WO2022222518A1 - 压裂设备及其控制方法、压裂系统 - Google Patents

压裂设备及其控制方法、压裂系统 Download PDF

Info

Publication number
WO2022222518A1
WO2022222518A1 PCT/CN2021/139240 CN2021139240W WO2022222518A1 WO 2022222518 A1 WO2022222518 A1 WO 2022222518A1 CN 2021139240 W CN2021139240 W CN 2021139240W WO 2022222518 A1 WO2022222518 A1 WO 2022222518A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
fracturing
plunger pump
prime mover
pressure
Prior art date
Application number
PCT/CN2021/139240
Other languages
English (en)
French (fr)
Inventor
仲跻风
吕亮
李心成
Original Assignee
烟台杰瑞石油装备技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烟台杰瑞石油装备技术有限公司 filed Critical 烟台杰瑞石油装备技术有限公司
Priority to CA3173695A priority Critical patent/CA3173695A1/en
Priority to US17/733,922 priority patent/US11746636B2/en
Priority to US17/884,358 priority patent/US11680474B2/en
Publication of WO2022222518A1 publication Critical patent/WO2022222518A1/zh
Priority to US18/311,042 priority patent/US20230279762A1/en
Priority to US18/360,678 priority patent/US20240035363A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/02Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/2607Surface equipment specially adapted for fracturing operations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B23/00Pumping installations or systems
    • F04B23/04Combinations of two or more pumps
    • F04B23/06Combinations of two or more pumps the pumps being all of reciprocating positive-displacement type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/02Stopping, starting, unloading or idling control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/10Other safety measures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/10Other safety measures
    • F04B49/103Responsive to speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B51/00Testing machines, pumps, or pumping installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/12Parameters of driving or driven means
    • F04B2201/1201Rotational speed of the axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0209Rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/06Motor parameters of internal combustion engines
    • F04B2203/0602Vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/06Motor parameters of internal combustion engines
    • F04B2203/0605Rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/11Motor parameters of a gas turbine
    • F04B2203/1101Rotational speed of the turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/05Pressure after the pump outlet

Definitions

  • Embodiments of the present disclosure relate to a fracturing apparatus, a method of controlling the fracturing apparatus, and a fracturing system.
  • fracturing technology is a method of using high-pressure fracturing fluids to form fractures in oil and gas formations.
  • Fracturing technology is widely used in conventional and unconventional oil and gas exploration, offshore and onshore oil and gas resource development by creating fractures in oil and gas layers and improving the flow environment of oil and gas in the underground, thereby increasing the production of oil wells.
  • a plunger pump is a device that uses a plunger to reciprocate in a cylinder to pressurize a liquid.
  • Plunger pumps have the advantages of high rated pressure, compact structure and high efficiency, so they are used in fracturing technology.
  • Embodiments of the present disclosure provide a fracturing device, a method for controlling the fracturing device, and a fracturing system.
  • the fracturing equipment can control the clutch to disengage, so as to avoid the phenomenon of clutch slippage caused by the low hydraulic pressure, so as to prevent the clutch from slipping. Avoid further deterioration of failures, and can carry out targeted inspections and maintenance.
  • At least one embodiment of the present disclosure provides a fracturing device, which includes: a plunger pump, including a power end and a liquid end; a prime mover, including a power take-off shaft; a clutch, including a first connection part, a second connection part, and a a clutch portion between a first connection portion and a second connection portion; and a clutch hydraulic system configured to provide hydraulic oil to the clutch, a power end of the plunger pump including a power input shaft, the first connection portion Connected to the power input shaft, the second connecting portion is connected to the power output shaft of the prime mover, and the fracturing apparatus further includes a first pressure sensor configured to detect hydraulic pressure of the clutch hydraulic system.
  • the fracturing equipment further includes: a second pressure sensor, the hydraulic end of the plunger pump includes a liquid output end, and the second pressure sensor is is configured to detect the liquid pressure output by the liquid output end.
  • the fracturing equipment further includes: a discharge manifold connected to the liquid output end, and the second pressure sensor is disposed at the liquid output end or the on the discharge manifold.
  • the fracturing equipment includes two of the plunger pumps, one of the prime movers, two of the clutches, two of the clutch hydraulic systems, and two of the clutches.
  • Each of the first pressure sensors is arranged in a one-to-one correspondence with the two clutch hydraulic systems, and the first pressure sensors are configured to detect the hydraulic pressure of the corresponding clutch hydraulic systems.
  • the fracturing apparatus further includes: a first temperature sensor configured to detect the temperature of the clutch.
  • the fracturing apparatus further includes: a second temperature sensor configured to detect the temperature of the hydraulic oil in the clutch hydraulic system.
  • the fracturing apparatus further includes: a first vibration sensor configured to detect the vibration of the plunger pump, and the fracturing apparatus further includes a plunger pump base , the plunger pump is arranged on the plunger pump, and the first vibration sensor is located on the plunger pump or on the base of the plunger pump.
  • the fracturing equipment further includes: a second vibration sensor configured to detect the vibration of the prime mover, and the fracturing equipment further includes a prime mover base, so The prime mover is arranged on the prime mover base, and the second vibration sensor is located on the prime mover or the prime mover base.
  • the fracturing apparatus further includes: a first rotational speed sensor configured to detect the actual rotational speed of the power input shaft of the plunger pump; and a second rotational speed a sensor configured to detect the actual rotational speed of the power take-off shaft of the prime mover.
  • the fracturing equipment further includes: a planetary gearbox including an input gear shaft; the first connection portion of the clutch is directly connected to the input gear shaft, The power input shaft is directly connected to the planetary gearbox.
  • the fracturing equipment further includes: the prime mover includes one of a diesel engine, an electric motor, and a turbine engine.
  • At least one embodiment of the present disclosure further provides a method for controlling a fracturing device, the fracturing device comprising the fracturing device described in any one of the above, the control method comprising: detecting the hydraulic pressure of the clutch hydraulic system; and If the detected hydraulic pressure of the clutch hydraulic system is lower than a first preset pressure value, the clutch is controlled to be disengaged.
  • control method for fracturing equipment further includes: detecting the liquid pressure output by the plunger pump; and if the detected liquid pressure output by the plunger pump is higher than a second preset pressure value, control the clutch to disengage.
  • the method for controlling fracturing equipment further includes: detecting the temperature of the clutch; and if the detected temperature of the clutch is higher than a first preset temperature value, controlling the clutch to disengage open.
  • the method for controlling fracturing equipment further includes: detecting the temperature of hydraulic oil in the clutch hydraulic system; and if the detected temperature of the hydraulic oil in the clutch hydraulic system is higher than a second preset temperature When the temperature value is set, the clutch is controlled to disengage.
  • the method for controlling fracturing equipment further includes: detecting the vibration of the plunger pump; and if the detected vibration of the plunger pump is higher than a first preset vibration value, controlling The clutch is disengaged.
  • the method for controlling fracturing equipment further includes: detecting the vibration of the prime mover; and if the detected vibration of the prime mover is higher than a second preset vibration value, controlling the The clutch is disengaged.
  • the method for controlling fracturing equipment further includes: detecting a first actual rotational speed of the power input shaft of the plunger pump; detecting a second actual rotation speed of the power output shaft of the prime mover Actual rotational speed; calculate the ratio of the first actual rotational speed to the second actual rotational speed, and control the clutch to disengage if the ratio is smaller than the first preset ratio or greater than the second preset ratio.
  • At least one embodiment of the present disclosure also provides a fracturing system, comprising: the fracturing apparatus of any one of the above; a control system configured to control a clutch in the fracturing apparatus; and a remote control unit, with The control systems are communicatively connected.
  • Figure 1 is a schematic diagram of a fracturing equipment.
  • FIG. 2A is a schematic diagram of a fracturing device provided by an embodiment of the present disclosure
  • FIG. 2B is a schematic diagram of another fracturing equipment provided by an embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of another fracturing equipment provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of another fracturing equipment provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a fracturing system according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a fracturing system according to an embodiment of the present disclosure.
  • the plunger pump in the fracturing equipment has gradually changed from being driven by a diesel engine to being driven by an electric motor or a turbine generator to meet higher environmental protection requirements.
  • such fracturing equipment also has the advantages of high power and low construction cost.
  • FIG. 1 is a schematic diagram of a fracturing equipment.
  • the fracturing equipment 10 includes a plunger pump 11 and an electric motor 12 ; the power output shaft of the electric motor 12 is connected with the power input shaft of the plunger pump 11 through a clutch 13 . Due to frequent engagement or disengagement, the clutch 13 is damaged frequently; on the other hand, in fracturing operations, the plunger pump needs to be able to operate stably and continuously, so the stability requirements of the clutch are very high. Therefore, if there is a problem with the clutch of the fracturing equipment during the operation, and it cannot be judged and dealt with in time, it will cause great economic losses to the fracturing operation.
  • the fracturing equipment shown in Figure 1 can adopt the mode of one machine and one pump (that is, one electric motor drives one plunger pump), or can use one machine and two pumps (that is, one electric motor drives two plunger pumps). ) mode.
  • fracturing equipment requires high stability and belongs to high power (the rated maximum output power of a single plunger pump is usually higher than 2000hp) and high pressure (the rated pressure of the plunger pump is usually not lower than 10,000PSI) construction equipment (usually the maximum pressure during construction can exceed 40mpa), and maintenance personnel cannot be nearby for inspection and maintenance during the operation.
  • inventions of the present disclosure provide a fracturing device, a method for controlling the fracturing device, and a fracturing system.
  • the fracturing equipment includes a plunger pump, a prime mover, a clutch and a clutch hydraulic system; the plunger pump includes a power end and a hydraulic end, the prime mover includes a power take-off shaft, and the clutch includes a first connection part, a second connection part and a a clutch part between the connecting part and the second connecting part; the power end of the plunger pump includes a power input shaft, the first connecting part is connected with the power input shaft, and the second connecting part is connected with the power output shaft of the prime mover,
  • the clutch hydraulic system is configured to provide hydraulic oil to the clutch.
  • the fracturing apparatus also includes a first pressure sensor disposed in the clutch hydraulic system and configured to detect hydraulic pressure of the clutch hydraulic system. Therefore, when the first pressure sensor detects that the pressure of the hydraulic oil provided by the clutch hydraulic system to the clutch is less than the preset pressure value, the clutch can be controlled to be disengaged, thereby avoiding the clutch slipping phenomenon caused by the low hydraulic pressure, so as to prevent the clutch from slipping. Avoid further deterioration of failures, and can carry out targeted inspections and maintenance.
  • FIG. 2A is a schematic diagram of a fracturing apparatus provided by an embodiment of the disclosure
  • FIG. 2B is a schematic diagram of another fracturing apparatus provided by an embodiment of the disclosure. As shown in FIGS.
  • the fracturing equipment 100 includes a plunger pump 110 , a prime mover 120 , a clutch 130 and a clutch hydraulic system 140 ;
  • the plunger pump 110 includes a power end 112 and a hydraulic end 114
  • the prime mover 120 includes The power take-off shaft 125
  • the clutch 130 includes a first connection part 131, a second connection part 132 and a clutch part 133 between the first connection part 131 and the second connection part 132
  • the power end 112 of the plunger pump 110 includes a power input The shaft 1125
  • the first connection part 131 is connected with the power input shaft 1125
  • the second connection part 132 is connected with the power output shaft 125 of the prime mover 120
  • the clutch hydraulic system 140 is configured to provide hydraulic oil to the clutch 130 .
  • the fracturing apparatus 100 further includes a first pressure sensor 151 configured to detect the hydraulic pressure of the clutch hydraulic system 140 , that is, the pressure value of the hydraulic oil provided by the clutch hydraulic system 140 to the clutch 130 .
  • a first pressure sensor 151 configured to detect the hydraulic pressure of the clutch hydraulic system 140 , that is, the pressure value of the hydraulic oil provided by the clutch hydraulic system 140 to the clutch 130 .
  • various "pressures" or “pressure values” in the present disclosure are pressure values obtained by a pressure gauge or pressure sensor.
  • the clutch hydraulic system is configured to provide hydraulic oil to the clutch. If the hydraulic oil pressure of the clutch hydraulic system does not meet the requirements due to oil leakage and other reasons, the clutch will slip; If not dealt with, more serious failures may occur, which will bring greater safety hazards and greater economic losses to the fracturing operation.
  • the fracturing apparatus detects the hydraulic value of the hydraulic oil provided by the clutch hydraulic system to the clutch through the first pressure sensor.
  • the first pressure sensor detects the hydraulic value of the hydraulic oil provided by the clutch hydraulic system to the clutch
  • the clutch can be controlled to disengage to avoid the clutch slippage caused by the low hydraulic pressure, so as to avoid the further deterioration of the failure, and to carry out targeted inspection and maintenance.
  • the hydraulic pressure of the hydraulic oil provided by the clutch hydraulic system to the clutch detected by the first pressure sensor can be displayed remotely, so that remote operation can be realized, thereby reducing operation difficulty and cost.
  • the prime mover includes one of a diesel engine, an electric motor, and a turbine engine.
  • the embodiments of the present disclosure include, but are not limited to, the prime mover may also be other powered machines.
  • FIG. 3 is a schematic diagram of another fracturing device provided by an embodiment of the present disclosure.
  • the fracturing equipment 100 includes two plunger pumps 110 and one prime mover 120 ; one prime mover 120 can drive two plunger pumps 110 at the same time.
  • the fracturing equipment 100 may include two clutches 130, two clutch hydraulic systems 140, and two first pressure sensors 151; the two first pressure sensors 151 are provided in a one-to-one correspondence with the two clutch hydraulic systems 140, Each of the first pressure sensors 151 is configured to detect the hydraulic pressure of the corresponding clutch hydraulic system 140 . Therefore, when the first pressure sensor detects that the hydraulic value of the hydraulic oil provided by any one of the two clutch hydraulic systems is less than the preset pressure value, the corresponding clutch can be controlled to disengage, thereby ensuring the normal operation of the other plunger pump. Work.
  • the clutch hydraulic system 140 includes an oil supply line 142 that is connected to the clutch 130 so as to provide hydraulic oil to the clutch 130 .
  • the first pressure sensor 151 may be disposed on the oil supply line 142 so as to better detect the hydraulic pressure of the clutch hydraulic system 140 .
  • the embodiments of the present disclosure include, but are not limited to, this, and the first pressure sensor may also be disposed at other suitable positions, as long as the hydraulic pressure of the clutch hydraulic system can be detected.
  • the oil supply line may be connected to the clutch through a swivel joint because the clutch is rotating in operation.
  • the embodiments of the present disclosure include but are not limited to this, and the oil supply pipeline may also be connected to the clutch in other ways.
  • the type of rotary joint can be selected according to the actual situation.
  • the fracturing apparatus 100 further includes a second pressure sensor 152; the hydraulic end 114 of the plunger pump 110 includes a fluid output end 1142, and the second pressure sensor 152 is configured to detect the fluid output Liquid pressure output at port 1142.
  • the fracturing equipment When the fracturing equipment performs the fracturing operation, the fracturing equipment needs to provide the fracturing fluid that meets the preset pressure value. Equipment transmission and high voltage components need to be protected. At this time, the fracturing equipment can quickly disengage the clutch to protect the equipment transmission and high-pressure components, thus playing a safety role.
  • the fracturing equipment can quickly disengage the clutch by controlling the hydraulic system of the clutch through the control system.
  • the embodiments of the present disclosure include, but are not limited to, the fracturing equipment.
  • the control system can stop the rotation of the motor, or stop the power supply of the motor, or Stop the output of the motor inverter for safety.
  • the fracturing apparatus 100 includes two plunger pumps 110 and one prime mover 120 ; one prime mover 120 can drive both plunger pumps 110 simultaneously.
  • the fracturing apparatus 100 may include two clutches 130 , two clutch hydraulic systems 140 , and two second pressure sensors 152 ; two second pressure sensors 152 and two liquid outputs of the two plunger pumps 110
  • the terminals 1142 are arranged in a one-to-one correspondence, and each second pressure sensor 151 is configured to detect the hydraulic pressure of the corresponding liquid output terminal 1142 . Therefore, when the second pressure sensor detects that the liquid pressure provided by any one of the two liquid output ends is greater than the safe pressure value, the clutch can be quickly disengaged to protect the equipment transmission and high-pressure components, thereby playing a safety role.
  • the fracturing apparatus 100 also includes a discharge manifold 160 that is connected to the liquid output 1142 .
  • the second pressure sensor 152 can be disposed on the liquid output end 1142 or the discharge manifold 160, so that the liquid pressure output by the liquid output end 1142 can be better detected.
  • the embodiments of the present disclosure include, but are not limited to, the second pressure sensor can also be set at other suitable positions, as long as the liquid pressure output from the liquid output end can be detected; for example, the second pressure sensor can be set at the pressure relief manifold superior.
  • the discharge manifold 160 of the fracturing apparatus 100 is only provided on the side of the plunger pump 110 away from the clutch 130; however, as shown in FIG. 2B, the fracturing apparatus 100 is also located in the plunger pump
  • An auxiliary manifold 161 is provided on the side of the 110 away from the discharge manifold 160 .
  • the second pressure sensor 152 may also be disposed on the auxiliary manifold 161, and the auxiliary manifold 161 may be configured to discharge high-pressure fluid, and may also be configured to discharge pressure.
  • the fracturing apparatus 100 further includes a first temperature sensor 171 configured to detect the temperature of the clutch 130 . Therefore, the fracturing equipment detects the temperature of the clutch through the first temperature sensor, and when the first temperature sensor detects that the temperature of the clutch is higher than the preset temperature value, the clutch can be controlled to disengage, so as to avoid the high temperature of the clutch. Various faults can be avoided, so that the further deterioration of the fault can be avoided, and targeted inspection and maintenance can be carried out.
  • the temperature of the clutch detected by the first temperature sensor can be displayed remotely, so that remote operation can be realized, thereby reducing operation difficulty and cost.
  • the first temperature sensor is configured to measure the temperature of the clutch, but the first temperature sensor is not necessarily installed on the clutch, because the clutch will rotate, and the stability of the first temperature sensor using a wired or wireless connection is easy to exist. Therefore, the first temperature sensor can adopt a non-contact temperature measurement method such as infrared temperature measurement.
  • the fracturing apparatus 100 also includes a second temperature sensor 172 configured to detect the temperature of the clutch hydraulic system 140 . Therefore, the fracturing equipment detects the temperature of the hydraulic oil in the clutch hydraulic system through the second temperature sensor, and when the second temperature sensor detects that the temperature of the hydraulic oil in the clutch hydraulic system is higher than the preset temperature value, the clutch can be controlled to release Open to avoid various failures caused by high clutch temperature, so as to avoid further deterioration of failures, and to conduct targeted inspections and maintenance.
  • a second temperature sensor 172 configured to detect the temperature of the clutch hydraulic system 140 . Therefore, the fracturing equipment detects the temperature of the hydraulic oil in the clutch hydraulic system through the second temperature sensor, and when the second temperature sensor detects that the temperature of the hydraulic oil in the clutch hydraulic system is higher than the preset temperature value, the clutch can be controlled to release Open to avoid various failures caused by high clutch temperature, so as to avoid further deterioration of failures, and to conduct targeted inspections and maintenance.
  • the fracturing apparatus 100 includes two plunger pumps 110 and one prime mover 120 ; one prime mover 120 can drive both plunger pumps 110 simultaneously.
  • the fracturing apparatus 100 may include two clutches 130 , two clutch hydraulic systems 140 , two first temperature sensors 171 and two second temperature sensors 172 ; two first temperature sensors 171 and two clutches 130 Set in one-to-one correspondence, each first temperature sensor 171 is configured to detect the temperature of the corresponding clutch 130; two second temperature sensors 172 are set in one-to-one correspondence with the two clutch hydraulic systems 140, and each second temperature sensor 172 is configured as The temperature of the corresponding clutch hydraulic system 140 is detected.
  • the corresponding clutch can be controlled to disengage, thereby It can guarantee the normal operation of another plunger pump.
  • the fracturing apparatus 100 further includes a first vibration sensor 181 configured to detect vibration of the plunger pump 110 ; the fracturing apparatus 100 further includes a column The plunger pump base 118 , the plunger pump 110 is disposed on the plunger pump base 118 , and the first vibration sensor 181 is located on the plunger pump 110 or the plunger pump base 118 .
  • the fracturing equipment detects the vibration of the plunger pump through the first vibration sensor.
  • the clutch can be controlled to disengage, and the input power of the plunger pump can be completely cut off, so that the Avoid further deterioration of failures, and can carry out targeted inspections and maintenance.
  • the first vibration sensor is located on the plunger pump (for example, the casing of the plunger pump) or the base of the plunger pump, the first vibration sensor and the plunger pump are rigidly connected at this time, and the first vibration sensor can better Indicates the vibration of the plunger pump.
  • the fracturing apparatus 100 includes two plunger pumps 110 and one prime mover 120 ; one prime mover 120 can drive both plunger pumps 110 simultaneously.
  • the fracturing apparatus 100 may include two clutches 130 , two clutch hydraulic systems 140 , and two first vibration sensors 181 . Therefore, when the first vibration sensor 181 detects that the vibration of any one of the two plunger pumps is greater than the preset vibration value, the corresponding clutch can be controlled to disengage, thereby ensuring the normal operation of the other plunger pump.
  • the fracturing apparatus 100 further includes a second vibration sensor 182 configured to detect vibrations of the prime mover 120
  • the fracturing apparatus 100 further includes the prime mover The base 128
  • the prime mover 120 is provided on the prime mover 128
  • the second vibration sensor 182 is provided on the prime mover 120 or the prime mover base 128 .
  • the fracturing equipment detects and detects the vibration of the prime mover through the first vibration sensor.
  • the clutch can be controlled to disengage, so as to avoid further deterioration of the fault, and targeted Carry out inspection and maintenance.
  • the second vibration sensor since the second vibration sensor is located on the prime mover (eg, the housing of the prime mover) or on the base of the prime mover, the second vibration sensor can better reflect the vibration of the prime mover.
  • the fracturing apparatus 100 further includes a first rotational speed sensor 191 and a second rotational speed sensor 192 ;
  • the first rotational speed sensor 191 is configured to detect the power input shaft of the plunger pump 110 The actual rotational speed of 1125 ;
  • the second rotational speed sensor 192 is configured to detect the actual rotational speed of the power take-off shaft 125 of the prime mover 120 .
  • the clutch can be controlled to disengage, so that the further deterioration of the failure can be avoided, and the inspection and maintenance can be carried out in a targeted manner.
  • the first rotational speed sensor 191 may be provided on the power input shaft 1125 of the plunger pump 110 , so that the space for fixing and protection is larger. It should be noted that if the speed sensor is arranged on the clutch or on or under the area, the risk of damage to the speed sensor is greater when the clutch is repaired or the clutch has oil leakage and other faults; and the clutch malfunction is very easy to shake. cause deviations in the detection data. However, in the fracturing device provided in this example, the first rotational speed sensor can be installed on the power input shaft of the plunger pump, and the first rotational speed sensor will not be affected due to clutch failure or clutch overhaul.
  • the fracturing apparatus 100 includes two plunger pumps 110 and one prime mover 120 ; one prime mover 120 can drive both plunger pumps 110 simultaneously.
  • the fracturing apparatus 100 may include two clutches 130 , two clutch hydraulic systems 140 , two first rotational speed sensors 191 and one second rotational speed sensor 192 . Therefore, when the rotational speed of any one of the two plunger pumps detected by the two first rotational speed sensors 191 does not match the rotational speed of the prime mover detected by the second rotational speed sensor 192, the corresponding clutch can be controlled to disengage, thereby It can guarantee the normal operation of another plunger pump.
  • the first pressure sensor, the second pressure At least three of the temperature sensor, the first vibration sensor, the second vibration sensor, the first rotational speed sensor and the second rotational speed sensor are used to evaluate the state of the clutch from different sides, so as to control the clutch disengagement when the clutch is abnormal open, so as to avoid the further deterioration of the fault, and carry out targeted inspection and maintenance.
  • FIG. 4 is a schematic diagram of another fracturing equipment provided by an embodiment of the present disclosure.
  • the fracturing apparatus 100 may further include a reduction box 210, and the reduction box 210 includes an input gear shaft 212; the input gear shaft 212 is directly connected with the first connecting portion 131 of the clutch 130, and the power input shaft 1125 is connected with the reduction box 210 is directly connected.
  • the reduction box 210 may include a planetary gear box 216 and a parallel shaft gear box 214 . At this time, the parallel shaft gear box 214 is connected to the above-mentioned input gear shaft 212 , and the power input shaft 1125 is directly connected to the planetary gear box 216 .
  • the clutch is connected to the power input shaft of the plunger pump.
  • the plunger pump itself is due to the crankshaft structure of the power input shaft and the instantaneous moment of liquid inlet and discharge of the plunger pump. Due to pressure fluctuations and other reasons, the vibration or jitter will be significantly higher than the vibration or jitter of the prime mover; the weight of the clutch itself is also large, and the inside of the clutch also includes a moving mechanism and a sealing structure, so the clutch and the power input shaft of the plunger pump are connected. Connections are prone to failure.
  • the power input shaft of the plunger pump needs to be directly connected to the clutch, and the plunger pump itself is usually equipped with a plunger pump reduction box, so the power input shaft of the plunger pump needs to pass through the plunger pump body and the plunger pump to decelerate
  • the power input shaft needs to form a hydraulic oil hole that runs through the power input shaft, and the larger length of the power input shaft will also lead to a long hydraulic oil hole that needs to be formed. , resulting in higher processing difficulty and cost.
  • the fracturing equipment provided in this example directly connects the first connecting portion of the clutch with the input gear shaft of the planetary gearbox, and the planetary gearbox is directly connected with the power input shaft, so that the power input of the clutch and the plunger pump is not required. shafts are connected.
  • the fracturing apparatus can reduce the failure rate of the clutch.
  • the power input shaft of the plunger pump does not need to be directly connected to the clutch, which can greatly reduce the length of the power input shaft of the plunger pump, thereby greatly reducing the processing difficulty of the power input shaft and the hydraulic oil hole in the power input shaft. and reduce costs.
  • the length of the power input shaft can be reduced from a length of more than 2 meters to a length of less than 0.8 meters, thereby greatly reducing the processing difficulty of the power input shaft and reducing the cost .
  • FIG. 5 is a schematic diagram of a fracturing system according to an embodiment of the present disclosure.
  • the fracturing system 300 includes the fracturing apparatus 100 provided by any one of the above examples.
  • the fracturing system 300 further includes a control system 230; the control system 230 includes a first control unit 231 and a first communication module 232; the control system 230 is electrically connected to the clutch 130; the control system 230 is connected to the first pressure sensor 151 and the second pressure sensor 152 , the first temperature sensor 171 , the second temperature sensor 172 , the first vibration sensor 181 , the second vibration sensor 182 , the first rotational speed sensor 191 and the second rotational speed sensor 192 are connected in communication.
  • the control system 230 may be based on the first pressure sensor 151 , the second pressure sensor 152 , the first temperature sensor 171 , the second temperature sensor 172 , the first vibration sensor 181 , the second vibration sensor 182 , the first rotational speed sensor 191 and the second rotational speed
  • the parameters fed back by the sensor 192 control the clutch 130 .
  • the control system can control the clutch to disengage, so as to avoid the clutch slipping phenomenon caused by the low hydraulic pressure, thereby Further deterioration of the failure can be avoided, and targeted inspection and maintenance can be carried out.
  • the control system can control according to the parameters fed back by other sensors, reference may be made to the description of the relevant sensor, and details are not repeated here.
  • control system 230 can be connected to each of the above-mentioned sensors in a wired manner, and can also be communicatively connected to each of the above-mentioned sensors in a wireless manner.
  • the fracturing system 300 further includes a remote control unit 250 ; the remote control unit 250 includes a second control module 251 , a second communication module 252 , an input module 253 and a display module 254 .
  • the remote control unit 250 can be communicatively connected to the first communication module 232 of the control system 230 through the second communication module 252 ; the second control module 251 is connected to the input module 253 and the display module 254 respectively.
  • the remote control unit 250 can receive the data of the control system 230 and display it on the display module 254 ; the user can also send control commands to the control system 230 through the remote control unit 250 through the input module 253 .
  • the fracturing system 300 further includes a power supply unit 240 that includes a transformer 242 .
  • the power supply unit 240 may be connected to the prime mover 120 to supply power to the prime mover 120 .
  • the power supply unit 240 can also be connected to the control system 230 to supply power to the control system 230 .
  • FIG. 6 is a schematic diagram of another fracturing system provided by an embodiment of the present disclosure.
  • the second communication module 252 can be integrated into the second control module 251, so that the integration degree of the remote control unit can be improved. Therefore, the second control module 251 can directly receive the data of the control system 230 and display it on the display module 254 ; the user can also send control commands to the control system 230 through the remote control unit 250 through the input module 253 .
  • At least one embodiment of the present disclosure also provides a control method of a fracturing apparatus.
  • the fracturing apparatus may be the fracturing apparatus provided by any one of the above examples.
  • the control method includes: detecting the hydraulic pressure of the clutch hydraulic system; and controlling the clutch to disengage if the detected hydraulic pressure of the clutch hydraulic system is lower than a first preset pressure value.
  • the clutch when the hydraulic value of the hydraulic oil provided by the clutch hydraulic system to the clutch is less than the first preset pressure value, the clutch is controlled to be disengaged, so that the clutch slippage caused by the low hydraulic pressure can be avoided phenomenon, so that the further deterioration of the failure can be avoided, and the inspection and maintenance can be carried out in a targeted manner.
  • the hydraulic pressure of the clutch hydraulic system that is, the hydraulic value of the hydraulic oil provided by the clutch hydraulic system to the clutch, can be detected by the above-mentioned first pressure sensor.
  • control method further includes: detecting the fluid pressure output by the plunger pump; and controlling the clutch to disengage when the detected fluid pressure output by the plunger pump is higher than a second preset pressure value. Therefore, if the liquid pressure output by the liquid output end of the plunger pump is higher than the second preset pressure value, there may be a problem with the clutch. At this time, the fracturing equipment can control the clutch to disengage, so that the fault can be detected and dealt with in time. It should be noted that, the above-mentioned second preset pressure value may be a safety pressure value.
  • the pressure of the liquid output by the plunger pump can be detected by the above-mentioned second pressure sensor.
  • control method further includes: detecting a temperature of the clutch; and controlling the clutch to disengage if the detected temperature of the clutch is higher than a first preset temperature value. Therefore, when the temperature of the clutch is higher than the preset temperature value, the clutch can be controlled to disengage, so that various faults caused by the high temperature of the clutch can be avoided, so as to avoid further deterioration of the fault, and targeted maintenance can be carried out. And maintenance.
  • the temperature of the clutch may be detected by the first temperature sensor.
  • control method further includes: detecting the temperature of the hydraulic oil in the clutch hydraulic system; and controlling the clutch to disengage if the detected temperature of the hydraulic oil in the clutch hydraulic system is higher than a second preset temperature value. Therefore, when the temperature of the hydraulic oil in the clutch hydraulic system is higher than the second preset temperature value, the clutch can be controlled to be disengaged, so that various faults caused by the high temperature of the clutch can be avoided, and further deterioration of the fault can be avoided, And can be targeted for repair and maintenance.
  • the temperature of the hydraulic oil in the clutch hydraulic system may be detected by a second temperature sensor.
  • control method further includes: detecting the vibration of the plunger pump; and if the detected vibration of the plunger pump is higher than a first preset vibration value, controlling the clutch to disengage.
  • a first preset vibration value controlling the clutch to disengage.
  • the vibration of the plunger pump can be detected by the above-described first vibration sensor.
  • control method further includes: detecting vibration of the prime mover; and controlling the clutch to disengage if the detected vibration of the prime mover is higher than a second preset vibration value.
  • the clutch fails, the transmission between the clutch and the prime mover will be abnormal, resulting in a high vibration value of the prime mover.
  • the control method can control the clutch to be disengaged, so as to avoid further deterioration of the fault, and to carry out targeted inspection and maintenance.
  • control method further includes: detecting the first actual rotational speed of the power input shaft of the plunger pump; detecting the second actual rotational speed of the power output shaft of the prime mover; calculating the ratio of the first actual rotational speed to the second actual rotational speed , if the ratio is smaller than the first preset ratio or greater than the second preset ratio, control the clutch to disengage. Therefore, when the ratio of the first actual speed of the power input shaft of the plunger pump to the second actual speed of the power output shaft of the prime mover is less than the first preset ratio or greater than the second preset ratio (ie, when they do not match), Then it can be judged that there is an abnormality in the clutch. At this time, the control method can control the clutch to be disengaged, so as to avoid further deterioration of the failure, and to carry out inspection and maintenance in a targeted manner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

一种压裂设备、压裂设备的控制方法和压裂系统。该压裂设备(100)包括柱塞泵(110)、原动机(120)、离合器(130)以及离合器液压系统(140);柱塞泵(110)包括动力端(112)和液力端(114),原动机(120)包括动力输出轴(125),离合器(130)包括第一连接部(131)、第二连接部(132)和位于第一连接部(131)和第二连接部(132)之间的离合部(133);柱塞泵(110)的动力端(112)包括动力输入轴(1125),第一连接部(131)与动力输入轴(1125)相连,第二连接部(132)与原动机(120)的动力输出轴(125)相连,离合器液压系统(140)被配置为向离合器(130)提供液压油。该压裂设备(100)还包括第一压力传感器(151),设置在离合器液压系统(140)中,并被配置为检测离合器液压系统(140)的液压。由此,该压裂设备可及时避免故障的进一步恶化,并可针对性地进行检修和维护。

Description

压裂设备及其控制方法、压裂系统
本申请要求于2021年04月20日递交的中国专利申请202110426356.1号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种压裂设备、压裂设备的控制方法、和压裂系统。
背景技术
在石油和天然气开采领域,压裂技术是利用高压的压裂液体,使油气层形成裂缝的一种方法。压裂技术通过使油气层产生裂缝,改善油气在地下的流动环境,从而可使油井产量增加,因此被广泛地应用在常规和非常规的油气开采、海上和陆地的油气资源的开发中。
柱塞泵是一种利用柱塞在缸体中往复运动来实现对液体进行增压的装置。柱塞泵具有额定压力高、结构紧凑、效率高等优点,因此被应用于压裂技术中。
发明内容
本公开实施例提供一种压裂设备、压裂设备的控制方法和压裂系统。该压裂设备在第一压力传感器检测到离合器液压系统给离合器提供的液压油的液压小于预设压力值时,可控制离合器脱开从而可避免由于液压较低而导致的离合器打滑现象,从而可避免故障的进一步恶化,并可针对性地进行检修和维护。
本公开至少一个实施例提供一种压裂设备,其包括:柱塞泵,包括动力端和液力端;原动机,包括动力输出轴;离合器,包括第一连接部、第二连接部和位于第一连接部和第二连接部之间的离合部;以及离合器液压系统,被配置为向所述离合器提供液压油,所述柱塞泵的动力端包括动力输入轴,所述第一连接部与所述动力输入轴相连,所述第二连接部与所述原动机的动力输出轴相连,所述压裂设备还包括第一压力传感器,并被配置为检测所述离合器液压系统的液压。
例如,在本公开一实施例提供的压裂设备中,该压裂设备还包括:第二压力传感器,所述柱塞泵的所述液力端包括液体输出端,所述第二压力传感器被 配置为检测所述液体输出端输出的液体压力。
例如,在本公开一实施例提供的压裂设备中,该压裂设备还包括:排出管汇,与所述液体输出端相连,所述第二压力传感器设置在所述液体输出端或者所述排出管汇上。
例如,在本公开一实施例提供的压裂设备中,所述压裂设备包括两个所述柱塞泵、一个所述原动机、两个所述离合器、两个所述离合器液压系统和两个所述第一压力传感器,两个所述第一压力传感器与两个所述离合器液压系统一一对应设置,第一压力传感器并被配置为检测对应的所述离合器液压系统的液压。
例如,在本公开一实施例提供的压裂设备中,该压裂设备还包括:第一温度传感器,被配置为检测所述离合器的温度。
例如,在本公开一实施例提供的压裂设备中,该压裂设备还包括:第二温度传感器,被配置为检测所述离合器液压系统中液压油的温度。
例如,在本公开一实施例提供的压裂设备中,该压裂设备还包括:第一振动传感器,被配置为检测所述柱塞泵的振动,所述压裂设备还包括柱塞泵底座,所述柱塞泵设置在所述柱塞泵上,所述第一振动传感器位于所述柱塞泵上或者所述柱塞泵底座上。
例如,在本公开一实施例提供的压裂设备中,该压裂设备还包括:第二振动传感器,被配置为检测所述原动机的振动,所述压裂设备还包括原动机底座,所述原动机设置在所述原动机底座上,所述第二振动传感器位于所述原动机上或者所述原动机底座上。
例如,在本公开一实施例提供的压裂设备中,该压裂设备还包括:第一转速传感器,被配置为检测所述柱塞泵的所述动力输入轴的实际转速;以及第二转速传感器,被配置为检测所述原动机的所述动力输出轴的实际转速。
例如,在本公开一实施例提供的压裂设备中,该压裂设备还包括:行星齿轮箱,包括输入齿轮轴;所述离合器的所述第一连接部与所述输入齿轮轴直接相连,所述动力输入轴与所述行星齿轮箱直接相连。
例如,在本公开一实施例提供的压裂设备中,该压裂设备还包括:所述原动机包括柴油发动机、电动机和涡轮发动机中的一种。
本公开至少一个实施例还提供一种压裂设备的控制方法,所述压裂设备包括上述任一项所述的压裂设备,所述控制方法包括:检测所述离合器液压系统 的液压;以及若检测到的所述离合器液压系统的液压低于第一预设压力值时,控制所述离合器脱开。
例如,本公开一实施例提供的压裂设备的控制方法还包括:检测所述柱塞泵输出的液体压力;以及若检测到的所述柱塞泵输出的液体压力高于第二预设压力值时,控制所述离合器脱开。
例如,本公开一实施例提供的压裂设备的控制方法还包括:检测所述离合器的温度;以及若检测到的所述离合器的温度高于第一预设温度值时,控制所述离合器脱开。
例如,本公开一实施例提供的压裂设备的控制方法还包括:检测所述离合器液压系统中液压油的温度;以及若检测到的所述离合器液压系统中液压油的温度高于第二预设温度值时,控制所述离合器脱开。
例如,本公开一实施例提供的压裂设备的控制方法还包括:检测所述柱塞泵的振动;以及若检测到的所述柱塞泵的振动高于第一预设振动值时,控制所述离合器脱开。
例如,本公开一实施例提供的压裂设备的控制方法还包括:检测所述原动机的振动;以及若检测到的所述原动机的振动高于第二预设振动值时,控制所述离合器脱开。
例如,本公开一实施例提供的压裂设备的控制方法还包括:检测所述柱塞泵的所述动力输入轴的第一实际转速;检测所述原动机的所述动力输出轴的第二实际转速;计算所述第一实际转速和所述第二实际转速的比值,若所述比值小于第一预设比值或者大于第二预设比值时,控制所述离合器脱开。
本公开至少一个实施例还提供一种压裂系统,其包括:上述任一项所述的压裂设备;控制系统,被配置为控制所述压裂设备中的离合器;以及远程控制单元,与所述控制系统通讯相连。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为一种压裂设备的示意图。
图2A为本公开一实施例提供的一种压裂设备的示意图;
图2B为本公开一实施例提供的另一种压裂设备的示意图;
图3为本公开一实施例提供的另一种压裂设备的示意图;
图4为本公开一实施例提供的另一种压裂设备的示意图;
图5为本公开一实施例提供的一种压裂系统的示意图;以及
图6为本公开一实施例提供的一种压裂系统的示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。
随着压裂设备的不断发展,压裂设备中的柱塞泵逐渐从由柴油机驱动转变为由电动机驱动或者涡轮发电机驱动,以满足更高的环保要求。同时,这样的压裂设备也具有功率大、施工成本低等优势。
图1为一种压裂设备的示意图。如图1所示,该压裂设备10包括柱塞泵11和电动机12;电动机12的动力输出轴通过离合器13与柱塞泵11的动力输入轴相连。由于需要频繁地接合或脱离,离合器13的损坏频率较高;另一方面,在压裂作业中又需要柱塞泵能够稳定地、持续地作业,因此对离合器的稳定性要求非常高。因此,如果该压裂设备的离合器在作业过程中一旦出现问题,并且无法及时进行判断和处理,这将会对压裂作业造成很大的经济损失。需要说明的是,图1所示的压裂设备可采用一机一泵(即一台电动机驱动一台柱塞泵)的模式,也可采用一机双泵(即一台电动机驱动两台柱塞泵)的模式。
另一方面,在压裂设备作业前或作业结束时需要检修人员进行检修评估, 检修人员根据经验进行故障检查和判断。然而,如上面所述,压裂设备对稳定性要求较高,并且属于高功率(单个柱塞泵的额定最大输出功率通常高于2000hp)和高压力(柱塞泵的额定压力通常不低于10000PSI)的施工作业设备(施工过程中通常压力最大值能够超过40mpa),作业过程中检修人员无法就近检查维修。因此,压裂设备一旦在作业过程中出现问题,将给压裂作业带来风险;并且,一旦压裂设备已经出现潜在故障,而检修人工又无法检测,那么将会给压裂作业带来较大的安全隐患。
对此,本公开实施例提供一种压裂设备、压裂设备的控制方法和压裂系统。该压裂设备包括柱塞泵、原动机、离合器以及离合器液压系统;柱塞泵包括动力端和液力端,原动机包括动力输出轴,离合器包括第一连接部、第二连接部和位于第一连接部和第二连接部之间的离合部;柱塞泵的动力端包括动力输入轴,第一连接部与所述动力输入轴相连,第二连接部与原动机的动力输出轴相连,离合器液压系统被配置为向离合器提供液压油。该压裂设备还包括第一压力传感器,设置在离合器液压系统中,并被配置为检测离合器液压系统的液压。由此,当第一压力传感器检测到离合器液压系统给离合器提供的液压油的压力小于预设压力值时,可控制离合器脱开从而可避免由于液体压力较低而导致的离合器打滑现象,从而可避免故障的进一步恶化,并可针对性地进行检修和维护。
下面,结合附图对本公开实施例提供的压裂设备进行详细的说明。
本公开一实施例提供一种压裂设备。图2A为本公开一实施例提供的一种压裂设备的示意图;图2B为本公开一实施例提供的另一种压裂设备的示意图。如图2A和图2B所示,该压裂设备100包括柱塞泵110、原动机120、离合器130以及离合器液压系统140;柱塞泵110包括动力端112和液力端114,原动机120包括动力输出轴125,离合器130包括第一连接部131、第二连接部132和位于第一连接部131和第二连接部132之间的离合部133;柱塞泵110的动力端112包括动力输入轴1125,第一连接部131与动力输入轴1125相连,第二连接部132与原动机120的动力输出轴125相连,离合器液压系统140被配置为向离合器130提供液压油。该压裂设备100还包括第一压力传感器151,被配置为检测离合器液压系统140的液压,即离合器液压系统140向离合器130提供的液压油的压力值。需要说明的是,本公开中的各种“压力”或者“压力值”为通过压力表或压力传感器获得的压强值。在压裂设备中,离合器液压系 统被配置为向离合器提供液压油,若离合器液压系统因为出现漏油等原因而导致液压油的压力不满足要求时,离合器会出现打滑现象;而如果不及时进行处理,可能会出现更严重的故障,进而会给压裂作业带来较大的安全隐患和较大的经济损失。然而,本公开实施例提供的压裂设备通过第一压力传感器检测到离合器液压系统给离合器提供的液压油的液压值,当第一压力传感器检测到离合器液压系统给离合器提供的液压油的液压值小于预设压力值时,可控制离合器脱开从而可避免由于液压较低而导致的离合器打滑现象,从而可避免故障的进一步恶化,并可针对性地进行检修和维护。另外,第一压力传感器检测到的离合器液压系统给离合器提供的液压油的液压可在远程进行显示,从而可实现远程操作,进而可降低操作难度和成本。
在一些示例中,原动机包括柴油发动机、电动机和涡轮发动机中的一种。当然,本公开实施例包括但不限于此,原动机还可为其他提供动力的机器。
图3为本公开一实施例提供的另一种压裂设备的示意图。如图3所示,该压裂设备100包括两个柱塞泵110和一个原动机120;一个原动机120可同时驱动两个柱塞泵110。此时,该压裂设备100可包括两个离合器130、两个离合器液压系统140、以及两个第一压力传感器151;两个第一压力传感器151与两个离合器液压系统140一一对应设置,各第一压力传感器151被配置为检测对应的离合器液压系统140的液压。由此,当第一压力传感器检测到两个离合器液压系统中任意一个提供的液压油的液压值小于预设压力值时,可控制对应的离合器脱开,从而可保障另一个柱塞泵的正常工作。
在一些示例中,如图2A所示,离合器液压系统140包括供油管路142,供油管路142与离合器130相连,从而可为离合器130提供液压油。此时,第一压力传感器151可设置在供油管路142上,从而可更好地检测离合器液压系统140的液压。当然,本公开实施例包括但不限于此,第一压力传感器也可设置在其他合适的位置,只要可以检测离合器液压系统的液压即可。
在一些示例中,由于离合器在工作状态是旋转的,因此,供油管路可通过旋转接头与离合器相连。当然,本公开实施例包括但不限于此,供油管路也可通过其他方式与离合器相连。另外,旋转接头的种类可根据实际情况进行选择。在一些示例中,如图2A所示,该压裂设备100还包括第二压力传感器152;柱塞泵110的液力端114包括液体输出端1142,第二压力传感器152被配置为检测液体输出端1142输出的液体压力。在压裂设备进行压裂作业时,需要压 裂设备提供满足预设压力值的压裂液,若柱塞泵110的液体输出端1142输出的液体压力大于安全压力值(例如,90Mpa),则需要保护设备传动和高压部件。此时,该压裂设备可快速脱开离合器,保护设备传动和高压部件,从而起到安全作用。
例如,当柱塞泵的液体输出端输出的液体压力大于安全压力值时,该压裂设备可通过控制系统控制离合器的液压系统来使得离合器快速脱开。当然,本公开实施例包括但不限于此,该压裂设备也可在柱塞泵的液体输出端输出的液体压力大于安全压力值时,通过控制系统停止电机转动、或停止电机的供电、或停止电机变频器的输出来起到安全作用。
在一些示例中,如图3所示,该压裂设备100包括两个柱塞泵110和一个原动机120;一个原动机120可同时驱动两个柱塞泵110。此时,该压裂设备100可包括两个离合器130、两个离合器液压系统140、以及两个第二压力传感器152;两个第二压力传感器152与两个柱塞泵110的两个液体输出端1142一一对应设置,各第二压力传感器151被配置为检测对应的液体输出端1142的液压。由此,当第二压力传感器检测到两个液体输出端中任意一个提供的液体压力大于安全压力值时,可快速脱开离合器,保护设备传动和高压部件,从而起到安全作用。
在一些示例中,如图2A所示,该压裂设备100还包括排出管汇160,排出管汇160与液体输出端1142相连。此时,第二压力传感器152可设置在液体输出端1142或者排出管汇160上,从而可更好地检测液体输出端1142输出的液体压力。当然,本公开实施例包括但不限于此,第二压力传感器也可设置其他合适的位置,只要可以检测液体输出端输出的液体压力即可;例如,第二压力传感器可设置在泄压管汇上。
例如,如图2A所示,该压裂设备100的排出管汇160仅设置在柱塞泵110远离离合器130的一侧;然而,如图2B所示,该压裂设备100也在柱塞泵110远离排出管汇160的一侧设置辅助管汇161。此时,第二压力传感器152也可设置在位于辅助管汇161上,辅助管汇161可被配置为排出高压流体,也可被配置为进行泄压。
在一些示例中,如图2A和图2B所示,该压裂设备100还包括第一温度传感器171,被配置为检测离合器130的温度。由此,该压裂设备通过第一温度传感器检测到离合器的温度,当第一温度传感器检测到离合器的温度高于预 设温度值时,可控制离合器脱开从而可避免由于离合器温度较高导致的各种故障,从而可避免故障的进一步恶化,并可针对性地进行检修和维护。另外,第一温度传感器检测到的离合器的温度可在远程进行显示,从而可实现远程操作,进而可降低操作难度和成本。需要说明的是,第一温度传感器被配置为测量离合器温度,但是第一温度传感器不一定装在离合器上,因为离合器会进行旋转,第一温度传感器采用接线或者无线的连接方式的稳定性容易存在问题,因此第一温度传感器可以采用红外测温等非接触式测温方式。
在一些示例中,如图2A和图2B所示,该压裂设备100还包括第二温度传感器172,第二温度传感器172被配置为检测离合器液压系统140的温度。由此,该压裂设备通过第二温度传感器检测到离合器液压系统中液压油的温度,当第二温度传感器检测到离合器液压系统中液压油的温度高于预设温度值时,可控制离合器脱开从而可避免由于离合器温度较高导致的各种故障,从而可避免故障的进一步恶化,并可针对性地进行检修和维护。
在一些示例中,如图3所示,该压裂设备100包括两个柱塞泵110和一个原动机120;一个原动机120可同时驱动两个柱塞泵110。此时,该压裂设备100可包括两个离合器130、两个离合器液压系统140、两个第一温度传感器171和两个第二温度传感器172;两个第一温度传感器171与两个离合器130一一对应设置,各第一温度传感器171被配置为检测对应的离合器130的温度;两个第二温度传感器172与两个离合器液压系统140一一对应设置,各第二温度传感器172被配置为检测对应的离合器液压系统140的温度。由此,当第一温度传感器检测到两个离合器中任意一个的温度出现异常或者第二温度传感器检测到两个离合器液压系统中任意一个的温度出现异常时,可控制对应的离合器脱开,从而可保障另一个柱塞泵的正常工作。
在一些示例中,如图2A和图2B所示,该压裂设备100还包括第一振动传感器181,第一振动传感器181被配置为检测柱塞泵110的振动;压裂设备100还包括柱塞泵底座118,柱塞泵110设置在柱塞泵底座118上,第一振动传感器181位于柱塞泵110上或者柱塞泵底座118上。在压裂设备作业时,当离合器发生故障时,离合器与柱塞泵之间的传动会出现异常,从而导致柱塞泵的振动值较高。本示例提供的压裂设备通过第一振动传感器检测检测柱塞泵的振动,当柱塞泵的振动大于预设振动值时,可控制离合器脱开,彻底切断柱塞泵的输入动力,从而可避免故障的进一步恶化,并可针对性地进行检修和维护。 另外,由于第一振动传感器位于柱塞泵(例如柱塞泵的壳体)上或者柱塞泵底座上,此时第一振动传感器与柱塞泵为刚性连接,第一振动传感器可更好地反应柱塞泵的振动情况。
在一些示例中,如图3所示,该压裂设备100包括两个柱塞泵110和一个原动机120;一个原动机120可同时驱动两个柱塞泵110。此时,该压裂设备100可包括两个离合器130、两个离合器液压系统140、以及两个第一振动传感器181。由此,当第一振动传感器181检测到两个柱塞泵中任意一个的振动大于预设振动值时,可控制对应的离合器脱开,从而可保障另一个柱塞泵的正常工作。
在一些示例中,如图2A和图2B所示,该压裂设备100还包括第二振动传感器182,第二振动传感器182被配置为检测原动机120的振动,压裂设备100还包括原动机底座128,原动机120设置在原动机128上,第二振动传感器182设置在原动机120或者原动机底座128上。在压裂设备作业时,当离合器发生故障时,离合器与原动机之间的传动会出现异常,从而导致原动机的振动值较高。本示例提供的压裂设备通过第而振动传感器检测检测原动机的振动,当原动机的振动大于预设振动值时,可控制离合器脱开,从而可避免故障的进一步恶化,并可针对性地进行检修和维护。另外,由于第二振动传感器位于原动机(例如原动机的壳体)上或者原动机底座上,第二振动传感器可更好地反应原动机的振动情况。
在一些示例中,如图2A和图2B所示,该压裂设备100还包括第一转速传感器191和第二转速传感器192;第一转速传感器191被配置为检测柱塞泵110的动力输入轴1125的实际转速;第二转速传感器192被配置为检测原动机120的动力输出轴125的实际转速。由此,当第一转速传感器191检测的实际转速与第二传感器192检测的实际转速不匹配,例如不符合传动比时,则可判断离合器存在异常。此时,可控制离合器脱开,从而可避免故障的进一步恶化,并可针对性地进行检修和维护。
在一些示例中,如图2A和图2B所示,第一转速传感器191可设置在柱塞泵110的动力输入轴1125上,从而可固定和保护的空间更大。需要说明的是,若将转速传感器设置在离合器上或其上、其下区域时,在检修离合器或者离合器发生漏油等故障时,转速传感器损坏的风险较大;并且,离合器的故障抖动极易造成检测数据的偏差。而本示例提供的压裂装置可将第一转速传感器 安装柱塞泵的动力输入轴上,不会因为离合器故障或离合器检修对第一转速传感器产生影响。
在一些示例中,如图3所示,该压裂设备100包括两个柱塞泵110和一个原动机120;一个原动机120可同时驱动两个柱塞泵110。此时,该压裂设备100可包括两个离合器130、两个离合器液压系统140、两个第一转速传感器191和一个第二转速传感器192。由此,当两个第一转速传感器191检测到的两个柱塞泵中任意一个的转速与第二转速传感器192检测到的原动机的转速不匹配时,可控制对应的离合器脱开,从而可保障另一个柱塞泵的正常工作。
值得注意的是,无论图2A和图2B所示的压裂设备,还是图3所示的压裂设备均可同时设置上的第一压力传感器、第二压力传感器、第一温度传感器、第二温度传感器、第一振动传感器、第二振动传感器、第一转速传感器和第二转速传感器中的至少三种,以从不同的侧面对离合器的状态进行评估,从而在离合器出现异常时可控制离合器脱开,从而可避免故障的进一步恶化,并可针对性地进行检修和维护。
图4为本公开一实施例提供的另一种压裂设备的示意图。如图4所示,该压裂设备100还可包括减速箱210,减速箱210包括输入齿轮轴212;输入齿轮轴212与离合器130的第一连接部131直接相连,动力输入轴1125与减速箱210直接相连。减速箱210可包括行星齿轮箱216和平行轴齿轮箱214,此时平行轴齿轮箱214与上述的输入齿轮轴212相连,动力输入轴1125与行星齿轮箱216直接相连。
在通常的压裂装置中,离合器与柱塞泵的动力输入轴相连,在压裂设备的作业过程中,柱塞泵本身因为动力输入轴的曲轴结构、柱塞泵进液和排液的瞬时压力波动等原因,其振动或抖动会明显高于原动机的振动或抖动;而离合器本身重量也较大,并且离合器内部还包括运动机构和密封结构,因此将离合器与柱塞泵的动力输入轴相连容易发生故障。另外,柱塞泵的动力输入轴需要与离合器直接相连,并且柱塞泵本身通常还会设置柱塞泵减速箱,因此柱塞泵的动力输入轴需要穿过柱塞泵本体和柱塞泵减速箱并与离合器相连,从而导致动力输入轴的长度较大;并且动力输入轴需要形成贯穿动力输入轴的液压油孔,动力输入轴的长度较大也会导致需要形成的液压油孔长度较长,从而造成较高的加工难度和成本。
然而,本示例提供的压裂设备将离合器的第一连接部与行星齿轮箱的输入 齿轮轴直接相连,而行星齿轮箱再与动力输入轴直接相连,因而不用将离合器与柱塞泵的动力输入轴相连。由此,该压裂设备可降低离合器的故障率。另一方面,柱塞泵的动力输入轴不用再与离合器直接相连,可大幅度降低柱塞泵的动力输入轴的长度,从而大幅减少动力输入轴和动力输入轴中液压油孔的加工难度,并降低成本。
例如,当柱塞泵为一种五缸柱塞泵时,动力输入轴的长度可从大于2米的长度降低至小于0.8米的长度,从而大大降低了动力输入轴的加工难度,并降低成本。
图5为本公开一实施例提供的一种压裂系统的示意图。该压裂系统300包括上述任意一个示例提供的压裂设备100。该压裂系统300还包括控制系统230;控制系统230包括第一控制单元231和第一通讯模块232;控制系统230与离合器130电连接;控制系统230与第一压力传感器151、第二压力传感器152、第一温度传感器171、第二温度传感器172、第一振动传感器181、第二振动传感器182、第一转速传感器191和第二转速传感器192通讯连接。控制系统230可根据第一压力传感器151、第二压力传感器152、第一温度传感器171、第二温度传感器172、第一振动传感器181、第二振动传感器182、第一转速传感器191和第二转速传感器192反馈的参数对离合器130进行控制。
例如,当第一压力传感器检测到离合器液压系统给离合器提供的液压油的液压值小于预设压力值时,控制系统可控制离合器脱开从而可避免由于液压较低而导致的离合器打滑现象,从而可避免故障的进一步恶化,并可针对性地进行检修和维护。关于控制系统根据其他传感器反馈的参数而进行控制的方法可参见相关传感器的说明,在此不再赘述。
需要说明的是,控制系统230可通过有线的方式与上述的各个传感器通讯连接,也可通过无线的方式与上述的各个传感器通讯连接。
在一些示例中,如图5所示,该压裂系统300还包括远程控制单元250;远程控制单元250包括第二控制模块251、第二通讯模块252、输入模块253和显示模块254。远程控制单元250可通过第二通讯模块252和控制系统230的第一通讯模块232通讯连接;第二控制模块251分别与输入模块253和显示模块254相连。由此,远程控制单元250可接收控制系统230的数据,并在显示模块254上显示;用户也可通过输入模块253通过远程控制单元250向控制系统230发出控制指令。
在一些示例中,如图5所示,该压裂系统300还包括供电单元240,供电单元240包括变压器242。当原动机120为电动机时,供电单元240可与原动机120相连,以为原动机120供电。另外,供电单元240也可与控制系统230相连,以为控制系统230供电。
图6为本公开一实施例提供的另一种压裂系统的示意图。如图6所示,在远程控制单元250中,第二通讯模块252可集成在第二控制模块251之中,从而可提高该远程控制单元的集成度。由此,第二控制模块251可直接接收控制系统230的数据,并在显示模块254上显示;用户也可通过输入模块253通过远程控制单元250向控制系统230发出控制指令。
本公开至少一个实施例还提供一种压裂设备的控制方法。该压裂设备可为上述任意一个示例所提供的压裂设备。此时,该控制方法包括:检测离合器液压系统的液压;以及若检测到的离合器液压系统的液压低于第一预设压力值时,控制离合器脱开。
在本公开实施例提供的控制方法中,当离合器液压系统给离合器提供的液压油的液压值小于第一预设压力值时,控制离合器脱开,从而可避免由于液压较低而导致的离合器打滑现象,从而可避免故障的进一步恶化,并可针对性地进行检修和维护。
例如,可通过上述的第一压力传感器检测离合器液压系统的液压,即离合器液压系统给离合器提供的液压油的液压值。
在一些示例中,该控制方法还包括:检测柱塞泵输出的液体压力;以及若检测到的柱塞泵输出的液体压力高于第二预设压力值时,控制离合器脱开。由此,若柱塞泵的液体输出端输出的液体压力高于第二预设压力值,则有可能是离合器出现问题。此时,该压裂设备可控制离合器脱开,从而可及时发现故障并对故障进行处理。需要说明的是,上述的第二预设压力值可为安全压力值。
例如,可通过上述的第二压力传感器来检测柱塞泵输出的液体压力。
在一些示例中,该控制方法还包括:检测离合器的温度;以及若检测到的离合器的温度高于第一预设温度值时,控制离合器脱开。由此,当离合器的温度高于预设温度值时,可控制离合器脱开,从而可避免由于离合器温度较高导致的各种故障,从而可避免故障的进一步恶化,并可针对性地进行检修和维护。
例如,可通过第一温度传感器来检测离合器的温度。
在一些示例中,该控制方法还包括:检测离合器液压系统中液压油的温度; 以及若检测到的离合器液压系统中液压油的温度高于第二预设温度值时,控制离合器脱开。由此,当离合器液压系统中液压油的温度高于第二预设温度值时,可控制离合器脱开,从而可避免由于离合器温度较高导致的各种故障,从而可避免故障的进一步恶化,并可针对性地进行检修和维护。
例如,可通过第二温度传感器来检测离合器液压系统中液压油的温度。
在一些示例中,该控制方法还包括:检测柱塞泵的振动;以及若检测到的柱塞泵的振动高于第一预设振动值时,控制离合器脱开。压裂设备作业时,当离合器发生故障时,离合器与柱塞泵之间的传动会出现异常,从而导致柱塞泵的振动值较高。当柱塞泵的振动大于第一预设振动值时,该控制方法可控制离合器脱开,彻底切断柱塞泵的输入动力,从而可避免故障的进一步恶化,并可针对性地进行检修和维护。
例如,可通过上述的第一振动传感器来检测柱塞泵的振动。
在一些示例中,该控制方法还包括:检测原动机的振动;以及若检测到的原动机的振动高于第二预设振动值时,控制离合器脱开。当离合器发生故障时,离合器与原动机之间的传动会出现异常,从而导致原动机的振动值较高。当原动机的振动大于第二预设振动值时,该控制方法可控制离合器脱开,从而可避免故障的进一步恶化,并可针对性地进行检修和维护。
在一些示例中,该控制方法还包括:检测柱塞泵的动力输入轴的第一实际转速;检测原动机的动力输出轴的第二实际转速;计算第一实际转速和第二实际转速的比值,若比值小于第一预设比值或者大于第二预设比值时,控制离合器脱开。由此,当柱塞泵的动力输入轴的第一实际转速和原动机的动力输出轴的第二实际转速比值小于第一预设比值或者大于第二预设比值时(即不匹配时),则可判断离合器存在异常。此时,该控制方法可控制离合器脱开,从而可避免故障的进一步恶化,并可针对性地进行检修和维护。
有以下几点需要说明:
(1)本公开实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开同一实施例及不同实施例中的特征可以相互组合。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化 或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (19)

  1. 一种压裂设备,包括:
    柱塞泵,包括动力端和液力端;
    原动机,包括动力输出轴;
    离合器,包括第一连接部、第二连接部和位于第一连接部和第二连接部之间的离合部;以及
    离合器液压系统,被配置为向所述离合器提供液压油,
    其中,所述柱塞泵的动力端包括动力输入轴,所述第一连接部与所述动力输入轴相连,所述第二连接部与所述原动机的动力输出轴相连,
    所述压裂设备还包括第一压力传感器,并被配置为检测所述离合器液压系统的液压。
  2. 根据权利要求1所述的压裂设备,还包括:
    第二压力传感器,
    其中,所述柱塞泵的所述液力端包括液体输出端,所述第二压力传感器被配置为检测所述液体输出端输出的液体压力。
  3. 根据权利要求2所述的压裂设备,还包括:
    排出管汇,与所述液体输出端相连,
    其中,所述第二压力传感器设置在所述液体输出端或者所述排出管汇上。
  4. 根据权利要求1-3中任一项所述的压裂设备,其中,所述压裂设备包括两个所述柱塞泵、一个所述原动机、两个所述离合器、两个所述离合器液压系统和两个所述第一压力传感器,
    两个所述第一压力传感器与两个所述离合器液压系统一一对应设置,第一压力传感器并被配置为检测对应的所述离合器液压系统的液压。
  5. 根据权利要求1-4中任一项所述的压裂设备,还包括:
    第一温度传感器,被配置为检测所述离合器的温度。
  6. 根据权利要求5所述的压裂设备,还包括:
    第二温度传感器,被配置为检测所述离合器液压系统中液压油的温度。
  7. 根据权利要求1-6中任一项所述的压裂设备,还包括:
    第一振动传感器,被配置为检测所述柱塞泵的振动,
    其中,所述压裂设备还包括柱塞泵底座,所述柱塞泵设置在所述柱塞泵上, 所述第一振动传感器位于所述柱塞泵上或者所述柱塞泵底座上。
  8. 根据权利要求1-7中任一项所述的压裂设备,还包括:
    第二振动传感器,被配置为检测所述原动机的振动,
    其中,所述压裂设备还包括原动机底座,所述原动机设置在所述原动机底座上,所述第二振动传感器位于所述原动机上或者所述原动机底座上。
  9. 根据权利要求1-8中任一项所述的压裂设备,还包括:
    第一转速传感器,被配置为检测所述柱塞泵的所述动力输入轴的实际转速;以及
    第二转速传感器,被配置为检测所述原动机的所述动力输出轴的实际转速。
  10. 根据权利要求1-9中任一项所述的压裂设备,还包括:
    行星齿轮箱,包括输入齿轮轴,
    其中,所述离合器的所述第一连接部与所述输入齿轮轴直接相连,所述动力输入轴与所述行星齿轮箱直接相连。
  11. 根据权利要求1-10中任一项所述的压裂设备,其中,所述原动机包括柴油发动机、电动机和涡轮发动机中的一种。
  12. 一种压裂设备的控制方法,所述压裂设备包括根据权利要求1-11中任一项所述的压裂设备,所述控制方法包括:
    检测所述离合器液压系统的液压;以及
    若检测到的所述离合器液压系统的液压低于第一预设压力值时,控制所述离合器脱开。
  13. 根据权利要求12所述的控制方法,还包括:
    检测所述柱塞泵输出的液体压力;以及
    若检测到的所述柱塞泵输出的液体压力高于第二预设压力值时,控制所述离合器脱开。
  14. 根据权利要求12所述的控制方法,还包括:
    检测所述离合器的温度;以及
    若检测到的所述离合器的温度高于第一预设温度值时,控制所述离合器脱开。
  15. 根据权利要求12-14中任一项所述的控制方法,还包括:
    检测所述离合器液压系统中液压油的温度;以及
    若检测到的所述离合器液压系统中液压油的温度高于第二预设温度值时,控制所述离合器脱开。
  16. 根据权利要求12-15中任一项所述的控制方法,还包括:
    检测所述柱塞泵的振动;以及
    若检测到的所述柱塞泵的振动高于第一预设振动值时,控制所述离合器脱开。
  17. 根据权利要求12-16中任一项所述的控制方法,还包括:
    检测所述原动机的振动;以及
    若检测到的所述原动机的振动高于第二预设振动值时,控制所述离合器脱开。
  18. 根据权利要求12-17中任一项所述的控制方法,还包括:
    检测所述柱塞泵的所述动力输入轴的第一实际转速;
    检测所述原动机的所述动力输出轴的第二实际转速;以及
    计算所述第一实际转速和所述第二实际转速的比值,若所述比值小于第一预设比值或者大于第二预设比值时,控制所述离合器脱开。
  19. 一种压裂系统,包括:
    根据权利要求1-11中任一项所述的压裂设备;
    控制系统,被配置为控制所述压裂设备中的离合器;以及
    远程控制单元,与所述控制系统通讯相连。
PCT/CN2021/139240 2019-06-13 2021-12-17 压裂设备及其控制方法、压裂系统 WO2022222518A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA3173695A CA3173695A1 (en) 2021-04-20 2021-12-17 Fracturing apparatus and control method thereof, fracturing system
US17/733,922 US11746636B2 (en) 2019-10-30 2022-04-29 Fracturing apparatus and control method thereof, fracturing system
US17/884,358 US11680474B2 (en) 2019-06-13 2022-08-09 Fracturing apparatus and control method thereof, fracturing system
US18/311,042 US20230279762A1 (en) 2019-06-13 2023-05-02 Fracturing apparatus and control method thereof, fracturing system
US18/360,678 US20240035363A1 (en) 2019-10-30 2023-07-27 Fracturing apparatus and control method thereof, fracturing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110426356.1 2021-04-20
CN202110426356.1A CN112983381A (zh) 2021-04-20 2021-04-20 压裂设备及其控制方法、压裂系统

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135860 Continuation-In-Part WO2022120823A1 (zh) 2019-06-13 2020-12-11 压裂设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/733,922 Continuation-In-Part US11746636B2 (en) 2019-06-13 2022-04-29 Fracturing apparatus and control method thereof, fracturing system

Publications (1)

Publication Number Publication Date
WO2022222518A1 true WO2022222518A1 (zh) 2022-10-27

Family

ID=76341358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/139240 WO2022222518A1 (zh) 2019-06-13 2021-12-17 压裂设备及其控制方法、压裂系统

Country Status (3)

Country Link
US (1) US20220333471A1 (zh)
CN (1) CN112983381A (zh)
WO (1) WO2022222518A1 (zh)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11624326B2 (en) 2017-05-21 2023-04-11 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
US11560845B2 (en) 2019-05-15 2023-01-24 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
US11680474B2 (en) 2019-06-13 2023-06-20 Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. Fracturing apparatus and control method thereof, fracturing system
CN112983381A (zh) * 2021-04-20 2021-06-18 烟台杰瑞石油装备技术有限公司 压裂设备及其控制方法、压裂系统
US11746636B2 (en) 2019-10-30 2023-09-05 Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. Fracturing apparatus and control method thereof, fracturing system
US10895202B1 (en) 2019-09-13 2021-01-19 Bj Energy Solutions, Llc Direct drive unit removal system and associated methods
CA3092865C (en) 2019-09-13 2023-07-04 Bj Energy Solutions, Llc Power sources and transmission networks for auxiliary equipment onboard hydraulic fracturing units and associated methods
US11015594B2 (en) 2019-09-13 2021-05-25 Bj Energy Solutions, Llc Systems and method for use of single mass flywheel alongside torsional vibration damper assembly for single acting reciprocating pump
US11002189B2 (en) 2019-09-13 2021-05-11 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
CA3092829C (en) 2019-09-13 2023-08-15 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
CA3092868A1 (en) 2019-09-13 2021-03-13 Bj Energy Solutions, Llc Turbine engine exhaust duct system and methods for noise dampening and attenuation
CA3197583A1 (en) 2019-09-13 2021-03-13 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
US10815764B1 (en) 2019-09-13 2020-10-27 Bj Energy Solutions, Llc Methods and systems for operating a fleet of pumps
US11604113B2 (en) 2019-09-13 2023-03-14 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
US11708829B2 (en) 2020-05-12 2023-07-25 Bj Energy Solutions, Llc Cover for fluid systems and related methods
US10968837B1 (en) 2020-05-14 2021-04-06 Bj Energy Solutions, Llc Systems and methods utilizing turbine compressor discharge for hydrostatic manifold purge
US11428165B2 (en) 2020-05-15 2022-08-30 Bj Energy Solutions, Llc Onboard heater of auxiliary systems using exhaust gases and associated methods
US11208880B2 (en) 2020-05-28 2021-12-28 Bj Energy Solutions, Llc Bi-fuel reciprocating engine to power direct drive turbine fracturing pumps onboard auxiliary systems and related methods
US11208953B1 (en) 2020-06-05 2021-12-28 Bj Energy Solutions, Llc Systems and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit
US11109508B1 (en) 2020-06-05 2021-08-31 Bj Energy Solutions, Llc Enclosure assembly for enhanced cooling of direct drive unit and related methods
US11111768B1 (en) 2020-06-09 2021-09-07 Bj Energy Solutions, Llc Drive equipment and methods for mobile fracturing transportation platforms
US10954770B1 (en) 2020-06-09 2021-03-23 Bj Energy Solutions, Llc Systems and methods for exchanging fracturing components of a hydraulic fracturing unit
US11066915B1 (en) 2020-06-09 2021-07-20 Bj Energy Solutions, Llc Methods for detection and mitigation of well screen out
US11933153B2 (en) 2020-06-22 2024-03-19 Bj Energy Solutions, Llc Systems and methods to operate hydraulic fracturing units using automatic flow rate and/or pressure control
US11028677B1 (en) 2020-06-22 2021-06-08 Bj Energy Solutions, Llc Stage profiles for operations of hydraulic systems and associated methods
US11125066B1 (en) 2020-06-22 2021-09-21 Bj Energy Solutions, Llc Systems and methods to operate a dual-shaft gas turbine engine for hydraulic fracturing
US11939853B2 (en) 2020-06-22 2024-03-26 Bj Energy Solutions, Llc Systems and methods providing a configurable staged rate increase function to operate hydraulic fracturing units
US11473413B2 (en) 2020-06-23 2022-10-18 Bj Energy Solutions, Llc Systems and methods to autonomously operate hydraulic fracturing units
US11466680B2 (en) 2020-06-23 2022-10-11 Bj Energy Solutions, Llc Systems and methods of utilization of a hydraulic fracturing unit profile to operate hydraulic fracturing units
US11220895B1 (en) 2020-06-24 2022-01-11 Bj Energy Solutions, Llc Automated diagnostics of electronic instrumentation in a system for fracturing a well and associated methods
US11149533B1 (en) 2020-06-24 2021-10-19 Bj Energy Solutions, Llc Systems to monitor, detect, and/or intervene relative to cavitation and pulsation events during a hydraulic fracturing operation
US11193360B1 (en) 2020-07-17 2021-12-07 Bj Energy Solutions, Llc Methods, systems, and devices to enhance fracturing fluid delivery to subsurface formations during high-pressure fracturing operations
US11639654B2 (en) 2021-05-24 2023-05-02 Bj Energy Solutions, Llc Hydraulic fracturing pumps to enhance flow of fracturing fluid into wellheads and related methods
WO2023015687A1 (zh) * 2021-08-12 2023-02-16 烟台杰瑞石油装备技术有限公司 压裂设备及其减振方法
CN114576129A (zh) * 2022-02-17 2022-06-03 烟台杰瑞石油装备技术有限公司 压裂设备

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202544830U (zh) * 2012-04-20 2012-11-21 河南易安能源科技有限公司 用于油田或煤层气开采的混砂车
CN202645914U (zh) * 2012-04-01 2013-01-02 河南易安能源科技有限公司 一种压裂柱塞泵泵组
CN205479153U (zh) * 2016-01-28 2016-08-17 烟台杰瑞石油装备技术有限公司 一种应用于压裂、固井设备中的减速驱动装置
CN106143468A (zh) * 2014-10-31 2016-11-23 现代自动车株式会社 用于控制具有离合器的汽油车辆中的真空泵的系统与方法
CN107237617A (zh) * 2017-07-27 2017-10-10 中石化石油工程机械有限公司第四机械厂 一种单机双泵结构的电驱压裂装备
CN107816341A (zh) * 2017-10-26 2018-03-20 宝鸡石油机械有限责任公司 一种液压驱动模块化泵压裂橇
CN109296733A (zh) * 2018-09-27 2019-02-01 湖北航天技术研究院总体设计所 一种汽车分动箱故障监测系统及方法
CN109578459A (zh) * 2018-12-25 2019-04-05 中石化四机石油机械有限公司 用于压裂装置的离合器及控制方法
US20200040878A1 (en) * 2018-08-06 2020-02-06 Typhon Technology Solutions, Llc Engagement and disengagement with external gear box style pumps
CN111502974A (zh) * 2020-05-28 2020-08-07 美国杰瑞国际有限公司 一种柱塞泵状态监测与故障诊断系统
CN112983381A (zh) * 2021-04-20 2021-06-18 烟台杰瑞石油装备技术有限公司 压裂设备及其控制方法、压裂系统
CN214741267U (zh) * 2021-04-20 2021-11-16 烟台杰瑞石油装备技术有限公司 压裂设备和压裂系统

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3794377A (en) * 1972-06-05 1974-02-26 E Wachsmuth Compressor enclosure
US3815965A (en) * 1972-10-10 1974-06-11 Smith & Co Inc Gordon Air compressor housings
US4201523A (en) * 1978-01-23 1980-05-06 Olofsson Bjorn O E Device for cooling and silencing of noise of a compressor or vacuum pump
IT1179810B (it) * 1984-10-31 1987-09-16 Aspera Spa Gruppo motocompressore ermetico per circuiti frigoriferi
US5846056A (en) * 1995-04-07 1998-12-08 Dhindsa; Jasbir S. Reciprocating pump system and method for operating same
JPH1193690A (ja) * 1997-09-24 1999-04-06 Sts Kk ガスタービン駆動動力装置
JP3551178B2 (ja) * 2001-09-10 2004-08-04 日産自動車株式会社 車両のクラッチ制御装置
JP4376589B2 (ja) * 2003-10-29 2009-12-02 日産自動車株式会社 四輪駆動車両
JP5452908B2 (ja) * 2008-11-28 2014-03-26 株式会社日立産機システム 無給油式スクリュー圧縮機
US8731793B2 (en) * 2010-12-29 2014-05-20 Caterpillar Inc. Clutch temperature estimation for a mobile machine
CN201953368U (zh) * 2011-03-07 2011-08-31 杜劼 煤矿井下压裂成套装置
US9140110B2 (en) * 2012-10-05 2015-09-22 Evolution Well Services, Llc Mobile, modular, electrically powered system for use in fracturing underground formations using liquid petroleum gas
US20140219824A1 (en) * 2013-02-06 2014-08-07 Baker Hughes Incorporated Pump system and method thereof
US20160041066A1 (en) * 2015-10-23 2016-02-11 Caterpillar Inc. Method for monitoring temperature of clutch assembly
KR101786704B1 (ko) * 2016-03-29 2017-10-18 현대자동차 주식회사 하이브리드 차량용 변속기를 동작시키는 eop의 제어방법
WO2018025891A1 (ja) * 2016-08-05 2018-02-08 日本電産トーソク株式会社 クラッチ制御装置
WO2018101912A1 (en) * 2016-11-29 2018-06-07 Halliburton Energy Services, Inc. Dual turbine direct drive pump
US10830029B2 (en) * 2017-05-11 2020-11-10 Mgb Oilfield Solutions, Llc Equipment, system and method for delivery of high pressure fluid
KR102406173B1 (ko) * 2017-05-22 2022-06-07 현대자동차주식회사 엔진 클러치 제어 장치 및 방법
US11401929B2 (en) * 2017-10-02 2022-08-02 Spm Oil & Gas Inc. System and method for monitoring operations of equipment by sensing deformity in equipment housing
JP6810015B2 (ja) * 2017-11-02 2021-01-06 株式会社神戸製鋼所 ガス供給装置
US20190195292A1 (en) * 2017-12-22 2019-06-27 Caterpillar Inc. Clutch Local Peak Temperature Real Time Predictor and Applications
US11448202B2 (en) * 2018-01-23 2022-09-20 Schlumberger Technology Corporation Automated control of hydraulic fracturing pumps
WO2019213041A1 (en) * 2018-05-01 2019-11-07 Cameron International Corporation Fluid pumping using electric linear motor
US20200325760A1 (en) * 2019-04-12 2020-10-15 The Modern Group, Ltd. Hydraulic fracturing pump system
US11313359B2 (en) * 2019-10-01 2022-04-26 St9 Gas And Oil, Llc Electric drive pump for well stimulation
CN111043023B (zh) * 2019-12-27 2021-08-17 橙色云互联网设计有限公司 一种压裂泵在线监测及故障诊断系统
US11109508B1 (en) * 2020-06-05 2021-08-31 Bj Energy Solutions, Llc Enclosure assembly for enhanced cooling of direct drive unit and related methods
US11208953B1 (en) * 2020-06-05 2021-12-28 Bj Energy Solutions, Llc Systems and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit
US11125066B1 (en) * 2020-06-22 2021-09-21 Bj Energy Solutions, Llc Systems and methods to operate a dual-shaft gas turbine engine for hydraulic fracturing
US11220895B1 (en) * 2020-06-24 2022-01-11 Bj Energy Solutions, Llc Automated diagnostics of electronic instrumentation in a system for fracturing a well and associated methods

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202645914U (zh) * 2012-04-01 2013-01-02 河南易安能源科技有限公司 一种压裂柱塞泵泵组
CN202544830U (zh) * 2012-04-20 2012-11-21 河南易安能源科技有限公司 用于油田或煤层气开采的混砂车
CN106143468A (zh) * 2014-10-31 2016-11-23 现代自动车株式会社 用于控制具有离合器的汽油车辆中的真空泵的系统与方法
CN205479153U (zh) * 2016-01-28 2016-08-17 烟台杰瑞石油装备技术有限公司 一种应用于压裂、固井设备中的减速驱动装置
CN107237617A (zh) * 2017-07-27 2017-10-10 中石化石油工程机械有限公司第四机械厂 一种单机双泵结构的电驱压裂装备
CN107816341A (zh) * 2017-10-26 2018-03-20 宝鸡石油机械有限责任公司 一种液压驱动模块化泵压裂橇
US20200040878A1 (en) * 2018-08-06 2020-02-06 Typhon Technology Solutions, Llc Engagement and disengagement with external gear box style pumps
CN109296733A (zh) * 2018-09-27 2019-02-01 湖北航天技术研究院总体设计所 一种汽车分动箱故障监测系统及方法
CN109578459A (zh) * 2018-12-25 2019-04-05 中石化四机石油机械有限公司 用于压裂装置的离合器及控制方法
CN111502974A (zh) * 2020-05-28 2020-08-07 美国杰瑞国际有限公司 一种柱塞泵状态监测与故障诊断系统
CN112983381A (zh) * 2021-04-20 2021-06-18 烟台杰瑞石油装备技术有限公司 压裂设备及其控制方法、压裂系统
CN214741267U (zh) * 2021-04-20 2021-11-16 烟台杰瑞石油装备技术有限公司 压裂设备和压裂系统

Also Published As

Publication number Publication date
CN112983381A (zh) 2021-06-18
US20220333471A1 (en) 2022-10-20

Similar Documents

Publication Publication Date Title
WO2022222518A1 (zh) 压裂设备及其控制方法、压裂系统
CN214741267U (zh) 压裂设备和压裂系统
US11168554B2 (en) Mobile fracturing pump transport for hydraulic fracturing of subsurface geological formations
CA3092824C (en) Methods and systems for operating a fleet of pumps
US11927087B2 (en) Artificial intelligence based hydraulic fracturing system monitoring and control
CA3123230C (en) Mobile fracturing pump transport for hydraulic fracturing of subsurface geological formations
JP6938670B2 (ja) 炭化水素流体配管システムの保護
CA3196262A1 (en) System and method for a frac system
JP2016109019A5 (zh)
US10378335B2 (en) Pressure testing of well servicing systems
US20170002745A1 (en) Control apparatus for angling guide vanes of a torque converter
CN104454748A (zh) 齿轮泵、溢流阀及单向阀可靠性的综合节能试验液压装置
CN103924947A (zh) 空心潜油电动机下置螺杆泵采油装置
JP2017525614A (ja) 掘削船における掘削設備の補助機器の制御とモニタリング装置及び方法
CN105156059A (zh) 一种具有远程监控功能的抽油机盘根自动旋紧装置
CN102955445B (zh) 用于石油钻井设备的电传控制系统
JP6510890B2 (ja) 給水装置、監視装置、及び、給水システム
RU2814707C1 (ru) Устройство для гидроразрыва пласта, способ управления таким устройством и система для гидроразрыва пласта
CN202012718U (zh) 稀油站
CA3173695A1 (en) Fracturing apparatus and control method thereof, fracturing system
CN206320093U (zh) 一种钻机液压绞车试验台
CN206111523U (zh) 双联液压泵试验台
WO2015112522A1 (en) Pump system with automated testing
CN104060593A (zh) 自升式钻井平台及其自动均载行星差动升降装置
CN205063925U (zh) 一种新型适合稠油开采的石油机械装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937740

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21937740

Country of ref document: EP

Kind code of ref document: A1