WO2022220314A1 - Nouvelles particules de précurseur pour matériau actif de cathode de batterie secondaire - Google Patents

Nouvelles particules de précurseur pour matériau actif de cathode de batterie secondaire Download PDF

Info

Publication number
WO2022220314A1
WO2022220314A1 PCT/KR2021/004617 KR2021004617W WO2022220314A1 WO 2022220314 A1 WO2022220314 A1 WO 2022220314A1 KR 2021004617 W KR2021004617 W KR 2021004617W WO 2022220314 A1 WO2022220314 A1 WO 2022220314A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
metals
precursor
powder
particles
Prior art date
Application number
PCT/KR2021/004617
Other languages
English (en)
Korean (ko)
Inventor
진주성
장성균
박선홍
정현도
정인택
표재중
김도형
Original Assignee
주식회사 엘 앤 에프
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘 앤 에프 filed Critical 주식회사 엘 앤 에프
Priority to PCT/KR2021/004617 priority Critical patent/WO2022220314A1/fr
Publication of WO2022220314A1 publication Critical patent/WO2022220314A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a novel precursor particle for the production of a cathode active material for a secondary battery, and more particularly, it includes a transition metal precursor particle and a composite element included in its interior and/or a coating layer, wherein the composite element is It relates to a novel precursor particle comprising at least one charge/discharge element and at least one doping element.
  • a secondary battery is composed of a positive electrode, a negative electrode, and an electrolyte.
  • the cathode material should generally have a high energy density during charging/discharging, and at the same time, the structure should not be destroyed by intercalation and deintercalation of reversible lithium ions. In addition, it should have high electrical conductivity, high chemical stability with respect to the organic solvent used as an electrolyte, low manufacturing cost, and a material that minimizes environmental pollution problems.
  • a positive electrode active material is prepared by mixing a powdery transition metal precursor with a Li raw material and then firing at a high temperature.
  • the transition metal precursor powder, the Li raw material powder, and the doping raw material powder are all separately present in the form of particles, the raw materials that are physically non-contact or simply contacted during firing are transferred to the surface or inside of the transition metal precursor particles. It is very difficult to diffuse and enter, and the reaction time is long because the movement path of the elements is long, and the probability of uniform contact with each other is not high, so the uniformity of the reaction is also deteriorated.
  • novel precursor particles having a secondary particle shape in which a plurality of primary particles are aggregated have been described, it will be possible to manufacture new precursor particles having a primary particle shape depending on the manufacturing method and conditions. Since the knowledge of the primary particles and the secondary particles is known in the art, a detailed description thereof will be omitted herein.
  • the presence and location of the transition metal precursor particles and the composite metal can be confirmed even with images taken by SEM, TEM, or the like. At this time, in order to confirm the inside of the new precursor particles, it is preferable to photograph after general polishing or cross-section cutting through an ion beam.
  • A/M (molar ratio), which means the content ratio of the elements, means the molar ratio (A/M) of the entire composite element (A) to the transition metal (M), and is greater than 0 as defined above, and is charged at high temperature It is preferable to satisfy the range of more than 0 to 1.5 or less for suppression of volatilization of discharge elements and the like and cation mixing. Further, more preferably, it may be in the range of 0.3 to 1.4, particularly more preferably in the range of 0.6 to 1.2.
  • Example 6 is a STEM-EDX analysis photograph of a novel precursor particle according to Example 1-1 performed in Experimental Example 2;
  • Sulfates of nickel, cobalt, and manganese are dissolved in a ratio of 6:2:2 to make a solution, and then a co-precipitation reaction is performed to synthesize a transition metal precursor powder having a composition of 6:2:2, and then washed.
  • a Li compound (Li 2 CO 3 ) was dissolved in water from which impurities were removed to make a high-concentration solution of 1M or more, and Al 2 (SO 4 ) 3 powder was added to a predetermined value and then dissolved to prepare a mixed solution.
  • the transition metal precursor powder was added to the prepared mixed solution and mixed, and filtered through a circulating filter. By removing moisture through drying in an oven at 120° C. for 16 hours, a molar ratio of Li and Metal of 1.03 and Al 2 (SO 4 ) 3 was added to prepare a transition metal precursor powder.
  • FIG. 1 SEM images of the precursor powders thus prepared are shown in FIG. 1 .
  • both Li and Al, which are composite elements, are included in the transition metal precursor particles, only one type of particles is observed in the prepared powder.
  • FIG. 4B An SEM photograph of the thus-prepared positive active material is shown in FIG. 4B . It can be seen that the size of the primary particles in the positive active material of FIG. 4B is smaller than that of FIG. 4A (Comparative Example 1), but larger than that of FIG. 3 (Example 1).
  • the transition metal precursor powder prepared above was put in a Kawata mixer, and a Li compound (LiOH) and Al(OH) 3 powder were added and mixed so that the molar ratio of Li and metal was 1.03.
  • transition metal precursor powder prepared above in a Kawata mixer, add Li compound (LiOH) and Al(OH) 3 powder together so that the molar ratio of Li and metal becomes 1.03, mix, and then in an air atmosphere at 750° C. for 28 hours
  • Li compound (LiOH) was dissolved in water from which impurities were removed to make a high concentration solution of 1M or more, and Zr(SO 4 ) 2 powder was added to a predetermined value and then dissolved to prepare a mixed solution.
  • the precursor was added to and mixed with the prepared mixed solution, and filtered through a circulating filtration device. By removing moisture through drying in an oven at 120° C. for 24 hours, a molar ratio of Li and Metal of 1.03 and Zr(SO 4 ) 2 was added to prepare a transition metal precursor powder.
  • transition metal precursor powder prepared above in a Kawata mixer, add Li compound (LiOH) and ZrO 2 powder together so that the molar ratio of Li and metal becomes 1.03, mix, and then calcinate at 750° C. for 28 hours in an air atmosphere to Li
  • Li Li compound (LiOH) and ZrO 2 powder together so that the molar ratio of Li and metal becomes 1.03, mix, and then calcinate at 750° C. for 28 hours in an air atmosphere to Li
  • transition metal precursor powder prepared above in a Kawata mixer, add a Li compound (LiOH) and TiO 2 powder together so that the molar ratio of Li and metal is 1.03, mix, and then calcinate at 750° C. in an air atmosphere for 28 hours.
  • Thermogravimetric analysis was performed on the novel precursor powder prepared in Example 1 and the precursor mixed powder (transition metal precursor, Li raw material, Al raw material) prepared in Comparative Example 1, and the results are shown in FIG. 5 It was.
  • EDX analysis is performed to analyze the elements inside the particles, but when it is a metal with a very small atomic weight, such as Li, it is impossible to identify the element by EDX analysis.
  • EDX analysis was performed on the precursor particles, but the element could not be detected due to the limitations of the analysis method.
  • Example 1-1 includes K instead of Li to facilitate analysis, properties of the positive active material were not analyzed, unlike other examples.
  • FIGS. 6 and 7A it can be confirmed that Al and K are included in the particles of the novel precursor powder according to the present invention, and it can be seen that the Al and K contents gradually increase from the core part to the surface part.
  • FIG. 7b also discloses the results of EDX analysis of the precursor particles of Comparative Example 1 for comparison purposes.
  • a surface portion having a thickness of about 300 to 700 nm is formed on the inside and outside based on the outermost surface of the particle, and the complex at the surface portion It can be seen that the element content is higher than that of the inner core part. In this way, the content of each position of the additional element can be controlled according to the manufacturing conditions.
  • the R-factor is a value representing the intensity ratio of (006)+(012)/(101), and the lower the value, the higher the crystallinity.
  • the (113) peak is different depending on the presence or absence of doping.
  • the magnitude of the (113) peak intensity (Intensity) and full width at half maximum (FWHM) was increased compared to Comparative Examples 3 to 5, which was compared with the conventional process, It can be seen that the crystallinity of the doped active material is improved when the sintering is performed using the precursor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

La présente invention concerne de nouvelles particules de précurseur pour préparer un matériau actif de cathode, chacune des particules comprenant : une particule de précurseur de métal de transition contenant au moins un type de métal de transition ; et des éléments composites contenus dans l'intérieur et/ou une couche d'enrobage de la particule de précurseur de métal de transition, les éléments composites étant choisis parmi les métaux alcalins, les métaux alcalino-terreux, les métaux de post-transition, les métalloïdes et les non-métaux et comprenant : au moins un élément de charge et de décharge, qui est extrait d'un matériau actif de cathode ou introduit dans ce dernier sous la forme d'un ion pendant la charge et la décharge d'une batterie secondaire ; et au moins un élément dopant utilisé dans le dopage du matériau actif de cathode.
PCT/KR2021/004617 2021-04-13 2021-04-13 Nouvelles particules de précurseur pour matériau actif de cathode de batterie secondaire WO2022220314A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2021/004617 WO2022220314A1 (fr) 2021-04-13 2021-04-13 Nouvelles particules de précurseur pour matériau actif de cathode de batterie secondaire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2021/004617 WO2022220314A1 (fr) 2021-04-13 2021-04-13 Nouvelles particules de précurseur pour matériau actif de cathode de batterie secondaire

Publications (1)

Publication Number Publication Date
WO2022220314A1 true WO2022220314A1 (fr) 2022-10-20

Family

ID=83640778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/004617 WO2022220314A1 (fr) 2021-04-13 2021-04-13 Nouvelles particules de précurseur pour matériau actif de cathode de batterie secondaire

Country Status (1)

Country Link
WO (1) WO2022220314A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030088247A (ko) * 2002-05-13 2003-11-19 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질의 제조 방법
JP2006273620A (ja) * 2005-03-28 2006-10-12 Mitsubishi Chemicals Corp リチウム遷移金属複合酸化物及びその製造方法、リチウム遷移金属複合酸化物用焼成前駆体、並びにリチウム二次電池
JP2015164123A (ja) * 2014-01-31 2015-09-10 住友金属鉱山株式会社 ニッケルコバルト複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および、非水電解質二次電池
KR20150104675A (ko) * 2014-03-05 2015-09-16 전자부품연구원 양극 활물질, 그를 갖는 리튬이차전지 및 그의 제조 방법
KR102076526B1 (ko) * 2019-04-30 2020-02-12 주식회사 엘 앤 에프 이차전지용 양극 활물질의 제조를 위한 신규 전구체 입자 및 이를 포함하는 신규 전구체 분말

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030088247A (ko) * 2002-05-13 2003-11-19 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질의 제조 방법
JP2006273620A (ja) * 2005-03-28 2006-10-12 Mitsubishi Chemicals Corp リチウム遷移金属複合酸化物及びその製造方法、リチウム遷移金属複合酸化物用焼成前駆体、並びにリチウム二次電池
JP2015164123A (ja) * 2014-01-31 2015-09-10 住友金属鉱山株式会社 ニッケルコバルト複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および、非水電解質二次電池
KR20150104675A (ko) * 2014-03-05 2015-09-16 전자부품연구원 양극 활물질, 그를 갖는 리튬이차전지 및 그의 제조 방법
KR102076526B1 (ko) * 2019-04-30 2020-02-12 주식회사 엘 앤 에프 이차전지용 양극 활물질의 제조를 위한 신규 전구체 입자 및 이를 포함하는 신규 전구체 분말

Similar Documents

Publication Publication Date Title
WO2018101806A1 (fr) Précurseur de matériau actif de nickel pour batterie secondaire au lithium, procédé de production de précurseur de matériau actif de nickel, matériau actif de nickel pour batterie secondaire au lithium produit par le procédé, et batterie secondaire au lithium ayant une cathode contenant un matériau actif de nickel
WO2018101808A1 (fr) Précurseur de matériau actif de nickel pour pile rechargeable au lithium et son procédé de fabrication, matériau actif de nickel pour pile rechargeable au lithium fabriqué à l'aide dudit procédé, et pile rechargeable au lithium ayant une cathode contenant ledit matériau actif de nickel
WO2015012651A1 (fr) Matière active d'anode et procédé pour la fabrication de celle-ci
WO2021034020A1 (fr) Matériau actif de cathode, son procédé de préparation et batterie secondaire au lithium le comprenant
WO2022139290A1 (fr) Matériau actif positif pour batterie au lithium rechargeable, son procédé de préparation et batterie au lithium rechargeable le comprenant
WO2021125877A1 (fr) Matériau actif d'électrode positive, son procédé de production, et batterie secondaire au lithium le comprenant
WO2021221480A1 (fr) Matériau actif de cathode pour batterie secondaire au lithium, procédé de production associé et batterie secondaire au lithium le comprenant
WO2016148441A1 (fr) Oxyde métallique au lithium et matériau actif d'électrode négative pour batterie secondaire au lithium comportant celui-ci, et son procédé de fabrication
WO2020111543A1 (fr) Matériau actif à électrode positive à base de lithium-manganèse octaédrique, et électrode positive et batterie secondaire au lithium la comprenant
WO2021132762A1 (fr) Matériau actif d'électrode positive, son procédé de fabrication, et batterie secondaire au lithium dotée d'électrode positive comportant ledit matériau
WO2022080710A1 (fr) Précurseur de métal de transition composite pour matériau actif de cathode, et matériau actif de cathode de batterie secondaire préparé à partir de celui-ci
WO2016089176A1 (fr) Matériau actif de cathode, son procédé de préparation et batterie rechargeable au lithium le comprenant
WO2024096295A1 (fr) Matériau actif d'électrode positive, son procédé de préparation et batterie secondaire au lithium comprenant ledit matériau actif d'électrode positive
WO2021125870A1 (fr) Matériau actif d'électrode positive, procédé destiné à le produire, et batterie secondaire au lithium l'incluant
WO2018052210A1 (fr) Oxyde de cobalt pour batterie secondaire au lithium, son procédé de fabrication, oxyde de cobalt-lithium pour batterie secondaire au lithium formée à partir de celui-ci, et batterie secondaire au lithium dont la cathode comprend celui-ci
WO2023027499A1 (fr) Matériau actif d'électrode positive, son procédé de préparation et batterie secondaire au lithium comprenant une électrode positive comportant celui-ci
WO2020222375A1 (fr) Particule de nouveau précurseur pour la préparation d'un matériau actif de cathode pour batterie secondaire et poudre de nouveau précurseur la contenant
WO2022220314A1 (fr) Nouvelles particules de précurseur pour matériau actif de cathode de batterie secondaire
WO2022092713A1 (fr) Nouvelle particule à un corps pour matière active de cathode
WO2022169271A1 (fr) Matériau actif d'électrode positive et son procédé de préparation
WO2022092488A1 (fr) Matériau actif de cathode pour batterie secondaire au lithium, son procédé de préparation et batterie secondaire au lithium le comprenant
WO2020045802A1 (fr) Matériau actif cathodique pour batterie au lithium rechargeable, son procédé de fabrication, et batterie au lithium rechargeable le comprenant
WO2023033606A1 (fr) Matériau actif d'électrode positive pour batterie au lithium rechargeable, son procédé de préparation, et batterie au lithium rechargeable le comprenant
WO2023121147A1 (fr) Matériau actif de cathode pour batterie secondaire au lithium, son procédé de préparation et batterie secondaire au lithium le comprenant
WO2024136232A1 (fr) Matériau actif positif pour batterie au lithium rechargeable et batterie au lithium rechargeable le comprenant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937054

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21937054

Country of ref document: EP

Kind code of ref document: A1