WO2022222563A1 - 离心机 - Google Patents

离心机 Download PDF

Info

Publication number
WO2022222563A1
WO2022222563A1 PCT/CN2022/072845 CN2022072845W WO2022222563A1 WO 2022222563 A1 WO2022222563 A1 WO 2022222563A1 CN 2022072845 W CN2022072845 W CN 2022072845W WO 2022222563 A1 WO2022222563 A1 WO 2022222563A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor shaft
magnetic suspension
axial
suspension bearing
radial
Prior art date
Application number
PCT/CN2022/072845
Other languages
English (en)
French (fr)
Inventor
韩润虎
刘占杰
Original Assignee
青岛海尔生物医疗科技有限公司
青岛海尔生物医疗股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110418084.0A external-priority patent/CN115217845A/zh
Priority claimed from CN202120802231.XU external-priority patent/CN215567323U/zh
Application filed by 青岛海尔生物医疗科技有限公司, 青岛海尔生物医疗股份有限公司 filed Critical 青岛海尔生物医疗科技有限公司
Publication of WO2022222563A1 publication Critical patent/WO2022222563A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B9/00Drives specially designed for centrifuges; Arrangement or disposition of transmission gearing; Suspending or balancing rotary bowls
    • B04B9/02Electric motor drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields

Definitions

  • the present application relates to the technical field of material separation equipment, for example, to a centrifuge.
  • Centrifuge is an instrument that uses centrifugal force to concentrate, separate and purify substances with different sediment coefficients. It is widely used in biological, medical, chemical and other fields, and can be divided into low-speed centrifuges, high-speed centrifuges and ultra-high Centrifuge.
  • Embodiments of the present disclosure provide a centrifuge to solve the problem of large wear between a motor shaft and a bearing of the centrifuge.
  • the centrifuge includes a centrifugal chamber and a power chamber
  • the centrifugal chamber is provided with a centrifugal rotor
  • the power chamber is provided with a motor shaft
  • the magnetic suspension bearing includes a radial magnetic suspension bearing set and an axial magnetic suspension Bearing group
  • the position sensor includes an axial position sensor and a radial position sensor.
  • the axial position sensor is used to monitor the axial displacement of the motor shaft
  • the radial position sensor is used to monitor the radial displacement of the motor shaft.
  • the axial magnetic suspension bearing The group includes an axial upward magnetic suspension bearing, an axial downward magnetic suspension bearing and an axial force member of the motor shaft.
  • the axial upward magnetic suspension bearing is used to generate an axial upward electromagnetic force
  • the axial downward magnetic suspension bearing is used to generate an axial direction.
  • the axial force member of the motor shaft is connected with the motor shaft, and the axial force member of the motor shaft is arranged between the axially upward magnetic suspension bearing and the axially downward magnetic suspension bearing.
  • the centrifuge is a magnetic levitation centrifuge
  • the power chamber of the centrifuge is provided with a motor shaft, a magnetic levitation bearing and a position sensor
  • the magnetic levitation bearing includes a radial magnetic levitation bearing group and an axial magnetic levitation bearing group.
  • the set includes an axial upward magnetic suspension bearing, an axial downward magnetic suspension bearing and an axial force bearing member of the motor shaft.
  • the axial force bearing member of the motor shaft is fixedly connected to the motor shaft, and is arranged on the axial upward magnetic suspension bearing and the axial downward bearing member.
  • the axial force member of the motor shaft can be subjected to electromagnetic forces in opposite directions generated by the axial upward magnetic suspension bearing and the axial downward magnetic suspension bearing.
  • the above electromagnetic force can make the motor shaft axial force member Move within an axial set position of the motor shaft, thereby monitoring the axial position of the motor shaft by means of an axial position sensor.
  • the radial position sensor can monitor the radial displacement of the motor shaft, so that the motor shaft has no contact with the magnetic suspension bearing and is suspended in the air, which can avoid the wear between the motor shaft and the bearing.
  • the centrifuge further includes a motor, and the axial magnetic suspension bearing set is arranged below the motor.
  • the outer diameter of the axial force bearing member of the motor shaft is larger than the diameter of the motor shaft.
  • the axial force member of the motor shaft is vertically and fixedly connected to the motor shaft.
  • the axial position sensor is arranged on the bottom of the motor shaft or on the side of the axial force-receiving member of the motor shaft.
  • the radial magnetic suspension bearing group includes a first radial magnetic suspension bearing and a second radial magnetic suspension bearing, the first radial magnetic suspension bearing is arranged above the motor; the second radial magnetic suspension bearing is arranged below the motor, and, Above the axial downward magnetic bearing.
  • the radial position sensor includes a first radial position sensor and a second radial position sensor, the first radial position sensor is arranged above the first radial magnetic suspension bearing, and is used for monitoring the radial displacement of the upper part of the motor shaft ;
  • the second radial position sensor is arranged below the second radial magnetic suspension bearing and above the axially downward magnetic suspension bearing for monitoring the radial displacement of the lower part of the motor shaft.
  • the centrifuge further includes a refrigeration system for reducing the temperature of the motor and/or the centrifuge rotor.
  • the refrigeration system includes a first cooling coil and/or a second cooling coil, the first cooling coil is enclosed outside the centrifuge chamber; the second cooling coil is enclosed outside the motor.
  • the centrifuge further comprises a base and a support, one end of the support is connected to the base, and the other end of the support is arranged at the lower part of the centrifugal chamber for supporting the centrifugal chamber.
  • the axial magnetic levitation bearing group is provided with an axial upward magnetic levitation bearing and an axial downward magnetic levitation bearing, and there is an axial upward magnetic levitation bearing and an axial downward magnetic levitation bearing.
  • There is an axial force member of the motor shaft so that the axial force member of the motor shaft can be subjected to the upward electromagnetic force generated by the axial upward magnetic suspension bearing and the downward electromagnetic force generated by the axial downward magnetic suspension bearing.
  • the axial position of the motor shaft is controlled by monitoring the axial displacement of the motor shaft by an axial position sensor.
  • the radial displacement of the motor shaft can be controlled.
  • the motor shaft does not contact the magnetic suspension bearing and is suspended in the air, avoiding the need for the motor shaft and the bearing. The wear between them increases the service life of the centrifuge, and at the same time, increases the speed of the centrifuge.
  • FIG. 1 is an overall schematic diagram of a centrifuge provided by an embodiment of the present disclosure.
  • 1 Centrifugal chamber; 11: Centrifugal rotor; 2: Motor shaft; 3: Axial magnetic suspension bearing group; 31: Axial upward magnetic suspension bearing; 32: Axial downward magnetic suspension bearing; 33: Axial force member of motor shaft ;41: First radial magnetic bearing; 42: Second radial magnetic bearing; 5: Motor; 6: Axial position sensor; 71: First radial position sensor; 72: Second radial position sensor; 81: first cooling coil; 82: second cooling coil; 9: base; 10: bracket.
  • orientations or positional relationships indicated by the terms “upper”, “lower”, “inner”, “middle”, “outer”, “front”, “rear”, etc. are based on the orientations shown in the drawings or Positional relationship. These terms are primarily used to better describe the embodiments of the present disclosure and embodiments thereof, and are not intended to limit the fact that the indicated device, element, or component must have a particular orientation, or be constructed and operated in a particular orientation. In addition, some of the above-mentioned terms may be used to express other meanings besides orientation or positional relationship. For example, the term “on” may also be used to express a certain attachment or connection relationship in some cases. For those of ordinary skill in the art, the specific meanings of these terms in the embodiments of the present disclosure can be understood according to specific situations.
  • connection may be a fixed connection, a detachable connection, or a unitary construction; it may be a mechanical connection, or an electrical connection; it may be a direct connection, or an indirect connection through an intermediary, or two devices, elements or Internal connectivity between components.
  • connection may be a fixed connection, a detachable connection, or a unitary construction; it may be a mechanical connection, or an electrical connection; it may be a direct connection, or an indirect connection through an intermediary, or two devices, elements or Internal connectivity between components.
  • A/B means: A or B.
  • a and/or B means: A or B, or, A and B three relationships.
  • the centrifuge in the embodiments of the present application is a magnetic levitation centrifuge used in hospitals or scientific research institutes for material separation.
  • an embodiment of the present disclosure provides a centrifuge, the centrifuge includes a centrifugal chamber 1 and a power chamber, the centrifugal chamber 1 is provided with a centrifugal rotor 11 , and the power chamber is provided with a motor shaft 2 , a magnetic suspension bearing and a position sensor , the magnetic suspension bearing includes a radial magnetic suspension bearing group and an axial magnetic suspension bearing group 3, the position sensor includes an axial position sensor 6 and a radial position sensor, the axial position sensor 6 is used to monitor the axial displacement of the motor shaft 2, and the radial position The sensor is used to monitor the radial displacement of the motor shaft 2, wherein the axial magnetic suspension bearing group 3 includes an axially upward magnetic suspension bearing 31, an axially downward magnetic suspension bearing 32 and an axial force bearing member 33 of the motor shaft, and the motor shaft is axially subjected to axial force.
  • the force member 33 is connected to the motor shaft 2 , and the axial force member 33 of the motor shaft is
  • the centrifuge is a magnetic levitation centrifuge.
  • the power chamber of the centrifuge is provided with a motor shaft 2 and a magnetic levitation bearing.
  • the magnetic levitation bearing includes a radial magnetic levitation bearing group and an axial magnetic levitation bearing group 3.
  • the axial magnetic levitation bearing group 3 includes The axial upward magnetic suspension bearing 31, the axial downward magnetic suspension bearing 32 and the motor shaft axial force member 33 are fixedly connected to the motor shaft 2, and are arranged on the axial upward magnetic suspension bearing 31 and the motor shaft axial force member 33.
  • the axial force member 33 of the motor shaft is moved within the axially set position of the motor shaft 2 , so that the axial displacement of the motor shaft 2 is monitored by the axial position sensor 6 .
  • the radial position sensor can monitor the radial displacement of the motor shaft 2, so that the motor shaft 2 has no contact with the magnetic suspension bearing and is suspended in the air, which can avoid wear between the motor shaft 2 and the bearing.
  • the axial force bearing member 33 of the motor shaft has a first surface and a second surface, and the first surface is used to receive the downward electromagnetic force generated by the axial downward magnetic suspension bearing 32 to overcome the high speed of the motor shaft 2.
  • the axially upward magnetic suspension bearing 31 , the axial force bearing member 33 of the motor shaft and the axially downward magnetic suspension bearing 32 do not contact each other when the centrifuge is working.
  • the axial distance between the axially upward magnetic suspension bearing 31 and the motor shaft axial force-bearing member 33 and the axial distance between the axially downward magnetic suspension bearing 32 and the motor shaft axial force-bearing member 33 are in the range of 3 mm to 9mm.
  • the axial distance is too large, the magnetic force generated by the magnetic suspension bearing will be lost; if the axial distance is too small, it is easy to cause the axial upward magnetic suspension bearing 31 and the axial downward magnetic suspension bearing 32 to connect with the motor during the high-speed operation of the motor shaft 2
  • the axial force-receiving members 33 of the shaft are in contact with each other, resulting in the bearing friction loss of the axial magnetic suspension shaft group.
  • the centrifuge further includes a motor 5 , and the axial magnetic suspension bearing group 3 is arranged below the motor 5 .
  • the centrifuge includes a centrifugal chamber 1 and a power chamber, the centrifugal chamber 1 is arranged above the power chamber, a centrifugal rotor 11 is arranged in the centrifugal chamber 1, a motor shaft 2 and a motor 5 are arranged in the power chamber, and the motor 5 It can be a permanent magnet DC brushless motor, and the motor shaft 2 is directly connected to the centrifugal rotor 11 .
  • the axial magnetic suspension bearing group 3 is arranged below the motor 5 and is located at the bottom of the motor shaft 2 , wherein the motor shaft axial force bearing member 33 and the bottom end face of the motor shaft 2 are on the same plane.
  • An axially downward magnetic suspension bearing 32 and an axially upward magnetic suspension bearing 31 are respectively disposed above and below the shaft axial force-receiving member 33 .
  • the centrifuge in the embodiment of the present application is further provided with a controller and a frequency converter, and the motor 5 realizes the setting of the rotational speed of the centrifuge under the control of the frequency converter and the controller, so as to meet the different rotational speed setting requirements of the user for the centrifuge.
  • the axial magnetic suspension bearing group 3 can also be arranged above the motor 5 , that is, arranged on the upper part of the motor shaft 2 , and the top of the motor shaft 2 is directly connected to the centrifugal rotor 11 .
  • the outer diameter of the axial force bearing member 33 of the motor shaft is larger than the diameter of the motor shaft 2 .
  • the axial force-receiving member 33 of the motor shaft can receive the upward electromagnetic force generated by the axially upward magnetic suspension bearing 31 and the downward electromagnetic force generated by the axially downward magnetic suspension bearing 32 .
  • the axial force member 33 of the motor shaft is vertically and fixedly connected to the motor shaft 2 .
  • the axial force member 33 of the motor shaft is disposed between the axial 4-up magnetic suspension bearing 31 and the axial downward magnetic suspension bearing 32, and the motor shaft axial force member 33 is perpendicular to the motor shaft 2. It can be understood that, Both the axially upward magnetic suspension bearing 31 and the axially downward magnetic suspension bearing 32 are also perpendicular to the motor shaft 2 , that is, the axial magnetic suspension bearing group 3 is arranged perpendicular to the motor shaft 2 .
  • the axial force member 33 of the motor shaft may be a separate component made of the same material as the motor shaft 2, and is arranged perpendicular to the motor shaft 2, and the axial force member 33 of the motor shaft is fixed to the motor shaft by welding.
  • Motor shaft 2 the axial force bearing member 33 of the motor shaft may also be an integral component with the motor shaft 2 , and the axial force bearing member 33 of the motor shaft is arranged perpendicular to the motor shaft 2 .
  • the axial position sensor 6 is disposed on the bottom of the motor shaft 2 or on the side of the axial force bearing member 33 of the motor shaft.
  • the axial position sensor 6 can be arranged at the bottom of the motor shaft 2 , as shown in FIG.
  • the plane, axial position sensor 6 is arranged at the bottom of the motor shaft 2 .
  • the axial position sensor 6 can also be disposed on the side of the axial force receiving member 33 of the motor shaft, and is located on the same horizontal plane as the axial force receiving member 33 of the motor shaft.
  • the centrifuge includes a centrifugal chamber 1 and a power chamber.
  • the centrifugal chamber 1 is provided with a centrifugal rotor 11.
  • the power chamber is provided with a motor 5, a motor shaft 2, a magnetic suspension bearing and a position sensor.
  • the magnetic suspension bearing includes an axial magnetic suspension.
  • Bearing group 3 the axial magnetic suspension bearing group 3 includes an axial upward magnetic suspension bearing 31, an axial downward magnetic suspension bearing 32 and an axial force bearing member 33 of the motor shaft, and the axial force bearing member 33 of the motor shaft is arranged on the axial upward magnetic suspension bearing. 31 and the axial downward magnetic suspension bearing 32.
  • the position sensor includes an axial position sensor 6.
  • the axial position sensor 6 can be arranged on the side of the axial force member 33 of the motor shaft, and can also be arranged at the bottom of the motor shaft 2.
  • the axial position sensor 6 is used to monitor the motor shaft.
  • the centrifuge also includes a controller. For example, when the motor shaft 2 moves upwards in the axial direction and deviates from the axially set position, the axial position sensor 6 sends out the above-mentioned position deviation signal. After the controller obtains the signal, it controls the axial direction downward.
  • the magnetic suspension bearing 32 generates downwardly enhanced electromagnetic force, and the motor shaft axial force receiving member 33 is subjected to the downwardly enhanced electromagnetic force, thereby pushing the motor shaft 2 downward, so that the motor shaft 2 is in the axial set position.
  • the radial magnetic suspension bearing group includes a first radial magnetic suspension bearing 41 and a second radial magnetic suspension bearing 42, the first radial magnetic suspension bearing 41 is arranged above the motor 5; the second radial magnetic suspension bearing 42 is arranged on the motor 5 , and above the axially downward magnetic suspension bearing 32 .
  • the magnetic suspension bearing of the centrifuge also includes a radial magnetic suspension bearing group, and the radial magnetic suspension bearing group includes a first radial magnetic suspension bearing 41 and a second radial magnetic suspension bearing 42 , and the first magnetic suspension bearing is arranged on the motor 5 .
  • the second radial magnetic suspension bearing 42 is arranged below the motor 5 and above the axial magnetic suspension bearing group 3 .
  • the radial magnetic suspension bearing group of the centrifuge can control the radial displacement of the motor shaft 2, wherein the first radial magnetic suspension bearing 41 can control the radial position of the upper part of the motor shaft 2, and the second magnetic suspension bearing can control the diameter of the lower part of the motor shaft 2. to displacement.
  • the radial position sensor includes a first radial position sensor 71 and a second radial position sensor 72 .
  • the first radial position sensor 71 is disposed above the first radial magnetic suspension bearing 41 and is used to monitor the motor shaft 2 The radial displacement of the upper part; the second radial position sensor 72 is arranged below the second radial magnetic suspension bearing 42 and above the axial downward magnetic suspension bearing 32 for monitoring the radial displacement of the lower part of the motor shaft 2 .
  • the power chamber of the centrifuge is provided with a magnetic suspension bearing and a position sensor
  • the magnetic suspension bearing includes a radial magnetic suspension bearing group and an axial magnetic suspension bearing group 3
  • the position sensor includes a radial position sensor and an axial position sensor 6
  • the radial magnetic suspension bearing group includes a first radial magnetic suspension bearing 41 and a second radial magnetic suspension bearing 42
  • the radial position sensor includes a first radial position sensor 71 and a second radial position sensor 72 .
  • the first radial position sensor 71 is arranged above the first radial magnetic suspension bearing 41, and is located at the lower part of the centrifugal chamber 1, and can monitor the radial displacement of the upper part of the motor shaft 2;
  • the second radial position sensor 72 is arranged on the second Below the radial magnetic suspension bearing 42 and above the axial magnetic suspension bearing group 3 , the radial displacement of the lower part of the motor shaft 2 can be monitored.
  • the axial position sensor 6 monitors the position of the axial force member 33 of the motor shaft, and the first radial position sensor 71 and the second radial position sensor 72 jointly monitor the position of the motor shaft 2. In this way, the motor shaft can be 2 Move within the set position range to prevent the motor shaft 2 from deviating from the set position.
  • the centrifuge further includes a refrigeration system for reducing the temperature of the motor 5 and/or the centrifuge rotor 11 .
  • the centrifuge includes a centrifugal chamber 1 and a power chamber.
  • the centrifugal chamber 1 is provided with a centrifugal rotor 11, the power chamber is provided with a motor 5 and a motor shaft 2, and the refrigeration system is provided outside the centrifugal chamber 1 and the power chamber. It is used to cool the centrifugal rotor 11 in the centrifugal chamber 1 and the motor 5 in the power chamber.
  • the centrifuge further includes a refrigeration system, and the refrigeration system is used to reduce the temperature of the motor 5 or the centrifugal rotor 11; optionally, the refrigeration system can also be used to reduce the temperature of the motor 5 and the centrifugal rotor 11, as shown in FIG. 1 shown.
  • the refrigeration system includes a first cooling coil 81 and/or a second cooling coil 82 , the first cooling coil 81 is surrounded outside the centrifugal chamber 1 ; the second cooling coil 82 is surrounded by the motor 5 . external.
  • the refrigeration system includes a first cooling coil 81 and a second cooling coil 82 , the first cooling coil 81 is surrounded by the outside of the centrifugal chamber 1 , and the second cooling coil 82 is surrounded by the motor 5 . external.
  • the motor 5 and the centrifugal rotor 11 of the centrifuge are likely to generate heat.
  • the refrigeration system may also include a first cooling coil 81 or a second cooling coil 82, and the specific position of the cooling coil may be set according to the cooling requirement of the centrifuge.
  • the centrifuge further includes a base 9 and a support 10 , one end of the support 10 is connected to the base 9 , and the other end of the support 10 is disposed at the lower part of the centrifugal chamber 1 for supporting the centrifugal chamber 1 .
  • the centrifuge further includes a base 9 and a support 10, and the base 9 and the support 10 can be made of metal, so that the centrifugal chamber 1 and the power chamber can be stably supported.
  • the base 9 is in direct contact with the object storage plane, one end of the support 10 is fixedly connected to the upper end of the base 9 , and the other end of the support 10 is fixedly connected to the lower part of the centrifugal chamber 1 .
  • the centrifuge provided in the embodiment of the present application may be a high-speed magnetic levitation centrifuge, including a motor 5 , a magnetic levitation bearing, a centrifugal chamber 1 , a controller, a frequency converter and a cooling system, and a base 9 and a bracket 10 are also provided.
  • the base 9 is in direct contact with the storage platform, one end of the support 10 is fixedly connected to the upper end of the base 9 , and the other end of the support 10 is fixedly connected to the lower part of the centrifugal chamber 1 .
  • the centrifugal chamber 1 is provided with a centrifugal rotor 11, and the periphery of the centrifugal chamber 1 is provided with a first cooling coil 81; the power chamber is provided with a motor 5, a motor shaft 2, a magnetic suspension bearing and a position sensor, and the motor 5 is surrounded by a The second cooling coil 82 .
  • the magnetic suspension bearing includes a radial magnetic suspension bearing group and an axial magnetic suspension bearing.
  • the radial magnetic suspension bearing group includes a first radial magnetic suspension bearing 41 and a second radial magnetic suspension bearing 42;
  • the axial magnetic suspension bearing includes an axial upward magnetic suspension bearing 31 and an axial magnetic suspension bearing.
  • the position sensor includes a radial position sensor and an axial position sensor 6 , wherein the radial position sensor includes a first radial position sensor 71 and a second radial position sensor 72 .
  • the axial magnetic suspension bearing group 3 is arranged below the motor 5, and the lower end face of the axial force-receiving member 33 of the motor shaft is on the same plane as the bottom end face of the motor shaft 2, and the axially upward magnetic suspension bearing 31 is arranged on the upper surface of the base 9,
  • the axially downward magnetic suspension bearing 32 is arranged above the axial force member 33 of the motor shaft, and the axial position sensor 6 is arranged at the bottom of the motor shaft 2 and is located in the central area of the axially upward magnetic suspension bearing 31 for monitoring the motor shaft. 2 axial displacement.
  • the first radial magnetic suspension bearing 41 and the first radial position sensor 71 are arranged at the lower part of the centrifugal chamber 1 and above the motor 5 , wherein the first radial position sensor 71 is arranged above the first radial magnetic suspension bearing 41
  • the second radial magnetic suspension bearing 42 and the second radial position sensor 72 are arranged below the motor 5 and above the axial magnetic suspension bearing group 3, wherein the second radial position sensor 72 is arranged in the second radial magnetic suspension Below the bearing 42 .
  • the position of the motor shaft 2 is controlled by the axial magnetic suspension bearing group 3 and the radial magnetic suspension bearing group, and the displacement of the motor shaft 2 is monitored by the axial position sensor 6 and the radial position sensor. In this way, the motor shaft 2 can be placed in a set position range, and the damage of the magnetic suspension bearing caused by the contact of the motor shaft 2 with the magnetic suspension bearing can be prevented.
  • the radial magnetic suspension bearing group and the axial magnetic suspension bearing group 3 When the centrifuge is energized, the radial magnetic suspension bearing group and the axial magnetic suspension bearing group 3 generate electromagnetic force, and the motor shaft 2 moves to the bearing center position of the bearing under the action of the electromagnetic force, and is suspended in the air.
  • the motor shaft 2 and the magnetic suspension The bearings do not touch each other.
  • the position of the motor shaft 2 is monitored by the axial position sensor 6 and the radial position sensor.
  • the controller will adjust the electromagnetic coil current at the corresponding position of the magnetic suspension bearing, thereby adjusting the electromagnetic force at the corresponding position. , the motor shaft 2 is pushed by the electromagnetic force adjusted above, so as to return to the set position.

Abstract

一种离心机,包括离心室(1)和动力室,离心室(1)内设置有离心转头(11),动力室内设置有电机轴(2),动力室内设置有磁悬浮轴承和位置传感器,磁悬浮轴承包括径向磁悬浮轴承组和轴向磁悬浮轴承组(3),位置传感器包括轴向位置传感器(6)和径向位置传感器,轴向位置传感器(6)用于监测电机轴(2)的轴向位移,径向位置传感器用于监测电机轴(2)的径向位移,其中,轴向磁悬浮轴承组(3)包括轴向向上磁悬浮轴承(31)、轴向向下磁悬浮轴承(32)和电机轴轴向受力件(33),电机轴轴向受力件(33)与电机轴(2)连接,电机轴轴向受力件(33)设置于轴向向上磁悬浮轴承(31)与轴向向下磁悬浮轴承(32)之间。该离心机能够解决离心机的电机轴与轴承之间的磨损问题。

Description

离心机
本申请基于申请号为202110418084.0、申请日为2021年4月19日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
本申请基于申请号为202120802231.X、申请日为2021年4月19日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及物质分离设备技术领域,例如涉及一种离心机。
背景技术
离心机是利用离心力对不同沉淀物系数物质进行浓缩、分离以及纯化的仪器,广泛应用于生物、医疗、化工等领域,并且根据离心机转速的不同可分为低速离心机、高速离心机和超速离心机。
目前,高速离心机普遍使用传统的机械轴承,机械轴承随着离心机转速的增加,与电机轴之间存在较大的摩擦力。
在实现本公开实施例的过程中,发现相关技术中至少存在如下问题:
当离心机的转头高速旋转的时候,机械轴承与电机轴之间会存在较大的磨损,影响轴承的使用寿命。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供一种离心机,以解决离心机的电机轴与轴承之间存在较大磨损的问题。
在一些实施例中,所述离心机括离心室和动力室,离心室内设置有离心转头,动力室内设置有电机轴、磁悬浮轴承和位置传感器,磁悬浮轴承包括径向磁悬浮轴承组和轴 向磁悬浮轴承组,位置传感器包括轴向位置传感器和径向位置传感器,轴向位置传感器用于监测电机轴的轴向位移,径向位置传感器用于监测电机轴的径向位移,其中,轴向磁悬浮轴承组包括轴向向上磁悬浮轴承、轴向向下磁悬浮轴承和电机轴轴向受力件,轴向向上磁悬浮轴承用于产生轴向向上的电磁力,轴向向下磁悬浮轴承用于产生轴向向下的电磁力,电机轴轴向受力件与电机轴连接,电机轴轴向受力件设置于轴向向上磁悬浮轴承与轴向向下磁悬浮轴承之间。
本申请实施例中,所述离心机为磁悬浮离心机,离心机的动力室设置有电机轴、磁悬浮轴承和位置传感器,磁悬浮轴承包括径向磁悬浮轴承组和轴向磁悬浮轴承组,轴向磁悬浮轴承组包括轴向向上磁悬浮轴承、轴向向下磁悬浮轴承和电机轴轴向受力件,电机轴轴向受力件与电机轴固定连接,并且,设置于轴向向上磁悬浮轴承和轴向向下磁悬浮轴承之间,这样,电机轴轴向受力件能够受到轴向向上磁悬浮轴承和轴向向下磁悬浮轴承所产生的方向相反的电磁力,上述的电磁力能够使电机轴轴向受力件在电机轴的轴向设定位置内移动,从而通过轴向位置传感器监测电机轴的轴向位置。径向位置传感器可以监测电机轴的径向位移,这样,电机轴与磁悬浮轴承无接触,并且悬浮于空气中,能够避免电机轴与轴承之间的磨损。
可选地,离心机还包括电机,轴向磁悬浮轴承组设置于电机的下方。
可选地,电机轴轴向受力件的外径大于电机轴的直径。
可选地,电机轴轴向受力件与电机轴垂直固定连接。
可选地,轴向位置传感器设置于电机轴底部或者电机轴轴向受力件的侧部。
可选地,径向磁悬浮轴承组包括第一径向磁悬浮轴承和第二径向磁悬浮轴承,第一径向磁悬浮轴承设置于电机的上方;第二径向磁悬浮轴承设置于电机的下方,且,位于轴向向下磁悬浮轴承的上方。
可选地,径向位置传感器包括第一径向位置传感器和第二径向位置传感器,第一径向位置传感器设置于第一径向磁悬浮轴承的上方,用于监测电机轴上部的径向位移;第二径向位置传感器设置于第二径向磁悬浮轴承的下方,且,位于轴向向下磁悬轴承的上方,用于监测电机轴下部的径向位移。
可选地,离心机还包括制冷系统,制冷系统用于降低电机和/或离心转头的温度。
可选地,制冷系统包括第一冷却盘管和/或第二冷却盘管,第一冷却盘管围设于离心室的外部;第二冷却盘管围设于电机的外部。
可选地,离心机还包括底座和支架,支架的一端与底座连接,支架的另一端设置于 离心室的下部,用于支撑离心室。
本公开实施例提供的离心机,可以实现以下技术效果:
通过在离心机的动力室内设置轴向磁悬浮轴承组,轴向磁悬浮轴承组设置有轴向向上磁悬浮轴承和轴向向下磁悬浮轴承,有轴向向上磁悬浮轴承和轴向向下磁悬浮轴承之间设置有电机轴轴向受力件,这样,电机轴轴向受力件可以受到轴向向上磁悬浮轴承产生的向上的电磁力和轴向向下磁悬浮轴承产生的向下的电磁力,上述电磁力方向相反,通过轴向位置传感器监测电机轴的轴向位移从而控制电机轴的轴向位置。而且,通过在动力室设置径向磁悬浮轴承组和径向位置传感器,进而可以控制电机轴的径向位移,这样,电机轴与磁悬浮轴承不接触,并且悬浮于空气中,避免了电机轴与轴承之间的磨损,提高了离心机的使用寿命,同时,提高了离心机的转速。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例提供的离心机的整体示意图。
附图标记:
1:离心室;11:离心转头;2:电机轴;3:轴向磁悬浮轴承组;31:轴向向上磁悬浮轴承;32:轴向向下磁悬浮轴承;33:电机轴轴向受力件;41:第一径向磁悬浮轴承;42:第二径向磁悬浮轴承;5:电机;6:轴向位置传感器;71:第一径向位置传感器;72:第二径向位置传感器;81:第一冷却盘管;82:第二冷却盘管;9:底座;10:支架。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下, 为简化附图,熟知的结构和装置可以简化展示。
本公开实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开实施例的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
本公开实施例中,术语“上”、“下”、“内”、“中”、“外”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系。这些术语主要是为了更好地描述本公开实施例及其实施例,并非用于限定所指示的装置、元件或组成部分必须具有特定方位,或以特定方位进行构造和操作。并且,上述部分术语除了可以用于表示方位或位置关系以外,还可能用于表示其他含义,例如术语“上”在某些情况下也可能用于表示某种依附关系或连接关系。对于本领域普通技术人员而言,可以根据具体情况理解这些术语在本公开实施例中的具体含义。
另外,术语“设置”、“连接”、“固定”应做广义理解。例如,“连接”可以是固定连接,可拆卸连接,或整体式构造;可以是机械连接,或电连接;可以是直接相连,或者是通过中间媒介间接相连,又或者是两个装置、元件或组成部分之间内部的连通。对于本领域普通技术人员而言,可以根据具体情况理解上述术语在本公开实施例中的具体含义。
除非另有说明,术语“多个”表示两个或两个以上。
本公开实施例中,字符“/”表示前后对象是一种“或”的关系。例如,A/B表示:A或B。
术语“和/或”是一种描述对象的关联关系,表示可以存在三种关系。例如,A和/或B,表示:A或B,或,A和B这三种关系。
需要说明的是,在不冲突的情况下,本公开实施例中的实施例及实施例中的特征可以相互组合。
本申请实施例中的离心机为医院或者科研院所所使用的物质分离用的磁悬浮离心机。
结合图1所示,本公开实施例提供一种离心机,离心机括离心室1和动力室,离心室1内设置有离心转头11,动力室内设置有电机轴2、磁悬浮轴承和位置传感器,磁悬浮轴承包括径向磁悬浮轴承组和轴向磁悬浮轴承组3,位置传感器包括轴向位置传感器6和径向位置传感器,轴向位置传感器6用于监测电机轴2的轴向位移,径向位置传感 器用于监测电机轴2的径向位移,其中,轴向磁悬浮轴承组3包括轴向向上磁悬浮轴承31、轴向向下磁悬浮轴承32和电机轴轴向受力件33,电机轴轴向受力件33与电机轴2连接,电机轴轴向受力件33设置于轴向向上磁悬浮轴承31与轴向向下磁悬浮轴承32之间。
本申请实施例中,离心机为磁悬浮离心机,离心机的动力室设置有电机轴2和磁悬浮轴承,磁悬浮轴承包括径向磁悬浮轴承组和轴向磁悬浮轴承组3,轴向磁悬浮轴承组3包括轴向向上磁悬浮轴承31、轴向向下磁悬浮轴承32和电机轴轴向受力件33,电机轴轴向受力件33与电机轴2固定连接,并且,设置于轴向向上磁悬浮轴承31和轴向向下磁悬浮轴承32之间,这样,电机轴轴向受力件33能够受到轴向向上磁悬浮轴承31和轴向向下磁悬浮轴承32所产生的方向相反的电磁力,上述的电磁力能够使电机轴轴向受力件33在电机轴2的轴向设定位置内移动,从而通过轴向位置传感器6监测电机轴2的轴向位移。径向位置传感器可以监测电机轴2的径向位移,这样,电机轴2与磁悬浮轴承无接触,并且悬浮于空气中,能够避免电机轴2与轴承之间的磨损。
可选地,电机轴轴向受力件33具有第一表面和第二表面,第一表面用于接受轴向向下磁悬浮轴承32所产生的向下的电磁力,以克服电机轴2在高速旋转过程中出现的动态不平衡所产生的向上的轴向作用力;第二表面用于接受轴向向上磁悬浮轴承31所产生的向上的电磁力,以克服包括电机轴2、安装在电机轴2上的离心转头11的重力以及电机轴2在高速旋转过程中出现的动态不平衡所产生的向下的轴向作用力。
可选地,轴向向上磁悬浮轴承31、电机轴轴向受力件33和轴向向下磁悬浮轴承32在离心机工作的状态下互不接触。轴向向上磁悬浮轴承31与电机轴轴向受力件33之间的轴向距离、轴向向下磁悬浮轴承32与电机轴轴向受力件33之间的轴向距离范围都为3毫米至9毫米。若轴向距离过大,会损失磁悬浮轴承所产生的磁力;若轴向距离过小,在电机轴2高速运转过程中很容易使轴向向上磁悬浮轴承31和轴向向下磁悬浮轴承32与电机轴轴向受力件33相互接触,导致轴向磁悬浮轴组承摩损。
可选地,离心机还包括电机5,轴向磁悬浮轴承组3设置于电机5的下方。
本申请实施例中,离心机包括离心室1和动力室,离心室1设置于动力室的上方,离心室1内设置有离心转头11,动力室内设置有电机轴2和电机5,电机5可以为永磁直流无刷电机,电机轴2与离心转头11直接相连。
如图1所示,轴向磁悬浮轴承组3设置于电机5的下方,并且,位于电机轴2的底部,其中,电机轴轴向受力件33与电机轴2的底部端面为同一平面,电机轴轴向受力 件33的上方和下方分别设置有轴向向下磁悬浮轴承32和轴向向上磁悬浮轴承31。本申请实施例中的离心机还设置有控制器和变频器,电机5在变频器和控制器的控制下,实现离心机转速的设定,满足用户对离心机的不同转速设定需求。
可选地,轴向磁悬浮轴承组3还可以设置于电机5的上方,即,设置于电机轴2的上部,电机轴2的顶部与离心转头11直接连接。
可选地,电机轴轴向受力件33的外径大于电机轴2的直径。这样,电机轴轴向受力件33能够接受轴向向上磁悬浮轴承31所产生的向上的电磁力和轴向向下磁悬浮轴承32所产生的向下的电磁力。
可选地,电机轴轴向受力件33与电机轴2垂直固定连接。
可选地,电机轴轴向受力件33设置于轴向4向上磁悬浮轴承31和轴向向下磁悬浮轴承32之间,电机轴轴向受力件33与电机轴2垂直,可以理解地,轴向向上磁悬浮轴承31与轴向向下磁悬浮轴承32也都与电机轴2垂直,即,轴向磁悬浮轴承组3与电机轴2垂直设置。
本申请实施例中,电机轴轴向受力件33可以是与电机轴2相同材质的单独的部件,并且与电机轴2垂直设置,以焊接的方式将电机轴轴向受力件33固定到电机轴2;可选地,电机轴轴向受力件33还可以为与电机轴2呈一体式的部件,并且,电机轴轴向受力件33与电机轴2垂直设置。
可选地,轴向位置传感器6设置于电机轴2底部或者电机轴轴向受力件33的侧部。
可选地,轴向位置传感器6可以设置在电机轴2的底部,如图1所示,电机轴轴向受力件33设置于电机轴2的底部,并且与电机轴2的底部端面为同一平面,轴向位置传感器6设置在电机轴2的底部。
可选地,轴向位置传感器6还可以设置在电机轴轴向受力件33的侧部,并且,与电机轴轴向受力件33位于同一水平面。
本申请实施例中,离心机包括离心室1和动力室,离心室1内设置有离心转头11,动力室设置有电机5、电机轴2、磁悬浮轴承和位置传感器,磁悬浮轴承包括轴向磁悬浮轴承组3,轴向磁悬浮轴承组3包括轴向向上磁悬浮轴承31、轴向向下磁悬浮轴承32和电机轴轴向受力件33,电机轴轴向受力件33设置于轴向向上磁悬浮轴承31和轴向向下磁悬浮轴承32之间。位置传感器包括轴向位置传感器6,轴向位置传感器6可以设置于电机轴轴向受力件33的侧部,还可以设置在电机轴2的底部,轴向位置传感器6用于监测电机轴轴向受力件33在电机轴轴向的位移。离心机还包括控制器,例如,当电 机轴2在轴向向上移动偏离轴向设定位置时,轴向位置传感器6发出上述位置偏离的信号,控制器获取该信号后,控制轴向向下磁悬浮轴承32产生向下增强的电磁力,电机轴轴向受力件33受到向下增强的电磁力,从而将电机轴2向下推,使电机轴2处于轴向的设定位置内。
可选地,径向磁悬浮轴承组包括第一径向磁悬浮轴承41和第二径向磁悬浮轴承42,第一径向磁悬浮轴承41设置于电机5的上方;第二径向磁悬浮轴承42设置于电机5的下方,且,位于轴向向下磁悬浮轴承32的上方。
如图1所示,离心机的磁悬浮轴承还包括径向磁悬浮轴承组,径向磁悬浮轴承组包括第一径向磁悬浮轴承41和第二径向磁悬浮轴承42,第一磁悬浮轴承设置于电机5的上部,第二径向磁悬浮轴承42设置于电机5的下方,并且,位于轴向磁悬浮轴承组3的上方。离心机的径向磁悬浮轴承组可以控制电机轴2的径向位移,其中,第一径向磁悬浮轴承41可以控制电机轴2上部的径向位置,第二磁悬浮轴承可以控制电机轴2下部的径向位移。
可选地,径向位置传感器包括第一径向位置传感器71和第二径向位置传感器72,第一径向位置传感器71设置于第一径向磁悬浮轴承41的上方,用于监测电机轴2上部的径向位移;第二径向位置传感器72设置于第二径向磁悬浮轴承42的下方,且,位于轴向向下磁悬浮轴承32的上方,用于监测电机轴2下部的径向位移。
本申请实施例中,离心机的动力室设置有磁悬浮轴承和位置传感器,磁悬浮轴承包括径向磁悬浮轴承组和轴向磁悬浮轴承组3,位置传感器包括径向位置传感器和轴向位置传感器6。其中,径向磁悬浮轴承组包括第一径向磁悬浮轴承41和第二径向磁悬浮轴承42,径向位置传感器包括第一径向位置传感器71和第二径向位置传感器72。第一径向位置传感器71设置于第一径向磁悬浮轴承41的上方,且,位于离心室1的下部,能够监测电机轴2上部的径向位移;第二径向位置传感器72设置于第二径向磁悬浮轴承42的下方,且,位于轴向磁悬浮轴承组3的上方,能够监测电机轴2下部的径向位移。通过轴向位置传感器6对电机轴轴向受力件33的位置监测,以及第一径向位置传感器71和第二径向位置传感器72共同对电机轴2位置的监测,这样,能够使电机轴2在设定的位置范围内移动,防止电机轴2偏离设定位置。
可选地,离心机还包括制冷系统,制冷系统用于降低电机5和/或离心转头11的温度。
可选地,离心机包括离心室1和动力室,离心室1内设置有离心转头11,动力室内 设置有电机5和电机轴2,制冷系统设置于离心室1和动力室的外部,用于为离心室1内的离心转头11和动力室内的电机5降温。
可选地,离心机还包括制冷系统,制冷系统用于降低电机5或者离心转头11的温度;可选地,制冷系统还可以用于降低电机5和离心转头11的温度,如图1所示。
可选地,制冷系统包括第一冷却盘管81和/或第二冷却盘管82,第一冷却盘管81围设于离心室1的外部;第二冷却盘管82围设于电机5的外部。
如图1所示,制冷系统包括第一冷却盘管81和第二冷却盘管82,第一冷却盘管81围设于离心室1的外部,第二冷却盘管82围设于电机5的外部。当离心转头11在高速运转的情况下,离心机的电机5和离心转头11容易发热,通过设置制冷系统系统,可以为电机5和离心转头11降温。可选地,制冷系统也可以包括第一冷却盘管81或者第二冷却盘管82,可以根据离心机的降温需求来设定冷却盘管的具体位置。
可选地,离心机还包括底座9和支架10,支架10的一端与底座9连接,支架10的另一端设置于离心室1的下部,用于支撑离心室1。
可选地,离心机还包括底座9和支架10,底座9和支架10可以为金属材质,这样,能够稳固地支撑离心室1和动力室。其中,底座9与置物平面直接接触,支架10的一端与底座9上端固定连接,支架10的另一端与离心室1的下部固定连接。
本申请实施例中提供的离心机,可以为高速磁悬浮离心机,包括电机5、磁悬浮轴承、离心室1、控制器、变频器和冷却系统,还设置有底座9和支架10。底座9与置物平台直接接触,支架10的一端与底座9上端固定连接,支架10的另一端与离心室1的下部固定连接。其中,离心室1内设置有离心转头11,离心室1外围设有第一冷却盘管81;动力室内设置有电机5、电机轴2、磁悬浮轴承和位置传感器,电机5的外部围设有第二冷却盘管82。磁悬浮轴承包括径向磁悬浮轴承组和轴向磁悬浮轴承,径向磁悬浮轴承组包括第一径向磁悬浮轴承41和第二径向磁悬浮轴承42;轴向磁悬浮轴承包括轴向向上磁悬浮轴承31和轴向向下磁悬浮轴承32,以及设置于轴向向上磁悬浮轴承31和轴向向下磁悬浮轴承32之间的电机轴轴向受力件33。位置传感器包括径向位置传感器和轴向位置传感器6,其中,径向位置传感器包括第一径向位置传感器71和第二径向位置传感器72。轴向磁悬浮轴承组3设置于电机5的下方,并且,电机轴轴向受力件33的下端面与电机轴2的底部端面在同一平面,轴向向上磁悬浮轴承31设置于底座9上表面,轴向向下磁悬浮轴承32设置于电机轴轴向受力件33的上方,轴向位置传感器6设置于电机轴2的底部,并且位于轴向向上磁悬浮轴承31的中心区域,用于监测电机 轴2的轴向位移。第一径向磁悬浮轴承41和第一径向位置传感器71设置于离心室1的下部,且位于电机5的上方,其中,第一径向位置传感器71设置于第一径向磁悬浮轴承41的上方;第二径向磁悬浮轴承42和第二径向位置传感器72设置于电机5的下方,且位于轴向磁悬浮轴承组3的上方,其中,第二径向位置传感器72设置于第二径向磁悬浮轴承42的下方。本申请实施例通过轴向磁悬浮轴承组3和径向磁悬浮轴承组来控制电机轴2的位置,通过轴向位置传感器6和径向位置传感器来监测电机轴2的位移。这样,能够使电机轴2处于设定的位置范围,防止电机轴2与磁悬浮轴承接触造成磁悬浮轴承的损坏。
前述实施例中的磁悬浮离心机的工作原理为:
当离心机通电后,径向磁悬浮轴承组和轴向磁悬浮轴承组3产生电磁力,电机轴2在电磁力的作用下移动到轴承的轴承中心位置,并且悬浮在空气中,电机轴2与磁悬浮轴承之间互不接触。电机轴2的位置通过轴向位置传感器6和径向位置传感器进行监测,当电机轴2超出设定的位置范围,控制器会调整磁悬浮轴承相应位置的电磁线圈电流,从而调整相应位置的电磁力,电机轴2受到上述调整的电磁力推动,从而回到设定的位置。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。本公开的实施例并不局限于上面已经描述并在附图中示出的结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (10)

  1. 一种离心机,包括离心室(1)和动力室,所述离心室(1)内设置有离心转头(11),所述动力室内设置有电机轴(2),其特征在于,所述动力室内设置有磁悬浮轴承和位置传感器,所述磁悬浮轴承包括径向磁悬浮轴承组和轴向磁悬浮轴承组(3),所述位置传感器包括轴向位置传感器和径向位置传感器,所述轴向位置传感器用于监测所述电机轴的轴向位移,所述径向位置传感器用于监测所述电机轴的径向位移,其中,所述轴向磁悬浮轴承组(3)包括:
    轴向向上磁悬浮轴承(31),用于产生轴向向上的电磁力;
    轴向向下磁悬浮轴承(32),用于产生轴向向下的电磁力;和,
    电机轴轴向受力件(33),与所述电机轴(2)连接,
    所述电机轴轴向受力件(33)设置于所述轴向向上磁悬浮轴承(31)与所述轴向向下磁悬浮轴承(32)之间。
  2. 根据权利要求1所述的离心机,其特征在于,还包括电机(5),所述轴向磁悬浮轴承组(3)设置于所述电机(5)的下方。
  3. 根据权利要求1所述的离心机,其特征在于,所述电机轴轴向受力件(33)的外径大于所述电机轴(2)的直径。
  4. 根据权利要求3所述的离心机,其特征在于,所述电机轴轴向受力件(33)与所述电机轴(2)垂直固定连接。
  5. 根据权利要求1所述的离心机,其特征在于,
    轴向位置传感器(6),设置于所述电机轴(2)底部或者所述电机轴轴向受力件(33)的侧部。
  6. 根据权利要求2所述的离心机,其特征在于,所述径向磁悬浮轴承组包括:
    第一径向磁悬浮轴承(41),设置于所述电机(5)的上方;和
    第二径向磁悬浮轴承(42),设置于所述电机(5)的下方,且,位于所述轴向向下磁悬浮轴承(32)的上方。
  7. 根据权利要求6所述的离心机,其特征在于,所述径向位置传感器包括:
    第一径向位置传感器(71),设置于所述第一径向磁悬浮轴承(41)的上方,用于监测所述电机轴(2)上部的径向位移;和,
    第二径向位置传感器(72),设置于所述第二径向磁悬浮轴承(42)的下方,且,位于轴向向下磁悬浮轴承(32)的上方,用于监测所述电机轴(2)下部的径向位移。
  8. 根据权利要求2所述的离心机,其特征在于,还包括:
    制冷系统,用于降低所述电机(5)和/或所述离心转头(11)的温度。
  9. 根据权利要求8所述的离心机,其特征在于,所述制冷系统包括:
    第一冷却盘管(81),围设于所述离心室(1)的外部;和/或,
    第二冷却盘管(82),围设于所述电机(5)的外部。
  10. 根据权利要求1所述的离心机,其特征在于,还包括:
    底座(9);和,
    支架(10),所述支架(10)的一端与所述底座(9)连接,所述支架(9)的另一端设置于所述离心室(1)的下部,用于支撑所述离心室(1)。
PCT/CN2022/072845 2021-04-19 2022-01-20 离心机 WO2022222563A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202120802231.X 2021-04-19
CN202110418084.0A CN115217845A (zh) 2021-04-19 2021-04-19 离心机
CN202110418084.0 2021-04-19
CN202120802231.XU CN215567323U (zh) 2021-04-19 2021-04-19 离心机

Publications (1)

Publication Number Publication Date
WO2022222563A1 true WO2022222563A1 (zh) 2022-10-27

Family

ID=83723563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072845 WO2022222563A1 (zh) 2021-04-19 2022-01-20 离心机

Country Status (1)

Country Link
WO (1) WO2022222563A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2820446A1 (en) * 2012-06-22 2013-12-22 Skf Magnetic Mechatronics Electric centrifugal compressor for vehicles
US20160273324A1 (en) * 2015-03-18 2016-09-22 Hitachi, Ltd. Downhole Compressor
CN109763994A (zh) * 2019-02-21 2019-05-17 珠海格力电器股份有限公司 磁悬浮轴承和磁悬浮离心压缩机、空调器
CN109891109A (zh) * 2016-08-18 2019-06-14 大金工业株式会社 磁轴承装置和流体机械系统
CN209034570U (zh) * 2018-09-10 2019-06-28 山东科技大学 一种混合式磁悬浮轴承医用离心机
CN110233536A (zh) * 2019-06-13 2019-09-13 清华大学 高速旋转轴系上的电磁执行机构及电机
CN215567323U (zh) * 2021-04-19 2022-01-18 青岛海特生物医疗有限公司 离心机
CN215567324U (zh) * 2021-04-19 2022-01-18 青岛海特生物医疗有限公司 一种离心机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2820446A1 (en) * 2012-06-22 2013-12-22 Skf Magnetic Mechatronics Electric centrifugal compressor for vehicles
US20160273324A1 (en) * 2015-03-18 2016-09-22 Hitachi, Ltd. Downhole Compressor
CN109891109A (zh) * 2016-08-18 2019-06-14 大金工业株式会社 磁轴承装置和流体机械系统
CN209034570U (zh) * 2018-09-10 2019-06-28 山东科技大学 一种混合式磁悬浮轴承医用离心机
CN109763994A (zh) * 2019-02-21 2019-05-17 珠海格力电器股份有限公司 磁悬浮轴承和磁悬浮离心压缩机、空调器
CN110233536A (zh) * 2019-06-13 2019-09-13 清华大学 高速旋转轴系上的电磁执行机构及电机
CN215567323U (zh) * 2021-04-19 2022-01-18 青岛海特生物医疗有限公司 离心机
CN215567324U (zh) * 2021-04-19 2022-01-18 青岛海特生物医疗有限公司 一种离心机

Similar Documents

Publication Publication Date Title
CN215567323U (zh) 离心机
CN215567324U (zh) 一种离心机
CN109225670B (zh) 一种混合式磁悬浮轴承医用离心机及其控制方法
WO2022222562A1 (zh) 一种离心机
CN108475969A (zh) 马达及推进装置
US20150362015A1 (en) Device and Method for Magnetically Axially Supporting a Rotor
EP1980765B1 (en) Electromagnetic suspension bearing
WO2022222563A1 (zh) 离心机
US20110215592A1 (en) Flywheel energy storage device with a hubless ring-shaped rotor
JP2018109437A (ja) 無制御磁気浮上方法及び無制御磁気浮上装置
JP4200775B2 (ja) フライホイール電力貯蔵装置
CN102425560A (zh) 一种磁悬浮分子泵动平衡方法
US20130207496A1 (en) System and method for performing magnetic levitation in an energy storage flywheel
CN209034570U (zh) 一种混合式磁悬浮轴承医用离心机
CN115217845A (zh) 离心机
CN115217844A (zh) 一种离心机
CN114618692A (zh) 磁悬浮离心机
JP2541371B2 (ja) 高速度回転真空ポンプの磁気軸受構造
KR101357805B1 (ko) 원심분리기
CN114499280A (zh) 磁悬浮电机
CN107147265B (zh) 一种服务器散热风扇
CN210167904U (zh) 磁悬浮无轴承电机、制冷设备
EP0454685B1 (en) Under-the-hub disk drive spin motor
CN210434699U (zh) 一种带有通讯功能的电磁限位减振医用离心机
CN109713869A (zh) 一种大口径环形磁悬浮电机及控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22790673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22790673

Country of ref document: EP

Kind code of ref document: A1