WO2022222027A1 - 发光器件及其制备方法、显示基板和显示装置 - Google Patents

发光器件及其制备方法、显示基板和显示装置 Download PDF

Info

Publication number
WO2022222027A1
WO2022222027A1 PCT/CN2021/088373 CN2021088373W WO2022222027A1 WO 2022222027 A1 WO2022222027 A1 WO 2022222027A1 CN 2021088373 W CN2021088373 W CN 2021088373W WO 2022222027 A1 WO2022222027 A1 WO 2022222027A1
Authority
WO
WIPO (PCT)
Prior art keywords
transport layer
layer
light
carrier transport
light emitting
Prior art date
Application number
PCT/CN2021/088373
Other languages
English (en)
French (fr)
Inventor
梅文海
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/639,009 priority Critical patent/US20240040813A1/en
Priority to PCT/CN2021/088373 priority patent/WO2022222027A1/zh
Priority to CN202180000828.5A priority patent/CN115500086A/zh
Publication of WO2022222027A1 publication Critical patent/WO2022222027A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/155Hole transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/166Electron transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • H10K50/181Electron blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a light-emitting device and a method for preparing the same, a display substrate and a display device.
  • Quantum Dot Light Emitting Diodes QLED
  • QLED Quantum Dot Light Emitting Diodes
  • the present disclosure aims to solve at least one of the technical problems existing in the prior art, and proposes a light-emitting device and a method for manufacturing the same, a display substrate and a display device.
  • a light-emitting device including:
  • the light-emitting layer is disposed on the side of the first carrier transport layer away from the substrate;
  • the first carrier transport layer includes a first transport sublayer
  • the first transport sublayer includes nanoparticles and inorganic ligands connected to the surface of the nanoparticles
  • the inorganic ligands include halogens element or oxygen group.
  • the general formula of the inorganic ligand includes: B- or AB x y- ;
  • the B is a halogen element
  • the A is a metal element
  • both the x and the y are positive integers.
  • the B includes any one of iodine, chlorine, bromine and fluorine
  • the A includes any one of zinc, cadmium, mercury, copper, silver and gold.
  • the general formula of the inorganic ligand includes: MJ x y- or M z J x y- ;
  • the J is an oxygen group element
  • the M is a metal element
  • the x, the y, and the z are all positive integers.
  • the J includes any one of oxygen, sulfur, selenium, and tellurium
  • the M includes: molybdenum, chromium, tungsten, iron, ruthenium, osmium, cobalt, rhodium, aluminum, gallium, indium, germanium , any of tin, lead, antimony and bismuth.
  • the first carrier transport layer further includes a second transport sublayer, and the second transport sublayer is located on a side of the first transport sublayer away from the light-emitting layer; the second transport sublayer The inorganic ligand is not included in the sublayer.
  • the light-emitting device further includes:
  • the first electrode is disposed between the substrate and the first carrier transport layer;
  • the second carrier transport layer is disposed on the side of the light-emitting layer away from the substrate;
  • the second electrode is disposed on the side of the second carrier transport layer away from the substrate;
  • one of the first carrier transport layer and the second carrier transport layer is an electron transport layer, and the other is a hole transport layer.
  • the light-emitting device further comprises: a hole injection layer;
  • the hole injection layer is disposed on the side of the hole transport layer away from the light emitting layer.
  • the light-emitting layer includes a quantum dot layer.
  • the present disclosure also provides a display substrate, comprising: a plurality of light-emitting devices, at least one of the plurality of light-emitting devices adopts the above-mentioned light-emitting device.
  • each of the plurality of light-emitting devices adopts the above-mentioned light-emitting device
  • the plurality of light emitting devices include a plurality of first light emitting devices and a plurality of second light emitting devices, and the emission color of each of the plurality of first light emitting devices is the same as that of each of the plurality of second light emitting devices.
  • the glow color is different.
  • each of the plurality of second light emitting devices further includes an electron blocking layer, and the electron blocking layer is located on the second light emitting device between the electron transport layer and the light-emitting layer;
  • each of the plurality of first light emitting devices further includes a hole blocking layer, and the hole blocking layer is located on the side of the first light emitting device. between the hole transport layer and the light emitting layer.
  • the thickness of the first carrier transport layer of each of the plurality of second light-emitting devices is greater than that of the plurality of first light-emitting devices the thickness of the first carrier transport layer of each of the devices;
  • the thickness of the first carrier transport layer of each of the plurality of first light emitting devices is greater than that of the plurality of second light emitting devices the thickness of each of the first carrier transport layers.
  • the doping concentration of the inorganic ligand in each of the plurality of second light-emitting devices in the first carrier transport layer is less than a doping concentration of the inorganic ligand in the first carrier transport layer of each of the plurality of first light emitting devices;
  • the doping concentration of the inorganic ligand of each of the plurality of second light emitting devices in the first carrier transport layer is greater than that of the plurality of second light emitting devices The doping concentration of each inorganic ligand in the hole transport layer in the first light emitting device.
  • each of the plurality of first light-emitting devices is a blue quantum dot light-emitting device
  • the plurality of second light-emitting devices include a plurality of red quantum dot light-emitting devices and a plurality of green quantum dot light-emitting devices.
  • the present disclosure also provides a display device, which includes the above-mentioned display substrate.
  • the present disclosure also provides a method for preparing a light-emitting device, comprising:
  • the first carrier transport layer includes a first transport sublayer
  • the first transport sublayer includes nanoparticles and inorganic ligands connected to the surface of the nanoparticles
  • the inorganic ligands include halogen elements or oxygen group elements.
  • the preparation method before forming the first carrier transport layer, the preparation method further includes:
  • the preparation method further includes:
  • one of the first carrier transport layer and the second carrier transport layer is an electron transport layer, and the other is a hole transport layer.
  • forming the first carrier transport layer specifically includes:
  • the initial carrier transport layer comprising the nanoparticle and an organic ligand connected to the surface of the nanoparticle;
  • a first solution layer containing the inorganic ligands is formed on the initial carrier transport layer, so that ligand exchange occurs between the first solution layer and the initial carrier transport layer, and the result is obtained including the first solution layer.
  • the preparation method further includes:
  • the light-emitting layer is formed in the accommodating groove
  • the preparation method further includes: removing the sacrificial layer.
  • forming an accommodating groove on the sacrificial layer specifically includes:
  • the sacrificial layer is etched by oxygen plasma to form the receiving groove.
  • 1a is a plan view of a display substrate in an example
  • FIG. 1b is a schematic diagram of a light-emitting device in an example
  • FIG. 1c is a schematic diagram of preparing a light-emitting device in an example
  • FIG. 2a is a schematic structural diagram of a light-emitting device according to an embodiment of the present disclosure
  • FIG. 2b is a schematic structural diagram of another light-emitting device according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of a specific structure of a light-emitting device provided by an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a display substrate provided by an embodiment of the present disclosure.
  • FIG. 5 is one of the flow charts of the preparation method provided by the embodiment of the present disclosure.
  • FIG. 6 is the second flow chart of the method for fabricating a light-emitting device provided by an embodiment of the present disclosure
  • FIG. 7a to 7g are schematic diagrams of the preparation process of the light-emitting device provided by the embodiments of the present disclosure.
  • FIG. 8 is a flowchart of a method for fabricating a display substrate according to an embodiment of the present disclosure
  • FIGS. 9 a to 9 f are schematic diagrams of a manufacturing process of a display substrate according to an embodiment of the present disclosure.
  • FIG. 1a is a plan view of a display substrate in an example.
  • the display substrate has a display area AA and a non-display area NA located outside the display area AA.
  • a plurality of scan lines GL and a plurality of data lines DL are set in the display area AA; the intersection of the plurality of scan lines GL and the plurality of data lines DL define a plurality of sub-pixels.
  • every three adjacent sub-pixels in the row direction form a pixel unit, and three adjacent sub-pixels (for example, red sub-pixel R, green sub-pixel G, and blue sub-pixel B) are used to display different sub-pixels. color.
  • the sub-pixels located in the same row are provided with scan signals by the same scan line GL
  • the sub-pixels located in the same column are provided with data voltage signals by the same data line DL.
  • a gate driving circuit and a driving chip may be provided in the non-display area NA, the scan line GL is connected to the gate driving circuit, and the data line DL is connected to the driving chip.
  • Each sub-pixel includes a light emitting device and a pixel circuit, the pixel circuit is connected to the scan line GL and the data line DL, and the pixel circuit is configured to provide a driving signal to the light emitting device according to the electrical signals provided by the scan line GL and the data line DL, so that the light emitting device to display.
  • the pixel circuit includes at least a write transistor and a drive transistor, the gate of the write transistor is connected to the scan line GL, and the write transistor is configured to respond to the control of the scan signal provided by the scan line GL, to the data voltage provided by the data line DL
  • the signal is transmitted to the gate of the driving transistor, and the driving transistor provides a driving current to the light-emitting device according to the voltage difference between the gate and the first electrode, so that the light-emitting device displays.
  • both the writing transistor and the driving transistor may be thin film transistors, and the thin film transistor includes a gate electrode, a first electrode and a second electrode, wherein one of the first electrode and the second electrode is a source electrode, and the other is the drain.
  • FIG. 1 b is a schematic diagram of a light-emitting device in an example.
  • the light-emitting device includes a substrate 11 , a carrier transport layer 12 and a light-emitting layer 13 arranged in sequence along a direction away from the substrate 11 .
  • the light-emitting device may also include other film layers such as electrodes, which are not shown in FIG. 1b.
  • the light-emitting layer 13 may be a quantum dot layer.
  • FIG. 1 c is a schematic diagram of preparing a light-emitting device in an example. As shown in FIG.
  • the carrier transport layer 12 when preparing the light-emitting layer 13 , the carrier transport layer 12 may be formed on the substrate 11 first; A sacrificial layer 14 is formed on one side of the film; then a patterning process is used to form an accommodating groove H on the sacrificial layer 14, and a light-emitting layer 13 is formed in the accommodating groove H; finally, the sacrificial layer 14 is removed to obtain a patterned light-emitting layer 13.
  • the carrier transport layer 12 includes nanoparticles (for example, the carrier transport layer can be an electron transport layer, and the nanoparticles can be zinc oxide nanoparticles) and ligands (ligands, also called ligands) connected to the surface of the nanoparticles.
  • the carrier transport layer 12 may be an electron transport layer
  • the nanoparticles may be zinc oxide nanoparticles.
  • the ligands are generally organic ligands, such as ethanolamine, which are used to protect the nanoparticles from direct exposure of the nanoparticles.
  • the material of the sacrificial layer 14 is usually made of organic materials.
  • a dry etching process is usually used. Specifically, oxygen plasma is generally used for dry etching. Due to the characteristics of chemical reaction, the material of the sacrificial layer 14 can react with oxygen plasma to form gas and volatilize.
  • the sacrificial layer 14 needs to be over-etched to be etched cleanly, so the oxygen plasma will inevitably contact the surface of the carrier transport layer 12, and the organic ligands connected to the surface of the nanoparticles will also react with the oxygen plasma And generate gas volatilization, resulting in the absence of organic ligands on the surface of nanoparticles (for example, when the organic ligand is ethanolamine, the organic ligand reacts with oxygen plasma to generate: carbon dioxide, nitrogen dioxide and water), which will make The performance of the carrier transport layer 12 is affected, which eventually increases the turn-on voltage of the light-emitting device and reduces the efficiency of the light-emitting device.
  • FIG. 2a is a schematic structural diagram of the light-emitting device provided by the embodiment of the present disclosure.
  • the light-emitting device includes: a substrate 21, a first carrier transport layer 22 and the light-emitting layer 23.
  • the first carrier transport layer 22 is provided on the substrate 21 .
  • the light emitting layer 23 is disposed on the side of the first carrier transport layer 22 away from the substrate 21 .
  • the first carrier transport layer 22 includes a first transport sub-layer 222 close to the light-emitting layer 23 , the first transport sub-layer 222 includes nanoparticles 222 a and inorganic ligands 222 b connected to the surface of the nanoparticles 222 a, and the inorganic ligands 222 b Contains halogen elements or oxygen elements.
  • the first carrier transport layer 22 may be an electron transport layer or a hole transport layer.
  • the nanoparticles 222a in the first transport sublayer 222 may be zinc oxide nanoparticles.
  • the light-emitting layer 23 may be an organic light-emitting layer or a quantum dot layer.
  • the quantum dot layer may include an inorganic quantum dot material, specifically, cadmium sulfide (CdS), which will be described in detail below, and will not be repeated here.
  • the inorganic ligands 222b including halogen elements will not generate oxygen plasma reaction.
  • the inorganic ligand 222b containing an oxygen group element is divided into the following two cases: the first case is that the inorganic ligand 222b contains oxygen element, and the oxygen element is in a saturated state in the inorganic ligand 222b, in this case, the inorganic ligand 222b is in a saturated state.
  • the ligand 222b will no longer react with the oxygen plasma; in the second case, the inorganic ligand 222b contains an oxygen element but the oxygen element is in an unsaturated state in the inorganic ligand 222b, or the inorganic ligand 222b contains a non-oxygen element, In this case, the inorganic ligand 222b undergoes an oxidative reaction with the oxygen plasma, but this does not result in ligand loss of the nanoparticles. For example, when the inorganic ligand 222b includes MoO 3 ⁇ , the oxygen plasma reacts with MoO 3 ⁇ to oxidize it to MoO 4 ⁇ , which does not result in ligand loss of the nanoparticles.
  • the sacrificial layer is etched with oxygen plasma, even if the oxygen plasma is in contact with the surface of the first carrier transport layer 22 (specifically, in contact with the first transport sublayer 222 ), the first carrier transports
  • the layer 22 also does not suffer from the problem of lack of ligands, thereby improving the problem of the reduction of the efficiency of the light-emitting device due to the lack of ligands.
  • FIG. 3 is a schematic diagram of the specific structure of the light-emitting device provided by the embodiment of the present disclosure.
  • the light-emitting device includes: a substrate 21 , along The first electrode 24 , the first carrier transport layer 22 , the light emitting layer 23 , the second carrier transport layer 25 and the second electrode 26 are arranged in this order in the direction away from the substrate 21 .
  • the light emitting device may be a top light emitting structure or a bottom light emitting structure, which may be determined according to actual needs, and is not limited herein.
  • the second electrode 26 can be made of a light-transmitting material or a semi-light-transmitting material, specifically, an indium tin oxide (Indium Tin Oxide, ITO) material or a metal material with a smaller thickness;
  • An electrode 24 can be made of a metal material, such as copper.
  • the first electrode 24 can be made of a light-transmitting material
  • the second electrode 26 can be made of a metal material.
  • the light emitting device can be a vertical structure or an inverted structure.
  • the first electrode 24 is an anode
  • the second electrode 26 is a cathode
  • the first carrier transport layer 22 is a hole transport layer
  • the second carrier transport layer 25 is an electron transport layer
  • the first electrode 24 is a cathode
  • the second electrode 26 is an anode
  • the first carrier transport layer 22 is an electron transport layer
  • the second carrier transport layer 25 is a hole transport layer.
  • the light emitting device further includes: a hole injection layer 27 . Taking the inverted structure of the light emitting device as an example, the hole injection layer 27 is disposed on the side of the second carrier transport layer 25 away from the light emitting layer 23 .
  • the light emitting layer 23 may be a quantum dot layer.
  • the material of the quantum dot layer may include inorganic quantum dot materials, such as cadmium sulfide (CdS), cadmium selenide (CdSe), cadmium antimonide (CdTe), zinc selenide (ZnSe), indium phosphide (InP), Lead (PbS), Copper Indium Sulfur (CuInS 2 ), Zinc Oxide (ZnO), Cesium Lead Chloride (CsPbCl 3 ), Cesium Lead Bromide (CsPbBr 3 ), Cesium Lead Iodide (CsPbI 3 ), Cadmium Sulfide/Sulfide Zinc (CdS/ZnS), Cadmium Selenide/Zinc Sulfide (CdSe/ZnS), Zinc Selenide (ZnSe), Indium Phosphide/Zinc Sulfide
  • CdS cadmi
  • the material of the quantum dot layer may be a material that does not contain cadmium.
  • the material of the hole injection layer 27 may include poly(3,4-ethylenedioxythiophene)-polystyrene sulfonic acid (PEDOT/PSS); the material of the hole transport layer may be These include poly(9,9-dioctylfluorene-co-N-(4-butylphenyl)diphenylamine) (TFB), or polyvinylcarbazole (PVK).
  • the material of the electron transport layer may include one or more of zinc oxide, magnesium zinc oxide, aluminum zinc oxide, zinc lithium zinc oxide, titanium oxide, and aluminum oxide.
  • the electron transport layer may be zinc oxide. Nanoparticle films, or zinc oxide sol-gel films, etc.
  • the first carrier transport layer 22 is a hole transport layer.
  • the material of the hole transport layer may include one of nickel oxide, tungsten oxide, cuprous oxide, and molybdenum oxide. species or several.
  • the hole transport layer may be a nickel oxide nanoparticle film, a nickel oxide sol-gel film, or the like.
  • the entirety of the first carrier transport layer 22 may serve as the first transport sublayer 222 .
  • FIG. 2b is a schematic structural diagram of another light-emitting device provided by an embodiment of the present disclosure.
  • the first carrier transport layer 22 may further include a second transport sublayer 221, wherein the second transport sublayer 221 It is located on the side of the first transport sub-layer 222 away from the light-emitting layer 23 .
  • Both the first transport sublayer 222 and the second transport sublayer 221 may include nanoparticles 222a and ligands connected to the surface of the nanoparticles 222a, wherein the second transport sublayer 221 does not contain inorganic ligands.
  • the ligands in the transport sublayer 221 are all organic ligands, and the organic ligands may include ethanolamine, for example.
  • the ligands in the first transport sublayer 222 are inorganic ligands 222b, and the inorganic ligands 222b in the first transport sublayer 222 may specifically include: halogen elements; or, halogen elements and metal elements; or, oxygen elements and metal elements.
  • the general formula of the inorganic ligand 222b is B ⁇ , where B is a halogen element.
  • B may specifically include any one of iodine (I), chlorine (Cl), bromine (Br), and fluorine (F).
  • the inorganic ligand 222b may be I ⁇ .
  • the general formula of the inorganic ligand 222b is AB x y- , A is a metal element, and B is a halogen element.
  • A specifically may include any one of zinc (Zn), cadmium (Cd), mercury (Hg), copper (Cu), silver (Ag), and gold (Au).
  • x and y are both positive integers.
  • the specific combination form of the above elements can be determined according to actual needs, and the embodiments of the present disclosure will not list them one by one, as long as the combination form of the above elements can satisfy the general formula AB x y- .
  • the preparation process of the first carrier transport layer 22 is described by taking the inorganic ligand 222b as CdCl 4 - as an example.
  • an ethanol solution containing zinc oxide nanoparticles can be formed on the first electrode 24 first, and the solution is solidified to form an initial carrier transport layer.
  • the initial carrier transport layer includes zinc oxide nanoparticles and organic ligands connected to the surface of the zinc oxide nanoparticles, such as ethanolamine.
  • a first solution layer containing inorganic ligands 222b is formed on the initial carrier transport layer, for example, the first solution layer may be N,N-dimethylformamide of [Ph 2 I] 2 [CdCl 4 ] solution.
  • the first solution layer and the initial carrier transport layer undergo ligand exchange, that is, the CdCl 4 - in the first solution layer replaces the ethanolamine in the initial carrier transport layer, so that CdCl 4 - Inorganic ligands 222b as zinc oxide nanoparticles, thereby obtaining a first carrier transport layer 22 comprising a first transport sublayer 222.
  • a portion of the initial carrier transport layer can be The solution layer undergoes ligand exchange, while the other part does not undergo ligand exchange with the first solution layer, thereby obtaining the first carrier transport layer 22 including the first transport sublayer 222 and the second transport sublayer 221 .
  • the general formula of the inorganic ligand includes: MJ x y- or M z J x y- ; wherein, J is an oxygen group element, M is a metal element, x, y and z are positive integers.
  • J may specifically include: any one of oxygen (O), sulfur (S), selenium (Se), and tellurium (Te)
  • M may specifically include: molybdenum (Mo), chromium (Cr), tungsten (W), Iron (Fe), Ruthenium (Ru), Osmium (Os), Cobalt (Co), Rhodium (Rh), Aluminum (Al), Gallium (Ga), Indium (In), Germanium (Ge), Tin (Sn), Any one of lead (Pb), antimony (Sb), and bismuth (Bi).
  • the inorganic ligands 222b in the first carrier transport layer 22 can be obtained in the following manner: Mode 1: Obtained by exchanging a first solution containing the inorganic ligands 222b with the first carrier transport layer 22 for ligands.
  • Method 2 First, a second solution containing the initial inorganic ligands is formed on the first carrier transport layer 22, and the second solution is firstly exchanged with the first carrier transport layer 22 for ligands to obtain the initial inorganic ligands.
  • the initial carrier transport layer is obtained; then the initial inorganic ligand is oxidized to obtain the final inorganic ligand 222b.
  • the inorganic ligand 222b is obtained by oxidizing an initial inorganic ligand including oxygen elements and metal elements; or, the inorganic ligand 222b is obtained by an initial inorganic ligand including a non-oxygen element and a metal element in the oxygen group element. body after oxidation.
  • the general formula of the initial inorganic ligand may be M'J' x y- , wherein M' is a metal element , M' may specifically include molybdenum (Mo), chromium (Cr), tungsten (W), iron (Fe), ruthenium (Ru), osmium (Os), cobalt (Co), rhodium (Rh), aluminum (Al) , any one of gallium (Ga) and indium (In), J' is oxygen (O), and in the initial inorganic ligand, oxygen is in an unsaturated state.
  • the general formula of the inorganic ligand 222b is MJ x y- , wherein M is a metal element, which may specifically include molybdenum (Mo), chromium (Cr), tungsten (W), iron (Fe), ruthenium (Ru), osmium ( Any of Os), cobalt (Co), rhodium (Rh), aluminum (Al), gallium (Ga), and indium (In), and J includes oxygen (O).
  • Mo molybdenum
  • Cr chromium
  • W tungsten
  • Fe iron
  • Ru ruthenium
  • osmium Any of Os
  • Rhodium (Rh) aluminum
  • Al aluminum
  • Ga gallium
  • In indium
  • J includes oxygen (O).
  • x and y are both positive integers.
  • the inorganic ligand 222b is the inorganic ligand obtained after the above-mentioned initial inorganic ligand is oxidized, and the embodiments of the present disclosure will not list them one by one.
  • the preparation process of the first carrier transport layer 22 is described by taking the inorganic ligand 222b as MoO 4 - as an example.
  • an ethanol solution containing zinc oxide nanoparticles can be formed on the first electrode 24 and cured to obtain an initial carrier transport layer.
  • the initial carrier transport layer includes zinc oxide nanoparticles and organic ligands connected to the surface of the zinc oxide nanoparticles, and the organic ligand can be, for example, ethanolamine.
  • a second solution layer containing an initial inorganic ligand is formed on the initial carrier transport layer, for example, the initial inorganic ligand may be MoO 3 ⁇ , and the second solution layer may be a N-methylpyrrolidone solution of NaMoO 3 .
  • the second solution layer exchanges ligands with the initial carrier transport layer, that is, MoO 3 - in the second solution layer replaces ethanolamine in the initial carrier transport layer, so that MoO 3 - serves as the initial inorganic ligand of ZnO nanoparticles; in subsequent process steps, the initial inorganic ligand can be oxidized by the oxygen plasma used for etching the sacrificial layer, that is, the MoO 3 - is oxidized to MoO 4 ⁇ , so that MoO 4 ⁇ is used as the inorganic ligand 222b of the zinc oxide nanoparticle, thereby obtaining the first carrier transport layer 22 including the first transport sublayer 222 .
  • a portion of the initial carrier transport layer can be made to interact with the The second solution layer undergoes ligand exchange, while the other part does not undergo ligand exchange with the second solution layer, thereby obtaining the first carrier transport layer 22 including the first transport sublayer 222 and the second transport sublayer 221 .
  • the general formula of the initial inorganic ligand may be M' z J' x y- , wherein M 'includes metal elements, and specifically may include any one of germanium (Ge), tin (Sn), lead (Pb), antimony (Sb) and bismuth (Bi), and J' includes sulfur (S), selenium (Se) , Tellurium (Te) and so on.
  • the general formula of the inorganic ligand 222b may be M z J x y- .
  • M includes a metal element, and may specifically include any one of germanium (Ge), tin (Sn), lead (Pb), antimony (Sb), and bismuth (Bi), and J includes oxygen (O).
  • the inorganic ligands 222b are inorganic ligands obtained after the above-mentioned initial inorganic ligands are oxidized, and are not listed one by one in the embodiments of the present disclosure.
  • the preparation process of the first carrier transport layer 22 is described by taking the inorganic ligand 222b as Sn 2 O 3 2- as an example.
  • an ethanol solution containing zinc oxide nanoparticles may be first formed on the first electrode 24 and cured to obtain an initial carrier transport layer.
  • the initial carrier transport layer includes zinc oxide nanoparticles and organic ligands connected to the surface of the zinc oxide nanoparticles, and the organic ligand can be, for example, ethanolamine.
  • a second solution layer containing initial inorganic ligands is formed on the initial carrier transport layer
  • the initial inorganic ligands may be Sn 2 S 3 2 ⁇
  • the second solution layer may be Na 2 Sn 2 S 3 N-methylpyrrolidone solution.
  • the initial inorganic ligands may be partially oxidized or fully oxidized.
  • the inorganic ligands 222b in the first carrier transport layer 22 include Oxygen elements, non-oxygen elements and metal elements in the oxygen group elements; when the initial inorganic ligands are all oxidized, the inorganic ligands 222b in the first carrier transport layer 22 include oxygen elements and metal elements.
  • the inorganic ligands 222b may also include oxygen elements and non-metal elements, and the non-metal elements may be, for example, arsenic (As) or phosphorus (P).
  • the inorganic ligands 222b in the first carrier transport layer 22 can be obtained by: passing the first solution containing the inorganic ligands 222b with the first carriers The transport layer 22 is obtained by performing ligand exchange; or, a second solution containing initial inorganic ligands is formed on the first carrier transport layer 22, and the second solution is ligand-exchanged with the first carrier transport layer 22.
  • the initial inorganic ligands include oxygen elements and non-metallic elements.
  • the general formula of the initial inorganic ligand may be Q'R' x y- , wherein Q' is a non-metal element, Q' may specifically include arsenic (As) or phosphorus (P), and R' is an oxygen group element , specifically oxygen (O), sulfur (S), selenium (Se), and tellurium (Te).
  • the general formula of the inorganic ligand 222b is QR x y- , wherein Q is a non-metal element, specifically, arsenic (As) or phosphorus (P), and R includes oxygen (O).
  • Q is a non-metal element, specifically, arsenic (As) or phosphorus (P), and R includes oxygen (O).
  • x and y are both positive integers, and the specific preparation process is similar to the preparation method in the embodiment in which the initial inorganic ligand includes oxygen element and metal element, and is not repeated here.
  • FIG. 4 is a schematic structural diagram of the display substrate provided by an embodiment of the present disclosure. As shown in FIG. At least one uses the light emitting device in the above-described embodiments.
  • the first transport sub-layer 222 in contact with the oxygen plasma does not suffer from the problem of missing ligands, thereby improving the efficiency of the light-emitting device due to the missing ligands falling problem.
  • each of the plurality of light emitting devices in the display substrate adopts the light emitting device in the above embodiment, and the plurality of light emitting devices includes a plurality of first light emitting devices and a plurality of second light emitting devices.
  • the first light-emitting device may be of a less-electron system
  • the second light-emitting device may be of a multi-electron system. That is, for the first light-emitting device, when the above-mentioned inorganic ligand is not used, the number of electrons reaching the light-emitting layer 23 per unit time may be less than the number of holes, and the number of electrons reaching the light-emitting layer 23 per unit time is the same as that of the holes. The ratio of the number of holes may not be within the preset range.
  • the number of electrons reaching the light-emitting layer 23 per unit time may be more than the number of holes, and the number of electrons reaching the light-emitting layer 23 per unit time and the number of holes are different.
  • the ratio may not be in the preset range.
  • the preset range is defined as the ratio of the number of electrons reaching the light-emitting layer 23 per unit time to the number of holes when the luminous efficiency of the light-emitting device reaches a desired value.
  • the electron-hole injection imbalance may be caused.
  • the ligands of the nanoparticles 222a in the first transport sublayer 222 in the light-emitting device L are the inorganic ligands 222b, compared with the scheme using organic ligands in the traditional light-emitting device, the chains of the inorganic ligands 222b Therefore, the carrier transport rate of the first carrier transport layer 22 is increased, thereby increasing the number of carriers reaching the light-emitting layer 23 per unit time.
  • the first carrier transport layer 22 of the first light emitting device is an electron transport layer
  • the electron transport rate of the first light emitting device increases, so that the first light emitting device can be
  • the ratio of the number of electrons to the number of holes reaching the light-emitting layer 23 per unit time is within a preset range, so that the first light-emitting device achieves an electron-hole injection balance.
  • each light-emitting device L in the implementation of the present disclosure, the structure of each light-emitting device is set according to the following methods: changing the thickness of the first carrier transport layer 22, or, in the light-emitting A carrier blocking layer 28 is added in the device L to adjust the carrier transfer rate, so that in each light-emitting device L, the ratio of the number of electrons to the number of holes per unit time reaching the light-emitting layer 23 is within a preset range, and the electron-empty ratio is reached. Acupoint injection balance.
  • the light-emitting device L includes a substrate 21 , a first electrode 24 , a first carrier transport layer 22 , and a light-emitting layer arranged in sequence along a direction away from the substrate 21 . 23 .
  • the second carrier transport layer 25 and the second electrode 26 The first electrode 24 is a cathode, the second electrode 26 is an anode, the first carrier transport layer 22 is an electron transport layer, and the second carrier transport layer 25 is a hole transport layer; A hole injection layer 27 may also be provided between the layer and the second electrode 26 .
  • an electron blocking layer (ie, the carrier blocking layer 28 in FIG. 4 ) may be provided in a plurality of second light emitting devices, and the electron blocking layer is located between the electron transport layer and the light emitting layer of the second light emitting device between 23.
  • the electron blocking layer can slow down the electron transfer rate, so that in the second light-emitting device, the ratio of the number of electrons to the number of holes reaching the light-emitting layer 23 per unit time is within a preset range, and the electron-hole injection balance is achieved.
  • the number of electrons reaching the light-emitting layer per unit time is originally lower than the number of holes.
  • the electrons of the first transport sublayer 222 in the first light-emitting device is the inorganic ligand 222b
  • the electrons The increase in the transmission rate is beneficial for the first light-emitting device to reach the electron-hole injection balance. Therefore, an electron blocking layer does not need to be provided in the first light-emitting device.
  • the electron blocking layer can be prepared by using a photosensitive material, for example, acrylic, epoxy, isoprene, azide and the like. In this way, the electron blocking layer can be formed only in the second light emitting device after exposure and development using a photolithography process.
  • the thickness of the first carrier transport layer 22 of each of the plurality of second light emitting devices is greater than that of the plurality of first light emitting devices The thickness of the first carrier transport layer 22 of each of the devices.
  • the electron transport rate can also be slowed down, so that the second light emitting device can reach the electron-hole injection balance.
  • the carrier transport rate in the light-emitting device L can also be adjusted by adjusting the doping concentration of the inorganic ligand 222b in the light-emitting device L.
  • the doping concentration may, for example, refer to the ratio of the mass of the inorganic ligand to the mass of the nanoparticles in the first carrier transport layer.
  • the doping concentration of the inorganic ligand 222b in the second light emitting device in the first carrier transport layer 22 is smaller than the doping concentration of the inorganic ligand 222b in the first light emitting device in the first carrier transport layer 22 impurity concentration.
  • the inorganic ligands 222b in the electron transport layer can improve the electron transport rate, less inorganic ligands 222b are arranged in the electron transport layer in the second light-emitting device to prevent the addition of inorganic ligands After that, the electron transport rate rises too much, resulting in an electron-hole injection imbalance.
  • more inorganic ligands 222b are arranged in the electron transport layer in the first light-emitting device, so that the electron transport rate of the first light-emitting device can be increased, so that the number of electrons reaching the light-emitting layer 23 per unit time is increased, and the unit of The ratio of the number of electrons to the number of holes reaching the light-emitting layer 23 by time is within a preset range, and the electron-hole injection balance is achieved.
  • the ligand exchanged for the first carrier transport layer 22 by controlling the concentration of the inorganic ligand 222b in the solution formed on the first carrier transport layer 22, and/or The ligand exchange time is controlled to control the doping concentration of the inorganic ligand 222 b in the finally formed first carrier transport layer 22 .
  • the ligand exchange time for the first light-emitting device is longer (or the concentration of the inorganic ligand 222b in the solution is higher), while the ligand exchange time for the second light-emitting device is shorter (or the inorganic ligand 222b is The concentration in the solution is less), so that the doping concentration of the inorganic ligands 222b in the second light-emitting device in the first carrier transport layer 22 is smaller than that of the inorganic ligands 222b in the first light-emitting device.
  • a doping concentration in the carrier transport layer 22 is longer (or the concentration of the inorganic ligand 222b in the solution is higher), while the ligand exchange time for the second light-emitting device is shorter (or the inorganic ligand 222b is The concentration in the solution is less), so that the doping concentration of the inorganic ligands 222b in the second light-emitting device in the first carrier transport layer 22 is smaller than that of the inorganic
  • the light-emitting device L may also be an upright structure.
  • the light-emitting device L includes a substrate 21 and a first electrode 24, a first carrier transport layer 22, a first electrode 24, a first carrier transport layer 22, The light emitting layer 23 , the second carrier transport layer 25 and the second electrode 26 .
  • the first electrode 24 is an anode
  • the second electrode 26 is a cathode
  • the first carrier transport layer 22 is a hole transport layer
  • the second carrier transport layer 25 is an electron transport layer
  • a hole injection layer may also be provided between the layer and the first electrode 24 .
  • a hole blocking layer can be arranged between the first carrier transport layer 22 and the light emitting layer 23 of the first light emitting device, which can slow down the hole transport rate in the first light emitting device, so that the In the first light-emitting device, the ratio of the number of electrons to the number of holes reaching the light-emitting layer 23 per unit time is within a preset range, so that the first light-emitting device achieves an electron-hole injection balance.
  • the thickness of the first carrier transport layer 22 of each first light emitting device is greater than the thickness of the first carrier transport layer 22 of each second light emitting device.
  • the hole transport rate of the first light-emitting device can also be slowed down, so that the number of holes reaching the light-emitting layer 23 per unit time is reduced, thereby making the middle of the first light-emitting device,
  • the ratio of the number of electrons to the number of holes reaching the light-emitting layer 23 per unit time is within a preset range, and the electron-hole injection balance is achieved.
  • the carrier transport rate in the light-emitting device L can also be adjusted by adjusting the doping concentration of the inorganic ligand 222b in the light-emitting device L.
  • the doping concentration of the inorganic ligand 222b in the second light emitting device in the first carrier transport layer 22 is greater than the doping concentration of the inorganic ligand 222b in the first light emitting device in the first carrier transport layer 22 impurity concentration.
  • the inorganic ligands 222b in the hole transport layer can improve the hole transport rate, less inorganic ligands 222b are arranged in the hole transport layer in the first light-emitting device to prevent the addition of the inorganic ligands 222b. After inorganic ligands, the hole transport rate rises too much resulting in electron-hole injection imbalance. However, more inorganic ligands 222b are arranged in the hole transport layer in the second light-emitting device, so that the hole transport rate of the second light-emitting device can be improved, so that the second light-emitting device can reach the light-emitting layer 23 per unit time in the second light-emitting device.
  • the number of holes increases, so that the ratio of the number of electrons reaching the light-emitting layer 23 to the number of holes per unit time is within a preset range, and the electron-hole injection balance is achieved.
  • each of the above-mentioned first light-emitting devices may be a blue quantum dot light-emitting device Lb
  • the plurality of second light-emitting devices may include a plurality of red quantum dot light-emitting devices Lr and /or a plurality of green quantum dot light-emitting devices Lg.
  • the blue quantum dot light-emitting device Lb is a less-electron system
  • the red quantum dot light-emitting device Lr and the green quantum dot light-emitting device Lg are a multi-electron system.
  • the number of electrons reaching the light-emitting layer 23 per unit time may be less than the number of holes, and the number of electrons reaching the light-emitting layer 23 per unit time may be less than the number of holes.
  • the ratio of the number to the number of holes may not be in the preset range.
  • the number of electrons reaching the light-emitting layer 23 per unit time may be more than the number of holes, and the number of electrons reaching the light-emitting layer per unit time may be greater than the number of holes.
  • the ratio of the number of electrons to the number of holes of 23 may not be within the preset range.
  • the first carrier transport layer 22 is an electron transport layer.
  • the electron transport rate of the blue quantum dot light-emitting device Lb is increase, so that in the blue quantum dot light-emitting device Lb, the ratio of the number of electrons to the number of holes that reach the light-emitting layer 23 per unit time is within a preset range, thereby making the blue quantum dot light-emitting device Lb reach electron-hole injection balance .
  • each light-emitting device L achieve electron-hole injection balance, according to the description of the structure of the first light-emitting device and the second light-emitting device, the blue quantum dot light-emitting device Lb and the red quantum dot light-emitting device Lr It is set with the structure of the green quantum dot light-emitting device Lg, and details are not repeated here.
  • the doping concentrations of the inorganic ligands 222b in the plurality of second light-emitting devices may be the same or different, which may be determined according to actual needs, and are not limited herein.
  • the plurality of second light emitting devices include a plurality of red quantum dot light emitting devices Lr and a plurality of green quantum dot light emitting devices Lg
  • the doping concentration of the inorganic ligand 222b in the red quantum dot light emitting device Lr can be made smaller than that of the green quantum dot light emitting device Lr Doping concentration of the inorganic ligand 222b in the quantum dot light-emitting device Lg.
  • Embodiments of the present disclosure also provide a display device, which can be any product or component with a display function, such as electronic paper, mobile phone, tablet computer, TV, monitor, notebook computer, digital photo frame, and navigator.
  • the display device includes: the above-mentioned display substrate.
  • FIG. 5 is one of the flow charts of the preparation method provided by the embodiment of the present disclosure. As shown in FIG. 5 , the preparation method includes the following steps:
  • the first carrier transport layer includes a first transport sublayer close to the light-emitting layer, the first transport sublayer includes nanoparticles and inorganic ligands connected to the surface of the nanoparticles, and the inorganic ligands include halogen elements or oxygen elements .
  • the first transport sub-layer in contact with the oxygen plasma will not suffer from the problem of missing ligands, thereby improving the L efficiency of the light-emitting device due to the missing ligands falling problem.
  • the entire first carrier transport layer may serve as the first transport sublayer, or the first carrier transport layer may further include a second transport sublayer, wherein the second transport sublayer is located in the first transport sublayer The transport sublayer is on the side away from the light-emitting layer.
  • Both the first transport sublayer and the second transport sublayer may include nanoparticles and ligands connected on the surface of the nanoparticles, wherein the second transport sublayer does not contain inorganic ligands, for example, the second transport sublayer
  • the ligands are all organic ligands, which may include, for example, ethanolamine.
  • the ligands in the first transport sublayer are inorganic ligands, and the inorganic ligands in the first transport sublayer may specifically include: halogen elements; or halogen elements and metal elements; or oxygen group elements and metal elements.
  • the light emitting device may be an upright structure or an inverted structure.
  • the first electrode is an anode
  • the second electrode is a cathode
  • the first carrier transport layer is a hole transport layer
  • the second carrier transport layer is an electron transport layer
  • the light-emitting device may further include: a hole injection layer. Taking the light-emitting device as an example of an inverted structure, the hole injection layer is disposed on the side of the second carrier transport layer away from the light-emitting layer.
  • the inorganic ligand 222b includes halogen elements and metal elements, and exemplarily, the inorganic ligand 222b is CdCl 4 ⁇ .
  • 6 is the second flow chart of the method for manufacturing a light-emitting device provided by the embodiment of the present disclosure
  • FIGS. 7a to 7g are schematic diagrams of the manufacturing process of the light-emitting device provided by the embodiment of the present disclosure.
  • the preparation method of the light-emitting device provided by the embodiment of the present disclosure includes the following steps:
  • the first electrode 24 may be a cathode, the material of the first electrode 24 may include metal, and the light emitting device L may be a bottom emission structure or a top emission structure, which is determined according to actual needs and is not limited herein.
  • the first electrode 24 can be made of a transparent metal material, such as indium tin oxide; when the light emitting device L has a top emission structure, the first electrode 24 can be made of a non-transparent metal material, such as copper .
  • the first electrode 24 may be formed by a process such as evaporation or sputtering.
  • the substrate 21 on which the first electrode 24 is formed isopropyl alcohol, water, acetone solution can be used, and the substrate 21 forming the first electrode 24 can be cleaned by ultrasonic waves. Further, the substrate 21 on which the first electrode 24 is formed may also be treated by ultraviolet UV light, and the duration may be set to 5 min to 10 min.
  • the first carrier transport layer 22 is an electron transport layer.
  • the electron transport layer includes a zinc oxide nanoparticle film, and forming the zinc oxide nanoparticle film may specifically be: spin-coating an ethanol solution containing zinc oxide nanoparticles on the side of the first electrode 24 away from the substrate 21 to obtain Zinc oxide nanoparticle films.
  • the concentration of the ethanol solution containing zinc oxide nanoparticles is 30 mg/ml
  • the ligand is the organic ligand 222c, such as ethanolamine.
  • the spin coating speed is set between 2000 rpm and 4000 rpm, eg 3000 rpm.
  • the N,N-dimethylformamide solution of [Ph 2 I] 2 [CdCl 4 ] was added dropwise on the ZnO nanoparticle film, and the N,N-dimethynium of [Ph 2 I] 2 [CdCl 4 ]
  • the methylformamide solution has a concentration of 5 mg/ml to 20 mg/ml, eg, 10 mg/ml. Let stand for 30 s for ligand exchange. Spin-coating is then performed to obtain the initial carrier transport layer, and the spin-coating speed can be set between 1000 rpm and 3000 rpm, for example, 2000 rpm. After annealing, the first carrier transport layer 22 is obtained.
  • the annealing temperature can be set at 60°C to 180°C, eg, 120°C, and the annealing time can be set at 5 minutes to 15 minutes, eg, 10 minutes.
  • the entire first carrier transport layer can be used as the first transport sublayer; or, the first carrier transport layer can include a first transport sublayer and a second transport sublayer sublayer.
  • a sacrificial layer 29a on the side of the first carrier transport layer 22 away from the substrate 21, specifically, spin-coating an ethanol solution of polyvinylpyrrolidone on the first carrier transport layer 22 to obtain the sacrificial layer 29a
  • the concentration of polyvinylpyrrolidone can be 10mg/ml
  • the rotation speed of spin coating can be set between 1000rpm and 3000rpm, for example, 2000rpm.
  • a photoresist layer 29b is formed on the side of the sacrificial layer 29a away from the substrate 21.
  • the photoresist layer 29b can be formed by spin coating, the photoresist layer 29b can be made of negative photoresist, and the rotational speed of the spin coating can be set to 3000rpm to 5000rpm, for example, 4000rpm.
  • UV light can be used for exposure
  • the exposure amount is 50mj
  • xylene is used for development
  • the development time can be set at 60s to 12s, for example, 90s, and blow dry after completion.
  • the sacrificial layer 29a is etched to form an accommodating groove for accommodating the light emitting layer 23.
  • the sacrificial layer 29a can be etched by dry method.
  • oxygen plasma in an inductively coupled plasma (Inductively Coupled Plasma, ICP) etching device can be used to etch the material of the sacrificial layer 29a, and the etching time Set between 10s and 30s, eg 20s.
  • the luminescent material layer 23a can be formed by spin coating, specifically, an octane solution can be spin coated, and the octane solution includes cadmium selenide/zinc sulfide (CdSe/ZnS) quantum dots, cadmium selenide/ The ligand of zinc sulfide is octanthiol ligand.
  • concentration of the octane solution is 15 mg/ml, and the rotation speed of the spin coating can be set between 1500 rpm and 3500 rpm, for example, 2500 rpm.
  • the sacrificial layer 29a is removed, thereby removing the luminescent material outside the accommodating groove, thereby obtaining the luminescent layer 23 located in the accommodating groove.
  • the substrate 21 on which the luminescent material layer 23a is formed can be placed in an ethanol solution, and ultrasonically treated with 240W of energy. 29a removed cleanly.
  • Annealing can then be carried out.
  • the annealing temperature may be set at 60° C. to 180° C., for example, the annealing time at 120° C. may be set at 10 minutes to 30 minutes, for example, 20 minutes.
  • a second carrier transport layer 25 that is, a hole transport layer, on the side of the light-emitting layer 23 away from the substrate 21 .
  • the material of the hole transport layer may include poly(9,9-dioctylfluorene-co-N-(4-butylphenyl)diphenylamine) (TFB), or polyvinylcarbazole (PVK).
  • TFB poly(9,9-dioctylfluorene-co-N-(4-butylphenyl)diphenylamine)
  • PVK polyvinylcarbazole
  • a hole transport material may be formed on the light-emitting layer 23 by spin coating or evaporation, and then the hole transport material is cured to obtain a hole transport layer.
  • the material of the hole injection layer 27 may include poly(3,4-ethylenedioxythiophene)-polystyrene sulfonic acid (PEDOT/PSS); in this step, the material of the hole injection layer 27 may be passed through the second carrier transport layer 25 first.
  • the hole injection material is formed by a process such as spin coating or evaporation, and then the hole injection material is cured to obtain the hole injection layer 27 .
  • the second electrode 26 may be an anode.
  • the second electrode 26 may be formed on the side of the hole injection layer 27 away from the substrate 21 by means of evaporation or sputtering.
  • the material of the second electrode 26 may include metals such as aluminum, copper, or silver, and may also include indium tin oxide film or indium zinc oxide.
  • the inorganic ligands 222b include oxygen elements and metal elements.
  • the inorganic ligands 222b are obtained by oxidizing initial inorganic ligands including non-oxygen elements and metal elements in the oxygen group elements.
  • the initial inorganic ligand is Sn 2 S 3 2-
  • the inorganic ligand 222b is Sn 2 O 3 2- .
  • the fabrication process of fabricating the light emitting device also includes steps S21 to S28 in FIG. 6 . Wherein, steps S21 to S23, and steps S26 to S28 refer to the above description.
  • Step S24 may specifically include: firstly spin-coating an ethanol solution containing zinc oxide nanoparticles to form a zinc oxide nano film.
  • the concentration of zinc oxide nanoparticles in the ethanol solution was 30 mg/ml, and the ligand was ethanolamine.
  • the spin coating speed is set between 2000 rpm and 4000 rpm, eg 3000 rpm.
  • the N - methylpyrrolidone solution of Na2Sn2S3 is dropwise added on the zinc oxide film, and the concentration of the N - methylpyrrolidone solution of Na2Sn2S3 is 5mg/ml to 20mg/ml, for example, 10mg/ml ml.
  • the spin-coating speed can be set between 1000 rpm and 3000 rpm, for example, 2000 rpm.
  • the first carrier transport layer 22 is obtained by annealing, the annealing temperature may be set at 60°C to 180°C, eg, 120°C, and the annealing time may be set at 5 minutes to 15 minutes, eg, 10 minutes.
  • the entire first carrier transport layer can be used as the first transport sublayer; or, the first carrier transport layer can include a first transport sublayer and a second transport sublayer sublayer.
  • Step S25 may specifically include the following steps S251b to S256b:
  • the ethanol solution of polyvinylpyrrolidone is spin-coated on the first carrier transport layer 22 to obtain the sacrificial layer 29a.
  • the concentration of polyvinylpyrrolidone may be 10 mg/ml, and the rotational speed of the spin coating may be set between 1000 rpm and 3000 rpm, for example, 2000 rpm.
  • the photoresist layer 29b can be formed by spin coating, the photoresist layer 29b can be made of negative photoresist, and the rotation speed of the spin coating can be set to 3000rpm to 5000rpm, for example, 4000rpm.
  • UV light can be used for exposure
  • the exposure amount is 50mj
  • xylene is used for development
  • the development time can be set at 60s to 12s, for example, 90s, and blow dry after completion.
  • the sacrificial layer 29a is etched to form an accommodation groove for accommodating the light-emitting layer 23, and the initial inorganic ligand is oxidized to obtain the inorganic ligand 222b, that is, Sn 2 S 3 2- is oxidized to Sn 2 O 3 2- .
  • the sacrificial layer 29a can be etched by dry method, specifically, the material of the sacrificial layer 29a can be etched by using oxygen plasma in an inductively coupled plasma etching equipment, and the etching time is set between 20s and 40s , for example 30s.
  • step S255b forming a light-emitting material layer 23a on a side of the first carrier transport layer 22 away from the substrate 21 and a side of the photoresist layer 29b away from the substrate 21.
  • the specific process of this step S255b may be the same as that of the above-mentioned step S255a, which will not be repeated here.
  • step S256b removing the sacrificial layer 29a, thereby removing the luminescent material outside the accommodating groove, and obtaining the luminescent layer 23 in the accommodating groove.
  • the specific process of this step S256b may be the same as that of the above-mentioned step S256a, which will not be repeated here.
  • the inorganic ligand 222b includes oxygen element and metal element.
  • the inorganic ligand 222b is obtained by oxidizing the initial inorganic ligand including oxygen element and metal element in the oxygen group element, The oxygen element in the initial inorganic ligand is in an unsaturated state.
  • the initial inorganic ligand is MoO 3 ⁇
  • the inorganic ligand 222b is MoO 4 ⁇ .
  • the fabrication process of fabricating the light-emitting device also includes steps S21 to S28 in FIG. 6 . Wherein, steps S21 to S23, and steps S26 to S28 refer to the above description.
  • Step S24 may specifically include: spin-coating an ethanol solution containing zinc oxide nanoparticles to form a zinc oxide nanoparticle film.
  • the concentration of zinc oxide nanoparticles in the ethanol solution was 30 mg/ml, and the ligand was ethanolamine.
  • the spin coating speed is set between 2000 rpm and 4000 rpm, eg 3000 rpm.
  • the N-methylpyrrolidone solution of NaMoO 3 is dropwise added on the zinc oxide nanoparticle film, and the concentration of the N-methyl pyrrolidone solution of NaMoO 3 is 5 mg/ml to 20 mg/ml, eg, 10 mg/ml. Let stand for 30 s for ligand exchange.
  • the spin-coating speed can be set between 1000 rpm and 3000 rpm, for example, 2000 rpm.
  • the first carrier transport layer 22 is obtained.
  • the annealing temperature may be set at 60°C to 180°C, eg, 120°C, and the annealing time may be set at 5 minutes to 15 minutes, eg, 10 minutes.
  • the entire first carrier transport layer can be used as the first transport sublayer; alternatively, the first carrier transport layer can include a first transport sublayer and a second transport sublayer sublayer.
  • Step S25 may specifically include the following steps S251c to S256c:
  • the first carrier transport layer 22 may be spin-coated with an ethanol solution of polyvinylpyrrolidone to obtain the sacrificial layer 29a.
  • concentration of polyvinylpyrrolidone may be 10 mg/ml, and the rotational speed of the spin coating may be set between 1000 rpm and 3000 rpm, for example, 2000 rpm.
  • the photoresist layer 29b can be formed by spin coating, the photoresist layer 29b can be made of negative photoresist, and the rotation speed of the spin coating can be set to 3000rpm to 5000rpm, for example, 4000rpm.
  • UV light can be used for exposure
  • the exposure amount is 50mj
  • xylene is used for development
  • the development time can be set at 60s to 12s, for example, 90s, and blow dry after completion.
  • the sacrificial layer 29a is etched to form an accommodation groove for accommodating the light-emitting layer 23, and the initial inorganic ligand is oxidized to obtain the inorganic ligand 222b, that is, MoO 3 - is oxidized to MoO 4 - .
  • the sacrificial layer 29a can be etched by dry method, specifically, the material of the sacrificial layer 29a can be etched by using oxygen plasma in an inductively coupled plasma etching equipment, and the etching time is set between 40s and 60s , for example 50s.
  • step S255c forming a light-emitting material layer 23a on the side of the first carrier transport layer 22 away from the substrate 21 and the side of the photoresist layer 29b away from the substrate 21.
  • the specific process of this step S255c may be the same as the above-mentioned step S255a, which will not be repeated here.
  • step S256c the sacrificial layer 29a is removed, so as to remove the luminescent material outside the accommodating groove, thereby obtaining the luminescent layer 23 located in the accommodating groove.
  • the specific process of this step S256c may be the same as that of the above-mentioned step S256a, which will not be repeated here.
  • the display substrate includes: a plurality of light-emitting devices L, and the plurality of light-emitting devices L include a plurality of first light-emitting devices and a plurality of second light-emitting devices , Exemplarily, each of the plurality of first light emitting devices is a blue quantum dot light emitting device Lb, a part of the plurality of second light emitting devices is a red quantum dot light emitting device Lr, and the other part is a green quantum dot light emitting device Lg.
  • the light-emitting devices L in the above-mentioned embodiments are all used for the plurality of light-emitting devices L.
  • the light-emitting device L is taken as an inverted structure, and the inorganic ligand 222b is CdCl 4 - as an example to describe the preparation method of the display substrate according to the embodiment of the present disclosure.
  • 8 is a flow chart of a method for manufacturing a display substrate provided by an embodiment of the present disclosure
  • FIGS. 9 a to 9 f are schematic diagrams of a manufacturing process of a display substrate provided by an embodiment of the present disclosure, as shown in FIG. 8 and FIGS. 9 a to 9 f
  • the preparation method of the display substrate provided by the embodiment of the present disclosure includes the following steps:
  • the first electrode 24 may be a cathode, and the first electrodes 24 of the plurality of light emitting devices L may be connected into an integrated structure.
  • the material of the first electrode 24 may include metal, and the light emitting device L may be a bottom emission structure or a top emission structure, which is specifically determined according to actual needs, and is not limited herein.
  • the first electrode 24 can be made of a transparent metal material, such as indium tin oxide; when the light emitting device L has a top emission structure, the first electrode 24 can be made of a non-transparent metal material, such as copper .
  • the first electrode 24 may be formed by a process such as evaporation or sputtering.
  • the first carrier transport layer 22 is an electron transport layer.
  • the formation process of the first carrier transport layer 22 can be referred to the above description, which is not repeated here.
  • the process of forming the red light-emitting layer 23r includes the following steps S351a to S355a:
  • an ethanol solution of polyvinylpyrrolidone may be spin-coated on the first carrier transport layer 22, the concentration of polyvinylpyrrolidone may be 10 mg/ml, and the rotation speed of spin coating may be set between 1000rpm and 3000rpm, for example, 2000rpm.
  • the accommodating groove may be formed on the sacrificial layer by dry etching.
  • oxygen plasma in an inductively coupled plasma etching device can be used to etch the sacrificial layer material, and the etching time is set between 10s and 30s, for example, 20s.
  • a carrier blocking layer 28 in the receiving groove corresponding to the red quantum dot light-emitting device Lr which may be an electron blocking layer in particular.
  • a methacrylic acid ethanol solution may be spin-coated on the first carrier transport layer 22 with a concentration of 1 mg/ml to 3 mg/ml, for example, 2 mg/ml; then exposure is performed, and the exposure amount is set to 50 mj; Development is performed using ethanol, and after development, the carrier blocking layer 28 is obtained by annealing.
  • the temperature during annealing can be set at 60°C to 180°C, eg, 120°C; the annealing time can be set at 60s to 120s, eg, 90s.
  • an octane solution containing red quantum dots may be spin-coated on the carrier blocking layer 28 and on the sacrificial layer, and the red quantum dot material includes cadmium selenide/zinc sulfide, and the ligand is an octanethiol ligand;
  • the concentration of the octane solution is 15 mg/ml, and the rotation speed of the spin coating can be set between 1500 rpm and 3500 rpm, for example, 2500 rpm.
  • the substrate on which the red luminescent material layer is formed can be placed in an ethanol solution and subjected to ultrasonic treatment; the energy of the ultrasonic treatment is about 240W, and the treatment time can be set between 2 minutes and 6 minutes, for example, 4 minute.
  • annealing is performed to obtain a display substrate including the red light-emitting layer 23r.
  • the annealing temperature may be set at 60°C to 180°C, for example, 120°C; the annealing time may be set at 10min to 30min, for example, 20min.
  • step S261 is performed to form the green light-emitting layer 23g.
  • the preparation process of the green light-emitting layer 23g is the same as that in steps S351a to S355a, so it is not repeated here.
  • the blue light-emitting layer 23b is formed.
  • the step of forming the blue light-emitting layer 23b may include:
  • N,N-dimethylformamide solution of [Ph 2 I] 2 [CdCl 4 ] is formed on the first carrier transport layer 22 corresponding to the blue quantum dot light-emitting device Lb, wherein,
  • concentration of [Ph 2 I] 2 [CdCl 4 ] in N,N-dimethylformamide can be set at 50 mg/ml to 150 mg/ml, eg 100 mg/ml. Rest for 300 s for ligand exchange, followed by spin coating and annealing.
  • the rotation speed of spin coating can be set between 1000rpm and 3000rpm, for example, 2000rpm.
  • the annealing temperature may be set at 60°C to 180°C, eg, 120°C, and the annealing time may be set at 5 minutes to 15 minutes, eg, 10 minutes.
  • step S352b forming a sacrificial layer on the side of the first carrier transport layer 22 away from the substrate 21, for details, please refer to the description in step S351a, which will not be repeated here.
  • an octane solution including blue quantum dots may be spin-coated on the first carrier transport layer 22 and the sacrificial layer, thereby obtaining a blue light-emitting material layer.
  • the blue quantum dot material can be cadmium selenide/zinc sulfide (CdSe/ZnS), and the ligand is octanethiol ligand; the octane solution concentration is 15mg/ml, and the spin coating speed can be set between 1500rpm and 3500rpm. For example 2500rpm.
  • the sacrificial layer is removed, so that the blue light-emitting material layer in the holding tank of the blue quantum dot light-emitting device Lb is retained, and the blue light-emitting material layer in other areas is removed, thereby obtaining the blue light-emitting layer 23b.
  • the step of removing the sacrificial layer refer to the description in the above step S355a, which is not repeated here.
  • a second carrier transport layer 25 on the light emitting layer of each light emitting device L that is, a hole transport layer.
  • the material of the hole transport layer may include poly(9,9-dioctylfluorene-co-N-(4-butylphenyl)diphenylamine) (TFB), or polyvinylcarbazole (PVK).
  • the hole transport layer is formed by processes such as spin coating or evaporation.
  • the material of the hole injection layer 27 may include poly(3,4-ethylenedioxythiophene)-polystyrene sulfonic acid (PEDOT/PSS); in this step, the hole injection layer 27 is processed by spin coating or evaporation. form.
  • PEDOT/PSS poly(3,4-ethylenedioxythiophene)-polystyrene sulfonic acid
  • the second electrode 26 may be an anode, and the second electrodes 26 of different light-emitting devices L may be arranged at intervals.
  • the second electrode 26 may be formed on the side of the second carrier transport layer 25 away from the substrate 21 by means of evaporation or sputtering.
  • the material of the second electrode 26 layer may include metals such as aluminum, copper, or silver, and may also include indium tin oxide film or indium zinc oxide.
  • the display substrate is encapsulated using an encapsulation cover.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本公开提供了一种发光器件,其中,包括:设置在基底上的第一载流子传输层;发光层,所述发光层设置在所述第一载流子传输层远离所述基底的一侧;其中,所述第一载流子传输层包括第一传输子层,所述第一传输子层包括纳米粒子以及连接于所述纳米粒子表面的无机配体,所述无机配体中包含卤族元素或氧族元素。

Description

发光器件及其制备方法、显示基板和显示装置 技术领域
本公开涉及显示技术领域,具体涉及一种发光器件及其制备方法、显示基板和显示装置。
背景技术
随着量子点技术的深入发展,电致量子点发光二极管(Quantum Dot LightEmitting Diodes,QLED)研究日益深入,量子效率不断提升,已基本达到产业化的水平,进一步采用新的工艺和技术来实现电致量子点发光二极管的产业化已成为未来的趋势。
发明内容
本公开旨在至少解决现有技术中存在的技术问题之一,提出了一种发光器件及其制备方法、显示基板和显示装置。
为了实现上述目的,本公开提供一种发光器件,其中,包括:
设置在基底上的第一载流子传输层;
发光层,所述发光层设置在所述第一载流子传输层远离所述基底的一侧;
其中,所述第一载流子传输层包括第一传输子层,所述第一传输子层包括纳米粒子以及连接于所述纳米粒子表面的无机配体,所述无机配体中包含卤族元素或氧族元素。
可选地,所述无机配体的通式包括:B -或AB x y-
其中,所述B为卤族元素,所述A为金属元素,所述x和所述y均为正整数。
可选地,所述B包括:碘、氯、溴和氟中的任一者,所述A包括:锌、镉、汞、铜、银和金中的任一者。
可选地,所述无机配体的通式包括:MJ x y-或M zJ x y-
其中,所述J为氧族元素,所述M为金属元素,所述x、所述y和所述z均为正整数。
可选地,所述J包括:氧、硫、硒、碲中的任一者,所述M包括:钼、铬、钨、铁、钌、锇、钴、铑、铝、镓、铟、锗、锡、铅、锑和铋中的任一者。
可选地,所述第一载流子传输层还包括第二传输子层,所述第二传输子层位于所述第一传输子层远离所述发光层的一侧;所述第二传输子层中不包含所述无机配体。
可选地,所述发光器件还包括:
第一电极,所述第一电极设置在所述基底与所述第一载流子传输层之间;
第二载流子传输层,所述第二载流子传输层设置在所述发光层远离所述基底的一侧;
第二电极,所述第二电极设置在所述第二载流子传输层远离所述基底的一侧;
其中,所述第一载流子传输层和所述第二载流子传输层中的一者为电子传输层,另一者为空穴传输层。
可选地,所述发光器件还包括:空穴注入层;
所述空穴注入层设置在所述空穴传输层远离所述发光层的一侧。
可选地,所述发光层包括量子点层。
本公开还提供一种显示基板,其中,包括:多个发光器件,所述多个发光器件中的至少一个采用上述的发光器件。
可选地,所述多个发光器件中的每个采用上述的发光器件;
所述多个发光器件包括多个第一发光器件和多个第二发光器件,所述多个第一发光器件中的每个的发光颜色与所述多个第二发光器件中的每个的发光颜色不同。
可选地,当所述第一载流子传输层为电子传输层时,所述多个第二发光器件中的每个还包括电子阻挡层,所述电子阻挡层位于所述第二发光器件的电子传输层与发光层之间;
当所述第一载流子传输层为空穴传输层时,所述多个第一发光器件中的每个还包括空穴阻挡层,所述空穴阻挡层位于所述第一发光 器件的空穴传输层与发光层之间。
可选地,当所述第一载流子传输层为电子传输层时,所述多个第二发光器件中的每个的第一载流子传输层的厚度大于所述多个第一发光器件中的每个的第一载流子传输层的厚度;
当所述第一载流子传输层为空穴传输层时,所述多个第一发光器件中的每个的第一载流子传输层的厚度大于所述多个第二发光器件中的每个的所述第一载流子传输层的厚度。
可选地,当所述第一载流子传输层为电子传输层时,所述多个第二发光器件中的每个的无机配体在第一载流子传输层中的掺杂浓度小于所述多个第一发光器件中的每个的无机配体在第一载流子传输层中的掺杂浓度;
当所述第一载流子传输层为空穴传输层时,所述多个第二发光器件中的每个的无机配体在第一载流子传输层中的掺杂浓度大于所述多个第一发光器件中的每个无机配体在空穴传输层中的掺杂浓度。
可选地,所述多个第一发光器件中的每个为蓝色量子点发光器件,所述多个第二发光器件包括多个红色量子点发光器件和多个绿色量子点发光器件。
本公开还提供一种显示装置,其中,包括上述的显示基板。
本公开还提供一种发光器件的制备方法,其中,包括:
在基底上形成第一载流子传输层;
在所述第一载流子传输层远离所述基底的一侧形成发光层;
其中,所述第一载流子传输层包括第一传输子层,所述第一传输子层包括纳米粒子以及连接于所述纳米粒子表面的无机配体,所述无机配体包含卤族元素或氧族元素。
可选地,在形成所述第一载流子传输层之前,所述制备方法还包括:
在所述基底上形成第一电极;
在形成所述发光层之后,所述制备方法还包括:
在所述发光层远离所述基底的一侧形成第二载流子传输层;
在所述第二载流子传输层远离所述基底的一侧形成第二电极;
其中,所述第一载流子传输层和所述第二载流子传输层中的一者为电子传输层,另一者为空穴传输层。
可选地,形成所述第一载流子传输层,具体包括:
形成初始载流子传输层,所述初始载流子传输层包括所述纳米粒子以及连接于所述纳米粒子表面的有机配体;
在所述初始载流子传输层上形成含有所述无机配体的第一溶液层,以使所述第一溶液层与所述初始载流子传输层发生配体交换,得到包括所述第一传输子层的第一载流子传输层。
可选地,在形成所述发光层之前,所述制备方法还包括:
在所述第一载流子传输层远离所述基底的一侧形成牺牲层;
在所述牺牲层上形成容纳槽;
其中,所述发光层形成在所述容纳槽中;
在形成所述发光层之后,所述制备方法还包括:去除所述牺牲层。
可选地,在所述牺牲层上形成容纳槽,具体包括:
在所述牺牲层上形成光刻胶层;
对所述光刻胶层进行曝光并显影,以将对应于所述容纳槽的区域的光刻胶去除;
利用氧等离子对所述牺牲层进行刻蚀,形成所述容纳槽。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1a为一示例中显示基板的平面图;
图1b为一示例中发光器件的示意图;
图1c为一示例中制备发光器件的示意图;
图2a为本公开实施例提供的一种发光器件的结构示意图;
图2b为本公开实施例提供的另一种发光器件的结构示意图;
图3为本公开实施例提供的发光器件的具体结构示意图;
图4为本公开实施例提供的显示基板的结构示意图;
图5为本公开实施例提供的制备方法的流程图之一;
图6为本公开实施例提供的发光器件的制备方法的流程图之二;
图7a至图7g为本公开实施示例提供的发光器件的制备过程的示意图;
图8为本公开实施例提供的显示基板的制备方法的流程图;
图9a至图9f为本公开实施示例提供的显示基板的制备过程的示意图。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
除非另作定义,本公开实施例使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
图1a为一示例中显示基板的平面图,如图1a所示,显示基板具有显示区AA和位于显示区AA之外的非显示区NA。显示区AA中设置有多条扫描线GL和多条数据线DL;多条扫描线GL和多条数据线DL交叉设置限定出多个子像素。示例性地,沿行方向每三个相邻的子像素组成一个像素单元,且三个相邻的子像素(例如红色子像素R、绿色子像素G和蓝色子像素B)用于显示不同颜色。其中,位于同一行的子像素由同一条扫描线GL提供扫描信号,位于同一列 的子像素由同一条数据线DL提供数据电压信号。非显示区NA中可以设置有栅极驱动电路和驱动芯片(图中未示出),扫描线GL与栅极驱动电路连接,数据线DL与驱动芯片连接。
每个子像素包括发光器件和像素电路,像素电路与扫描线GL和数据线DL连接,像素电路配置为根据扫描线GL和数据线DL提供的电信号,向发光器件提供驱动信号,以使发光器件进行显示。例如,像素电路至少包括写入晶体管和驱动晶体管,写入晶体管的栅极与扫描线GL连接,写入晶体管配置为响应于扫描线GL提供的扫描信号的控制,将数据线DL提供的数据电压信号传输至驱动晶体管的栅极,驱动晶体管根据其栅极和第一极之间的压差,向发光器件提供驱动电流,以使发光器件进行显示。需要说明的是,写入晶体管和驱动晶体管均可以是薄膜晶体管,薄膜晶体管包括栅极、第一极和第二极,其中,第一极和第二极中的一者为源极,另一者为漏极。
图1b为一示例中发光器件的示意图,如图1b所示,发光器件包括基底11,以及沿远离基底11的方向依次设置的载流子传输层12以及发光层13。当然,发光器件还可以包括电极等其他膜层,图1b中未示出。发光层13可以为量子点层。图1c为一示例中制备发光器件的示意图,如图1c所示,在制备发光层13时,可以先在基底11上形成载流子传输层12;再在载流子传输层12远离基底11的一侧上形成牺牲层14;之后利用构图工艺在牺牲层14上形成容纳槽H,并在容纳槽H中形成发光层13;最后,去除掉牺牲层14,即可得到图案化的发光层13。载流子传输层12包括纳米粒子(例如,载流子传输层可以为电子传输层,纳米粒子可以是氧化锌纳米粒子)和连接于纳米粒子表面的配体(ligand,也称为配基),例如,载流子传输层12可以为电子传输层,纳米粒子可以是氧化锌纳米粒子。配体一般采用有机配体,例如乙醇胺,配体用于保护纳米粒子,防止纳米粒子直接暴露。
目前,牺牲层14的材料通常采用有机材料制成,在形成容纳槽H时,通常采用干法刻蚀的工艺,具体地:干法刻蚀一般采用氧气等离子体,利用氧气等离子体能够与有机物发生化学反应的特性,可以 使牺牲层14的材料与氧气等离子体发生反应而形成气体并挥发。但是,牺牲层14需要过刻才能刻蚀干净,所以氧气等离子体不可避免的会接触到载流子传输层12的表面,而连接于纳米粒子表面的有机配体也会与氧气等离子体发生反应并生成气体挥发,从而导致纳米粒子表面的有机配体缺失(例如,当有机配体为乙醇胺时,有机配体与氧气等离子体反应后生成:二氧化碳、二氧化氮和水),而这会使载流子传输层12的性能受到影响,最终致使发光器件的起亮电压增大,降低了发光器件的效率。
有鉴于此,本公开实施例提供一种发光器件,图2a为本公开实施例提供的发光器件的结构示意图,如图2a所示,该发光器件包括:基底21、第一载流子传输层22和发光层23。第一载流子传输层22设置在基底21上。发光层23设置在第一载流子传输层22远离基底21的一侧。其中,第一载流子传输层22包括靠近发光层23的第一传输子层222,第一传输子层222包括纳米粒子222a以及连接于纳米粒子222a表面的无机配体222b,无机配体222b中包含卤族元素或氧族元素。
在本公开实施例中,第一载流子传输层22可以是电子传输层也可以是空穴传输层。例如,当第一载流子传输层22为电子传输层时,第一传输子层222中的纳米粒子222a可以是氧化锌纳米粒子。发光层23可以是有机发光层,也可以是量子点层。例如,当发光层23为量子点层时,量子点层可以包括无机量子点材料,具体可以是硫化镉(CdS),对此下文将做详细介绍在此先不赘述。
在本公开实施例中,由于发光器件中的第一传输子层222中的纳米粒子222a的配体为无机配体222b,其中,包含卤族元素的无机配体222b不会与氧气等离子体发生反应。而包含氧族元素的无机配体222b分为以下两种情况:第一种情况为,无机配体222b包含氧元素,且氧元素在无机配体222b中处于饱和状态,这种情况下,无机配体222b不会再与氧气等离子体反应;第二种情况下,无机配体222b包含氧元素但氧元素在无机配体222b中处于非饱和状态,或者,无机配体222b包含非氧元素,在这种情况下,无机配体222b会与氧气 等离子体发生氧化反应,但这不会导致纳米粒子的配体缺失。例如,当无机配体222b包括MoO 3 -时,氧气等离子体与MoO 3 -发生氧化反应,使其变为MoO 4 -,而这不会导致纳米粒子的配体缺失。因此,在利用氧气等离子体对牺牲层进行刻蚀时,即使氧气等离子体与第一载流子传输层22的表面接触(具体是与第一传输子层222接触),第一载流子传输层22也不会发生配体缺失的问题,从而改善了由于配体缺失导致的发光器件效率下降的问题。
下面结合图2a至图3对本公开实施例的发光器件的具体结构进行介绍,图3为本公开实施例提供的发光器件的具体结构示意图,如图3所示,发光器件包括:基底21,沿远离基底21的方向依次设置的第一电极24、第一载流子传输层22、发光层23、第二载流子传输层25和第二电极26。
在本公开实施例中,发光器件可以是顶发光结构,也可以是底发光结构,具体可以根据实际需要确定,在此不作限制。例如,当发光器件是顶发光结构时,第二电极26可以采用透光材料或者半透光材料制备,具体可以采用氧化铟锡(Indium Tin Oxide,ITO)材料或者厚度较小的金属材料;第一电极24可以采用金属材料制备,例如铜。当发光器件是底发光结构时,第一电极24可以采用透光材料制备,而第二电极26可以采用金属材料制备。
发光器件可以为正置结构,也可以为倒置结构。例如,当发光器件为正置结构时,第一电极24为阳极,第二电极26为阴极,第一载流子传输层22为空穴传输层,第二载流子传输层25为电子传输层;当发光器件L为倒置结构时,第一电极24为阴极,第二电极26为阳极,第一载流子传输层22为电子传输层,第二载流子传输层25为空穴传输层。发光器件还包括:空穴注入层27,以发光器件为倒置结构为例,空穴注入层27设置在第二载流子传输层25远离发光层23的一侧。
可选地,在本公开实施例中,发光层23可以为量子点层。量子点层的材料可以包括无机量子点材料,例如可以是硫化镉(CdS)、硒化镉(CdSe)、锑化镉(CdTe)、硒化锌(ZnSe)、磷化铟(InP)、硫化铅(PbS)、 硫铟铜(CuInS 2)、氧化锌(ZnO)、氯化铯铅(CsPbCl 3)、溴化铯铅(CsPbBr 3)、碘化铯铅(CsPbI 3)、硫化镉/硫化锌(CdS/ZnS)、硒化镉/硫化锌(CdSe/ZnS)、硒化锌(ZnSe)、磷化铟/硫化锌(InP/ZnS)、硫化铅/硫化锌(PbS/ZnS)、砷化铟(InAs)、砷镓铟(InGaAs)、铟镓氮(InGaN)、氮化镓(GaN)、碲化锌(ZnTe)、硅(Si)、锗(Ge)、碳(C)等,以及具有上述成分的其他纳米尺度材料,例如纳米棒、纳米片。可选地,在本公开实施例中,量子点层的材料可以为不含镉的材料。可选地,当发光结构为倒置结构时,空穴注入层27材料可以包括聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT/PSS);空穴传输层的材料可以包括聚(9,9-二辛基芴-co-N-(4-丁基苯基)二苯胺)(TFB),或聚乙烯咔唑(PVK)。可选地,电子传输层的材料可以包括氧化锌、氧化镁锌,氧化铝锌,氧化锌锂锌,氧化钛,氧化铝中的一种或几种,具体地,电子传输层可以为氧化锌纳米粒子薄膜,或氧化锌溶胶凝胶薄膜等。
当发光器件为正置结构时,第一载流子传输层22为空穴传输层,可选地,空穴传输层的材料可以包括氧化镍,氧化钨,氧化亚铜,氧化钼中的一种或几种。具体地,空穴传输层可以为氧化镍纳米粒子薄膜,或氧化镍溶胶凝胶薄膜等。
在本公开的一些实施例中,第一载流子传输层22整体可以作为第一传输子层222。图2b为本公开实施例提供的另一种发光器件的结构示意图,如图2b所示,第一载流子传输层22还可以包括第二传输子层221,其中,第二传输子层221位于第一传输子层222远离发光层23的一侧。第一传输子层222、第二传输子层221均可以包括纳米粒子222a和连接在纳米粒子222a表面的配体,其中,第二传输子层221不包含无机配体,示例性地,第二传输子层221中的配体均为有机配体,该有机配体例如可以包括乙醇胺。第一传输子层222中的配体为无机配体222b,第一传输子层222中的无机配体222b具体可以包括:卤族元素;或者,卤族元素和金属元素;或者,氧族元素和金属元素。
当无机配体222b包括卤族元素时,无机配体222b的通式为B -,其中,B为卤族元素。可选地,B具体可以包括碘(I)、氯(Cl)、 溴(Br)、氟(F)中的任一者。例如,无机配体222b可以为I -
当无机配体222b包括卤族元素和金属元素时,无机配体222b的通式为AB x y-,A为金属元素,B为卤族元素。A具体可以包括锌(Zn)、镉(Cd)、汞(Hg)、铜(Cu)、银(Ag)、和金(Au)中的任一者。其中,x和y均为正整数。例如,无机配体222b可以为CdCl 4 -,也即,x=4,y=1;或者,无机配体222b可以为AgI 2 -,也即,x=2,y=1。上述元素的具体组合形式可以根据实际需要确定,本公开实施例不再一一列举,只要上述元素的组合形式能够满足通式AB x y-即可。
在本公开实施例中,以无机配体222b为CdCl 4 -为例,对第一载流子传输层22的制备过程进行说明。在制备第一载流子传输层22的时,可以先在第一电极24上形成含有氧化锌纳米粒子的乙醇溶液,溶液固化后形成初始载流子传输层。初始载流子传输层包括氧化锌纳米粒子和连接于氧化锌纳米粒子表面的有机配体,有机配体例如为乙醇胺。之后,在初始载流子传输层上形成包含无机配体222b的第一溶液层,例如,第一溶液层可以是[Ph 2I] 2[CdCl 4]的N,N-二甲基甲酰胺溶液。静置30秒,使第一溶液层与初始载流子传输层发生配体交换,也即,使第一溶液层中的CdCl 4 -替换初始载流子传输层中的乙醇胺,从而以CdCl 4 -作为氧化锌纳米粒子的无机配体222b,进而得到包括第一传输子层222的第一载流子传输层22。在一些示例中,可以通过控制乙醇溶液中氧化锌纳米粒子的浓度,或通过控制第一溶液层与初始载流子传输层的配体交换时间,使得初始载流子传输层的一部分与第一溶液层发生配体交换,而另一部分与第一溶液层不发生配体交换,从而得到包括第一传输子层222和第二传输子层221的第一载流子传输层22。
当无机配体222b包括氧族元素和金属元素时,无机配体的通式包括:MJ x y-或M zJ x y-;其中,J为氧族元素,M为金属元素,x、y和z均为正整数。J具体可以包括:氧(O)、硫(S)、硒(Se)、碲(Te)中的任一者,M具体可以包括:钼(Mo)、铬(Cr)、钨(W)、铁(Fe)、钌(Ru)、锇(Os)、钴(Co)、铑(Rh)、铝(Al)、 镓(Ga)、铟(In)、锗(Ge)、锡(Sn)、铅(Pb)、锑(Sb)和铋(Bi)中的任一者。
第一载流子传输层22中的无机配体222b具体可以采用以下方式得到:方式一、通过包含无机配体222b的第一溶液与第一载流子传输层22进行配体交换后得到。方式二、先在第一载流子传输层22上形成包含初始无机配体的第二溶液,第二溶液先与第一载流子传输层22进行配体交换,以得到包含初始无机配体的初始载流子传输层;之后再对初始无机配体进行氧化,从而得到最终的无机配体222b。其中,在方式二中,无机配体222b由包括氧元素和金属元素的初始无机配体经过氧化后得到;或者,无机配体222b由包括氧族元素中非氧元素和金属元素的初始无机配体经过氧化后得到。
具体地,当无机配体222b由包括氧元素和金属元素的初始无机配体经过氧化后得到时,初始无机配体的通式可以为M'J' x y-,其中,M'为金属元素,M'具体可以包括钼(Mo)、铬(Cr)、钨(W)、铁(Fe)、钌(Ru)、锇(Os)、钴(Co)、铑(Rh)、铝(Al)、镓(Ga)和铟(In)中的任一者,J'为氧(O),且在初始无机配体中,氧处于不饱和状态。无机配体222b的通式为MJ x y-,其中,M为金属元素,具体可以包括钼(Mo)、铬(Cr)、钨(W)、铁(Fe)、钌(Ru)、锇(Os)、钴(Co)、铑(Rh)、铝(Al)、镓(Ga)和铟(In)中的任一者,J包括氧(O)。其中,x和y均为正整数,例如,初始无机配体可以为MoO 4 2-,也即,x=4,y=2;或者,初始无机配体222b可以为MoO 3 -,也即x=3,y=1。无机配体222b可以为MoO 4 -,也即,x=4,y=1。可选地,初始无机配体还可以为CrO 3 2-,也即,x=3,y=2;或者,AlO 2 2-,也即,x=2,y=2;或者,FeO 2 -,也即,x=2,y=1等,无机配体222b为上述初始无机配体经过氧化后得到的无机配体,本公开实施例不再一一列举。
在本公开实施例中,以无机配体222b为MoO 4 -为例,对第一载流子传输层22的制备过程进行说明。在制备第一载流子传输层22时,可以先在第一电极24上形成含有氧化锌纳米粒子的乙醇溶液,并固化,以得到初始载流子传输层。初始载流子传输层包括氧化锌纳 米粒子和连接于氧化锌纳米粒子表面的有机配体,有机配体例如可以是乙醇胺。之后,在初始载流子传输层上形成包含初始无机配体的第二溶液层,例如,初始无机配体可以是MoO 3 -,第二溶液层可以是NaMoO 3的N-甲基吡咯烷酮溶液。静置30秒,以使第二溶液层与初始载流子传输层发生配体交换,也即,使第二溶液层中的MoO 3 -替换初始载流子传输层中的乙醇胺,从而以MoO 3 -作为氧化锌纳米粒子的初始无机配体;在后续的工艺步骤中,可以利用对牺牲层进行刻蚀时所用的氧气等离子体对初始无机配体氧化,也即,使MoO 3 -氧化为MoO 4 -,从而以MoO 4 -作为氧化锌纳米粒子的无机配体222b,进而得到包括第一传输子层222的第一载流子传输层22。在一些示例中,可以通过控制NaMoO 3的N-甲基吡咯烷酮溶液的浓度,或通过控制第二溶液层与初始载流子传输层的配体交换时间,使得初始载流子传输层的一部分与第二溶液层发生配体交换,而另一部分与第二溶液层不发生配体交换,从而得到包括第一传输子层222和第二传输子层221的第一载流子传输层22。
当无机配体222b由包括氧族元素中的非氧元素和金属元素的初始无机配体经过氧化后得到时,初始无机配体的通式可以为M' zJ' x y-,其中,M'包括金属元素,具体可以包括锗(Ge)、锡(Sn)、铅(Pb)、锑(Sb)和铋(Bi)中的任一者,J'包括硫(S)、硒(Se)、碲(Te)等。无机配体222b的通式可以为M zJ x y-。其中,M包括金属元素,具体可以包括锗(Ge)、锡(Sn)、铅(Pb)、锑(Sb)和铋(Bi)中的任一者,J包括氧(O)。x、y和z均为正整数,例如,初始无机配体可以为Sn 2S 3 2-,也即,z=2,x=3,y=2;无机配体222b可以为Sn 2O 3 2-,也即,z=2,x=3,y=2。可选地,初始无机配体222b还可以为Te 2Sn 6 4-,也即z=2,x=6,y=4。无机配体222b为上述初始无机配体经过氧化后得到的无机配体,本公开实施例不再一一列举。
在本公开实施例中,以无机配体222b为Sn 2O 3 2-为例,对第一载流子传输层22的制备过程进行说明。在制备第一载流子传输层时,可以先在第一电极24上形成含有氧化锌纳米粒子的乙醇溶液,并固化,以得到初始载流子传输层。初始载流子传输层包括氧化锌纳米粒 子和连接于氧化锌纳米粒子表面的有机配体,有机配体例如可以是乙醇胺。之后,在初始载流子传输层上形成包含初始无机配体的第二溶液层,例如,初始无机配体可以是Sn 2S 3 2-,第二溶液层可以是Na 2Sn 2S 3的N甲基吡咯烷酮溶液。静置30秒,以使第二溶液层与初始载流子传输层发生配体交换,也即,使第二溶液层中的Sn 2S 3 2-替换初始载流子传输层中的乙醇胺,从而以Sn 2S 3 2-作为氧化锌纳米粒子的初始无机配体。在后续的工艺步骤中利用利用氧气等离子体对牺牲层进行刻蚀时,Sn 2S 3 2-会被氧化为Sn 2O 3 2-,从而以Sn 2O 3 2-作为氧化锌纳米粒子的无机配体222b。
需要说明的是,在本公开实施例中,初始无机配体可以被部分氧化或全部氧化,当初始无机配体被部分氧化时,第一载流子传输层22中的无机配体222b则包括氧族元素中的氧元素、非氧元素以及金属元素;当初始无机配体被全部氧化后、第一载流子传输层22中的无机配体222b则包括氧元素以及金属元素。
在另一些具体实施例中,无机配体222b也可以包括氧元素和非金属元素,非金属元素例如可以是砷(As)或磷(P)。当无机配体222b包括氧元素和非金属元素时,第一载流子传输层22中的无机配体222b可以通过以下方式得到:通过包含无机配体222b的第一溶液与第一载流子传输层22进行配体交换而得到;或者是,在第一载流子传输层22上形成包含初始无机配体的第二溶液,第二溶液与第一载流子传输层22进行配体交换,以得到包含初始无机配体的初始载流子传输层;之后再对初始无机配体进行氧化,从而得到最终的无机配体222b。其中,初始无机配体包括氧元素和非金属元素。具体地,初始无机配体的通式可以为Q'R' x y-,其中,Q'为非金属元素,Q'具体可以包括砷(As)或磷(P),R'为氧族元素,具体可以是氧(O)、硫(S)、硒(Se)、碲(Te)。无机配体222b的通式为QR x y-,其中,Q为非金属元素,具体可以包括砷(As)或磷(P),R包括氧(O)。其中,x和y均为正整数,具体地制备过程与初始无机配体包括氧元素和金属元素的实施例中的制备方法类似,在此不再赘述。
本公开实施例还提供一种显示基板,图4为本公开实施例提供 的显示基板的结构示意图,如图4所示,该显示基板包括:多个发光器件L,多个发光器件L中的至少一个采用上述实施例中的发光器件。
在本公开实施例中,在利用氧气等离子体进行刻蚀时,与氧气等离子体接触的第一传输子层222不会发生配体缺失的问题,从而改善了由于配体缺失导致的发光器件效率下降的问题。
在本公开实施例中,显示基板中的多个发光器件中的每个均采用上述实施例中的发光器件,多个发光器件包括多个第一发光器件和多个第二发光器件。
当发光器件未采用上述的无机配体222b时,第一发光器件可以为少电子体系,第二发光器件可以为多电子体系。也即,对于第一发光器件而言,当其未采用上述无机配体时,单位时间到达发光层23的电子数量可能会少于空穴数量,并且单位时间到达发光层23的电子数量与空穴数量的比值可能不处于预设范围。对于第二发光器件而言,当其未采用上述无机配体时,单位时间到达发光层23的电子数量可能会多于空穴数量,并且单位时间到达发光层23的电子数量与空穴数量的比值可能不处于预设范围。其中,预设范围定义为,使发光器件的发光效率达到期望值时,单位时间到达发光层23的电子数量与空穴数量的比值。
当单位时间到达发光层23的电子数量与空穴数量不同时,将可能会导致电子-空穴注入不平衡。当发光器件L中的第一传输子层222中的纳米粒子222a的配体为无机配体222b时,相较于传统的发光器件中采用有机配体的方案而言,无机配体222b的链长更短,因此,会使第一载流子传输层22的载流子传输速率上升,从而使单位时间内到达发光层23的载流子数量增加。示例性地,当第一发光器件的第一载流子传输层22为电子传输层时,在采用无机配体222b后,第一发光器件的电子传输速率上升,从而可以使第一发光器件中,单位时间到达发光层23的电子数量与空穴数量的比值处于预设范围,进而使第一发光器件达到电子-空穴注入平衡。
为了使各发光器件L均能达到电子-空穴注入平衡,在本公开实 施中,根据以下方式对各发光器件的结构进行设置:改变第一载流子传输层22的厚度,或者,在发光器件L中增设载流子阻挡层28以调整载流子传输速率,从而使各发光器件L中,单位时间到达发光层23的电子数量与空穴数量的比值处于预设范围,达到电子-空穴注入平衡。
下面首先以发光器件L为倒置结构为例,如图4所示,发光器件L包括基底21和沿远离基底21的方向依次设置的第一电极24、第一载流子传输层22、发光层23、第二载流子传输层25和第二电极26。其中,第一电极24为阴极,第二电极26为阳极,第一载流子传输层22为电子传输层,第二载流子传输层25为空穴传输层;可选的,空穴传输层和第二电极26之间还可以设置有空穴注入层27。
在一些具体实施例中,可以在多个第二发光器件中设置电子阻挡层(也即图4中的载流子阻挡层28),电子阻挡层位于第二发光器件的电子传输层与发光层23之间。电子阻挡层能够减缓电子传输速率,从而使第二发光器件中,单位时间到达发光层23的电子数量与空穴数量的比值处于预设范围,达到电子-空穴注入平衡。而在第一发光器件中,单位时间到达发光层的电子数量原本是低于空穴数量的,当使第一发光器件中的第一传输子层222的配体为无机配体222b后,电子传输速率上升,这是有利于第一发光器件达到电子-空穴注入平衡的,因此,第一发光器件中无需设置电子阻挡层。可选地,电子阻挡层可以采用光敏材料制备,例如,丙烯酸类,环氧类,异戊二烯类,叠氮类树脂等。这样一来,可以利用光刻工艺,通过曝光显影之后实现只在第二发光器件中形成电子阻挡层。
在另一些具体实施例中,当第一载流子传输层22为电子传输层时,多个第二发光器件中的每个的第一载流子传输层22的厚度大于多个第一发光器件中的每个的第一载流子传输层22的厚度。通过增加第一载流子传输层22的厚度,也能够减缓电子传输速率,从而使第二发光器件达到电子-空穴注入平衡。
在其他具体实施例中,还可以通过调整发光器件L中的无机配体222b的掺杂浓度,以调整发光器件L中的载流子传输速率。掺杂 浓度例如可以是指,第一载流子传输层中无机配体的质量与纳米粒子的质量之比。具体地,第二发光器件中的无机配体222b在第一载流子传输层22中的掺杂浓度小于第一发光器件中的无机配体222b在第一载流子传输层22中的掺杂浓度。在本公开实施例中,由于电子传输层中的无机配体222b能够提升电子传输速率,因此,在第二发光器件中的电子传输层中设置较少的无机配体222b,防止加入无机配体后,电子传输速率上升过多,导致电子-空穴注入失衡。而在第一发光器件中的电子传输层中设置较多的无机配体222b,这样可以提升第一发光器件的电子传输速率,从而使单位时间内到达发光层23的电子数量增加,进而使单位时间到达发光层23的电子数量与空穴数量的比值处于预设范围,达到电子-空穴注入平衡。
在本公开实施例中,在对第一载流子传输层22进行配体交换时,通过控制形成在第一载流子传输层22上的溶液中的无机配体222b的浓度,和/或控制配体交换时间来控制最终形成的第一载流子传输层22中的无机配体222b的掺杂浓度。例如,对第一发光器件进行配体交换的时间较长(或者无机配体222b在溶液中的浓度较高),而对第二发光器件的配体交换时间较短(或者无机配体222b在溶液中的浓度较少),以使得到的第二发光器件中的无机配体222b在第一载流子传输层22中的掺杂浓度均小于第一发光器件中的无机配体222b在第一载流子传输层22中的掺杂浓度。
在另一些具体实施例,发光器件L也可以为正置结构,此时,发光器件L包括基底21和沿远离基底21的方向依次设置的第一电极24、第一载流子传输层22、发光层23、第二载流子传输层25和第二电极26。其中,第一电极24为阳极,第二电极26为阴极,第一载流子传输层22为空穴传输层,第二载流子传输层25为电子传输层;可选地,空穴传输层和第一电极24之间还可以设置有空穴注入层。
在一些具体实施例中,可以在第一发光器件的第一载流子传输层22和发光层23之间设置空穴阻挡层,这样可以减缓第一发光器件中的空穴传输速率,从而使第一发光器件中,单位时间到达发光层 23的电子数量与空穴数量的比值处于预设范围,进而使第一发光器件达到电子-空穴注入平衡。
在一些具体实施例中,每个第一发光器件的第一载流子传输层22的厚度大于每个第二发光器件的第一载流子传输层22的厚度。通过增加第一载流子传输层22的厚度,也能够减缓第一发光器件的空穴传输速率,从而使单位时间内到达发光层23的空穴数量减少,进而使第一发光器件的中,单位时间到达发光层23的电子数量与空穴数量的比值处于预设范围,达到电子-空穴注入平衡。
在一些具体实施例中,还可以通过调整发光器件L中的无机配体222b的掺杂浓度,以调整发光器件L中的载流子传输速率。具体地,第二发光器件中的无机配体222b在第一载流子传输层22中的掺杂浓度大于第一发光器件中的无机配体222b在第一载流子传输层22中的掺杂浓度。在本公开实施例中,由于空穴传输层中的无机配体222b能够提升空穴传输速率,因此,在第一发光器件中的空穴传输层中设置较少的无机配体222b,防止加入无机配体后,空穴传输速率上升过多导致电子-空穴注入失衡。而在第二发光器件中的空穴传输层中设置较多的无机配体222b,这样可以提升第二发光器件的空穴传输速率,从而使第二发光器中,单位时间内到达发光层23的空穴数量增加,进而使单位时间到达发光层23的电子数量与空穴数量的比值处于预设范围,达到电子-空穴注入平衡。
在本公开的一些实施例中,如图4所示,上述的每个第一发光器件可以为蓝色量子点发光器件Lb,多个第二发光器件可以包括多个红色量子点发光器件Lr和/或多个绿色量子点发光器件Lg。其中,蓝色量子点发光器件Lb为少电子体系,红色量子点发光器件Lr和绿色量子点发光器件Lg为多电子体系。也即,对于蓝色量子点发光器件Lb而言,当其未采用上述无机配体时,单位时间到达发光层23的电子数量可能会少于空穴数量,并且单位时间到达发光层23的电子数量与空穴数量的比值可能不处于预设范围。对于红色量子点发光器件Lr和绿色量子点发光器件Lg而言,当其未采用上述无机配体时,单位时间到达发光层23的电子数量可能会多于空穴数量,并且 单位时间到达发光层23的电子数量与空穴数量的比值可能不处于预设范围。示例性地,第一载流子传输层22为电子传输层,这种情况下,在第一载流子传输层22中采用无机配体222b后,蓝色量子点发光器件Lb的电子传输速率上升,从而可以使蓝色量子点发光器件Lb中,单位时间到达发光层23的电子数量与空穴数量的比值处于预设范围,进而使蓝色量子点发光器件Lb达到电子-空穴注入平衡。为了使各发光器件L均能达到电子-空穴注入平衡,可以根据上文中对第一发光器件和第二发光器件的结构的描述,对蓝色量子点发光器件Lb、红色量子点发光器件Lr和绿色量子点发光器件Lg的结构进行设置,具体不再赘述。
需要说明的是,在本公开实施例中,多个第二发光器件中的无机配体222b的掺杂浓度可以相同也可以不同,具体可以根据实际需要确定,在此不做限制。例如,当多个多个第二发光器件包括多个红色量子点发光器件Lr和多个绿色量子点发光器件Lg时,可以使红色量子点发光器件Lr中无机配体222b的掺杂浓度小于绿色量子点发光器件Lg中的无机配体222b的掺杂浓度。
本公开实施例还提供一种显示装置,该显示装置可以为:电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。其中,该显示装置包括:上述的显示基板。
本公开实施例还提供一种发光器件的制备方法,图5为本公开实施例提供的制备方法的流程图之一,如图5所示,该制备方法包括以下步骤:
S11、在基底上形成第一载流子传输层。
S12、在第一载流子传输层远离基底的一侧形成发光层。
其中,第一载流子传输层包括靠近发光层的第一传输子层,第一传输子层包括纳米粒子以及连接于纳米粒子表面的无机配体,无机配体包含卤族元素或氧族元素。
在本公开实施例中,在利用氧气等离子体进行刻蚀时,与氧气等离子体接触的第一传输子层不会发生配体缺失的问题,从而改善了 由于配体缺失导致的发光器件L效率下降的问题。
在一些实施例中,第一载流子传输层整体可以作为第一传输子层,或者,第一载流子传输层还可以包括第二传输子层,其中,第二传输子层位于第一传输子层远离发光层的一侧。第一传输子层、第二传输子层均可以包括纳米粒子和连接在纳米粒子表面的配体,其中,第二传输子层不包含无机配体,示例性地,第二传输子层中的配体均为有机配体,该有机配体例如可以包括乙醇胺。第一传输子层中的配体为无机配体,第一传输子层中的无机配体具体可以包括:卤族元素;或者,卤族元素和金属元素;或者,氧族元素和金属元素。
在本公开实施例中,发光器件可以为正置结构也可以为倒置结构。例如,当发光器件为正置结构时,第一电极为阳极,第二电极为阴极,第一载流子传输层为空穴传输层,第二载流子传输层为电子传输层;当发光器件为倒置结构时,第一电极为阴极,第二电极为阳极,第一载流子传输层为电子传输层,第二载流子传输层为空穴传输层。可选地,发光器件还可以包括:空穴注入层,以发光器件为倒置结构为例,空穴注入层设置在第二载流子传输层远离发光层的一侧。
下面以发光器件为倒置结构为例对本公开实施例的发光器件的制备方法进行说明。在本公开实施例中,无机配体222b包括卤族元素和金属元素,示例性地,无机配体222b为CdCl 4 -。图6为本公开实施例提供的发光器件的制备方法的流程图之二,图7a至图7g为本公开实施示例提供的发光器件的制备过程的示意图,结合图6和图7a至图7g所示,本公开实施例提供的发光器件的制备方法包括以下步骤:
S21、提供基底21。
S22、在基底21上形成第一电极24。所述第一电极24可以为阴极,第一电极24的材料可以包括金属,发光器件L可以为底发射结构或者顶发射结构,具体根据实际需要确定,在此不做限制。例如,当发光器件L为底发射结构时,第一电极24可以采用透明金属材料,例如氧化铟锡;当发光器件L为顶发射结构时,第一电极24可以采用非透明金属材料,例如铜。在本步骤中,可以通过蒸镀或溅射等工 艺形成第一电极24。
S23、对形成第一电极24的基底21进行清洗。在本步骤中,可以采用异丙醇,水,丙酮溶液,并通过超声波对形成第一电极24的基底21进行清洗。进一步地,还可以通过紫外UV光对形成第一电极24的基底21进行处理,时长可以设置在5min至10min。
S24、在第一电极24远离基底21的一侧形成第一载流子传输层22。其中,第一载流子传输层22为电子传输层。在本步骤中,电子传输层包括氧化锌纳米粒子薄膜,形成氧化锌纳米粒子薄膜具体可以是:将含有氧化锌纳米粒子的乙醇溶液旋涂在第一电极24远离基底21的一侧,以得到氧化锌纳米粒子薄膜。含有氧化锌纳米粒子的乙醇溶液的浓度为30mg/ml,配体为有机配体222c,例如乙醇胺。旋涂转速设置在2000rpm至4000rpm之间,例如3000rpm。之后,将[Ph 2I] 2[CdCl 4]的N,N-二甲基甲酰胺溶液滴加在氧化锌纳米粒子薄膜上,[Ph 2I] 2[CdCl 4]的N,N-二甲基甲酰胺溶液的浓度为5mg/ml至20mg/ml,例如,10mg/ml。静置30s,以进行配体交换。之后进行旋涂以得到初始载流子传输层,旋涂转速可以设置在1000rpm至3000rpm之间,例如2000rpm。最后经过退火后,得到第一载流子传输层22,退火的温度可以设置在60℃至180℃,例如,120℃,退火时间可以设置在5分钟至15分钟,例如10分钟。其中,通过调整配体交换时间或其他工艺条件,可以使第一载流子传输层整体作为第一传输子层;或者,使第一载流子传输层包括第一传输子层和第二传输子层。
S25、在第一载流子传输层22远离基底21的一侧形成发光层23。如图7b至7e所示,具体可以包括步骤S251a至步骤S256a:
S251a、在第一载流子传输层22远离基底21的一侧形成牺牲层29a,具体可以是,在第一载流子传输层22上旋涂聚乙烯吡咯烷酮的乙醇溶液,以得到牺牲层29a,聚乙烯吡咯烷酮的浓度可以为10mg/ml,旋涂的转速可以设置在1000rpm至3000rpm之间,例如2000rpm。
S252a、在牺牲层29a远离基底21的一侧形成光刻胶层29b。可 选地,在本步骤中,可以采用旋涂的方式形成光刻胶层29b,光刻胶层29b可以采用负性光刻胶,旋涂的转速可以设置为3000rpm至5000rpm,例如4000rpm。
S253a、对光刻胶层29b进行曝光并显影,以将对应于容纳槽的区域的光刻胶去除。在本步骤中,可以使用365nm的紫外(UV)光进行曝光,曝光量50mj,曝光完成后使用二甲苯显影,显影时间可以设置在60s至12s,例如90s,完成后吹干。
S254a、对牺牲层29a进行刻蚀,以形成用于容纳发光层23的容纳槽。在本步骤中,可以利用干法刻蚀牺牲层29a,具体地,可以采用感应耦合等离子体(Inductively Couple Plasma,ICP)刻蚀设备中的氧气等离子对牺牲层29a材料进行刻蚀,刻蚀时间设置在10s至30s之间,例如20s。
S255a、在第一载流子传输层22远离基底21的一侧和光刻胶层29b远离基底21的一侧形成发光材料层23a。在本步骤中,可以通过旋涂的方式形成发光材料层23a,具体地,可以旋涂辛烷溶液,辛烷溶液中包括硒化镉/硫化锌(CdSe/ZnS)量子点,硒化镉/硫化锌的配体为辛硫醇配体。辛烷溶液的浓度为15mg/ml,旋涂的转速可以设置在1500rpm至3500rpm之间,例如2500rpm。
S256a、去除牺牲层29a,从而将容纳槽之外的发光材料去除,进而得到位于容纳槽中的发光层23。在本步骤中,可以将形成有发光材料层23a的基底21放置于乙醇溶液中,用240W的能量进行超声处理,时间可以设置在2分钟至6分钟,例如4分钟,以将所有的牺牲层29a去除干净。之后可以进行退火。其中,退火的温度可以设置在60℃至180℃,例如120℃退火的时间可以设置在10min至30min,例如20min。
S26、在发光层23远离基底21的一侧形成第二载流子传输层25,也即空穴传输层。空穴传输层的材料可以包括聚(9,9-二辛基芴-co-N-(4-丁基苯基)二苯胺)(TFB),或聚乙烯咔唑(PVK)。在本步骤中,可以先在发光层23上通过旋涂或蒸镀等工艺形成空穴传输材料,之后对空穴传输材料进行固化以得到空穴传输层。
S27、在第二载流子传输层25远离基底21的一侧形成空穴注入层27。空穴注入层27的材料可以包括聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT/PSS);在本步骤中,可以先在第二载流子传输层25上通过旋涂或蒸镀等工艺形成空穴注入材料,之后对空穴注入材料进行固化以得到空穴注入层27。
S28、在空穴注入层27远离基底21的一侧形成第二电极26,第二电极26可以为阳极。在本步骤中,可以采用蒸镀或溅射的方式在空穴注入层27远离基底21的一侧形成第二电极26。第二电极26的材料可以包括铝、铜或银等金属,也可以包括氧化铟锡薄膜或氧化铟锌等。
在另一些具体实施例中,无机配体222b包括氧元素和金属元素,具体地,无机配体222b是由包括氧族元素中的非氧元素和金属元素的初始无机配体经过氧化后得到的,示例性地,初始无机配体为Sn 2S 3 2-,无机配体222b为Sn 2O 3 2-。在这种情况下,制作发光器件的制备过程同样包括图6中的步骤S21至S28。其中,步骤S21至步骤S23,以及步骤S26至步骤S28参见上文描述。步骤S24(形成第一载流子传输层的步骤)具体可以包括:先将含有氧化锌纳米粒子的乙醇溶液进行旋涂,形成氧化锌纳米薄膜。乙醇溶液中的氧化锌纳米粒子的浓度为30mg/ml,配体为乙醇胺。旋涂转速设置在2000rpm至4000rpm之间,例如3000rpm。之后,将Na 2Sn 2S 3的N甲基吡咯烷酮溶液滴加在氧化锌薄膜上,Na 2Sn 2S 3的N甲基吡咯烷酮溶液的浓度为5mg/ml至20mg/ml,例如,10mg/ml。静置30s,以进行配体交换。之后,进行旋涂以得到初始载流子传输层,旋涂转速可以设置在1000rpm至3000rpm之间,例如2000rpm。最后,经过退火得到第一载流子传输层22,退火的温度可以设置在60℃至180℃,例如,120℃,退火时间可以设置在5分钟至15分钟,例如10分钟。其中,通过调整配体交换时间或其他工艺条件,可以使第一载流子传输层整体作为第一传输子层;或者,使第一载流子传输层包括第一传输子层和第二传输子层。
步骤S25具体可以包括以下步骤S251b至S256b:
S251b、在远离基底21的一侧形成牺牲层29a。具体可以是,在第一载流子传输层22上旋涂聚乙烯吡咯烷酮的乙醇溶液,从而得到牺牲层29a。聚乙烯吡咯烷酮的浓度可以为10mg/ml,旋涂的转速可以设置在1000rpm至3000rpm之间,例如2000rpm。
S252b、在牺牲层29a远离基底21的一侧形成光刻胶层29b。可选地,在本步骤中,可以采用旋涂的方式形成光刻胶层29b,光刻胶层29b可以采用负性光刻胶,旋涂的转速可以设置为3000rpm至5000rpm,例如4000rpm。
S253b、对光刻胶层29b进行曝光并显影,以将对应于容纳槽的区域的光刻胶去除。在本步骤中,可以使用365nm的紫外(UV)光进行曝光,曝光量50mj,曝光完成后使用二甲苯显影,显影时间可以设置在60s至12s,例如90s,完成后吹干。
S254b、对牺牲层29a进行刻蚀,以形成用于容纳发光层23的容纳槽,并使初始无机配体氧化,以得到无机配体222b,也即,使Sn 2S 3 2-氧化为Sn 2O 3 2-。在本步骤中,可以利用干法刻蚀牺牲层29a,具体地,可以采用感应耦合等离子体刻蚀设备中的氧气等离子对牺牲层29a材料进行刻蚀,刻蚀时间设置在20s至40s之间,例如30s。
S255b、在第一载流子传输层22远离基底21的一侧和光刻胶层29b远离基底21的一侧形成发光材料层23a。该步骤S255b的具体过程可以与上述步骤S255a相同,这里不再赘述。
S256b、去除牺牲层29a,从而将容纳槽之外的发光材料去除,进而得到位于容纳槽中的发光层23。该步骤S256b的具体过程可以与上述步骤S256a相同,这里不再赘述。
在另一些具体实施例中,无机配体222b包括氧元素和金属元素,具体地,无机配体222b是由包括氧族元素中的氧元素和金属元素的初始无机配体经过氧化后得到的,初始无机配体中的氧元素处于不饱和状态。示例性地,初始无机配体为MoO 3 -,无机配体222b为MoO 4 -。这种情况下,制作发光器件的制备过程同样包括图6中的步骤S21至S28。其中,步骤S21至步骤S23,以及步骤S26至步骤S28参见上文描述。步骤S24(形成第一载流子传输层的步骤)具体可以包括: 将含有氧化锌纳米粒子的乙醇溶液进行旋涂,形成氧化锌纳米粒子薄膜。乙醇溶液中的氧化锌纳米粒子的浓度为30mg/ml,配体为乙醇胺。旋涂转速设置在2000rpm至4000rpm之间,例如3000rpm。之后,将NaMoO 3的N-甲基吡咯烷酮溶液滴加在氧化锌纳米粒子薄膜上,NaMoO 3的N-甲基吡咯烷酮溶液的浓度为5mg/ml至20mg/ml,例如10mg/ml。静置30s,以进行配体交换。之后,进行旋涂以得到初始载流子传输层,旋涂转速可以设置在1000rpm至3000rpm之间,例如2000rpm。最后,经过退火得到第一载流子传输层22。退火的温度可以设置在60℃至180℃,例如,120℃,退火时间可以设置在5分钟至15分钟,例如10分钟。其中,通过调整配体交换时间或其他工艺条件,可以使第一载流子传输层整体作为第一传输子层;或者,使第一载流子传输层包括第一传输子层和第二传输子层。
步骤S25具体可以包括以下步骤S251c至S256c:
S251c、在第一载流子传输层22远离基底21的一侧形成牺牲层29a。具体可以是,在第一载流子传输层22旋涂聚乙烯吡咯烷酮的乙醇溶液,从而得到牺牲层29a。聚乙烯吡咯烷酮的浓度可以为10mg/ml,旋涂的转速可以设置在1000rpm至3000rpm之间,例如2000rpm。
S252c、在牺牲层29a远离基底21的一侧形成光刻胶层29b。可选地,在本步骤中,可以采用旋涂的方式形成光刻胶层29b,光刻胶层29b可以采用负性光刻胶,旋涂的转速可以设置为3000rpm至5000rpm,例如4000rpm。
S253c、对光刻胶层29b进行曝光并显影,以将对应于容纳槽的区域的光刻胶去除。在本步骤中,可以使用365nm的紫外(UV)光进行曝光,曝光量50mj,曝光完成后使用二甲苯显影,显影时间可以设置在60s至12s,例如90s,完成后吹干。
S254c、对牺牲层29a进行刻蚀,以形成用于容纳发光层23的容纳槽,并使初始无机配体氧化,以得到无机配体222b,也即,使MoO 3 -氧化为MoO 4 -。在本步骤中,可以利用干法刻蚀牺牲层29a,具体地,可以采用感应耦合等离子体刻蚀设备中的氧气等离子对牺牲 层29a材料进行刻蚀,刻蚀时间设置在40s至60s之间,例如50s。
S255c、在第一载流子传输层22远离基底21的一侧和光刻胶层29b远离基底21的一侧形成发光材料层23a。该步骤S255c的具体过程可以与上述步骤S255a相同,这里不再赘述。
S256c、去除牺牲层29a,从而将容纳槽之外的发光材料去除,进而得到位于容纳槽中的发光层23。该步骤S256c的具体过程可以与上述步骤S256a相同,这里不再赘述。
本公开实施例还提供一种显示基板的制备方法,在本公开实施例中,显示基板包括:多个发光器件L,多个发光器件L包括多个第一发光器件和多个第二发光器件,示例性地,多个第一发光器件的每个为蓝色量子点发光器件Lb,多个第二发光器件中一部分为红色量子点发光器件Lr,另一部分为绿色量子点发光器件Lg。多个发光器件L均采用上述实施例中的发光器件L。下面以发光器件L为倒置结构,以无机配体222b为CdCl 4 -为例,对本公开实施例的显示基板的制备方法进行说明。图8为本公开实施例提供的显示基板的制备方法的流程图,图9a至图9f为本公开实施示例提供的显示基板的制备过程的示意图,结合图8和图9a至图9f所示,本公开实施例提供的显示基板的制备方法包括以下步骤:
S31、提供基底21。
S32、在基底21上形成每个发光器件L的第一电极24。所述第一电极24可以为阴极,多个发光器件L的第一电极24可以连接为一体结构。第一电极24的材料可以包括金属,发光器件L可以为底发射结构或者顶发射结构,具体根据实际需要确定,在此不做限制。例如,当发光器件L为底发射结构时,第一电极24可以采用透明金属材料,例如氧化铟锡;当发光器件L为顶发射结构时,第一电极24可以采用非透明金属材料,例如铜。在本步骤中,可以通过蒸镀或溅射等工艺形成第一电极24。
S33、对形成有第一电极24的基底21进行清洗。在本步骤中,可以采用异丙醇、水、丙酮溶液分别对形成第一电极24的基底21进行超声波清洗。进一步地,还可以通过紫外UV光对形成第一电极 24的基底21进行光照,光照时长可以设置在5至10min。
S34、在第一电极24远离基底21的一侧形成第一载流子传输层22。其中,第一载流子传输层22为电子传输层。第一载流子传输层22的形成过程参见上文描述,这里不再赘述。
S35、依次形成红色量子点发光器件的红色发光层、绿色量子点发光器件的绿色发光层和蓝色量子点发光器件的蓝色发光层。
其中,形成红色发光层23r的过程包括以下步骤S351a至S355a:
S351a、在第一载流子传输层22远离基底21的一侧形成牺牲层。具体可以是,在第一载流子传输层22上旋涂聚乙烯吡咯烷酮的乙醇溶液,聚乙烯吡咯烷酮的浓度可以为10mg/ml,旋涂的转速可以设置在1000rpm至3000rpm之间,例如2000rpm。
S352a、在所述牺牲层上形成对应于红色量子点发光器件Lr的容纳槽。其中,在形成容纳槽时,可以通过干法刻蚀的方式在牺牲层上形成容纳槽。例如,可以采用感应耦合等离子体刻蚀设备中的氧气等离子对牺牲层材料进行刻蚀,刻蚀时间设置在10s至30s之间,例如20s。
S353a、在对应于红色量子点发光器件Lr的容纳槽中形成载流子阻挡层28,具体可以是电子阻挡层。在本步骤中,可以先在第一载流子传输层22上旋涂甲基丙烯酸乙醇溶液,浓度为1mg/ml至3mg/ml,例如,2mg/ml;之后进行曝光,曝光量设置为50mj;之后使用乙醇进行显影,显影后通过退火得到载流子阻挡层28。退火时的温度可以设置在60℃至180℃,例如120℃;退火时间可以设置在60s至120s,例如90s。
S354a、形成红色发光材料层。在本步骤中,可以在载流子阻挡层28上和牺牲层上旋涂包含红色量子点的辛烷溶液,红色量子点材料包括硒化镉/硫化锌,配体为辛硫醇配体;辛烷溶液的浓度为15mg/ml,旋涂的转速可以设置在1500rpm至3500rpm之间,例如2500rpm。
S355a、去除牺牲层,从而将红色量子点发光器件Lr的容纳槽中的红色发光材料层保留,其他区域的红色发光材料层去除,进而得 到红色发光层23r。在本步骤中,可以将形成有红色发光材料层的基板放置于乙醇溶液中,并进行超声波处理;超声波处理时的能量约为240W,处理时间可以设置在2分钟至6分钟之间,例如4分钟。之后进行退火,以得到包括红色发光层23r的显示基板。其中,退火的温度可以设置在60℃至180℃,例如120℃;退火的时间可以设置在10min至30min,例如20min。
在形成红色发光层之后,进行步骤S261、形成绿色发光层23g。绿色发光层23g的制备过程与步骤S351a至步骤S355a相同,故在此不再赘述。
之后,形成蓝色发光层23b。具体地,形成蓝色发光层23b的步骤可以包括:
S351b、对蓝色量子点发光器件Lb所在区域的第一载流子传输层22进行第二次配体交换。在本步骤中,在对应于蓝色量子点发光器件Lb的第一载流子传输层22上形成[Ph 2I] 2[CdCl 4]的N,N-二甲基甲酰胺溶液,其中,[Ph 2I] 2[CdCl 4]的N,N-二甲基甲酰胺溶液的浓度可以设置在50mg/ml至150mg/ml,例如100mg/ml。静止300s,以进行配体交换,之后进行旋涂和退火。其中,旋涂转速可以设置在1000rpm至3000rpm之间,例如2000rpm。退火的温度可以设置在60℃至180℃,例如,120℃,退火时间可以设置在5分钟至15分钟,例如10分钟。
S352b、在第一载流子传输层22远离基底21的一侧形成牺牲层,具体可以参见步骤S351a中的描述,这里不再赘述。
S353b、在牺牲层上形成对应于蓝色量子点发光器件Lb中的容纳槽。形成容纳槽的具体方式参见上述步骤S352a中的描述,这里不再赘述。
S354b、形成蓝色发光材料层。在本步骤中,可以在第一载流子传输层22上和牺牲层上旋涂包括蓝色量子点的辛烷溶液,从而得到蓝色发光材料层。蓝色量子点材料可以为硒化镉/硫化锌(CdSe/ZnS),配体为辛硫醇配体;辛烷溶液浓度为15mg/ml,旋涂的转速可以设置在1500rpm至3500rpm之间,例如2500rpm。
S355b、去除牺牲层,从而将蓝色量子点发光器件Lb的容纳槽中的蓝色发光材料层保留,其他区域的蓝色发光材料层去除,进而得到蓝色发光层23b。去除牺牲层的步骤参见上述步骤S355a中的描述,这里不再赘述。
S36、在每个发光器件L的发光层上形成第二载流子传输层25,也即空穴传输层。空穴传输层的材料可以包括聚(9,9-二辛基芴-co-N-(4-丁基苯基)二苯胺)(TFB),或聚乙烯咔唑(PVK)。在本步骤中,空穴传输层通过旋涂或蒸镀等工艺形成。
S37、在空穴传输层远离基底21的一侧形成空穴注入层27。空穴注入层27的材料可以包括聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT/PSS);在本步骤中,空穴注入层27通过旋涂或蒸镀等工艺形成。
S38、形成每个发光器件L的第二电极26,第二电极26可以为阳极,不同发光器件L的第二电极26可以间隔设置。在本步骤中,可以采用蒸镀或溅射的方式在第二载流子传输层25远离基底21的一侧形成第二电极26。第二电极26层的材料可以包括铝、铜或银等金属,也可以包括氧化铟锡薄膜或氧化铟锌等。
S39、对显示基板进行封装。例如,使用封装盖板对显示基板进行封装。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (20)

  1. 一种发光器件,其中,包括:
    设置在基底上的第一载流子传输层;
    发光层,所述发光层设置在所述第一载流子传输层远离所述基底的一侧;
    其中,所述第一载流子传输层包括第一传输子层,所述第一传输子层包括纳米粒子以及连接于所述纳米粒子表面的无机配体,所述无机配体中包含卤族元素或氧族元素。
  2. 根据权利要求1所述的发光器件,其中,所述无机配体的通式包括:B -或AB x y-
    其中,所述B为卤族元素,所述A为金属元素,所述x和所述y均为正整数。
  3. 根据权利要求2所述的发光器件,其中,所述B包括:碘、氯、溴和氟中的任一者,所述A包括:锌、镉、汞、铜、银和金中的任一者。
  4. 根据权利要求1所述的发光器件,其中,所述无机配体的通式包括:MJ x y-或M zJ x y-
    其中,所述J为氧族元素,所述M为金属元素,所述x、所述y和所述z均为正整数。
  5. 根据权利要求4所述的发光器件,其中,所述J包括:氧、硫、硒、碲中的任一者,所述M包括:钼、铬、钨、铁、钌、锇、钴、铑、铝、镓、铟、锗、锡、铅、锑和铋中的任一者。
  6. 根据权利要求1至5中任一项所述的发光器件,其中,所述第一载流子传输层还包括第二传输子层,所述第二传输子层位于所述 第一传输子层远离所述发光层的一侧;所述第二传输子层中不包含所述无机配体。
  7. 根据权利要求1至5中任一项所述的发光器件,其中,所述发光器件还包括:
    第一电极,所述第一电极设置在所述基底与所述第一载流子传输层之间;
    第二载流子传输层,所述第二载流子传输层设置在所述发光层远离所述基底的一侧;
    第二电极,所述第二电极设置在所述第二载流子传输层远离所述基底的一侧;
    其中,所述第一载流子传输层和所述第二载流子传输层中的一者为电子传输层,另一者为空穴传输层。
  8. 根据权利要求1至5中任一项所述的发光器件,其中,所述发光层包括量子点层。
  9. 一种显示基板,其中,包括:多个发光器件,所述多个发光器件中的至少一个采用如权利要求1至8中任一项所述的发光器件。
  10. 根据权利要求9所述的显示基板,其中,所述多个发光器件中的每个采用如权利要求1至8中任一项所述的发光器件;
    所述多个发光器件包括多个第一发光器件和多个第二发光器件,所述多个第一发光器件中的每个的发光颜色与所述多个第二发光器件中的每个的发光颜色不同。
  11. 根据权利要求10所述的显示基板,其中,
    当所述第一载流子传输层为电子传输层时,所述多个第二发光器件中的每个还包括电子阻挡层,所述电子阻挡层位于所述第二发光器件的电子传输层与发光层之间;
    当所述第一载流子传输层为空穴传输层时,所述多个第一发光器件中的每个还包括空穴阻挡层,所述空穴阻挡层位于所述第一发光器件的空穴传输层与发光层之间。
  12. 根据权利要求10所述的显示基板,其中,
    当所述第一载流子传输层为电子传输层时,所述多个第二发光器件中的每个的第一载流子传输层的厚度大于所述多个第一发光器件中的每个的第一载流子传输层的厚度;
    当所述第一载流子传输层为空穴传输层时,所述多个第一发光器件中的每个的第一载流子传输层的厚度大于所述多个第二发光器件中的每个的所述第一载流子传输层的厚度。
  13. 根据权利要求10所述的显示基板,其中,
    当所述第一载流子传输层为电子传输层时,所述多个第二发光器件中的每个的无机配体在第一载流子传输层中的掺杂浓度小于所述多个第一发光器件中的每个的无机配体在第一载流子传输层中的掺杂浓度;
    当所述第一载流子传输层为空穴传输层时,所述多个第二发光器件中的每个的无机配体在第一载流子传输层中的掺杂浓度大于所述多个第一发光器件中的每个无机配体在空穴传输层中的掺杂浓度。
  14. 根据权利要求10至13中任一项所述的显示基板,其中,所述多个第一发光器件中的每个为蓝色量子点发光器件,所述多个第二发光器件包括多个红色量子点发光器件和多个绿色量子点发光器件。
  15. 一种显示装置,其中,包括如权利要求9至14中任一项所述的显示基板。
  16. 一种发光器件的制备方法,其中,包括:
    在基底上形成第一载流子传输层;
    在所述第一载流子传输层远离所述基底的一侧形成发光层;
    其中,所述第一载流子传输层包括第一传输子层,所述第一传输子层包括纳米粒子以及连接于所述纳米粒子表面的无机配体,所述无机配体包含卤族元素或氧族元素。
  17. 根据权利要求16所述的制备方法,其中,在形成所述第一载流子传输层之前,所述制备方法还包括:
    在所述基底上形成第一电极;
    在形成所述发光层之后,所述制备方法还包括:
    在所述发光层远离所述基底的一侧形成第二载流子传输层;
    在所述第二载流子传输层远离所述基底的一侧形成第二电极;
    其中,所述第一载流子传输层和所述第二载流子传输层中的一者为电子传输层,另一者为空穴传输层。
  18. 根据权利要求16所述的制备方法,其中,形成所述第一载流子传输层,具体包括:
    形成初始载流子传输层,所述初始载流子传输层包括所述纳米粒子以及连接于所述纳米粒子表面的有机配体;
    在所述初始载流子传输层上形成含有所述无机配体的第一溶液层,以使所述第一溶液层与所述初始载流子传输层发生配体交换,得到包括所述第一传输子层的第一载流子传输层。
  19. 根据权利要求16所述的制备方法,其中,在形成所述发光层之前,所述制备方法还包括:
    在所述第一载流子传输层远离所述基底的一侧形成牺牲层;
    在所述牺牲层上形成容纳槽;
    其中,所述发光层形成在所述容纳槽中;
    在形成所述发光层之后,所述制备方法还包括:去除所述牺牲层。
  20. 根据权利要求19所述的制备方法,其中,在所述牺牲层上形成容纳槽,具体包括:
    在所述牺牲层上形成光刻胶层;
    对所述光刻胶层进行曝光并显影,以将对应于所述容纳槽的区域的光刻胶去除;
    利用氧等离子对所述牺牲层进行刻蚀,形成所述容纳槽。
PCT/CN2021/088373 2021-04-20 2021-04-20 发光器件及其制备方法、显示基板和显示装置 WO2022222027A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/639,009 US20240040813A1 (en) 2021-04-20 2021-04-20 Light-emitting device and preparation method thereof, display substrate and display device
PCT/CN2021/088373 WO2022222027A1 (zh) 2021-04-20 2021-04-20 发光器件及其制备方法、显示基板和显示装置
CN202180000828.5A CN115500086A (zh) 2021-04-20 2021-04-20 发光器件及其制备方法、显示基板和显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/088373 WO2022222027A1 (zh) 2021-04-20 2021-04-20 发光器件及其制备方法、显示基板和显示装置

Publications (1)

Publication Number Publication Date
WO2022222027A1 true WO2022222027A1 (zh) 2022-10-27

Family

ID=83723657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/088373 WO2022222027A1 (zh) 2021-04-20 2021-04-20 发光器件及其制备方法、显示基板和显示装置

Country Status (3)

Country Link
US (1) US20240040813A1 (zh)
CN (1) CN115500086A (zh)
WO (1) WO2022222027A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108276986A (zh) * 2017-12-19 2018-07-13 上海科技大学 具有无机配体的量子点材料及其制备和应用
CN109148695A (zh) * 2017-06-28 2019-01-04 Tcl集团股份有限公司 一种金属氧化物纳米颗粒薄膜的制备方法及电学器件
CN109994624A (zh) * 2017-12-29 2019-07-09 Tcl集团股份有限公司 复合纳米颗粒及其制备方法和应用
CN109994623A (zh) * 2017-12-29 2019-07-09 Tcl集团股份有限公司 复合金属氧化物纳米颗粒及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109148695A (zh) * 2017-06-28 2019-01-04 Tcl集团股份有限公司 一种金属氧化物纳米颗粒薄膜的制备方法及电学器件
CN108276986A (zh) * 2017-12-19 2018-07-13 上海科技大学 具有无机配体的量子点材料及其制备和应用
CN109994624A (zh) * 2017-12-29 2019-07-09 Tcl集团股份有限公司 复合纳米颗粒及其制备方法和应用
CN109994623A (zh) * 2017-12-29 2019-07-09 Tcl集团股份有限公司 复合金属氧化物纳米颗粒及其制备方法和应用

Also Published As

Publication number Publication date
US20240040813A1 (en) 2024-02-01
CN115500086A (zh) 2022-12-20

Similar Documents

Publication Publication Date Title
Kim et al. Recent progress of quantum dot‐based photonic devices and systems: a comprehensive review of materials, devices, and applications
CN103346154B (zh) 一种量子点发光二极管及其制备方法、显示器件
WO2015073502A1 (en) Motft with un-patterned etch-stop
TWI611613B (zh) 有機發光裝置及該裝置的製造方法
JP5825812B2 (ja) 表示装置の製造方法
KR20100132155A (ko) 유기전계 발광소자 및 그 제조 방법
KR102078022B1 (ko) 양 방향 표시형 유기전계 발광소자 및 이의 제조 방법
KR100635064B1 (ko) 능동 매트릭스 유기전계발광표시장치 및 그의 제조 방법
WO2022222027A1 (zh) 发光器件及其制备方法、显示基板和显示装置
CN110299395B (zh) 基板、包括该基板的显示装置以及该显示装置的制造方法
KR100441435B1 (ko) 액티브 매트릭스 타입의 유기전계발광표시장치의 제조방법
WO2021044495A1 (ja) 発光素子および表示装置
KR20120073042A (ko) 유기전계 발광소자용 기판 및 그 제조 방법
WO2021254057A1 (zh) 发光基板及其制备方法和发光装置
US20230021056A1 (en) Method of patterning light emitting layer, and method of manufacturing light-emitting diode device
WO2023024113A1 (zh) 发光器件及其制备方法、显示基板、显示装置
WO2023087276A1 (zh) 量子点膜和量子点膜图案化的方法以及它们的应用
KR100611213B1 (ko) 세퍼레이터를 구비한 액티브 매트릭스 타입유기전계발광소자의 제조방법 및 이에 따른유기전계발광소자
CN113571668A (zh) 一种阵列基板、其制备方法及显示装置
KR100635041B1 (ko) 전면발광구조를 갖는 유기전계발광표시장치의 제조방법 및이에 따른 유기전계발광표시장치
CN116472326B (zh) 量子点膜和量子点膜图案化的方法以及它们的应用
WO2023276085A1 (ja) 表示装置及び表示装置の製造方法
WO2023065984A1 (zh) 发光器件及其制备方法
WO2023137668A1 (zh) 发光基板及其制备方法和发光装置
WO2023065968A1 (zh) 发光器件及其制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17639009

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/02/2024)