WO2022222477A1 - 偏置磁场可调的力平衡型定子永磁电机磁轴承 - Google Patents

偏置磁场可调的力平衡型定子永磁电机磁轴承 Download PDF

Info

Publication number
WO2022222477A1
WO2022222477A1 PCT/CN2021/133962 CN2021133962W WO2022222477A1 WO 2022222477 A1 WO2022222477 A1 WO 2022222477A1 CN 2021133962 W CN2021133962 W CN 2021133962W WO 2022222477 A1 WO2022222477 A1 WO 2022222477A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
magnetic
pole
electromagnetic
stator
Prior art date
Application number
PCT/CN2021/133962
Other languages
English (en)
French (fr)
Inventor
花为
张志恒
徐崎凡
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Priority to US17/771,495 priority Critical patent/US11909297B2/en
Publication of WO2022222477A1 publication Critical patent/WO2022222477A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/09Structural association with bearings with magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit
    • F16C32/0461Details of the magnetic circuit of stationary parts of the magnetic circuit
    • F16C32/0465Details of the magnetic circuit of stationary parts of the magnetic circuit with permanent magnets provided in the magnetic circuit of the electromagnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0493Active magnetic bearings for rotary movement integrated in an electrodynamic machine, e.g. self-bearing motor
    • F16C32/0497Active magnetic bearings for rotary movement integrated in an electrodynamic machine, e.g. self-bearing motor generating torque and radial force
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/17Stator cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N15/00Holding or levitation devices using magnetic attraction or repulsion, not otherwise provided for

Definitions

  • the invention discloses a force-balanced stator permanent magnet motor magnetic bearing with adjustable bias magnetic field, relates to related technologies in the field of electrical and mechanical transmission equipment, and belongs to the technical field of power generation, transformation or distribution.
  • Traditional stator permanent magnet motors include doubly salient permanent magnet motors, flux reversed permanent magnet motors, and flux switching permanent magnet motors.
  • the common feature is that the permanent magnets are all located in the stator, and there are neither permanent magnets nor windings on the rotor. There is a risk of centrifugal force crushing and high temperature demagnetization of the permanent magnets faced by conventional rotor permanent magnet motors.
  • the existing stator permanent magnet motors often use mechanical bearings, and the common problems of mechanical bearings, such as high noise, high cost, and easy fatigue failure, have also become problems often faced by stator permanent magnet motors.
  • the Chinese patent publication number CN111425523A discloses a hybrid radial permanent magnet bias magnetic bearing, which adopts the stator core of a traditional eight-pole motor as the main structure of the magnetic suspension bearing, and is provided with eight electromagnetically controlled magnetic poles and two permanent magnets.
  • the magnetic bias magnetic pole improves the static bearing capacity of the bearing and reduces the loss and volume, but the use effect of the bearing is easily affected by the installation angle and installation position. Specifically, it can only be installed vertically and is only suitable for horizontal motors.
  • the coupling degree between the permanent magnet bias magnetic circuit and the electromagnet magnetic circuit is relatively high. According to the principle of minimum reluctance, in practical application, the permanent magnet magnetic field is very easy to form a loop through the bias magnetic pole and the adjacent electromagnetic control magnetic pole, and there is an electromagnetic control magnetic pole. Risk of not being able to create adequate control.
  • Axial force is a technical problem often faced by centrifugal fans, centrifugal impellers and other equipment. It is closely related to equipment manufacturing quality, liquid viscosity, rotation direction, and installation method. Excessive axial force will cause axial movement of the equipment shaft. Cause bearing wear, motor rotor eccentricity and other problems, increase the maintenance difficulty and maintenance cost of the equipment, and reduce the service life and production efficiency.
  • the permanent magnet offset radial magnetic bearing uses permanent magnet materials to generate a bias magnetic field, thereby generating a bias force, reducing the bias current of the traditional active electric drive magnetic bearing, and has the advantages of non-contact, non-lubricating and non-wearing. Significant advantages, widely used in vacuum equipment manufacturing, compressors and other high-speed, vacuum fields.
  • the Chinese Patent Publication No. CN111927885A discloses a permanent magnetic offset axial magnetic bearing, the magnetic bearing includes a first magnetic bearing stator assembly and a second magnetic bearing stator assembly symmetrically arranged on both sides of the rotor to realize electromagnetic magnetic The separation of the magnetic flux from the permanent magnetic flux reduces the power consumption of the magnetic bearing and improves the dynamic response speed and control accuracy of the magnetic bearing.
  • the Chinese invention patents with application numbers 201410594571.2 and 201410462477.1 propose a rich stator permanent magnet motor topology, which greatly expands the application field of this type of motor, and also provides the industry with more abundant motor products.
  • the Chinese patent with the application number of 201910198690.9 discloses an axial force balance and sealing structure and a high power density centrifugal fan.
  • the patent integrates the axial force balance disc and the sealing structure, which reduces the mass attached to the output shaft , a three-layer sealing structure is designed, and the axial force generated by the pressure difference offsets part of the axial force generated by the impeller, but from the perspective of the way of realization, the structure is still a passive axial force balance measure, and the system structure is complex .
  • balance discs, wear plates, balance rings and other balance components are often used in industrial applications.
  • the medium pumped by the equipment will generate a pressure difference on both sides of the balance components, and the pressure difference is used to balance a part of the axial force. Weakening the adverse consequences caused by the axial force, but the use of the above balance components will increase the complexity and axial length of the entire system, and also face problems such as increased maintenance costs and reduced system performance due to wear of the balance components.
  • the existing axial force balance device, permanent magnet offset magnetic bearing, and stator permanent magnet motor are all designed and processed according to independent components, and assembled according to the required performance and design scheme, which leads to the compactness of each component. Not high, the volume after assembly is large. After the existing axial force balancing device is installed in the equipment, it is generally difficult to adjust according to the operating conditions and load changes of the equipment, which is not conducive to maximizing the use of the balancing potential of the axial force balancing device.
  • the purpose of the present invention is to address the shortcomings of the above-mentioned background technology, and propose a force-balanced stator permanent magnet motor magnetic bearing with adjustable bias magnetic field, so as to improve the compactness between the stator permanent magnet motor and the magnetic bearing, and solve the problem of traditional permanent magnet motor. After the offset magnetic bearing is installed, the number and strength of the permanent magnetic bias magnetic field cannot be adjusted, and the structure is not compact.
  • the present invention adopts following technical scheme for realizing above-mentioned purpose of invention:
  • a force-balanced stator permanent magnet motor magnetic bearing with adjustable bias magnetic field is composed of 4 permanent magnetic poles with adjustable bias magnetic field and 4 electromagnetic poles, and the 8 magnetic poles are evenly distributed at a distance of 45° from each other , concentric with the motor, and the lower end of the 8 magnetic poles presents a circular arc surface, leaving an air gap with the magnetic bearing rotor, the 4 electromagnetic poles are provided with electromagnetic pole winding coils, and the electromagnetic poles and bias magnetic poles work together to keep the magnetic bearing rotor. stable suspension.
  • the radial magnetic bearing is located at the inner side of the end of the stator winding coil, and also maintains a certain distance from the motor rotor from an axial view, and has the characteristics of compact structure.
  • the radial magnetic bearing is composed of a permanent magnet segment axially longer than the length of the stator core, a left-side magnetic conductive bridge of the permanent magnet, a right-side magnetic conductive bridge of the permanent magnet, a magnetic regulation segment, an electromagnetic pole stator, an electromagnetic pole and a permanent magnetic pole
  • a set of magnetic conductive bridges are arranged on both sides of the permanent magnet segment axially longer than the length of the stator core, and the lower part is respectively connected with the left magnetic pole of the permanent magnet and the right magnetic pole of the permanent magnet, and the left magnetic pole of the permanent magnet and the right magnetic pole of the permanent magnet are respectively connected Both are two-section structures.
  • the upper magnetic conductive section is connected to the left magnetic conductive bridge of the permanent magnet and the right magnetic conductive bridge of the permanent magnet.
  • a magnetic regulating section is arranged in the middle of the magnetic conducting section, which is made of magnetic conducting material.
  • the bias magnetic field is adjusted, and then the bias force is adjusted.
  • the connecting sections between the magnetic poles on both sides of the permanent magnet and the isolation plates between the electromagnetic poles and the permanent magnetic poles are provided, and materials with non-magnetic conductivity, low electrical conductivity, and certain strength and hardness are used.
  • On one side there are recesses of the isolation plate between the electromagnetic poles and the permanent magnetic poles, and projections of the isolation plates between the electromagnetic poles and the permanent magnetic poles. , the boss is embedded between the magnetically conductive segments.
  • On the side away from the magnetic conducting section there is a recess of the isolation plate between the electromagnetic pole and the permanent magnetic pole, and the stator boss of the electromagnetic pole can be embedded.
  • the connecting segments between the magnetic poles on both sides of the permanent magnet are embedded between the left magnetic pole of the permanent magnet and the right magnetic pole of the permanent magnet to form a stable "sandwich" structure.
  • a radial sensor 1 and a radial sensor 2 are arranged at the lower center position of the connecting section between the magnetic poles on both sides of the permanent magnet, and are distributed at a distance of 90° to measure the radial position of the magnetic bearing rotor.
  • an electromagnetic pole stator boss on one axial side of the electromagnetic pole stator, which can be embedded in a recess of the isolation plate between the electromagnetic pole and the permanent magnetic pole, and the electromagnetic pole is provided with an electromagnetic pole winding coil.
  • An axial force and bias force balance type stator permanent magnet motor axial magnetic bearing is an 8-pole structure, provided by 4 internally slotted electromagnetic poles to provide electromagnetic force, 4 internally slotted permanent magnets
  • the poles provide a permanent magnet biasing force.
  • the above-mentioned 8 magnetic poles are evenly distributed at a distance of 45° from each other, and the lower ends of the 8 magnetic poles present a circular arc surface, preferably made of silicon steel sheet and other materials with good magnetic conductivity and low electrical conductivity.
  • the length d1 of the air gap between the permanent magnet pole and the rear side of the thrust disk reinforcement is equal to the length d2 of the air gap between the permanent magnet pole and the front side of the thrust disk reinforcement, and the length w1 of the air gap between the permanent magnet pole and the rear side of the thrust disk and the length of the permanent magnetic pole
  • the air gap length w2 on the front side of the thrust disc is adjustable for adjusting the biasing force.
  • the length d3 of the air gap between the electromagnetic pole and the rear side of the thrust plate reinforcement is equal to the length d4 of the air gap between the electromagnetic pole and the front side of the thrust plate reinforcement
  • the length w3 of the air gap between the electromagnetic pole and the rear side of the thrust plate is equal to d1
  • the length of the air gap between the electromagnetic pole and the rear side of the thrust plate is equal to d1.
  • the air gap length w4 on the front side of the thrust disc is equal to d2.
  • d1 is much larger than w1, or d1 is much larger than w2, and the length h1 of the air gap between the permanent magnet magnetic pole and the rear side of the thrust disc is equal to d1.
  • thrust disc reinforcements on both sides of the thrust disc, which are used to fasten the thrust disc.
  • the outer diameter of the thrust disc is larger than the outer diameter of the thrust disc reinforcement, and the inner diameter is equal to the outer diameter of the motor shaft.
  • Manufactured from low-conductivity materials either as individual parts or as an integral part.
  • the magnetic adjustment member can change the size of the magnetic flux of the two permanent magnet poles, the air gap lengths w1 and w2 can adjust the size of the two branches of the permanent magnetic pole magnetic flux, and the size of the branch magnetic flux will determine the axial direction The biasing force of the magnetic bearing.
  • an electromagnetic pole and a permanent magnetic pole isolation plate is used to isolate the permanent magnetic pole magnetic flux and the electromagnetic pole magnetic flux, and reduce the coupling degree of the two magnetic fluxes.
  • the magnetic permeability of the magnetic regulating member and the volume of the embedded magnetic conductive segment are adjusted, and the relative distance between the thrust plate and the front permanent magnetic pole and the rear permanent magnetic pole is changed to obtain a set of bias force characteristic curves.
  • the working mode, load characteristics, rotation direction, and installation method of the equipment to the force calculate the axial force when the equipment is running, set the preferred magnetic permeability of the magnetic control element, the volume of the embedded magnetic conductive section, the thrust plate and the front side ( or rear side) the relative distance of the permanent magnet poles, using the permanent magnet poles to generate a bias force equal to and opposite to the axial force of the equipment, when the permanent magnet pole bias force is not enough to balance the axial force and the equipment is running dynamically
  • an electromagnetic force is generated by passing a current into the electromagnetic pole coil.
  • the electromagnetic force and the bias force of the permanent magnetic pole work together to balance the axial force.
  • the invention has the advantages of compact structure, high utilization degree of
  • the present invention has the following significant advantages:
  • the present invention designs a radial magnetic bearing of a stator permanent magnet motor with a compact structure and an adjustable bias magnetic field, which includes four permanent magnet segments whose axial direction is longer than the length of the stator iron core, a magnetic conduction bridge on the left side of the permanent magnet, a permanent magnet Magnetic bridge on the right side of the magnet, magnetic regulation section, electromagnetic pole stator, isolation plate between the electromagnetic pole and the permanent magnet pole, the connecting section between the magnetic poles on both sides of the permanent magnet, the left magnetic pole of the permanent magnet, the right magnetic pole of the permanent magnet, the electromagnetic pole, the electromagnetic pole Winding coil, radial sensor 1, radial sensor 2, permanent magnetic pole and 4 electromagnetic poles composed of magnetic bearing rotor.
  • the magnetic flux of the permanent magnetic pole is adjusted by the magnetic adjustment section, and the electromagnetic pole is adjusted by the current flowing into the winding coil of the electromagnetic pole. Adjustment; the concave and boss structures are reasonably set, the connection of each component is reliable and the structure is compact; the common path of the permanent magnet bias magnetic flux and the electromagnetic pole magnetic flux is only the magnetic bearing rotor, and the permanent magnet magnetic pole and the electromagnetic pole are connected by a permanent magnet.
  • the connecting section between the magnetic poles on both sides and the electromagnetic pole and the permanent magnetic pole isolation plate are isolated from each other, that is, the coupling degree of the permanent magnetic bias flux and the magnetic pole magnetic flux is low, which is beneficial to the control of the magnetic bearing, and realizes a compact structure and adjustable bias magnetic field. the goal of.
  • stator magnetic field of the stator permanent magnet motor is introduced into the magnetic suspension bearing, which has the characteristics of compact structure.
  • the axial magnetic bearing composed of the permanent magnetic pole and the stator magnetic pole is designed.
  • the volume of the embedded magnetically conductive segment and the relative distance (air gap length) between the thrust plate and the front permanent magnet pole and the rear permanent magnet pole are changed to obtain a set of bias force characteristic curves that can be consulted.
  • the magnetic pole isolation plate realizes the decoupling isolation of the permanent magnetic pole magnetic flux and the electromagnetic pole magnetic flux, so the present invention has the advantage of easy control.
  • FIG. 1A is a structural diagram of a force-balanced stator permanent magnet motor with adjustable bias magnetic field radial magnetic bearing installed on the stator permanent magnet motor in the first embodiment of the present invention
  • FIG. 1B is a front view of FIG. 1A
  • FIG. 1C is a diagram of FIG. Axial half and circumferential one-third cross-sectional view of 1A.
  • FIG. 2A is a structural diagram of a radial magnetic bearing in Embodiment 1 of the present invention
  • FIG. 2B is a front view of FIG. 2A
  • FIG. 2C is a side view of FIG. 2A
  • FIG. 2D is an exploded view of each component of FIG. 2A .
  • FIG. 3A is a schematic diagram of a permanent magnet bias magnetic flux and an electromagnetic pole magnetic flux in a specific embodiment of the present invention
  • FIG. 3B is a front view of FIG. 3A .
  • FIG. 4A is a structural diagram of a force-balanced stator permanent magnet motor with adjustable bias magnetic field axial magnetic bearing mounted on the stator permanent magnet motor according to the second embodiment of the present invention
  • FIG. 4B is a front view of FIG. 4A .
  • FIG. 5 is an exploded view of each component of the axial magnetic bearing in the second embodiment of the present invention.
  • FIG. 6 is a partial cross-sectional view and a partial enlarged view of the axial magnetic bearing in the second embodiment of the present invention.
  • FIGS. 7A and 7C are a front view and a side view of the magnetic flux of the permanent magnet bias magnetic pole, respectively.
  • FIGS. 8A and 8C are a front view and a cross-sectional view of the magnetic flux of the electromagnetic pole, respectively.
  • FIG. 9 is a diagram showing the relationship between the biasing force and the distance d obtained in the second embodiment of the present invention.
  • Magnetic regulation section, 9 Radial electromagnetic pole stator, 9a, electromagnetic pole stator boss, 10, electromagnetic pole and permanent magnetic pole isolation plate, 10a, 10c, 10d are electromagnetic pole and permanent magnetic pole isolation plate depression, 10b, electromagnetic pole and permanent magnetic pole Isolation plate boss, 11.
  • the radial electromagnetic pole, 1401 and 1402 is radial electromagnetic pole, 15, radial electromagnetic pole winding coil, 1501 and 1502 are radial electromagnetic pole winding coil, 16, radial sensor one, 17, radial sensor two, 18, radial magnetic bearing rotor, 19, Motor shaft, 20, Axial electromagnetic pole stator, 21, Axial electromagnetic pole and permanent magnet pole isolation plate, 22a, Axial rear side permanent magnet on both sides of the magnetic pole connecting piece, 22b, Axial front side permanent magnet on both sides of the magnetic pole Interconnecting piece, 23, slotted pole on the left side of permanent magnet, 24, slotted pole on the right side of permanent magnet, 23a and 24a, magnetically conductive segment, 25, axial sensor one, 26, axial sensor two, 27, axial Electromagnetic pole winding coil, 28, axial electromagnet pole, 28a and 28b are axial rear side electromagnetic pole and axial front side
  • an x-y-z reference coordinate system is established without loss of generality, and the origin is o, wherein the x-y plane is parallel to the end surface (ie, the bottom surface of the cylinder) showing the cylindrical motor, and the radial direction in the x-y plane is the diameter.
  • Each end face circle is the circumferential direction, and z is the axial direction; at the same time, the radially outward side of the component is defined as "outside”, the radially inward side of the component is defined as "inside”, and the component along the radial direction is defined as "inside”.
  • the side facing the positive axial direction is defined as the "front side”, and the side of the component along the negative axial direction is defined as the “rear side”; defined by the reader's “left side” and “right side” when facing the x-y plane The “left side” and “right side” of the part.
  • Specific embodiment 1 radial magnetic bearing of force-balanced stator permanent magnet motor with adjustable bias magnetic field
  • the force-balanced stator permanent magnet motor radial magnetic bearing with adjustable bias magnetic field is installed on the stator permanent magnet motor.
  • the stator core 2, the permanent magnet 3 whose axial length is longer than the stator core length, the permanent magnet 4 whose axial length is equal to the length of the stator core, the motor rotor 5, and the motor shaft 19 belong to the components of the stator permanent magnet motor, except for the axial length
  • the size, material and structure of the permanent magnet 3 longer than the length of the stator iron core and other components are known to those skilled in the art.
  • the stator iron cores 2 are evenly arranged along the circumferential direction of the motor, and a permanent magnet 3 whose axial length is longer than that of the stator iron core or a permanent magnet 4 whose axial length is equal to the length of the stator iron core is embedded between two adjacent stator iron cores 2 , each stator core 2 is wound with a coil, and the coils wound on each stator core pass through the motor slot to form the stator winding coil end 1, and the motor rotor 5 is assembled on the motor shaft 19 by means of interference or keyway,
  • the annular stator structure composed of stator iron core and permanent magnet is assembled outside the electronic rotor.
  • the stator permanent magnet motor has a total of 12 stator permanent magnets, which are evenly distributed at a distance of 30°.
  • the material can be ferrite, NdFeB, Samarium Cobalt and other existing magnetic materials.
  • One or more of the magnetization direction (also called magnetization direction, polarization direction) is the tangential direction, and the magnetization directions of two adjacent stator permanent magnets are opposite, including 4 permanent magnets whose axial length is longer than that of the stator core.
  • Magnet 3 and 8 permanent magnets 4 whose axial length is equal to the length of the stator iron core.
  • the axial length of the permanent magnet 3 whose axial length is longer than that of the stator iron core is longer than that of the stator iron core 2.
  • the permanent magnet segment whose axial length is longer than the length of the stator core, the left magnetic bridge 6 of the permanent magnet, the right magnetic bridge 7 of the permanent magnet, the magnetic regulation segment 8, the radial electromagnetic pole stator 9, the electromagnetic pole is isolated from the permanent magnetic pole Plate 10, connecting section 11 between magnetic poles on both sides of permanent magnet, left magnetic pole 12 of permanent magnet, right magnetic pole 13 of permanent magnet, radial electromagnetic pole 14, radial electromagnetic pole winding coil 15, radial sensor one 16, radial sensor 2 17.
  • Radial Magnetic Bearing The rotor 18 belongs to the radial magnetic bearing. The radial magnetic bearing is located on the inner side of the coil end 1 of the stator winding, and maintains a certain distance from the motor rotor 5 in the axial direction.
  • the radial magnetic bearing has a permanent magnet segment 301 whose axial length is longer than that of the stator core, a permanent magnet segment 302 whose axial length is longer than that of the stator core, and a permanent magnet segment 302 whose axial length is longer than that of the stator core.
  • the permanent magnet segment 303 longer than the length of the stator iron core and the permanent magnet segment 304 whose axial length is longer than the length of the stator iron core are respectively provided with a set of magnetic conductive bridges, which are the left magnetic conductive bridge 6 of the permanent magnet and the right side of the permanent magnet respectively.
  • the axial lengths of the above components are the same.
  • the lower part of the left magnetic conducting bridge 6 of the permanent magnet and the right magnetic conducting bridge 7 of the permanent magnet are respectively connected with the left magnetic pole 12 of the permanent magnet and the right magnetic pole 13 of the permanent magnet.
  • the left magnetic conductive bridge 6 of the magnet, the right magnetic conductive bridge 7 of the permanent magnet, the left magnetic pole 12 of the permanent magnet and the right magnetic pole 13 of the permanent magnet are all made of materials with good magnetic permeability.
  • the left magnetic pole 12 of the permanent magnet and the right magnetic pole 13 of the permanent magnet are both two-segment structures, wherein the upper ends of the left magnetic pole 12 of the permanent magnet and the right magnetic pole 13 of the permanent magnet are the magnetic conducting segments 12a and 13a respectively, which are the same as the left side of the permanent magnet.
  • the magnetic conductive bridge 6 is connected to the magnetic conductive bridge 7 on the right side of the permanent magnet.
  • a magnetic regulation section 8 is arranged between the magnetic conductive section 12a and the magnetic conductive section 13a.
  • the magnetic regulation section 8 is preferably made of magnetic conductive material.
  • the connecting sections 11 between the magnetic poles on both sides of the permanent magnet and the electromagnetic poles and the permanent magnetic pole isolation plate 10 are integral, and are preferably made of materials with non-magnetic conductivity, low electrical conductivity, and certain strength and hardness.
  • the electromagnetic pole and permanent magnetic pole isolation plate 10 is provided with electromagnetic pole and permanent magnetic pole isolation plate recess 10a, electromagnetic pole and permanent magnetic pole isolation plate recess 10c, and electromagnetic pole and permanent magnet Magnetic pole isolation plate boss 10b, electromagnetic pole and permanent magnetic pole isolation plate depression 10a, electromagnetic pole and permanent magnet magnetic pole isolation plate depression 10c and magnetic conducting sections 12a and 13a have the same width and depth, and the electromagnetic pole and permanent magnetic pole isolation plate boss
  • the radian distance of 10b in the circumferential direction is equal to the distance between the magnetically conductive segments 12a and 13a, and the magnetically conductive segments 12a and 13a are respectively embedded in the recesses of the recessed electromagnetic pole and the permanent magnetic pole separator plate 10a, the electromagnetic pole and the permanent magnet magnetic pole separator plate recess
  • each pair of magnetically conductive segment mounting structures forms annular electromagnetic poles and permanent magnetic pole isolation plates 10, and each pair of magnetically conductive segment mounting structures is provided with a connecting section 11 between the magnetic poles on both sides of the permanent magnet on the axial rear side.
  • the connecting sections 11 between the magnetic poles on both sides of the permanent magnet can be integrally formed with the electromagnetic poles and the permanent magnet magnetic pole isolation plate 10, and the connecting sections 11 between the magnetic poles on both sides of the two permanent magnets are an arc-shaped T-shaped permanent magnet. Between the connecting sections 11 between the magnetic poles on both sides of the permanent magnet, there are electromagnetic poles and permanent magnetic pole isolation plate recesses 10d, and the electromagnetic pole stator bosses 9a can be embedded in the permanent magnet magnetic pole isolation plate recesses 10d.
  • a radial sensor 1 16 and a radial sensor 2 17 are arranged, and the radial sensor 1 16 and the radial sensor 2 17 are separated from each other by 90° , which is an existing technology or an existing product, used to measure the radial position of the radial magnetic bearing rotor 18 .
  • the radial electromagnetic pole stator 9 and the radial electromagnetic pole 14 are integral, and are made of materials with good magnetic conductivity. There are 4 radial electromagnetic poles 14 arranged symmetrically at a distance of 90° from each other.
  • the radial electromagnetic pole stator 9 There is an electromagnetic pole stator boss 9a on the axial front side of the electromagnetic pole, and the electromagnetic pole stator boss 9a can be embedded in the electromagnetic pole and the permanent magnet magnetic pole isolation plate recess 10d.
  • the radial electromagnetic poles 14 are each wound with radial electromagnetic pole winding coils 15 . It can be seen that the four radial electromagnetic poles 14 constitute a radial magnetic bearing electromagnetic pole with a compact structure and adjustable bias magnetic field.
  • the magnetic segment 8, the connecting segment 11 between the magnetic poles on both sides of the permanent magnet, the left magnetic pole 12 of the permanent magnet, and the right magnetic pole 13 of the permanent magnet constitute a radially biased magnetic pole.
  • the radially biased magnetic pole has an 8-pole structure, and the 8 magnetic poles are separated from each other. 45° evenly distributed, concentric with the motor, and the lower ends of the 8 magnetic poles present a circular arc surface, leaving an air gap with the radial magnetic bearing rotor 18.
  • the permanent magnetic bias magnetic flux l1 sequentially passes through the permanent magnet segment 301 whose axial length is longer than that of the stator iron core, the right magnetic bridge 7 of the permanent magnet, and the magnetic conductive segment 13a, the magnetic regulation section 8, the magnetic conductive section 12a, and the magnetic conductive bridge 6 on the left side of the permanent magnet.
  • the magnetic flux is essentially a short-circuit magnetic flux and will not generate a biasing force; the permanent magnetic bias magnetic flux l2 passes through in turn
  • the permanent magnet segment 301 whose axial length is longer than the length of the stator core, the right magnetic bridge 7 of the permanent magnet, the magnetic conductive segment 13 a, the right magnetic pole 13 of the permanent magnet, the right magnetic pole 13 of the permanent magnet and the radial magnetic bearing rotor 18
  • the air gap, the radial magnetic bearing rotor 18, the air gap between the left magnetic pole 12 of the permanent magnet and the magnetic bearing rotor 18, the magnetic conducting segment 12a, and the left magnetic conducting bridge 6 of the permanent magnet the magnetic flux can generate a biasing force, so
  • the magnitude of the permanent magnet bias flux l1 and the permanent magnet bias flux l2 can be adjusted, thereby realizing the adjustment of the magnitude of the bias force.
  • the bias force generated by the permanent magnet segment 301 whose axial length is longer than that of the stator core is along the positive direction of the Y-axis.
  • the radial magnetic bearing rotor 18 is disturbed and moves in the negative direction of the Y-axis, the left magnetic pole 12 of the permanent magnet
  • the air gap with the radial magnetic bearing rotor 18 and the air gap between the right magnetic pole 13 of the permanent magnet and the radial magnetic bearing rotor 18 are increased.
  • the electromagnetic pole winding coil 1501 and the radial electromagnetic pole winding coil 1502 pass currents in opposite directions.
  • the radial electromagnetic pole 1401 and the radial electromagnetic pole 1402 will jointly generate the electromagnetic pole magnetic flux l3, and the electromagnetic pole magnetic flux l3 produces the
  • the electromagnetic force will also be forward and reversed along the Y axis, and the electromagnetic force and the bias force will work together.
  • the analysis of bias force and electromagnetic force in other directions is similar to the above process, so the above-mentioned compact structure can overcome external disturbances, keep the magnetic bearing rotor 18 in the set position, and realize the stable suspension of the radial magnetic bearing rotor 18 .
  • Specific embodiment 2 axial magnetic bearing of force-balanced stator permanent magnet motor with adjustable bias magnetic field
  • the axial magnetic bearing of the force-balanced stator permanent magnet motor with adjustable bias magnetic field is installed on the stator permanent magnet motor.
  • the stator core 2, the permanent magnet 3 whose axial length is longer than the stator core length, the permanent magnet 4 whose axial length is equal to the length of the stator core, the motor rotor 5, and the motor shaft 19 belong to the basic components of the stator permanent magnet motor, except for the axial
  • the dimensions, materials and structures of other components are all known to those skilled in the art.
  • the structure of the stator permanent magnet motor is the same as that of the first implementation, which will not be repeated here.
  • the difference from the first embodiment is: the permanent magnet segment whose axial length is longer than the length of the stator iron core, the left magnetic conductive member 6 of the permanent magnet, the right magnetic conductive member 7 of the permanent magnet, the magnetic adjustment segment 8, and the axial electromagnetic pole stator 20 , electromagnetic pole and permanent magnet pole isolation plate 10, slotted connection section between the magnetic poles on both sides of the permanent magnet, slotted pole on the left side of the permanent magnet 23, slotted pole on the right side of the permanent magnet 24, axial sensor one 25, axial sensor two 26.
  • Axial electromagnetic pole winding coil 27, axial electromagnetic pole 28, thrust disc reinforcement 29, and thrust disc 30 belong to axial magnetic bearings. See and keep a certain distance from the motor rotor 5, the exploded view of the above components is shown in Figure 5.
  • the axial magnetic bearing is provided with a set of magnetic conductive members on both sides of the permanent magnet segment 301 whose axial length is longer than that of the stator core, which are the magnetic conductive member 6 on the left side of the permanent magnet and the magnetic conductive member on the right side of the permanent magnet. 7, the axial lengths of the above-mentioned components are the same.
  • the lower part of the left magnetic conductive part 6 of the permanent magnet and the right magnetic conductive part 7 of the permanent magnet are respectively connected with the left slotted magnetic pole 23 of the permanent magnet and the right slotted magnetic pole 24 of the permanent magnet, all of which are made of materials with good magnetic permeability. .
  • the slotted magnetic pole 23 on the left side of the permanent magnet and the slotted magnetic pole 24 on the right side of the permanent magnet are both two-section structures, the upper ends are respectively the magnetically conductive segment 23a and the magnetically conductive segment 24a, the magnetically conductive segment 23a and the magnetically conductive segment 24a and the left side of the permanent magnet.
  • the magnetic conductive bridge 6 is connected with the magnetic conductive bridge 7 on the right side of the permanent magnet, and the lower end has a groove structure in which the thrust plate 30 is embedded.
  • a magnetic regulating segment 8 is arranged in the middle of the magnetic conductive segments 23a and 24a, preferably made of magnetic conductive material.
  • the bias of the permanent magnet magnetic pole can be adjusted. magnetic field.
  • the slotted connection section between the magnetic poles on both sides of the permanent magnet and the electromagnetic pole and the permanent magnetic pole isolation plate 10 are an integral part, preferably made of non-magnetically conductive, low electrical conductivity and having a certain strength and hardness.
  • the magnetic pole isolation plate 10 is provided with an electromagnetic pole and a permanent magnetic pole isolation plate recess 10a, an electromagnetic pole and a permanent magnet magnetic pole isolation plate recess 10c, and an electromagnetic pole and a permanent magnet magnetic pole isolation plate boss on the side close to the magnetic conducting sections 23a and 24a. 10b.
  • the electromagnetic pole and permanent magnetic pole separator plate recess 10a, the electromagnetic pole and permanent magnet magnetic pole separator plate recess 10c and the magnetic conducting sections 23a and 24a have the same width and depth, and the electromagnetic pole and permanent magnet magnetic pole separator plate boss 10b are in the circumferential direction.
  • the radian distance is equal to the distance between the magnetically conductive segments 23a and 24a, and the two sides of a permanent magnet composed of the connecting pieces 22b between the magnetic poles on both sides of the permanent magnet on the axial front side and the connecting pieces 22a on both sides of the permanent magnet on the rear side of the axial direction.
  • the slotted connection section between the magnetic poles, the electromagnetic pole and the permanent magnetic pole isolation plate recess 10a, the electromagnetic pole and the permanent magnetic pole isolation plate recess 10c, and the electromagnetic pole and the permanent magnetic pole isolation plate boss 10b pass through the two sides of the permanent magnet on the axial front side.
  • the above-mentioned components and the preferred concave and boss structures can realize reliable connection between the components.
  • the axial rear permanent magnet poles 23b, 24b and the thrust disk 30 constitute a closed path of the permanent magnetic flux
  • the axial front permanent magnet poles 23c, 24c and the thrust disk 30 constitute the permanent magnetic flux. closed path.
  • Axial sensor two 26 includes two sensors, respectively detecting the axial displacement or distance of the thrust plate 30, wherein, the axial sensor one 25 and the axial sensor two 26 is a fault-tolerant group to prevent errors in axial displacement or distance detection caused by local deformation of the thrust plate or failure of some sensors.
  • the first axial sensor 25 and the second axial sensor 26 are existing technologies or existing products.
  • the axial electromagnetic pole stator 20 and the axial electromagnetic pole 28 are integrated and made of a material with good magnetic conductivity. There are altogether four axial electromagnetic poles 28 arranged symmetrically at a distance of 90° from each other. A slot is formed in the axial electromagnetic pole 28 along the central position, a thrust disc 30 is arranged in the slot, and the slot divides the axial electromagnetic pole 28 into two magnetic poles, namely the axial rear electromagnetic pole 28a and the axial front electromagnetic pole 28b Axial electromagnetic pole winding coils 27b and axial electromagnetic pole winding coils 27a are respectively wound on the axial rear electromagnetic pole 28a and the axial front electromagnetic pole 28b.
  • the four axial electromagnetic poles 28 constitute the electromagnetic poles of the axial magnetic bearing of the axial force and bias force balanced stator permanent magnet motor of the present invention, and the four permanent magnet segments whose axial length is longer than the length of the stator core Its magnetic conduction bridge, magnetic adjustment section 8, slotted connection section 22 between the magnetic poles on both sides of the permanent magnet, slotted magnetic pole 23 on the left side of the permanent magnet, and slotted magnetic pole 24 on the right side of the permanent magnet constitute the permanent magnetic pole, the axial magnetic bearing. It is an 8-pole structure, and the 8 magnetic poles are evenly distributed at a distance of 45° from each other, and the lower ends of the 8 magnetic poles present a circular arc surface.
  • the length w1 of the air gap between the permanent magnetic pole and the rear side of the thrust disc and the length w2 of the air gap between the permanent magnetic pole and the front side of the thrust disc are designed to be adjustable values, and the purpose is to adjust the bias force.
  • the thrust disc 30 and the two thrust disc reinforcements 29 provided on both sides are all annular structures, and the two thrust disc reinforcements 29 play the role of tightening the thrust disc 30, and the outer diameter of the thrust disc 30 is larger than the thrust disc reinforcement.
  • the outer diameter and inner diameter of the parts 29 are the same and equal to the outer diameter of the motor shaft 19 .
  • the thrust disc 30 and the thrust disc reinforcement 29 are made of materials with good magnetic permeability and low electrical conductivity such as silicon steel sheets, which can be used as separate parts or as integral parts. If the outer diameter of the thrust disc 30 is smaller than the outer diameter of the motor shaft 29 and the axial length is longer, the thrust disc reinforcement 29 can be eliminated at this time.
  • FIG. 7A is a schematic diagram of the permanent magnet bias magnetic pole and magnetic flux of the axial magnetic bearing in the second embodiment of the present invention. It can be seen from FIG. 7B that the magnetic flux l4 of the permanent magnetic pole passes through the permanent magnet segment whose axial length is longer than that of the stator core. 301.
  • the left magnetic conductive bridge 6 of the permanent magnet, the magnetic adjustment section 8, and the magnetic conductive bridge 7 on the right side of the permanent magnet form a loop, and the magnetic flux does not pass through the thrust plate 30; as shown in Figure 7B and Figure 7C, the permanent magnetic pole magnetic flux l5 passes through the permanent magnet segment 301 whose axial length is longer than the length of the stator core, the left magnetic conducting bridge 6 of the permanent magnet, the left slotted magnetic pole 23 of the permanent magnet, the thrust plate 30, the right slotted magnetic pole 24 of the permanent magnet, and the right slotted magnetic pole of the permanent magnet.
  • the side magnetic bridge 7 forms a loop, and the magnetic flux passes through the thrust plate 30. More specifically, the permanent magnetic pole magnetic flux is divided into two branch magnetic fluxes, wherein one way passes through the axial front side permanent magnetic magnetic poles 23b and 24b, The other way passes through the permanent magnet poles 23c and 24c on the axial rear side.
  • the size of the permanent magnetic pole magnetic flux l4 and the permanent magnetic pole magnetic flux l5 will be changed; by changing the thrust plate installed in the motor
  • the position of the rotating shaft is used to adjust the length w1 of the air gap between the permanent magnet pole and the rear side of the thrust plate and the length w2 of the air gap between the permanent magnet pole and the front side of the thrust plate.
  • the size of the two branches of the permanent magnet pole magnetic flux l4 determines the axial direction. The magnitude of the biasing force.
  • FIGS. 8A, 8B, and 8C are schematic diagrams of the electromagnetic poles and magnetic flux circuits of the axial magnetic bearing of the stator permanent magnet motor with balanced axial force and bias force of the present invention.
  • the axial electromagnetic pole magnetic flux l6 passes through the axial rear electromagnetic pole 28a, the thrust plate 30, the axial front electromagnetic pole 28b, and the axial electromagnetic pole stator 20 to form a circuit.
  • the magnetic adjustment section 8 can change the size of the permanent magnetic pole magnetic flux l4 and the permanent magnetic pole magnetic flux l5, and the air gap lengths w1 and w2 can adjust the size of the two branches of the permanent magnetic pole magnetic flux.
  • the magnitude of the magnetic flux will determine the biasing force of the axial magnetic bearing.
  • the abscissa d (unit: mm) represents the distance between the thrust plate 30 and the axial rear side permanent magnet poles 23b and 24b (or the axial front side permanent magnet poles 23c and 24c ), and the ordinate represents the biasing force F (unit: kN), the characteristic curve 1, the characteristic curve 2, and the characteristic curve 3 represent the bias force characteristic curve when the magnetic control section 8 is adjusted.
  • the characteristic curve 1 represents the bias force when the magnetic permeability of the magnetic regulation section 8 is zero (or the volume of the embedded magnetic conductive sections 23a and 24a is zero), and the characteristic curve 2 represents that the magnetic permeability of the magnetic regulation section 8 increases to the same value as The bias force when the magnetically permeable segments 23a and 24a are equal and the volume of the embedded magnetically permeable segments 23a and 24a is one third of itself.
  • the characteristic curve 2 shows that the magnetic permeability of the magnetically regulated segment 8 increases to the same level as the magnetically permeable segments 23a and 24a.
  • the biasing force when the volume of the embedded magnetically permeable segments 12a and 13a is equal to one half of itself).
  • a set of bias force characteristic curves can be obtained by changing the magnetic permeability of the magnetic modulation section 8 and the volume of the magnetic conductive sections 23a and 24a embedded therein.
  • the stator permanent magnet motor when the axial force and bias force balance type stator permanent magnet motor axial magnetic bearing of the present invention is used in the centrifugal fan, centrifugal impeller and other equipment with axial force in the background art, the stator permanent magnet motor will be used as the For the power motor, the axial force of the equipment during operation can be calculated according to the equipment's working mode, load characteristics, rotation direction, and installation method.
  • the above is not intended to limit the present invention, any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention, such as changing the number of permanent magnets of the stator to other reasonable numbers, or changing the permanent magnet bias
  • the magnetic poles are set to 1 pole, 2 poles and 3 poles, as long as the permanent magnet magnetic field energy of the stator permanent magnet motor is introduced into the radial magnetic bearing, it should be included in the protection scope of the present invention.
  • stator, rotor and magnetic bearing of the stator permanent magnet motor are shown in the accompanying drawings, which constitute the magnetic suspension bearing motor and the like.
  • the motor housing, motor end cover, mechanical protection bearing, cooling structure and other components and structures necessary for the product are not mentioned, but the above is not used to limit the present invention, but to give the typical characteristics of this type of product. , any modification, equivalent replacement, improvement, etc.
  • the axial magnetic bearing in the present invention is transformed into an axial-radial hybrid magnetic bearing, as long as the permanent magnet magnetic field energy of the permanent magnet motor of the stator is introduced into the magnetic bearing, and through the introduced permanent magnet
  • the bias magnetic flux generated by the magnetic energy should be included in the protection scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

本发明公开了偏置磁场可调的力平衡型定子永磁电机磁轴承,属于发电、变电或配电的技术领域。磁轴承包含4个永磁磁极和4个电磁极,4个永磁磁极的磁场能量来自于定子永磁电机的定子永磁体,通过永磁体左侧导磁桥、永磁体右侧导磁桥、调磁段、电磁极定子、电磁极与永磁磁极隔离板、永磁体两侧磁极间连接段、永磁体左侧磁极、永磁体右侧磁极构成永磁磁极,永磁磁极磁通由调磁段调节,电磁极由通入电磁极绕组线圈中的电流调节。永磁偏置磁通和电磁极磁通共同的路径仅为磁轴承转子,调节轴向磁轴承调磁件的磁导率以及嵌入导磁段的体积、改变推力盘与前侧永磁磁极、后侧永磁磁极的相对距离,利于磁轴承的控制,实现了结构紧凑、偏置磁场可调的目的。

Description

偏置磁场可调的力平衡型定子永磁电机磁轴承 技术领域
本发明公开了偏置磁场可调的力平衡型定子永磁电机磁轴承,涉及电气和机械传动设备领域相关技术,属于发电、变电或配电的技术领域。
背景技术
传统的定子永磁电机包括双凸极永磁电机、磁通反向永磁电机、磁通切换永磁电机,共同特点是永磁体皆位于定子,转子上既无永磁体也无绕组,因此不存在传统转子永磁电机面临的永磁体受离心力破碎和高温去磁的风险。但现有的定子永磁电机常采用机械轴承,机械轴承普遍存在的噪音大、成本高、易疲劳失效等问题,也成为定子永磁电机常面临的问题。公开号为CN111425523A的中国专利公开了一种混合式径向永磁偏置磁轴承,该轴承采用传统的八极电机的定子铁芯作为磁悬浮轴承主体结构,设置八个电磁控制磁极和两个永磁偏置磁极,提高轴承的静态承载力,减小损耗和体积,但是该轴承的使用效果极易受到安装角度、安装位置的影响,具体来说只能垂直安装且仅适用于卧式电机,此外永磁偏置磁路和电磁铁磁路耦合程度较高,根据磁阻最小原理,实际应用时,永磁磁场极易通过偏置磁极和相邻的电磁控制磁极形成回路,存在电磁控制磁极无法产生足够控制力的风险。
轴向力是离心风机、离心叶轮等设备常面临的一个技术问题,与设备制造质量、液体粘性、旋转方向、安装方式密切相关,过大的轴向力会导致设备转轴产生轴向窜动,引起轴承磨损、电机转子偏心等问题,增加了设备的维修难度和维修成本,降低了使用寿命和生产效率。永磁偏置式径向磁轴承利用永磁材料产生偏置磁场,进而产生偏置力,减小了传统主动式电驱磁轴承的偏置电流,同时具有无接触、无润滑和无磨损的显著优点,广泛应用于真空装备制造、压缩机及其它高速、真空领域。
随着永磁偏置式磁轴承产品的出现,真空装备制造及压缩机等行业已率先开展磁轴承的应用研究,取得了良好的效果。同时定子永磁电机因为坚固的转子结构、良好的运行性能,在行业内也得到了广泛的应用。公开号为CN111927885A的中国专利公开了一种永磁偏置轴向磁轴承,该磁轴承包括相互对称设置在转子 两侧的第一磁轴承定子组件和第二磁轴承定子组件,实现了电磁磁通与永磁磁通的分离,降低磁轴承的功耗,提升磁轴承的动态响应速度和控制精度。申请号为201410594571.2和201410462477.1的中国发明专利提出了丰富的定子永磁电机拓扑结构,较大程度上扩宽了该类型电机的应用领域,也为行业提供了更为丰富的电机产品。
申请号为201910198690.9的中国专利公开了一种轴向力平衡与密封结构及高功率密度离心风机,该专利一体化设计了轴向力平衡盘与密封结构,减小了附加在输出轴上的质量,设计了三层密封结构,通过压力差产生的轴向力抵消一部分叶轮产生的轴向力,但是从实现的方式来看,该结构仍然是一种被动的轴向力平衡措施,系统结构复杂。综合现有的技术,工业应用中常采用平衡盘、耐磨板、平衡环等平衡部件,设备泵送的介质会在平衡部件的两侧产生压力差,利用该压力差来平衡一部分轴向力,削弱轴向力引起的不利后果,但是上述平衡部件的使用会增加整个系统的复杂程度及轴向长度,同样面临因平衡部件磨损而引起的维修成本增加、系统性能下降等问题。
同时,现有的轴向力平衡装置、永磁偏置式磁轴承、定子永磁电机均是按照独立部件进行设计和加工,依据所需性能和设计方案进行装配,这就导致各部件紧凑程度不高、组装后的体积较大。现有的轴向力平衡装置在安装于设备之后,一般很难根据设备的运行工况以及负载变化进行调节,这不利于最大程度利用轴向力平衡装置的平衡潜能。
综上,设计一种偏置磁场可调的力平衡型定子永磁电机磁轴承,对于扩宽定子永磁电机的应用领域,启发本领域技术人员开展结构紧凑型磁轴承电机系统、偏置磁场可调型磁轴承研究,具有重要的理论意义和应用价值。
发明内容
本发明的发明目的是针对上述背景技术的不足,提出偏置磁场可调的力平衡型定子永磁电机磁轴承,提高定子永磁电机及磁轴承两者之间的紧凑程度,解决传统永磁偏置式磁轴承安装后无法调节永磁偏置磁场极数和强度以及结构不紧凑的技术问题。
本发明为实现上述发明目的采用如下技术方案:
一种偏置磁场可调的力平衡型定子永磁电机磁轴承,径向磁轴承由4个偏置 磁场可调的永磁磁极和4个电磁极构成,8个磁极互隔45°均匀分布,与电机同心,且8个磁极的下端呈现圆弧面,与磁轴承转子留有气隙,4个电磁极上设置有电磁极绕组线圈,电磁极和偏置磁极共同作用,保持磁轴承转子的稳定悬浮。
优选地,径向磁轴承位于定子绕组线圈的端部内侧,从轴向来看又与电机转子保持一定的距离,具有结构紧凑的特点。
优选地,径向磁轴承由轴向长于定子铁芯长度的永磁体段、永磁体左侧导磁桥、永磁体右侧导磁桥、调磁段、电磁极定子、电磁极与永磁磁极隔离板、永磁体两侧磁极间连接段、永磁体左侧磁极、永磁体右侧磁极、电磁极、电磁极绕组线圈、径向传感器一、径向传感器二、磁轴承转子构成。
优选地,轴向长于定子铁芯长度的永磁体段两侧设置有一组导磁桥,下部分别连接有永磁体左侧磁极和永磁体右侧磁极,永磁体左侧磁和永磁体右侧磁极均是两段结构,上端导磁段与永磁体左侧导磁桥和永磁体右侧导磁桥相接,上述部件均有导磁材料制成,起引出轴向长于定子铁芯长度的永磁体段磁场能量的作用。
优选地,导磁段中间设置有一调磁段,采用导磁材料制成,通过调整调磁段的磁导率或者嵌入导磁段的体积,调节偏置磁场,进而调节偏置力。
优选地,设置了一体化制作的永磁体两侧磁极间连接段和电磁极与永磁磁极隔离板,采用非导磁、低电导率且具有一定强度、硬度的材料,在靠近导磁段的一侧,设置有电磁极与永磁磁极隔离板凹陷、电磁极与永磁磁极隔离板凸台,凹陷与导磁段等宽等深,凸台与导磁段间距相等,导磁段嵌入凹陷,凸台嵌入导磁段之间。在远离导磁段的一侧,设置有电磁极与永磁磁极隔离板凹陷,电磁极定子凸台可以嵌入。同时,永磁体两侧磁极间连接段嵌入永磁体左侧磁极和永磁体右侧磁极之间,形成稳固的“三明治”结构。
优选地,在永磁体两侧磁极间连接段的下部中心位置,设置有径向传感器一和径向传感器二,互隔90°分布,用于测量磁轴承转子的径向位置。
优选地,电磁极定子的轴向一侧有电磁极定子凸台,可以嵌入电磁极与永磁磁极隔离板凹陷,电磁极设置有电磁极绕组线圈。
一种轴向力与偏置力平衡型定子永磁电机轴向磁轴承,轴向磁轴承为8极结构,由4个内部开槽的电磁极提供电磁力、4个内部开槽的永磁磁极提供永磁偏 置力。上述8个磁极互隔45°均匀分布,且8个磁极的下端呈现圆弧面,优选采用硅钢片等导磁性能良好、低电导率材料制成。
优选地,永磁磁极与推力盘加固件的后侧气隙长度d1等于永磁磁极与推力盘加固件前侧气隙长度d2,永磁磁极与推力盘后侧气隙长度w1和永磁磁极与推力盘前侧气隙长度w2可调,用于调节偏置力。
优选地,电磁极与推力盘加固件后侧气隙长度d3和电磁极与推力盘加固件前侧气隙长度d4相等,电磁极与推力盘后侧气隙长度w3与d1相等,电磁极与推力盘前侧气隙长度w4与d2相等。d1远大于w1,或者d1远大于w2,永磁磁极与推力盘后侧气隙长度h1等于d1。
推力盘两侧设置有两个推力盘加固件,用于紧固推力盘,推力盘外径大于推力盘加固件外径,内径均与电机转轴外径相等,由硅钢片等导磁性能良好、低电导率材料制成,既可作为单独部件,也可以作为整体部件。当推力盘外径较电机转轴外径小、轴向长度长时,可以取消推力盘加固件。
优选地,调磁件可以改变两路永磁磁极磁通的大小,气隙长度w1和w2可以调节永磁磁极磁通的两个支路磁通大小,支路磁通的大小会决定轴向磁轴承的偏置力。
优选地,采用电磁极与永磁磁极隔离板以隔离永磁磁极磁通和电磁极磁通,降低所述两种磁通的耦合程度。
优选地,调节调磁件的磁导率以及嵌入导磁段的体积,改变推力盘与前侧永磁磁极、后侧永磁磁极的相对距离,得到一簇偏置力特性曲线,根据具有轴向力的设备工作模式、负载特性、旋转方向、安装方式,计算所述设备运行时的轴向力,设置优选的调磁件磁导率、嵌入导磁段的体积、推力盘与前侧(或后侧)永磁磁极的相对距离,利用永磁磁极产生与设备轴向力等大、反向的偏置力,当永磁磁极偏置力不足以平衡轴向力、以及设备动态运行时受到负载扰动,而使推力盘偏离平衡位置时,向电磁极线圈中通入电流产生电磁力,电磁力与永磁磁极偏置力共同作用,平衡轴向力。本发明具有结构紧凑、永磁偏置磁场利用程度高、降低控制电流、永磁磁通与电磁通耦合程度低、便于控制的优点。
本发明与现有技术相比,其显著的优点在于:
(1)本发明设计了结构紧凑、偏置磁场可调型定子永磁电机径向磁轴承,包含4个由轴向长于定子铁芯长度的永磁体段、永磁体左侧导磁桥、永磁体右侧导磁桥、调磁段、电磁极定子、电磁极与永磁磁极隔离板、永磁体两侧磁极间连接段、永磁体左侧磁极、永磁体右侧磁极、电磁极、电磁极绕组线圈、径向传感器一、径向传感器二、磁轴承转子构成的永磁磁极和4个电磁极,永磁磁极磁通由调磁段调节,电磁极由通入电磁极绕组线圈中的电流调节;合理设置了凹陷和凸台结构,各部件连接可靠、结构紧凑;永磁偏置磁通和电磁极磁通共同的路径仅为磁轴承转子,永磁磁极和电磁极之间由永磁体两侧磁极间连接段和电磁极与永磁磁极隔离板相互隔离,即永磁偏置磁通和电磁极磁通耦合程度低,利于磁轴承的控制,实现了结构紧凑、偏置磁场可调的目的。
(2)本发明将定子永磁电机的定子磁场引入磁悬浮轴承之中,具有结构紧凑的特点,设计了永磁磁极和定子磁极构成的轴向磁轴承,通过调节调磁件的磁导率以及嵌入导磁段和的体积、改变推力盘与前侧永磁磁极、后侧永磁磁极的相对距离(气隙长度),得到一簇可供查阅的偏置力特性曲线,根据轴向力的设备工作模式、负载特性、旋转方向、安装方式的不同,设置优选的调磁件磁导率、入导磁段和的体积、推力盘与前侧(或后侧)磁极的相对距离,利用永磁磁极偏置力和电磁磁极电磁力共同平衡轴向力,具有永磁偏置磁场利用程度高的特点,同时永磁极磁通和电磁极磁通流过的路径不同,通过电磁极与永磁磁极隔离板实现了永磁极磁通、电磁极磁通的解耦隔离,因此本发明具有便于控制的优点。
附图说明
图1A为本发明具体实施例一中偏置磁场可调的力平衡型定子永磁电机径向磁轴承安装于定子永磁电机的结构图,图1B为图1A的正视图,图1C为图1A的轴向二分之一、周向三分之一剖视图。
图2A为本发明具体实施例一中径向磁轴承的结构图,图2B为图2A的正视图,图2C为图2A的侧视图,图2D为图2A的各部件爆炸视图。
图3A为本发明具体实施例一中永磁偏置磁通以及电磁极磁通示意图,图3B为图3A的正视图。
图4A为本发明具体实施例二中偏置磁场可调的力平衡型定子永磁电机轴向磁轴承安装于定子永磁电机的结构图,图4B为图4A的正视图。
图5为本发明具体实施例二中轴向磁轴承的各部件爆炸视图。
图6为本发明具体实施例二中轴向磁轴承局部剖视图及局部放大图。
图7A为本发明具体实施例二中轴向磁轴承永磁偏置磁极的示意图,图7B和7C分别为永磁偏置磁极磁通的正视图、侧视图。
图8A为本发明具体实施例二中轴向磁轴承电磁极的示意图,图8B和8C分别为电磁极磁通的正视图、剖视图。
图9为本发明实施例二中得到的偏置力与距离d之间的关系图。
图中标号说明:1、定子绕组线圈端部,2、定子铁芯,3、轴向长度长于定子铁芯长度的永磁体,301、302、303、304为轴向长度长于定子铁芯长度的永磁体段,4、轴向长度等于定子铁芯长度的永磁体,5、电机转子,6、永磁体左侧导磁桥,7、永磁体右侧导磁桥,8、调磁段,9、径向电磁极定子,9a、电磁极定子凸台,10、电磁极与永磁磁极隔离板,10a、10c、10d为电磁极与永磁磁极隔离板凹陷,10b、电磁极与永磁磁极隔离板凸台,11、永磁体两侧磁极间连接段,12、永磁体左侧磁极,13、永磁体右侧磁极,12a和13a、导磁段,14、径向电磁极,1401和1402为径向电磁极,15、径向电磁极绕组线圈,1501和1502为径向电磁极绕组线圈,16、径向传感器一,17、径向传感器二,18、径向磁轴承转子,19、电机转轴,20、轴向电磁极定子,21、轴向电磁极与永磁磁极隔离板,22a、轴向后侧永磁体两侧磁极间连接件,22b、轴向前侧永磁体两侧磁极间连接件,23、永磁体左侧开槽磁极,24、永磁体右侧开槽磁极,23a和24a、导磁段,25、轴向传感器一,26、轴向传感器二,27、轴向电磁极绕组线圈,28、轴向电磁极,28a和28b为轴向后侧电磁极和轴向前侧电磁极,29、推力盘加固件,30、推力盘,23b和24b为轴向后侧永磁磁极,23c和24c为轴向前侧永磁磁极,。
具体实施方式
为便于详细说明本发明,不失一般性建立x-y-z参考坐标系,原点为o,其中,x-y平面与呈现圆筒型电机的端面(即圆筒底面)相平行,x-y平面内的半径方向为径向,各个端面圆为周向,z为轴向;同时,部件沿着径向向外的一侧定义为“外侧”,部件沿着径向向内的一侧定义为“内侧”,部件沿着轴向正方向的一侧定义为“前侧”,部件沿着轴向负方向的一侧定义为“后侧”;以正对x-y平面 时的读者“左侧”和“右侧”定义部件的“左侧”和“右侧”。
下面结合附图对发明的技术方案进行详细说明。
具体实施例一:偏置磁场可调的力平衡型定子永磁电机径向磁轴承
如图1A、图1B所示,本发明具体实施例一中偏置磁场可调的力平衡型定子永磁电机径向磁轴承安装于定子永磁电机上,其中,定子绕组线圈端部1、定子铁芯2、轴向长度长于定子铁芯长度的永磁体3、轴向长度等于定子铁芯长度的永磁体4、电机转子5、电机转轴19属于定子永磁电机的部件,除了轴向长度长于定子铁芯长度的永磁体3,其它部件的尺寸、材料、结构均为本领域技术人员已知的技术。定子铁芯2沿着电机圆周方向均匀布置,相邻两个定子铁芯2之间嵌放有轴向长度长于定子铁芯长度的永磁体3或轴向长度等于定子铁芯长度的永磁体4,每个定子铁芯2上绕有线圈,各定子铁芯上绕有的线圈贯穿电机槽后形成定子绕组线圈端部1,电机转子5通过过盈方式或键槽方式装配在电机转轴19上,定子铁芯与永磁体组成的环形定子结构装配在电子转子外侧。
如图1A、图1B、图1C所示,定子永磁电机共有12个定子永磁体,互隔30°均匀分布,材料可以是铁氧体、钕铁硼、钐钴等其它现有磁性材料中的一种或多种,充磁方向(也称磁化方向、极化方向)为切向,相邻两个定子永磁体充磁方向相反,共包含4个轴向长度长于定子铁芯长度的永磁体3和8个轴向长度等于定子铁芯长度的永磁体4,轴向长度长于定子铁芯长度的永磁体3的轴向长度比定子铁芯2长,单侧伸出长度约为定子铁芯长度的5%,分为上下左右四个,互隔90°对称分布;轴向长度等于定子铁芯长度的永磁体4的轴向长度与定子铁芯2相等,对称分布于4个轴向长度长于定子铁芯长度的永磁体3所划分的四个区域。轴向长度长于定子铁芯长度的永磁体段、永磁体左侧导磁桥6、永磁体右侧导磁桥7、调磁段8、径向电磁极定子9、电磁极与永磁磁极隔离板10、永磁体两侧磁极间连接段11、永磁体左侧磁极12、永磁体右侧磁极13、径向电磁极14、径向电磁极绕组线圈15、径向传感器一16、径向传感器二17、径向磁轴承转子18属于径向磁轴承,该径向磁轴承位于定子绕组线圈端部1的内侧,从轴向来看又与电机转子5保持一定的距离。
径向磁轴承如图2A、图2B、图2C、图2D所示,轴向长度长于定子铁芯长度的永磁体段301、轴向长度长于定子铁芯长度的永磁体段302、轴向长度长于 定子铁芯长度的永磁体段303和轴向长度长于定子铁芯长度的永磁体段304的两侧分别设置有一组导磁桥,分别是永磁体左侧导磁桥6、永磁体右侧导磁桥7,上述部件的轴向长度相同。永磁体左侧导磁桥6和永磁体右侧导磁桥7下部分别连接有永磁体左侧磁极12和永磁体右侧磁极13,轴向长度长于定子铁芯长度的各永磁体段、永磁体左侧导磁桥6、永磁体右侧导磁桥7、永磁体左侧磁极12和永磁体右侧磁极13均是由导磁性能良好的材料制成。永磁体左侧磁极12和永磁体右侧磁极13均是两段结构,其中,永磁体左侧磁极12和永磁体右侧磁极13的上端分别为导磁段12a和13a,与永磁体左侧导磁桥6和永磁体右侧导磁桥7相接。导磁段12a和导磁段13a的中间设置有一调磁段8,调磁段8优选采用导磁材料制成,通过调整调磁段8的磁导率或者嵌入导磁段12a和13a的体积,调节偏置磁场。
永磁体两侧磁极间连接段11和电磁极与永磁磁极隔离板10为一整体,优选采用非导磁、低电导率且具有一定强度、硬度的材料制成。电磁极与永磁磁极隔离板10在靠近导磁段12a和13a的一侧,设置有电磁极与永磁磁极隔离板凹陷10a、电磁极与永磁磁极隔离板凹陷10c以及电磁极与永磁磁极隔离板凸台10b,电磁极与永磁磁极隔离板凹陷10a、电磁极与永磁磁极隔离板凹陷10c与导磁段12a和13a等宽等深,电磁极与永磁磁极隔离板凸台10b在圆周方向上的弧度距离与导磁段12a和13a之间的间距相等,导磁段12a和13a分别嵌入凹陷电磁极与永磁磁极隔离板凹陷10a、电磁极与永磁磁极隔离板凹陷10c,电磁极与永磁磁极隔离板凸台10b嵌入导磁段12a和导磁段13a之间。电磁极与永磁磁极隔离板凹陷10a、电磁极与永磁磁极隔离板凹陷10c、电磁极与永磁磁极隔离板凸台10b形成一对导磁段(导磁段12a和导磁段13a)的安装结构,各对导磁段安装结构形成环形的电磁极与永磁磁极隔离板10,每一对导磁段安装结构的轴向后侧安装有一个永磁体两侧磁极间连接段11,永磁体两侧磁极间连接段11可以和电磁极与永磁磁极隔离板10一体成型,两个永磁体两侧磁极间连接段11为一个圆弧状的T型永磁体,在相邻两个永磁体两侧磁极间连接段11之间设置有电磁极与永磁磁极隔离板凹陷10d,电磁极定子凸台9a可以嵌入永磁磁极隔离板凹陷10d。同时,将永磁体左侧磁极12和永磁体右侧磁极13嵌入电磁极与永磁磁极隔离板凹陷10a、电磁极与永磁磁极隔离板凹陷10c后,永磁体两侧磁极间连接段11 嵌入永磁体左侧磁极12和永磁体右侧磁极13之间,形成稳固的“三明治”结构。上述部件及优选的凹陷、凸台结构,可以实现各部件之间的可靠连接。
如图2所示,在永磁体两侧磁极间连接段11的下部中心位置,设置有径向传感器一16和径向传感器二17,径向传感器一16和径向传感器二17互隔90°,为现有技术或现有产品,用于测量径向磁轴承转子18的径向位置。径向电磁极定子9和径向电磁极14为一整体,由导磁性能良好的材料制成,共设置有4个径向电磁极14,互隔90°对称分布,径向电磁极定子9的轴向前侧有电磁极定子凸台9a,电磁极定子凸台9a可以嵌入电磁极与永磁磁极隔离板凹陷10d。径向电磁极14均绕有径向电磁极绕组线圈15。可以看出,4个径向电磁极14构成了结构紧凑、偏置磁场可调的径向磁轴承电磁极,4个轴向长度长于定子铁芯长度的永磁体段及其导磁桥、调磁段8、永磁体两侧磁极间连接段11、永磁体左侧磁极12、永磁体右侧磁极13构成了径向偏置磁极,径向偏置磁极为8极结构,8个磁极互隔45°均匀分布,与电机同心,且8个磁极的下端呈现圆弧面,与径向磁轴承转子18留有气隙。
下面结合图3详细描述永磁偏置磁通以及径向电磁极磁通的分布。对于轴向长度长于定子铁芯长度的永磁体段301,永磁偏置磁通l1依次经过轴向长度长于定子铁芯长度的永磁体段301、永磁体右侧导磁桥7、导磁段13a、调磁段8、导磁段12a、永磁体左侧导磁桥6,该磁通本质来说是一种短路磁通,不会产生偏置力;永磁偏置磁通l2依次经过轴向长度长于定子铁芯长度的永磁体段301、永磁体右侧导磁桥7、导磁段13a、永磁体右侧磁极13、永磁体右侧磁极13与径向磁轴承转子18间的气隙、径向磁轴承转子18、永磁体左侧磁极12与磁轴承转子18间的气隙、导磁段12a、永磁体左侧导磁桥6,该磁通可以产生偏置力,因此通过调整调磁段8的磁导率或者嵌入导磁段12a和13a的体积,就可以调节永磁偏置磁通l1和永磁偏置磁通l2的大小,进而实现调节偏置力大小的目的。轴向长度长于定子铁芯长度的永磁体段301产生的偏置力沿着Y轴正方向,当径向磁轴承转子18受到扰动,向Y轴负反向移动时,永磁体左侧磁极12与径向磁轴承转子18间的气隙、永磁体右侧磁极13与径向磁轴承转子18间的气隙增大,为了使径向磁轴承转子18能重新回到原位置,向径向电磁极绕组线圈1501和径向电磁极绕组线圈1502中通入方向相反的电流,径向电磁极1401和径向电 磁极1402将会共同产生电磁极磁通l3,电磁极磁通l3所产生的电磁力也将沿着Y轴正反向,电磁力和偏置力共同作用。其它方向的偏置力、电磁力分析与上述过程类似,因此上述紧凑结构可以克服外界扰动,保持磁轴承转子18处于设定的位置,实现径向磁轴承转子18的稳定悬浮。
具体实施例二:偏置磁场可调的力平衡型定子永磁电机轴向磁轴承
如图4A、图4B所示,本发明具体实施例二中偏置磁场可调的力平衡型定子永磁电机轴向磁轴承安装于定子永磁电机上,其中,定子绕组线圈端部1、定子铁芯2、轴向长度长于定子铁芯长度的永磁体3、轴向长度等于定子铁芯长度的永磁体4、电机转子5、电机转轴19属于定子永磁电机的基本部件,除了轴向长度长于定子铁芯长度的永磁体3,其它部件的尺寸、材料、结构均为本领域技术人员已知的技术。定子永磁电机的结构与实施一相同,这里不再赘述。
与实施例一不同的是:轴向长度长于定子铁芯长度的永磁体段、永磁体左侧导磁件6、永磁体右侧导磁件7、调磁段8、轴向电磁极定子20、电磁极与永磁磁极隔离板10、永磁体两侧磁极间开槽连接段、永磁体左侧开槽磁极23、永磁体右侧开槽磁极24、轴向传感器一25、轴向传感器二26、轴向电磁极绕组线圈27、轴向电磁极28、推力盘加固件29、推力盘30属于轴向磁轴承,轴向磁轴承整体位于定子绕组线圈端部1的内侧,从轴向来看又与电机转子5保持一定的距离,上述部件的爆炸图见图5。
轴向磁轴承如图5所示,轴向长度长于定子铁芯长度的永磁体段301的两侧设置有一组导磁件,分别是永磁体左侧导磁件6和永磁体右侧导磁件7,上述部件的轴向长度相同。永磁体左侧导磁件6和永磁体右侧导磁件7下部分别连接有永磁体左侧开槽磁极23、永磁体右侧开槽磁极24,均是由导磁性能良好的材料制成。永磁体左侧开槽磁极23、永磁体右侧开槽磁极24均是两段结构,上端分别为导磁段23a和导磁段24a,导磁段23a和导磁段24a与永磁体左侧导磁桥6和永磁体右侧导磁桥7相接,下端具有嵌放推力盘30的凹槽结构,凹槽将永磁体左侧开槽磁极23、永磁体右侧开槽磁极24均分为轴向前侧永磁磁极23b、24b和轴向后侧永磁磁极23c、24c。导磁段23a和24a的中间设置有一调磁段8,优选采用导磁材料制成,通过调整调磁段8的磁导率或者嵌入导磁段23a和24a的体积,调节永磁磁极偏置磁场。永磁体两侧磁极间开槽连接段和电磁极与永磁磁 极隔离板10为一整体部件,优选采用非导磁、低电导率且具有一定强度、硬度的材料制成,电磁极与永磁磁极隔离板10在靠近导磁段23a和24a的一侧,设置有电磁极与永磁磁极隔离板凹陷10a、电磁极与永磁磁极隔离板凹陷10c和电磁极与永磁磁极隔离板凸台10b。优选地,电磁极与永磁磁极隔离板凹陷10a、电磁极与永磁磁极隔离板凹陷10c与导磁段23a和24a等宽等深,电磁极与永磁磁极隔离板凸台10b在周向的弧度距离与导磁段23a和24a之间的间距相等,轴向前侧永磁体两侧磁极间连接件22b和轴向后侧永磁体两侧磁极间连接件22a组成的一个永磁体两侧磁极间开槽连接段,电磁极与永磁磁极隔离板凹陷10a、电磁极与永磁磁极隔离板凹陷10c和电磁极与永磁磁极隔离板凸台10b通过在轴向前侧永磁体两侧磁极间连接件22b上开槽形成,导磁段23a和24a嵌入电磁极与永磁磁极隔离板凹陷10a、电磁极与永磁磁极隔离板凹陷10c后,电磁极与永磁磁极隔离板凸台10b嵌入导磁段23a和24a之间。同时,轴向后侧永磁体两侧磁极间连接件22a嵌入永磁体左侧开槽磁极23、永磁体右侧开槽磁极24之间,形成稳固的“三明治”结构。上述部件及优选的凹陷、凸台结构,可以实现各部件之间的可靠连接。永磁体两侧磁极间开槽连接段共4个,互隔90°对称分布,且每个永磁体两侧磁极间开槽连接段内部沿中心位置开有的槽用于设置有推力盘30,,按照磁阻最小原理,轴向后侧永磁磁极23b、24b和推力盘30构成永磁磁通的闭合路径,轴向前侧永磁磁极23c、24c和推力盘30构成永磁磁通的闭合路径。
任选两个永磁体两侧磁极间开槽连接段并在轴向后侧永磁体两侧磁极间连接件22a和轴向前侧永磁体两侧磁极间连接件22b下部植入轴向传感器一25、轴向传感器二26,轴向传感器一25(或轴向传感器二26)均包含两个传感器,分别检测推力盘30轴向位移或距离,其中,轴向传感器一25和轴向传感器二26为一容错组,防止因推力盘局部形变或者部分传感器失效所引起的轴向位移或距离检测出错。轴向传感器一25、轴向传感器二26为现有技术或现有产品。
轴向电磁极定子20和轴向电磁极28为一整体,由导磁性能良好的材料制成,共设置有4个轴向电磁极28,互隔90°对称分布。轴向电磁极28内部沿中心位置开有一槽,槽内设置有推力盘30,槽将轴向电磁极28分割为两个磁极,即轴向后侧电磁极28a和轴向前侧电磁极28b,轴向后侧电磁极28a和轴向前侧电磁 极28b上分别绕有轴向电磁极绕组线圈27b、轴向电磁极绕组线圈27a。
可以看出,4个轴向电磁极28构成了本发明轴向力与偏置力平衡型定子永磁电机轴向磁轴承的电磁极,4个轴向长度长于定子铁芯长度的永磁体段及其导磁桥、调磁段8、永磁体两侧磁极间开槽连接段22、永磁体左侧开槽磁极23、永磁体右侧开槽磁极24构成了永磁磁极,轴向磁轴承为8极结构,8个磁极互隔45°均匀分布,且8个磁极的下端呈现圆弧面。
如图6所示,对于永磁磁极,优选地,永磁磁极与推力盘加固件的后侧气隙长度d1等于永磁磁极与推力盘加固件前侧气隙长度d2,即d1=d2;永磁磁极与推力盘后侧气隙长度w1和永磁磁极与推力盘前侧气隙长度w2设计为可调值,其目的是为了调节偏置力。
对于轴向电磁极,优选地,轴向电磁极与推力盘加固件后侧气隙长度d3和轴向电磁极与推力盘加固件前侧气隙长度d4相等,即d3=d4;轴向电磁极与推力盘后侧气隙长度w3与d1相等,即w3=d1;轴向电磁极与推力盘前侧气隙长度w4与d2相等,即w4=d2。
优选地,d1>>w1或d1>>w2,永磁磁极与推力盘后侧气隙长度h1=d1。
推力盘30及其两侧设置的两个推力盘加固件29均呈圆环结构,两个推力盘加固件29起到紧固推力盘30的作用,推力盘30的外径要大于推力盘加固件29的外径,内径均相同且等于电机转轴19的外径。
优选地,推力盘30和推力盘加固件29由硅钢片等导磁性能良好、低电导率材料制成,既可作为单独部件,也可以作为整体部件。若推力盘30的外径较电机转轴29的外径小,且轴向长度较长,此时可以取消推力盘加固件29。
图7A为本发明具体实施例二中轴向磁轴承永磁偏置磁极及磁通示意图,由图7B可以看出,永磁磁极磁通l4经过轴向长度长于定子铁芯长度的永磁体段301、永磁体左侧导磁桥6、调磁段8、永磁体右侧导磁桥7构成回路,该磁通不经过推力盘30;如图7B、图7C所示,永磁磁极磁通l5经过轴向长度长于定子铁芯长度的永磁体段301、永磁体左侧导磁桥6、永磁体左侧开槽磁极23、推力盘30、永磁体右侧开槽磁极24、永磁体右侧导磁桥7构成回路,该磁通经过推力盘30,更具体来说,永磁磁极磁通分为两个支路磁通,其中,一路经过轴向前侧永磁磁极23b和24b,另外一路经过轴向后侧永磁磁极23c和24c。
显然,通过调节调磁段8的磁导率或者嵌入导磁段23a和24a的体积,永磁磁极磁通l4和永磁磁极磁通l5的大小便会发生改变;通过改变推力盘安装于电机转轴的位置来调整永磁磁极与推力盘后侧气隙长度w1和永磁磁极与推力盘前侧气隙长度w2,永磁磁极磁通l4的两个支路磁通的大小决定了轴向偏置力的大小。
图8A、图8B、图8C为本发明轴向力与偏置力平衡型定子永磁电机轴向磁轴承的电磁极及磁通回路示意图,当轴向电磁极绕组线圈27通入电流时,轴向电磁极磁通l6经过轴向后侧电磁极28a、推力盘30、轴向前侧电磁极28b、轴向电磁极定子20构成回路。
进一步观察图7和图8,可以看出永磁极磁通和轴向电磁极磁通流过的路径不同,且通过电磁极与永磁磁极隔离板10实现了永磁极磁通、电磁极磁通的解耦隔离,因此两种磁通具有耦合程度低、利于控制的优点。
结合图6和图9,详细描述将实施例二应用于具有轴向力的装置中时,轴向力与偏置力平衡的基本原理。由上述分析可知,调磁段8可以改变永磁磁极磁通l4和永磁磁极磁通l5的大小,气隙长度w1和w2可以调节永磁磁极磁通的两个支路磁通大小,支路磁通的大小会决定轴向磁轴承的偏置力。图9中,横坐标d(单位:mm)表示推力盘30距离轴向后侧永磁磁极23b和24b(或者轴向前侧永磁磁极23c和24c)的距离,纵坐标表示偏置力F(单位:kN)的大小,特性曲线1、特性曲线2、特性曲线3表示调节调磁段8时的偏置力特性曲线。其中,特性曲线1表示调磁段8磁导率为零(或嵌入导磁段23a和24a的体积为零)时的偏置力,特性曲线2表示调磁段8磁导率增大至与导磁段23a和24a相等且嵌入导磁段23a和24a的体积为自身三分之一时的偏置力,特性曲线2表示调磁段8磁导率增大至与导磁段23a和24a相等且嵌入导磁段12a和13a的体积为自身二分之一)时的偏置力。显然,通过改变调磁段8的磁导率及其嵌入导磁段23a和24a的体积,可以得到一簇偏置力特性曲线。
不失一般性,设定d的范围为0mm至2mm。可以看出,不同的d或者调节调磁段8时,偏置力呈现有规律的分布趋势:(1)推力盘30距离轴向后侧永磁磁极23b和24b(或者轴向前侧永磁磁极23c和24c)的距离越近,即d≈0(或d≈2)时,偏置力F的绝对值越大;(2)由于永磁磁极磁通的两个支路磁阻不同, 偏置力F的最大值与最小值的绝对值不相等;(3)当推力盘30位于轴向后侧永磁磁极23b和24b、轴向前侧永磁磁极23c和24c的中心位置处,即d=1时,偏置力不为零,偏置力的大小取决于两个支路磁阻的差异,差异越大,偏置力绝对值越大;(4)偏置力的正负表示偏置力的方向。
根据上述分布特性,将本发明轴向力与偏置力平衡型定子永磁电机轴向磁轴承用于背景技术中离心风机、离心叶轮等存在轴向力的设备时,定子永磁电机将作为动力电机,根据设备工作模式、负载特性、旋转方向、安装方式,可以计算出所述设备运行时的轴向力,通过查阅类似于图9中偏置力特性曲线簇,选择最适用于该种工作模式、负载特性、旋转方向、安装方式下的偏置力,随后根据该偏置力调节调磁段的磁导率以及嵌入导磁段的体积、推力盘与前侧永磁磁极、后侧永磁磁极的相对距离,产生所选择的偏置力,该偏置力将会和不加该偏置力下运行时的轴向力相互平衡,最大程度发挥永磁磁极的磁场潜能。当偏置力不足以平衡轴向力时,通过向电磁极线圈中通入电流,电磁力与永磁磁极偏置力共同作用,平衡轴向力。在实际运行时,当轴向位置偏离平衡位置时,只需要控制轴向后侧电磁极28a和轴向前侧电磁极28b中电流大小,便可以克服外界扰动,保持推力盘30处于设定的位置,实现磁轴承推力盘30的稳定。
在描述本发明时,术语“前”、“后”、“左”、“右”、“内”、“外”、“上”、“下”等指示方位或位置关系为基于附图所示的方位或位置关系,仅仅是为了更清晰地描述本发明,而不是指示或者暗示所指的装置或者元件必须是具有特定的方位,不能理解是对本发明的限制。
以上所述并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,比如将定子永磁体数修改为其他合理的数目,或者将永磁偏置磁极设置为1极、2极、3极,只要是将定子永磁型电机的永磁体磁场能量引入径向磁轴承之中,均应包含在本发明的保护范围内。
此外需要注意的是,为了便于描述本发明并利于本领域技术人员了解本发明的具体实施方式,附图中仅仅给出了定子永磁电机的定子、转子以及磁轴承,构成磁悬浮轴承电机这类产品所必须的电机外壳、电机端盖、机械保护轴承、冷却结构等部件和结构均未提及,但以上所述并不用以限制本发明,而是重点分明地给出该类产品的典型特征,凡在本发明的精神和原则之内,所作的任何修改、等 同替换、改进等,比如将定子永磁体数修改为其它合理的数目,或者通过调节d1、d2、d3、d4、w1、w2、w3、w4、h1,将本发明中的轴向磁轴承改造为轴向径向混合磁轴承,只要是将定子永磁型电机的永磁体磁场能量引入磁轴承之中,并通过引入的永磁能量产生偏置磁通,均应包含在本发明的保护范围内。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (9)

  1. 偏置磁场可调的力平衡型定子永磁电机磁轴承,其特征在于,包括:磁悬浮轴承转子、电磁极定子、电磁极与永磁磁极隔离板、永磁体两侧磁极间连接段、永磁体左侧磁极、永磁体右侧磁极、调磁段、左侧导磁桥、右侧导磁桥,所述磁悬浮轴承转子装配在电机转轴上,所述永磁体两侧磁极间连接段装配在电磁极与永磁磁极隔离板反面且嵌入相邻电磁极定子之间,所述电磁极与永磁磁极隔离板上开有嵌放永磁体左侧磁极和永磁体右侧磁极的凹陷,所述永磁体左侧磁极、永磁体右侧磁极装配在电磁极与永磁磁极隔离板上后夹持永磁体两侧磁极间连接段,所述调磁段装配在永磁体左侧磁极和永磁体右侧磁极之间,所述左侧导磁桥与永磁体左侧磁极贴合,所述右侧导磁桥与永磁体右侧磁极贴合,夹持在伸出铁芯永磁体段两侧的左侧导磁桥、右侧导磁桥与电磁极与永磁磁极隔离板、永磁体两侧磁极间连接段、永磁体左侧磁极、永磁体右侧磁极、调磁段构成所述伸出铁芯永磁体段的偏置磁路。
  2. 根据权利要求1所述偏置磁场可调的力平衡型定子永磁电机磁轴承,其特征在于,所述电磁极与永磁磁极隔离板、永磁体两侧磁极间连接段为一体成型的构件,该构件的轴向前侧开有嵌放永磁体左侧磁极和永磁体右侧磁极的凹陷,该构件的轴向后侧为弧度与相邻电磁极定子之间的弧度距离相匹配的T型结构。
  3. 根据权利要求1所述偏置磁场可调的力平衡型定子永磁电机磁轴承,其特征在于,相邻两个永磁体两侧磁极间连接段之间留有嵌放电磁极定子凸台的凹陷。
  4. 根据权利要求1至3中任意一项所述偏置磁场可调的力平衡型定子永磁电机磁轴承,其特征在于,所述定子永磁电机磁轴承为径向磁轴承时,所述电磁极定子上绕有径向线圈,所述永磁体左侧磁极和永磁体右侧磁极均为具有导磁段上部和夹持段下部的永磁磁极,所述永磁体两侧磁极间连接段上安装有径向传感器。
  5. 根据权利要求1至3中任意一项所述偏置磁场可调的力平衡型定子永磁 电机磁轴承,其特征在于,所述定子永磁电机磁轴承为轴向磁轴承时,所述电磁极定子上开有嵌放推力盘的凹槽,且每个电磁极定子上绕有轴向线圈,所述永磁体左侧磁极和永磁体右侧磁极均为具有导磁段上部和夹持段下部的永磁磁极,所述夹持段下部开有嵌放推力盘的凹槽,所述永磁体两侧磁极间连接段上安装有轴向传感器。
  6. 根据权利要求5所述偏置磁场可调的力平衡型定子永磁电机磁轴承,其特征在于,永磁体左侧磁极与推力盘加固件的后侧气隙长度d1等于永磁体左侧磁极与推力盘加固件的前侧气隙长度d2,电磁极定子与推力盘加固件的后侧气隙长度d3等于电磁极定子与推力盘加固件的前侧气隙长度d4,电磁极定子与推力盘的后侧气隙长度w3等于永磁体左侧磁极与推力盘加固件的后侧气隙长度d1,电磁极定子与推力盘的前侧气隙长度w4等于永磁体左侧磁极与推力盘加固件的前侧气隙长度d2。
  7. 根据权利要求6所述偏置磁场可调的力平衡型定子永磁电机磁轴承,其特征在于,d1>>w1或d1>>w2,永磁体左侧磁极与推力盘的后侧气隙长度h1等于永磁体左侧磁极与推力盘加固件的后侧气隙长度d1。
  8. 控制权利要求4所述偏置磁场可调的力平衡型定子永磁电机磁轴承的转子稳定悬浮的方法,其特征在于,对于产生偏置力的伸出铁芯的永磁体段,调节调磁段嵌入永磁体左侧磁极和永磁体右侧磁极的体积以调节偏置力,向所述永磁体段偏置磁路中永磁体两侧磁极间连接段两侧的电磁极定子施加方向相反的电流以调节电磁力。
  9. 调节权利要求5所述偏置磁场可调的力平衡型定子永磁电机磁轴承偏置力的方法,其特征在于,调节推力盘安装于电机转轴的位置改变永磁体左侧磁极与推力盘后侧气隙长度w1以及永磁体左侧磁极与推力盘前侧气隙长度w2。
PCT/CN2021/133962 2021-04-22 2021-11-29 偏置磁场可调的力平衡型定子永磁电机磁轴承 WO2022222477A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/771,495 US11909297B2 (en) 2021-04-22 2021-11-29 Force-balancing magnetic bearing with adjustable bias magnetic field for stator permanent magnet motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110435872.0 2021-04-22
CN202110435872.0A CN113285558B (zh) 2021-04-22 2021-04-22 偏置磁场可调的力平衡型定子永磁电机磁轴承

Publications (1)

Publication Number Publication Date
WO2022222477A1 true WO2022222477A1 (zh) 2022-10-27

Family

ID=77277260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133962 WO2022222477A1 (zh) 2021-04-22 2021-11-29 偏置磁场可调的力平衡型定子永磁电机磁轴承

Country Status (3)

Country Link
US (1) US11909297B2 (zh)
CN (1) CN113285558B (zh)
WO (1) WO2022222477A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116658520A (zh) * 2023-05-05 2023-08-29 淮阴工学院 一种外转子径向六极三自由度交直流混合磁轴承及参数设计方法
CN116707230A (zh) * 2023-08-03 2023-09-05 西门子(天津)传动设备有限责任公司 转子偏移量测量装置、定子偏置量计算方法、装置及系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113285558B (zh) * 2021-04-22 2022-04-29 东南大学 偏置磁场可调的力平衡型定子永磁电机磁轴承
CN114157097B (zh) * 2021-11-18 2023-09-26 东南大学 磁悬浮磁通切换电机的定子结构
CN117249163B (zh) * 2023-09-19 2024-06-11 淮阴工学院 一种带径向辅助励磁的三自由度混合磁轴承

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030001447A1 (en) * 1999-12-27 2003-01-02 Siegfried Silber Magnetic bearing system
CN101581336A (zh) * 2009-06-18 2009-11-18 南京航空航天大学 永磁偏置轴向磁悬浮轴承
US20100109463A1 (en) * 2008-10-31 2010-05-06 University Of Virginia Patent Foundation Hybrid Five Axis Magnetic Bearing System Using Axial Passive PM Bearing Magnet Paths and Radial Active Magnetic Bearings with Permanent Magnet Bias and Related Method
JP2010106908A (ja) * 2008-10-29 2010-05-13 Oitaken Sangyo Sozo Kiko 磁気軸受
CN108712043A (zh) * 2018-06-30 2018-10-26 淮阴工学院 一种定子永磁偏置五自由度无轴承异步电机
CN110848253A (zh) * 2019-11-11 2020-02-28 北京航空航天大学 一种三自由度径向-轴向一体化混合磁轴承
CN113285558A (zh) * 2021-04-22 2021-08-20 东南大学 偏置磁场可调的力平衡型定子永磁电机磁轴承

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6700258B2 (en) * 2001-05-23 2004-03-02 Calnetix Magnetic thrust bearing with permanent bias flux
CN1285840C (zh) * 2005-05-09 2006-11-22 北京航空航天大学 一种永磁偏置外转子径向磁轴承
CN100487257C (zh) * 2007-04-26 2009-05-13 北京航空航天大学 一种永磁偏置轴向磁轴承
GB0719814D0 (en) * 2007-10-05 2007-11-21 Rolls Royce Plc Flux-switching machine
CN101149077B (zh) * 2007-11-07 2010-09-29 南京航空航天大学 永磁偏置轴向径向磁轴承
DE502008002481D1 (de) * 2008-07-21 2011-03-10 Siemens Ag Magnetisches Radiallager mit Permanentmagneten zur Vormagnetisierung sowie magnetisches Lagersystem mit einem derartigen magnetischen Radiallager
GB0817423D0 (en) * 2008-09-24 2008-10-29 Rolls Royce Plc Flux-switching magnetic machine
CN101413539A (zh) * 2008-11-19 2009-04-22 南京化工职业技术学院 一种异极性永磁偏置轴向径向磁轴承
CN101907131B (zh) * 2010-07-09 2012-05-16 北京奇峰聚能科技有限公司 一种具有容错功能的永磁偏置内转子径向磁轴承
DE102014103568A1 (de) * 2014-03-14 2015-09-17 Xylem Ip Holdings Llc Stator-Rotor-Vorrichtung für eine elektrische Maschine
CN104201852B (zh) 2014-09-11 2016-09-07 东南大学 绕组互补型转子永磁磁通切换电机
CN104283353B (zh) 2014-10-30 2017-02-15 东南大学 绕组互补型多相半齿绕磁通切换电机
CN105090245B (zh) * 2015-09-15 2017-10-20 北京航空航天大学 一种非对称永磁偏置轴向磁轴承
CN106438693A (zh) * 2016-11-07 2017-02-22 江苏大学 一种二自由度永磁偏置径向混合磁轴承
CN106594072B (zh) * 2016-11-29 2017-11-14 北京航空航天大学 一种无推力盘径轴向一体化永磁偏置磁轴承
ES2837115T3 (es) * 2017-04-05 2021-06-29 Kone Corp Motor lineal de imanes permanentes de conmutación de flujo
CN108183571B (zh) * 2018-01-04 2024-03-26 北京昆腾迈格技术有限公司 一种磁悬浮电机机壳以及磁悬浮电机
CN108591257B (zh) * 2018-04-19 2019-12-31 南京工业大学 具有径向被动悬浮力的永磁偏置轴向磁悬浮轴承
CN109882425B (zh) 2019-03-15 2020-06-02 湖南泛航智能装备有限公司 轴向力平衡与密封结构及高功率密度离心风机
CN111425523A (zh) 2020-02-28 2020-07-17 天津大学 一种混合式径向永磁偏置磁轴承
CN111927885B (zh) 2020-09-29 2021-01-26 山东天瑞重工有限公司 一种永磁偏置轴向磁轴承
CN112160987A (zh) * 2020-10-27 2021-01-01 珠海格力电器股份有限公司 磁悬浮轴承组件、电机及压缩机
CN112145554A (zh) * 2020-10-27 2020-12-29 珠海格力电器股份有限公司 磁悬浮轴承组件及具有其的电机
CN113323963B (zh) * 2021-04-22 2022-03-11 东南大学 具有磁极旁路的定子永磁电机磁轴承及其偏置力调节方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030001447A1 (en) * 1999-12-27 2003-01-02 Siegfried Silber Magnetic bearing system
JP2010106908A (ja) * 2008-10-29 2010-05-13 Oitaken Sangyo Sozo Kiko 磁気軸受
US20100109463A1 (en) * 2008-10-31 2010-05-06 University Of Virginia Patent Foundation Hybrid Five Axis Magnetic Bearing System Using Axial Passive PM Bearing Magnet Paths and Radial Active Magnetic Bearings with Permanent Magnet Bias and Related Method
CN101581336A (zh) * 2009-06-18 2009-11-18 南京航空航天大学 永磁偏置轴向磁悬浮轴承
CN108712043A (zh) * 2018-06-30 2018-10-26 淮阴工学院 一种定子永磁偏置五自由度无轴承异步电机
CN110848253A (zh) * 2019-11-11 2020-02-28 北京航空航天大学 一种三自由度径向-轴向一体化混合磁轴承
CN113285558A (zh) * 2021-04-22 2021-08-20 东南大学 偏置磁场可调的力平衡型定子永磁电机磁轴承

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116658520A (zh) * 2023-05-05 2023-08-29 淮阴工学院 一种外转子径向六极三自由度交直流混合磁轴承及参数设计方法
CN116658520B (zh) * 2023-05-05 2024-06-11 淮阴工学院 一种外转子径向六极三自由度交直流混合磁轴承及参数设计方法
CN116707230A (zh) * 2023-08-03 2023-09-05 西门子(天津)传动设备有限责任公司 转子偏移量测量装置、定子偏置量计算方法、装置及系统
CN116707230B (zh) * 2023-08-03 2023-12-19 西门子(天津)传动设备有限责任公司 转子偏移量测量装置、定子偏置量计算方法、装置及系统

Also Published As

Publication number Publication date
US11909297B2 (en) 2024-02-20
CN113285558A (zh) 2021-08-20
CN113285558B (zh) 2022-04-29
US20230155449A1 (en) 2023-05-18

Similar Documents

Publication Publication Date Title
WO2022222477A1 (zh) 偏置磁场可调的力平衡型定子永磁电机磁轴承
CN101218445B (zh) 具有径向导引装置和轴向调整装置的用于磁力支承转子轴的装置
CN101235848B (zh) 低损耗永磁偏置轴向径向磁轴承
CN101149077B (zh) 永磁偏置轴向径向磁轴承
CN101207310B (zh) 轴向主动悬浮的三自由度无轴承交替极永磁电机
WO2022222478A1 (zh) 具有磁极旁路的定子永磁电机磁轴承及其偏置力调节方法
CN101737425B (zh) 一种低功耗单稳态零重力作用径向磁轴承
CN1285840C (zh) 一种永磁偏置外转子径向磁轴承
WO2023029538A1 (zh) 磁悬浮轴承、电机、压缩机和空调器
CN112117861B (zh) 一种飞轮储能电机
CN101413539A (zh) 一种异极性永磁偏置轴向径向磁轴承
CN111927885B (zh) 一种永磁偏置轴向磁轴承
CN113217538A (zh) 磁悬浮轴承结构、电机
CN113503317A (zh) 磁悬浮轴承、压缩机和空调器
CN211574040U (zh) 径向无耦合三自由度直流混合磁轴承
CN101539167A (zh) 一种永磁偏置轴向径向磁轴承
CN101832335A (zh) 永磁偏置轴向径向磁轴承
CN116398538A (zh) 永磁偏置径向磁悬浮轴承及磁悬浮旋转机械
WO2023226404A1 (zh) 一种磁悬浮轴承、压缩机
CN215058913U (zh) 磁悬浮轴承结构、电机
CN112983988B (zh) 一种复合磁悬浮轴承及磁悬浮轴承系统
CN111628608A (zh) 磁轴承支撑的永磁同步电机及其磁轴承
CN215805770U (zh) 同极式径向磁悬浮轴承、压缩机和空调器
CN201326646Y (zh) 一种异极性永磁偏置轴向径向磁轴承
CN113452199B (zh) 一种立式安装电机用机械永磁混合轴承系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937699

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21937699

Country of ref document: EP

Kind code of ref document: A1