WO2022222900A1 - 一种海洋用长时间随涡观测系统及设计方法 - Google Patents

一种海洋用长时间随涡观测系统及设计方法 Download PDF

Info

Publication number
WO2022222900A1
WO2022222900A1 PCT/CN2022/087531 CN2022087531W WO2022222900A1 WO 2022222900 A1 WO2022222900 A1 WO 2022222900A1 CN 2022087531 W CN2022087531 W CN 2022087531W WO 2022222900 A1 WO2022222900 A1 WO 2022222900A1
Authority
WO
WIPO (PCT)
Prior art keywords
vortex
sail
observation system
flow
depth
Prior art date
Application number
PCT/CN2022/087531
Other languages
English (en)
French (fr)
Inventor
杨杰
陈戈
马纯永
唐军武
张本涛
陈笑炎
Original Assignee
中国海洋大学
青岛海洋科学与技术国家实验室发展中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国海洋大学, 青岛海洋科学与技术国家实验室发展中心 filed Critical 中国海洋大学
Publication of WO2022222900A1 publication Critical patent/WO2022222900A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C13/00Surveying specially adapted to open water, e.g. sea, lake, river or canal
    • G01C13/002Measuring the movement of open water

Definitions

  • the invention relates to the technical field of ocean observation equipment, in particular to a long-time vortex observation system and a design method for ocean use.
  • Oceanic eddies are ubiquitous, ubiquitous, tens of thousands, and of different sizes in the ocean, with horizontal scales ranging from several kilometers to hundreds of kilometers, vertical scales ranging from tens of meters to hundreds of meters, and time scales ranging from several kilometers to several hundred meters. From days to several years, the propagation speed is on the order of kilometers per day, and it has the characteristics of horizontal local stirring, vertical biochemical flux, regional entrainment transport and three-dimensional profile structure. It is an ideal carrier for studying material circulation, energy cascade and circle-layer coupling.
  • the present invention provides the following scheme:
  • a design method of a long-time vortex observation system for oceans includes the following steps:
  • Step 1 Data set collection; the global eddy identification and tracking data set provided by the Ocean Information Technology Laboratory of Ocean University of China and the global ocean three-dimensional vertical layered flow field reanalysis data set GLORYS2V4 provided by the Global Monitoring and Forecasting Center CMEMS are used as sources, which together serve as the data basis for data analysis;
  • Step 2 eddy-current consistency analysis and law statistics; based on the vortex data set and three-dimensional flow field data set obtained in step 1, the size and direction of the background flow field at different depths in the same space and time are respectively related to the vortex velocity and vortex flow field.
  • the statistical analysis of the consistency probability of the direction the general law of the depth h 1 of the maximum probability consistency of the vortex direction and the flow direction and the depth h 2 of the maximum probability consistency of the vortex speed and the flow velocity of the specific sea area and different characteristic vortices is obtained;
  • Step 3 Determine the deployment depth of the water sail in the vortex observation system; take the depth h 1 at which the maximum probability of vortex direction-flow direction coincidence occurs obtained in step 2 as the optimal deployment depth of the water sail;
  • Step 4 Calculation and design of the specific size of the water sail; based on the requirements of the vortex-following observation system and the vortex synchronous motion, the water-sail is used as the power source of the vortex-following observation system, and other components except the water sail are used as the resistance source; for the target sea area According to the vortex-current consistency law of the region obtained in step 2, the force condition of each component of the vortex observation system is analyzed, and the overall dynamic equation of the vortex observation system is established. , Different vortex types, and the design size of water sails for long-term vortex observation.
  • the method for calculating the resistance value of the components other than the water sail as the resistance source in the step 4 includes:
  • the value of the stratified flow field is determined; the flow velocity and flow direction interpolation are performed on the flow field in the depth respectively to obtain the stratified flow field at the i-th depth.
  • the direction of vortex motion is the positive direction of the x-axis;
  • s ball , s plastic coating , s hammer , s mooring cable , s liter are the total upstream flow of the single part underwater unit length of the sea surface float ball, plastic coated steel cable, tension hammer, mooring cable and lifting platform.
  • H1-H2 is the profile depth from the sea surface level to the bottom end of the sea surface float
  • H2-H3 is the profile depth from the bottom end of the sea surface float to the upper damping block
  • H3-H4 is the profile depth from the upper damping block to the lower damping block
  • H4-H5 is the profile depth from the lower damping block to the top of the tension hammer
  • H5-H6 is the profile depth of the tension hammer
  • H6-H7 is the profile depth from the bottom end of the tension hammer to the top of the sail
  • the power value of the water sail as the power source of the vortex observation system in the step 4 is:
  • the resistance value of the resistance source is F other
  • the resistance is the same as the dynamic value of the power source F sail, and if the two are equal, the specific size of the water sail can be calculated as: :
  • the invention also provides a long-time vortex observation system for the ocean, which includes a sea surface float, a plastic-coated steel cable, an upper damping block, a lifting platform, a lower damping block, a tensioning hammer, a tensioning cable, telescopic cable and water sail, the sea standard float floats on the ocean surface, one end of the plastic-coated steel cable is fixedly connected to the sea surface float, and the other end is fixedly connected to the tension hammer, and the upper damping block is fixedly arranged on On the plastic-coated steel cable, the lifting platform and the plastic-coated steel cable are unidirectionally coupled and connected, the lower damping block is fixedly arranged on the plastic-coated steel cable and is located below the lifting platform, and the tensioning hammer is arranged below the lower damping block, so Said water sail is connected below the tensioning hammer through a mooring cable and a telescopic cable.
  • the lifting platform is equipped with a multi-parameter sensor, which is used for the observation of physical, chemical, biological, optical and other parameters of the vortex profile.
  • the water sail is arranged in a cylindrical structure and a plurality of through holes are opened on the outer side wall.
  • the present invention provides a long-time eddy-following observation system and a design method for the ocean.
  • the observation system synchronizes with the eddy vortex center with maximum probability, thereby realizing the purpose of long-time eddy-following observation.
  • Conventional mobile devices such as Drifter driven by surface flow, Argo and Glider that do not have the ability to follow the flow have the advantages of long vortex time and good observation effect; in addition, the present invention provides observation from the perspective of big data statistics and theory.
  • the methodology for the system to achieve long-time vortex tracking can provide a theoretical basis and basis for the design of all vortex tracking systems.
  • Fig. 1 is the structural representation of the vortex observation system in the present invention
  • Fig. 2 is a schematic diagram of the comparison of global surface velocity and vortex velocity based on Drifter; wherein, Fig. 2a is a graph of global sea surface velocity based on Drifter's on-site observation, and Fig. 2b is a graph of vortex movement velocity obtained based on satellite observations;
  • Figure 3 is a schematic diagram of the statistical law of eddy-current consistency
  • Figure 4 is a schematic diagram of the results of the vortex following eddy analysis in the present invention.
  • Figure 4a is a schematic diagram of a vortex trajectory
  • Figure 4b is a schematic diagram of the probability distribution of the vortex direction-flow direction consistency at different depths
  • Figure 4c is a vortex velocity at different depths- Schematic diagram of the probability distribution of the flow velocity consistency
  • Figure 4d is a schematic diagram of the distribution law of the background flow field velocity along the profile.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrated; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal connection of two elements or the interaction relationship between the two elements.
  • installed e.g., it may be a fixed connection or a detachable connection , or integrated; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal connection of two elements or the interaction relationship between the two elements.
  • a method for designing a long-time vortex observation system for oceans includes the following steps:
  • Step 1 Data set collection; the global eddy identification and tracking data set provided by the Ocean Information Technology Laboratory of Ocean University of China and the global ocean three-dimensional vertical layered flow field reanalysis data set GLORYS2V4 provided by the Global Monitoring and Forecasting Center CMEMS are used as sources, which together serve as the data basis for data analysis.
  • Step 2 eddy-current consistency analysis and law statistics; based on the vortex data set and three-dimensional flow field data set obtained in step 1, the size and direction of the background flow field at different depths in the same space and time are respectively related to the vortex velocity and vortex flow field.
  • the probability and statistical analysis of the consistency of the direction the general law of the depth h 1 of the maximum probability consistency of the vortex direction-flow direction and the depth of the maximum probability consistency of the vortex speed-velocity velocity of the vortex with different characteristics in a specific sea area and different characteristics h 2 is obtained.
  • Step 3 Determine the deployment depth of the water sail in the vortex observation system; take the depth h 1 at which the maximum probability of the vortex direction and the flow direction consistent obtained in step 2 occurs as the optimal deployment depth of the water sail.
  • Step 4 Calculation and design of the specific size of the water sail; based on the requirements of the vortex-following observation system and the vortex synchronous motion, the water-sail is used as the power source of the vortex-following observation system, and other components except the water sail are used as the resistance source; for the target sea area According to the vortex-current consistency law in the region obtained in step 2, the force of each component of the vortex observation system is analyzed, and the overall dynamic equation of the vortex observation system is established. Different vortex types and design dimensions of water sails for long-term follow-vortex observation.
  • the method for calculating the resistance value of the components other than the water sail as the resistance source in the step 4 includes:
  • the value of the stratified flow field is determined; the flow velocity and flow direction interpolation are performed on the flow field in the depth respectively to obtain the stratified flow field at the i-th depth.
  • the direction of vortex motion is the positive direction of the x-axis.
  • s ball , s plastic coating , s hammer , s mooring cable , s liter are the total upstream flow of the single part underwater unit length of the sea surface float ball, plastic coated steel cable, tension hammer, mooring cable and lifting platform.
  • H1-H2 is the profile depth from the sea surface level to the bottom end of the sea surface float
  • H2-H3 is the profile depth from the bottom end of the sea surface float to the upper damping block
  • H3-H4 is the profile depth from the upper damping block to the lower damping block
  • H4-H5 is the profile depth from the lower damping block to the top of the tension hammer
  • H5-H6 is the profile depth of the tension hammer
  • H6-H7 is the profile depth from the bottom end of the tension hammer to the top of the sail.
  • the power value of the water sail as the power source of the vortex observation system in the step 4 is:
  • the resistance value of the resistance source is F other
  • the resistance is the same as the dynamic value of the power source F sail, and if the two are equal, the specific size of the water sail can be calculated as: :
  • the vortex can reach a vertical scale of several hundred meters. If the overall movement of the vortex is related to the background flow field, it should be the result of the comprehensive driving of the entire background flow field, not just the surface flow. field. In addition, since the distribution of the background flow field has a certain regional law and is stable, there should be a certain depth range in each region, and the flow direction of the flow velocity and the vortex direction of the vortex have the highest probability of consistency. Based on this assumption, we further use the global vortex identification and tracking dataset and GLORYS2V4 to re-analyze the 3D flow field dataset with a temporal resolution of 1 day and a spatial resolution of 0.25° ⁇ 0.25°.
  • the data are from China The Ocean University Information Technology Laboratory and the Global Monitoring and Forecasting Center, CMEMS, jointly carry out statistical analysis of data; the latest results show that in the three-dimensional background flow field of the ocean, there is indeed a maximum probability of consistency between the flow direction and the vortex direction.
  • the maximum probability of the vortex velocity-flow velocity consistency is low, which in turn means that the probability of the flow velocity is higher than the vortex velocity, and this characteristic is just designed for us.
  • the vortex observation system provides the necessary conditions. It should be noted that the shallow depth of h 2 mentioned above refers to a shallower depth range than h 2 .
  • the background flow field distribution and vortex region motion characteristics are usually relatively stable, and the size of the water sail can be reasonably designed to ensure that the overall motion speed of the system and the vortex speed have a high probability of consistency, so as to improve
  • the residence time of the system near the vortex center reduces the time and probability of being thrown out, and achieves the purpose of following the vortex for a long time.
  • the present invention also provides a long-time vortex observation system for the ocean, as shown in FIG. 1 , including a sea surface float 1 , a plastic-coated steel cable 2 , an upper damping block 3 , and a lifting platform 4 arranged in order from the ocean surface downward.
  • the lifting platform 4 is equipped with a multi-parameter sensor, which is used for the observation of physical, chemical, biological, optical and other parameters of the vortex profile.
  • the realization method of the lifting platform 4 can be taken as an example of the buoy platform in the invention patent with the application number 201811475281.0 previously applied for and published by this laboratory;
  • the plastic-coated steel cable 2 between the two parts performs autonomous reciprocating motion, and cooperates with the multi-parameter sensor mounted on the lifting platform 4 to realize the multi-parameter observation of the vortex profile.
  • the water sail 9 is configured as a cylindrical structure and a plurality of through holes 91 are formed on the outer side wall. More preferably, the material of the water sail 9 is made of nylon.
  • the plastic-coated steel cable 2 is the riding channel when the lifting platform 4 moves up and down.
  • the reason for the plastic-coated steel cable 2 can ensure a tighter coupling with the one-way device in the lifting platform on the one hand, and provide underwater inductive coupling on the other hand.
  • the data transmission channel of the module; one end of the mooring cable 7 is connected to the bottom end of the tensioning hammer 6, and the other end is connected to the water sail 9 through the telescopic cable 8.
  • the length of the mooring cable 7 is equal to the deployment depth of the water sail 9 and the observation depth of the lifting platform 4 poor.
  • the telescopic cable 8 is mainly used to buffer the influence of the ups and downs of the sea surface float 1 on the vertical stretching of the water sail 9 under the action of waves. In order to ensure the transmission efficiency of wave energy, the lifting platform 4 can move up and down efficiently along the plastic-coated steel cable 2 .
  • the length of the telescopic cable 8 is relatively short and can be ignored. More preferably, the telescopic cable 8 is made of a rubber tube or a spring.
  • the vortex is a medium-long-lived vortex in the North Pacific Ocean.
  • the vortex was generated on January 5, 2014, moved westward, and died on July 18, 2014.
  • the lifespan is 226 days, as shown in Figure 4a.
  • the maximum probability of consistency between the flow direction and the vortex direction is 87%, as shown in Figure 4b; the corresponding surface layer Drifter at a depth of 15m has the highest probability of consistency between the flow direction and the vortex direction. The probability is only 50%.
  • the maximum probability of the consistency between the velocity and the vortex is about 53%, as shown in Figure 4c; the probability of the corresponding surface Drifter at a depth of 15 meters is only 35%.
  • the flow velocity of the background flow field decreases sharply in the vertical direction, so at the depth where the velocity-vortex velocity has the greatest probability of consistency, that is, the reason for the lower consistency probability of 35-53% at shallow depths below 270 meters The main reason is that the flow velocity is greater than the vortex velocity.
  • the probability of direction consistency at this depth is 87%, which is 1.74 times the probability of 50% at 15 meters on the surface;
  • the probability of velocity consistency at a depth of 240 meters is about 50%, which is 1.43 times that of about 35% at the surface 15 meters. Therefore, to sum up, compared with the existing surface Drifter, the tracking time (probability) of the vortex by the vortex observation system will be increased by 2.5 times.
  • the depth with the maximum probability consistency between the vortex direction and the flow direction is selected as the water flow of the vortex observation system.
  • the sail deployment depth and then calculate the sail size according to the flow velocity at this depth in the background flow field, the up-flow area of the observation system, and the vortex velocity of the vortex to be measured.
  • the specific process is: assuming that the vortex velocity is V vortex , the flow velocity at the depth where the vortex direction and the flow direction have the greatest probability of consistency is V flow , the surface float, plastic-coated steel cable, tension hammer, mooring cable and the lift platform
  • the flow areas are respectively S ball , S plastic wrap , S hammer , S tether , S liter, and the total is a known quantity.
  • the upflow area per unit length is considered together with the mooring cable, which can be calculated according to the length and total area of each component. Since the lifting platform moves up and down along the plastic-coated steel cable, in order to further refine its impact on the upflow at different depths, considering the characteristics of the lifting platform along the cable profile, that is, stable and fast, cyclic movement, and short profile period, we can use the lifting platform.
  • the influence of the upflow is evenly apportioned in its section depth, that is, the total upflow area of the lifting platform S is liters, and the total upflow area is equally divided in its section depth H3-H4, and the upflow area of the lifting platform in this section depth is S Liters, total /(H4-H3).
  • the total upstream influence of the other parts except the sails in the vortex motion direction within the depths of H1 to H7 profiles can be obtained by multiplying the upstream area of each part by the component of the flow velocity along the vortex direction at each depth, and the integral is obtained as A remainder, Total ; it should be noted that the reason why the vertical component is not considered here is that the background flow field and the overall direction of the vortex motion are horizontally consistent, and the vertical direction can be ignored;
  • the resistance value of other components except the water sail in the vortex system is:

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

海洋观测设备技术领域,具体涉及一种海洋用长时间随涡观测系统及设计方法。随涡观测系统,包括从海洋表面向下依次设置的海表浮球(1)、包塑钢缆(2)、上阻尼块(3)、升降平台(4)、下阻尼块(5)、张紧锤(6)、系缆(72)、伸缩缆(8)以及水帆(9);设计方法包括全球涡旋及背景三维流场数据集的收集、涡-流一致性分析与规律统计、随涡观测系统中水帆(9)部署深度的确定、水帆(9)具体尺寸的设计。随涡观测系统可以实现最大概率地与涡心同步,相比于只受表层流驱动的Drifter、不具备跟流性的Argo等常规移动设备,具有随涡时间长,观测效果好的优势;另外从大数据统计和理论分析等角度上给出了现场观测系统实现长时间随涡的方法论,可为所有随涡观测系统的设计提供理论基础和依据。

Description

一种海洋用长时间随涡观测系统及设计方法
本申请要求于2021年04月20日提交中国专利局、申请号为202110423625.9、发明名称为“一种海洋用长时间随涡观测系统及设计方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及海洋观测设备技术领域,特别是涉及一种海洋用长时间随涡观测系统及设计方法。
背景技术
海洋涡旋在海洋中无处不在、无时不有、数以万计、大小不一,其水平尺度从几公里到几百公里、垂直尺度从几十米到几百米、时间尺度从几天到几年、每天传播速度在公里量级,并具有水平局部搅拌、垂直生化通量、区域裹挟传输和三维剖面结构特征,是研究物质循环、能量级联和圈层耦合的理想载体。
随着涡旋海洋学研究的不断深入,贯穿涡旋主要生命阶段的涡旋剖面多参数获取成为涡旋交叉学科发展的迫切需求。目前用于涡旋观测的卫星遥感手段仅能观测海表参数信息,尚无法实现剖面三维观测;常规的潜标、漂流浮标、Argo浮标、Glider等现场观测手段在长期随涡、多传感器搭载、总剖面数获取等方面均存在一定程度的不足或限制。另外目前观测系统在涡旋中的投放深度位置通常依靠实践经验进行放置,并没有其确切的方法论可以参考,观测效果并不理想。因此,发展一种具有长时间跟涡功能和多参数高分辨剖面获取能力的现场随涡系统尤为迫切且意义重大。
发明内容
基于此,有必要提供一种海洋用长时间随涡观测系统及设计方法,以解决上述背景技术中存在的现有技术问题。
为实现上述目的,本发明提供了如下方案:
提供了一种海洋用长时间随涡观测系统的设计方法,包括以下步骤:
步骤一:数据集收集;以中国海洋大学海洋信息技术实验室提供的全球涡旋识别与追踪数据集,和全球监测与预报中心CMEMS提供的全球海洋三维垂直分层流场再分析数据集GLORYS2V4为来源,共同作为数据分析的数据基础;
步骤二:涡-流一致性分析与规律统计;基于步骤一中获取的涡旋数据集和三维流场数据集,开展同一时空下的不同深度处背景流场大小、方向分别与涡速、涡向的一致性概率统计分析,得到特定海域、不同特征涡旋的涡向-流向最大概率一致性的深度h 1和涡速-流速最大概率一致性的深度h 2这一普适规律;
步骤三:随涡观测系统中水帆部署深度确定;将步骤二中得到的涡向-流向最大概率一致性出现的深度h 1作为水帆的最佳部署深度;
步骤四:水帆具体尺寸计算与设计;基于随涡观测系统与涡旋同步运动的要求,将水帆作为随涡观测系统的动力源、除水帆以外的其它部件作为阻力源;针对目标海域的待测涡旋,根据步骤二得到的该区域涡-流一致性规律,对随涡观测系统的各部件进行受力情况分析,建立随涡观测系统整体的动力学方程,计算得到在不同海域、不同涡旋类型、实现长时间跟涡观测的水帆设计尺寸。
在上述技术方案基础上,所述步骤四中除水帆以外其它部件作为阻力源的阻力值计算方法包括:
S1,分层流场值确定;对该深度内的流场分别进行流速和流向插值,得到第i米深度处的分层流场
Figure PCTCN2022087531-appb-000001
其中,以涡旋运动方向为x轴正方向;
S2,除水帆外的其它部件总迎流影响计算;除水帆外其它部件单位长度迎流面积分别乘以各自所在深度处流速沿涡向分量大小,积分得到其它部件在整个剖面流场内的总迎流影响,即A 余,总
Figure PCTCN2022087531-appb-000002
其中,s 、s 包塑、s 、s 系缆、s 升,总分别为海表浮球、包塑钢缆、张紧锤、系缆以及升降平台的单部件水下单位长度的迎流面积,H1-H2为海表平面至海表浮球底端的剖面深度,H2-H3为海表浮球底端至上阻尼块的剖面深度,H3-H4为上阻尼块至下阻尼块的剖面深度,H4-H5为下阻尼块至张紧锤顶端的剖面深度,H5-H6为张紧锤的剖面深度,H6-H7为张紧锤底端至水帆顶端的剖面深度;
S3,除水帆外的其它部件运动速度计算;将除水帆外其它部件作为一个整体,将总迎流影响A 余,总除以总迎流面积S 余,总=(S +S 包塑+S 升,总+S +S 系缆),即得到其它部件沿涡旋运动方向的整体速度大小V x,余=A /S 余,总;其中,s 、s 包塑、s 、s 系缆、s 升,总分别为海表浮球、包塑钢缆、张紧锤、系缆以及升降平台的单部件的总迎流面积;
S4,除水帆外的其它部件的阻力计算;由于其它部件在水帆带动下,最终实现与涡旋一致的运动速度V ,则相对于水帆,其它部件所受阻力大小为F 其它,阻=(1/2)*C*ρ 海水*(S +S 包塑+S 升,总+S +S 系缆)*(V -V x,余) 2;其中,V 为涡旋速度大小,C为海水阻力常数,ρ 海水为海水密度。
在上述技术方案基础上,所述步骤四中水帆作为随涡观测系统的动力源的动力值为:
F 帆,动=(1/2)*C*ρ 海水*S *(V -V ) 2
根据随涡观测系统的最终运动速度与涡速一致的原则,即阻力源的阻力值F 其它,阻与动力源的动力值F 帆,动一致,两者相等则计算得到水帆的具体尺寸为:
S =(S +S 包塑+S 升降+S +S 系缆)*(V -V x,余) 2/(V -V ) 2;其中,V 为流向与涡向具有最大概率一致性的深度处的流速。
本发明还提供了一种海洋用长时间随涡观测系统,包括从海洋表面向下依次设置有海表浮球、包塑钢缆、上阻尼块、升降平台、下阻尼块、张紧锤、系缆、伸缩缆以及水帆,所述海标浮球漂浮在海洋表面,所述包塑钢缆一端与海表浮球固定连接,另一端与张紧锤固定连接,所述上阻尼块固定设置在包塑钢缆上,所述升降平台与包塑钢缆单向耦合连接,所述下阻尼块固定设置在包塑钢缆上且位于升降平台的下方,所述张紧锤设置在下阻尼块的下方,所述水帆通过系缆以及伸缩缆连接在张紧锤的下方。
在上述技术方案基础上,所述升降平台上搭载有多参数传感器,用于涡旋剖面的物理、化学、生物、光学等参数观测。
在上述技术方案基础上,所述水帆设置为圆筒形结构且外侧壁上开设 有多个通孔。
与现有技术相比,本发明的有益效果是:
本发明中提供了一种海洋用长时间随涡观测系统及设计方法,该观测系统通过满足最大概率地与涡旋涡心同步,进而实现长时间随涡观测目的,相比于现有技术中只受表层流驱动的的Drifter、不具备跟流性的Argo、Glider等常规移动设备,具有随涡时间长,观测效果好的优势;另外本发明从大数据统计规律和理论角度上给出了观测系统实现长时间随涡的方法论,可以为所有的随涡观测系统的设计提供理论基础和依据。
说明书附图
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明中随涡观测系统的结构示意图;
图2是基于Drifter的全球表层流速与涡速对比示意图;其中,图2a为基于Drifter现场观测得到的全球海表流速图,图2b为基于卫星观测得到的涡旋移动速度图;
图3是涡-流一致性统计规律示意图;
图4是本发明中涡旋随涡性分析的结果示意图;其中,图4a为涡旋轨迹示意图;图4b为不同深度涡向-流向一致性的概率分布示意图;图4c为不同深度涡速-流速一致性的概率分布示意图;图4d为背景流场流速沿剖面分布规律示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进 行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明的描述中,需要理解的是,术语“左”、“右”、“前”、“后”、“顶”、“底”、等指示的方位或位置关系均为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
如图1至图4所示,一种海洋用长时间随涡观测系统的设计方法,包括以下步骤:
步骤一:数据集收集;以中国海洋大学海洋信息技术实验室提供的全球涡旋识别与追踪数据集,和全球监测与预报中心CMEMS提供的全球海洋三维垂直分层流场再分析数据集GLORYS2V4为来源,共同作为数 据分析的数据基础。
步骤二:涡-流一致性分析与规律统计;基于步骤一中获取的涡旋数据集和三维流场数据集,开展同一时空下的不同深度处背景流场大小、方向分别与涡速、涡向的一致性概率统计分析,得到特定海域、不同特征涡旋的涡向-流向最大概率一致性的深度h 1和涡速-流速最大概率一致性的深度h 2这一普适规律。
步骤三:随涡观测系统中水帆部署深度确定;将步骤二中得到的涡向-流向最大概率一致性出现的深度h 1作为水帆的最佳部署深度。
步骤四:水帆具体尺寸计算与设计;基于随涡观测系统与涡旋同步运动的要求,将水帆作为随涡观测系统的动力源、除水帆以外的其它部件作为阻力源;针对目标海域的待测涡旋,根据步骤二得到的该区域涡-流一致性规律,对随涡观测系统的各部件受力情况分析,建立随涡观测系统整体的动力学方程,计算得到在不同海域、不同涡旋类型、实现长时间跟涡观测的水帆设计尺寸。
在上述技术方案基础上,所述步骤四中除水帆以外其它部件作为阻力源的阻力值计算方法包括:
S1,分层流场值确定;对该深度内的流场分别进行流速和流向插值,得到第i米深度处的分层流场
Figure PCTCN2022087531-appb-000003
其中,以涡旋运动方向为x轴正方向。
S2,除水帆外的其它部件总迎流影响计算;除水帆外其它部件单位长度迎流面积分别乘以各自所在深度处流速沿涡向分量大小,积分得到其它部件在整个剖面流场内的总迎流影响,即A 余,总
Figure PCTCN2022087531-appb-000004
其中,s 、s 包塑、s 、s 系缆、s 升,总分别为海表浮球、包塑钢缆、张紧锤、系缆以及升降平台的单部件水下单位长度的迎流面积,H1-H2为海表平面至海表浮球底端的剖面深度,H2-H3为海表浮球底端至上阻尼块的剖面深度,H3-H4为上阻尼块至下阻尼块的剖面深度,H4-H5为下阻尼块至张紧锤顶端的剖面深度,H5-H6为张紧锤的剖面深度,H6-H7为张紧锤底端至水帆顶端的剖面深度。
S3,除水帆外的其它部件运动速度计算;将除水帆外其它部件作为一个整体,将总迎流影响A 余,总除以总迎流面积S 余,总=(S +S 包塑+S 升,总+S +S 系缆),即得到其它部件沿涡旋运动方向的整体速度大小V x,余=A /S 余,总;其中s 、s 包塑、s 、s 系缆、s 升,总分别为海表浮球、包塑钢缆、张紧锤、系缆以及升降平台的单部件的总迎流面积。
S4,除水帆外的其它部件的阻力计算;由于其它部件在水帆带动下,最终实现与涡旋一致的运动速度V ,则相对于水帆,其它部件所受阻力大小为F 其它,阻=(1/2)*C*ρ 海水*(S +S 包塑+S 升,总+S +S 系缆)*(V -V x,余) 2;其中,V 为涡旋速度大小,C为海水阻力常数,ρ 海水为海水密度。
在上述技术方案基础上,所述步骤四中水帆作为随涡观测系统的动力源的动力值为:
F 帆,动=(1/2)*C*ρ 海水*S *(V -V ) 2
根据随涡观测系统的最终运动速度与涡速一致的原则,即阻力源的阻力值F 其它,阻与动力源的动力值F 帆,动一致,两者相等则计算得到水帆的具体尺寸为:
S =(S +S 包塑+S 升降+S +S 系缆)*(V -V x,余) 2/(V -V ) 2;其中,V 为流向与涡向具有最大概率一致性的深度处的流速。
随涡观测系统的设计原理:
任何示踪物在随涡旋旋转过程中,由于其离心运动时的迎流阻力提供随涡旋旋转的向心力,所以只要示踪物离开涡心即涡旋中心,将会加速离开涡旋,直至被甩出涡旋边界。基于此我们若要实现长时间随涡观测,只有使观测系统尽可能地与涡心同步,提高观测系统在涡心的驻留时间,将在一定程度上大大提升观测系统的跟涡性能,这也是本发明随涡观测系统设计方法的基本出发点。
涡-流一致性规律:
利用卫星高度计的涡旋识别与追踪数据集,人们已大致了解涡旋运动的主要纬向分布及风场、流场的动力驱动机制,并有学者通过全球表层Drifter轨迹揭示了海洋涡旋运动的纬带状分布特征,这充分表明涡旋运动与海洋背景流场存在着某种内在关系;基于此,能反映表层流场分布的Drifter数据常被海洋学家们用来开展涡旋海洋学研究。但是,我们对基于Drifter的全球表层流速与涡速进行系统比较后发现,表层流速一般比涡速高出50%以上,有些强流区可高达几倍,具体如图2所示,图2a为基于Drifter现场观测得到的全球海表流速图,图2b为基于卫星观测得到的涡旋移动速度图。由此推测,Drifter可能并不是最佳的随涡系统,有学者专 门对中尺度涡旋的Drifter裹挟性进行了系统分析,结果发现Drifter的平均随涡时间仅为7.6天,因此亟待具有随涡时间长、跟涡效果好的观测系统的改进发展。
事实上涡旋作为一个具有三维结构的旋转流体,垂直尺度可达几百米,如果涡旋的整体移动与背景流场有关,那么应该是整个背景流场综合驱动的结果,而非仅表层流场。此外,由于背景流场分布有一定的区域规律且是稳定的,因此在每个区域都应该存在着某一特定深度范围,其流速流向与涡速涡向存在最大概率的一致符合性。基于此设想,我们进一步利用全球涡旋识别与追踪数据集和GLORYS2V4再分析三维流场数据集,其时间分辨率都为1天、空间分辨率都为0.25°×0.25°,数据分别来源于中国海洋大学信息技术实验室和全球监测与预报中心CMEMS,二者结合开展数据统计分析;最新结果发现,在海洋三维背景流场中,确实存在流速流向与涡速涡向存在最大概率的一致性的深度范围且具有区域性特征,如图3所示。也就是说,对于大部分涡旋来说,其水平移动特征与所在区域某一深度的背景流场基本一致,我们称之为涡-流一致性规律。
我们以北太平洋亚热带海域为例来说明涡-流一致性规律的两个基本共性特点,具体如图3所示:(1)涡向-流向一致性的最大概率出现的位置深度为h 1,而涡速-流速一致性的最大概率出现的位置深度为h 2。(2)二者对应深度稍有偏离,一般h 1<h 2;由于风生环流产生的背景流场速度垂直向下减少,h 2以浅深度的涡速-流速一致性的最大概率之所以偏低,主要原因是背景流场的流速往往大于涡速,如图4d所示。或者说,在涡向-流向具有最大概率一致性的深度h 1附近,涡速-流速一致性的最大概率偏 低则反过来说明流速大于涡速的概率更高,而这个特性恰好为我们设计随涡观测系统提供了必要条件。需要说明的是,上述提及的h 2以浅深度是指较h 2更浅的深度范围。
如果我们在涡向-流向具有最大概率一致性的深度h 1附近部署一个具有优异随流性的水帆,同时考虑水帆以上剖面内的其它部件阻力影响,那么,只要我们根据剖面流场分布和区域涡旋运动特征,背景流场分布和涡旋区域运动特征通常较为稳定,就可以通过合理设计水帆尺寸,保证该系统的整体运动速度与涡速具有较大概率的一致性,从而提升系统在涡心附近的驻留时间,减缓被甩出去的时间和概率,达到长时间随涡的目的。基于此设想,我们提出了本发明中的长时间随涡观测系统的具体结构,以期实现长期跟涡效果,同时开展涡旋剖面多学科参数的高分辨连续同步观测,具体结构如下所述。
本发明还提供了一种海洋用长时间随涡观测系统,如图1所示,包括从海洋表面向下依次设置有海表浮球1、包塑钢缆2、上阻尼块3、升降平台4、下阻尼块5、张紧锤6、系缆7、伸缩缆8以及水帆9,所述海表浮球1漂浮在海洋表面,所述包塑钢缆2一端与海表浮球1固定连接,另一端与张紧锤6固定连接,所述上阻尼块3固定设置在包塑钢缆2上,所述升降平台4与包塑钢缆2单向耦合连接,所述下阻尼块5固定设置在包塑钢缆2上且位于升降平台4的下方,所述张紧锤6设置在下阻尼块5的下方,所述水帆9通过系缆7以及伸缩缆8连接在张紧锤6的下方。在上述技术方案基础上,所述升降平台4上搭载有多参数传感器,用于涡旋剖面的物理、化学、生物、光学等参数观测。所述升降平台4的实现方式 可以以本实验室之前申请并公开的申请号为201811475281.0的发明专利中的浮标平台为例;所述升降平台4能实现在上阻尼块3与下阻尼块5之间的包塑钢缆2上进行自主往复运动,配合升降平台4搭载的多参数传感器,实现对涡旋剖面的多参数观测。在上述技术方案基础上,所述水帆9设置为圆筒形结构且外侧壁上开设有多个通孔91。更优选的,所述水帆9的材质选用尼龙制成。
具体地,包塑钢缆2是升降平台4上下运动时的骑行通道,之所以包塑处理,一方面可保证与升降平台内的单向装置耦合得更紧密,另一方面提供水下感应耦合模块的数据传输通道;系缆7一端连接张紧锤6的底端,另一端通过伸缩缆8与水帆9连接,所述系缆7的长度等于水帆9部署深度与升降平台4观测深度的差。伸缩缆8主要用于缓冲海表浮球1在波浪作用下起伏对水帆9在垂向上的拉伸影响,一方面保持水帆9所在深度,同时不影响海表浮球1的正常起伏,以保证波浪能的传递效率,进而使升降平台4沿包塑钢缆2上下高效运动。伸缩缆8长度较短,可忽略不计,更优选的,所述伸缩缆8选用橡胶管或弹簧。
涡旋随涡性分析及现场观测:
(1)选取涡旋并根据涡-流一致性规律,分析系统的随涡性能:
现对随机选取的涡旋进行随涡性分析,该涡旋为北太平洋的一条中长寿涡,该涡旋于2014年1月5日产生,向西运动,到2014年7月18日消亡,寿命226天,如图4a所示。在涡旋所在背景流场的240米深度左右,流向与涡向一致性的最大概率为87%,如图4b所示;相应地表层Drifter所在的15m深度处的流向与涡向一致性的最大概率仅有50%。在 涡旋所在背景流场的270米深度左右,流速与涡速一致性的最大概率约为53%,如图4c所示;相应地表层Drifter所在的15米深度处的概率只有35%。另外,从图4d可知,背景流场的流速沿垂向向下急剧减小,所以在流速-涡速具有最大概率一致性的深度即270米以浅深度一致性概率较低35~53%的原因主要是流速大于涡速。
为定量分析,我们选择240米附近作为最佳部署深度。首先,从涡向-流向的一致性角度考虑,该深度的方向一致性概率即87%是表层15米处的概率即50%的1.74倍;其次,再从涡速-流速的一致性角度考虑,240米深度的速度一致性概率约为50%是表层15米处速度一致性概率约为35%的1.43倍。因此,综上所述,相比于现有的表层Drifter,随涡观测系统对该涡旋的跟踪时间(概率)将提高至2.5倍。
(2)设计水帆的具体尺寸:
当选定待测涡旋后,根据事先建立的针对涡旋运动特性和区域背景流场特征的涡-流一致性规律,选择涡向与流向具有最大概率一致性的深度作为随涡观测系统水帆的部署深度,再根据背景流场中该深度处的流速、观测系统迎流面积、待测涡旋涡速等参数计算水帆尺寸。
具体过程为:假设涡旋速度为V ,涡向与流向具有最大概率一致性的深度处的流速为V ,海表浮球、包塑钢缆、张紧锤、系缆以及升降平台的迎流面积分别为S 、S 包塑、S 、S 系缆、S 升,总且为已知量。为准确计算除水帆外的其它部分受到海流的影响,需要对水帆以上的三维背景流场进行分析。
首先,对该深度内的流场分别进行流速和流向插值,得到第i米深度 处的分层流场
Figure PCTCN2022087531-appb-000005
以涡旋运动方向为x轴正方向。然后,求解除水帆外的其它部件在剖面分层内的迎流面积分布;其中,海表浮球、包塑钢缆、张紧锤、系缆、伸缩缆在水下单位长度的迎流面积分别为s 、s 包塑、s 、s 系缆,由于伸缩缆较短,其单位长度迎流面积与系缆一起考虑,可根据各部件长度及总面积求解出。因升降平台沿包塑钢缆上下运动,为进一步细化其在不同深度处的迎流影响,考虑到升降平台沿缆剖面运动特点即稳定快速、循环运动,剖面周期短等,我们可将升降平台的迎流影响均匀地分摊在其剖面深度内,即将升降平台的总迎流面积S 升,总均分在其剖面深度H3-H4内,得到在该剖面深度内升降平台的迎流面积为S 升,总/(H4-H3)。最后,H1至H7剖面深度内的除水帆外的其它部分在涡旋运动方向的总迎流影响可通过各部分迎流面积乘以各深度处流速沿涡向分量,积分得到即A 余,总;需要说明的是,这里之所以不考虑垂直分量,是由于背景流场和涡旋运动总体方向是水平一致的,垂直方向可忽略不计;
Figure PCTCN2022087531-appb-000006
则H1至H7深度内的系统看作一个整体的话,其总迎流面积为海表浮球水下部分、包塑钢缆、升降平台、张紧锤、系缆以及伸缩缆总面积之和,即S 余,总=(S +S 包塑+S 升,总+S +S 系缆),则折合的沿涡旋运动方向速度为V x,余=A 余,总/S 余,总;由于随涡观测系统设计的最终运动速度与涡速一致,即来自水帆的动力等于随涡系统中除水帆外其他部件的阻力;
水帆动力值为:F 帆,动=(1/2)*C*ρ 海水*S *(V -V ) 2
随涡系统中除水帆外其他部件的阻力值为:
F 其它,阻=(1/2)*C*ρ 海水*(S +S 包塑+S 升降+S +S 系缆)*(V -V x,余) 2
二者相等即计算得到水帆的设计尺寸为:
S =(S +S 包塑+S 升降+S +S 系缆)*(V -V x,余) 2/(V -V ) 2从上式可知,水帆的尺寸至少取决于海表浮球、包塑钢缆、升降平台、张紧锤、系缆以及伸缩缆的总迎流面积,涡速以及背景流速。
(3)随涡观测系统的投放使用:
选定待观测区域和候选涡旋,根据已建立的针对不同海域、不同涡旋类别的随涡观测系统模型,确定水帆部署深度和具体尺寸。然后,在卫星高度计对候选涡旋识别预报与实时指导下,将搭载有生地化多参数传感器的随涡观测系统布放在待测涡旋的涡心处,开始现场随涡观测。
以上内容描述了本发明的基本原理、主要特征和本发明的优点,对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术 方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (9)

  1. 一种海洋用长时间随涡观测系统的设计方法,其特征在于,包括以下步骤:
    步骤一:数据集收集;以中国海洋大学海洋信息技术实验室提供的全球涡旋识别与追踪数据集和全球监测与预报中心CMEMS提供的全球海洋三维垂直分层流场再分析数据集GLORYS2V4为来源,共同作为统计分析的数据基础;
    步骤二:涡-流一致性分析与规律统计;基于步骤一中获取的涡旋数据集和三维流场数据集,开展同一时空下的不同深度处背景流场大小、方向与涡速、涡向的一致性概率统计分析,得到特定海域、不同特征涡旋的涡向-流向最大概率一致性的深度h 1和涡速-流速最大概率一致性的深度h 2
    步骤三:随涡观测系统中水帆部署深度确定;将步骤二中得到的涡向-流向最大概率一致性出现的深度h 1作为水帆的最佳部署深度;
    步骤四:水帆具体尺寸计算与设计;基于随涡观测系统与涡旋同步运动的要求,将水帆作为随涡观测系统的动力源、除水帆以外的其它部件作为阻力源,针对目标海域的待测涡旋,根据步骤二得到的该区域涡-流一致性规律,对随涡观测系统的各部件受力情况分析,建立随涡观测系统整体的动力学方程,计算得到在不同海域、不同涡旋类型、实现长时间跟涡观测的水帆设计尺寸。
  2. 根据权利要求1所述的一种海洋用长时间随涡观测系统的设计方法,其特征在于,所述步骤四中除水帆以外其它部件作为阻力源的阻力值计算方法包括:
    S1,分层流场值确定;对该深度内的流场分别进行流速和流向插值,得到第i米深度处的分层流场
    Figure PCTCN2022087531-appb-100001
    其中,以涡旋运动方向为x轴正方向;
    S2,除水帆外的其它部件总迎流影响计算;除水帆外其它部件单位长度迎流面积分别乘以各自所在深度处流速沿涡向分量大小,积分得到其它部件在整个剖面流场内的总迎流影响,即A 余,总
    Figure PCTCN2022087531-appb-100002
    其中,s 、s 包塑、s 、s 系缆、s 升,总分别为海表浮球、包塑钢缆、张紧锤、系缆以及升降平台的单部件水下单位长度的迎流面积,H1-H2为海表平面至海表浮球底端的剖面深度,H2-H3为海表浮球底端至上阻尼块的剖面深度,H3-H4为上阻尼块至下阻尼块的剖面深度,H4-H5为下阻尼块至张紧锤顶端的剖面深度,H5-H6为张紧锤的剖面深度,H6-H7为张紧锤底端至水帆顶端的剖面深度;
    S3,除水帆外的其它部件运动速度计算;将除水帆外其它部件作为一个整体,将总迎流影响A 余,总除以总迎流面积S 余,总=(S +S 包塑+S 升,总+S +S 系缆),即得到其它部件沿涡旋运动方向的整体速度大小V x,余=A /S 余,总;其中,S 、S 包塑、S 、S 系缆、S 升,总分别为海表浮球、包塑钢缆、张紧锤、系缆以及升降平台的单部件的总迎流面积;
    S4,除水帆外的其它部件的阻力计算;由于其它部件在水帆带动下, 最终实现与涡旋一致的运动速度V ,则相对于水帆,其它部件所受阻力大小为F 其它,阻=(1/2)*C*ρ 海水*(S +S 包塑+S 升,总+S +S 系缆)*(V -V x,余) 2;其中,V 为涡旋速度大小,C为海水阻力常数,ρ 海水为海水密度。
  3. 根据权利要求2所述的一种海洋用长时间随涡观测系统的设计方法,其特征在于,所述步骤四中水帆作为随涡观测系统的动力源的动力值为:
    F 帆,动=(1/2)*C*ρ 海水*S *(V -V ) 2
    根据随涡观测系统的最终运动速度与涡速一致的原则,即阻力源的阻力值F 其它,阻与动力源的动力值F 帆,动一致,两者相等则计算得到水帆的具体尺寸为:
    S =(S +S 包塑+S 升降+S +S 系缆)*(V -V x,余) 2/(V -V ) 2;其中,V 为流向与涡向具有最大概率一致性的深度处的流速。
  4. 一种根据权利要求1-3任一项所述的设计方法得到的海洋用长时间随涡观测系统,其特征在于,包括从海洋表面向下依次设置有海表浮球(1)、包塑钢缆(2)、上阻尼块(3)、升降平台(4)、下阻尼块(5)、张紧锤(6)、系缆(7)、伸缩缆(8)以及水帆(9),所述海表浮球(1)漂浮在海洋表面,所述包塑钢缆(2)一端与海表浮球(1)固定连接,另一端与张紧锤(6)固定连接,所述上阻尼块(3)固定设置在包塑钢缆(2)上,所述升降平台(4)与包塑钢缆(2)单向耦合连接,所述下阻尼块(5)固定设置在包塑钢缆(2)上且位于升降平台(4)的下方,所述张紧锤(6)设置在下阻尼块(5)的下方,所述水帆(9)通过系缆(7)以及伸缩缆(8)连接在张紧锤(6)的下方。
  5. 根据权利要求4所述的一种海洋用长时间随涡观测系统,其特征在于,所述升降平台(4)上搭载有多参数传感器,用于涡旋剖面的物理、化学、生物、光学等参数观测。
  6. 根据权利要求4所述的一种海洋用长时间随涡观测系统,其特征在于,所述水帆(9)设置为圆筒形结构且外侧壁上开设有多个通孔(91)。
  7. 根据权利要求4所述的一种海洋用长时间随涡观测系统,其特征在于,所述水帆(9)的材质为尼龙。
  8. 根据权利要求4所述的一种海洋用长时间随涡观测系统,其特征在于,所述系缆(7)的一端与所述张紧锤(6)的底端连接,所述系缆(7)的另一端通过所述伸缩缆(8)与所述水帆(9)连接。
  9. 根据权利要求4所述的一种海洋用长时间随涡观测系统,其特征在于,所述系缆(7)的长度等于所述水帆(9)的部署深度与所述升降平台(4)观测深度的差。
PCT/CN2022/087531 2021-04-20 2022-04-19 一种海洋用长时间随涡观测系统及设计方法 WO2022222900A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110423625.9A CN113252010B (zh) 2021-04-20 2021-04-20 一种海洋用长时间随涡观测系统及设计方法
CN202110423625.9 2021-04-20

Publications (1)

Publication Number Publication Date
WO2022222900A1 true WO2022222900A1 (zh) 2022-10-27

Family

ID=77221341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087531 WO2022222900A1 (zh) 2021-04-20 2022-04-19 一种海洋用长时间随涡观测系统及设计方法

Country Status (2)

Country Link
CN (1) CN113252010B (zh)
WO (1) WO2022222900A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115789476A (zh) * 2023-01-18 2023-03-14 黄河水利委员会济南勘测局 水文测深仪多功能安装支架
CN115964546A (zh) * 2023-01-06 2023-04-14 中国海洋大学 一种基于边绑定的涡旋迁移通道提取及可视化方法
CN116597085A (zh) * 2023-05-18 2023-08-15 中山大学 一种三维流场重构方法、系统、电子设备及存储介质
CN116609030A (zh) * 2023-07-20 2023-08-18 自然资源部第一海洋研究所 一种波浪驱动式剖面运动平台的实验系统及方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113252010B (zh) * 2021-04-20 2022-03-25 中国海洋大学 一种海洋用长时间随涡观测系统及设计方法
CN114299377B (zh) * 2021-12-31 2024-03-22 中山大学 一种基于宽度学习的涡旋识别方法及装置
CN115291615B (zh) * 2022-10-10 2023-02-28 中国海洋大学 一种自适应追涡观测系统及其控制方法、装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007308078A (ja) * 2006-05-22 2007-11-29 Nec Corp 海洋観測システム、自己浮上型海洋観測装置および発射装置
CN107655460A (zh) * 2017-08-07 2018-02-02 熊学军 水下滑翔机的中尺度涡观测方法
CN109084736A (zh) * 2018-06-19 2018-12-25 中国科学院南海海洋研究所 一种海洋流速断面观测系统及观测方法
CN109572936A (zh) * 2018-12-04 2019-04-05 中国海洋大学 一种多功能波浪能剖面浮标系统
CN109725053A (zh) * 2019-01-22 2019-05-07 中国人民解放军国防科技大学 基于高分辨率海洋再分析产品获取水声场特性数据的方法
CN109878638A (zh) * 2019-03-26 2019-06-14 中国海洋大学 一种应用于海洋涡旋三维剖面结构现场观测的浮标系统
CN113252010A (zh) * 2021-04-20 2021-08-13 中国海洋大学 一种海洋用长时间随涡观测系统及设计方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110007946U (ko) * 2010-02-04 2011-08-10 (주)미래해양 수심 측정 장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007308078A (ja) * 2006-05-22 2007-11-29 Nec Corp 海洋観測システム、自己浮上型海洋観測装置および発射装置
CN107655460A (zh) * 2017-08-07 2018-02-02 熊学军 水下滑翔机的中尺度涡观测方法
CN109084736A (zh) * 2018-06-19 2018-12-25 中国科学院南海海洋研究所 一种海洋流速断面观测系统及观测方法
CN109572936A (zh) * 2018-12-04 2019-04-05 中国海洋大学 一种多功能波浪能剖面浮标系统
CN109725053A (zh) * 2019-01-22 2019-05-07 中国人民解放军国防科技大学 基于高分辨率海洋再分析产品获取水声场特性数据的方法
CN109878638A (zh) * 2019-03-26 2019-06-14 中国海洋大学 一种应用于海洋涡旋三维剖面结构现场观测的浮标系统
CN113252010A (zh) * 2021-04-20 2021-08-13 中国海洋大学 一种海洋用长时间随涡观测系统及设计方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115964546A (zh) * 2023-01-06 2023-04-14 中国海洋大学 一种基于边绑定的涡旋迁移通道提取及可视化方法
CN115789476A (zh) * 2023-01-18 2023-03-14 黄河水利委员会济南勘测局 水文测深仪多功能安装支架
CN116597085A (zh) * 2023-05-18 2023-08-15 中山大学 一种三维流场重构方法、系统、电子设备及存储介质
CN116597085B (zh) * 2023-05-18 2023-12-12 中山大学 一种三维流场重构方法、系统、电子设备及存储介质
CN116609030A (zh) * 2023-07-20 2023-08-18 自然资源部第一海洋研究所 一种波浪驱动式剖面运动平台的实验系统及方法
CN116609030B (zh) * 2023-07-20 2023-11-03 自然资源部第一海洋研究所 一种波浪驱动式剖面运动平台的实验系统及方法

Also Published As

Publication number Publication date
CN113252010A (zh) 2021-08-13
CN113252010B (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
WO2022222900A1 (zh) 一种海洋用长时间随涡观测系统及设计方法
Gregg et al. Flow, water mass changes, and hydraulics in the Bosphorus
CN112343774A (zh) 一种漂浮式海上风力发电装置的大尺度模型试验系统及制作方法
CN102914296B (zh) 小型水下自主航行观测平台观测方法
CN102941914B (zh) 一种海洋水文参数观测拖体
CN106768043A (zh) 海洋多参数剖面测量仪
CN109878638A (zh) 一种应用于海洋涡旋三维剖面结构现场观测的浮标系统
CN106446539A (zh) 基于卫星定位系统的潮汐预报方法
CN2711755Y (zh) 集成式深海海流剖面和海浪综合监测仪
CN115859866B (zh) 一种考虑风浪流作用的水下抛石漂移距离的预测方法
CN1731220A (zh) 一种深海潜标测量系统
Gustafsson Sensitivity of Baltic Sea salinity to large perturbations in climate
CN109614726B (zh) 一种基于遗传算法的浮力调节低功耗控制方法
Taebi et al. Modelling nearshore circulation in a fringing reef system: Ningaloo Reef, Australia
Kyozuka et al. A floating/submersible shrouded tidal current turbine system applicable in low speed tidal flow
CN207318145U (zh) 一种船基深海沉积物智能重力采样装置
Zhu A Seabased wave energy device: An experimental investigation
Prater et al. Observations of the Faroe Bank Channel overflow using bottom-following RAFOS floats
CN102509024B (zh) 一种深水浮筒平台的自激振荡分析方法
CN214621165U (zh) 一种冰下浪、潮、流数据获取装置
Sabatier et al. Sandbar morphology of the Espiguette spit, Mediterranean Sea, France
Zhao et al. Numerical investigation of a wave-powered vertical profiler
Ostrovskii et al. Underwater anchored profiler Aqualog for ocean environmental monitoring
CN215475611U (zh) 基于水下无线充电的波浪能剖面观测浮标
Yang et al. The Influence of Vertical Cable on Flow Field and Acoustic Analysis of A Submersible Buoy System Based on CFD

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22791008

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22791008

Country of ref document: EP

Kind code of ref document: A1