频序列为至少一个第二序号的元素修改为1或-1。
应注意,本发明实施例中,VCE 11为xDSL系统中的每一条线路配置上行导频序列,每一条线路的FTU-R发送的SS中上行导频序列长度相同且相互正交,并且同一时刻每一条线路的FTU-R发送的SS中的上行导频序列中的元素的序号相同。
S102,VCE 11生成第一通知消息。该第一通知消息用于通知第二FTU-R 有新用户需要接入到xDSL网络中,并且该新进线路的初始化已经进行到信道发现阶段。同时,该第一通知消息包括第一指示信息,该第一通知消息用于指示showtime线路的第二FTU-R将第一上行导频序列转换为第二上行导频序列,该第二上行导频序列中为该第一序号的元素为零。
该第一上行导频序列为新进线路初始化进行到R-VECTOR 1阶段之前第二FTU-R向第二FTU-O发送的上行导频序列,第二导频序列为新进线路初始化进行到R-VECTOR 1阶段后第二FTU-R向FTU-O发送的上行导频序列。
可选的,上述根据所述第一通知消息,将showtime线路的第一上行导频序列转换为第二上行导频序列,具体可以为根据所述第一指示信息,将所述第一上行导频序列中所述至少一个第一序号的非零元素修改为零。
可选的,该第一通知消息还可以包括第二指示信息,这时,该第一通知消息中的该第一指示信息可以用于指示showtime线路的第二FTU-R将第一上行导频序列中为至少一个第一序号的非零元素修改为零,该第一通知消息中的第二指示信息用于指示showtime线路的第二FTU-R将第一上行导频序列中为至少一个第二序号的为零的元素修改为非零。
应注意,当xDSL系统中存在多个showtime线路时,VCE可以指示多个showtime线路中的部分或全部修改第一上行导频序列,多个showtime线路的第二导频序列可以部分或全部为零。
例如,当xDSL系统中存在3个showtime线路时,该3个showtime线路中有2个线路相对新进线路为短线线路,此时VCE可以只生成上述2个showtime线路的第一通知消息,这样,能够明显的减小新进线路检测SS中上行导频序列时收到的短线showtime线路的串扰。
S103,VCE 11发送该第一通知消息。
具体的,VCE 11将该第一通知消息发送给showtime线路的第二FTU-O 12,该第二FTU-O 12将该第一通知消息转发给该第二FTU-R 13。例如第二FTU-O可以在超帧中的下行传输时间向showtime线路的第二FTU-R 13发送该第一通知消息。
当VCE确定需要向多个showtime线路的第二FTU-R发送第一通知消息时,可以分别向多个showtime线路发送该第一通知消息。
S104,第二FTU-R 13修改上行导频序列。
具体的,第二FTU-R在接收到该第一通知消息之后,能够确定有新用户需要接入到xDSL网络中,并且该新进线路的初始化已经进行到信道发现阶段。
当多个showtime线路都收到第一通知消息时,该多个showtime线路的第二FTU-R分别根据第一通知消息修改第一上行导频序。
这样,在新进线路进入R-VECTOR 1之前,第二FTU-R 13根据接收到的第一通知消息,将showtime线路的第一上行导频序列转换为第二上行导频序列,所述第二上行导频序列中所述第一序号的元素为零。。
作为一个具体的实施例,xDSL系统中的存在两个showtime线路,该两个showtime线路的第一上行导频序列分别为1 1 1 1 1 1 1 1和1 -1 1 -1 1 -1 -1 -1。新进上行导频序列为1 1 -1 -1 1 1 -1 -1,
此时,该第一通知消息中的第一指示信息指示的至少一个第一序列可以为1、2、3、4,即为新进上行导频序列中的部分为零元素的序号,根据该第一通知消息,将第一上行导频序列中该至少一个第一序号的非零元素修改为零,即可以将上述两个showtime线路的上行导频序列分别修改为0 0 0 0 1 1 1 1和0 0 0 0 1 -1 1 -1,这样,当新进线路的第一FTU-R向第一FTU-O发送的SS中的上行导频序列为1 1 -1 -1 1 1 -1 -1时,新进线路的部分非零导频元素位置所对应的showtime线路的导频为0,因此能够减小第一FTU-O检测上行导频信号时受到的串扰,进而降低噪声,提高信噪比。
因为第二上行导频序列中的元素中存在非零的元素,可以估计到showtime线路对新进线路的串扰。
可选的,当该第一通知消息中的第一指示信息指示的至少一个第一序列可以为新进上行导频序列中的全部为非零元素的序号,根据第一通知消息,将第一上行导频序列中所述至少一个第一序号的非零元素修改为零,即将上述两个showtime线路的上行导频序列分别修改为0 0 0 0 0 0 0 0和0 0 0 0 0 0 0 0,这样,当新进线路的第一FTU-R向第一FTU-O发送的SS中的上行导频序列为1 1 -1 -1 1 1 -1 -1时,新进线路的非零导频元素位置所对应的showtime线路的导频为0,能够减小第一FTU-O检测上行导频信号时受到的串扰,进而降低噪声,提高信噪比。
这样,因为第二上行导频序列中的全部元素都为零,将无法估计到showtime线路对新进线路的串扰。
可选的,该第一通知消息还可以包括第二指示信息,该第二指示信息指示至少一个第二序号,新进上行导频序列中为该至少一个第二序号的元素为零;该根据该第一指示信息,可以将该第一上行导频序列中该至少一个第一序号的非零元素修改为零,根据该第二指示信息,将该第一上行导频序列中该至少一个第二序号的为零的元素修改为非零。
作为一个具体的实施例,xDSL系统中的存在两个showtime线路,该两个showtime线路的第一上行导频序列分别为1 1 1 1 0 0 0 0和1 -1 1 -1 0 0 0 0。新进上行导频序列为1 1 -1 -1 0 0 0 0。
此时,该至少一个第一序号为1、2、3、4,该至少一个第二序号为5、6、7、8。根据第一指示信息和第二指示信息,将上述两个showtime线路的上行导频序列分别修改为0 0 0 0 1 1 1 1和0 0 0 0 1 -1 1 -1,这样,当新进线路的第一FTU-R向第一FTU-O发送的SS中的上行导频序列为1 1 -1 -1 0 0 0 0时,新进线路的非零导频元素位置所对应的showtime线路的导频为0,因此能够减小第一FTU-O检测上行导频信号时受到的串扰,进而降低噪声,提高信噪比。
因为第二上行导频序列中的元素中存在非零的元素,可以估计到showtime线路对新进线路的串扰。
S105,在新进线路的初始化进入R-VECTOR 1阶段时,第二FTU-R 13向第二FTU-O 12发送第二上行导频序列。此时,各个线路的FTU-R发送的SS时对齐的,即新进线路的第一FTU-R向第一FTU-O发送S101中确定上行导频序列的同时,第二FTU-R也会向第二FTU-O发送第二上行导频序列。
可以理解,当VCE通知所有的showtime线路的第二FTU-R修改上行导频序列时,新进线路的第一FTU-O检测上行导频信号时不会受到showtime线路的串扰,进而噪声达到最小,信噪比最高。
本发明实施例中,当showtime线路对新进线路的上行导频信号没有串扰或者串扰减小时,一方面新进线路的第一FTU-O可以更准确的估计新进线路上的SS的符号对齐边界,进一步更准确的计算新进线路的符号边界与showtime线路的符号边界的偏差值,根据该偏差值可以调制上行符号发送时间,进而更好的使新进线路在发送数据时能够和showtime路线上发送的数据同步。
另一方面,新进线路的第一FTU-O能够更准确的检测到第一FTU-R发 送的上行SS中的导频信号,避免第一FTU-O因为showtime线路的串扰过大而不能检测到第一FTU-R发送的SS中的上行导频序列,从而退出初始化。
因此,在本发明实施例中,在新进线路的初始化进入R-VECTOR 1之前,VCE通过发送第一通知消息,通知showtime线路的用户端收发器将第一上行导频序列转换为第二上行导频序列。这样,新进线路进入R-VECTOR 1时,新进线路的部分非零导频元素位置所对应的showtime线路的导频序列为0,新进线路的局端收发器检测上行导频信号时受到的串扰会减小,进而能够降低噪声,提高信噪比,进一步提高新进线路的局端收发器检测同步符号的强壮性。
可选的,在S104中,当根据第二上行导频序列不能完成showtime线路对新进线路串扰的估计时,为了估计showtime线路对新进线路的串扰,VCE需要执行下文中的S106至S110的流程。
具体而言,当新进上行导频序列没有串扰或受到的串扰减小时,虽然有利于检测该上行导频序列,但是可能无法估计出showtime线路传输的信号对新进线路的串扰。因此,在VCE确定新进端口完成同步符号的检测后,可以再次对修改showtime线路的上行导频信号,以便于后续估计showtime线路对新进线路的串扰。
S106,VCE 11确定新进线路的第一FTU-O完成上行同步符号的检测。
具体的,VCE可以主动获取新进线路的初始化过程中的各项参数,例如符号对齐参数和TGupdate参数等等,进而确定第一FTU-O已经完成上行导频信号的检测。
或者,可选的,新进线路的第一FTU-O在完成检测上行导频信号之后,还可以主动向VCE上报指示信息,当VCE收到第一FTU-O发送的指示信息时,可以确定第一FTU-O已经完成上行导频序列的检测。
S107,VCE 11生成第二通知消息。该第二通知消息指示showtime线路的第二FTU-R 12将第二上行导频序列修改为第三上行导频序列,该第三上行导频序列中至少有一个元素为1或-1。
应注意,在第二FTU-R将第二上行导频序列修改为第三上行导频序列后,xDSL线路中的每一个FTU-R发送的上行导频序列相互正交。S108,VCE 11向第二FTU-R发送第二通知消息。
当根据第二上行导频序列不能完成showtime线路对新进线路串扰的估 计时,该第三上行导频序列为新进线路初始化R-VECTOR 1阶段进行完后第二FTU-R向第二FTU-O发送的上行导频序列,并且VCE根据该第三上行导频序列完成showtime线路对新进线路串扰的估计。
具体的,VCE 11先将该第二通知消息发送给showtime线路的第二FTU-O 12,该第二FTU-O 12将该第二通知消息转发给该第二FTU-R 13。例如可以在超帧中的下行传输时间向showtime线路的第二FTU-R 13发送该第二通知消息。
S109,第二FTU-R 13修改上行导频序列
具体的,第二FTU-R在接收到该第二通知消息之后,能够确定该新进线路的第一FTU-O已经完成同步符号的检测。
那么,FTU-R 13根据接收到的第二通知消息,将第二上行导频序列修改为第三上行导频序列,该第三上行导频序列中至少有一个元素为1或-1。
S110,第二FTU-R 13向该第二FTU-O 12发送第三上行导频序列。在第二FTU-R发送该第三上行导频序列的同时,新进线路的第一FTU-R也会向该新进线路的第一FTU-O发送该新进上行导频序列。
S111,VCE 11进行信道估计。具体的,VCE 11根据多个showtime线路的包含非零元素上行导频序列,计算出showtime线路对新进线路的串扰,完成信道估计,以实现所有showtime线路对新进线路的串扰抵消。
因此,当根据第二上行导频序列不能完成showtime线路对新进线路串扰的估计时,在VCE确定新进线路的局端收发器完成导频序列检测后,向showtime线路的用户端收发器发送第二通知消息,该用户端收发器根据该第二通知消息将第二上行导频序列修改为第三上行导频序列,该第三上行导频序列中至少有一个元素为1或-1,然后VCE完成showtime线路对新进线路串扰的估计。
在本发明实施例中,在新进线路的初始化进入R-VECTOR 1之前,VCE通过发送第一通知消息,通知showtime线路的用户端收发器将第一上行导频序列转换为第二上行导频序列。这样,新进线路进入R-VECTOR 1时,新进线路的部分非零导频元素位置所对应的showtime线路的导频序列为0,新进线路的局端收发器检测上行导频信号时受到的串扰会减小,进而能够降低噪声,提高信噪比,进一步提高新进线路的局端收发器检测同步符号的强壮性。
图3是本发明一个实施例的用于数字用户线初始化的用户端收发器300的框图,该用户端收发器300包括:
接收单元310,用于接收所述VCE发送的第一通知消息,所述第一通知消息包括第一指示信息,所述第一指示信息指示至少一个第一序号,其中,新进线路上的位于所述VCE对端的收发器需要发送的新进上行导频序列中所述至少一个第一序号的元素为1或-1。
转换单元320,用于根据所述第一通知消息,将所述用户端收发器需要发送的第一上行导频序列转换为第二上行导频序列,其中,所述第二上行导频序列中所述至少一个第一序号的元素为零。
发送单元330,用于向所述showtime线路的局端收发器发送所述第二上行导频序列。
因此,在本发明实施例中,在新进线路的初始化进入R-VECTOR 1之前,VCE通过发送第一通知消息,通知showtime线路的用户端收发器将第一上行导频序列转换为第二上行导频序列。这样,新进线路进入R-VECTOR 1时,新进线路的部分非零导频元素位置所对应的showtime线路的导频序列为0,新进线路的局端收发器检测上行导频信号时受到的串扰会减小,进而能够降低噪声,提高信噪比,进一步提高新进线路的局端收发器检测同步符号的强壮性。
可选的,所述转换单元320具体用于根据所述第一指示信息,将所述第一上行导频序列中所述至少一个第一序号的非零元素修改为零。
可选的,所述接收单元310接收的第一通知消息还包括第二指示信息,所述第二指示信息指示至少一个第二序号,其中,所述新进上行导频序列中所述至少一个第二序号的元素为零;其中,所述转换单元具体用于:根据所述第一指示信息,将所述第一上行导频序列中所述至少一个第一序号的非零元素修改为零;根据所述第二指示信息,将所述第一上行导频序列中所述至少一个第二序号的为零的元素修改为1或-1。
可选的,所述至少一个第二序号包括所述新进上行导频序列中的全部或部分零元素的序号。
可选的,所述至少一个第一序号包括所述新进上行导频序列中的全部或部分非零元素的序号。
这样,该第二上行导频序列中包含非零元素,VCE可以根据第二上行导 频序列可以完成showtime线路对新进线路串扰的估计。
可选的,所述接收单元310还用于接收所述VCE发送的第二通知消息;所述转换单元320还用于根据所述第二通知消息,将所述第二上行导频序列转换为第三上行导频序列,所述第三上行导频序列中至少存在一个元素为1或-1;所述发送单元330还用于向所述局端收发器发送所述第三上行导频序列。
因此,当根据第二上行导频序列不能完成showtime线路对新进线路串扰的估计时,在VCE确定新进线路的局端收发器完成导频序列检测后,向showtime线路的用户端收发器发送第二通知消息,该用户端收发器根据该第二通知消息将第二上行导频序列修改为第三上行导频序列,该第三上行导频序列中至少有一个元素为1或-1,然后VCE完成showtime线路对新进线路串扰的估计。
应注意,本发明实施例中,转换单元320可以由处理器实现,接收单元310和发送单元330可以由收发器实现。如图4所示,用户端收发器400可以包括处理器410、存储器420、收发器430和总线系统440。其中,存储器420可以用于存储处理器410执行的代码等。
用户端收发器400中的各个组件通过总线系统440耦合在一起,其中总线系统440除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
图3所示的用户端收发器300或图4所示的用户端收发器400能够实现前述图2所示的方法实施例中的第二FTU-R 13的各个过程,为避免重复,这里不再赘述。
图5是本发明一个实施例的用于数字用户线初始化的VCE 600的框图,该VCE 600包括:
生成单元610,用于生成第一指示信息,所述第一指示信息指示至少一个第一序号,其中,新进线路上的位于所述VCE对端的收发器需要发送的新进上行导频序列中为所述至少一个第一序号的元素为1或-1。
当确定新进线路的初始化进入信道发现阶段时,所述生成单元610还用于根据所述第一指示信息,生成第一通知消息,所述第一通知消息用于指示用户端收发器将第一上行导频序列转换为第二上行导频序列,其中,所述用户端收发器为showtime线路上的位于所述VCE对端的收发器,所述第二上 行导频序列中所述第一序号的元素为零。
发送单元620,用于向所述用户端收发器发送所述第一通知消息。
因此,在本发明实施例中,在新进线路的初始化进入R-VECTOR 1之前,VCE通过发送第一通知消息,通知showtime线路的用户端收发器将第一上行导频序列转换为第二上行导频序列。这样,新进线路进入R-VECTOR 1时,新进线路的部分非零导频元素位置所对应的showtime线路的导频序列为0,新进线路的局端收发器检测上行导频信号时受到的串扰会减小,进而能够降低噪声,提高信噪比,进一步提高新进线路的局端收发器检测同步符号的强壮性。。
可选的,所述生成单元610生成的第一通知消息用于指示showtime线路的用户端收发器将第一上行导频序列转换为第二上行导频序列,包括:所述第一通知消息中的第一指示信息用于指示所述用户端收发器将所述第一上行导频序列中所述至少一个第一序号的非零元素修改为零。。
可选的,生成单元610还用于:生成第二指示信息,所述第二指示信息指示至少一个第二序号,其中,所述新进上行导频序列中为所述至少一个第二序号的元素为零;其中,所述生成单元610生成第一通知消息具体为:根据所述第一指示信息和所述第二指示信息,生成所述第一通知消息,所述第一通知消息中的第一指示信息用于指示所述用户端收发器将所述第一上行导频序列中所述至少一个第一序号的非零元素修改为零,所述第一通知消息中的第二指示信息用于指示所述用户端收发器将所述第一上行导频序列中所述至少一个第二序号的零元素修改为1或-1。
可选的,所述至少一个第二序号包括所述新进上行导频序列中的全部或部分零元素的序号。
可选的,所述至少一个第一序号包括所述新进上行导频序列中的全部或部分非零元素的序号。
这样,该第二上行导频序列中包含非零元素,可以根据第二上行导频序列可以完成showtime线路对新进线路串扰的估计。
可选的,所述生成单元610还用于:生成第二通知消息,所述第二通知消息用于指示所述用户端收发器将所述第二上行导频序列转换为第三上行导频序列,所述第三上行导频序列中至少存在一个元素为1或-1;所述发送单元620还用于向所述用户端收发器发送所述第二通知消息。
可选的,在所述生成单元610生成第二通知消息之前,包括:接收单元,用于接收所述新进线路上的局端收发器收发器发送的第三指示信息,所述第三指示信息用于指示所述局端收发器完成导频序列检测。
因此,当根据第二上行导频序列不能完成showtime线路对新进线路串扰的估计时,在VCE确定新进线路的局端收发器完成导频序列检测后,向showtime线路的用户端收发器发送第二通知消息,该用户端收发器根据该第二通知消息将第二上行导频序列修改为第三上行导频序列,该第三上行导频序列中至少有一个元素为1或-1,然后VCE完成showtime线路对新进线路串扰的估计。
应注意,本发明实施例中,生成单元610可以由处理器实现,发送单元620可以由收发器实现。如图6所示,VCE 700可以包括处理器710、存储器720、收发器730和总线系统740。其中,存储器720可以用于存储处理器610执行的代码等。
图5所示的VCE 600或图6所示的用户端收发器700能够实现前述图2所示的方法实施例中的VCE 11执行的各个过程,showtime线路的用户端收发器可以为图2中的第二FTU-R 13,新进线路的局端收发器可以为方法100中的第一FTU-O,为避免重复,这里不再赘述。
本发明实施例还提供了一种系统。如图7所示,系统900包括:
前述本发明实施例的用户端收发器300和本发明实施例的矢量化控制实体VCE 600。
应注意,本发明上述方法实施例可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以 位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本发明实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间 的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (27)

  1. 一种用于数字用户线初始化的方法,其特征在于,包括:
    showtime线路上的用户端收发器接收第一通知消息,所述第一通知消息包括第一指示信息,所述第一指示信息指示至少一个第一序号,其中,所述至少一个第一序号用于表示新进线路上的用户端收发器的新进上行导频序列中所述至少一个第一序号的元素为1或-1;
    根据所述第一通知消息,将所述showtime线路上的用户端收发器的第一上行导频序列转换为第二上行导频序列,其中,所述第二上行导频序列中所述至少一个第一序号的元素为零;
    向所述showtime线路上的局端收发器发送所述第二上行导频序列。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述第一通知消息,将所述showtime线路上的用户端收发器的第一上行导频序列转换为第二上行导频序列,包括:
    根据所述第一指示信息,将所述第一上行导频序列中所述至少一个第一序号的非零元素修改为零。
  3. 根据权利要求1所述的方法,其特征在于,所述第一通知消息还包括第二指示信息,所述第二指示信息指示至少一个第二序号,其中,所述至少一个第二序号用于表示所述新进上行导频序列中所述至少一个第二序号的元素为零;
    其中,所述根据所述第一通知消息,将所述showtime线路上的用户端收发器的第一上行导频序列转换为第二上行导频序列,包括:
    根据所述第一指示信息,将所述第一上行导频序列中所述至少一个第一序号的非零元素修改为零;
    根据所述第二指示信息,将所述第一上行导频序列中所述至少一个第二序号的为零的元素修改为1或-1。
  4. 根据权利要求3所述的方法,其特征在于,所述至少一个第二序号包括所述新进上行导频序列中的全部或部分零元素的序号。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述至少一个第一序号包括所述新进上行导频序列中的全部或部分非零元素的序号。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,还包括:
    所述showtime线路上的用户端收发器接收第二通知消息;
    根据所述第二通知消息,将所述第二上行导频序列转换为第三上行导频序列,所述第三上行导频序列中至少存在一个元素为1或-1;
    向所述局端收发器发送所述第三上行导频序列。
  7. 一种用于数字用户线初始化的方法,其特征在于,包括:
    矢量化控制实体VCE生成第一指示信息,所述第一指示信息指示至少一个第一序号,其中,所述至少一个第一序号用于表示新进线路上的用户端收发器的新进上行导频序列中为所述至少一个第一序号的元素为1或-1;
    当确定新进线路的初始化进入信道发现阶段时,根据所述第一指示信息,生成第一通知消息,所述第一通知消息用于指示showtime线路上的用户端收发器将第一上行导频序列转换为第二上行导频序列,其中,所述第二上行导频序列中所述第一序号的元素为零;
    向所述showtime线路上的用户端收发器发送所述第一通知消息。
  8. 根据权利要求7所述的方法,其特征在于,所述第一通知消息用于指示showtime线路上的用户端收发器将第一上行导频序列转换为第二上行导频序列,包括:
    所述第一通知消息中的第一指示信息用于指示所述showtime线路上的用户端收发器将所述第一上行导频序列中所述至少一个第一序号的非零元素修改为零。
  9. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    生成第二指示信息,所述第二指示信息指示至少一个第二序号,其中,所述至少一个第二序号用于表示所述新进上行导频序列中为所述至少一个第二序号的元素为零;
    其中,所述生成第一通知消息包括:根据所述第一指示信息和所述第二指示信息,生成所述第一通知消息,所述第一通知消息中的第一指示信息用于指示所述showtime线路上的用户端收发器将所述第一上行导频序列中所述至少一个第一序号的非零元素修改为零,所述第一通知消息中的第二指示信息用于指示所述showtime线路上的用户端收发器将所述第一上行导频序列中所述至少一个第二序号的零元素修改为1或-1。
  10. 根据权利要求9所述的方法,其特征在于,所述至少一个第二序号包括所述新进上行导频序列中的全部或部分零元素的序号。
  11. 根据权利要求7至10中任一项所述的方法,其特征在于,所述至 少一个第一序号包括所述新进上行导频序列中的全部或部分非零元素的序号。
  12. 根据权利要求7至11中任一项所述的方法,其特征在于,还包括:
    所述VCE生成第二通知消息,所述第二通知消息用于指示所述showtime线路上的用户端收发器将所述第二上行导频序列转换为第三上行导频序列,所述第三上行导频序列中至少存在一个元素为1或-1;
    向所述showtime线路上的用户端收发器发送所述第二通知消息。
  13. 根据权利要求12所述的方法,其特征在于,在所述生成第二通知消息之前,包括:
    接收所述新进线路上的局端收发器发送的第三指示信息,所述第三指示信息用于指示所述局端收发器完成导频序列检测。
  14. 一种用于数字用户线初始化的用户端收发器,其特征在于,所述用户端收发器位于showtime线路上,包括:
    接收单元,用于接收第一通知消息,所述第一通知消息包括第一指示信息,所述第一指示信息指示至少一个第一序号,其中,所述至少一个第一序号用于表示新进线路上的用户端收发器的新进上行导频序列中所述至少一个第一序号的元素为1或-1;
    转换单元,用于根据所述第一通知消息,将所述showtime线路上的用户端收发器的第一上行导频序列转换为第二上行导频序列,其中,所述第二上行导频序列中所述至少一个第一序号的元素为零;
    发送单元,用于向所述showtime线路上的局端收发器发送所述第二上行导频序列。
  15. 根据权利要求14所述的用户端收发器,其特征在于,所述转换单元具体用于:
    根据所述第一指示信息,将所述第一上行导频序列中所述至少一个第一序号的非零元素修改为零。
  16. 根据权利要求14所述的用户端收发器,其特征在于,所述接收单元接收的第一通知消息还包括第二指示信息,所述第二指示信息指示至少一个第二序号,其中,所述至少一个第二序号用于表示所述新进上行导频序列中所述至少一个第二序号的元素为零;
    其中,所述转换单元具体用于:根据所述第一指示信息,将所述第一上 行导频序列中所述至少一个第一序号的非零元素修改为零;
    根据所述第二指示信息,将所述第一上行导频序列中所述至少一个第二序号的为零的元素修改为1或-1。
  17. 根据权利要求16所述的用户端收发器,其特征在于,所述至少一个第二序号包括所述新进上行导频序列中的全部或部分零元素的序号。
  18. 根据权利要求14至17中任一项所述的用户端收发器,其特征在于,所述至少一个第一序号包括所述新进上行导频序列中的全部或部分非零元素的序号。
  19. 根据权利要求14至18中任一项所述的用户端收发器,其特征在于,
    所述接收单元还用于接收第二通知消息;
    所述转换单元还用于根据所述第二通知消息,将所述第二上行导频序列转换为第三上行导频序列,所述第三上行导频序列中至少存在一个元素为1或-1;
    所述发送单元还用于向所述局端收发器发送所述第三上行导频序列。
  20. 一种用于数字用户线初始化的矢量化控制实体VCE,其特征在于,包括:
    生成单元,用于生成第一指示信息,所述第一指示信息指示至少一个第一序号,其中,所述至少一个第一序号用于表示新进线路上的用户端收发器的新进上行导频序列中为所述至少一个第一序号的元素为1或-1;
    所述生成单元还用于当确定新进线路的初始化进入信道发现阶段时,根据所述第一指示信息,生成第一通知消息,所述第一通知消息用于指示showtime线路上的用户端收发器将第一上行导频序列转换为第二上行导频序列,其中,所述至少一个第一序号表示所述第二上行导频序列中所述第一序号的元素为零;
    发送单元,用于向所述showtime线路上的用户端收发器发送所述第一通知消息。
  21. 根据权利要求20所述的VCE,其特征在于,所述生成单元生成的第一通知消息用于指示showtime线路上的用户端收发器将第一上行导频序列转换为第二上行导频序列,包括:
    所述第一通知消息中的第一指示信息用于指示所述showtime线路上的用户端收发器将所述第一上行导频序列中所述至少一个第一序号的非零元 素修改为零。
  22. 根据权利要求20所述的VCE,其特征在于,所述生成单元还用于:
    生成第二指示信息,所述第二指示信息指示至少一个第二序号,其中,所述至少一个第二序号用于表示所述新进上行导频序列中为所述至少一个第二序号的元素为零;
    其中,所述生成单元生成所述第一通知消息具体为:根据所述第一指示信息和所述第二指示信息,生成所述第一通知消息,所述第一通知消息中的第一指示信息用于指示所述showtime线路上的用户端收发器将所述第一上行导频序列中所述至少一个第一序号的非零元素修改为零,所述第一通知消息中的第二指示信息用于指示所述showtime线路上的用户端收发器将所述第一上行导频序列中所述至少一个第二序号的零元素修改为1或-1。
  23. 根据权利要求22所述的VCE,其特征在于,所述至少一个第二序号包括所述新进上行导频序列中的全部或部分零元素的序号。
  24. 根据权利要求20至23中任一项所述的VCE,其特征在于,所述至少一个第一序号包括所述新进上行导频序列中的全部或部分非零元素的序号。
  25. 根据权利要求20至24中任一项所述的VCE,其特征在于,
    所述生成单元还用于所述VCE生成第二通知消息,所述第二通知消息用于指示所述showtime线路上的用户端收发器将所述第二上行导频序列转换为第三上行导频序列,所述第三上行导频序列中至少存在一个元素为1或-1;
    所述发送单元还用于向所述showtime线路上的用户端收发器发送所述第二通知消息。
  26. 根据权利要求25所述的VCE,其特征在于,所述VCE还包括接收单元,所述接收单元用于在所述生成第二通知消息之前,接收所述新进线路上的局端收发器发送的第三指示信息,所述第三指示信息用于指示所述局端收发器完成导频序列检测。
  27. 一种系统,其特征在于,包括:
    根据权利要求14至19中任一项所述的用于数字用户线初始化的用户端收发器和根据权利要求20至26中任一项所述的用于数字用户线初始化的矢量化控制实体VCE。
PCT/CN2015/094484 2015-11-12 2015-11-12 用于数字用户线初始化的方法和装置 WO2017079946A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580082439.6A CN107925437B (zh) 2015-11-12 2015-11-12 用于数字用户线初始化的方法和装置
EP15908076.1A EP3367581B1 (en) 2015-11-12 2015-11-12 Method and device for digital subscriber line initialization
PCT/CN2015/094484 WO2017079946A1 (zh) 2015-11-12 2015-11-12 用于数字用户线初始化的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/094484 WO2017079946A1 (zh) 2015-11-12 2015-11-12 用于数字用户线初始化的方法和装置

Publications (1)

Publication Number Publication Date
WO2017079946A1 true WO2017079946A1 (zh) 2017-05-18

Family

ID=58695814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/094484 WO2017079946A1 (zh) 2015-11-12 2015-11-12 用于数字用户线初始化的方法和装置

Country Status (3)

Country Link
EP (1) EP3367581B1 (zh)
CN (1) CN107925437B (zh)
WO (1) WO2017079946A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110875935A (zh) * 2018-08-30 2020-03-10 阿里巴巴集团控股有限公司 消息发布、处理、订阅方法、装置及系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201915815D0 (en) * 2019-10-31 2019-12-18 Nokia Solutions & Networks Oy Direct channel characterization for discontinuous time-frequency operation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101453245A (zh) * 2007-11-29 2009-06-10 华为技术有限公司 一种消除数字用户线串扰的方法、设备和系统
CN103503398A (zh) * 2011-04-27 2014-01-08 伊卡诺斯通讯公司 用于g向量初始化的系统和方法
US20140185659A1 (en) * 2012-12-28 2014-07-03 Broadcom Corporation Communication System Capable of Measuring Crosstalk in Legacy Line
WO2014201662A1 (zh) * 2013-06-20 2014-12-24 华为技术有限公司 线路初始化方法、设备及系统
CN105009465A (zh) * 2013-04-12 2015-10-28 华为技术有限公司 在fext下执行上行符号定位

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103098412B (zh) * 2012-10-29 2015-04-29 华为技术有限公司 一种初始化方法、设备和系统
US9614660B2 (en) * 2013-05-03 2017-04-04 Futurewei Technologies, Inc. Self-synchronizing probe sequence

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101453245A (zh) * 2007-11-29 2009-06-10 华为技术有限公司 一种消除数字用户线串扰的方法、设备和系统
CN103503398A (zh) * 2011-04-27 2014-01-08 伊卡诺斯通讯公司 用于g向量初始化的系统和方法
US20140185659A1 (en) * 2012-12-28 2014-07-03 Broadcom Corporation Communication System Capable of Measuring Crosstalk in Legacy Line
CN105009465A (zh) * 2013-04-12 2015-10-28 华为技术有限公司 在fext下执行上行符号定位
WO2014201662A1 (zh) * 2013-06-20 2014-12-24 华为技术有限公司 线路初始化方法、设备及系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110875935A (zh) * 2018-08-30 2020-03-10 阿里巴巴集团控股有限公司 消息发布、处理、订阅方法、装置及系统

Also Published As

Publication number Publication date
EP3367581A4 (en) 2018-08-29
CN107925437B (zh) 2020-07-21
EP3367581B1 (en) 2020-01-08
EP3367581A1 (en) 2018-08-29
CN107925437A (zh) 2018-04-17

Similar Documents

Publication Publication Date Title
EP2954620B1 (en) Performing upstream symbol alignment under fext
US7130395B2 (en) Method and system for reducing cross-talk and avoiding bridged taps
US9306733B2 (en) Method of synchronizing a communication system
CN104350685A (zh) 对齐tdd dsl系统中多个线路的上行dmt符号
US20220353001A1 (en) Multiple ports with different baud rate over a single serdes
WO2012149791A1 (zh) 一种串扰信道估计方法、装置及系统
US20200204286A1 (en) Dynamic Time Adjustment Method, Apparatus, and System
US9473240B2 (en) Method and apparatus for providing twisted pair multilink communications
US9866271B2 (en) Interference mitigation apparatus and interference mitigation method for home network transmission line, and communication system using same
WO2017079946A1 (zh) 用于数字用户线初始化的方法和装置
EP2988426A1 (en) Line initialization method, device and system
EP2876872B1 (en) Digital subscriber line access multiplexer for sending communication signals to customer devices
WO2010048861A1 (zh) 一种快速退出训练的方法、系统及装置
EP3720166A1 (en) Method and apparatus for processing initialization signal
JP2014531809A (ja) Xdsl伝送システムのための非規格モードを開始するための方法、およびその方法を使用したレジデンシャルゲートウェイ
US20200119873A1 (en) Dynamic Time Assignment Method, Apparatus, and System
US20210014344A1 (en) Physical medium dependent layer bonding
CN105830353B (zh) 信号发送的方法、装置和系统
WO2017070886A1 (zh) 传输数据的方法、发送端和接收端
EP2892219B1 (en) Method and apparatus for sending selt measurement signal and control device
US20150341081A1 (en) Method and apparatus for updating fext coefficients for g.fast vectoring with discontinuous operation
US20210359830A1 (en) Method and apparatus for configuring operation mode of a remote transceiver unit
EP3565130B1 (en) Signal processing method, apparatus and system
KR101892704B1 (ko) 간섭 완화 장치 및 이를 이용한 간섭 완화 방법
WO2018120062A1 (zh) 信号处理方法、网络侧设备及客户终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15908076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015908076

Country of ref document: EP